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Abstract. We model and study the problem of assigning traffic in an
urban road network infrastructure. In our model, each driver submits
their intended destination and is assigned a route to follow that mini-
mizes the social cost (i.e., travel distance of all the drivers). We assume
drivers are strategic and try to manipulate the system (i.e., misreport
their intended destination and/or deviate from the assigned route) if
they can reduce their travel distance by doing so. Such strategic behav-
ior is highly undesirable as it can lead to an overall suboptimal traffic
assignment and cause congestion. To alleviate this problem, we develop
moneyless mechanisms that are resilient to manipulation by the agents
and offer provable approximation guarantees on the social cost obtained
by the solution. We then empirically test the mechanisms studied in the
paper, showing that they can be effectively used in practice in order to
compute manipulation resistant traffic allocations.

1 Introduction

Recent years have witnessed increasing interest in the development of efficient
traffic control systems [15,9]. This is motivated by the significant negative impact
on the quality of life of both road users and residents caused by heavy traffic
congestion levels in large cities such as London, Beijing, and Los Angeles. In-
deed, heavy congestion is known to be a major cause of air and noise pollution,
which are widely recognized as the main cause of many health issues [14,22].
Adding to this is the economic cost associated with the large amount of time
spent in traffic jams, which reduces the productivity of the economy [13]. More-
over, the situation is expected to become significantly worse in the future when
the population, and thus the traffic flow, in large cities will be much bigger
than at present. Unfortunately, conventional traffic control systems have proven
unable to efficiently decrease congestion levels, as they are not designed to be
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adaptive to the dynamics of city traffic, which changes over space and time. On
the other hand, it has been shown [20,16] that by putting some sort of intel-
ligence/smartness into traffic control systems, we can make them adapt to the
changes of the traffic flow. A key objective within these smart traffic control
systems is to address the so-called traffic assignment problem (TAP), in which
mobile agents (i.e., typically drivers) declare their intended destination to the
system, perhaps via their satellite navigation systems, and are then assigned a
route to follow, in such a way that some objective function of the overall traffic
flow in the system is optimized (i.e., minimizing the total traveled distance or
maintaining an efficient traffic load balance). As these agents are typically self-
interested and strategic (i.e., they try to maximize their own utility, disregarding
whether this is detrimental to the global optimization goal), they may manip-
ulate the system whenever they can benefit from doing so [16,24]. This kind of
opportunistic behavior is highly undesirable as it will increase the total social
cost (i.e., decreasing the total load balance or increasing the total congestion
level). As such, incentivizing agents not to be strategic is a key design objective
of these traffic assignment systems [20,16,24]. Given this, we focus on strate-
gyproof TAP mechanisms, which guarantee that it is in the agent’s best interest
to always report her true destination and follow the assigned route. Further-
more, we assume that money transfers between the mechanism and the agents
are not available. This is a common assumption in many domains [19] that will
facilitate the likely real-world deployment of the system by lowering set up costs
(i.e., avoiding the construction of tolling booths). The remainder of the paper
is organized as follows. In Section 2 we discuss related works. In Section 3 we
introduce our model for TAP and prove that Pareto optimal allocations theo-
retically guarantee that agents will follow their assigned paths (Theorem 1). We
then move to study deterministic (Section 4) and randomized (Section 5) Pareto
optimal mechanisms for our problem. We show that the approximation ratio
of deterministic strategyproof mechanisms is lower bounded by 3 (Theorem 2),
while the Serial Dictatorship mechanism can achieve an upper bound of 2n − 1
and it is Pareto-optimal and non-bossy (Theorems 4 and 5), where n is the num-
ber of agents (Theorems 4 and 5). Furthermore, if we require non-bossiness and
Pareto optimality, we are able to close this approximation ratio gap by show-
ing that the Bipolar Serial Dictatorship mechanism is the only strategyproof
mechanism. For randomized mechanisms, we show that the approximation ratio
is lower bounded by 11

10 (Theorem 7). In addition, the Random Serial Dicta-
torship mechanism can achieve an n-approximation (Theorems 8 and 9), while
still preserving the desired properties of Pareto-optimality and non-bossyness. In
addition to these theoretical results, we present an extensive experimental eval-
uation on traffic networks generated from real road network data, which show
how the mechanisms studied in the paper provide good performance in practice,
despite the high theoretical worst case approximation guarantee.
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2 Related Work

There is a large body of literature on traffic network modelling and assign-
ment [2,21,7,8]. However, these works typically ignore the strategic behaviour
of participating agents. Nevertheless, they can be useful to model the underly-
ing traffic network in our work. In particular, we follow the widely used traffic
model proposed in [2]. To tackle the strategic behaviour of the agents, several re-
searchers have suggested employing mechanism design with money and auction
theory for traffic control [20,16,24,4]. These works typically rely on the compu-
tation of the VCG auction in order to assign vehicles to paths. However, they
require monetary incentives, and typically focus on a local control level, such as
intersection management (as VCG is typically computationally hard, and thus,
not readily scalable [6]). A number of researchers have focused on mechanism
design without money [19,5]. However, none of these mechanisms can be easily
applied to the traffic assignment problem, as they do not take into account the
features of the underlying traffic network structure. As we will show, TAP bears
some resemblance to the problem of assigning indivisible objects [3,23,10], al-
though these results are not directly applicable to our scenario. Indeed TAP has
a much more complex structure (mainly due to the underlying traffic network
topology) which traditional assignment mechanisms fail to address.

3 Model and Preliminary Definitions

A traffic assignment problem (TAP) consists of a set of agents A = {a1, . . . , an}
and a road network infrastructure, represented as a directed graph G = (V,E),
where: (i) V = {v1, . . . , v|V |} is the set of nodes representing the junctions of
the road network infrastructure; and (ii) E ⊆ V × V is the set of directed
edges representing one-way road segments. Each edge e ∈ E has a capacity
c : E → N+, which determines the maximum number of agents that can travel
through the edge at any given time, and a weight function w : E → R+ which
represents the cost incurred by the agent traveling through the edge (i.e., travel
distance). Furthermore, each edge is associated to a transit time τ : E → Z+

which represents the free travel time of the edge (i.e., the minimum travel time
needed to travel through the road at maximum allowed speed). This means that
agent ai setting off at time t from node vo and heading to node vd through the
edge (vo, vd) will reach node vd at time t+τ(vo, vd), and will occupy edge (vo, vd)
only in the time interval [t, t+τ(vo, vd)]. Unless stated otherwise, we assume that
edges (u, v) and (v, u) are symmetrical : for all (u, v), (v, u) ∈ E c(u, v) = c(v, u),
w(u, v) = w(v, u) and τ(u, v) = τ(v, u).

As in [17], we assume that if the flow of traffic through an edge does not
exceed its capacity, then no congestion occurs and the traveling time equals the
free travel time. Initially, at time t = 0, agents reside on a (publicly known) set
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O ⊆ V of nodes6 of the graph, Oi being the initial location of agent ai. Each
agent ai ∈ A wants to reach an intended destination Di ∈ V , which is the agent’s
private information and will be referred to in the remainder as her type.

Agents submit (or bid) a destination to an allocation mechanism, which then
assigns each agent a path in order to optimize a certain objective function. More
formally, let P be the set of all possible simple paths between any two nodes in
G. Let D = (D1, . . . , Dn) ∈ V n be a vector of declarations (also referred to as
bids) by the agents and D−i be the vector of declarations of all agents but ai.
A mechanism MG,O : V n → Pn maps a vector of declarations to feasible paths
(i.e., not exceeding the capacity of the edges at any given time) on G, given
the initial locations O of the agents. We write M(D) instead of MG,O(D) when
G and O can be deduced from the context. The path associated to agent ai is
denoted as Mi(D).

A traffic assignment S = M(D) induces a flow over time7 fS : E×T → N+,
where T is a suitable discretization of time w.r.t. the transit times of the edges of
G (for simplicity we will assume that T = {0, 1, . . . , T}, where T is a time horizon
sufficient for the network to clear. Thus, fS(u, v; t) = |{ai ∈ A|(u, v) ∈ Si}| is
the number of agents that are assigned a path that contains edge (u, v) at time
t ∈ T . Feasibility constraints imply that fS(u, v; t) ≤ c(u, v) for all t ∈ T .

In the remainder, without loss of generality, we will study the problem on
the time-expanded network [11,12] of G and consider the static flow through it
(i.e, the transit of an agent over and edge is instantaneous). A time-expanded
network is a properly constructed directed graph with cost and capacity functions
on the edges just like G, but no transit time (i.e. travel time is instantaneous
through all the edges). This is without loss of generality from the point of view
of SP, Pareto-optimality, non-bossines and approximation guarantee since it is
well known (see [11,12]) that a flow over time is equivalent to a static flow on
the corresponding time-expanded network.

Let f−iS : E → N be the flow induced by traffic assignment S generated by
agents A \ {ai}, formally for all e ∈ E, f−iS (e) = |{aj ∈ A : e ∈ Sj , j 6= i}|.
The residual graph G−if is a graph such that: (i) G−if has the same nodes and

edges as G; (ii) each edge e ∈ E of G−if has capacity c(e) − f−iS (e). For any
two nodes u, v ∈ V , let Pu,v denote the set of simple paths in G connecting
u to v. Furthermore, for all traffic assignments S = M(D) and all agents ai,
let Piu,v(S) = {P ∈ Pu,v|∀e ∈ P, c(e) > f−iS (e)}. Informally, Piu,v(S) is the set
of paths connecting u and v that have spare capacity from the perspective of
agent ai (i.e., they can be used by agent ai) when the other agents implement

6Restricting origins/destinations of journeys to road junctions is without loss of gen-
erality since fictitious nodes that serve the sole purpose of acting as starting/ending
point of a journey can always be created by edge splitting operations.

7Sometimes also referred to as dynamic flow in the literature. We prefer the term flow
over time as the adjective dynamic has often been used for settings where the input
data arrive online or change over time. We assume that all the agents are present at
time t = 0 and the network is cleared after the last agent reaches their destination.
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S. Then, the set of reactions available to agent ai having type Di at allocation
S is defined as Ri(S) = PiOi,Di(S).

Agents are not constrained to follow their assigned path but can choose a
different one, subject to capacity constraints8. To model this, as per [18], we
assume that, after the mechanism computes a traffic allocation, the agents can
react by choosing an action from a set Ri ⊆ P. Hence, the actual cost function
of an agent depends on: (i) her true type Di; (ii) the allocation S chosen by
the mechanism on input the bids reported by the agents; and (iii) the reactions
chosen by the agents.

We can now formally define the cost function of an agent. Given an allocation
S′ = M(D′i,D−i), the cost of an agent of type Di with respect to S′ is defined
as: costi(S

′, Di) = minP∈Ri(S′) w(P ) where w(P ) =
∑

(u,v)∈P w(u, v) denotes
the cost of P . We assume that agents are risk-neutral. In what follows, we define
a set of desiderata for our allocation mechanism, namely: (i) strategyproofness,
(ii) Pareto optimality and (iii) non-bossiness.

A deterministic mechanism M is strategyproof (SP for short) if, for all agents
ai, for all declarations Di and D′i and all declarations of the other agents D−i,
agent ai cannot decrease her cost by misreporting her true type, namely:

costi(M(D), Di) ≤ costi(M(D′i,D−i), Di) (1)

A randomized mechanism is strategyproof in expectation if (1) holds in expecta-
tion (i.e., over the random choices of the mechanism). A randomized mechanism
is universally strategyproof if agents cannot gain by lying regardless of the ran-
dom choices made by the mechanism, i.e., the output of the mechanism is a
distribution over strategyproof deterministic allocations.

The social cost of an allocation S is defined as SC(S,D) =
∑
ai∈A costi(S,Di).

A mechanism OPT is optimal for TAP if OPT (D) ∈ arg minS∈Pn SC(S,D) for
all D. A mechanism M is an α–approximation (w.r.t the optimal social cost)
with α ∈ R, α ≥ 1, being referred to as the approximation ratio of M , if, for all
D, SC(M(D),D) ≤ α · SC(OPT (D),D).

A traffic allocation S ∈ Pn is Pareto optimal if there exists no other fea-
sible traffic allocation S′ such that costj(S

′, Dj) ≤ costj(S,Dj) for all aj , and
costk(S′, Dk) < costk(S,Dk) for some ak. Pareto optimal allocations are of par-
ticular interest in our scenario, because, as proven in Theorem 1, they are a
min-cost response in the available reactions Ri(S) of an agent. This gives us a
theoretical guarantee that agents will actually implement Pareto optimal solu-
tions returned by the mechanism.

Theorem 1. Let S = M(D) be a traffic assignment and let Ri(S) be the
set of reactions available to ai at S. If S is Pareto optimal, then Mi(D) ∈
arg minP∈Ri(S) w(P ).

8Agents are not prevented from using edges not belonging to their assigned paths,
as this would result in a waste of public resources (i.e., road capacity). To avoid
congestion, we disincentivize agents from using edges that, according to the scheduled
traffic, are filled to capacity. This can be easily implemented through the use of traffic
cameras that check cars’ number plates.
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Finally, a mechanism M is non-bossy if Mi(D) = Mi(D
′
i,D−i) implies that

Mj(D) = Mj(D
′
i,D−i), for all ai, aj ∈ N and all D and D′i. In other words,

non-bossyness excludes (arguably undesirable) mechanisms that allow one agent
to change the allocation of other agents without changing her own too. In the
remainder of this paper, we focus on strategyproof mechanisms for TAP that
approximately achieve the optimal social cost. In particular, we are interested
in mechanisms that are also Pareto-optimal and non-bossy.

4 Deterministic Mechanisms

In this section, we discuss deterministic mechanisms for TAP. We first provide
a lower bound on the approximation ratio of SP deterministic mechanisms.

Theorem 2. There is no α-approximate deterministic SP mechanism for the
traffic assignment problem with α < 3− ε, for any ε > 0.

These impossibility results suggest that in order to achieve strategyproofness
we have to give up on optimality. This naturally leads to asking to what extent
can we approximate the optimal social welfare while satisfy the desired proper-
ties. As a first step to answer this question, we examine the well-known Serial
Dictatorship mechanism that is deterministic and notoriously satisfies our three
desiderata (i.e., strategyproofness, Pareto optimality and non-bossiness).

Definition 1. Mechanism Serial Dictatorship (SD), given an ordering a1 ≺
, . . . ,≺ an of the agents, allocates paths to agents in n stages such that at stage i

agent ai is allocated her minimum cost path in the residual graph G
−{a1,...,ai−1}
f .

The following theorem proves that SD is feasible under some mild conditions:

Theorem 3. If G is K-edge-connected9, mechanism SD is feasible for K agents.

Next we provide an upper bound on the approximation ratio of SD, and
thus, on its worst case performance. In order to prove our result, we make the
following assumption:

Definition 2. The deviation on capacious path assumption (DoCP) assumes
that whenever the SD mechanism allocates to an agent a path that is different
from the one that the optimal mechanism would allocate, the assigned path has
sufficient capacity to potentially be allocated to all the remaining agents.

To better understand this assumption, consider the following example. With
reference to Figure 1, let ai be an agent and P ∗i be the path she is assigned in
the optimal allocation (i.e., OPTi = P ∗i ). If agent ai is not assigned P ∗i by SD,
there must be an agent aj , where j ≺ i in the ordering used by SD, such that:
(i) SDj = Pj 6= OPTj and (ii) Pj ∩ P ∗i 6= ∅ and (iii) at least one edge of P ∗i

9A graph is K-edge-connected if it remains connected when strictly fewer than K edges
are removed.
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is saturated after aj is assigned Pj . In such a situation, we say that agent ai is
blocked by agent aj . Let αi ∈ Pj ∩ P ∗i (βi ∈ Pj ∩ P ∗i , respectively) be the first
(last, respectively) node of P ∗i in Pj . The DoCP assumption postulates that if
aj blocks ai, then the alternative path of blocked agent ai through blocking agent

aj Γ
j
i = (Oi, αi, Oj , Dj , βi, Di) has at least capacity n − |{ak ∈ A|aj ≺ ak}| in

the residual graph G
−{a1,...,aj}
f . That is, all agents yet to be assigned by SD after

aj can be accommodated on this path. We note that, by construction, if agent

ai is blocked by agent aj then path Γ ji always exists, although unless we assume
DoCP, it might not have spare capacity to be assigned to agent ai. It is not

Fig. 1. Deviation on capacious paths

difficult to see that if we relax the DoCP assumption, then the approximation
ratio of SD is not bounded by any function of the number of agents on certain
pathological TAP instances.

Theorem 4. Under the DoCP assumption, SD is at most (2n−1)-approximate.

Proof (Proof sketch). We prove the claim by induction on the number of players.
Let OPTi denote the cost and solution (with a slight abuse of notation) of the
optimal allocation that only considers bids of agents j ≤ i. Similarly, let SDi

denote the cost and solution of SD on input all the bids of agents j ≤ i. Base of
the induction (i = 1): trivially OPT1 = SD1. Now assume that the claim is true
for i− 1 and, for j ≤ i, let P ∗j (Pj , respectively) be the path assigned to agent j
by OPTi (SDi, respectively). For a path P , we let w(P ) denote the cost of the
path in the given graph G. We want to prove that under the DoCP assumption,
the following holds:

w(Pi) ≤ OPTi + SDi−1. (2)

If P ∗i = Pi then we are done. Therefore, we can assume that P ∗i 6= Pi. This
means that the paths Pj allocated to agents j < i by SDi saturate some of the
edges of P ∗i . Now, for at least one of these agents, say j̄, P ∗

j̄
6= Pj̄ for otherwise

also in OPTi path P ∗i would be unavailable to i. But then w(Pi) ≤ w(Γ j̄i ), Γ j̄i
being the path that connects Oi to Di through Oj̄ , as per the definition of DoCP.

Note that, under the DoCP assumption, Γ j̄i is always feasible. Since Γ j̄i uses only
edges in OPTi ∪SDi−1 (i.e. P ∗i and P ∗j are in OPTi, paths (Oi, αi) and (βi, Dj)
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belong to SDi−1), (2) is proven. Finally, (2) and the inductive hypothesis yield:

SDi = SDi−1 + w(Γ j̄i ) ≤ 2SDi−1 +OPTi

≤ 2((2i−1 − 1)OPTi−1) +OPTi ≤ (2i − 1)OPTi.

As the (2n−1)-approximation ratio can be prohibitively large for large n, we
ask ourselves whether we can further improve this upper bound. Unfortunately,
the following theorem answers this question in the negative.

Theorem 5. Under the DoCP assumption, the bound of Theorem 4 is tight.

We now provide a characterization of SP, Pareto-optimal, and non-bossy
mechanisms for a subset of instances of TAP, named TAP+ and we prove that
the family of all mechanisms satisfying the above properties is comprised by a
generalization of SD, namely Bi-polar Serial Dictatorship (BSD). Such a char-
acterization extends naturally to TAP instances. TAP+ is subset of instances
of TAP having a peculiar structure: (i) every agent has the same source node
O; (ii) O has outgoing edges with unitary capacity and no ingoing edges, let
EO = {(O, v1), . . . , (O, vm)} denote the set of outgoing edges of O; and (iii) the
set of possible destinations that the agents can declare is restricted to a given
subset D ⊂ V .

Definition 3. Given an ordering of the agents {i1, i2} ≺ i3 ≺ . . . ≺ in and a
bipartition {X1, X2} of the set of alternatives X (i.e., paths in the case of TAP)
such that X1 ∩X2 = ∅ and X1 ∪X2 = X, a BSD mechanism executes SD with
ordering i2 ≺ i1 ≺ . . . ≺ in if minx∈X cost1(x) = minx∈X cost2(x) = x ∈ X2;
otherwise SD with ordering i1 ≺ i2 ≺ . . . ≺ in is executed.

Theorem 6. A traffic allocation mechanism for TAP+is Pareto-optimal, SP
and non-bossy if and only if it is a Bi-polar Serially Dictatorial Rule.

Proof (Proof sketch). We reduce an instance of the problem of assigning indivis-
ible objects with general ordinal preferences [3] (AIO for short) to TAP+. In an
instance of AIO, a set of objects X = {x1, . . . , xm} has to be assigned to a set
of agents A = {a1, . . . , an}, such that every agent receives at most one object
and no agent is left without an object if there are objects still available. Agents
have ordinal general preferences �i, where x �i y for x, y ∈ X means that agent
i (weakly) prefers object x to object y. From an instance of AIO, we build an
instance of TAP+ as follows. TAP+ has the same set of agents A as AIO. Graph
G of TAP+ has a node O such that Oi = O for all ai ∈ A. For every object
xj ∈ X we construct in G a node vj and an edge (O, vj) such that c(O, vj) = 1
and w(O, vj) = ε for 0 < ε � 1. Let Ψ be the set of all possible preference re-
lations over X. We construct |Ψ | destination nodes Dk, one for each preference
relation �∈ Ψ and for each k ∈ 1, . . . , |Ψ |. For each j ∈ {1, . . . ,m} we add an
edge (vj , Dk) having capacity 1 and weight w(vj , Dk) equal to the ranking of xj
according to �. We can now transform an instance of the so-constructed TAP+

problem to an instance of the AIO problem, and vice versa. In [3] it is proved
that BSD is the only Pareto optimal, SP and non-bossy mechanism for AIO.
This characterization transfers to TAP+ due to the reduction sketched above.



Social Cost Guarantees in Smart Route Guidance 9

Next, we investigate the performance of BSD and show that it does not
asymptotically perform better than SD. In particular, we state that:

Lemma 1. BSD cannot achieve an approximation ratio lower than Ω(2n).

5 Randomized Mechanisms

Given the undesirable approximation guarantees of deterministic mechanisms,
we now turn to randomization. Randomized mechanisms can often be interpreted
as fractional mechanisms for the deterministic solutions, under mild conditions.
We start by proving the following inapproximability lower bound:

Theorem 7. There is no α-approximate universally truthful randomized mech-
anism for the traffic assignment problem with α < 11/10.

In the remainder of this section, we study the randomized version of SD for
TAP, which is universally strategyproof, (ex-post) Pareto optimal and non-bossy.

Definition 4. The Randomized Serial Dictatorship (RSD) mechanism computes
uniformly at random an ordering σ over the agents and returns the output of SD
over ordering σ.

The following results gives a tight bound on the approximation ratio of RSD.

Theorem 8. Under the DoCP assumption, RSD is at most n-approximate.

Proof (Proof sketch). We are going to prove the claim by induction on the num-
ber of agents. As above, let OPTi denote the cost of the optimal solution with
paths assigned only to agents aj , with j ≤ i. With a slight abuse of notation we
also let OPTi denote the solution itself. Similarly, RSDi denotes the expected
cost of RSD on input all the bids of agents aj , j ≤ i. For the base of the induc-
tion with i = 1, it is clear that RSD1 is the optimal solution. Now assume that
the claim is true for i − 1 and consider an instance with i agents. Let I−k(P ),
P being a path from Ok to Dk, be the instance of the problem without agent
ak and with the capacity of the directed edges in P diminished by one (i.e., as
if the path P were used by ak). Note that by the DoCP assumption, one of the
agents aj , with j 6= k, is guaranteed to be able to use the edges of P in the
opposite direction than ak. We now let OPT−k,P and RSD−k,P be the cost of
the optimum and expected cost of RSD on I−k(P ), respectively. Moreover, let
πj be the path minimizing the cost of agent aj (i.e., the path that SD would
assign to aj if she was the first to choose). We then have

RSDi =
1

i

i∑
k=1

(
w(πk) + RSD−k,πk

)
≤

1

i

i∑
k=1

(
w(πk) + (i− 1)OPT−k,πk

)

≤
1

i

i∑
k=1

w(πk) +
1

i

i∑
k=1

(
(i− 1)(OPTi + w(πk))

)
≤

1

i
OPTi + (i− 1)OPTi +

i− 1

i
OPTi

= i ·OPTi
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where the first equality follows from the definition of RSD, i.e., with probability
1/i each agent k will have the first choice. As for the inequalities, we note that the
first follows from the inductive hypothesis whilst the last from the observation
that OPTi ≥

∑i
k=1 w(πk). We are left with the second inequality. That is, we

prove that under the DoCP OPT−k,πk ≤ OPTi+w(πk). If OPTi allocates πk to
agent ak then we are done. Otherwise, let Pk be the path that ak gets in OPTi
and note that the paths Pj allocated to agents aj j 6= k by OPTi saturates
some of the edges of Pk; let aj̄ be one of these agents. Consider now the solution
S to I−k(πk) where all agents but aj̄ are allocated the same path as in OPTi
and agent aj̄ is given, instead of Pj̄ , the alternative path Γ k

j̄
through agent ak.

Observe that Γ k
j̄

uses the same directed edges of Pj̄ and Pk and the edges of
πk in opposite direction and, as observed above, under the DoCP assumption,
is a feasible path for aj̄ and S a feasible solution to Ik(πk), whose social cost is
denoted SC(S). But then:

OPT−k,πk ≤ SC(S) = OPTi − w(Pj)− w(Pk) + w(P ) ≤ OPTi + w(πk)

where the last inequality follows from the fact that the edges in P \ (Pk ∪ Pj)
are a subset of the edges in πk.

Theorem 9. The approximation ratio of RSD is Ω(n).

This means that by allowing randomness in the allocation mechanism, we can
reduce the exponential approximation of the deterministic case to a linear one.

Fig. 2. Experimental results on Rome99

Rome-99 NY-4000 NY-10000

|V | 3000 4000 10000

|E| 8859 10027 312594

δ+AV G 2.6 2.5 31

cAV G 27.3 20.5 30

Fig. 3. Test graphs’ statistics

Fig. 4. Experimental results on NY-4000 Fig. 5. Experimental results on NY-10000

6 Experimental Results

In this section we present the results of the experimental evaluation we conducted
in order to assess whether the theoretical inapproximability lower bounds impose
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a high approximation cost on real-life instances. In short, we will show that they
do not. In particular, we have measured the approximation ratio obtained by
SD and RSD on three real-life graphs extracted from the DIMCAS 99 shortest
path implementation challenge benchmark datasets [1]. In particular, Rome99
represents a large portion of the directed road network of the city of Rome, Italy,
from 1999. The graph contains 3353 vertices and 8870 edges. Vertices correspond
to intersections between roads and edges correspond to roads or road segments.
NY-4000 and NY-10000 are two subgraphs extracted from NY-d, a larger dis-
tance graph (with 264,346 nodes and 733,846 edges) representing a large portion
the road network infrastrucutre of New York City, USA. The two graphs were
obtained by taking a subset, respectively, of the first 4000 and 10000 nodes of
the graph while ensuring that the connectivity was preserved by adding edges
representing paths through nodes of the original graph not included in the sub-
graph. In Table 3 some statistics related to the structural characteristics of our
test graphs are reported, where δ+

AVG represents the average outdegree of a node
(i.e. the average number of edges originating from a node) and cAVG is the av-
erage capacity of the outgoing edges of a node. In our experimental assessment,
we studied the variation of the approximation ratio of SD and RSD on the test
graphs while varying the resource augmentation factor. The resource augmenta-
tion factor is the key parameter of the resource augmentation framework [5], a
novel comparison framework where a truthful mechanism that allocates “scarce
resources” is evaluated by its worst-case performance on an instance where such
“scarce resources” are augmented, against the optimal mechanism on the same
instance with the original amount of resources. In [5] it is argued that this is
a fairer comparison framework than the traditional approximation ratio, which
compares the performance of a mechanism that is severely limited by the require-
ment of truthfulness to that of an omnipotent mechanism that operates under no
restrictions and has access to the real inputs of the agents. An equivalent resource
augmentation framework is often also used in the analysis of online algorithms.
In the TAP scenario, the natural resource to be augmented is the capacity of the
existing edges, modelled by the augmentation factor γ, which in our framework
is defined as the factor by which the average capacity of the edges departing from
a node is multiplied, spreading the excess capacity evenly among the outgoing
edges of the node. More formally, if cAVG(v) is the average capacity of node v,
then the augmented average capacity cγAV G(v) = γ · cAVG, and the capacity of

each outgoing edge is set as cAVG(v)
δ+(v) , where δ+(v) is the outdegree of v. In our

experiments we ranged the augmentation factor γ in the interval [1, 2], which
means increasing the initial capacity until it is doubled. To run our experiments,
we generated three separate populations of agent-origin-destination triplets, one
population for each test graph, each comprising a number of triplets roughly
equal to 1/3 of the nodes of the graph. The size of the population of triplets was
empirically tailored to let the competition for popular links arise without mak-
ing the allocation problem unfeasible. For each agent-origin-destination triplet
in the population, both the origin and the destination were independently drawn
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uniformly at random from the set of the nodes of the graph, with replacement
(i.e. the same node can be the origin/destination of multiple triplets).

Figures 2, 4 and 5 show the results of our experimental analysis, respectively
on graph Rome99, NY-4000 and NY-10000. In particular, the left hand side plot
represents the absolute value of the social cost for the optimal mechanism, ex-
pressed in kilometers, for SD and for RSD, whereas the right hand side plot
represents the approximation ratio for SD and RSD. From our experimental
analysis we can see that the actual approximation ratio of both SD and RSD is
much lower than the predicted theoretical worst-case approximation. In partic-
ular, our experiments show that the approximation ratios of SD and RSD are
quite similar and strongly o(n) on the investigated road networks. This is due to
the fact that such theoretical approximation lower bounds rely on pathological
instances that are quite unlikely to occur in real life graphs. It is also worth not-
ing the beneficial effect that augmenting the capacity of existing roads has on
the approximation ratio: increasing the augmentation factor steadily decreases
the approximation ratio on both Rome99 and NY-4000. On the other hand a
marked decrease is noticeable only if we increase the augmentation factor to 1.8
in the case of NY-10000. This phenomenon is due to the already reach topolog-
ical structure of NY-10000, which necessitates less augmentation to yield good
performances.

7 Conclusions

In this paper we investigate the problem of strategyproof traffic assignment
without monetary incentives. We study two SP mechanism for our problem,
namely Serial Dictatorship and its randomized counterpart Random Serial Dic-
tatorships. For deterministic mechanisms we prove that Serial Dictatorship is
2n − 1 under some mild assumptions, and characterize Bipolar Serial Dictator-
ship as the only SP, Pareto optimal and non-bossy deterministic mechanism for
our problem. In the randomized case, we prove that Random Serial Dictator-
ship is n-approximate. Finally we assess the performance of Serial Dictatorship
and Random Serial Dictatorship on real road network infrastructure, and show
that they exhibit good approximation guarantees. In particular, RSD is almost
indistinguishable from SD, which means that the instances giving rise to the
inapproximability results rarely occur in practice. Note that our work is the first
that addresses the problem of moneyless strategyproof traffic assignment. Al-
though it ignores a number of properties that occur in real-world scenarios (e.g.,
dynamic network behavior, or asynchronous bid submissions), it still serves as a
proof of concept for moneyless strategyproof assignment mechanisms.
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