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ABSTRACT
Class II antiarrhythmics or b-blockers are antisympathetic
nervous system agents that act by blocking b-adrenoceptors.
Despite their common clinical use, little is known about the
effects of b-blockers on free intracellular calcium (Ca21i ), an
important cytosolic second messenger and a key regulator of
cell function. We investigated the role of four chemical analogs,
commonly prescribed b-blockers (atenolol, metoprolol, pro-
pranolol, and sotalol), on Ca21i release and whole-cell currents
in mammalian cancer cells (PC3 prostate cancer and MCF7
breast cancer cell lines). We discovered that only propranolol
activated free Ca21i release with distinct kinetics, whereas
atenolol, metoprolol, and sotalol did not. The propranolol-
induced Ca21i release was significantly inhibited by the chelation
of extracellular calcium with ethylene glycol tetraacetic acid
(EGTA) and by dantrolene, an inhibitor of the endoplasmic

reticulum (ER) ryanodine receptor channels, and it was com-
pletely abolished by 2-aminoethoxydiphenyl borate, an inhibitor
of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels.
Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine
receptor activator, or thapsigargin, a sarco/ER Ca21 ATPase
inhibitor, precluded the propranolol-induced Ca21i release.
Finally, preincubation of cells with sotalol or timolol, nonselec-
tive blockers of b-adrenoceptors, also reduced the Ca21i release
activated by propranolol. Our results show that different
b-blockers have differential effects on whole-cell currents and
free Ca21i release and that propranolol activates store-operated
Ca21i release via a mechanism that involves calcium-induced
calcium release and putative downstream transducers such as IP3.
The differential action of class II antiarrhythmics on Ca21i release
may have implications on the pharmacology of these drugs.

Introduction
Class II antiarrhythmics or b-blockers have been in clinical

use for the treatment of cardiovascular conditions such as angina
and hypertension for more than five decades (Black et al., 1964;
Chobanian et al., 2003). The cardioprotective effects of class II
antiarrhythmics are linked to the inhibition of b-adrenoceptor
(b-AR) signaling. There are three types of b-ARs: b1-AR, found
mainly in cardiac cells; b2-AR, present in bronchial and vascular
tissue; and b3-AR, largely expressed in adipose tissue. b-ARs are
also expressed in many primary and metastasized tumors (Daly
and McGrath, 2011; Cole and Sood, 2012).
Upon stimulation by catecholamines, b-AR signaling results

in elevated cAMP levels and activation of the cAMP-dependent
protein kinase A (Naga Prasad et al., 2001; Cole and Sood,

2012), which targets L-type Ca21 channels (CaV1.2), activating
a calcium influx (Weiss et al., 2013). Few reports have analyzed
the direct effects of b-blockers on free intracellular calcium
(Ca21i ) although previous studies have suggested that there is a
reduction in the levels of free Ca21i in platelets and erythrocytes
of hypertensive patients treated with b-blockers (Erne et al.,
1984; Baumgart et al., 1986).
Free Ca21i is a potent secondmessenger that regulates many

different cellular processes, including cell proliferation, cell
differentiation, gene transcription, and apoptosis (Berridge
et al., 2000; Carafoli et al., 2001). The level of cytosolic-free
calcium (∼100 nM) is tightly regulated, and most Ca21i resides
in intracellular stores, which in nonmuscle cells are princi-
pally located in the endoplasmic reticulum (ER) (Berridge
et al., 2003). Ca21i can be released from the ER through
ryanodine receptor (RyR) (Zorzato et al., 1990) and inositol-
1,4,5-trisphosphate (IP3) receptor channels (Nixon et al., 1994).
Calcium transients resulting from Ca21 influx or Ca21i release
give rise to fast Ca21 spikes or slower oscillatory waves that,
depending on their kinetics and amplitude, translate to
different cellular funtions (Berridge et al., 2003).
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Despite the critical role of free Ca21i as a regulator of cell
function, the effects of b-blockers on the mobilization and
kinetics of Ca21i have received limited attention. Some reports
regarding the regulation of calcium by b-blockers exist and
include the investigations of Ca21i levels in different disease
models of heart failure or hypertension (Doi et al., 2002;
Reiken et al., 2003; Tuncay et al., 2013; Cseplo et al., 2016).
Other studies have examined the effects of b-blockers on
b-adrenergic mediated calcium entry (e.g., after activation
with b-AR agonists, such as isoproterenol or albuterol) and
their role on cell contraction and vasorelaxation in different
tissues and cell types (Sakanashi and Takeo, 1983; Yao et al.,
2003; Priviero et al., 2006; Shahbaz et al., 2011; Cekic et al.,
2013; Keller et al., 2014) (see Supplemental Table 1 for
details). Surprisingly, the direct activation of free Ca21i release
by b-blockers has not been examined before in excitable or
nonexcitable cells.
We have previously shown that several membrane potential

regulating compounds (MPRCs), including the antiarrhyth-
mics amiodarone and dofetilide, activate store-operated
Ca21i release in mammalian cancer cells (Petrou et al., 2017).
Several epidemiologic studies have reported that the use of
b-blockers correlates with a lower incidence of cancer progres-
sion and mortality for prostate (Perron et al., 2004; Grytli
et al., 2013), breast (Powe et al., 2010; Barron et al., 2011;
Melhem-Bertrandt et al., 2011), and skin cancers (De Giorgi
et al., 2011; Lemeshow et al., 2011; De Giorgi et al., 2017).
We asked whether b-blockers could activate Ca21i release in

cancer cells.Weconcentrated on four commonlyusedb-blockers,
including two b1-selective b-blockers—atenolol and metoprolol
—and two nonselective b-blockers—propranolol and sotalol.
We used PC3 and MCF7, prostate and breast cancer cell
lines, respectively, to measure Ca21i release by ratiometric live
calcium imaging. In addition, we used a medium throughput
patch-clamp system to measure ionic currents in the cells. The
results show that 1) only propranolol activated a Ca21i release,
with distinct kinetics and amplitude; 2) the propranolol activa-
tion of Ca21i stores was mediated by calcium-induced calcium
release (CICR); and 3) the four b-blockers regulate endogenous
whole-cell currents in cancer cell lines. Our results show
differential activation of calcium stores and free Ca21i release
by several class II antiarrhythmics in nonexcitable, cancer cells
and may have important implications for the mechanism of
action and pharmacology of these b-blockers.

Materials and Methods
Compounds. All b-blockers were purchased from Sigma-Aldrich

(Gillingham, UK). Stock solutions were prepared in dimethyl sulfoxide
(DMSO; Sigma-Aldrich) for atenolol and propranolol or in phosphate
buffer saline (PBS), pH 7.4, without Ca21 orMg21 (cat. no. 10010; Gibco
ThermoFisher, Loughborough,UK) formetoprolol and sotalol according
to the manufacturer’s instructions. The following are the system-
atic names for the b-blockers: atenolol (cat. no. A7655), (6)-4-[2-
hydroxy-3-[(1-methylethyl)amino]propoxy]benzeneacetamide;metoprolol
tartrate (cat. no. M5391), (6)1-(isopropylamino)-3-[p-(b-methoxyethyl)-
phenoxy]-2-propanol (1)-tartrate salt; propranolol hydrochloride (cat. no.
P8688): (S)-1-isopropylamino-3-(1-naphthyloxy)-2-propanol hydrochlo-
ride; and sotalol hydrochloride (cat. no. S0278), N-[4-[1-hydroxy-2-
(isopropylamino)ethyl]phenyl]methanesulfonamide hydrochloride (see
Supplemental Fig. 1 for chemical structures). For all b-blockers, two
different lots were purchased and tested in our experiments. Loxapine
(cat. no. L106; Sigma-Aldrich), previously shown to activate store-operated

freeCa21i release viaCICR in cancer cells (Petrou et al., 2017), was used as
a positive control for some liveCa21i imaging experiments. Timolol (cat. no.
T6394; Sigma-Aldrich) was used as an additional nonselective b-blocker to
investigate the contribution of b-ARs to Ca21i release. Ethylene glycol
tetraacetic acid (EGTA), dantrolene, 4-chloro-m-cresol (4-CmC), thapsi-
gargin (Sigma-Aldrich), and 2-aminoethoxydiphenyl borate (2-APB; Tocris
Bioscience, Abingdon, UK)were also used in some experiments (see later).
Stock solutions were prepared in DMSO (dantrolene, 2-APB, and
thapsigargin), ethanol (4-CmC), or PBS (EGTA).

Cell Culturing. PC3 prostate cancer and MCF7 breast cancer
cell lines were obtained from the American Type Culture Collec-
tion (Teddington, UK). Details of cell culture procedures have been
described elsewhere (Thrasivoulou et al., 2013; Petrou et al.,
2017). Briefly, cells were maintained in RPMI 1640 medium (Gibco
ThermoFisher) supplemented with 10% fetal bovine serum and 5 mM
L-glutamine and cultured at 37°C in a humidified incubator with 5%
CO2 and 21% O2 atmosphere. For live calcium imaging experiments,
105 cells were seeded in 35-mm FluoroDishes (World Precision
Instruments, Hitchin, UK), and experiments were performed in at
least four to eight different passages (passage numbers 23–38 for PC3
cells and 35–44 for MCF7 cells).

Intracellular Live Calcium Imaging. Free Ca21i release was
measured as a change in the ratio of Fluo-4/FuraRed (free calcium/
bound calcium) over time. The two indicators have reciprocal shifts in
intensity owing to calcium binding and are used together in a
ratiometric probe strategy described previously (Wang et al., 2010b;
Thrasivoulou et al., 2013; Petrou et al., 2017). Briefly, cells were grown
as a monolayer in 35 mm FluoroDishes for 3 to 4 days. Before imaging,
the cells were incubated for 30–40 minutes at 37°C with the acetox-
ymethyl ester derivatives of the calcium indicators Fluo-4 and FuraRed
(ThermoFisher Scientific) at 1.1 and 1.4 mg/ml, respectively. Cells were
washed (3�) with and replaced in 1 ml PBS without Ca21 or Mg21

(Gibco ThermoFisher, as described) for live calcium imaging, performed
using anOlympus FluoView FV100 confocalmicroscope (Olympus, UK)
equipped with a 20�/0.75 NA objective and a temperature-controlled
chamber at 37°C.Calcium indicatorswere excitedwith an argon laser at
488 nm, and fluorescence was recorded every 2.2 seconds in the green
channel for Fluo-4 (500–580 nm) and in the red channel for FuraRed
(630–730 nm). Confocal imaging was started and, after a baseline was
achieved, Ca21i release was measured by applying b-blockers to the
FluoroDish as a bolus, at a volume of 0.5–5 ml, to achieve a final
b-blocker concentration of 25, 50, 100, 150, or 250 mM; vehicle controls
were performed using a similar protocol. Data acquisition was per-
formed using Olympus FV10-ASW 4.2 software.

Although the PBS used here is nominally Ca21 free, the residual
Ca21 concentration in PBS was measured to be .60 mM in this
solution (Petrou et al., 2017). In some experiments, 5 mM EGTA was
added to the PBS used as imagingmedia to chelate free residual Ca21;
cells were preincubated for 5 minutes before imaging was started.
We have previously shown that using 5 mM EGTA in PBS reduces
the residual free Ca21 to ,10 nM (Petrou et al., 2017). In other
experiments, for the pharmacologic characterization of the mecha-
nisms of Ca21i store activation, cells were preincubated with the
following: 1) 10 mM dantrolene for 5 minutes at 37°C to inhibit the ER
RyR channels (Zhao et al., 2001); 2) 1 mM 4-CmC for 12 minutes at
37°C to activate RyR channels and exhaust the Ca21i ER stores
(Zorzato et al., 1993); 3) varying concentrations (1, 25, 50, or 100mM) of
2-APB for 10 minutes at 37°C to inhibit the ER IP3 receptor channels
(Maruyama et al., 1997); 4) 5 mM thapsigargin for 15–20 minutes at
37°C to discharge Ca21i from the ER (Thastrup et al., 1990); or 5)
250 mM sotalol or timolol (nonselective b-blockers) for 2 minutes at
37°C for blockade of b-ARs (Baker, 2005).

Data Analysis and Statistics. Data from live calcium imaging
experiments were analyzed for time kinetics and amplitude as described
previously (Thrasivoulou et al., 2013) using a Mathematica script
(Wolfram, Hanborough, UK) (Petrou et al., 2017). The kinetics of the
calcium waveform were characterized by different time constants: rise
time (time from baseline to peak), dwell time (duration of the plateau
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phase), and fall time (time to return to baseline). The amplitude of the
response was calculated as a fold increase in fluorescence intensity from
baseline to peak (DF/F0, where DF 5 F – F0 and F is the maximum
fluorescence intensity over basal level,F0). Datawere analyzed using the
D’Agostino-Pearson test for normal distribution and the Mann-Whitney
U test for statistical significance using MedCalc (Ostend, Belgium), and
plotted using OriginPro 2016 (OriginLab, Northampton, MA).

Automated Medium-Throughput Electrophysiology. Endog-
enous whole-cell currents of PC3 cells in response to the application of
b-blockers were measured using the QPatch automated cell patch-
clamp system (Sophion Bioscience, Ballerup, Denmark), as described
previously (Petrou et al., 2017). PC3 cells were cultured and harvested
using Detachin (Genlantis, San Diego, CA) and kept in the QStirrer
of the QPatch for up to 4 hours before the automatic preparation. The
cells were transferred to the QFuge, centrifuged, and washed 2� in
extracellular solution (see following) before being applied to the
measuring site in the QPlate of the QPatch. A pressure of 270 mBar
was applied to obtain positioning and sealing of the cells, and a whole-
cell protocol with pressure pulses at 2150 mBar was used to obtain
whole-cell formation. Gigaseals were formed upon execution of a
combined suction/voltage protocol. The intracellular solutions and
compounds were applied by eight pipettes. The intracellular solution
contained (in millimolar concentrations): 5.3 CaCl2, 1.7 MgCl2,
10 EGTA, 10HEPES, 120 KCl, and 4 Na2-ATP; with pH 7.2, osmolarity
of 295 mOsm, and a calculated free calcium concentration of 680 nM.
The extracellular solution contained (in millimolars): 2 CaCl2, 1 MgCl2,
10 HEPES, 4 KCl, and 145 NaCl, with pH 7.4, and osmolarity adjusted
to 285–295 mOsm. Currents were recorded using a command ramp
from 2120 to 1120 mV at 0.5 mV/ms every 3 seconds, with a holding
voltage of210mVbetween executions of the ramps.Datawere sampled
at 5 kHz and filtered using a fourth-order Bessel filter.

Six different concentrations of individual drugs were used: increas-
ing concentrations of the b-blocker from 0 to 500 mM were applied
sequentially on the same cell. The QPatch system implements fine
microfluidic control of the drug delivery time, and complete solution
changes were made within 500 milliseconds. Average currents at1100
and2100mVwere analyzed to explore the concentration dependence of
the modulation of endogenous whole-cell currents by b-blockers;
statistical significancewas calculatedwith theWilcoxon test (MedCalc).
Current-voltage (I–V) curves of control versus b-blocker were also
constructed. Additional analysis of medium-throughput data from
QPatch was carried out using Matlab (Mathworks, Natick, MA).

Real-Time Polymerase Chain Reaction . Total RNA was puri-
fied fromPC3 cells byusing theRNeasyPlus kit (Qiagen,Manchester,UK)
and reverse-transcribed with the Omniscript RT kit (Qiagen), according to
themanufacturer’s instructions. Polymerase chain reactionwas performed
with the SYBR-Green PCR master mix (Applied Biosystems, Foster City,
CA) using a Bio-Rad (Watford, UK) CFX384 thermocycler. Expression
levels of the genes of interest were normalized to GAPDH or b-actin, and
melting curves were analyzed using Bio-Rad CFX Manager to verify the
products. The following primers were purchased from Sigma-Aldrich:
b1-AR (ADRB1) sense 59-TACGGCTCCTTCTTCTGCGA-39 and anti-
sense 59-CAGGTACACGAAGGCCATGAT-39; b2-AR (ADRB2) sense
59-CATTGAGACCCTGTGCGTGA-39 and antisense 59-AGGGCTTTGTG-
CTCCTTCAA-39;b3-AR (ADRB3) sense 59-GTTTTCGTGGTGGCTACGC-
39 and antisense 59-CCTAGCCAGTTCAGGGCAAG-39; glyceraldehyde
3-phosphate dehydrogenase (GAPDH) sense 59-CGGATTTGGTCGTATT-
GGGC-39 and antisense 59-TGGTCATGAGTCCTTCCACG-39; b-actin
(ACTB) sense 59-CTGTGCTATCCCTGTACGCC-39 and antisense 59-AT-
CTTCATTGTGCTGGGTGCC-39 (annealing at 60°C for 40 cycles; 70melt-
ing curve reads off, from 60 to 95°C).

Results
Propranolol Activates Ca21

i Release in Cancer Cells
with Distinct Kinetics but Other b-Blockers Do Not.
The addition of 50mMpropranolol to the extracellular solution

caused a change in the ratio of Fluo-4/FuraRed in PC3 cells
(Fig. 1), indicating release of free Ca21i ; there was no observ-
able Ca21i release in response to atenolol, metoprolol, and
sotalol (Fig. 2A). Similar results were observed in MCF7
breast cancer cells, indicating that this phenomenon is not
cell line specific (Fig. 2B). We also tested various concentra-
tions of b-blockers (Fig. 3) within the pharmacologic range
(Joint Formulary Committee, 2017).
Three of theb-blockers used did not induce free Ca21i release

in either PC3 or MCF7 cancer cell lines (Fig. 2). We performed
additional validation experiments to exclude the possibility
that the lack of Ca21i release by atenolol, metoprolol, and
sotalol may have been due to cellular or technical factors.
First, to confirm that the cells remained responsive to free
Ca21i release, loxapine, a compound previously shown to
induce Ca21i release in cancer cells (Petrou et al., 2017), was
used as a positive control. In these experiments, atenolol,
metoprolol, or sotalol were first added to the cells for
10 minutes, followed by loxapine in live calcium imaging
experiments. There was no Ca21i release in response to the
three b-blockers (n 5 3); however, the addition of loxapine to
the same cells activated Ca21i release (Fig. 4). Second, we
procured different lots for the three drugs from the vendor
(Sigma-Aldrich) and tested these in live Ca21i imaging exper-
iments. No Ca21i release occurred in response to addition of
any of the different lots of atenolol, metoprolol, or sotalol. The
effect of the solvent vehicle used for drug suspension (either
DMSO or ethanol) was tested and was found to have no effect
on any of the responses (i.e., only propranolol, but not atenolol,
metoprolol, or sotalol, induced Ca21i release) (Supplemental
Fig. 2).
The waveform of Ca21i release was used to measure the

amplitude and the time kinetics (rise, dwell, and fall times) as
described elsewhere (Thrasivoulou et al., 2013). Figure 5
shows the distinct time constants of the Ca21i release in
response to 50 mMpropranolol in PC3 andMCF7 cells; similar
kinetics were observed in both cell lines.
Role of Calcium-Induced Calcium Release Mecha-

nism in the Propranolol-Induced Ca21
i Release. We

tested the hypothesis that CICR is the mechanism by which
propranolol-induced Ca21i release occurs in cancer cells. Four
sets of experiments were performed. First, we added 5 mM
EGTA to chelate the residual Ca21 (.60 mM in the PBS used
for calcium imaging experiments), as it is known that even
micromolar levels of extracellular Ca21 can activate CICR
pathways (Berridge et al., 2003; Endo, 2009). The addition of
5 mMEGTA, which chelates extracellular Ca21 concentration
to ,10 nM (Petrou et al., 2017), significantly inhibited the
propranolol-induced Ca21i release (Fig. 6).
Second, we used dantrolene and 4-CmC, modulators of RyR

channels found in the ER (Zorzato et al., 1993; Zhao et al.,
2001), to determine whether the ER calcium stores were
activated in response to extracellular addition of propranolol.
Incubation with 10 mM dantrolene, an inhibitor of RyRs,
significantly inhibited the Ca21i release induced by propran-
olol (Fig. 6). Incubation of cells with 1mM4-CmC, an activator
of RyRs that is known to induce Ca21i stores (Supplemental
Fig. 3A), also inhibited the propranolol-induced Ca21i release
(Fig. 6).
Third, we used 2-APB, an inhibitor of IP3-induced Ca21i

release from the IP3 receptor channels located in the ER
(Maruyama et al., 1997) and also known to inhibit various
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TRP ion channels (Xu et al., 2005; Togashi et al., 2008).
Incubation with 50 mM 2-APB, a concentration within the
range of IC50 values for the inhibition of IP3-induced
Ca21i release (Maruyama et al., 1997; Bootman et al., 2002;
Saleem et al., 2014), also abolished the propranolol-induced
Ca21i release (Fig. 6). Similar results were observed when cells
were incubated with 25 and 100 mM 2-APB (Supplemental
Fig. 4).
Fourth, incubation with 5 mM thapsigargin, an inhibitor

of the sarco/endoplasmic reticulum Ca21 ATPase or SERCA
(Thastrup et al., 1990), completely abolished the propranolol-
induced Ca21i release (Fig. 6). Thapsigargin, like 4-CmC,
discharges the Ca21i from thapsigargin-sensitive stores (e.g.,
the ER; Supplemental Fig. 3B) and has been previously
used to investigate ligand-induced Ca21i release (Thrasivoulou
et al., 2013). In summary, these results indicate that the
propranolol-induced Ca21i release is likely to be a CICR-
facilitated mechanism in which extracellular calcium contrib-
utes to the activation of Ca21i release from the ER through RyR
channels and IP3 receptor channels.
b-ARs and Propranolol-Induced Ca21

i Release. The
involvement of b-ARs in general for the activation of Ca21i re-
lease by propranolol was investigated by using two different
nonselective b-blockers: sotalol and timolol. We tested the
hypothesis that blocking b-ARs using the known nonselective
b-blockers would interfere with the propranolol-induced
Ca

21
i release. Neither sotalol nor timolol activated Ca21i re-

lease in PC3 cells, and this was further confirmed by treating
the same cells with loxapine (Fig. 4C; Supplemental Fig. 5);
however, incubating the cells with either sotalol or timolol
significantly inhibited the propranolol-induced Ca

21
i release

(Fig. 7A), suggesting that propranolol exerts its function via
the b-ARs. The Ca21i release induced by loxapine (a diben-
zoxazepine) remained unaffected by preincubation with
sotalol or timolol (Fig. 7B).
Electrophysiological Characteristics of b-Blockers

on Medium-Throughput Whole-Cell Currents in PC3
Cells. The electrophysiological characteristics of the four
b-blockers on the endogenous currents in nonexcitable cancer
cells, are not known (see Supplemental Table 2 for details on
the electropharmacology of b-blockers in other cell types). We
sought to establish a basic characterization of the effects of
b-blockers on the endogenous whole-cell currents in PC3 cells
usingmedium-throughput recording. Six concentrations of each
b-blocker were tested in the cells, based on the pharmacologic
doses (Supplemental Fig. 1; Joint Formulary Committee,
2017) and the IC50 values described previously (Supplemental
Table 2), following a voltage-clamp protocol with a command
ramp from 2120 to 1120 mV. Figure 8 shows the concentra-
tion dependence of whole-cell current regulation by b-blockers
in PC3 cells at positive (1100 mV) and a negative (2100 mV)
potential. b-Blockers regulate whole-cell currents with distinct
features (Fig. 8, A–D); atenolol inhibited whole-cell currents at
positive, but not at negative potentials, and metoprolol acti-
vated currents at negative and positive potentials. Both these
effects were concentration-dependent.
In contrast, propranolol enhancedwhole-cell currents at both

positive and negative potentials at concentrations ,8.4 mM.
At higher concentrations (i.e., 56–500 mM), currents were
inhibited, which we ascribe to nonspecific effects at these very
high (.56 mM) levels of the drug. Sotalol did not cause
significant alterations to endogenous currents at any of the

Fig. 1. Intracellular calcium (Ca2+i ) release in PC3
cells in response to 50 mM propranolol. PC3 cells were
loaded with the calcium indicators Fluo-4 (green
fluorescence, an indicator of free calcium) and
FuraRed (red fluorescence, an indicator of bound
calcium) and monitored by time-lapse video micros-
copy every 2.2 seconds using an Olympus FluoView
FV100 confocal microscope. Representative snap-
shots of free Ca2+i release at four time points (A–D)
are shown: (A) Baseline before the addition of
propranolol; (B) approximately 30% of cells in the
observable frame undergoing Ca2+i release at t =
338 seconds, as observed by the simultaneous in-
crease in Fluo-4 fluorescence and decrease in Fur-
aRed signal; (C) peak of the Ca2+i release response (t =
374 seconds) with almost all cells showing a response
(green); and (D) cells returning to baseline after the
propranolol-induced Ca2+i release. Scale bar, 50 mm,
original magnification, 20�.
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concentrations that we tested. The representative current-
voltage (I-V) curves are shown in Fig. 8E. These results indicate
that endogenous currents in PC3 cells can be modulated
differently by the b-blockers investigated.

Discussion
In this study, we investigated the direct activation of calcium

stores by atenolol, metoprolol, propranolol, and sotalol. We have
shown that b-blockers have differential characteristics of Ca21i
mobilization in human cancer cell lines. Propranolol activates
free Ca21i release, whereas atenolol, metoprolol, and sotalol do
not.We propose that CICR is amechanism bywhich propranolol
activates free Ca21i release from intracellular stores.

Free Ca21i is an important second messenger owing to its
regulatory role of normal (Berridge et al., 2000) andmalignant
cell function (Prevarskaya et al., 2011). To the best of our
knowledge, the regulation of Ca21i mobilization by b-blockers
in cancer cells remains largely unknown (Supplemental
Table 1). We found that propranolol activates the release of
Ca21i from the cellular stores with distinct kinetics of rise,
dwell, and fall times in both PC3 and MCF7 cancer cell lines.
In comparison with previous research analyzing the kinetics
of Ca21i mobilization in response toWnt ligands (Thrasivoulou
et al., 2013) and other MPRCs in clinical use (Petrou et al.,
2017), the propranolol-induced Ca21i time constants (Fig. 5)
suggest that this b-blocker activates a slow exhaustion and
replenishment of Ca21i stores, with a short dwell time (i.e.,
20 6 6 seconds, mean 6 S.D. of n 5 8 imaging experiments).
The propranolol-inducedCa21i release does not follow a classic

pattern. Ameasurable Ca21i release (i.e., a waveformwith awell
time of .15 seconds), is observed in around 30% of cells (n 5
518 cells, from n 5 6 experiments) at 35 mM propranolol,
a variability reflected in the box plot (Fig. 3); however, at
50 mM, .98% of cells show an increase in propranolol-induced
Ca21i release. The data suggest that activation of Ca21i release in
PC3 cells occurs between 35 and 50 mM (Fig. 3) with no
significant, observable response to concentrations ,35 mM. It
should be noted that the Ca21i release readout is not a direct assay
of propranolol binding to effective receptors, which generally
follows a classic Michaelis-Menten kinetics. The readout may
reflect cooperativitywithin the numerous intermediate steps until
a threshold is achieved to activate the intracellular calcium stores.
Extracellular calcium triggering CICR, an autocatalytic

mechanism found in muscle (Endo, 2009) and nonmuscle cells
(Verkhratsky and Shmigol, 1996; Petrou et al., 2017), is likely
to be at least one of the signals that triggers the release of Ca21i
in response to propranolol. Our dantrolene results (Fig. 6A)
suggest that type 1 and/or 3 RyRs are also likely to be involved
in the calcium efflux from the ER (Zhao et al., 2001), although
there are other RyRs inhibitors, such as ruthenium red (Xu
et al., 1999), that we have not tested in our experiments.
EGTA and dantrolene did not inhibit the propranolol-induced
Ca21i release completely (Fig. 6B); thismay indicate that there
are other mechanisms by which stores are activated by
propranolol or may be due to a partial calcium chelation and
RyR inhibition by these agents.

Fig. 2. Representative traces of Ca2+i release in (A) PC3 prostate cancer
and (B) MCF7 breast cancer cells in response to the addition of 50 mM
b-blockers: propranolol (green), atenolol (magenta), metoprolol (yellow),
and sotalol (blue). The x-axis represents time (s) and the y-axis represents
the Fluo-4/FuraRed ratio (free calcium/bound calcium, respectively) in
arbitrary units (AU). The waveform was used to calculate the kinetics
(rise, dwell, and fall times) of the Ca2+i release (see Fig. 5). The mean
amplitude and time constants were used to select a representative trace
for each compound (n = 5–8 experiments, n = 151–448 single-cell
measurements per b-blocker). Of the four b-blockers tested, propranolol
was the only one to induce Ca2+i release in both PC3 and MCF7 cell lines.

Fig. 3. Characterization of free Ca2+i release in response to various concentrations of b-blockers in PC3 cells. PC3 prostate cancer cells loaded with the
calcium indicators Fluo-4 and FuraRed were treated with b-blockers, added as a bolus into the FluoroDish, and monitored over time using time-lapse
confocal microscopy. Ca2+i release was measured as changes in the Fluo-4/FuraRed ratio; the amplitude of the Ca2+i release was calculated as fold
increase in fluorescence intensity from baseline to peak (DF/F0) of the Fluo-4/FuraRed waveform and is presented as box plots. At a range of
pharmacologic concentrations (see Supplemental Fig. 1 for details), only propranolol activated the release of Ca2+i . Other b-blockers, atenolol, metoprolol,
and sotalol, did not mobilize Ca2+i (n = 107 imaging experiments and n = 7256 individual cells analyzed; with at least n$ 2 experiments and n. 130 cells
per concentration for each b-blocker).
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Depletion of ER Ca21i with thapsigargin, which inhibits the
SERCA pump (Thastrup et al., 1990), or 4-CmC, which dis-
charges the ER via activation of RyR channels (Zorzato et al.,
1993; Herrmann-Frank et al., 1996), completely abolished the
Ca21i release induced by propranolol, suggesting that the ER is
themain store fromwhich calcium is released in response to this
b-blocker (Fig. 6; Supplemental Fig. 3). We do not, however,
exclude the possibility that other intracellular calcium stores
(e.g., mitochondria) may also contribute to the propranolol-
induced Ca21i release (Michelangeli et al., 2005).
These data also suggest that IP3 is involved in the propranolol-

induced Ca21i release. Here, 2-APB, an agent largely used as an

inhibitor of IP3-induced Ca21i release (Maruyama et al., 1997;
Choi et al., 2010; Saleem et al., 2014), abolished the Ca21i release
activated by propranolol (Fig. 6; Supplemental Fig. 4). 2-APB
is also thought to block store-operated calcium entry channels
(Gregory et al., 2001), the SERCA pump (Missiaen et al.,
2001), and some members of the TRP family (Xu et al., 2005;
Togashi et al., 2008), although these interactions are complex
(Prakriya and Lewis, 2001; Xu et al., 2005) and vary across
cell types (Bootman et al., 2002). It is possible that the
blockade of TRP channelsmay also contribute to the inhibition
of the propranolol-induced Ca21i release caused by 2-APB,
presuming that TRP channels may be involved in the activa-
tion of CICR pathways in response to propranolol (see later).
Based on our observations, we suggest that inhibition of
the propranolol-induced Ca21i release by 2-APB indicates the
involvement of IP3 as an intracellular transducer that is
produced upon propranolol-receptor binding and contributes
to the activation of a calcium influx through IP3 receptors in
the ER, in agreement with our observations using thapsigar-
gin since IP3-responsive Ca

21
i pools are thapsigargin-sensitive

(Tanaka and Tashjian, 1993; Tribe et al., 1994).
Class II antiarrhythmics are b-AR antagonists primarily,

but they are also known to act upon potassium (Sakuta et al.,
1992; Xie et al., 1998; Dupuis et al., 2005; Kawakami et al.,
2006; Tamura et al., 2009) and sodium ion channels (Desaphy
et al., 2003; Bankston and Kass, 2010; Wang et al., 2010a)
(Supplemental Table 2). I–V curves of whole-cell patch-clamp
recordings (Fig. 8E) showed the characteristics of an outward
rectifying K1 current, a current that has been previously
described for PC3 cells (Laniado et al., 2001). Propranolol
inhibits these endogenous currents similarly to those described
for antiarrhythmic MPRCs, such as dofetilide (Petrou et al.,
2017). At low concentrations (between 0.04 and 8.4 mM), there
is an increase in the inward and outward currents, which are
inhibited at higher concentrations (.56 mM). In view of the
absence of ameasurable Ca21i release at,35 mMpropranolol,
we speculate that this observation may reflect differences in
the experimental design inwhich drugs are applied to the bath
as a bolus for Ca21i imaging compared with rapid microfluidic
application in the QPatch recordings. The amplitude of the
propranolol-induced Ca21i release plateaus between 50 and
250mMpropranolol (Fig. 3), indicating that once the threshold
concentration of 50mMpropranolol is reached, the Ca21i stores
are activated. The 50 mMpropranolol is an order of magnitude
greater than the concentration at which cell membrane
currents are activated by propranolol (Fig. 8C). We have
previously suggested that there may be a small number of

Fig. 4. Atenolol, metoprolol, and sotalol did not induce the release of Ca2+i in
PC3 prostate cancer or MCF7 breast cancer cells. To confirm this
observation, PC3 cells loaded with the calcium indicators Fluo-4 and
FuraRed were treated with 50 mM b-blocker (atenolol, metoprolol, or
sotalol, added as a bolus) and after 10 minutes of imaging, the cells were
treated with 50 mM loxapine, a dibenzoxazepine antipsychotic drug known
to activate the release of free Ca2+i in human cancer cells (see Fig. 4 from
Petrou et al., 2017 for details). Representative traces of Ca2+i release
(amplitude of the Fluo-4/FuraRed ratio over time) in response to the addition
of (A) atenolol (magenta), (B) metoprolol (yellow), or (C) sotalol (blue),
followed by the addition of loxapine; arrows indicate the time of addition
(n = 3 per b-blocker, with n = 161–272 individual cells). A representative
trace of loxapine-induced Ca2+i release in control cells (no previous
treatments) is shown in the insert (scale: y-axis 1 AUand x-axis 100 seconds).
Note that there was no Ca2+i release in response to any of the three b-blockers
whereas loxapine caused an immediate release of Ca2+i in the cells.

Fig. 5. Characterization of the propranolol-induced
Ca2+i release kinetics in PC3 prostate cancer andMCF7
breast cancer cells. (A) The Ca2+i waveform generated
by the addition of 50 mM propranolol to PC3 or MCF7
cells was defined by three time constants: rise, dwell,
and fall times, represented as box plots (n = 5–8
imaging experiments per cell line, with n = 151–448
single cell measurements). The Ca2+i release activated
by propranolol had comparable time constants in both
cancer cell lines. (B) Superimposed traces for individ-
ual cells of the propranolol-induced Ca2+i release in
PC3 andMCF7 cell lines; arrowheads indicate the time of
propranolol addition to the cells.
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TRP channels (∼100 channels, calculated based on the
conductance of control cells’ inward currents; Petrou et al.,
2017) that may be responsible for the calcium influx required

for the activation of Ca21i stores, and this may also be the case
for propranolol. It is also plausible that there may be indepen-
dent inhibition of whole-cell currents (based on the multiple

Fig. 6. Calcium-induced calcium release (CICR) as a putative mechanism for the propranolol-induced Ca2+i release. PC3 cells were treated with 50 mM
propranolol (Pro; added as a bolus) and different chelators or inhibitors of CICR pathways; the mobilization of free Ca2+i release was monitored by time-
lapse confocal microscopy. (A) Amplitude of the propranolol-induced Ca2+i release, calculated as fold increase in the fluorescence intensity of the calcium
waveform (DF/F0). Box plots (L–R): 1) control cells treated with propranolol only, 2) EGTA 5mM (chelation of extracellular calcium), 3) dantrolene 10 mM
(inhibition of the ER RyR channels), 4) 4-CmC 1 mM (depletion of ER stores via activation of RyR channels), 5) 2-APB 50 mM (inhibition of the ER IP3
receptor channels), and 6) thapsigargin 5 mM (exhaustion of ER stores via inhibition of SERCA pump). Blocking CICR pathways significantly inhibited
the propranolol-induced Ca2+i release (Mann-WhitneyU Test, ***P, 0.001; n = 3–8 imaging experiments and n = 186–575 single-cell measurements per
condition). (B) Superimposed traces for individual cells of the propranolol-induced Ca2+i release after EGTA, dantrolene, 4-CmC, 2-APB, or thapsigargin;
the time of propranolol addition is indicated by arrowheads. A representative trace for propranolol-induced Ca2+i release can be found in Fig. 2A.

Fig. 7. Preincubation with nonselective
b-blockers precludes normal propranolol-
induced Ca2+i release. (A) PC3 cells were loaded
with the calcium indicators Fluo-4 and
FuraRed, as in previous experiments. Cells
were pretreated with 250 mM of either sotalol
or timolol (added as a bolus), nonselective
b-blockers used to block the b-ARs. After
2 minutes of incubation, 50 mM propranolol
was added to the cells, and intracellular calcium
levels were monitored over time. Sotalol and
timolol significantly inhibited the propranolol-
induced Ca2+i release. (B) Control experiments
were performed likewise using loxapine, a
drug from a different pharmacologic class
(i.e., dibenzoxazepine) that is known to acti-
vate Ca2+i release in these cells (Petrou et al.,
2017). The loxapine-induced Ca2+i release was
not affected by the blockade of b-ARs with
sotalol or timolol (n = 3–5 experiments and
n = 191–441 individual cells per condition;
Mann-Whitney U Test, ***P , 0.001, n.s.,
nonsignificant). (C) Superimposed traces for
individual cells of the propranolol- and loxa-
pine-induced Ca2+i release after sotalol and
timolol incubation; the time of propranolol or
loxapine addition is indicated by arrowheads.
Representative Ca2+i release traces are shown
in Fig. 2A for propranolol and Fig. 4 insert for
loxapine.
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interactions of propranolol with sodium and potassium ion
channels; Supplemental Table 2), as well as an interdepen-
dent CICR-mediated mechanism of Ca21i release. Such cellu-
lar functions for a commonly used antiarrhythmic agent may
have implications on the pharmacology of this drug.
The addition of neither sotalol, which did not alter the

endogenouswhole-cell currents, normetoprolol, which conversely

activated these currents, led to no increase in Ca21i release. We
speculate that atenolol, which does inhibit the endogenous
currents but also does not activate Ca21i release, may not be able
to activate the downstreamIP3 pathway. The electrophysiological
properties described here represent only a beginning of what
appears to be intricate and complicated mechanisms regulating
intracellular signals transduced by these drugs. Our results give

Fig. 8. b-Blocker regulation of endogenous whole-cell currents in PC3 cells. Single cells were recorded under whole-cell configuration using the
QPatch automated cell patch-clamp system, which implements microfluidic control of drug delivery. (A–D) Endogenous whole-cell currents were
measured by adding an increasing concentration (0–500 mM, with solution changes within 500 milliseconds) of each b-blocker to the same cell
clamped at a Vh of 210 mV and voltage ramped from 2120 to +120 mV every 3 seconds. Currents at +100 and 2100 mV were measured with or
without b-blockers at six different concentrations and are shown as mean 6 S.E.M. (n = 5–19 single cells per b-blocker). Changes in cell currents
with respect to control (0 mM) were analyzed using the Wilcoxon test; only significant changes are indicated (*P , 0.05; **P , 0.01; ***P , 0.001).
(A) Atenolol, (B) metoprolol, (C) propranolol, and (D) sotalol. (E) Representative current-voltage (I–V) curves of control (gray lines) and with
b-blockers (colored lines): atenolol at 38 mM (magenta), metoprolol at 56 mM (yellow), propranolol at 100 mM (green), and sotalol at 50 mM (blue)
(n = 5–30 cells; mean 6 S.E.M.).
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an interesting first insight into how b-blockers might alter the
electrical properties of nonexcitable cells, although their effects
are complex and require further investigation.
Excitable and nonexcitable cells are thought to have differ-

ent cell electrical properties but similar intracellular calcium
signaling mechanisms (Putney, 1993). The pharmacology of
b-blockers is often linked to the regulation of intracellular
calcium, most notably in cardiac cells (Weiss et al., 2013). Our
observation that b-blockers regulate Ca21i release differently
may reveal new mechanistic aspects of the action of these
compounds. Atenolol and metoprolol, for example, are used
mostly as antianginal and antihypertensive drugs; pro-
pranolol has a wider spectrum of applications besides its
cardiovascular use (Joint Formulary Committee, 2017),
such as the treatment of essential tremor (Zesiewicz et al.,
2002) or anxiety (Steenen et al., 2016). Furthermore, if
activation of Ca21i stores by propranolol is initiated via the
b2-AR (see later), this may imply that other tissues expressing
this receptor, such as the lungs or blood vessels (Daly and
McGrath, 2011), may undergo Ca21i release events similar to
those described in the cell lines used in this study.
Based on the data presented in our study, we propose a

model of action for propranolol acting on intracellular calcium
stores via a CICR-facilitated mechanism. Extracellular cal-
cium contributes to the opening of the stores and the release of
calcium through RyRs, and IP3 acts as an intracellular trans-
ducer for the activation of Ca21i release from the ER (Fig. 9).

Our observation that the b2-AR is the main subtype in PC3
cells at the gene expression level (Supplemental Table 3), as
has been reported in human prostate tissue (Goepel et al.,
1997; Suzuki et al., 2016) and other prostate cancer cell lines
(Nagmani et al., 2003; Kasbohm et al., 2005), suggests that
propranololmay be exerting its function via this receptor. This
suggestion is supported by the observation that blockade of
b-ARs with the nonselective b-blockers sotalol and timolol
(Baker, 2005) inhibited the propranolol-induced Ca21i release
(Fig. 7), although this could also be attributed to nonselective
cellular targets common to sotalol, timolol, and propranolol
(Supplemental Table 2). MCF7 cells also express b-ARs
(Supplemental Table 3; Shi et al., 2011; Işeri et al., 2014); even
if the expression of the b-ARs is not as high inMCF7 cells as in
other breast cancer cell lines (Vandewalle et al., 1990), radio-
ligand binding assays have estimated that there are ∼80,000
binding sites per cell in MCF7 cells (Gargiulo et al., 2014).
In themodel we propose (Fig. 9), binding of propranolol to its

receptor may activate extracellular calcium entry, which can
trigger store-operated calcium release via CICR. Routes for
calcium entry can include specific calcium channels as well
as nonspecific cation channels that have significant calcium
permeability, such as members of the TRP family (Clapham
et al., 2001), some of which are known to be expressed
in cancer cells (Bödding, 2007), including prostate cancer
(Wissenbach et al., 2004; Bidaux et al., 2007; Prevarskaya
et al., 2007). The focus of our future studies will be to

Fig. 9. Proposed model for the activation of Ca2+i re-
lease by propranolol via a CICR-facilitated mechanism.
We propose that the binding of propranolol to its recep-
tor in the cell membrane (purple) triggers the down-
stream activation of Ca

2+
i release from cellular stores

(e.g., the ER depicted in the model). Extracellular
calcium (dark green) contributes to the propranolol-
induced Ca2+i release; small extracellular calcium in-
flux may enter the cell via a calcium channel or a
permeable cation channel (dark blue), which is acti-
vated by propranolol-receptor binding. Extracellular
calcium promotes the release of Ca2+i from ER via
RyRs (light blue). Additionally, propranolol-receptor
binding results in the production of IP3 (red) through
the phospholipase C (PLC; gray), and this initiates a
Ca2+i efflux via the IP3 receptors (IP3R; orange) present
in the ER surface. Once released, the free cytosolic
calcium (light green) can enter the nucleus depolarizing
the nuclear envelope.
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investigate the receptors, ion channels, and downstream
pathways responsible for the propranolol-induced Ca21i re-
lease described here and examine the effects in the transcrip-
tional profile of cancer cells.
Propranolol is known to inhibit cell migration in several in

vitro and in vivo models of cancer, including breast (Campbell
et al., 2012; Işeri et al., 2014; Pon et al., 2016), colon (Masur
et al., 2001; Işeri et al., 2014), angiosarcoma (Stiles et al., 2013),
and prostate cancer (Palm et al., 2006). Free Ca21i is an impor-
tant regulator of tumor metastasis, and several Ca21-dependent
mechanisms contribute to malignant cell migration (Prevarskaya
et al., 2011). Propranolol has shown greater antimigratory
effects than other b-blockers, such as atenolol (Masur et al.,
2001; Işeri et al., 2014). In cancer cell lines, including PC3 cells,
propranolol (between 100 and 200 mM) was shown to inhibit
proliferation and induce apoptosis (Zhang et al., 2010; Brohée
et al., 2015; Coelho et al., 2015; Wrobel and Le Gal, 2015; Chin
et al., 2016; Wei et al., 2016; reviewed in Pantziarka et al.,
2016). The concentration at which propranolol exerted these
antiproliferative and proapoptotic effects is within the range
at which we observe propranolol-induced Ca21i release in PC3
and MCF7 cells. It is also notable that in the same studies
(Zhang et al., 2010; Coelho et al., 2015; Wrobel and Le Gal,
2015; Chin et al., 2016; Wei et al., 2016) neither atenolol nor
metoprolol inhibited cell proliferation or induced apoptosis.
Our results point to a novel action of propranolol and its

potential as a regulator of the magnitude and duration of
Ca21i release in vitro. Our finding that propranolol mobi-
lizes free Ca21i , which distinguishes this drug from other
commonly used b-blockers, opens new possibilities into how
propranolol may contribute to the inhibition of malignant
cell migration and proliferation, whereas other b-blockers
that do not activate Ca21i release may not exert the same
effect. This mechanism may thus be relevant patients who
are treated with these drugs (Baker et al., 2011; Pantziarka
et al., 2016).
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