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Abstract 

Powerful large-scale GWAS not only discover loci associated with various traits but also 

provide data for performing downstream analyses that lead to further aetiological insights. One 

such group of downstream analyses involve the use of polygenic risk scores. A polygenic risk 

score (PRS) is a weighted sum of risk alleles across the genome, which acts as a proxy of an 

individual’s genetic propensity for a phenotype. The weight is usually the effect size estimated 

from a GWAS on the phenotype. PRS were first used to test whether an outcome had a 

polygenic basis, especially when the corresponding GWAS yielded no significant results. More 

recently, PRS have been used for a huge range of applications, most commonly so far to 

evaluate evidence for shared genetic aetiology between different phenotypes.  

In this thesis, I evaluate the power of various PRS analyses by exploiting UK Biobank data, I 

develop two novel shrinkage methods for increasing the power of PRS analyses, which may 

have applications beyond GWAS and PRS studies, and finally I develop a set of methods for 

extending the PRS approach to individual-level gene-set analyses.  

My PhD begins by developing a method that we call “Permutation Shrinkage”, which shrinks 

GWAS effect size estimates in order to make them closer to the true effect sizes. The 

motivation of this method is to improve the PRS prediction model, which is based on GWAS 

effect size estimates. The accuracy of effect size estimates greatly affects the power of the 

prediction model based on them. This shrinkage method estimates ‘noise’ in the observed effect 

size estimates from a null distribution of the effect sizes generated by permuting raw phenotype 

data and then subtracting these estimated null effects from the observed estimates. Permutation 

shrinkage was tested in UK Biobank data. The corrected GWAS leads to an average 35% 

increase in PRS R2 across a range of traits tested. In the next chapter, I extend the method to 

an order statistic method (“Order Statistics Shrinkage”) applicable for use on summary statistic 

data, which is an important extension because most available GWAS data are on summary 

statistics only. I compare this new shrinkage method to several other well-established 

shrinkage methods, such as Ridge and LASSO regression and tailed the new method to GWAS 

data. Order Statistics Shrinkage had similar performance with Permutation Shrinkage in the 

tests. 
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In the final work chapter of my thesis, I extend the conventional PRS analysis method to a 

group of gene-set analysis methods, which we collectively call 'PRSet'. We add PRSet to the 

PRSice suite of software packages. PRSet calculates gene-set PRS to study aetiology on the 

gene-set or pathway level. Gene-set analyses can be either self-contained (testing general 

association) or competitive (testing enrichment compared to other gene-sets). The performance 

of PRSet is compared with MAGMA, a leading gene-set analysis method.  
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Chapter 1. Introduction 

1.1. Genetic variation 

The human genome consists of 22 autosomal pairs of chromosomes, one from each parent, as 

well as the sex chromosomes – a pair of X chromosomes in females, and an X and Y 

chromosome in males. The Human Genome Project characterised the genome, finding that it 

consists of approximately 3.3 billion nucleotide bases, comprising Adenine (A), Cytosine (C), 

Guanine (G) and Thymine (T), containing approximately 22000 genes. If two individuals are 

sampled randomly from the human population then they will have the same nitrogenous base 

at approximately 99% of their DNA sequence. In terms of base positions that are variable in 

the human population, around 1 in 100 bases can be defined as being genetic variants where 

the minor allele has a frequency of at least 1% in the population1.  

Genetic variants come in various forms2. Ordered by the scale of variation, the known genetic 

variants are: 

1. Chromosome abnormality, including variation in chromosome number or large 

translocations.  

2. Structural variation of DNA sequence, which are not as large as to cause a considerable 

change to the chromosome: such as deletions, inversion polymorphisms, insertions, 

duplication of chromosome fragments, repeat sequences and microsatellites.  

3. Variations that occur at the single nucleotide level, such as single nucleotide 

polymorphisms (SNPs) and small indels (insertions and deletions).  

The 1000 Genomes Project estimated that the typical difference between 2 individuals is 20 

million base pairs (or 0.6% of the total of 3.2 billion base pairs), the vast majority of which are 

small differences (SNPs and brief indels)1. 
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1.2. History of genetic research 

Identifying the genetic basis of human traits and disease is one of the main objectives of genetic 

research. Historically, the identification of genetic regions that influence a trait can be tracked 

back to Morgan’s experiments3 with fruit flies in the early 20th century. Morgan’s experiments 

showed that genes are located linearly on the chromosomes and in linkage disequilibrium (LD), 

which means that the association or linkage of the genotypes of different genetic variants is not 

random in the population. Since then, various techniques have been developed to identify gene 

function, the location of genes on the chromosomes and the distance between genes (gene 

mapping).  

In order to identify which genes or regions of the genome are associated with human traits or 

diseases, there are two main study designs: linkage analyses and association analyses. 

Linkage analysis exploit pedigrees and tests the association between molecular markers, such 

as restriction fragment length polymorphisms (RFLPs), and the phenotype to narrow down the 

region associated with the phenotype.  This method mainly applies to diseases caused by a 

highly penetrant rare alleles, often caused by de novo mutations.  

The molecular markers for linkage analysis have various forms. They are not necessarily the 

DNA sequence with any relevant biological function. Before the Human Genome Project and 

the wide usage of high-throughput genotyping techniques, such as SNP microarray and next 

generation sequencing (NGS), the techniques to measure the genetic variations were mainly 

based on restriction endonuclease, electrophoresis and polymerase chain reaction (PCR)4, 

which only indicate the position of genes or other markers on a genome and their relative 

positions.  

After a marker is found to be in linkage with the trait, the location of the casual variant(s) can 

be approximated. The following-up study is to fine map the causal region with techniques such 

as yeast artificial chromosome5 and bacterial artificial chromosome6 until the candidate region 

is relatively small. In the case of Huntington’s disease, the candidate region was then 



20 
 

approximately 500 kb7. Then the exons encoded by the candidate region could be amplified to 

isolate the candidate gene(s)8.  

Linkage analyses have contributed to discovering the genetic basis of a huge fraction of 

Mendelian and oligogenic diseases and has shed light on how genetic variation affects human 

traits and diseases. However, linkage analysis has limited power: only risk alleles of strong 

effect that lead to very severe phenotypes, such as Huntington's disease9, 7, can be detected. If 

traits are caused by multiple variants and the risk alleles are of moderate and weak effect, which 

is true for most common diseases, then the indirect association test via linked markers in 

relatively small samples of pedigrees may be insufficiently powered. Sample sizes are 

inevitably limited in linkage analyses because collecting family data is time-consuming and 

expensive. Moreover, the recombination events in relatively small samples of pedigrees are of 

limited mapping resolution10.  

By contrast, association analysis uses “unrelated”, which are distantly related, samples and 

directly tests the association between the genotypes of each variant and the phenotype, usually 

using linear (quantitative traits) or logistic regression (binary traits). Associated analyses are 

typically substantially more statistically powerful than linkage analyses since they can be more 

easily performed on very large sample sizes, meaning that they are more able to detect causal 

variants that have modest effects.11 Beside, the unrelated samples from the general population 

are usually more diverse and contain many more historical recombination events, so the 

mapping resolution of population samples is much higher10. 

The majority of diseases are now known to be polygenic traits, for which thousands of genetic 

variants with small effects collectively influence the phenotype. As the focus of the field shifted 

to common diseases and more genetic variants were identified through the association study 

design, association analysis started to dominate the field of Genetic Epidemiology.  

At first, candidate gene association studies were widely conducted. In this design, candidate 

genes are selected for testing based on the previous biological and clinical knowledge of the 

traits and the possible causal genes or associated markers that may likely be causal for them. 

However, the results from early association studies on polygenic traits, typically performed on 

candidate genes, were usually inconsistent and the studies were underpowered12. Negative or 
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inconsistent results can be caused by various factors: the sample sizes are too small, none of 

the candidate genes are associated with the phenotype despite the phenotype having a genetic 

basis, or that the phenotype has little or no genetic basis. However, the design of the candidate 

gene association study makes it impossible to know which of the factors is the case for a 

particular study. Therefore, there was a critical need for a more powerful experimental design.  

Since the Human Genome Project13 was completed in 2001, the sequence and structure of the 

whole human genome has been well characterised. In the following-up research, such as the 

ENCODE14 project, the human genome was further sequenced and annotated. Public databases, 

such as the NCBI (https://www.ncbi.nlm.nih.gov/), make the information of the human 

genome available to the researchers globally. Mapping a gene or a section of DNA sequence 

to the chromosome has become increasingly easy. At the same time, the cost of high-

throughput methods of genotyping genome-wide has dramatically decreased. The current 

mainstream human genetics assaying methods are DNA microarray (also known as “gene chip”) 

and next-generation sequencing (NGS), which can process thousands of samples and assay 

millions of alleles within days.  

Accumulation of the knowledge about human genome and large and high-resolute data make 

it possible to design genome-wide association studies (GWAS) (see section 1.3) to detect 

various genetics variants, even if their effect size is very small. Genetic variants, such as copy 

number variations (CNVs) and single nucleotide polymorphisms (SNPs), can be accurately 

measured and systematically studied.  

Various studies have shown that common genetic variants, which are mostly detected by 

microarrays in GWAS, can explain a considerable proportion of polygenic traits (see section 

1.3). The aetiological interpretation and prediction of traits can be improved based on these 

findings and the availability of large-scale biobank data (see section 1.7). In this thesis, we 

mainly focus on GWAS and SNPs and develop new methodology to further and better exploit 

GWAS data. 
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1.3. The GWAS design 

A genome-wide association study (GWAS) is a large-scale study design to test if genetic 

variants across the genome, typically single nucleotide polymorphisms (SNPs), are associated 

with the phenotype. In GWAS, DNA samples from thousands of individuals are analysed with 

DNA microarrays, which predominantly assay SNPs. 

In terms of which SNPs are tested, unlike candidate gene association studies, GWAS aims to 

cover the whole genome instead of making assumptions about which genes or regions are likely 

to be associated with the phenotype. The design of GWAS is not limited to or directed by 

previous findings.  

However, the current GWAS typically genotypes between 500k and 1M SNPs across the 

genome, which represents only a subset of SNPs across the 3.3 billion nucleotide bases of the 

whole genome). Since the Linkage disequilibrium (LD) structure across the genome is 

relatively pervasive, each SNP is typically correlated with many neighbouring SNPs in the 

same genomic region. SNPs are specifically selected for inclusion on genotyping arrays that 

cover genetic variation in each region best, and these SNPs are known as “tag SNPs”.  By 

genotyping tag SNPs, we obtain a high fraction of the genetic variation of an individual’s 

genome with relatively low cost. Moreover, a method known as “genotype imputation”15 in the 

field can be applied to infer the genotypes for many additional SNPs by using sequence  

information, as a reference panel for imputation, from genetic variation projects such as the 

1000 Genomes project16, to increase coverage further. However, despite this relatively high 

SNP coverage, there are still many SNPs in the genome not included in GWAS, which means 

that GWAS results indicate only whether there is a variant(s) in a region that contributes to the 

phenotype under study, but the SNPs with the smallest P-values in GWAS are not necessarily 

the causal SNPs. 

GWAS typically assumes that: 1) each causal SNP contributes independently and additively to 

the phenotype; 2) For each SNP, its genetic effect has an additive mode of inheritance, in that 

the trait effect is the sum of the effect of each of the two alleles. Under these assumptions, any 

interaction between SNPs is ignored and the SNPs can be analysed independently. While these 

assumptions may oversimplify the reality, they are still widely adopted by the field, because 
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the calculations based on these assumptions are straight-forward and yet appear to be 

reasonably powerful: in simulation tests, the single-marker-based approach was as powerful as 

haplotype-based approach17. Generally, association testing between SNP genotypes and the 

phenotype are performed using linear regression for continuous phenotypes and logistic 

regression for binary phenotypes. A major advantage of performing regression compared to 

simpler tests, such as the chi-squared test or Armitage trend test, is that covariates can be 

controlled for. In GWAS a major potential confounder is that of population structure18, 

whereby genotypes and phenotypes can be associated due to non-random mating (mostly by 

geographical location), but one way to overcome this issue is to include principal components 

from a principal component analysis (PCA) of the genome-wide SNP data as covariates in the 

regression models.  

When performing GWAS we encounter the “multiple testing problem”: since thousands or 

even millions of tests are performed, the usual statistical significance level of P < 0.05 is too 

liberal because a huge number of tests would be declared as significant just by chance if this 

threshold was applied. Due to LD structure, the effective number of tests performed in GWAS 

is much lower than the number of SNPs on SNP chips. Therefore, testing 2-3M genotyped and 

imputed SNPs is equivalent to testing approximately 1M independent SNPs. Based on this, the 

genome-wide significance threshold applied in GWAS is typically 5 × 10?@ 1, equivalent to a 

Bonferroni correction on 1M independent tests. In GWAS, usually only common SNPs, 

defined as the SNPs of minor allele frequency (MAF) > 1%, are included in analyses because 

testing rare SNPs (MAF < 1%) is typically underpowered, more prone to genotyping errors 

and false positives, and thus considered a relatively poor investment. However, as sample sizes 

grow, with the availability of data from large-scale studies such as the UK Biobank, it is 

becoming more worthwhile to test the association of rare variants for complex traits.  

1.4. Findings from GWAS 

GWAS has proven to be a fast and powerful way to identify the genetic basis of both oligogenic 

and polygenic traits. Before the Human Genome Project and the availability of large-scale 

GWAS, finding the causal genetic variants or gene influencing a disease, even a Mendelian 

one, could be extremely time-consuming and expensive since multiple rounds of tests are 

typically needed to narrow down the candidate region. The first genetic marker associated with 
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Huntington’s Disease was found in 19839. After 10 years of recurrently searching for more 

accurate markers and narrowing down the candidate region, the causal gene was finally 

identified7. Nowadays, if the GWAS is powerful enough, the candidate regions can be found 

in a single GWAS analyses, which can take as little as a few hours on already collected data. 

GWAS results provided a comprehensive picture of how much the common SNPs contribute 

to the phenotype, especially when the sample size is large enough to detect the signals of SNPs 

with very small effect size. In 2007, the first large-scale GWAS tested 7 common diseases with 

2000 cases for each disease and 3000 shared controls. 24 independent loci were found to be 

associated with these diseases19. Since then more large-scale GWAS have been conducted to 

identify the new risk alleles and reveal aetiological insights.  

Consider schizophrenia disorder, for example: in its early stage, GWAS used sample sizes of 

several thousand individuals. The first GWAS on schizophrenia20 used only 3,322 cases and 

3,587 controls. However, GWAS on such a sample size is relatively underpowered for very 

complex polygenic traits such as psychiatric disease. In the first schizophrenia GWAS study, 

none of the loci passed the genome-wide significant threshold. Later, thanks to more 

collaborative work across institutions and big data sets such as national biobanks, GWAS for 

polygenic traits such as schizophrenia became more powerful. More and more associated loci 

were identified in GWAS. In 2014, when the sample size increased to 36,989 cases and 113,075 

controls, 108 loci were identified as to be associated with schizophrenia21.The GWAS of 

schizophrenia shows that it is not only quantitative traits, such as height22 and BMI23, that can 

be explained by common variation, but that even rare binary traits and disesases24 that result 

from the interaction between genetics and environment can be explained by common genetic 

variation.  

There has been a debate in the field for many years about whether common diseases or 

complex traits are caused by common variants (MAF > 1%) or rare variants (MAF< 1%)25. 

However, the findings of many common variants affecting complex disease does not reject 

the hypothesis that rare variants have an important influence on complex diseases. In fact, 

the role of rare variants can be better estimated as the influence of common variants becomes 

better estimated.  
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1.5. Aetiological insights into complex traits based on GWAS findings 

GWAS findings provide not only information about significant associated loci but also 

aetiology insights. Here, some of the main areas of progress relating to aetiological 

understanding that has been made thanks to the findings of GWAS are reviewed.  

1.5.1. Heritability estimation  

Heritability is defined as “the proportion of the phenotypic variation that can be explained by 

the genetic variation”. In the broad-sense heritability, the variations of phenotype can be 

explained by genetic factor, environmental factor and interaction between the two. 

Var(Phenotype)=Var(Genetic)+Var(Environment)+2 Cov(Genetics, Environment) 

 Ideally, the covariance between genetic factors and environmental factors should be 

controlled to be zero. Here, Var(Genetic) includes all the genetic variations, such as additive, 

dominant, epistatic. The broad-sense heritability is:  

𝐻B =
𝑉𝑎𝑟(𝑔𝑒𝑛𝑒𝑡𝑖𝑐)

𝑉𝑎𝑟(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒) 

The narrow-sense heritability is defined as: 

ℎB =
𝑉𝑎𝑟(𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑠)

𝑉𝑎𝑟(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒)  

Only additive genetic variants are included. As explained in the previous section, GWAS make 

the additive assumption. Therefore, narrow-sense heritability is essentially equal to the 

maximum of how much the genetic variations detected by GWAS (or similar designs) can 

explain the phenotype variation.  
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Note that the estimation of heritability is not simply adding up all the variations that is directly 

observed in the GWAS.  It is to estimate the upper-limit of the contribution of genetic variations 

to the phenotype according to the observed data. There are two main types of heritability 

estimation method.  

1) GCTA-GREML method 

GCTA-GREML27 uses raw genotype GWAS data to estimate narrow-sense heritability. The 

basic idea of this method is to compare the genetic similarity and the phenotypic similarity 

between two unrelated individuals.  

The genetic similarity of the samples is denoted in a genetics relationship matrix (GRM) 

containing the genetic distance between individuals. The genetic relationship between 

individual i and j based on SNPs i=1,2,…N, with genotypes xi Î {0,1,2}, is： 

𝐴OP =
1
𝑁R

S𝑥UO − 2𝑝UV(𝑥UP − 2𝑝U)
2𝑝U(1 − 𝑝U)

W

UXY

 

in which pi is the minor allele frequency (MAF) of SNP i. 

The main underlying concept of this method is the mixed linear model (MLM): the phenotype 

is a function of a group of variables of fixed effect such as sex, age, eigenvectors from principle 

component analysis (PCA), and SNPs with random effects: 

y = Xβ +Wu + ε 

in which y is the phenotype vector; β is the vector of variables with fixed effects; W is the 

standardized genotype matrix, u ~ N (0, I𝜎bB).  

Wu can be written as g, a vector of total additive genetic effects of the individuals. g ~ N (0, 

A𝜎cB). A is the genetic relationship matrix (GRM). 
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The variance components of this model can be written as: 

𝐕 = 𝐀𝜎cB + 𝐈𝜎gB 

Based on the GRM, the variance explained by all the SNPs 𝜎cB  is estimated by restricted 

maximum likelihood (REML) approach. In this way, the narrow-sense heritability can be 

estimated.   

2) LDSC method 

LD Score Regression (LDSC)28 uses summary statistics data to estimate narrow-sense 

heritability. The basic idea of this approach is to assume that the observed effect sizes are the 

combination of real polygenic signal and confounding biases and that the more causal variants 

a SNP is correlated with, then the larger its observed effect size will be. Thus, LDSC assumes 

that traits with high heritability will have a strong association between the SNP-phenotype 

association test statistic (eg. chi-squared statistic) and local LD, while traits with low 

heritability will have a weak association between the test statistic of SNPs and local LD.  

First, for any genetic variant j=1, 2, …M, its LD score is defined as: 

𝑙O: = R𝑟BPO

j

PXY

 

 The 𝜒B statistics of genetic variant j, given its LD score 𝑙O, is: 

𝐸S𝜒B|𝑙OV =
𝑁ℎB𝑙O
𝑀 + 𝑁𝑎 + 1 

where N is the sample size; M is the number of SNPs; a measures the confounding biases. In 

the regression model of 𝜒B statistics from GWAS results on the LD score, the slope can be 

rescaled as an estimate of heritability, explained by the M SNPs used to build this LD score 

model.  
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1.5.2. Polygenic nature of complex traits 

GWAS findings have demonstrated that most complex traits are polygenic26. Attention is 

mainly focused on the loci that pass genome-wide significance when the aim is to identify the 

causal variants, but studies show that not only genome-wide significant SNPs contribute to the 

phenotypes. Less statistically significant SNPs turn out to explain the phenotypes and the 

correlations between different traits. For example, in Purcell et al (2009) the authors used 

polygenic risk scores to argue that schizophrenia had a polygenic basis, which was shared by 

bipolar disorder20. In this study, the polygenic risk score based on the both genome-wide 

significant and less significant SNPs, that is, PRS using different SNP P-value thresholds, 

significantly predicted the phenotype.  

As the sample size of GWAS increased, more SNPs were found to be genome-wide 

significantly associated with complex traits. For instance, after Purcell et al20, more GWAS on 

schizophrenia were conducted using Caucasian samples and the number of genome-wide 

significant loci increased to 527, 2228, and 10821 as the sample size increased.  This indicates 

that the complex traits are collectively influenced by SNPs of small effect size and more SNPs 

of even smaller effect size may be found in the future as sample sizes increase. 
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Figure 1 Manhattan plot showing the 108 genome-wide significant loci found in the GWAS study by the PGC21. The red 
horizontal line shows the genome-wide significance threshold; the diamonds show the significant index SNPs, while the 
SNPs in LD with the index SNPs are in green.  

 

The polygenicity means that each causal genetic variant has a small or modest effect on the 

phenotype. Therefore, it is difficult to study polygenic phenotypes based on each single locus. 

Polygenic Risk Scores (PRS) are a useful tool to represent the genetic burden across the 

genome and have become widely-used in research on polygenic traits29. The implementation 

and application of PRS will be further discussed in section 1.6. 

1.5.3. Genetic correlation between phenotypes 

GWAS can be used to estimates the genetic correlation between different phenotypes. There 

are two popular methods for testing the correlation. First, a polygenic risk score (PRS) based 

on one trait can be used to predict another trait. More detailed introduction of PRS will be given 

in 1.6. In short, a PRS is a weighed sum of risk alleles relating to an individual. The effect size 

estimated in a previous GWAS can be used as the weight. PRS can be used as a proxy of the 

genetic burden for a phenotype. For example, if the PRS that uses the schizophrenia GWAS as 

the weight represents a person’s genetic burden for schizophrenia. If the schizophrenia PRS 

can predict other phenotypes, e.g. the risk of bipolar disorder, it indicates that schizophrenia is 



30 
 

genetically correlated with other phenotypes. Using this PRS method, the International 

Schizophrenia Consortium showed that schizophrenia shared a common genetic basic 

consisting of common polygenic variations with bipolar disorder, but did not appear to share a 

common genetic basis with non-psychiatric disease (coronary artery disease, Crohn’s disease, 

hypertension, rheumatoid arthritis, type I diabetes and type II diabetes) 20. Although none of 

the SNPs reached genome-wide significance in this early-stage study, the association between 

schizophrenia PRS and the bipolar disorder (BD) phenotype was significant and the smallest 

P-value in this study is 1 × 10?YB. 

Another method is cross-trait LD Score regression30. In addition to calculate heritability, LDSC 

can be used to calculate genetic correlation by adjusting the model. In a large scale study, 

Bulik-Sullivan  et al tested the correlation between 24 traits with this methods31  

The model that calculates the heritability (see section 1.5.1) can be adapted to cross-trait data. 

Assume that the two GWAS each have sample sizes of N1 and N2 and have Ns overlapping 

samples. The genetic correlation between the two traits is 𝜚c and the phenotypic correlation 

between the two samples is 𝜚. Since the LD structure is the same in the two samples, the LD 

score remains the same. The Z score of the variants j in the two GWAS is z1j and z2j.  The 

original model can be written as  

ES𝑧YO𝑧BOr𝑙O) =
s𝑁Y𝑁B𝜚c𝑙O

𝑀 +
𝜚𝑁t

s𝑁Y𝑁B
 

The slope of the regression model of 𝑧YO𝑧BO  regressed against LD score can be used to estimate 

the genetic correlation. 
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Figure 2 The genetic correlations estimated by LD score regression31. The size of the coloured squares indicates the P-value 
of the genetic correlation. The larger the square, the more significant the P-value. The result of the correlation difference from 
zero, at a false discovery rate of 1%, is shown as full-size squares. The asterisks mark the results that are significant after 
Bonferroni correction for the 300 tests.  The colour and shade indicate the value of genetic correlation, blue for positive and 
red for negative. The darker the shade, the higher the absolute value.  

 

As shown in Figure 2, statistically significant genetic correlations were found among various 

traits. Notably, no SNPs reached genome-wide significance for anorexia nervosa and only three 

for educational attainment in this study, but significant genetic correlations were observed 

between these two traits and other traits. 

These studies showed that even when only a few or no SNPs were found to be genome-wide 

significant, the genetic correlations could still be detected with a statistically significant result. 

These findings show that the variants of small or modest effect sizes contribute to the 

correlations between different polygenic traits. 
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1.6. Polygenic risk score 

1.6.1. Basic principles 

Polygenic risk score (PRS) or polygenic score is the weighted sum of alleles that may 

contribute to phenotype.  

PRS =R𝛽y	𝑥 

The weight is usually the effect estimates from previous research such as GWAS. The effect 

estimates or the GWAS data that produce these estimates is usually called base data. The 

individual raw genotype and phenotype data based on which the prediction is made is usually 

called target data. Admittedly, the SNPs included in the model are not necessarily the causal 

SNPs but the PRS model can be used to represent the genetic burden of the individual. 

Despite the simple and straight-forward rational of PRS, it is necessary to pay attention to some 

details when calculating PRS: 

First, the base data and the target data should be independent but homogeneous samples drawn 

from the same populations. The overlapping between the base and target data leads to 

overfitting32. If the base and target data are from different populations, the model can be under-

powered or biased because of the differences in allele frequency, population structure, 

environmental factors etc29. Although there have been successful multi-ethnic PRS analysis33, 

PRS based on cross-population or heterogenic samples required great caution to correct for the 

possible confounding factors.  

Second, the SNPs in LD will cause redundant signals in PRS. One of the commonly used 

methods to avoid the redundant signal is to clump SNPs before calculating the PRS. 

Third, missing SNPs need to be properly corrected for. In PRS calculation, missing SNPs are 

usually set to be zero. This will introduce a bias correlated with the missingness. To correct for 
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this bias, in the QC step before calculating the PRS, samples with too many missing SNP 

should be excluded; in the PRS calculation, the raw ∑𝛽y	𝑥 should be divided by the number 

of SNPs (excluding all the missing SNPs) used in the PRS calculation.  

PRS′ =
1
𝑁R𝛽y	𝑥 

PRS’ is the average genetic burden per non-missing SNP account for. Therefore, it is not biased 

because of the different missingness of the sample. 

PRS should be controlled for covariates such as sex, age, top principle components, etc. when 

testing the association between the phenotype and PRS.  

1.6.2. Methods of optimising PRS 

The raw GWAS result contains SNPs that are correlated or in LD. Calculating PRS using all 

the SNPs will lead to redundant signals. Usually, SNPs are clumped before the calculation of 

PRS. Clumping is a function that implemented by PLINK34. Clumping takes all the SNPs that 

passes a P-value threshold and have not been clumped (index SNPs) and put all the other SNPs 

within a physical distance measured in kilobase that are correlated with the index SNP because 

of LD into a clump. The correlation is measured in the R2. Clumping is a greedy algorithm so 

that each SNP is only included in at most one clumps. Thus, clumped SNPs can be viewed to 

be independent or only modestly correlated and are the most significant SNPs in each clump.  

PLINK provide 4 parameters for clumping: p1, the significant threshold SNPs to be considered 

as index SNPs; p2, the significant threshold for non-index SNPs to be listed in the output file; 

kb: the distance within which the clumping is performed; r2: the correlation threshold of for the 

non-index SNP to be considered with the index SNP. In PRS calculation, the aim of clumping 

is to extract all the independent SNPs so p1 is usually set to be 1 and kb and r2 can be adjusted 

according to each specific analysis.  
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In GWAS, the effect size estimates contain true signal as well as error quantity caused by 

chance (‘noise’). When using the GWAS as the base data for PRS model, reducing the ‘noise’ 

in the model will increase the prediction power.   

The most common way to optimising PRS is P-value thresholding. It is intuitive to assume that 

the smaller P-value, the more likely the effect size estimate is significant and close to the truth. 

The SNPs that pass the P-value threshold are viewed to have the valid effect size estimates and 

included in the PRS and the other SNPs are excluded.  

Since different traits and data may have different genetic architecture, P-value thresholding 

method iterates through different P-value thresholds in order to get the best signal-noise ratio. 

The best results of all the iterations is viewed to have the highest the signal-noise ratio and used 

as the final PRS result. P-value thresholding on the clumped SNPs (Clumping + P-value 

thresholding, or “C+P”) is currently the most used approach for calculating PRS29. 

There are also other ways of improving the PRS prediction power. Two alternative options of 

the clumping and thresholding approach to optimize PRS, LDpred35 and lassosum36, are  briefly 

introduced here. 

LDpred35 uses a Bayesian approach that uses the genetic architecture and LD structure 

information as the prior instead of clumping when controlling for the LD structure. The 

posterior mean for effect size is approximated as the following formula with some 

assumptions: 

 

where N is the number of individuals; M is the number of genetic variants; 𝐷}  denotes the 

regional LD matrix under the assumption that only makers within a small region are linked; 

and ℎc denotes the heritability estimated with LD score regression36. In addition, it iterates a 

series of possibility of variants being causal, p: 
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The default series of p in the methods is 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3E-4, 1E-4, 3E-5, 

1E-5. The SNP weights generated by the above model is then used to build the PRS model. 

Lassosum36 optimises the prediction power with a modified LASSO model that shrink the  

effect size estimates in the base data. The original LASSO37 method is a penalized regression 

that depends on the raw individual-level data: 

 

where 𝛽 is the estimated effect size; ‖𝛽‖YY = ∑ |𝛽U|U ; X is the individual-level genotype 

matrix, y is the phenotype vector.   

The raw individual level data XT X and XT y can be replaced by summary statistics. r= XT y is 

the SNP-wise correlation between the SNPs and the phenotype; R= XT X is the LD matrix. 

Both r and R can be estimated from other summary statistics databases. Therefore, the 

regression can be written as  

 

Since R is estimated from another set of genotype data Xr , the model is modified as: 
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The model is not a LASSO problem. In order to make the modified model equivalent to a 

LASSO problem, the formula is regularized: 

 

Where 𝑹t = (1 − 𝑠)𝑿��𝑋� + 𝑠I (0<s<1). 

A set of BLUP methods38–41 have been developed to improve the SNP effect size estimates. 

GWAS estimates the effect size of each SNP separately regardless of the LD structure. Using 

all the SNP effect size estimates can be problematic because of high collinearity of the SNPs. 

Clumping can get rid of the collinearity but may exclude informative SNPs. To address this 

problem, Genomic BLUP (GBLUP) uses a linear mixed model (LMM) with best linear 

unbiased predictor (BLUP) properties to improve the ordinary least squares OLS predictors of 

original GWAS estimates. 

In a general linear mixed model: 

𝐲 = 𝐖𝐛+ 𝜖 

In which 	𝐲  denotes the phenotype; 𝐛  denotes the SNP effects; 𝜖  denotes the residues; 𝐖 

denotes the standardized genotype, where the 𝑖𝑗��  element (the risk allele number of  𝑖�� 

individual’s 𝑗��  SNP) is standardized as: 

𝑤UO =
S𝑥UO − 2𝑝OV

�2𝑝OS1 − 𝑝OV
 

The distributional properties are denoted as var(b) = B, var(𝜖ϵ) = R and var(y) = WBW′ + R. 

Usually, GWAS calculate the effect of one SNP at a time using OLS regression as: 

𝐛� ��� = diag[𝐖′𝐖]?Y𝐖′𝐲 
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Where diag([𝐖′𝐖]) has diagonal elements = 𝑤O′𝑤O and off-diagonal elements = 0. 

In a general form, BLUP solution for 𝐛 based on individual-level data is  

𝐛� ���� = [𝐖�𝐑?Y𝐖 + 𝐁?Y]?Y𝐖′𝐑?Y𝐲 

It accounts for the correlation between variants and also is unbiased in terms of Ε�𝐛|𝐛� � = 𝐛� . 

If 𝐑 is diagonal, the above equation can be reduced to: 

𝐛� ���� = [𝐖�𝐖+ 𝐁?Y𝐑]?Y𝐖′𝐲 

Assuming b follows the distribution 𝐛~𝑁(0, 𝐈j𝜎¡B), then 𝐁 = 𝐈j𝜎¡B; assuming the residue 

ϵ~𝑁(0, 𝐈j𝜎£B). The above equation can be written as: 

𝐛� ���� = [𝐖�𝐖+ 𝐈j𝜆]?Y𝐖′𝐲 

In which 𝜆 = ¥¦§

¥¨
§ .  

The above is the solution of genomic BLUP. 

When the individual-level raw GWAS data is not available, BLUP estimates can be obtained 

from summary statistics GWAS result by replacing the individual level data 𝐖�𝐖 and 𝐖′𝐲 

with the expectation that can be obtained with public available data.  

𝔼[𝐖�𝐖] = 𝑁𝐋 

𝔼[𝐖′𝐲] = 𝑁𝐛� ��� 
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In which L is an M × M scaled SNP LD correlation matrix estimated from a reference SNP 

data set and 𝐛� ��� are obtained from GWAS summary statistics. 

Assuming phenotype variance =1 and the proportion of phenotypic variance contributed by 

SNPs ℎ«W¬B = 𝑀𝜎¡B, then 𝜆 = j¥¦§

�®¯
§ = jSY?�®¯

§ V
�®¯
§  . 

Thus, GBLUP can be transformed to summary statistic approximate BLUP (SBLUP): 

𝐛� ����� = [𝑁𝐋 + 𝐈j𝜆]?Y𝑁𝐛� ��� 

𝐛� ����� = [𝐋 + 𝐈j𝜆/𝑁]?Y𝐛� ��� 

This method40 is similar with LDpred. 

In addition to optimizing SNP effect size estimates of a single trait, the genetic predictors of 

multiple traits can be jointly analysed with in a mixed-effects model to improve the prediction 

power if the traits are genetically correlated. The above BLUP model can be adjusted for 

multiple traits. For k traits that are measured on different individuals, with 𝑁P observations for 

trait k, the phenotype and genotype data can be written as: 

𝐲� = 𝐖𝐛+ 𝛜 

where 𝒚� = �𝒚�𝟏, 𝒚
�
𝟐 …𝒚

�
𝒌�, 𝐖 = ¶

𝐖𝟏	𝟎			⋯𝟎	
	𝟎			𝐖𝟐⋯𝟎	
	⋮				⋮					⋱		⋮	
	𝟎			𝟎⋯ 	𝐖𝒌

». 

The distribution of the parameters is var(𝜖) = 𝐑 = diag(𝐑P) = diag�𝐈W¾𝜎£¾
B �, var(𝑏) = 𝐵 =

∑𝒃 ⊗ 𝐈j . ∑𝒃  is a k × k matrix, with diagonal elements 𝜎¡¾
B  and off-diagnoal elements the 

covariances of SNP effects between traits. Substituting these expressions into 𝐛� ����  will 

generate multi-trait BLUP solution for effect size estimates: 
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𝐛� ÄÅ?���� = �𝐖�𝐖 + ∑𝝐∑𝒃?𝟏 ⊗ 𝐈j�
?Y
𝐖′𝐲 

If only summary statistics is available, 𝐖�𝐖 and 𝐖′𝐲 can be replaced by their expectation as 

in the single-trait BLUP:  

𝔼[𝐖𝒌
�𝐖𝒌] = 𝑁P𝐋 

𝔼[𝐖′𝐲] = 𝑁P𝐛� ���P 

Thus, the multi-trait summary statistics BLUP is: 

𝐛� ÄÅ?���� = �𝐈P⨂𝐋 + ∑𝝐∑𝒃?𝟏𝐍?Y ⊗ 𝐈j�
?Y
𝐛� ��� 

However, the inversion of non-diagonal matrix �𝐈P⨂𝐋 + ∑𝝐∑𝒃?𝟏𝐍?Y ⊗ 𝐈j�  is highly 

computational expensive. Thus, the method assumes that SBLUP solutions have BLUP 

properties: covS𝐛P, 𝐛� �����PV = varS𝐛� �����PV = varS𝐛� ����PV  and thus independent LD 

reference sample can be used to generate approximate solution. The method is implemented in 

SMTpred (https://github.com/uqrmaie1/smtpred)41. 

Please note that all these above methods may have the overfitting problem. It is recommended 

that after the correction, the optimized prediction model is validated with an out-of-sample data 

(see section 2.3.7).  

In Chapter 2 and Chapter 3, I developed new shrinkage methods working on the GWAS effect 

size estimates.  

1.6.3. Applications  

PRS represent the genetic burden that makes an individual vulnerable get an outcome. 

Regressing the outcome on PRS or stratifying the individuals according to their PRS can reveal 

the aetiology and facilitates clinical therapy.   
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The earliest application of PRS is to test whether the polygenic genetic basic exists when no or 

few SNPs are genome-wide significant. For example, in an early-stage GWAS of schizophrenia 

and bipolar disorder in 200920, the association between schizophrenia PRS and the phenotype 

showed that thousands of common SNPs of small effect sizes contribute to the schizophrenia 

phenotype.  

In more recent studies where the sample size become larger and more genome-wide significant 

SNPs were found, PRS was used to study the aetiology of the traits and investigate the 

interaction between the genetic factor and the environmental factors.  

For example, stratification of samples according to their PRS showed that the accumulation of 

genetic burden led to more severe/extreme outcome or higher chance to have the outcome. For 

example, in the work of Selzam et al on the PRS of total year of enducation42, individuals with 

higher PRS had better educational achievement as shown in Figure 3. In the work of Wray et 

al on major depression43, the similar pattern was found that individual with higher depression 

PRS had higher risk of depression.  

 
Figure 3 Individuals with higher Education year PRS have better educational achievement. Graph adapted from research by 
Selzam et al 201742. The x-axis shows the groups of individuals divided according to their education polygenic risk score; y-
axis shows their educational achievement at different ages. EduYears GPS: Genome-wide polygenic score for total year of 
education. The mean and standard error were standardized.  

 

Besides, PRS was also evidence to show that genetic burden wound influence which disease 

subtype an individual might develop. For example, schizophrenia PRS in patients with 
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schizoaffective BD was significantly higher than patients with non-schizoaffective BD44, 

bipolar disorder PRS in patients with psychotic BD was significantly higher than patients with 

non-psychotic BD45. The work of Wray et al43 also showed that individuals with higher PRS 

tended to develop severer subtype of depression. 

In addition to the relation between genetic basis and outcome, PRS can be used to study the 

interaction between genetic and environmental factors. Meyers et al shows that cigarette use 

PRS predicted the number of cigarettes smoked per day and interacted with traumatic events 

and neighbourhood social cohesion in Africa America samples46. A series of studies investigate 

the interaction between schizophrenia PRS and childhood adversity47–49 in European Caucasian 

samples and gave different results, which indicated that the interaction testing might be 

statistically vulnerable49.  

Cross-trait PRS analysis can reveal whether the two traits are genetically correlated. In the 

research on schizophrenia and bipolar disorder mentioned above, PRS based on schizophrenia 

and bipolar disorder GWAS could predict the schizophrenia and bipolar disorder but could not 

predict non-psychiatric traits such as coronary artery disease, Crohn’s disease, hypertension, 

rheumatoid arthritis, type I diabetes and type II diabetes20. This showed that schizophrenia and 

bipolar disorder may share genetic basis.  

Besides, several studies attempted to facilitate clinical decision with cross-trait PRS analysis. 

Higher schizophrenia PRS tended to respond less to antipsychotic drug treatment50. So far, no 

neither major depression PRS nor schizophrenia PRS predicted the response to 

antidepressants51. 

1.7. Biobank  

PRS requires powerful large-scale data to have good prediction performance52. It is usually 

difficult for individual research group to collect thousands or millions of samples. Therfore, 

the availability of biobank data greatly boosts the research on PRS and other statistical genetic 

methods. A biobank is a repository that collects and stores biological samples and data for 

research purpose. It provides large-scale samples and data to multiple research programmes. 
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UK Biobank (https://www.ukbiobank.ac.uk/) is a large-scale biorepository aiming to facilitate 

researches on the cause of the diseases and improve the prevention, diagnosis and treatment. It 

collected 500,000 people aged between 40-69 across the country. The participants donate their 

blood, urine and saliva samples for genotyping and provide information of various phenotypes. 

UK Biobank enables large-scale researches by providing genotype and various phenotype data 

of millions of anonymous samples.  

1.8. Shrinkage methods 

As described in section 1.6.2, in order to improve the prediction of the polygenic risk score 

model, the effect size estimates from the base GWAS data can be shrunk.  Shrinkage methods 

have been long used to improve prediction accuracy, especially for high-dimensional data. 

They usually constrain the value of the regression coefficients and/or reduce the number of 

predictors in the model. The rationale behind shrinkage methods is that the raw coefficients 

contain stochastic variation or “chance association” with the outcome in the training data. 

Removing the predictors that contains too much noise or constraining their coefficients can 

improve the power of the prediction model. 

Many parameter-based shrinkage methods were designed to correct the result of ordinary least 

squares (OLS) regression, which is the most commonly approach used for multiple linear 

regression: 

In OLS, a dependent variable 𝑦 is the linear combination of k independent variables 𝑥U: 

𝑦O =R𝛽U

P

UXY

𝑥UO 	+ 	𝜀O 

The model can be written in matrix form as: 

𝒚 = 𝑿𝜷 + 𝜺 

OLS aims to generate the estimate 𝜷, i.e. 𝜷Î to minimize the residues of the model: 
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𝜷Î = argmin	‖𝒚 − 𝑿𝜷‖B 

The OLS estimate is: 

𝜷Î = (𝑿�𝑿)?Y𝑿�𝒚 

 

However, OLS estimates have large variance37 and only work well when multicollinearity 

between predictors is low or absent53. Shrinkage methods were developed to overcome the 

pitfalls of OLS. Among the most popular methods for shrinkage are the James-Stein estimator54, 

LASSO37, and Ridge regression53. 

The James-Stein estimator is an empirical Bayes method. The prior distribution, a single 

parameter µ, is estimated from observation x 

µ ~ N(M,A)  and x|	µ ~ N(µ, 1) 

Here, µ has posterior distribution: 

µ|x~N(M+B(x-M), B)  

 in which B=A/(A+1). 

If M and A are unknown, they are to be estimated from x= (x1, x2, …, xN): 

𝑀Î =	𝒙Ó 

𝐵Ô = 1 − W?Õ
«

 in which S=∑ (𝑥U − �̅�)BW
UXY  

The James-Stein estimator is: 
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�̂� Ù« = 𝑀Î + 𝐵Ô(𝑥 − 𝑀Î) 

The ridge regression and LASSO methods set an upper-limit for the sum of the squared value 

or absolute value of all the estimates, respectively. LASSO shrinkage sets an upper-limit for 

the sum of the absolute value of the parameters as follows:  

min
Ú∈ℝ¯

{
1
𝑁
‖𝑦 − 𝑋𝛽‖BB} 	𝑠𝑢𝑏𝑗𝑒𝑐𝑡		𝑡𝑜	‖𝛽‖Y ≤ 𝑡 

Ridge shrinkage sets the upper-limit for the sum of the square of the parameters.   

min
Ú∈ℝ¯

{
1
𝑁
‖𝑦 − 𝑋𝛽‖BB} 	𝑠𝑢𝑏𝑗𝑒𝑐𝑡		𝑡𝑜	‖𝛽‖BB ≤ 𝑡 

On the other hand, many SNPs are highly multicollinear due to the LD structure and are also 

noise-prone due to the small effect size of SNPs for polygenic traits and the large number of 

SNPs tested in GWAS. It is therefore clear that shrinkage methods have great potential to 

increase the prediction power of models based on GWAS results.  

Elastic net regularisation55 uses a linear combination of the constraint of LASSO and ridge to 

overcome the shortcomings of LASSO, especially in the situation where the number of 

covariates is greater than the sample size. The basic form of elastic net is: 

min
Ú∈ℝ¯

{Y
W
‖𝑦 − 𝑋𝛽‖BB} 	𝑠𝑢𝑏𝑗𝑒𝑐𝑡		𝑡𝑜	

áâ
áâãá§

‖𝛽‖Y +
á§

áâãá§
‖𝛽‖BB ≤ 𝑡 , in which 𝜆Y  and 𝜆B  is the 

tuning parameter decided by cross validation.  

Although there has been much research on shrinkage methods, applying these methods to the 

current GWAS can be problematic. Due to the large scale of current GWAS, directly applying 

shrinkage methods to raw genotype data can be extremely computational expensive. For 

example, the complexity of an ordinary LASSO regression for a sample containing p SNPs in 

n individuals (usually 𝑝 ≫ n), the complexity is O(np min{n, p})56. Besides, LASSO and ridge 
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regression were first designed for multiple linear regression, while in GWAS, the SNPs are 

typically tested separately. 

Therefore, shrinkage methods that are tailored to GWAS data and less computational expensive 

are needed. 

In Chapter 2 and Chapter 3, I will introduce new shrinkage methods based on estimation of 

effect sizes under the null hypothesis.  

1.9. Gene set analysis 

1.9.1. The basic concept 

Polygenic risk scores have many applications (see section 1.6.3), but most of them generate 

genome-wide conclusions. More specific biological mechanisms are yet to be investigated by 

PRS analyses. Gene set analysis (GSA) have been widely used to interpret the underlying 

biological mechanism with ‘omics data. In omics data, the signals from a single gene or gene 

product may be weak or it may be difficult to interpret the underlying mechanism. However, it 

is easier to interpret the enrichment of signals in a gene set whose biological meaning is clear 

and well-studied.  

The term “gene set” is a broad concept. A gene set can be a group of genes that take part in a 

certain biological process (e.g. the genes that take part in a metabolism pathway), or a group 

of genes that have the same functional annotation (e.g. Gene Ontology57), or even a group of 

genes that meet the same customized criteria in a particular research project (e.g. a group of 

genes that are expressed in a certain tissue). By defining a gene set from previous studies and 

analysing new data with gene set knowledge, we can combine our previous knowledge with 

the new findings.    
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1.9.2. Widely-used GSA database 

The information used to define gene sets usually comes from gene set or pathway data base 

such as Kyoto Encyclopedia of Genes and Genome (KEGG)58, Gene Ontology (GO)57 and 

MSigDB59. These databases collect information and knowledge of genes and molecules 

involved in biological pathways. For example, Figure 4 is an example of a gene set or pathway 

diagram provided by KEGG (https://www.genome.jp/kegg/). KEGG provides the information 

relating to which genes comprise the gene set/pathway and the interactions between the genes 

and between genes and other biomolecules. 

 

Figure 4 The diagram of calcium signalling pathway provided in KEGG database. This is an example of interacting genes 
(shown in green boxes) forming a pathway that performs a biological function. Information about involved metabolites and 
cellular structures is also included in the database. 
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1.9.3. Classification of GSA 

Classification based on raw data 

Gene set analysis can be performed on different types of data. Long before the availability of 

large-scale GWAS data like UK biobank, which are powerful enough to detect the small signals 

of polygenic traits, gene set analyses were mostly based on high-throughput measurement of 

RNAs and proteins, i.e. transcriptome and proteome data. In these datasets, the measures of 

gene products are the raw output data. Then the significance of each gene is directly calculated 

from the gene products.  Multiple statistics methods, such as GSEA59 were developed to 

calculate the gene set significance from the gene significance (e.g. the expression difference 

between testing sample and control sample).  

Gene set analysis was introduced into GWAS data in order to 1) enrich the weak SNP 

association signals of GWAS to study whether there is a genetic association when only 

underpowered samples are available 60, and 2) study the aetiology and genetic basis of the traits. 

However, GWAS results are the association of single SNPs, instead of the expression or the 

function of the genes, such as the transcripts. Following the same idea of analysing 

transcriptome and proteome data, the approach of converting gene P-values into gene set P-

values is still used in analysing genome data.  However, the gene P-value has to be converted 

from the P-value of SNPs or other statistics that can summarize the genotype-phenotype 

association.  Then the gene set association is calculated from gene P-value with GSEA.  

As the sample size have increased, genome data such as GWAS or next generation sequencing 

have become powerful enough to perform gene set analyses. Yet, more recent methods may 

still take the same “two-tier” structure as summarized in a review on GSA61. The authors 

summarize this structure of GSA as “two-tier” as follows: tier one is to derive gene associations 

from SNPs within genes, and tier two is to obtain gene set associations from the gene 

associations.  

In this thesis, the main focus is on GWAS data, rather than transcriptome or proteome data, as 

input. 



48 
 

Classification based on hypothesis 

Depending on the null hypothesis, GSA can be divided into two groups: self-contained and 

competitive. Self-contained methods assume that the gene set (or the genes in that gene set) 

are not associated with the phenotype at all. Competitive methods assume that the genes inside 

the gene set are not more associated with the phenotype than the genes outside the gene set, or 

to put it in another way, that the gene set under study is not more associated with the phenotype 

than a random gene sets of the similar properties, such as gene set size.  

Classification based on the statistical method implemented 

In addition, de Leeuw et al62 classified the GSA methods based on how they calculated the 

signal in the gene or gene set as ‘mean-based’, ‘count-based’ or ‘rank-based’. Mean-based 

methods calculate the average significance of the variants in the gene set; Count-based methods 

calculate the number of significant variants in the gene set; and rank-based methods calculate 

the ranking of the all variants and test whether the variants in the gene sets are enriched in the 

top of the ranking list. Mean-based and count-based methods can be either self-contained or 

competitive. 

Table 1 GSA classification based on the statistical method implemented by the methods adapted from the work of de Leeuw et 
al62 

Method Type Description  

Mean-based   

Fisher’s method Self-contained 
Tests mean of –log or transformed P-values in 
the set against the null mean 

Fisher’s method Competitive  
Tests mean of –log or transformed P-values in 
the set against mean outside of the set 

Single sample Z-test Self-contained 
Tests mean of probit transformed P-values in 
the set against the null mean 

Two-sample t-test Competitive  
Tests mean of probit transformed P-values in 
the set against mean outside of the set 

Linear regression  Competitive  
Tests whether being in the set or not is a 
predictor of having higher probit transformed P-
values 

Count-based   
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Binomial test Self-contained 
Tests whether proportion of P-values in the set 
below the threshold is greater than the null 
proportion 

Hypergeometric test Competitive  
Tests whether proportion of P-values below the 
threshold in the set is greater than the proportion 
outside the set 

Logistic regression Competitive  
Tests whether being in the set or not is predictor 
of having P-values below the threshold 

Rank-based   
Two-sample 
Kolmogorov-
Smirnov test 

Competitive 
Tests whether genes in the set are 
overrepresented at the top of the list of all genes 
ranked by P-value 

Rank+mean-based   

GSEA 
Self-contained 
or competitive 

Modified Kolmogorov-Smirnov test, weight 
ranks by –log or transformed P-values 

 

1.9.4. Possible problems of GSA 

GSA can be highly challenging because the association we directly observe can be due to other 

aspects that are irrelevant to the biological function of the gene set. Here are some common 

problems for GWAS-based GSA: 

1) The signal may also come from the overlapping genes or SNPs that also belong to other 

causal gene sets. The signal observed is not caused by the function of the observed gene 

set but other gene sets. 

2) The annotation of gene set is wrong or outdated. It will cause the failure of detecting 

the signals from the gene sets63. 

3) Signal of gene set driven by only one gene or a small number of genetic variants, such 

that the gene set itself is not important for the outcome 

4) The GSA test is statistically biased. For example, self-contained method is biased in 

favour of big gene sets because the larger gene sets may get more associated 

genes/SNPs only by chance because of their large size, or LD structure, rather than their 

function.  
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While the first three problems listed above are important and should be considered carefully in 

future research on this topic, this thesis only focuses on the 4th problem.  

1.9.5. Widely used GSA Methods 

In this section, several of the most popular gene set analysis methods are reviewed. According 

to a previous comparison study61, MAGMA is the current leading method. In chapter 4, the 

methods developed in my PhD project are compared with MAGMA.  

GSEA 

GSEA59 was designed to analyse expression data. It uses the expression data and ranks the 

genes’ expression change in the test samples compared with the control samples. It estimates 

whether the genes in a gene set are randomly distributed across the ranking list or enriched in 

the top or the bottom of the list by calculating an Enrichment Score (ES) according to the 

ranking list. The statistical significance of the ES is tested by permuting the phenotype data 

multiple times and obtaining an empirical P-value of the ES. 

FORGE 

FORGE64 combines the SNP P-values with a correction for the LD structure and the correlation 

between the SNPs to obtain a combined P-value for the gene set or a gene. It can either directly 

combine the P-values of all the SNPs mapped to a gene set or calculate the P-value in a two-

tier structure, that is, where the P-values of genes are first calculated and then combined into a 

gene set P-value with correction for LD structure and the correlation between genes.  

MAGMA 

MAGMA65 has a two-tier structure. The first tier is to calculate the gene association from 

genotype data. A model predicts the phenotype with the principle components of SNPs in a 

gene j, controlling for covariates such as sex, age, genome-wide PCA of this individual i, etc.  
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𝑂𝑢𝑡𝑐𝑜𝑚𝑒U	~	𝑃𝐶𝐴UO + 𝐶𝑜𝑣U 

Then the P-value of this model is converted to a one-tailed Zj score, which is presented as the 

gene association in the subsequent analysis.  

The second tier calculates the gene set analysis by compare the gene association of genes inside 

and outside the gene set in a regression model. To test the association of gene set s, a model is 

built to predict 𝑍O with an indicator of the gene set membership,  𝑆tO, controlling for covariates 

such as the gene size, minor allele counts and gene density (the ratio of clumped PCs to the 

total number of SNPs in the gene). 𝑆tO = 1 if the gene j is in the gene set s; 𝑆tO = 0 if the gene 

j is not in the gene set. 𝜀 is the error term, which takes the correlation between genes into 

consideration: 

𝑍O	~	𝛽tO ∙ 𝑆tO +	𝐶𝑜𝑣O + 𝜀 

One of the advantages of the “two-tier” methods is that it is easy to incorporate the results from 

different types of research. However, not all the GSA methods necessarily follow the “two-tier” 

structure. For example, one option of FORGE66 is to directly calculate the combined P-values 

of all the SNPs in the gene sets. 

To summarise, when developing a GSA method, one needs to answer two questions: first, how 

to summarize the genetic signals from the gene set and generate a statistic for this gene set; 

second, how to evaluate the statistical significance based on this statistic. In Chapter 4, a GSA 

method based on PRS is introduced and tested. We test several options to estimate the statistical 

significance in both self-contained and competitive tests. 

Stratified LD score regression 

Stratified LD score regression67 expand the application of typical LD score regression30 (see 

1.5.1) to analyse partitioned heritability of different functional elements accounting for LD. It 

makes the same assumption as LDSC that 𝜒B association statistic for a given SNP includes the 

effects of all the SNPs in LD with this SNP and uses the same mathematical model except that 
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only the SNPs belonging to a certain functional category are included in the calculation of LD 

score.  

In LDSC, the mathematical model is: 

𝐸S𝜒B|𝑙OV = 𝑁
ℎB

𝑀 𝑙O + 𝑁𝑎 + 1 

Where 𝑁 is sample size,	�
§

j
 is the heritability explained per SNP, 𝑙O is the LD score of SNP j; a 

is a term that measures the contribution of confounding biases.  

In stratified LD score regression, the mathematical model is:  

𝐸(𝜒B) = 𝑁R𝜏êℓ(𝑗, 𝐶)
ê

+ 𝑁𝑎 + 1 

where 𝐶 indicates category, ℓ(𝑗, 𝐶) is the LD score of SNP j that calculated within category C, 

𝜏ê  is heritability explained per SNPs of category C.  

Thus, the significance of enrichment of a category is to test whether the heritability explained 

per SNP of a category is larger than the baseline level or that of SNPs outside the category.  

The statistics �
§(ê)
|ê|

− �§?�§(ê)
j?|ê|

 follows normal distribution with the expectation of 0 and 

standard error that can be estimated using a block jackknife over SNPs with 200 equally sized 

blocks of adjacent SNPs. Thus, z score and P-value can be estimated.  

1.10. Summary 

GWAS is a useful tool to identify genetic variants associated with complex disease. PRS is an 

individual-level proxy of the polygenic burden of risk of a disease or propensity to a trait, based 

on GWAS results. PRS have many successful applications within biomedicine. In this PhD 

project, I aim to increase the power of PRS by improving the accuracy of GWAS effect size 
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estimates and broaden the application of PRS by developing a group of PRS-based GSA 

methods. 

In Chapter 2, I developed a shrinkage method called “Permutation Shrinkage” to improve 

GWAS effect size estimates. Permutation Shrinkage first estimates the null distribution of 

genetic effect sizes by running GWAS on permuted null phenotype data. Then the estimated 

null effects are subtracted from the observed data to generate corrected estimates. This method 

was tested with quantitative traits in the UK Biobank and it can increase the PRS R2 by 

approximately 35%. 

In Chapter 3, I developed a similar shrinkage method called “Order Statistics Shrinkage” that 

uses a similar framework to Permutation Shrinkage: estimating the null distribution and 

subtracting the estimated null effects from the observed effects. Here, the null distribution is 

estimated from order statistics instead of permuting the individual-level data. Order Statistics 

Shrinkage can be applied to summary statistics data. We tested the method with summary 

statistics data from the UK Biobank and Order Statistics Shrinkage had similar performance as 

Permutation Shrinkage. 

In Chapter 4, I developed PRSet, a group of PRS-based GSA methods. I used gene set PRS to 

represent the genetic burden in the gene set. Self-contained and competitive analyses were 

implemented and tested with UK Biobank data and were compared with MAGMA, the current 

leading GSA method.  
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Chapter 2. A novel shrinkage method – Permutation Shrinkage – 

and its application to GWAS data to increase predictive power 

of PRS 

2.1. Introduction 

GWAS was originally designed to discover the genetic variants significantly associated with 

the phenotype under study but in recent years has been used for more applications as its power 

has increased26. In particular, GWAS results are now commonly used to calculate polygenic 

risk scores (PRS) in samples with individual-level genotype-phenotype data, which have a 

wide range of applications29. However, GWAS can produce inflated SNP effect size estimates68 

and -log10(P-values) and the inflation makes the GWAS results less reproducible69. Thus, 

prediction based on the GWAS data, such as from polygenic risk scores, could have reduced 

power and accuracy. This can hinder the translation of GWAS results into further research and 

application.  

Inflation can have a particularly large impact on effect size estimates in the GWAS setting due 

to a combination of: 1) the millions of tests performed across genome-wide SNPs in GWAS 

(multiple comparisons problem), and 2) the very small effect sizes of common genetic variants 

( low signal-noise ratio)  (see section 2.2). Therefore, the top results in GWAS are likely to 

suffer from “Winner’s Curse”, whereby the top results among a large number of tests on 

predictors of similar effect size are ranked top partly because of their severe inflation70. 

“Winner’s Curse” is more likely to happen if the true effect size of the top causal variables is 

not distinguishingly higher than the rest, which can be true for common variants in relation to 

many polygenic traits71.  

GWAS inflation can lead to producing an overfit prediction model, whereby the top predictors 

have inflated estimates of the regression coefficients and null predictors are included due to 

their chance association with the outcome in the study data. This may affect the predictive 

power of polygenic risk scores because they are the sum of risk alleles weighted by the 

corresponding effect size estimates. In the standard PRS approach, known as the Clumping and 

Thresholding (C+T) method29, PRS are calculated across a range of P-value threshold and the 

PRS most associated with the outcome in the target data is selected. Thus, while PRS can suffer 
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from inflation due to this P-value threshold optimization, it may also produce misleadingly 

PRS R2 due to the inflated GWAS effect size estimates that it is based on. While the GWAS 

results are likely to suffer from both inflation and deflation due to the effect of ‘noise’, the C+T 

method ensures that the top SNPs, and thus most inflated, from the GWAS are included in the 

PRS, while the SNPs with the weakest associations may be excluded from the optimised PRS.  

Given the generality of the inflation problem in association testing and prediction modelling, 

numerous statistical techniques have been developed to deal with the inflation37,53,55,72,73. The 

most common approach to account for the inflation of -log10 (P-value) caused by multiple 

comparisons problems, is to apply a stricter P-value threshold, for example, based on a 

Bonferroni correction72,73 of the effective number of independent tests or a False Discovery 

Rate (FDR)73. For SNP association results in GWAS, SNPs are considered to be genome-wide 

significant if P < 5x10-8, which was a significance threshold derived based on a consensus of 

several approaches19.  

To correct the inflation of effect size estimates, most existing shrinkage methods optimize the 

value of the regression coefficients by adding constraint or penalty terms and/or reduce the 

number of predictors used in the models. Thus, some shrinkage methods are referred to as 

Penalised Regression. Some of the most commonly applied shrinkage methods are the Least 

Absolute Smooth Shrinkage Operator (LASSO)37, Ridge Regressioan53 and Elastic Net55 . 

Software such as lassosum36 and LDpred35 have been developed to integrate some forms of 

these methods in application to GWAS data. 

The aim of this chapter is to produce a simple, interpretable and computationally efficient 

alternative shrinkage method, “Permutation Shrinkage”. The principle of this method is to 

estimate the error quantity of the effect size estimates and subtract the inflated part away from 

the raw estimates. The method was tested with UK Biobank data and with simulation studies. 

Improved power of PRS-based predictions according to improved GWAS effect size estimates 

would be evident from increased out-of-sample PRS R2. 
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2.2. Winner’s (and Loser’s) Curse 

When multiple tests are performed in order to investigate a broad hypothesis, such as 

performing millions of association tests between genetic variants and a phenotype across the 

genome based on the hypothesis that some fraction of genetic variants affect the phenotype, 

the effect of stochastic variation plays a key role. If the true effects are relatively small and 

largely homogenous, then the top results of millions are likely to be largely influenced by 

chance variation, and thus have inflated effect size estimates – a phenomenon known as 

“Winner’s Curse”. Less commonly discussed is the opposite effect, which could be thought of 

as “Loser’s Curse”, in which the true effect size is underestimated due to having a large 

contribution of chance association in the opposite direction to that of the effect. The 

contribution of stochastic variation, and thus Winner’s and Loser’s Curse, is greater the smaller 

the sample size and the larger the number of tests performed. These effects are illustrated in 

Figure 5. 

 

Figure 5 Winner's and Loser's Curse in simulated multiple test scenario. Each data point in the plot shows the statistics of one 
effect size estimated from the following simulation: the random variable y was simulated so that y=beta*x+e, where beta is 
true effect size; e is the error quantity; and x and e follow normal distribution. The x-axis shows the -log10(P-value) of the 
effect size estimates and the y-axis shows the corresponding estimated values of effect size. The black line shows the true effect 
size. The top results have the biggest effect size estimates and -log10(P-value) because they are most inflated rather than their 
true effect size is higher than the rest results.  The left plot shows that the smaller sample size, the more inflated the effect size 
estimates; the right plot shows that the most tests performed the more inflated the top results are 
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2.3. Methods and Data 

2.3.1. Overview of the prototype method 

The main principle underlying Permutation Shrinkage is that an estimated regression 

coefficient, 𝛽,Î  is the combination of the true effect size, β, and an error quantity, or ‘noise’, e. 

 𝛽� = 𝛽 + e 

The formula can be written as: 

𝛽 = 𝛽� − e 

Assuming that the error is independent of the true effect size and follows a distribution that 

relates to the sample size and the number of tests performed overall (as shown in Figure 5), 

then the distribution under the null will correspond to the distribution of the error.  

Since the distribution of the error term is unknown due to the complicated nature of GWAS 

data, in particular the complex correlation structure among nearby genetic variants across the 

genome, here we take a permutation approach to estimate the distribution of the error under 

the null. The estimated error quantity �̂� can be generated by taking the average of multiple 

permuted null GWAS effect size distribution. Thus, the corrected effect size estimate 𝛽��will 

be: 

𝛽�� = 𝛽� − �̂� 

Please be note that this method takes two assumptions: First, the true effect size of all or most 

the variables is the same; The error quantity is independent with the true effect sizes and 

follows a certain distribution. The following section will explain how this method is 

implemented to GWAS data.  
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2.3.2. Adjusting the prototype method for GWAS data 

This method assumed that all or most of the variables have the same effect size expectation 

and the deviation of the observed estimates from the expectation is caused by the error quantity. 

Another assumption is that the difference between the estimated error quantity distribution and 

the distribution of the deviation of the observed values from the expectation is caused by the 

true signals instead of systematic bias.  

The prototype method needs to be adjusted accordingly when the data to be corrected have 

certain features that may violate the assumptions mentioned above. The distribution of GWAS 

effect sizes have two features: first, the majority of the alleles are estimated to be null71 so it is 

instinctive to assume that the expectation of SNP effect size is zero; second, the distribution of 

causal SNPs may be skewed due to selection. If the risk alleles are randomly assigned, it is 

instinctive to assume that the effect sizes of causal SNPs follow normal distribution. However, 

because of selection, the sign of the effect size may be skewed while this will not change the 

assumption of the zero expectation of the effect size. If a symmetric distribution of expected 

error quantity is used to correct a dissymmetric distribution of the observed deviation, the 

corrected result will be biased.  

The prototype method is adjusted as the following to correct the GWAS data: the distribution 

of the absolute deviation of the observed estimate to the expectation, i.e. 0 is estimated by 

assuming the error quantity following a symmetric distribution and take the absolute value of 

the distribution. Only the absolute value is corrected, and the sign of the estimate remains the 

same after shrinkage.   

2.3.3. Implementation of Permutation Shrinkage on GWAS data 

First, GWAS is performed on the original observed phenotype and genotype data. Then the 

phenotype data is permuted to get a null trait and the GWAS is performed on the permuted null 

data. The permutation process is repeated for 100 times. 

Minor allele frequency has a great impact on the standard error of effect size and possibly the 

effect size74 75. Since the method assumes that the true effect size of the most variables is the 

same and the error quantity follows the same distribution, the SNPs are divided into 1% MAF 



59 
 

bins so that the SNPs in each MAF bin are more homogenous than SNPs across the whole 

genome. The SNPs are corrected within each MAF bin in the following step. 

Since the sign of effect size is decided by the choice of reference allele, the correction is applied 

to the absolute value of the effect size. For each permutation, the absolute effect sizes are 

ranked ascendingly. The ranked null absolute effect size from each single permutation is an 

estimate of the null effect size distribution but it would contain noises (i.e. inflation and 

deflation). A smoother estimate of the null absolute effect size distribution is generated so that 

the kth value of the ranked null distribution 𝑛𝑢𝑙𝑙|𝛽P| is the average of all the kth value of the 

ranked null distribution estimated from each single permutation. 

In each MAF bins, the absolute observed effect sizes are ranked to get the observed distribution. 

For the kth SNP in the distribution:  

			𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	|𝛽P| = ì𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
|𝛽P| − 𝑛𝑢𝑙𝑙|𝛽P|	, 𝑖𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝛽P| − 𝑛𝑢𝑙𝑙|𝛽P| > 0

0																																															, 𝑖𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝛽P| − 𝑛𝑢𝑙𝑙|𝛽P| ≤ 0 

The corrected absolute effect size estimates may not be monotonic with the original estimates. 

To overcome this problem, the absolute corrected estimates in each MAF bin are ranked and 

then the ranked estimates are re-assigned to the SNPs. For example, if the corrected absolute 

estimates for SNP1, SNP2, SNP3, SNP4 is 0.1, 0.2, 0.4, 0.3. After this step, the absolute 

estimate of SNP3 will be 0.3 and that of SNP4 will be 0.4.  

The sign of corrected effect size remained the same as the original. 

2.3.4. UK Biobank data for testing the method 

Genotype data of 2nd release were quality-controlled with the following parameters: For SNPs: 

SNPs that had MAF < 0.01, sample missingness>0.01 or HWE p < 10-8 were excluded; For 

samples: individuals of SNP missingness > 0.02 were excluded, only Caucasians were included; 

One of each pair of relatives was removed, individuals in KING relatedness criterion < 0.088 

(r ~= 0.25) and  UKB Recommended exclusions and UKBileve exclusions were removed; 

Confirmed sex was as reported; After correction the remaining sample size was about 385k. 
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The sex, age, top 15 PCs were regressed out from the traits. The standard residues were used 

as the outcome in the following analysis. 

2.3.5. Simulated data for testing the method 

The simulation was based on QC’ed UK Biobank chromosome 1 genotype data. Phenotype 

data was simulated by an in-house software SGCP written by my co-operator Shing Wan Choi.  

In this simulation, yj, the outcome of individual j is 

yj = sum(xijui) + ej 

in which the ui is the effect size of the SNPi, xij is the number of reference alleles in SNPi of 

individual j. 

ej is the non-genetics effect which follows the distribution:  

ej  ~ N(0, va(sum(wij*ui))(1 / h2 - 1)) 

We calculated the chromosome 1 heritability of the traits listed in the 2.3.4. The majority of 

heritability of chromosome 1 range from 0.01 to 0.05. Based on the real data heritability, we 

simulated phenotype of heritability of 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.075, 0.1, 0.04, 

0.05, 0.06 and ratio of causal SNPs 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2. Please note that the 

simulated data are only based on chromosome 1. Therefore, the heritability was in a different 

scale. Assuming the casual variants are evenly distributed along the genome, chromosome 1 

will contribute about 8% of the genome-wide heritability. 

Another simulation was performed by GCTA76. The GCTA method uses standardised genotype 

data wij instead of the raw data xij: 

wij = (xij - 2pi) / sqrt[2pi(1 - pi)] 
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in which the pi is the minor allele frequency of SNPi. Except this, the other parameters were 

the same.  

Please note that the simulated data are only based on chromosome 1. Therefore, the heritability 

was in a different scale. Assuming the casual variants are evenly distributed along the genome, 

chromosome 1 will contribute approximately 8% of the genome-wide heritability. 

2.3.6. Heritability estimation 

We estimated the heritability of each trait with LD Score regression30, using the default 

parameters and based on the base data. The sample size used to estimate the heritability of each 

trait was approximately 138k.  

2.3.7. Construction and validation of polygenic risk score prediction model 

The prediction power of the corrected effect size estimates was tested using polygenic risk 

score (PRS). PRS is the sum of risk alleles weighted by their effect size estimates. The PRS 

prediction model contains a base dataset and a target dataset. The base data is summary 

statistics of GWAS to provide the effect size estimates; the target is the individual level raw 

genotype from which the PRS is calculated and phenotype. In the target data, the phenotype is 

regressed on each individual’s PRS. In this study, PRSice77 were used for PRS calculation and 

regression. PRSice maximises the prediction power by optimising the P-value threshold for 

SNPs to be included in the model. 

The UK Biobank data were divided into three equal subsets: discovery data, testing data and 

validation data. GWAS was performed on the discovery data and the effect size estimates were 

corrected with Permutation Shrinkage. The original and corrected effect size estimates were 

used as the base data for PRS model. The testing data were used as the target data. PRSice 

optimized the P-value threshold for building the PRS model and the P-value threshold might 

be overfit toward the testing data. A validation PRS model were built using the out-of-sample 

validation data as the target data and the same P-value threshold optimized from the testing 

data PRS model. The relative increase of the validation data PRS R2 after correction is used to 

evaluate the increase of PRS prediction due to the correction by Permutation Shrinkage. 
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Table 2 UK Biobank traits used to test the methods. The heritability was estimated using the base data. 

TRAITS CATEGORY UK BIOBANK 
FIELD CODE 

ESTIMATED 
HERITABILITY 

HEIGHT Body size measures f.50 0.6005±0.0049 

WHOLE BODY FAT FREE MASS Impedance measures f.23101 0.3894±0.0043 

BASAL METABOLIC RATE Impedance measures f.23105 0.3746±0.0056 

WHOLE BODY IMPEDANCE Impedance measures f.23106 0.3551±0.0071 

FORCED VITAL CAPACITY (FVC), BEST MEASURE Spirometry f.20151 0.3467±0.0032 

BMI Body size measures f.23104 0.3228±0.0076 
FORCED EXPIRATORY VOLUME IN 1-SECOND 
(FEV1), BEST MEASURE Spirometry f.20150 0.3119±0.0049 

BODY FAT PERCENTAGE Impedance measures f.23099 0.3079±0.0066 

SIT HEIGHT/STANDING HEIGHT RATIO Body size measures f.20015 / f.50 0.3045±0.0057 

FLUID INTELLIGENCE SCORE Cognitive Function f.20016 0.3013±0.0193 

WAIST/ HIP RATIO Body size measures f.48 / f.49 0.2193±0.0094 
SYSTOLIC BLOOD PRESSURE, AUTOMATED 
READING Blood pressure f.4080 0.1916±0.0014 

PULSE RATE, AUTOMATED READING Blood pressure f.102 0.1909±0.0045 
DIASTOLIC BLOOD PRESSURE, AUTOMATED 
READING Blood pressure f.4079 0.1849±0.0024 

AVERAGE HAND GRIP Hand grip strength average of f.46 
and f.47 0.1835±0.0065 

AGE AT FIRST LIVE BIRTH & AGE OF 
PRIMIPAROUS WOMEN AT BIRTH OF CHILD Female-specific factors f.2754 & f.3872 0.1681±0.0062 

BIRTH WEIGHT Early Life Factors f.20022 0.1565±0.0027 

AGE FIRST HAD SEXUAL INTERCOURSE Sexual factors f.2139 0.1564±0.0042 

TIME SPENT WATCHING TELEVISION (TV) Physical activity f.1070 0.1496±0.0109 

BIRTH WEIGHT OF FIRST CHILD Female-specific factors f.2744 0.1449±0.0142 

NEUROTICISM SCORE Mental health f.20127 0.1443±0.0072 

TIME SPEND OUTDOORS IN SUMMER Sun exposure f.1050 0.0979±0.0044 

COMPARATIVE BODY SIZE AT AGE 10 Early Life Factors f.1687 0.0972±0.0030 

SLEEP DURATION Diet f.1160 0.0852±0.0050 
MEAN TIME TO CORRECTLY IDENTIFY 
MATCHES Cognitive Function f.20023 0.0794±0.0029 

WATER INTAKE Diet f.1528 0.0746±0.0035 

FRESH FRUIT INTAKE Diet f.1309 0.0679±0.0053 

TEA INTAKE Diet f.1488 0.0655±0.0053 

TIME SPENT OUTDOORS IN WINTER Sun exposure f.1060 0.0643±0.0047 

COMPARATIVE HEIGHT SIZE AT AGE 10 Early Life Factors f.1697 0.0566±0.0036 

BREAD INTAKE Diet f.1438 0.0502±0.0037 

COOKED VEGETABLE INTAKE Diet f.1289 0.0345±0.0046 

SIBLING NUMBERS Family history f.1873 + f.1883 0.0312±0.0041 

SALAD / RAW VEGETABLE INTAKE Diet f.1299 0.0311±0.0064 

REACTION TIME Cognitive Function f.404.0.0 0.0287±0.0076 
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TOWNSEND DEPRIVATION INDEX AT 
RECRUITMENT Sociodemographics f.189 0.0111±0.0130 

AVERAGE LOGMAR Visual acuity average of f.5201 
and f.5208 -0.0109±0.0097 

 

2.4. Results 

2.4.1. Performance of Permutation Shrinkage under simple simulation scenarios 

The method was tested with 10,000 individuals simulated by R. Each of them has 100 

independent SNPs that act additively and produce a quantitative trait of heritability = 0.1. 

Four different scenarios were tested: 

Scenario 1: all the SNPs have the same minor allele frequency (MAF) of 0.25 and the same 

effect size; 

Scenario 2: 60 SNPs have the MAF of 0.25; 40 SNPs have MAF of 0.05; all the SNPs have the 

same effect size; 

Scenario 3: all the SNPs have the same MAF of 0.25; 20 SNPs have effect size of 1.0, 20 SNPs 

effect size of 0.5, 60 SNPs effect size of 0; 

Scenario 4: all the SNPs have the same MAF of 0.25; 10 SNPs have effect size of 1.0, 10 SNPs 

effect size of 0.5, 60 SNPs effect size of 0 

The following figures show how much the Permutation Shrinkage may improve the effect size 

estimates under different genetic architecture. The corrected estimates are shrunk towards the 

true value. 
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Figure 6 Corrected and original Effect size estimates in Scenario 1. 

Note:  from Figure 6 to Figure 9, the corrected and original effect size estimates and the true values are shown in different 
colours. The mean squared error (MSE) was calculated for both corrected and original effect size estimates. The simulation 
was repeated for 10 times to calculate the mean and standard error of MSE. The figures only show the result of one round of 
simulation; the mean and standard error of MSE under the figures are based on 10 repetitions. All scenarios are plotted in the 
same way. 

 

Figure 7 Corrected and original Effect size estimates in Scenario 2 
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Figure 8 Corrected and original Effect size estimates in Scenario 3 

 

Figure 9 Corrected and original Effect size estimates in Scenario 4 

The method worked best when the effect sizes of all the SNPs were the same. If the effect sizes 

were different, the method worked better if the proportion of the SNPs with effect size different 

from the majority was smaller, which accorded with the assumption of the method. 

The feature of polygenic traits also makes it possible to correct effect size estimates with this 

method. The previous GWAS results that although for most polygenic traits, many SNPs may 

contribute to the traits, but the effect sizes of the causal SNPs are very close to zero; only a 

very small proportion of the casual SNPs have large effect sizes71.  
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2.4.2. Performance of Permutation Shrinkage correcting SNP effect size in each 

MAF bin 

For heritable traits, we took pulse rate, automated reading data (heritability estimated = 

0.1909±0.0045) as an example to compare the corrected beta and original effect sizes. 

Figure 10 shows that after correction, the effect sizes of SNPs with P-value >10-10 were shrunk 

towards zero. The effect sizes of SNPs with P-value < 10-10 were less shrunk. As an overall 

result, less significant SNPs had smaller effect size than the more significant SNPs after 

correction while in the original data effect size of both non-significant and significant SNPs 

could be large. 

Figure 11 shows the comparison of corrected effect sizes (y-axis) and the original ones (x-axis) 

in different MAF bins. The relation of original and corrected effect size was not linear.  The 

effect sizes of most SNPs were shrunk towards zero and the shrinkage of the majority part was 

monotonic. The effect size of the SNPs with top absolute estimates were shrunk with much 

less extend. Non-monotonic shrinkage mostly happened in the two ends of the distribution. 

However, this non-monotonic problem could be negligible if the sample size is large (data not 

shown).  
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Figure 10 Comparison of corrected and original SNP effect size estimates of UK Biobank pulse rate GWAS data. Each data 
point represents the statistics of one SNP in the GWAS. The grey colour shows the original results and the red colour shows 
the corrected results. The x-axis shows the original -log10(P-value) and the y-axis shows corresponding effect size estimates 
value. The plot shows that more significant SNPs were less shrunk and less significant SNPs were shrunk much closer towards 
zero, especially for those whose P-value doesn’t pass the genome-wide significance threshold 5 × 10?@ 

 



68 
 

 



69 
 

Figure 11  Corrected and original effect size estimates in MAF bins. Every other 1% MAF bin is shown here. X-axis shows 
the original effect size estimates; y-axis the corrected ones. Up: the corrected effect sizes were further adjusted for non-
monotonic problem; down: the corrected effect sizes were not further adjusted. The difference between the 2 plots is negligible.  

For less heritable traits (genome-wide h2 estimates < 0.05), most effect size estimates were 

shrunk to zero. Figure 12 is an example of low heritable traits (reaction time, heritability 

estimated = 0.0287±0.0076). When P-value > 10-8, the effect size estimates were shrunk 

towards zero. In comparison, for more heritable traits SNPs of P-value > 10-8 were also shrunk 

towards zero, but the corrected effect size of more significant SNPs still remained non-zero as 

shown in Figure 11. Therefore, when the heritability is very low, the original PRS R2 is 

approximately zero due to the small power and after correction, PRS R2 remains close to zero 

because PRS was shrunk to zero. Therefore, we only showed the results of traits with estimated 

genome-wide heritability higher than 0.05 in the following analysis. 

 

Figure 12  Corrected and original SNP effect size estimates compared against P-value of a low-heritability trait, UK Biobank 
reaction time. Each data point represents the statistics of one SNP. The grey colour shows the original results and the red 
colour shows the corrected results. The x-axis shows the original -log10(P-value) and the y-axis shows the corresponding 
estimated values of effect size. The plot shows that when all the SNPs are not genome-wide significant (all the P-values are 
larger than the typical threshold 5 × 10?@) the corrected values were shrunk towards zero. 
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2.4.3. Increased effect size correlation between testing and reference GWAS 

caused by Permutation Shrinkage 

A wide range of traits of different heritabilities and from different categories were used to test 

the method. In order to test whether the correction makes the effect size estimates closer to the 

true value, the UK biobank data were divided by the ratio 1:2 and GWAS was performed on 

the 2 parts separately. The GWAS results of the larger part were the reference since the it 

should be closer to the true values than the smaller testing dataset. The GWAS results of the 

smaller testing dataset were corrected by Permutation Shrinkage. Correlation coefficients of 

the two parts were compared before and after the correction. Permutation Shrinkage 

significantly increased the correlation between the testing and reference GWAS results 

especially for traits with heritability > 0.05, (Figure 13, Figure 14). 
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Figure 13 Correlation coefficient between effect sizes estimated from the testing data and those from larger reference data 
increased after correction. X-axis shows the phenotypes, ranked ascending from left to right according to their estimated 
heritability (for their estimated heritability, please refer to Table 2 UK Biobank traits used to test the methods); the blue bars 
shows the correlation coefficients of the original effect size estimated from the testing data with those from the larger reference 
data; the green bars shows the increased correlation coefficients between the corrected effect size estimates and the estimates 
calculated from the reference data. 
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Figure 14 Increase of corrected effect size estimates correlation coefficients to the original ones. The x-axis shows the 
correlation coefficients of original effect size estimates of testing dataset and those of reference dataset; The y-axis shows 
correlation coefficients of corrected effect size estimates of testing dataset and those of reference dataset. The data points 
located above the reference line y=x indicates the increase of correlation coefficients after the correction. 

 

2.4.4. Testing performance of Permutation Shrinkage on increasing PRS 

prediction with real data 

In order to test whether the method can improve the PRS prediction power, the out-of-sample 

PRS R2 were compared before and after the correction. When estimated heritability < 0.05, the 

relative PRS R2 increase was fluctuated around zero.  For more heritable traits with estimated 

heritability >0.05, our method significantly increased the out-of-sample PRS R2. The relative 

PRS R2 increase was flatten out as the h2 estimated increase and the average of increase is 

around 35% (Figure 15, Figure 16). 
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Figure 15 PRS R2 calculated in the independent validation dataset increased after correction. X-axis shows the phenotypes, 
ranked ascending from left to right according to their estimated heritability (for their estimated heritability, please refer to 
Table 2 UK Biobank traits used to test the methods); The blue bars show the PRS R2 based on the original effect size estimates 
of the discovery data; the green bars show the increased PRS R2 after correction of the effect size estimates of the discovery 
data. The PRS model optimized the P-value threshold in testing dataset and calculated the PRS R2 with the previously 
optimized P-value threshold in an independent validation dataset. The process of dividing UK Biobank randomly to get the 
discovery, testing and validation data and performing the analysis were repeated for 5 time to get the mean and sd of PRS R2. 
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Figure 16 Relative increase of PRS R2 of traits of estimated heritability >0.05. The data shown here is based on 5 repetitions. 
The PRS results is the same as those shown in the previous plots. Figure 15 shows the PRS R2, here shows the relative increase 
of PRS R2 of the same traits. The PRS R2 of the traits of estimated h2<0.5 fluctuates around 0. Therefore, the relative PRS 
R2increase is omitted here. 

 

2.4.5. Testing performance of Permutation Shrinkage on increasing PRS 

prediction with simulated data  

In last two sections, we showed that Permutation Shrinkage can improve the PRS prediction 

of real traits by improving the effect size estimates. In order to further test our method under 

different possible genetic architectures, Permutation Shrinkage was tested with simulated 
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phenotype data of different percentage of causal SNPs and different heritability based on UK 

Biobank genotype data as described in Section 2.3.5. A higher percentage of causal SNPs 

would generate a more polygenic trait. Two simulation methods were used in this test: 

simulated with standardized genotype by GCTA and simulated with unstandardized genotype 

by the in-house software SGCP. Standardized genotype unified the effect of MAF and 

unstandardized genotype use the genotype data as they are. By standardising the genotype, 

SNPs of low MAF would have more effect on the phenotype. 

However, both methods generated unexpected results. The authors of LD Score Regression 

(LDSC) reported that the estimate of heritability is unbiased regardless of the percentage of 

causal SNPs30. However, for both simulation methods, the estimated heritability is lower than 

the simulated heritability. For simulated traits based on unstandardized genotype, the more 

oligogenic trait, the more underestimated the heritability is (Figure 17). For simulated traits 

based on the estimated heritability of the trait simulated based on standardized genotype, the 

heritability estimates were much noisier and have the opposite tendency regarding the 

percentage of causal SNPs: the more polygenic trait, the more underestimated the heritability 

is. This tendency was the same whether the distribution of causal SNP effect size was normal 

distribution or chi squared distribution (Figure 18).  
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Figure 17 Estimated heritability of the simulated phenotype data based on UNSTANDARDIZED genotype data compared with 
the pre-set simulated heritability under different scenarias. The black reference line is y=x. Theoretically, the data points 
should locate on the reference line. The mean and sd heritability shown in the plot are based on 5 repetitions. 
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Figure 18 Estimated heritability of the simulated phenotype data based on STANDARDIZED genotype data compared with 
pre-set simulated heritability under different scenarios. Theoretically, the data points should locate on the reference line. The 
mean and sd heritability shown in the plot are based on 5 repetitions. 

The PRS prediction based on unstandardized genotype simulation behaved similarly with real 

traits data. The relative increase was relatively high when the simulated heritability was lower 

and flatten out when the simulated heritability was high (Figure 19). The PRS prediction based 

on standardized genotype simulation were also much noisier and didn’t show any clear 

relationship pattern either between relative PRS R2 increase and simulated heritability (Figure 

20) nor between relative PRS R2 increase and estimated heritability (Figure 21).  

The systematic bias observed can be caused by either the simulation methods or the heritability 

estimation method. However, testing the validity of these methods are far beyond the aim and 

the scope of this PhD project. Future work is needed to tackle this problem because the validity 

of simulation and heritability estimation can influence many genetic researches. Judging from 

the results observed in this project, the simulation based on the unstandardized genotype 

seemed more similar with the real data.  
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Figure 19 Relative increase of PRS R2 calculated with simulated data based on UNSTANDARDIZED genotype data. Simulated 
GWAS data were divided into discovery, testing and validation datasets. The SNP effect size estimated were calculated and 
then corrected with discovery data; the P-value threshold were optimized with testing data and the PRS R2 were calculated 
with validation data. Subplots show the scenarios under different ratio of causal SNPs. X-axis shows the heritability pre-set 
for simulation; y-axis shows the relative PRS R2 increase after correcting the SNP effect size estimates in discovery data. The 
mean and sd PRS R2 relative increase are based on 5 repetitions. The result generated with unstandardized genotype data 
have the similar pattern with real data. 
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Figure 20 Relative increase of PRS R2 in simulated data based on STANDARDISED genotype. Simulated GWAS data were 
divided into discovery, testing and validation datasets. The SNP effect size estimated were calculated and then corrected with 
discovery data; the P-value threshold were optimized with testing data and the PRS R2 were calculated with validation data.  
The subplots show the scenarios under the ratio of causal SNPs of 0.001, 0.01, 0.1, 0.5. The colour indicates the distribution 
of simulated effect size. For chi squared distribution, the signs of effect size were randomly assigned. X-axis shows the 
simulated heritability; y-axis shows the relative PRS R2 increase. The mean and sd of relative increase of PRS R2 are based 
on 5 repetitions. The result generated with standardized genotype data did not follow the similar pattern as the real data, 
regardless the distribution of SNP effect sizes. 

 



80 
 

 

Figure 21 Relative PRS R2 increase of simulated data based on STANDARDIZED genotype data. Simulated GWAS data were 
divided into discovery, testing and validation datasets. The SNP effect size estimated were calculated and then corrected with 
discovery data; the P-value threshold were optimized with testing data and the PRS R2 were calculated with validation data.  
X-axis shows the estimated heritability estimated with the discovery data, y-axis shows the relative PRS R2 increase. Different 
colours and shapes of data points shows the pre-set simulated heritability and the ratio of causal SNPs, respectively. Each 
data point is based on one single repetition. The plot shows that the estimated heritability did not match with the pre-set 
simulated heritability and the pattern of the relative increase of PRS R2 did not accord with that of real data. 

 

2.5. Conclusions and Discussion  

GWAS results are now being used for prediction in both theoretical research and application 

such as precision medicine. Polygenic risk score prediction is heavily dependent on GWAS 

results. Spurious effect size estimates will make the PRS R2 unreliable. 

Permutation Shrinkage was developed to utilise the increasing availability of raw genotype 

data to increase the accuracy of GWAS and the prediction methods based on GWAS. It 

estimates the null distribution of the effect size and corrects the observed effect size by taking 

the ‘noise’ away from the raw estimates. Despite its simplicity, it increased the PRS prediction 

significantly in the tests.  
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Permutation Shrinkage assumes that the SNPs in the same MAF bin would have similar effect 

sizes or only a small proportion of SNPs have different effect sizes. This assumption is not 

always true but may be very close to the reality: the causal SNPs were estimated to only take a 

small proportion (<5%) even in polygenic traits71.  

Although permutation can be very computational expensive, it can run in parallel in a high-

performance cluster and each string requires a relatively small RAM and is independent with 

each other. It can be faster and more robust than other methods using raw genotype data most 

of which compute the correlation matrix of the genotype data and take huge RAM at one time. 

In the tests, the simulation based on standardised and unstandardized genotype data generated 

different result and the estimated heritability of both simulated data set were biased from the 

simulated heritability, which indicated that either the simulation methods or the heritability 

estimation method was problematic. However, this problem haven’t been fully analysed and 

solved due to the limited time and scope of this project. Judging from the pattern of out-of-

sample relative PRS R2 increase, the simulation based on unstandardized genotype had a very 

clear pattern that was similar with real data while the simulation based on standardized 

genotype generated noisy estimated heritability and noisy out-of-sample relative PRS R2 

increase. This result indicated that simulation based on unstandardized was closer to the real 

data and low-MAF SNPs should not be assigned with higher effect size to the phenotype. Yet 

more investigated is needed to test these hypotheses. 

One limitation of this project is that only the shrinkage method for quantitative traits have been 

developed and tested. In the future work, we would adjust the method so that it can work for 

binary traits. The preliminary plan is to use the same framework except that we estimate the 

null distribution of absolute value of log(odd ratio) and corrected the observed log(odd ratio). 

Log(odd ratio), instead of odd ratio, is used because its null distribution is more similar with 

normal distribution and therefore it is easier to evaluate whether the result is reasonable. 

Another limitation is that Permutation Shrinkage only works on raw genotype data. Although 

raw genotype data have been increasingly available, the majority of available GWAS data are 

summary statistics. Therefore, a similar shrinkage method that only utilises summary statistics 

GWAS data was developed and tested in next chapter. 
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Chapter 3. Order Statistics Shrinkage method for GWAS data 

3.1. Introduction 

In the previous chapter, Permutation Shrinkage (PS) was developed to increase the accuracy 

of GWAS effect size estimates and, therefore, improve GWAS-based prediction models. The 

PS method estimated the null distribution of absolute SNP effect sizes by permuting the raw 

individual-level phenotype data and shrank the GWAS effect size estimates by adjusting for 

the ranked value of this approximated null distribution. In our tests on real and simulated data, 

the corrected GWAS effect size estimates significantly increased the predictive power of 

polygenic risk scores (PRS). However, the PS method depends on the use of raw genotype-

phenotype data for the base GWAS, which are often not available for most users, who will 

often want to compute polygenic risk scores in their own target sample by exploiting large-

scale GWAS summary statistics. Therefore, an alternative shrinkage method that can utilise 

GWAS summary statistics, and exploit the intuition underlying PS, could have the benefits of 

PS but have greater utility.  

In PS, the null distribution of effect sizes is estimated from permuting the phenotype values in 

the raw genotype-phenotype data. This is the only step that requires the individual-level data. 

If the null distribution can be estimated from summary statistic data only, then an alternative 

shrinkage method could be formulated. 

Assuming that the null SNP effect sizes follow a known distribution or a distribution that can 

be approximated from a known distribution, then the null distribution of the effect sizes can be 

generated using order statistics of this distribution. Order Statistics (OS) are the ordered or 

ranked values of a statistic from a sample. The kth order statistic is the kth smallest value in the 

sample. Order statistics offer us an alternative method to generate the null distribution of SNP 

effect sizes. 

In this chapter, another novel shrinkage method, Order Statistics Shrinkage (OSS), is 

developed. OSS uses order statistics, instead of permutation based on individual-level genotype 

data, to generate a null distribution of GWAS effect sizes so that the GWAS results can be 

adjusted for inflation and deflation when only summary statistic data are available. 



83 
 

3.2. Methods 

3.2.1. Overview of method 

Order Statistics Shrinkage (OSS) uses the framework of Permutation Shrinkage (PS) (see 

Chapter 2, especially 2.3.1-2.3.3), except that the null distribution of the absolute value of the 

SNP effect sizes is estimated with order statistics. In OSS, SNPs are also binned into 1% minor 

allele frequency (MAF) intervals and the generation of the null distribution and the correction 

of effect sizes are all performed within MAF bins. After the generation of the null distribution 

in each MAF bin, the process of subtracting the estimated error quantity from the observed 

SNP effect size estimate and making the corrected value monotonically increasing with the 

original value is the same as that in PS. The following section will describe how OSS estimates 

the null distribution in a MAF bin in detail.  

3.2.2. Generating the null distribution with order statistics.  

The generation of the null distribution can be divided into the following four steps: 

1. Estimating the effective number of independent tests 

In order to use the order statistics, the effective number of independent tests, Me, needs to be 

first estimated because an assumption in the definition of order statistics is that samples are 

drawn independently from the same distribution. There are two options:  

(i) Assuming that all the SNPs within the MAF bin are independent of each other or 

only modestly correlated, then the effective number of independent tests, Me, can 

be assumed to be the same as the number of SNPs in the MAF bin. This assumption 

should be close to the truth if the data are sparse and the SNPs in the 1% MAF bin 

are generally distant from each other, meaning that the pairwise correlation of their 

genotypes is likely to be low. In the subsequent steps, the order statistics 

corresponding to the same number of all the SNPs in the MAF bin is generated and 

the effect sizes of all the SNPs are corrected and used as the input of the PRS 

calculation. This option is called “all SNPs”.  
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(ii) However, if the SNPs are highly correlated, for example, when using imputed 

genotype data or using a very dense genotype microarray, then the assumption of 

SNPs being independent cannot hold. Since our aim is to improve the performance 

of PRS, it is not necessary to have all the corrected SNPs because only clumped 

SNPs are used in the PRS calculation. In this high-density SNP scenario, in order 

to avoid the collinearity problem, the SNPs are first clumped in each MAF bin. As 

discussed previously (see section 1.6.2) clumping thins SNPs according to Linkage 

Disequilibrium (LD), retaining the most associated SNPs, such that a subset of 

SNPs remain that are relatively uncorrelated. We clump using an r2 threshold of 0.1. 

Thus, in each MAF bin, the clumped SNPs can be viewed as independent and the 

effective number of tests, Me, is approximated by the number of clumped SNPs. 

Order statistics of the number of clumped SNPs are generated and only the clumped 

SNPs are corrected and then used as the input for the PRS calculation and 

subsequent analysis. This option is called “clumped SNPs”. 

2. Generating the order statistics of the one-side Z score 

In this approach to shrinkage, the absolute effect size under the null hypothesis is estimated. 

For quantitative traits, an absolute t-statistic can be transformed to an effect size, beta value, if 

the standard error 𝑆𝐸 is known: 

|𝑏𝑒𝑡𝑎| 	= 	𝑆𝐸 ∗ |	𝑡	| (1) 

If the SNPs are independent and Me is known or estimated (ii above), then the order statistics 

vector of an absolute t-statistic, |t|, can be produced by generating an ordered vector, U, 

containing Me elements drawn from a uniform distribution, U[0,1], and then converting U to 

an absolute t-statistic via the absolute value of the probit function of the t-distribution, with N 

degrees of freedom, at a quantile point given by U. Given that N, the size of the sample in 

which the beta is estimated, is often very large, then if N is unavailable then the absolute t-

statistic can instead be approximated by an absolute Z-score similarly. 
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3. Generating the order statistics of absolute effect size 

 

When the quantitative trait is standardised, the standard error of the null effect size 𝑆𝐸 is a 

function of the sample size, 𝑁, and the MAF, 𝑝. 

From Bernado and Smith1 the regression coefficients θ in a linear regression model with 

a reference prior (minimises prior information) follow a Student distribution: 

𝜃~St ò𝜃ÔW,
1
2𝑋

�𝑋(𝑁 − 𝑘)𝛽�W?Y,𝑁 − 𝑘ô 

k is the number of parameters we are fitting =2, intercept and SNP effect 

therefore since 

𝛽�W =
1
2
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�
𝑦 

V(𝜃) =
(𝑁 − 2)S𝑦 − 𝑋𝜃ÔWV
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𝑦

(𝑁 − 4)𝑋�𝑋(𝑁 − 2)  (i) 

With mean centred genotype data: 

𝑋�𝑋 = 𝑁V(𝑋) = 2𝑁𝑝(1 − 𝑝) (ii) 
 

And mean centred and standardized y: 
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= n - 2 (iii) 
Plugging (ii) and (iii) into (i) gives 

𝑆𝐸 = ÷
𝑁 − 2

(𝑁 − 4)𝑁 × 2𝑝(1 − 𝑝) 
(2) 

 

There are two options for estimating the beta under the null from (1) using (2): with or without 

considering the MAF variation within each MAF bin. If the MAF of all the SNPs is the same, 

the null distribution of beta can be calculated via (2) using a fixed p. However, in real GWAS 

data, each SNP has similar yet still slightly different MAF, even if the SNPs are binned into 1% 

MAF intervals.  

If the slight variation of the MAFs in each MAF bin can be ignored, then the SNPs in the 1% 

MAF bins can be viewed as having a fixed MAF, which can be the middle point of the MAF 

bin, �̅�. All SNPs in the same bin then have the same fixed SE:  

𝑆𝐸øøøø = ÷
𝑁− 2

(𝑁− 4)𝑁× 2𝑝Ó(1− 𝑝Ó) 

The vector of order statistics absolute beta is then approximated, modifying (1), as: 

|𝒃𝒆𝒕𝒂| 	= 	 𝑆𝐸øøøø 	 ∙ |	𝑡	| 

This is described as the “fixed SE” option.  

An alternative implementation is to account for the MAF variation. Each element of a vector 

of the SE of all the SNPs, SE, is calculated using the sample size 𝑁 and the MAF of each SNP 

as: 
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𝑠𝑒U = ÷
𝑁 − 2

(𝑁 − 4)𝑁 × 2𝑝U(1 − 𝑝U)
 

in which 𝑝U is the MAF of ith SNP. If the missingness of the SNPs varies considerably, then the 

sample size 𝑁 should be 𝑁U, the number of samples that have the ith SNP genotyped. The SE 

vector is then formed from computing sei for the Me SNPs. Since this approach simulates the 

process of PS, where the ith elements of the ranked t-statistic can be assigned to any of the SNPs 

in the MAF bin, the SE vector should be shuffled to calculate the |𝒃𝒆𝒕𝒂|.  

In this option, |𝒃𝒆𝒕𝒂| is a vector comprising the element-wise products of a randomly shuffled 

SE	and the t-statistic (or Z-score). This option is described as the “random SE” option. 

4. Taking the average of ordered statistics of absolute effect size 

The order statistics directly generated in steps 2 and 3 are random variables that include 

stochastic variation due to random sampling of the uniform distribution in step 2, and random 

shuffling of the SE vector in step 3. Thus, the null distribution estimated by order statistics in 

one round can be viewed similarly to the null distribution generated in one round of 

permutation. In order to get a smoother estimate of the theoretical null distribution, step 2 and 

step 3 are repeated 100 times to get the average of the ordered effect size vectors as the resulting 

null distribution.  

3.2.3. Alternative summary statistics  

In the OSS method, the SNP MAF in the base data is necessary for binning the SNPs and 

calculating the null effect size distribution. However, the SNP MAF is not available in all 

summary GWAS data. Alternatively, the MAF of the SNPs from a reference data set can be 

used as a proxy. For example, if the base and target samples are drawn from the same or similar 

populations, which is often the case since PRS have been shown to only generalise well to 

similar populations29,33,78, then the MAF of the target data SNPs can be used. Thus, the MAF 

of the target data set can be used as a proxy of the SNP MAF in base data to bin the SNPs into 

1% interval bins of MAF and to calculate the standard errors of the effect size estimates. 

Alternatively, the standard error of the beta estimated in the GWAS can be used as a proxy of 
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the standard error of the null effect, assuming that the standard error corresponding to the effect 

size estimate of a null SNP is the same as that of a SNP with the same MAF but non-zero effect 

size.   

The focus of this chapter is to investigate the performance of OSS. The best strategy to take 

when the MAF of the SNPs in the base data are unavailable will be setting specific and is not 

investigated here, so hereafter we only test the performance of OSS when the MAF information 

is available.  

 

3.2.4. Performance evaluation under simple simulation scenarios 

In order to understand the general performance of the OSS approach compared to standard 

shrinkage approaches – the James Stein estimator, lasso and ridge regression – in simple 

generic scenarios, a set of 1000 SNPs were simulated in a sample of 10k individuals, each with 

a Minor Allele Frequency (MAF) of 0.25, and different fractions and effect sizes of causal 

SNPs with independent additive effects were modelled, with a total heritability of 0.1, and a 

Gaussian error term with variance 0.9 reflecting the residual trait variance. So, for example, in 

one scenario, 1000 SNPs were simulated to have genotypes 0, 1 and 2, each with MAF=0.25 

and thus, assuming Hardy Weinberg Equilibrium (HWE), having expected frequencies of 

0.5625, 0.375 and 0.0625; 100 SNPs had a causal effect of the minor allele of 1 standard 

deviation, 100 had an effect of -1 standard deviation, while the other 800 SNPs had no effect. 

In another scenario, all 1000 SNPs had the same effect size, thus the trait variance explained 

by each SNP was 0.1%. 

The performance of the shrinkage methods was tested by comparing the mean squared errors 

(MSE) before and after the shrinkage: 

MSE =
1

𝑁«W¬
R (𝑂𝑏𝑒𝑟𝑠𝑣𝑒𝑑	𝑏𝑒𝑡𝑎U − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑏𝑒𝑡𝑎U)B
W®¯
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JS estimators were calculated with in-house R scripts based on the definition of the JS estimator 

as described in Chapter 1. Lasso and ridge estimates were calculated with R package “glmnet”. 

Glmnet gives the lasso estimator when alpha=1, and the ridge estimator when alpha=0. 

3.2.5. Performance evaluation using real and simulated data based on the UK 

Biobank 

The methods were tested using the same set of real data traits in UK Biobank used (see section 

2.3.4) and with in-house software written by Dr. Shing Wan Choi described (see section 2.3.5) 

The heritability of the real traits was estimated with LD Score regression30, using the default 

parameters. The GWAS data for testing the methods was split into 3 equal parts: discovery 

data, testing data and validation data. The PRS model was built and validated with the 3-dataset 

system as described in section 2.3.6. 

3.3. Results 

3.3.1. Comparison of OSS and PS for generating the null distribution 

As discussed in 3.1, the only difference between PS and OSS is how the null effect size 

distribution is estimated. Therefore, the similarity of the null effect size distribution indicates 

the similarity of the corrected effect size estimate. In the simple simulated scenario, the SNPs 

are independent of each other and have the same MAF of 25%. The null effect size distribution 

in the simple simulated scenarios generated by permutation and prototype order statistics were 

almost identical, with the correlation coefficient = 0.9999 (Figure 22). The high similarity of 

the null distribution generated by PS and OSS means that the performance of these two methods 

should be almost identical, too. Therefore, in the subsequent testing in the simple simulated 

scenarios, we only compare the performance of OSS with the other approaches, and not with 

PS since OSS and PS give almost identical results  



90 
 

 

Figure 22 Compare the null distribution generated by PS and OSS in simulated GWAS data. The blue reference line is y=x.  

3.3.2. OSS versus alternative shrinkage methods in simple simulation scenarios 

Here, simple scenarios were simulated to test the performance of the basic performance of the 

OSS method and compared with other competing approaches: the James-Stein estimator (JS), 

lasso and ridge regression shrinkage methods. 10k individuals were simulated, each of which 

had 100 SNPs of Minor Allele Frequency (MAF) of 25%. A fraction, or all, of these 1000 SNPs 

had a causal effect on a standardised quantitative trait corresponding to a heritability of 0.1, 

while the remaining trait variance was modelled as a single Gaussian distributed residual error. 

Different proportions of causal SNPs, and the distribution of the effect sizes, were simulated 

to represent different genetic architectures (Table 3).  
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Table 3 Shrinkage methods performance under different simple simulated scenarios. The table is based on 10 repetitions.  

Scenario 
MSE （X10-5） 

Original 
observed 

OSS Ridge Lasso JS 

All SNPs have the effect 
size =0 

26.44±0.13 0.05±0.05 0.03±0.04 0.01±0.03 0.0001±0.0000 

All SNPs have the effect 
size =1 

26.90±4.43 0.04±0.03 13.13±5.22 18.58±8.38 26.53±3.28 

50 SNPs have effect size 
drawn from N(0,1) 

26.56±5.88 6.86±0.44 13.18±2.65 4.31±0.45 26.52±0.34 

25 SNPs have effect size 
=1 and 25 SNPs have 
effect size =-1 

26.83±2.03 8.85±0.74 12.91±0.18 4.87±0.52 26.73±0.30 

100 SNPs have effect 
size =1 and 100 SNPs 
have effect size =-1 

26.23±2.09 14.10±0.77 12.76±0.46 11.70±0.65 28.63±0.86 

200 SNPs have effect 
size =1 and 200 SNPs 
have effect size =-1 

26.29±4.00 15.97±0.54 13.15±0.58 15.54±0.70 26.66±0.45 

400 SNPs have effect 
size=1 and 400 SNPs 
have effect size =-1 

27.30±4.18 15.27±0.35 13.21±0.52 18.36±0.94 26.43±0.26 

500 SNPs have effect 
size=1 and 500 SNPs 
have effect size =-1 

26.41±1.74 15.38±0.45 13.35±0.45 18.97±0.51 26.90±026 

100 SNPs have effect 
size =2 and 100 SNPs 
have effect size =-1 

26.61±0.90 14.59±0.77 13.04±0.58 10.90±0.56 26.51±0.30 

100 SNPs have effect 
size =2 and 100 SNPs 
have effect size =1 

26.92±0.90 13.55±0.56 13.05±0.62 10.85±0.60 26.53±0.33 

The methods with the best performance are marked with bold font. 
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In Figure 23- Figure 32 we illustrate each of the results from Table 3 in plots that show the 

unadjusted estimates of the effect sizes and the effect sizes estimates after adjustment via each 

of the shrinkage methods. These indicate some of the characteristics of each of the shrinkage 

methods.  

Figure 23 shows the result for which none of the 1000 SNPs has effect on the output. All the 

four methods shrank the observed effect size to the true value, zero.  

Figure 24 shows the results for which all 1000 SNPs have the same non-zero effect size. While 

the James Stein estimator shrinks all of the effects to close to 0, which continued to happen in 

all the scenarios, the effect sizes adjusted by the OSS approach estimates the simulated effects 

extremely accurately. Lasso and Ridge regression produce estimates that are slightly improved 

over the unadjusted estimates in this scenario. Lasso regression also had the tendency to shrink 

the effect size of non-zero SNPs to zero, which was also observed in the scenario described in 

Figure 27 - Figure 32. 

The good performance of OSS in Figure 24 might result from the fact that this scenario 

perfectly accorded with the assumption of OSS that all the variable had the same effect size. 

However, in GWAS, it is unrealistic to assume that all the SNPs contribute equally to the 

phenotype. Therefore, more realistic scenarios (Figure 25 and Figure 26), in which the 

percentage of causal SNPs are 5% as the real scenarios71 was simulated.  

The performance of the four shrinkage methods were further investigated under the scenario 

where the percentage of causal variable increased in Figure 26 - Figure 30. Of the 4 summary 

statistics methods tested, the James-Stein estimator shows a consistent tendency to over-shrink 

the estimates to zero and therefore always has much higher MSE than the other methods. The 

OSS method preforms well in the scenario that accords with the assumption of PS and OSS, 

that is, that almost all the variables have the same effect sizes and the proportion of outliers 

from this are very small. As the percentage of causal variable increased, the performance of 

OSS and Ridge regression decreased while the performance of ridge regression was relatively 

consistent.  
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The scenarios where the effect size distribution of causal variables was dissymmetric were 

simulated in Figure 31 and Figure 32. Compared with the scenario in Figure 27 where the 

percentage of the causal variables was also 20%, the MSE of the four methods were similar 

but OSS had the tendency to “shrink” all the estimates to the average value of true effect size. 

When the effect size distribution is symmetric, the null variable will have corrected estimates 

that is close to zero and the causal variable will have corrected estimates that systematically 

smaller than their true effect size. However, when the distribution is dissymmetric, the null 

variables will have non-zero corrected estimates, which is obvious in Figure 32. When the 

majority of the variable are null and it is important to distinguish the null and causal variables, 

the latter scenario is worse than the former.  

 It is interesting to note, that the scenario here with 25 causal SNPs with effect 1 and 25 SNPs 

with effect -1, the performance of OSS is markedly better than the scenario where 100 SNPs 

have an effect of 1 and 100 SNPs have an effect of -1 (Table 3). This indicates the improved 

performance of the OSS method in scenarios where the effects overall are more homogenous; 

here, that more of the SNPs have no effect, since the fraction of causal SNPs here is 5% rather 

than 20%. It is also interesting that the OSS method performs well in the scenario where effects 

are drawn from a Gaussian distribution, demonstrating that the OSS method can perform well 

even when the causal effect sizes are not equal. Also, these scenarios, in which the OSS 

approach performs relatively well, may be more reflective of real data settings such as in 

GWAS of complex traits than those of the simple scenarios corresponding to Table 3 and 

Figure 23 - Figure 32.  
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Figure 23 The performance of shrinkage methods in the scenario in which all the SNPs have zero effect size. The simulated, 
originally observed and corrected effect sizes are marked with black, blue and red colour. The plots are based on one round 
of simulation.  

 

Figure 24 The performance of shrinkage methods in the scenario in which all the SNPs have the same non-zero effect size. 
The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. The plots are based 
on one round of simulation. 
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Figure 25 The performance of shrinkage methods in the scenario in which 50 SNPs have the effect sizes drawn from standard 
normal distribution. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 

 

Figure 26  The performance of shrinkage methods in the scenario in which 25 SNPs have the effect sizes of 1 and 25 have the 
effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. The 
plots are based on one round of simulation. 
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Figure 27 The performance of shrinkage methods in the scenario in which 100 SNPs have the effect sizes of 1 and 100 have 
the effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 

 

Figure 28 The performance of shrinkage methods in the scenario in which 200 SNPs have the effect sizes of 1 and 200 have 
the effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 
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Figure 29 The performance of shrinkage methods in the scenario in which 400 SNPs have the effect sizes of 1 and 400 have 
the effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 

 

Figure 30 The performance of shrinkage methods in the scenario in which 500 SNPs have the effect sizes of 1 and 500 have 
the effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 
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Figure 31 The performance of shrinkage methods in the scenario in which 100 SNPs have the effect sizes of 2 and 100 have 
the effect size of -1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 

 

Figure 32 The performance of shrinkage methods in the scenario in which 100 SNPs have the effect sizes of 2 and 100 have 
the effect size of 1. The simulated, originally observed and corrected effect sizes are marked with black, blue and red colour. 
The plots are based on one round of simulation. 

 



99 
 

To summarise, the smaller the percentage of causal SNPs (or non-genotyped causal variants), 

the more the scenario will be in accordance with the underlying assumptions of the PS and 

OSS approaches. While these simulations did not include important aspects of real data, such 

as variation in MAF between SNPs, LD among SNPs and correlation between causal SNPs, 

which may improve the performance of more complex approaches such as Lasso and ridge 

regression, they also did not account for the potentially larger sample size available to the OSS 

approach in practical settings where summary statistics are more abundantly available than 

individual-level data, which is required for the standard implementations of Lasso and ridge 

regression tested here. Besides, the running time for correcting the simulated data of Lasso and 

ridge regression in R is approximately 40 times and 70 times more than that of OSS in out test. 

The running time depends on various factors such as the coding language that implements the 

algorithm, CPU, the size of data, etc. but it is clear that OSS is very computationally efficient. 

In conclusion, these simulations show that OSS has the potential to perform similarly as more 

complicated shrinkage methods, such as lasso and ridge regression, when correcting GWAS 

data results and thus may provide a useful alternative depending on data availability and time 

constraints given its computational efficiency.  

3.3.3. Comparison of OSS and PS for generating the null distribution in real 

GWAS data 

As in section 3.3.1, here we compare the generation of the null distribution using the Order 

Statistics Shrinkage (OSS) method with that based on the Permutation Shrinkage (PS) method 

(chapter 2). As described previously, the main difference between PS and OSS is how the two 

methods generate the null effect size distribution. If the null distributions generated by the two 

methods are similar, then their performance should be similar too. 

There are different options to implement the OSS method, which we compare here. Firstly, in 

calculating the standard error (SE) of expected effect sizes, the MAFs of SNPs within each 1% 

MAF bin can be either treated as a having a fixed value corresponding to the middle point of 

the 1% interval (“fixed-SE”) or as a random variable based on a random permutation of SEs 

calculated based the exact set of MAFs within each bin (“random-SE”). Secondly, in terms of 

the LD structure within the MAF bins, this can be either ignored so that all SNPs in the MAF 
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bin are corrected as if they were independent of each other (“all-SNPs”), or taken in to 

consideration whereby the SNPs are first clumped and then corrected (“clumped”).  

Since under the “clumped” option, the number of SNPs to be corrected is smaller than the 

original number of SNPs, and the PS method corrects all the SNPs, there is no exact like-for-

like comparison that can be made between the two methods. Therefore, only the null 

distribution generated by “all SNPs” OSS was compared with that generated by PS here, but 

we expect that the general findings should generalise to the “clumped” setting.  

The pulse rate trait (estimated heritability=0.18) was used to illustrate the difference between 

the null distribution generated by OSS and PS (Figure 33 and Figure 34). The null distribution 

generated by the two methods were generally similar: almost all the data points were on the 

line y=x. For SNPs with MAF<4% the null effect size generated by “fixed SE” OSS were 

smaller than that generated by PS as shown in Figure 33 the data point is slightly below y=x. 

Considering the fact that that the effect sizes of the low MAF SNPs have higher variance, due 

to their larger standard error (corresponding to SE being a function of 1 / MAF(1-MAF) as 

given by eqn. 2 in 3.2.2), “fixed SE” might no be able to fully represent the deviation of the 

effect size distribution of low MAF SNPs. 



101 
 

 

Figure 33 The null distribution generated by "All SNPs-fixed SE" OSS and PS with the same set of the UK Biobank QC’ed 
genotype data and standardized null quantitative data. PS: Permutation Shrinkage, OSS: "All SNPs-fixed SE" " Order 
statistics Shrinkage. The header of each subplot indicates the MAF bin, e.g. “1” means the MAF bin of 0-1%, 2 means the 
MAF bin of 1-2% 

Figure 34, however, illustrates a smaller difference between the OSS and PS estimates, thus 

indicating the greater accuracy in using the exact distribution of MAF within each 1% MAF 

bin rather than approximating the MAFs in each bin by their mid-point value. Due to these 
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results, we expect that the “random-SE” option for the OSS method will perform better than 

the “fixed-SE” option, since this more closely replicates the more exact procedure of the PS 

approach for generating the null distribution of effect size estimates.  

 

Figure 34 The null distribution generated by "All SNPs random SE" OSS and PS with the same set of UK Biobank QC’ed 
genotype data and standardized null quantitative data. PS: Permutation Shrinkage, OSs: "All SNPs random SE" Order 
statistics Shrinkage. The header of each subplot indicates the MAF bin, e.g. “1” means the MAF bin of 0-1% .  
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3.3.4. Testing performance of Order statistics Shrinkage on increasing PRS 

prediction with real data  

Similar with PS, the performance of OSS was tested with a 3-dataset system using UK Biobank 

data (see section 3.2.5 and 2.3). The discovery data was used as the base data for PRS and 

corrected by Order Statistics Shrinkage. The testing data was then used as the target data for 

building a PRS model with P-value threshold optimisation. Then the optimised model was 

validated with the validation data using the P-value threshold used in the testing data model. 

The relative increase of PRS R2 in the validation data after correction indicated how much the 

shrinkage method increase the power of PRS. 

Similar with what happened in the tests of PS, when the estimated heritability <0.05, the 

relative increase of PRS R2 were severely fluctuated since the PRS R2 were around zero before 

and after the correction. Therefore, the results of these less heritable traits were omitted here. 

The performance of OSS was tested when the estimated heritability >0.05. 

When tested with UK Biobank data, the way of processing the MAF variation with in a MAF 

bin (see “Generating the order statistics of absolute effect size” under section 3.2.2 ), made a 

significant difference to the performance of OSS (Figure 35). The “random SE” improve the 

PRS prediction much more than “fixed SE” as shown in Figure 35. The mean PRS R2 relative 

increase of all the traits caused by “fixed SE” OSS is 5.3%, while the mean relative increase 

caused by “random SE” is 35%, which is close to the performance of PS (35%).  The null 

distribution generated by “fixed SE” and “random SE” were similar with that generated by PS 

expect that for SNPs of MAF<4%, the null distribution generated by “fixed SE” is smaller than 

that generated by PS. The difference in correcting low MAF SNPs was the most likely 

explanation for the different performance of increasing PRS prediction, which indicated that 

low MAF SNPs might play an important role in predicting the phenotype.  

The way of processing the LD structure (see “Estimating the effective number of independent 

tests” under section 3.2.2) would influence the OSS performance as well. As shown in Figure 

36, for UK Biobank data, “all SNPs” mode still performed better than “clumped SNPs” mode. 

The mean PRS R2 of the “all SNPs” 0.352 and the “clumped SNPs” 0.214. The “clumped SNPs” 

performed much worse than “all SNPs” and PS. There were 2 possible reasons for this: first, 
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only the top SNPs were chosen in clumping, so expectation of clumped SNPs might not be 

zero, but in the following shrinkage the expectation of the SNPs were still assumed to be zero; 

second, in “clumped SNPs” option, the SNPs were clumped twice: when correcting the effect 

size estimates, and when calculating PS. The two tiers of clumping might lead to the loss of 

informative SNPs. Although “all SNPs” also had the risk of violating the assumption that all 

the SNPs in the 1% MAF bins were independent, at least in out tests with UK Biobank genotype 

data, the influence of violating the assumption of independent SNPs was low.    

 

Figure 35 Comparison of PRS R2 relative increase generated by different modes for processing the MAF.  The dot shows the 
mean value of the relative increase and the error bar shows the 95% confident interval. Each data point shows the PRS R2 
relative increase of one UK Biobank quantitiative trait. The colour of the data point indicates the mode for porocessing the 
MAF. The mean value and error bar are based on the results of 5 repetition. "Random SE" OSS improved PRS prediction 
power much more than "Fixed SE" OSS. In this plot, only the result of “all SNPs” are shown. 



105 
 

 

Figure 36.  Comparison of PRS R2 relative increase generated by different modes for processing LD. The dot shows the mean 
value of the relative increase and the error bar shows the 95% confident interval. Each data point shows the PRS R2 relative 
increase of one UK Biobank quantitiative trait. The colour of the data point indicates the mode for porocessing LD. The mean 
value and error bar are based on the results of 5 repetition. "All SNPs" had better performance than "clumped SNPs" OSS. In 
this plot, only the result of “random SE” are shown. 

We recommend that when correcting UK Biobank GWAS data or GWAS data of similar SNP 

density, the most optimized option is combination of “random SE” and “all SNPs”. The PRS 

prediction relative increased caused by OSS “random SE - all SNPs” and PS were highly 

similar as shown in Figure 37. The correlation between the mean increase caused by the 2 

methods is r2 = 0.97. This result shows that OSS “random SE - all SNPs” can be used as an 

alternative method of PS with almost equal power.  
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Figure 37 Comparing the PRS relative increase caused by PS and OSS "random SE - all SNPs". The dot shows the mean 
value of the relative increase and the error bar shows the 95% confident interval. The mean and error bar are based on the 
results of 5 repetitions of both methods.  

In addition, more SNPs were included in the optimized PRS model after the correction of effect 

size estimates, as shown in Figure 38. Since the performance of Order Statistics Shrinkage and 

Permutation Shrinkage were highly similar, only one method, i.e. Order Statistics Shrinkage 

of “random SE – all SNPs” was used as an example here.  
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Figure 38 Comparing the optimised P-value threshold and the number of SNPs when using the original and corrected SNP 
effect size estimates of UK Biobank data. The SNP effect size estimates were corrected with Order Statistics Shrinkage of 
"random SE - all SNPs" mode. The phenotypes were ranked ascendingly from left to right according to their estimated 
heritability. The optimised P-value thresholds (A) and number of SNPs for calculating PRS were based on 5 repeats and shown 
in different colours. The dot shows the mean value of the relative increase and the error bar shows the 95% confident interval 
The plots shows that after correction more SNPs were included into the optimised PRS model. 

 

3.3.5. Testing performance of Order statistics Shrinkage on increasing PRS 

prediction with simulated data 

The similarity of PS results and OSS “random SE - all SNPs” results was repeated in simulated 

data as shown in Figure 39. The performance of “All SNPs” - “random SE” OSS were tested 

with simulated data based on the unstandardized genotype. In the simulation, OSS significantly 

increased the PRS prediction power when the traits were modestly heritable. The increase 

flatted out for traits with higher estimated heritability. The pattern of the result is highly similar 

with the result of PS shown in 2.4.4. 
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Figure 39 "Random SE-clumped" OSS improved the PRS performance in simulated data. The x-axis shows the simulated 
heritability and the y-axix shows the relative increase of PRS R2 after the base data is corrected by "Random SE-clumped" 
OSS methods. The simulated data were based on Chromosome 1 of 20k QC’ed UK Biobank samples, so the heritability scale 
was approximately 8% of the genome-wide data. That is, a simulated heritability of 0.1 above corresponds to a real data 
heritability of approximately 80%. The phenotypes were simulated based on unstandardized genotype as mentioned in section 
2.3.5. The dot shows the mean value of the relative increase and the error bar shows the 95% confident interval calculated 
from 5 repeats. 

The number of SNPs included in the optimised PRS were compared before and after the 

correction of SNP effect size estimates when tested with simulated data. Only the result Order 

Statistics Shrinkage “random SE – all SNPs” mode was shown here because of the similarity 

of the shrinkage methods developed in this thesis.  The increase of included SNPs was not as 

obvious as in the real data. The probably reasons are that some of the simulated scenarios were 
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much less similar with a typical real trait and that simulation did not capture all the feature of 

real data. 

 

Figure 40 Comparing the optimised P-value threshold and the number of SNPs when using the original and corrected SNP 
effect size estimates of simulated data. The SNP effect size estimates were corrected with Order Statistics Shrinkage of "random 
SE - all SNPs" mode. The optimised P-value thresholds (A) and number of SNPs for calculating PRS were based on 5 repeats 
and shown in different colours. The increase of number of included SNPs in the optimised PRS is not as much as the that in 
real data, while the tendency is obvious yet. The dot shows the mean value of the relative increase and the error bar shows 
the 95% confident interval calculated from 5 repeats 

 

3.4. Discussion 

In this chapter, an alternative method for Permutation Shrinkage (PS) was developed. In our 

tests, Order statistics Shrinkage (OSS) can perform similarly with PS even when only summary 

statistics MAF and effect size calculated from standardised outcome trait are available.  

This work not only provides a way of improving PRS prediction, but also reveals some 

statistical nature of effect size estimates in GWAS. That “Random SE” method performed 

much better than “Fixed SE” indicated that the when estimating the null distribution of effect 
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sizes the differences in MAF should be taken into consideration even if the SNPs are binned in 

to small MAF intervals. This finding may help the future analytic work involved in the 

estimation of the null distribution of effect size. 

The work for now has not fully solve the problem of processing the LD structure. It can provide 

a corrected effect size for every SNP using “all SNPs” mode only when using relative sparse 

GWAS data like UK Biobank. When correcting a denser dataset, i.e. imputed GWAS data, it 

is possible to use the “clumped” mode, which only provided an improved PRS prediction. 

However, in our test with UK Biobank data, the increase PRS prediction caused by “clumped” 

is less than that of “all SNPs”. A possible reason for this is that the first round of clumping in 

the “clumped” mode may delete some SNPs that may turn out to be informative in the PRS 

model. Two issues needed to be investigated to apply this method to more dense data: how to 

efficiently calculate the effective number of independent tests in a large-scale data, and how to 

extrapolate the null distribution according to the LD structure.  

If the aim is to improve the GWAS result, the effect sizes of all the SNPs should be corrected. 

The most mathematically rigorous method is to first estimates the effective number of 

independent tests Me of the base data, then generate the null distribution and finally extrapolate 

the distribution to all the SNPs. However, it is very complicated to implement this rigorous 

method. 

Mathematically, Me should be calculation by eigen value decomposition of the genotype 

correlation matrix79,80.  However, the raw genotype data is not available because when using 

OSS, we assumed that only summary statistics data is available. Even if we can use the target 

genotype data as an proxy of the raw genotype data of the base data, the complexity of eigen 

value decomposition is O(n3) and it can be too computational expensive to calculate especially 

for large-scale dataset as UK Biobank.  

A possible option for calculating Me is to use the number of clumped/pruned SNPs as a proxy. 

In this case, the correction process can be first correct the clumped data and then extrapolate 

the data according to the LD structure and MAF.  
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Admittedly, the estimation of Me and extrapolation of the corrected null distribution is 

important for the further improvement of the OSS method and many other methods in statistical 

genetics. However, the two questions are beyond the focus of this project, that is, to improve 

the performance of PRS. Besides, the method of estimating Me and extrapolating the null 

distribution should be tested in an extra imputed data and extra simulated highly colinear data. 

Therefore, in this chapter, only “all SNPs” option and “clumped” option are tested.  

 

  



112 
 

Chapter 4. PRSet: Polygenic Risk Score Gene Set Analysis Method 

4.1. Introduction 

It has now been established that complex traits are influenced by hundreds or thousands of 

genetic variants, each of which only has a small effect81–83. However, polygenicity does not 

imply that all genetic variants or regions in the genome contribute equally or independently to 

the trait. It may be that individuals get a disease because they have a particularly high burden 

of risk alleles across a specific biological pathway, even if their risk across the rest of the 

genome is low. That is, it may be that genetic risk converges across functional groups in the 

genome, and that rather than being additive it instead involves high order interactions across 

many genetic variants and separate liabilities of risk.  

Genes can be grouped into gene sets according to aetiological or biological factors. Identifying 

gene sets that contribute more to phenotypes of interest than other gene sets could help to reveal 

disease or trait aetiology84,85 and stratification of risk, provide potential drug targets, and lead 

to better patient stratification86. Gene Set Analysis (GSA), or sometimes interchangeably called 

‘pathway analysis’, exploit genetics and other ‘omics’ data, such as expression profile87, 

proteome88 and reactome89, to gain insights into the aetiology and genetic basis of complex 

disease (see section 1.9). GWAS-based GSA methods62,90 such as GSEA59, FORGE64, 

MAGMA65, have been developed and most of them utilise the P-values of the SNP-phenotype 

associations and do not exploit or provide any individual-level information about the genetic 

burden enriched in the gene set.  

Polygenic risk scores (PRS) have been widely-used in recent years to capture polygenic signal 

across the genome52 (see section 1.6), but they are yet to be fully exploited as part of GSA 

methods91. If PRS-based GSA methods can have better or even comparable performance to the 

existing approaches in terms of assessing and ranking the enrichment of signal across different 

pathways, then they could have extremely high utility given that they can provide individual-

level gene-set estimates of genetic propensity to phenotypes as well. With PRS for each gene-

set in each individual, researchers may be able to identify specific sources of shared aetiology 

among different traits, identify reasons for differential treatment response and stratify cases of 

a disease into more homogeneous groups in terms of shared aetiology.  
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A group of PRS-based GSA methods that we collectively call “PRSet” is developed and tested 

in this chapter. The PRSet software has been incorporated into PRSice77, the PRS analysis 

software suite that was developed by my research group, as a sub-function. The coding for 

PRSet was written both by myself and my supervisor Dr Choi. PRSet performs two types of 

gene set analysis: 1) self-contained: to test whether the gene set has an association with the 

phenotype; and 2) competitive: to test whether the gene set is any more associated with the 

phenotype under study than a random gene set from the genome with the same fundamental 

properties62.  

4.2. Methods 

4.2.1. Calculation gene set PRS 

Gene set PRS PRSS is used to represent the genetic burden in the gene set. In order to develop 

PRS-based GSA methods, the first step is to calculate PRSS. There are several technical aspects 

to be considered: 

Definition of gene set SNPs: SNPs are defined as belonging to the gene if they fall into the 

range of the gene. The flanking area of the gene contains the regulatory sequence such as 

enhancer, silencer, promoter, 5’ and 3’ UTR, they also influence the expression of the gene, 

researchers may include the flanking region as part of the gene according to the need of the 

specific research. In PRSet, the range of a gene is the exon, intron and the flanking region 

whose size is defined by the user. All the genic regions that belong to the gene set are merged 

to construct the gene set region. If a SNPs belongs to more than one gene, it is calculated only 

once when constructing the PRSS. 

Clumping of the gene set SNPs: In calculating genome-wide PRS, clumping is used to extract 

independent signals across the whole genome. However, when calculating PRSS, the SNPs 

inside the gene set may be clumped out because of a neighbouring SNPs outside the gene set 

if the clumping is performed across the genome. Therefore, the gene set SNPs are clumped 

only within the range of the gene set, i.e. to analyse k gene sets, k round of clumping within 

the gene set will be performed and each gene set is effectively treated as the whole genome for 

clumping purpose. Thus, the index SNPs outside the gene set will not cause the deletion of 
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possible informative SNPs inside the gene set. Another advantage of clumping within the gene 

set SNPs is that the LD in each gene set will be naturally dealt with. After clumping, the gene 

set are treated as a group of independent SNPs. Even the genes in the gene sets are correlated 

with other genes, there is no need to estimate the correlation and LD of these genes like in 

MAGMA. However, independently performing clumping on each individual gene set is a 

computationally intensive process. To speed up the set-based clumping, we utilize the bit-flag 

system: when an index SNP clumped a target SNP, the bit-flag of the target SNP will be 

updated using the combination of bitwise AND and XOR operation such that the index SNP 

will “remove” gene set membership from the target SNP if and only if they fall within the same 

gene set (Figure 41). 

 Set A Set B Set C Set D   Set A Set B Set C Set D 
SNP 1 1 0 1 1  SNP 1 1 0 1 1 
SNP 2 0 0 1 1  SNP 2 0 0 0 0 
SNP 3 1 1 0 1  SNP 3 0 1 0 0 

 

Figure 41 Illustration of bit operation involved in PRSet clumping. Left: If a SNP is found in a gene set, it will be marked with 
1, and 0 otherwise. Right: Assuming SNP 1 is the index SNP, it will “remove” set memberships from other SNPs that were 
clumped by. 

 

P-value thresholding: In a typical genome-wide PRS analysis, we usually aim to test the 

association between the genome PRS and the phenotype to test the existence of a polygenic 

basis or a genetic association between two phenotypes. To maximise the statistical power to 

detect the association between PRS and the target phenotype, a series of PRS are usually 

calculated using different P-value thresholds to get the most optimised model52,77. However, 

the aim of GSA studies is to represent the association between the gene set and the phenotype 

without bias and every gene set should be tested in the same way. Therefore, it will be 

inappropriate to calculate gene set PRS with optimizing the P-value threshold for each gene 

set like calculating the typical genome-wide PRS. Besides, after optimization for SNP P-value 

threshold, only part of clumped SNPs are included in the PRS. It is difficult to justify whether 

this part of SNPs is a fair representative of the whole gene set. Therefore, I calculated gene set 

PRS without optimising P-value threshold. All the clumped SNPs are included in the PRS. 



115 
 

To sum up, PRSS is the weighted sum of risk alleles of all the clumped SNPs and the clumping 

is performed only within the gene set. PRSS represent the genetic burden that enriched in the 

gene set. 

4.2.2. PRSet methods 

1) Self-contained test  

The null hypothesis of self-contained GSA methods is that the gene set has no overall 

association with the phenotype. It is the most basic gene set test in which the representative of 

the genetic burden in the gene set is calculated to test its association with the trait. 

According to the null hypothesis, self-contained test in PRSet is simply to test the association 

between the phenotype and the gene set PRSS controlling for covariates such as age, sex, top 

principal components (PCs): 

Phenotype ~ PRSS + covariates + ε 

in which ε is the residuals 

2) Competitive test 

The null hypothesis of competitive test is “The genes in a gene set is not more association with 

the phenotype than the genes not in that gene set”. An equivalent expression is that “the gene 

set is not more association with phenotype than the random gene sets of the similar features.” 

For polygenic traits, any region in the genome, even those of no biological importance, can be 

self-contained significant because the signal can be distributed along the whole genome.  

The competitive test can be implemented in two ways: First, the statistics of the genes inside 

the gene set are to be compared with those of the genes outside the gene set. In PRS-based 

GSA, this implementation is to compare the PRS of genes inside the gene set with those outside 

the gene set. The framework of MAGMA-geno is borrowed to implement this approach 
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(marked as “PRSet-MAGMA.like”); Second, the statistic of the gene set is to be compared 

with those of random gene sets from the genome. In PRS-based GSA, this implementation is 

to compare the PRS of the observed gene set with those of random gene sets of the similar 

properties. This approach was marked as “PRSet-perm”. 

PRSet-MAGMA.like method: 

This method compares the PRS of genes inside the gene set with the PRS of the genes from 

the outside. It uses the 2-tier framework of MAGMA’s competitive method (see section 1.9.5):  

In the first tier, the gene-phenotype association is calculated. PRSet-MAGMA.like first 

calculates the PRS of each gene. The calculation of gene PRS is similar with calculation of 

gene set PRS. The PRS of gene g (PRSg) is the weighted sum of risk alleles of clumped SNPs 

belonging to the gene g. The SNPs were clumped only within the range of the gene. The 

phenotype is then regressed on the PRS of each gene: 

Phenotype ~ PRSg + covariates+ ε 

in which covariates can be individual-level data such as sex, age, top genome principal 

components, etc. and ε is the residue. 

The P-value of this regression model pg is converted into one-sided Z score zg = Φ−1(1 – pg), in 

which Φ−1 is the probit function. The Z score zg represents the association between the gene g 

and the phenotype. 

In the second tier, PRSet-MAGMA.like compares the phenotype-gene association inside and 

outside the gene set with a regression model of the gene information: the phenotype-gene 

association is regressed on an indicator of whether the gene is in the gene set or not, controlling 

for the covariates of the gene, such as the gene size, gene density and minor allele account 

(MAC) of the SNPs in the gene and corrected for the correlations between the genes:  

𝑍	~	𝑆t + 𝑔𝑒𝑛𝑒	𝑠𝑖𝑧𝑒 + 𝑔𝑒𝑛𝑒	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +𝑀𝐴𝐶 + 	𝜀 
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where vector Z consists of the Z scores zg of the genes. Vector Ss consists of element that 

denotes the whether the gene g is in the gene set s: element sg =1 if gene g is in the gene set; 

else sg = 0.  

The correlation between the genes are corrected for in the error term ε. The statistics of the 

genes can be correlated because these genes share SNPs or have SNPs in LD.  This breaks the 

assumption of standard linear regression that the error terms should be independent. MAGMA 

provide a solution for this problem by adding a generalized least squares error term that takes 

the correlations of the gene into account and PRSet-MAGMA.like borrows this term: 

ε ~ MNV(0, 𝜎B𝑅) 

in which 𝑅 is the matrix of gene-gene correlations. 

The covariates used by MAGMA is gene size, gene density, minor allele account (MAC). 

Gene density in MAGMA-geno is the number of pruned PCs divided by the number of SNPs 

in the gene. The counterpart of gene density in PRSet-MAGMA.like is the number of 

clumped SNPs divided by the number of raw SNPs in the gene. In the pilot tests the value of 

the two gene density is highly correlated and the meaning of the gene density is the ratio of 

independent signals versus the genotyped SNPs in the gene. Therefore, the gene density in 

the two approaches are exchangeable. Although the gene-gene correlation matrix 𝑅 in 

MAGMA is calculated using gene PCs while theoretically the counterpart matrix in PRSet-

MAGMA.like should be calculated using gene PC. Since developing the matrix 𝑅 in PRSet-

MAGMA.like is time-consuming and the matrix in the two methods might be very similar 

since they represent the same relationship. PRSet-MAGMA.like is implemented by plugging 

the Z scores of gene PRS from the first tier into the second tier of MAGMA flamework to get 

a quick estimate of what the power of PRSet-MAGMA.like could be.  

Permutation method:  

This method compares the observed PRSS with the permuted null distribution and uses the 

empirical P-value as the competitive P-value. The null gene sets should be comparable with 

the tested gene set in terms of gene set size controlling for gene-gene correlation and LD 

structure.  



118 
 

As to constructing the null gene set PRS, randomly choosing the same number of raw 

genotyped SNPs or using SNPs from a region of the same number of base pairs can generate 

biased results because the LD structure and genes are not evenly distributed across the genome. 

A null gene set with the same number of raw genotyped SNPs or SNPs from region of the same 

number base pairs may have different amount of independent genetic signals and different LD 

structure.  

Instead, PRSet-perm uses the same number of random clumped SNPs from genic region as a 

null gene set. The rationale is that PRS is actually the weighted sum of clumped SNPs. The 

clumped SNPs are independent or of negligible correlation. They represent the independent 

genetic signals free of LD structure. 

To generate the null distributions for the observed gene sets, a gene set containing all the 

annotated genes is first constructed. The SNPs are then clumped within this gene set and the 

clumped SNPs are the pool for generating the null gene sets. To run the competitive analysis 

test for a gene set containing n clumped SNPs, n SNPs will be randomly drawn from this pool. 

This set of randomly chosen SNPs is a null gene set that contains the same amount of genetic 

information but was expected to not be enriched with association signals. Then PRS of this 

null gene set PRSnull is calculated and the phenotype is regressed on PRSnull. This process is 

repeated for multiple times to get the distribution of PRSnull. The empirical P-value is generated 

by comparing the observed PRSS with the PRSnull distribution. This empirical P-value is the 

competitive P-value. In this chapter, the permutation number was 104. This number can be 

adjusted according to each specific analysis. 

4.2.3. 𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆	𝑹𝟐  

Since GSA methods based on permutations may have truncated P-value, an alternative method 

that overcomes the problem of truncated P-values is desirable. It is intuitive that the more 

important a gene set, the more per clumped SNP can explain the phenotype. Here, a statistic is 

introduced: 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B =
𝑅¬û«	cüýü	tü�B

𝑁𝑢𝑚(𝑐𝑙𝑢𝑚𝑝𝑒𝑑	𝑆𝑁𝑃𝑠) 
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𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B can have two possible application: First, neither competitive MAMGA nor 

competitive PRSet generated R2, 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  can be used as the counterpart of self-

contained R2 in competitive tests; Second, an analytical way of calculating competitive gene 

set association P-value can be developed based on 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B.  

For the application of analytical association test, the rationale is very straightforward: if the 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B is significantly higher than expectation, the gene set are significant in the 

competitive test. Although the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  is easy to define, the definition of null 

expectation and standard error is not as self-evident. There are two possible ways to calculate 

the competitive P-value: One way is almost the same as the permutation method: In order to 

test a gene set of n clumped SNPs, n clumped SNPs are randomly chosen from all the genic 

regions for multiple times and calculate the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B use the empirical P-value based 

on the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B distribution as the competitive P-value; The other way is to derive an 

analytical description of the distribution of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B empirical P-value based on.  

Admittedly, the analytical description of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B distribution is difficult to derive due 

to the complex structure of the genome. However, an empirical estimation is possible: Assume 

that the clumped SNPs are independent, then according to the additive assumption of GWAS, 

we will have: 

𝑅cüýü	tü�	¬û«B =R𝑅þ}bÿ!ü" 	«W¬B  

Therefore, 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  is the mean value of 𝑅þ}bÿ!ü" 	«W¬B  in that gene set. Since  

𝑅þ}bÿ!ü" 	«W¬B  are independent, too. According to the central limit theorem, the mean value of 

independent random variables tends toward a normal distribution.  

As a preliminary attempt to describe 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B in an analytical way, I assume that: 1)  

given the number of clumped SNPs, the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  follows normal distribution; 2) 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of an “background” gene set that contains all the genic region, 𝑅cüýUþB  , is the 

expectation of null gene sets of different size; 3) the standard deviation of the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B 
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is correlated with the number of clumped SNPs. sd(𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B)  can be described with a 

function containing the number of clumped SNPs. 

In 4.3.4, the properties about 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  were investigated, aiming to generate an 

analytical way of calculation competitive gene set association P-value. 

4.2.4. Data 

The PRSet methods were tested with UK Biobank data and simulated data. The raw UK 

Biobank genotype data were cleaned and quality-controlled as described in 2.3.4 and 20k 

cleaned samples were randomly chosen from the QC’ed samples for the tests in this chapter in 

order to ensure precise estimates of power differences between the methods requires as many 

permutations of simulated data as possible. We should expect the results to be qualitatively 

similar on a larger sample size. When these methods are performed in real data settings then 

they typically only need to be run once and thus real analyses can be scaled up to much larger 

sample sizes. Two types of simulated data were used: one was simulated based on the 20k UK 

Biobank samples and the other was simulated entirely in R. 

 

Real data 

 Quantitative trait BMI (estimated ℎ«W¬B  =0.32), Height (estimated ℎ«W¬B =0.60), Forced Vital 

Capacity (FVC) (estimated heritability=0.35), and Fluid Intelligence (Gf score) (estimated 

heritability=0.31) of the 20k QC’ed UK Biobank samples were used. As described in 2.3.4, the 

residual after regressing out the covariates (top 15 PCs, sex, age, assessment centre) and 

standardization was used as the phenotype. The heritability of these traits was estimated in 

2.3.6.   

The gene set information was downloaded from MSigDB59. Only the gene sets which contain 

10-1000 genes were analysed. The definition of gene locations was downloaded from Gencode 

Release 19 (GRCh37.p13) (https://www.gencodegenes.org/releases/19.html ). In this chapter, 
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only SNPs in the range of gene were defined to belong to the gene. SNPs in the 5’ or 3’ flanking 

regions were not included. 

When testing PRSet methods, the samples were randomly divided into 2 equal parts, and the 

two parts were used as base dataset and target dataset respectively. MAGMA (see section 1.9.5) 

have 2 options: using the raw genotype data (Marked as “MAGMA-geno”) or using the 

summary statistics GWAS data (marked as “MAGMA-sum”). MAGMA-geno used the raw 

genotype data of all the 20k samples as the input; MAGMA-sum used the summary statistics 

GWAS result of all the 20k samples as the input. The permutation time for PRSet-perm was 

10k. 

 

Simulated data 

UK Biobank simulation: In order to evaluate the statistical power of GSA methods here, 

phenotype data with known heritability and causal SNP distribution were simulated based on 

the QC’ed 20k UK Biobank samples mentioned in real data tests. Except using simulated 

phenotype data, the gene location and gene set annotation were the same as in the real data 

tests. The phenotypes were simulated from the UK biobank genome-wide genotype data using 

GCTA76 when simulation based on standardized genotype data were modelled, and using the 

in-house method SGCP when simulation based on unstandardized genotype data were 

modelled (see section 2.3.5). A range of heritabilities, causal SNP percentages, as well as 

different effect size distributions and choice of causal gene sets and causal SNPs were tested, 

and the specific parameters are detailed in 4.2.4 where the tests are introduced. When testing 

PRSet methods, 10k of the QC’ed samples and their corresponding simulated phenotype data 

were used as base data and the summary statistics of another 10k samples as target data; when 

testing MAGAM-geno, the raw genotype data and simulated phenotype data of the 20k samples 

were used as input; when testing MAGMA-sum, the summary statistics of the 20k samples 

were used as input. The permutation time for PRSet-perm was 100k. 
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Simulation in R: Besides simulated data based on UK Biobank genotype data, data that were 

entirely simulated were used. These simulations were performed to investigate the impact of 

gene set size and causal SNP percentage on GSA result (see section 4.3.3). For this 

investigation, the following data were simulated in R: a “genome” containing 1000 

independent genes, each of which contains one single SNP, was simulated. For all the SNPs, 

MAF=0.25; 20% of the SNPs were causal and had the same effect size of 1 that all together 

contribute to the heritability of 0.1. 10, 100, 250 SNPs were selected to form the gene set to be 

tested. 20% or 50% of them were randomly draw from the causal SNPs and the rest were draw 

from null SNPs. When analysing the simulated data with PRSet-perm (see section 4.2.2), the 

permutation was repeated 10k times.  

I introduce a new statistic, Competitive R2 (see section 4.2.3 and 4.3.4), and explore the 

possibility of developing an analytical GSA method based on Competitive R2. Besides the UK 

Biobank data described above, the properties of the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  were tested with 

‘simulation in R’ data as described above. 

Critical factors in real GWAS-based gene set analysis, such as population structure, LD 

structure, are not included in the data simulated in R. However, even this basic simulation 

should reveal some of the properties of how the competitive GSA method behave and so act as 

a useful complement to the UK Biobank simulated and real data analyses.  

4.3. Results 

4.3.1. Self-contained test  

Type 1 error rate test 

Type 1 error is false positive, that is, the P-value is smaller than the threshold α under the null. 

Ideally, the type 1 error rate should be equal to the threshold α. The type 1 error rate is defined 

as below in this chapter: 
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𝑇𝑦𝑝𝑒	1	𝑒𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 =
𝑁¬?$%}bü&'

𝑁  

where N is the number of gene sets to be tested; 𝑁¬?$%}bü&' is the number of gene sets whose 

P-value pass the significance threshold α. The threshold for calculating type 1 error rate in this 

chapter was 0.005 and 0.05.  

For the self-contained test, the null phenotype data should be irrelevant with the genotype. 

Permuted height of UK Biobank data was used as the null to test the self-contained PRSet and 

self-contained MAGMA. The simulation-testing process was repeated for 100 times. Table 4 

shows that MAGMA-Geno and PRSet behaved well while MAGMA-sum was over-

conservative. Type 1 error rate test showed that self-contained PRSet behaved as good as 

MAGM-geno. MAGMA-sum had less power probably because using summary statistics 

datamay cause the loss of information. 

 

Table 4 Type 1 error of self-contained GSA methods 

  Alpha=0.05 Alpha=0.005 

MAGMA-geno 0.0488±0.0142 0.0048±0.0026 

MAGMA-sum 0.0408±0.0124 0.0038±0.0023 

PRSet 0.0503±0.0084 0.0052±0.0020 

 

Testing on real data 

The result of real data can be used as an approximate measure of the methods’ power. The 

observed value can be viewed as the combination of the underlying true value and the error 

term. Assuming that the error terms of different methods are independent, a high correlation 

indicate that the true values contribute a high proportion of the observed values. Therefore, the 
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correlation of two different measures indicate their power. The main statistics of both self-

contained and competitive methods is the P-value. Therefore, we compare the -log10(P-value) 

of MAGMA and PRSet. In our previous test, MAGMA-geno behaved better than MAGMA-

sum, so I compared the PRSet method with MAGMA-geno. 

 

Figure 42 Comparison of self-contained MAGMA and PRSet result based on same sets of UK biobank data. Each data point 
indicates a real pathway in MSigDB. The x- and y-axis show the -log10(P-value) given by the two methods. Pearson Correlation 
Coefficient of -log10(P-value) of height, BMI, FVC and fluid intelligence (measured by Gf score) were calculated. The blue 
reference lines are y=x 
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The self-contained PRSet and MAGMA-geno results were highly correlated. The correlation 

of Height was highest. BMI, FVC and fluid intelligence have similar estimated heritability 

(0.32, 0.35 and 0.31 respectively), but the correlations of these traits were quite different.  

The most heritable trait, height, had the highest correlation. This may be due to the fact that 

both methods have higher power when analysing a more heritable trait, and thus their true 

overlap in results is apparent for highly powered traits. However, the difference in correlations 

among BMI, FVC and fluid intelligence does not correspond well to the differences of their 

estimated heritabilities, since these were all similar to each other. Assuming that the heritability 

was correctly estimated, then the difference between the correlation in their results may be 

partially caused by the different genetic aetiologies of these traits. Thus, the performance of 

self-contained GSA methods may be sensitive to the genetic aetiology of traits.  

However, the principal factor affecting the results of the self-contained methods is likely to be 

confounding by the size of the pathways, since this is not accounted for in the self-contained 

analyses. That is, large gene sets are likely to present strong overall associations with the 

phenotype because overall, they contain more true casual variants, on average, than small gene 

sets. This confounding is likely to be an important explanatory factor in the high correlations 

observed in the results between PRSet and MAGMA here. Therefore, more attention should 

be focused on the following analysis of competitive methods, since it is the results from 

enrichment of signal across gene sets above that expected from a random such gene set, rather 

than total signal, that most researchers in the field are most interested in.  

4.3.2. Competitive tests 

Type 1 error rate test 

For the competitive tests, the null hypothesis is: gene sets are not more associated with the 

phenotype than gene sets with similar properties. Therefore, the null phenotypes should be 

simulated so that the causal SNPs are evenly distributed along the genome without being 

enriched in any genes or gene sets. The phenotype was simulated with SGCP based on the 

QC’ed UK Biobank genotype data. All the SNPs had an effect size drawn from normal 
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distribution N(0, 1). Four data sets in which the heritability of the whole genome was 0.1, 0.3, 

0.5, 0.7 were simulated. The association of gene sets were tested with MAGMA-geno, 

MAGMA-sum, PRSet-MAGMA.like and PRSet-perm. The process of simulation and testing 

were repeated 100 times.  

In general, competitive MAGMA methods were over-conservative while competitive PRSet 

methods were inflated, except that MAGMA-sum appeared to be slightly inflated when the 

simulated heritability was low (Table 5). Both PRSet methods were more inflated as the 

simulated heritability increased. Notably, MAGMA-geno and PRSet-MAGMA.like used the 

same 2-tier framework and the only difference of these two methods is the Z score plugged 

into regression model in the second tier. The inflation of the PRSet methods when alpha=0.005 

was more severe than that when alpha=0.05.  

Both competitive PRSet methods, PRSet-MAGMA.like and PRSet-perm, were inflated 

especially for the results of small α threshold and the results of high simulated heritability, 

which indicates that the confounding factors were not perfectly accounted for by the PRSet 

methods, especially when the genetic signal was strong, that is, when the simulated heritability 

was high and when the α threshold was small.  

It is also notable that PRSet-MAGMA.like and MAGMA-geno used the same framework as 

each other, except that the gene association was calculated in different ways. While PRSet 

methods were inflated, the competitive MAGMA methods were slightly conservative. The 

framework of MAGMA (included controlling for gene size, gene density, MAF and correcting 

for the gene-gene correlation calculated using the SNP PCs of the genes) may over-correct the 

gene association calculated by MAGMA using SNP PCs, but not sufficiently to correct for the 

gene association calculated by PRSet using gene PRS. 

The fact that PRSet-perm was also inflated, especially when a small α threshold was used, 

shows that the current permutation method could not sufficiently correct for confounding 

factors, such as LD and gene set size. This inflation may result from the fact that in the observed 

gene sets the clumped SNPs are from a group of real genes and may still be in LD; while in the 

null gene sets, which consisted of clumped SNPs randomly chosen across all the genic regions, 
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the SNPs in the null gene sets were therefore less likely to be in LD. Therefore, the permutation 

on clumped SNPs can capture the majority of the correlation or LD structure, but there was 

still residual LD. Future investigation is needed to find a way that more properly corrects for 

this inflation, but in the following analyses we evaluate the performance of the different 

methods according to sensitivity conditioned on a fixed specificity, as well as by comparing 

Area under the Curve (AUCs) from ROC analyses, and therefore these results incorporate the 

effects of this inflation. 

Table 5 Type 1 error rate of competitive GSA methods  

 Simulated h2 = 0.1 Alpha=0.05 Alpha=0.005 

MAGMA-Geno 0.0486±0.0103 0.0047±0.0024 

MAGMA-sum 0.0512±0.0113 0.0053±0.0024 

PRSet-MAGMA.like 0.0551±0.0099 0.0069±0.0028 

PRSet-perm 0.0510±0.0090 0.0052±0.0027 

  Simulated h2 = 0.3 Alpha=0.05 Alpha=0.005 

MAGMA-Geno 0.0486±0.0102 0.0047±0.0020 

MAGMA-sum 0.0495±0.0102 0.0054±0.0022 

PRSet-MAGMA.like 0.0516±0.0111 0.0067±0.0039 

PRSet-perm 0.0518±0.0104 0.0068±0.0032 

 Simulated h2 = 0.5 Alpha=0.05 Alpha=0.005 

MAGMA-Geno 0.0452±0.0089 0.0043±0.0019 

MAGMA-sum 0.0482±0.0105 0.0049±0.0023 

PRSet-MAGMA.like 0.0528±0.0096 0.0072±0.0038 

PRSet-perm 0.0562±0.0100 0.0090±0.0049 
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 Simulated h2 = 0.7 Alpha=0.05 Alpha=0.005 

MAGMA-Geno 0.0456±0.0097 0.0047±0.0022 

MAGMA-sum 0.0457±0.0096 0.0048±0.0022 

PRSet-MAGMA.like 0.0589±0.0112 0.0084±0.0036 

PRSet-perm 0.0584±0.0108 0.0110±0.0049 

 

Ranking test  

Ranking the gene sets according to their relative importance is one of the main applications of 

GSA methods. Here, a ranking test was performed to compare the ability of the competitive 

methods to distinguish the relative importance of gene sets: 10 real gene sets from KEGG-

defined pathways were chosen randomly and assigned to be causal in the UK Biobank data. 

50% SNPs of the first gene set, 45% SNPs of the second, 40% SNPs of the third, etc. were 

assigned to be causal. All the causal SNPs contributed equally to the phenotype. All other 

pathways were modelled as harbouring no causal genetic variants, although some contain 

causal variants due to overlap with one or more of the ten pathways modelled as causal. The 

phenotype was simulated based on a standardized genotype matrix with GCTA76 (see section 

2.3.5).  Then the data were analysed with competitive MAGMA and competitive PRSet. The 

gene sets were then sorted by their competitive P-value. If multiple gene sets tie, the ranking 

is the mean rank of the tying gene sets. 

Ideally, the estimated rank should be same as the simulated rank. The closer the two ranks are, 

the more power the method has. However, it is very likely that the gene sets that were not 

assigned to be causal can be associated with the phenotype because of the genes shared with 

other causal gene sets or SNPs in LD with causal gene sets. LD structure and stochastic 

variation, which mean that the index SNPs in GWAS are not necessarily the causal SNPs, also 

mean that the gene sets with the smallest P-value are not necessarily the gene sets simulated to 

be causal. However, on average, over many permutations, the causal gene sets are more likely 

to rank higher than non-causal gene sets.  The simulation and analysis process was repeated 
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100 times, with ten causal gene sets randomly selected each time, and the medium ranking of 

each of the ten causal gene sets was calculated for the different PRSet and MAGMA methods.  

The ranking of the causal gene sets showed that when the simulated heritability was 0.1, PRSet-

perm had similar performance to the MAGMA methods. As the simulated heritability increased, 

the ranking results of the PRSet-perm became worse relative to MAGMA.  When the simulated 

heritability was higher than 0.1, PRSet-perm ranked the top gene sets to the same or similar 

rank and the estimated ranking, which was a mean of all tied ranks, was lower as the heritability 

increased.  

 

Figure 43 Ranking test of GSA methods. The estimated ranks were compared with the simulated ranks. The more similar the 
two rankings are, the better performance. Each plot shows a scenario under a simulated heritability. The plot shows that when 
the heritability is low, PRSet-perm performed well in terms of ranking the causal pathway according to the pre-set order, 
however, as  the heritability increased, the PRSet-perm lost power because of the truncated P-value (as shown in Figure 44) 
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To investigate the causes underlying the ranking results, the competitive P-values of the causal 

gene sets corresponding to MAGMA-geno and PRSet-perm analyses were compared (Figure 

49). If the P-values calculated by the two methods were highly correlated, then these two 

methods should generate similar ranking results. Figure 44 showed that PRSet-perm tended to 

give smaller P-values (most points above the Y = X) but the top results of PRSet-perm were 

truncated because of the limited number of permutations. The higher the simulated heritability, 

the higher power both PRSet-perm and MAGMA would have. This means that the overall 

correlation should be higher. However, since the more gene sets had truncated PRSet-perm P-

values (Figure 44), which counteracted the increase of the power, as an overall result, the 

correlation between PRSet-perm and MAGMA-geno results were therefore slightly less 

correlated. The correlation between the results of the two methods was approximately 0.6 in 

all the simulated scenarios. 

This investigation indicated that competitive MAGMA methods and PRSet methods had 

similar performance when PRSet-perm result did not reach the upper limit of the P-value. 

However, as the heritability increased, which means all the methods should have more power 

to detect the gene sets assigned to be causal, the performance of PRSet-perm was hindered by 

the truncated P-value: the top gene sets could not be distinguished from the less significant 

gene sets. This caused PRSet-perm to rank the most enriched gene sets as having an equal or 

similar rank to those gene sets with substantially lower enrichment. If the number of 

permutations were increased, we may expect that PRSet-perm would have similar performance 

to MAGMA even for traits with high heritability.  
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Figure 44 Comparing the competitive P-value of causal gene sets estimated by MAGMA-geno and PRSet-perm with the same 
set of simulated data simulated. Each data point indicates a real pathway in MSigDB that is assigned to be causal in the 
simulation. The x- and y-axis show the -log10(P-value) of the causal pathway given by the two methods. Correlation Coefficient 
of -log10(P-value) in scenario of simulated heritability 0.1, 0.3, 0.5 and 0.7 were calculated. The blue reference lines are y=x. 
The plots show that as the heritability increased, more pathways reached the PRSet-perm truncated P-value threshold due to 
the limited permutation times. This caused the loss of power of PRSet-perm in Figure 43 

Sensitivity and specificity test. 

The simulated data generated in the ranking test were also used for sensitivity and specificity 

test. Sensitivity is the ratio of causal gene sets that have a positive result (exceed P-value 

threshold) versus all the causal gene sets. Specificity is the ratio of non-causal gene sets that 

obtain a negative result (have larger P-value than P-value threshold) versus all the non-causal 

gene sets. The receiver operating characteristic (ROC) is created by iterating through P-value 

thresholds and plotting (1 – specificity) versus the sensitivity. 

Competitive MAGMA and PRSet have similar sensitivity and specificity and ROC curve 

(Figure 45). Table 6 shows that PRSet-perm performed similarly or better than MAGMA 

methods for heritabilities of 0.1 and 0.3 but its performance declined for heritabilities of 0.5 

and 0.7.   
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As discussed in the previous section, the truncation of empirical P-values due to finite 

permutations makes it impossible to distinguish the most enriched gene sets from those with 

lower enrichment. Thus PRSet-perm ROC had a linear segment between (0,0) and the first data 

point with a non-truncated P-value, while the ROCs of other methods have more data points to 

form a convex segment. Therefore, the AUC of PRSet-perm was smaller than it could have 

been if the P-values were not truncated. 

Table 6 The AUC of ROC curve and sensitivity and specificity of GSA method. The results were based on the UK Biobank 
genotype data and  simulated phenotype data where 10 of real pathways in MSigDB were assigned to be causal. 

 

Simulated heritability =0.1 AUC of ROC curve Sensitivity when specificity = 0.9 

MAGMA-geno 0.833 0.618 
MAGMA-sum 0.843 0.626 
PRSet-MAGMA.like 0.772 0.494 
PRSet-perm 0.826 0.632 
Competitive R2 0.829 0.577 

Simulated heritability =0.3 AUC of ROC curve Sensitivity when specificity = 0.9 

MAGMA-geno 0.910 0.758 
MAGMA-sum 0.911 0.771 
PRSet-MAGMA.like 0.880 0.723 
PRSet-perm 0.910 0.775 
Competitive R2 0.932 0.812 

Simulated heritability =0.5 AUC of ROC curve Sensitivity when specificity = 0.9 

MAGMA-geno 0.931 0.820 
MAGMA-sum 0.931 0.819 
PRSet-MAGMA.like 0.917 0.789 
PRSet-perm 0.916 0.767 
Competitive R2 0.946 0.851 

Simulated heritability =0.7 AUC of ROC curve Sensitivity when specificity = 0.9 

MAGMA-geno 0.933 0.832 
MAGMA-sum 0.934 0.833 
PRSet-MAGMA.like 0.930 0.805 
PRSet-perm 0.924 0.751 
Competitive R2 0.951 0.863 
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Figure 45 ROC curves of GSA methods tested with simulated data. The results were based on the 100 repetitions of tests based 
on UK Biobank genotype data and simulated phenotype data where 10 of real pathways in MSigDB were assigned to be causal.  

 

Test on real traits 

In this section, the results of competitive PRSet methods are compared with MAGMA-geno 

using real phenotype data from the UK Biobank on height, BMI, FVC and fluid intelligence 

(see section 4.2.4).  

The same pattern observed in the self-contained tests were observed in the competitive tests 

too: in both the comparison of MAGMA-geno versus PRSet-MAGMA.like and the comparison 
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of MAGMA-geno versus PRSet-perm, the most heritable trait, height, had the highest 

correlation in results among the methods; BMI, FVC and fluid intelligence had similar 

estimated heritability but different correlation in results. However, the result of competitive 

PRSet methods and MAGM-geno were less correlated compared with the self-contained results. 

As mentioned in section 4.3.1, the correlation of self-contained results might be inflated 

because of confounding factors, especially gene set size. However, it is interesting that the 

correlation in results between PRSet-MAGMA.like and MAGMA was much lower than self-

contained results, given that both methods are based on gene association Z scores and use the 

same framework (Figure 46). The correlation of the PRSet-perm result and MAGMA-geno 

results was even lower (Figure 48).  
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Figure 46 Comparison of competitive MAGMA-geno and PRSet-MAGMA.like result with the same set of UK Biobank data. 
Each data point indicates a real pathway in MSigDB. The x- and y-axis show the -log10(P-value) given by the two methods. 
Pearson Correlation Coefficient of -log10(P-value) of height, BMI, FVC and fluid intelligence (measured by Gf score) were 
calculated. The blue reference lines are y=x 
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Figure 47 Comparison of gene P-value of MAGMA-geno and PRSet on the same set of UK Biobank data. Each data point 
indicates a real gene. The x- and y-axis show the -log10(P-value) given by the two methods. Pearson Correlation Coefficient 
of -log10(P-value) of height, BMI, FVC and fluid intelligence (measured by Gf score) were calculated. The blue reference lines 
are y=x 
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Figure 48 Comparison of competitive MAGMA and PRSet-perm result. Each data point indicates a real pathway in MSigDB. 
The x- and y-axis show the -log10(P-value) given by the two methods. Pearson Correlation Coefficient of -log10(P-value) of 
height, BMI, FVC and fluid intelligence (measured by Gf score) were calculated. The blue reference lines are y=x 

As an investigation into the PRSet-MAGMA.like method, the P-values of the gene-phenotype 

associations calculated by PRSet and MAGMA were compared (Figure 47). For MAGMA, 

the gene-phenotype association is calculated using the PCs of the SNPs in the gene; for PRSet, 

the association is calculated using the PRS of the SNPs in the gene. Then the phenotype is 

regressed on the gene PCs or PRS, respectively. The gene-phenotype association can be viewed 

as the self-contained result of a gene set that only contains one gene. The correlation of the 

gene-phenotype association P-value was smaller than the correlation of self-contained gene set 

results between PRSet and MAGMA-geno, but larger than the correlation of the result of 
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competitive MAGMA-geno and PRSet-MAGMA.like. This indicated that the self-contained 

results of smaller regions, for instance single genes, were more sensitive to chance variation 

than the results of larger regions, such as entire gene sets. PRSet-MAGMA.like and MAGMA-

geno were based on self-contained gene association, which was more sensitive to chance 

variation. Therefore, the downstream competitive GSA methods based on these gene 

associations were likely more sensitive to chance variation than the self-contained gene set 

associations. 

The correlation between the PRSet-perm and MAGMA-geno results was even lower. A 

possible reason for this was that the competitive tests were more complicated and less 

confounded by other factors, and therefore more prone to differences. Another reason was that 

PRSet-perm and MAGMA-geno used different frameworks, so they were powered to detect 

different gene sets. 

Although the truncation of PRSet empirical P-values led to a power decrease in the ranking 

test and the sensitivity and specificity comparisons, this may not explain the low correlation 

observed in the real data results because the real traits were much more polygenic, so the gene 

sets in the real data did not reach the P-value truncation threshold. 

In summary of competitive PRSet method, PRSet-perm was demonstrated to have similar 

performance for ranking gene sets to MAGMA when results were not truncated. Since the main 

use of PRSet is likely to be in exploiting the scores themselves, then it has been valuable here 

to show that our approach to measuring PRS across different gene set is powerful and thus is 

likely to have utility for researchers wanting to use the gene-set PRS for various applications. 

4.3.3. The impact of gene set size and causal SNP fraction on competitive results.  

In the previous section, it was suspected that different competitive methods capture gene sets 

of different features. Admittedly, real data were more complicated than simulated data and the 

low correlation of MAGMA and PRSet-perm observed in 4.3.2 may be largely caused by 

chance variation. It still worthwhile to investigate what factors may influence the GSA result. 

Here, two factors, the size of gene set and the fraction of causal SNPs, were investigated using 
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a simple simulation where all the SNPs were independent (see section 4.2.4) as a preliminary 

step for further study of how different methods behave under various scenarios. The power of 

PRSet-perm and MAGMA to detecting gene set of different sizes (i.e. containing different 

number of SNPs) and causal SNP factions were compared using the simulated data. 

The two competitive methods, PRSet-perm and MAGMA, gave similar P-values when the 

gene set had the same percentage of causal SNPs (20%) or a higher percentage of causal SNPs 

(50%). However, the PRSet-perm result had a limit for the P-value ≥ 1.0e-5 due to the number 

of permutations and the gene set of 250 SNPs and 50% causal SNPs reached the P-value limit. 

When the percentage of causal SNPs was 50%, larger gene sets had smaller competitive P-

values. This result showed that the gene set size mattered for both self-contained and 

competitive tests. Given a certain percentage of causal SNPs, it is more probable that a random 

small gene set will have a strong signal or higher percentage of causal SNPs due to overlap 

with causal gene sets just by chance, compared with a large gen set. Therefore, smaller gene 

sets were less likely to have significant P-value for enrichment when compared with other gene 

sets of the same size. Overall, PRSet-perm methods gave slightly higher P-values than 

MAGMA in the simulated data, which accorded with the UK Biobank simulation as shown in 

Figure 44.  

Table 7 Competitive P-value of gene sets containing 10, 200, 250 SNPs under different simple simulated scenarios given by 
MAGMA 

 10 SNPs 100 SNPs 250 SNPs 

20% Casual SNPs 0.5702±0.2784 0.4925±0.2510 0.5732±0.2511 

50% Causal SNPs 0.2077±0.2222 6.5e-05±0.00039 3.7e-14±1.8e-13 
 

Table 8 Competitive P-value of gene sets containing 10, 200, 250 SNPs under different simple simulated scenarios given by 
PRSet-perm 

 10 SNPs 100 SNPs 250 SNPs 
20% Casual SNPs 0.4287±0.2339 0.4676±0.2334 0.4676±0.2549 

50% Causal SNPs 0.1518±0.1419 9.7e-05±0.00025 1.0e-5±0 
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The simulation showed that the size of gene set and the fraction of causal SNPs influence the 

power of PRSet-perm and MAGMA very similarly; large gene sets with high causal SNP 

fraction tended to have high significance. However, in the real trait, relative enrichment can be 

low due to the polygenicity and complexity of the real trait. Thus, the correlations of the real 

data results were low because of the low power. 

Admittedly, LD structure was not included in this simulation. It is possible that MAGMA and 

PRSet-perm are differently powered when dealing with data with LD. The influence of LD on 

different GSA methods can be further investigated in the future work. 

4.3.4. Investigating Competitive R2 and possibility of analytical GSA test based on 

it 

As a possible alternative method of PRS-based competitive GSA method that may overcome 

the problem of truncated P-value of permutation method (see 4.2.3), 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B were 

invested as an extension of PRSet methods.  

Comparison of 𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆	𝑹𝟐 and MAGMA statistics 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  and competitive MAGMA-geno P-value were compared. The correlation 

between these two results behaved similarly as the correlation between results of PRSet 

methods and MAGMA-geno. The correlation value was slightly higher than that of PRSet-

perm and MAGMA-geno.  
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Figure 49 Comparison of competitive MAGMA and Competitive R2 calculated with the same set of  UK biobank data. Each 
data point indicates a real pathway in MSigDB. The x-axis shows MAGMA -log10(P-value) and the y-axis shows Competitive 
R2. Pearson Correlation Coefficient between the two statistics of height, BMI, FVC and fluid intelligence (measured by Gf 
score) were calculated. The blue reference lines are the regression line instead of y=x because the two statistics are of different 
scale. 

 
 
Investigating the distribution of 𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆	𝑹𝟐 with simulated data 

A simulation is performed to test whether the expectation of null 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B is 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅Bof the “background” gene set containing all the genic region, 𝑅cüýUþB . Random 

gene set containing different number of SNPs were generated and the 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of these 

random gene set was compared with 𝑅cüýUþB . The whole process of simulating the data and 

calculating 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅Bwas repeated for 1000 times. The mean value of 𝑅cüýUþB  and the 

mean value of  𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of gene sets were almost identical except small gene sets of 
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10 SNPs (Figure 50). Empirically, in the simulated scenario, the mean 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅Bof 

“backgroupd” gene set can be used as the expectation of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of different sizes. 

 

Figure 50 Comparing the "background" 𝑅cüýUþB 	and Competitive R2 of null gene sets of different sizes in simulated genotype 
and phenotype data. The x-axis shows the number of independent SNPs in the gene sets. The “background” gene set contains 
all the 1000 independent SNPs. The plot is based on 1000 repetitions of simulating data and analysis. The red line is the mean 
𝑅cüýUþB . The plot shows that the median Competitive R2 of null gene sets of different sizes converged towards of the mean 
𝑅cüýUþB . 

This simulation also provides information about standard deviation of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B. In 

each round of simulation, the standard deviation of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B was calculated and the 

process was repeated for 1000 times. The standard deviation decreased as the gene set size 

increased (Figure 51). Yet the exact analytical relationship between the standard deviation and 

the gene set size was to be further investigated.  
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Figure 51 the standard deviation of Competitive R2 of null gene set of different sizes in simulated genotype and phenotype 
data. The x-axis shows the size of gene set measured by the number of SNPs; the y-axis shows the mean	𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B sd 
of gene sets of the same size in one round of simulation. The mean and error bars are based on the results of repeating the 
simulation and calculation of gene set Competitive R2 sd for 1000 times. The PRS R2 of single SNP are also shown on the plot 
at the data point where the number of SNP is 1. 

Investigating the distribution of 𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆	𝑹𝟐 with real data 

In the simulated situations, the factors such as population structure and LD are not included. 

In order to test whether the hypothesis of the expectation of null 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B is true for 

real traits, gene sets containing different number of random real genes were generated. The 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of these random gene sets were calculated with real trait data. Theoretically, 

these gene sets do not have any biological meaning. They should a null distribution, which is 

probably a normal distribution, and a fixed expectation as in simulated data 

However, the distribution of these null distribution showed that the mean value of 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B varied with the gene set sizes. The mean 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B varied with the 
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number of genes in the gene set and the relationship was not linear (Figure 52). The 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B was negatively correlated with the number of clumped SNPs and the slope 

varied from trait to trait (Figure 53).  

 

Figure 52 The distribution of Competitive R2 of null gene sets of different sizes in UK biobank data: Height, BMI, FVC and 
fluid intelligence (Gf score). The gene sets were simulated so that they contained randomly chosen genes. The x-axis shows 
the gene set sizes measured in the number of genes in the gene set. The plots show that null Competitive R2 of different sizes 
in the real data do not have the same median value and the relation between the gene size and Competitive R2 is non-linear. 
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Figure 53 The distribution of Competitive R2 of null gene set of different sizes in UK biobank data: Height, BMI, FVC and 
fluid intelligence (Gf score). The gene sets were simulated so that they contained randomly chose genes. The x-axis shows the 
gene set sizes measured in the number of clumped SNPs in the gene set. Similar with Figure 52, the plot shows that the relation 
between the gene size and Competitive R2 are non-linear.  

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B can be used as a statistic to represent the competitive significant of the gene 

sets. Yet, its distribution is too complicated to be described in an analytical way. The 

expectation of null 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  in simulated data was 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B of the 

“background” gene set containing all the genic region while the analytical description of the 

standard deviation is yet to be investigate.  The null 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B in real trait had a more 

complicated distribution probably due to the LD structure or the population structure that even 

the expectation of null 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  was influenced by the gene set size and the 

relationship between 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B  and gene set was difficult to be described in an 
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analytical way. Therefore, it is difficult to analytically describe 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒	𝑅B distribution 

and derived the competitive P-value.  

 

4.4. Discussion 

In this chapter, PRSet, a group of GSA methods based on PRS, were developed. PRS is a 

summary of genetic signals across the genome or gene sets. In previous studies, PRS was used 

to test the polygenic basis of traits or the correlations between different traits. In PRSet, the 

applications of PRS was extended to gene set analysis.  

The tests in this chapter showed it had similar power compared with the current leading GSA 

method MAGMA in both simulated and real trait data test.  

Two competitive PRS-based GSA were developed: PRSet-MAGMA.like and PRSet-perm. 

PRSet-MAGAM borrows the framework of MAGMA-geno and also inherits the advantage of 

being much less computational expensive than permutation methods65. However, one of the 

aims of developing PRS-based GSA methods is to have an individual-level representative of 

genetic burden enriched in a gene set while PRSet-MAGMA.like method can only estimate the 

association between gene set and the phenotype at population level. Therefore, permutation 

test was developed because it calculates the individual-level gene set PRS.  

In PRSet, a new way of controlling for LD structure was introduced. Controlling for LD is an 

important part of competitive GSA tests: If the approach is to compare the genes inside and 

outside the gene set, like in MAGMA, the correlation among the genes due to the LD structure 

should be considered and corrected for; if the approach is to generate a null distribution, the 

LD structure of the observed gene set and the null gene sets should be considered. In this 

chapter, a permutation approach using clumped SNPs was introduced to control for the LD in 

the observed gene set: the gene set is viewed as a group of clumped SNPs. The null distribution 

is therefore constructed with random clumped SNPs from genic regions.  
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In this chapter, LD was found to influence the GSA method in many aspects. LD may cause 

inflation and make the results calculated by different methods inconsistent with each other. 

Besides, LD structure may it difficult to identify the causal SNPs: A statistically significant 

SNPs in a gene does not necessarily mean that the gene contribute to the phenotype; this SNP 

may become significant because of other SNPs or other genes that in LD with it. In the future 

when causal SNPs and causal genes can be better identified thanks to the progress of fine-

mapping92, the input for GSA can be more accurate. GSA can be more powerful and less 

influenced by the bias caused by LD structure. 

  



148 
 

Chapter 5. Conclusion 

Large-scale GWAS have reached the power to identify many genetic variants of modest or 

small effect contributing to complex traits with genome-wide significance. These findings 

indicate that most complex traits are polygenic, which means that hundreds or even thousands 

of SNPs of modest or small effect collectively contribute to human complex traits. Polygenic 

risk scores have been used to represent the contribution of common SNPs across the genome 

to polygenic traits. PRS has many successful applications, such as demonstrating the existence 

of the polygenic genetic basis of psychiatric diseases82, detecting the association between 

different traits and discriminating subgroups of a complex disease44,45. In this project, I 

developed methods that can increase the power of PRS and expand its applications. 

GWAS is the foundation of PRS and many other prediction methods. The validity of GWAS 

effect size estimates greatly influences the prediction power of PRS. In chapter 2 and chapter 

3, I developed shrinkage methods Permutation Shrinkage (PS) and Order Statistics Shrinkage 

(OSS) to improve GWAS effect size estimates. The main principle of these two shrinkage 

methods is estimating the null effect sizes, or the contribution of ‘error’ to effect size estimates, 

and removing the null distribution from the observed value. The new methods assume that 1) 

the true effect sizes of variables are almost zero and only with a small proportion of exceptions 

2) the highest observed values are the most inflated (Winner’s Curse). Previous research 

showed that the proportion of susceptibility SNPs was less than 5%71, which is in accord with 

the first assumption. Unlike other shrinkage methods, such as LASSO37, ridge53, which aim to 

minimize the residual error (/squared) with a penalty term or a constraint of the sum of effect 

sizes, these two methods estimated the error quantity and remove the error quantity from the 

observed estimates.  

As to the implementation of these methods, the SNPs are first divided in to MAF bins so that 

in each bin the SNPs are more homogenous than all the SNPs across the genome and therefore 

the null distribution of the effect sizes is easier to estimate. In each bin, the null distribution is 

estimated by either permuting the outcome or inferring from order statistics. When the 

individual-level data are available, the null distribution can be generated by running GWAS on 

the permuted phenotype; when only summary statistics data are available, then the null effect 

size can be inferred from the MAF of the base dataset or other alternative summary statistics 
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and an assumption that the null P-value follows a uniform distribution U(0,1). Depending on 

how the null distribution is generated, the methods are called Permutation Shrinkage (PS) or 

Order Statistics Shrinkage (OSS). These methods were tested with quantitative traits in UK 

Biobank and significantly increased the PRS prediction. In our tests, both shrinkage methods 

achieved an average of 35% relative increase in prediction R2. 

Nevertheless, my work on these two methods has limitations. First, I have not tested whether 

the PS or OSS can work efficiently on binary data; second, OSS assumes that the SNPs in the 

MAF bins can be viewed as independent. It may be true for sparse data like UK Biobank but 

in order to analyse denser data such as imputed GWAS data, OSS needs to be further tested 

and optimised; third, I only tested the methods with UK Biobank data, which is very large, 

while in many cohort studies the sample size may not be as large and powerful.  

Gene set analysis is another future application of PRS analysis. PRS can be used to investigate 

the genome-wide polygenic genetic basis and genetic correlation between two polygenic traits. 

However, more specific questions on the mechanism are yet to be answered. It makes intuitive 

sense that different gene sets or pathways contribute differently to the outcome. For example, 

different subtypes of the same disease should share some common causal pathways that give 

the subtypes the similar features; they should also have their specific causal pathways that 

distinguish them from each other. Critical information of the subtype-specific feature may be 

lost if only the genome-wide genetic basis or genetic correlation of the polygenic traits are 

investigated. Gene set PRS may capture the more detailed and specific features relevant to the 

trait aetiology. Besides, gene set PRS can have many applications, such as constructing 

complex models that investigate the mechanism and causality of gene set-specific genetic basis. 

In chapter 4, I developed a set of PRS-based gene set analysis methods. These methods were 

implanted into PRSice77, the software developed in our group, and are collectively called 

“PRSet”. 

Usually the genome-wide PRS is the sum of clumped risk alleles weighted by SNP effect size 

estimates. In the standard approach, PRS are optimized by iterating through a series of P-value 

thresholds and choosing the one that produces the most significant result. In this project, the 

gene set PRS was defined as the sum of all the clumped risk alleles that fall into the range of 

the genes in that gene set, weighted by the SNP effect size estimates from previous GWAS. 
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The flanking 5’ and 3’ regions of the gene can be counted as part of the gene according to the 

requirement of the research. The size of the flanking regions can be adjusted according to the 

specific hypothesis. Besides, the gene set PRS is not to be optimized by choosing the best P-

value threshold. The gene PRS can be calculated in the same way.  

To develop PRS-based GSA method, I started with a fundamental application of identifying 

the gene sets associated with the traits. The association test can be either self-contained or 

competitive. The null hypothesis for self-contained analysis is that gene set is not associated 

with the trait; the null hypothesis for competitive analysis is that the gene set is no more 

associated with the trait than other gene sets. The self-contained test is implemented by 

regressing the trait over the gene set PRS; the competitive test can be implemented in two ways: 

one is borrowed from an existing method MAGMA65, which calculates the association of each 

gene with the trait and compares the gene inside the gene set and outside the gene set; The 

other uses a permutation approach. It calculates the association between the observed gene set 

and the outcome and the association of corresponding null gene sets and the outcome, where 

the null gene sets consist of the same number of clumped SNPs randomly drawn from the genic 

regions. The empirical P-value comparing the observed gene set association against the null 

distribution of gene set association is the competitive P-value.  

In our tests with the UK Biobank data, the PRS methods had similar performance with 

MAGMA, the current leading method for calculating gene set association. The competitive P-

value calculated by permutation approach is limited by the permutation number and it is very 

computational expensive. However, individual-level gene set PRS can not only be used for 

calculating the gene set association in the permutation approach but also many other 

applications, for example, complex graphical models that investigate the possible interaction 

of gene set, endophenotype, phenotype and environment exposures, stratifying individuals with 

diseases into more homogenous subsets, and identifying the causes of differences in treatment 

response.  

Nevertheless, many technical details of the PRSet methods can be further optimised: for 

example, the method for calculating gene set PRS can be optimised so that it can be both 

unbiased and more powerful than using all the clumped SNP. Currently, PRSet uses clumping 

to account for the LD structure but there seems to be some effect of residual LD that caused 
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slight inflation of PRSet permutation method. Furthermore, gene sets could be defined 

according to information on expression of genes, such as via eQTL information, instead of by 

physical location of genes. Also, conditional analyses could be incorporated into PRSet 

analyses so that the signal of each gene set is conditioned on that of overlapping gene sets, to 

identify the gene sets driving the signal; this is possible with the PRSet approach since PRS 

across each gene set is available for every individual. Despite the current limitations of the 

PRSet approach, chapter 4 builds a scaffold for PRS-based gene set analysis. 
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Chapter 6. Future Prospects 

6.1. Systematic PRS power test with UK Biobank data 

Many research studies use the data collected especially for a single project. The collected 

sample size is limited by funding, time and the scarcity of the samples and can be as small as 

several hundreds. In previous research, Dudbridge et al 52 studied aspects that influenced the 

power of PRS, such as sample size, heritability and P-value thresholding, and proposed a set 

of tools to analytically calculate the base and target sample size needed to achieve certain power 

in a typical PRS analysis93–95. These research were based on simulated genotype data, which 

made a range of assumptions, such as all the SNPs being in Hardy-Weinberg equilibrium. 

Therefore, it is worthwhile verifying the predictions made by Dudbridge to systematically test 

the power of PRS using data simulated directly from real genotype data. 

The UK Biobank has a large sample size and makes it possible to run PRS power tests based 

on UK Biobank genotype data and simulated phenotypes with different genetic architecture, 

such as different fraction of causal SNPs and heritability, across different base and target 

sample sizes. Besides the power test, it is also worthwhile to systematically test the 

performance of the shrinkage methods developed in this project and other shrinkage methods 

such as LDpred35 and lassosum36, since usually when the raw data appear underpowered, 

researchers are more likely to try to increase the power by using shrinkage methods, but it is 

important to know which methods have most power.  

6.2. Power test and development of optimization methods for cross-

population PRS analysis 

The power test of cross-population PRS analysis are highly needed because most of the large-

scale GWAS were conducted on Caucasian sample 96,97. The power may be reduced if we 

directly use Caucasian GWAS data to construct PRS model in other non-Caucasian populations 

because the LD structure, allele frequencies, and other factors are different96.  
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Although the majority of available GWAS data are from Caucasian samples, large scale data 

sets e.g. GIANT consortium data, Psychiatric Genomics Consortium data, Wellcome Trust 

Case Control Consortium and UK Biobank also included non-Caucasian samples and non-

Caucasian data sets, such as China Kadoorie Biobank data (http://www.ckbiobank.org/site/), 

are becoming more and more available. It is possible to systematically test PRS power and 

shrinkage method performance using cross-population base and target samples. The result of 

using the cross-population samples can be compared with the results using UK Biobank data 

only to estimate the influence of using cross-population samples on PRS predictive power. 

It is possible that we may observe a decline of PRS power and shrinkage method performance 

when using cross-population samples. The shrinkage methods that were developed in this 

project were tested with UK Biobank data. UK Biobank is a large-scale homogenous data set 

and only Caucasian samples were included in the analysis. This is an over-simplified and over-

optimized scenario compared with what we might encounter in smaller cohort studies where 

the samples can of smaller size or more heterogenous. However, the performance of the 

shrinkage methods in various scenarios will be a useful reference for other researchers in the 

field.  

It is also possible that the power tests mentioned above provide clues for optimising PRS 

analysis for cross-population samples. Generalized PRS models were proposed as a solution 

for the problem of power reduction in cross-population analysis96 but there may be other 

options For example, the shrinkage methods developed in this PhD project showed potential to 

increase PRS prediction in the same population. The mechanism of these shrinkage methods is 

to remove the noise from the observed effect size estimates. If removing the noise can increase 

the PRS power using samples in the same population, it is possible that the similar methods 

may work for cross-population samples.  

6.3. Expanding and refining shrinkage methods 

In my PhD project, shrinkage methods for quantitative data were developed and tested. Since 

most of the disease-related GWAS data are binary data, it is more demanding to develop 

shrinkage methods that work for the binary data. I proposed that the development of shrinkage 

methods for binary data should first start with permutation shrinkage methods: The null 
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distribution of the odds ratio (OR) or log(OR) can be estimated by permutation. The corrected 

log(OR) distribution is the observed log(OR) with the null log(OR) subtracted. At the same 

time, the nature of the null distribution of the OR or log(OR) need to be investigated. If 

permutation shrinkage works for binary traits and the null distribution of the odds ratio can be 

transferred from order statistics, the order statistics shrinkage can be developed accordingly.  

There are other specific technique issues that needs to be highlighted. First, we need a more 

rigorous and effective methods to correct data with dense SNPs. Our methods so far only 

assumed that the SNPs in each MAF bin are sparse enough to be viewed as independent. If not, 

the SNPs will be first clumped and then corrected. However, in our test, correcting the clumped 

data will lead to less power increase. Ideally, the effective number of independent tests should 

be properly calculated, and the null distribution need to be extrapolated with the consideration 

of the LD structure. Second, the available GWAS summary statistics were not necessarily 

calculated from standardised phenotype, while our order statistics method works for effect 

sizes calculated from standardised phenotype. It is necessary to expand the order statistics so 

that it can be applied to GWAS using unstandardized phenotype. 

6.4. PRS-based gene set analysis. 

In this project, a set of methods that use PRS to identify the associated gene sets were developed. 

PRS-based gene set analysis (GSA) can be further expanded to investigate the aetiology of 

complex traits in more detail.  

6.4.1. Discriminate the gene set PRS profile of diseases or disease subgroups 

Previous research have shown that patients of different diseases or different subtypes have 

different PRS profiles. For example, schizophrenia PRS of bipolar disorder (BD) patients are 

significantly different from controls, while no significant difference was found in non-

psychiatric disease patients and controls82; schizoaffective BD patients have higher 

schizophrenia PRS than non-schizoaffective BD patients44. These findings show that different 

diseases / subtypes have different genetic basis. Yet specific mechanism about which gene sets 

or pathways contribute to the different diseases is still unclear. The gene set PRS profiles may 
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help us answer the question whether different diseases/subgroups have shared associated gene 

sets and/or distinguishing associated genes sets. These findings can help us understand the 

aetiology of diseases. Hopefully the distinguishing gene sets can help to classify the clinical 

samples according to their gene set PRS profile. 

6.4.2. Combining the gene set PRS with other functioning/endophenotype data. 

A complex trait may have some simpler underlying phenotype. For example, a complex 

psychiatric disease may be associated with the change of working memory, prepulse inhibition, 

or activity or structure changes of the brain that are found by fNMR, etc. These underlying 

phenotypes are referred to as endophenotypes.  

 

Figure 54 Schematic diagram of network model where gene set PRS, endophenotype and phenotype can be used. The dashed 
line between gene sets indicates the correlation between gene sets due to shared SNPs and LD structure. The correlation 
between the arrows indicate causal relationship; the weight of the line indicates the strength of the causal relationship. 

Since endophenotypes are much more clearly defined and it is easier to study their molecular 

mechanism, it is easier to link endophenotype with certain gene sets or pathways than a 

complex trait. A network, as shown in the schematic diagram in Figure 54, can be constructed 

to model the underlying causal relationship if the endophenotypic data are available. One 

possible advance of using gene set PRS is that the correlation between gene sets simply due to 

shared SNPs and LD can be easily calculated and controlled for. It can make the interpretation 

of the gene set function analysis more rigorous. For example, the correlation of the downstream 
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outcome that cannot be explained by the correlation of the shared SNPs and LD is more likely 

to be caused by the overlapping of their actual biological function. 
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