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Top Eigenpair Statistics for Weighted Sparse

Graphs

Vito A R Susca, Pierpaolo Vivo and Reimer Kühn

King’s College London, Department of Mathematics, Strand, London WC2R 2LS,

United Kingdom

Abstract. We develop a formalism to compute the statistics of the top eigenpair of

weighted sparse graphs with finite mean connectivity and bounded maximal degree.

Framing the problem in terms of optimisation of a quadratic form on the sphere and

introducing a fictitious temperature, we employ the cavity and replica methods to

find the solution in terms of self-consistent equations for auxiliary probability density

functions, which can be solved by population dynamics. This derivation allows us to

identify and unpack the individual contributions to the top eigenvector’s components

coming from nodes of degree k. The analytical results are in perfect agreement with

numerical diagonalisation of large (weighted) adjacency matrices, and are further cross-

checked on the cases of random regular graphs and sparse Markov transition matrices

for unbiased random walks.
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1. Introduction

The largest eigenvalue and the associated top eigenvector of a N ×N matrix J play a

very important role in many applications. In multivariate data analysis and Principal

Component Analysis, the top eigenpair of the covariance matrix provides information

about the most relevant correlations hidden in the dataset [1, 2]. These extremal

questions also arise in connection with synchronisation problems on networks [3],

percolation problems [4], linear stability of coupled ODEs [5], financial stability [6]

and several other problems in physics and chemistry, connected to the applications

of Perron’s theorem [7]. Also in the realm of quantum mechanics, the search for

the ground state of a complicated Hamiltonian essentially amounts to solving the top



CONTENTS 3

eigenpair problem for a differential operator [8]. The top eigenpair is also relevant in

signal reconstruction problems employing algorithms based on the spectral method [9].

In the context of graph theory, the eigenvectors of both adjacency and Laplacian

matrices are employed to solve combinatorial optimisation problems, such as graph

3-colouring [10] and to develop clustering and cutting techniques [11–13]. In particular,

the top eigenvector of graphs is intimately related to the “ranking” of the nodes of the

network [14]. Indeed, beyond the natural notion of ranking of a node given by its degree,

the relevance of a node can be estimated from how “important” its neighbours are. The

vector expressing the importance of each node is exactly the top eigenvector of the

network adjacency matrix. Google PageRank algorithm works in a similar way [15,16]:

the PageRanks vector is indeed the top eigenvector of a large Markov transition matrix

between web pages.

When the matrix J is random and symmetric with i.i.d. entries, analytical results

on the statistics of the top eigenpair date back to the classical work by Füredi and

Komlós [17]: the largest eigenvalue of such matrices follows a Gaussian distribution

with finite variance, provided that the moments of the distribution of the entries do

not scale with the matrix size. This result directly relates to the largest eigenvalue of

Erdős-Rényi (E-R) [18] adjacency matrices in the case when the probability p for two

nodes to be connected does not scale with the matrix size N . This result has been

then extended by Janson [19] in the case when p is large. However, in our analysis

we will be mostly dealing with the sparse case, i.e. when p = c/N , with c being the

constant mean degree of nodes (or equivalently, the mean number of nonzero elements

per row of the corresponding adjacency matrix). In this sparse regime, Krivelevich and

Sudakov [20] proved a theorem stating that for any constant c the largest eigenvalue

of Erdős-Rényi graph diverges slowly with N as
√

logN/ log logN . To ensure that the

largest eigenvalue remains ∼ O(1), the nodes with very large degree must be pruned

(see [21]).

The characterisation of eigenvectors properties has proved to be much harder and

is generally a less explored area of random matrix theory. Excluding the cases of

i) invariant ensembles, where eigenvector components follow the celebrated Porter-

Thomas distribution [22, 23], ii) dense non-Hermitian matrices (see for instance the

seminal works of Chalker and Mehlig [24] along with results about correlations between

eigenvectors [25, 26] and some more recent applications [27–30]) and iii) perturbed

matrices [31–35], systematic results are scarcer for sparse Hermitian matrices, especially

in the limit of high sparsity. Indeed, although Gaussian statistics and delocalisation of

eigenvectors are known properties of adjacency matrices of Erdős-Rényi and random

regular graphs in the case where the mean degree c = c(N) diverges with N [36–38],

very few results are available for the high sparsity regime, i.e. with fixed c. In this

limit, numerical studies have shown that most of the eigenvectors of a random regular

graph follow a Gaussian distribution [39], as well as almost-eigenvectors [40], whereas

Erdős-Rényi eigenvectors are localised especially for low values of c.

The statistics of the first eigenvector components for very sparse symmetric random
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matrices was first considered in the seminal works by Kabashima and collaborators

[41–43], which constitute the starting point of our analysis. The focus there is on specific

classes of real sparse random matrices, i.e. when the matrix connectivity is either a

random regular graph or a mixture of multiple degrees, and the nonzero elements are

drawn from a Bernoulli distribution. More precisely, in [41] and [43] the cavity method

was employed for the top eigenpair problem, while in [42] the replica formalism was

instead adopted to study the same problem in the thermodynamic limit, recovering

cavity results. Our aim is to analyse and develop both the cavity and replica formalisms

they pioneered even further, and to present them in a unified way that looks - at least

to our eyes - more transparent.

We will be implementing a Statistical Mechanics formulation of the top eigenpair

problem, using both the cavity (Section 3) and replica (Section 4) methods - borrowed

from the standard arsenal of disordered systems physics - as main solving tools.

The replica method, widely used in the physics of spin glasses [44], was first

introduced in the context of random matrices by Edwards and Jones [45] to compute

the average spectral density of random matrices defined in terms of the joint probability

density function (pdf) of their entries. Building on this approach, Bray and Rodgers

in their seminal paper [46] were able to express the spectral density of Erdős-Rényi

adjacency matrices as the solution of a (nearly intractable) integral equation. Therefore,

asymptotic analyses for large average connectivities [46], and approximation schemes

such as the single defect approximation (SDA) and the effective medium approximation

(EMA) [47, 48] were first developed as a way around this hindrance. An alternative

approach was pursued in [49] (see also [50]): starting from Bray-Rodgers replica-

symmetric setup [46], the functional order parameters of the theory are expressed

as continuous superpositions of Gaussians with fluctuating variances, as suggested by

earlier solutions of models for finitely coordinated harmonically coupled systems [51].

This formulation gives rise to non-linear integral equations for the probability densities

of such variances, which can be efficiently solved by a population dynamics algorithm.

Our paper will follow a similar approach in Section 4.

The cavity method [52], also known as Bethe-Peierls or belief-propagation method,

was introduced in the context of disordered systems and sparse random matrices as a

more intuitive and straightforward alternative to replicas: the two methods are known to

provide the same results for the spectral density of graphs [53], even though a general,

first-principle proof of their equivalence does not seem to be currently available. A

rigorous proof of the correctness of cavity method and the tree-like approximation for

finitely coordinated graphs is given in [54]. One of the advantages of the cavity method

is that it allows one to solve the spectral problem for very large single instances of sparse

random graphs, as done in [55]. Both the replica and cavity approaches in [49] and [55]

retrieve known results such as the Kesten-McKay law for the spectra of random regular

graphs [56,57], the Marčenko-Pastur law and the Wigner’s semicircle law respectively for

sparse covariance matrices and for Erdős-Rényi adjacency matrices in the large mean

degree limit. Both approaches have also been employed to characterise the spectral
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density of sparse Markov matrices [58, 59] and graphs with modular [60] and small-

world [61] structure and with topological constraints [62]. The localisation transition for

sparse symmetric matrices was studied in [63]. The two methods have also been extended

to the study of the spectral density of sparse non-Hermitian matrices [64, 65], whereas

eigenvalue outliers have been considered in [66]; for an excellent review, see [67]. The

spectral properties of the Hashimoto non-backtracking operator - arising in the cavity

solution (see Appendix A for details) have been investigated in [68–70]. In this paper,

we propose a “grand canonical” cavity derivation that differs in the details from [41]

(see Section 3). We also provide a detailed analysis of the single-instance recursion

equations, showing that their convergence is strictly related to the spectral properties

of a modified non-backtracking operator associated with the single-instance matrix. At

the same time, building on the insights coming from the replica treatment, we are able

to better understand the behaviour of the stochastic recursions that provide the solution

of the top eigenpair problem in the thermodynamic limit. Furthermore, the population

dynamics algorithm employed to solve these recursion allows us to characterise the

distributions of the cavity fields in the thermodynamic limit and identify the individual

contributions of nodes of different degrees k to the top eigenvector’s entries.

The plan of the paper is as follows. In Section 2, we will formulate the problem and

provide the main starting points. In Section 3, we will describe the cavity approach to

the problem, first for the single instance case (in 3.1), and then in the thermodynamic

limit (in 3.2). In Section 4, we formulate the replica approach to the same problem,

first focussing on the largest eigenvalue problem (in 4.1) and then on the density of

top eigenvector’s components (in 4.2). For both problems, we take the weighted Erdős-

Rényi and random regular graphs as representative examples. In Section 5 we build

on our previous results to complete the picture for Markov transition matrices on a

random graph structure. In Section 6, we provide the details of the population dynamics

algorithm, and in Section 7 we offer a summary and outlook for future research. In

Appendix A, we provide a detailed discussion of the single-instance cavity approach

and associated non-backtracking operator. In Appendix B, we offer a detailed replica

derivation of the typical location of the largest eigenvalue for sparse graphs characterised

by a generic degree distribution p(k).

2. Formulation of the problem

We consider a sparse random N×N symmetric matrix J = (Jij), with real i.i.d. entries.

The matrix entries are defined as

Jij = cijKij , (1)

where the cij ∈ {0, 1} constitute the connectivity matrix, i.e. the adjacency matrix of

the underlying graph, and the Kij encode bond weights. We will typically consider the

case of Poissonian highly sparse connectivity - where the node degrees ki (or equivalently

the number of nonzero elements per row of J) fluctuate according to a bounded Poisson
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distribution

P (ki = k) = N−1e−c̄c̄k/k! , k = 0, . . . , kmax , (2)

with the mean degree a finite constant c ≡ 〈k〉 and N =
∑kmax

k=0 e−c̄c̄k/k! to ensure

normalisation. The bond weights Kij will be i.i.d. random variables drawn from a

parent pdf p(K) with bounded support. This setting is sufficient to ensure that the

largest eigenvalue λ1 of J will remain of ∼ O(1) for N →∞.

The spectral theorem ensures that J can be diagonalised via an orthonormal basis

of eigenvectors vα with corresponding real eigenvalues λα (α = 1, . . . , N),

Jvα = λαvα , (3)

for each eigenpair α = 1, . . . , N . Assume that there is no eigenvalue degeneracy, and

that they are sorted λ1 > λ2 > . . . > λN .

The goal of this work is to set up a formalism based on the statistical mechanics of

disordered systems to find:

• The average (or typical value) 〈λ1〉J of the largest eigenvalue λ1.

• The density %(u) =
〈

1
N

∑N
i=1 δ(u − v

(i)
1 )
〉
J

of the top eigenvector’s components,

v1 = (v
(1)
1 , . . . , v

(N)
1 ) ,

where the average 〈·〉J is taken over the distribution of the matrix J .

The problem can be formulated as the optimisation problem of a quadratic function

Ĥ(v), according to which v1 is the vector normalized to N that realises the condition

Nλ1 = min
|v|2=N

[
Ĥ(v)

]
= min
|v|2=N

[
−1

2
(v, Jv)

]
, (4)

as dictated by the Courant-Fischer definition of eigenvectors. The round brackets (·, ·)
indicate the dot product between vectors in RN . It is easy to show that Ĥ (v) is bounded

−1

2
λ1N ≤ Ĥ (v) ≤ −1

2
λNN , (5)

and attains its minimum when computed on the top eigenvector.

For a fixed matrix J , the minimum in (4) can be computed by introducing a

fictitious canonical ensemble of N -dimensional vectors v at inverse temperature β, whose

Gibbs-Boltzmann distribution reads

Pβ,J(v) =
1

Z
exp

[
β

2
(v, Jv)

]
δ(|v|2 −N) , (6)

where the delta function enforces normalisation. Clearly, in the low temperature limit

β → ∞, only one ’state’ remains populated, which corresponds to v = v1, the top

eigenvector of the matrix J . The hard normalisation constraint can also be relaxed for

our purposes, and replaced with a soft, ”grand canonical” version

Pβ,J (v) =
1

Z
exp

{
β

[
1

2
(v, Jv)− λ

2
(v,v)

]}
, (7)
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Figure 1. Tree-like structure of a graph. The indexing refers to the labels used in the

cavity method treatment in subsection 3.1.

where λ is an auxiliary Lagrange multiplier. The two versions above are expected to

provide the same physical results in the limits β,N →∞, as we explicitly demonstrate

by using (7) for our cavity treatment in Section 3, and (6) as a starting point of our

replica calculation in Section 4.

3. Cavity approach

In what follows, we will use a cavity method formulation for the top eigenpair problem

which is deeply rooted in the statistical mechanics approach to disordered systems.

Our formulation provides equations for the statistics of the top eigenpair that are

fully equivalent to those found earlier by Kabashima et al. in [41]. Our treatment,

however, brings more neatly to the surface a few subtleties related to the solution of

self-consistency equations and their range of applicability, this way providing a more

transparent derivation.

The central idea of the cavity method [52] consists in computing observables related

to a given node, relying on some information concerning its neighbourhood when the

node of interest is removed from the network. It is useful every time the underlying

graph has a finite connectivity structure: its predictions become exact for trees and

approximately exact for tree-like structures (where loops are negligible) such as graphs

in the high sparsity regime.
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3.1. Single instance

Consider for the time being a single instance of the random matrix J . Starting from

the soft-constraint distribution (7), whose partition function is

Z =

∫
dv exp

{
β

[
1

2
(v, Jv)− λ

2
(v,v)

]}
, (8)

it is trivial to notice that the condition λ > λ1 is necessary to ensure convergence for

all β.

The marginal distribution of the component vi, obtained by integrating out all other

components in (7), and using the sparsity condition Jij = 0 if j /∈ ∂i (where ∂i denotes

the immediate neighbourhood of i) is

Pi (vi) =
1

Zi
exp

(
−βλ

2
v2
i

)∫
dv∂i exp

(
β
∑
j∈∂i

Jijvivj

)
P (i) (v∂i) , (9)

where P (i)(v∂i) is the joint distribution of the components pertaining to the immediate

neighbourhood of i, ∂i, when the node i has been removed. Indeed, all the components

outside ∂i can be integrated out without difficulty, and the resulting constant term

can be just reabsorbed in the normalisation constant. P (i)(v∂i) is also known as cavity

probability distribution.

Adopting now a tree-like approximation, which is accurate for very sparse graphs,

all nodes j in ∂i are connected with each other only through i (see Fig. 1), therefore

get disconnected when the node i is removed from the network: this implies that the

integral appearing in (9) factorises as

Pi (vi) =
1

Zi
exp

(
−βλ

2
v2
i

)∏
j∈∂i

∫
dvj exp (βJijvivj)P

(i)
j (vj) . (10)

In the same way, a similar expression can be derived for the marginal cavity

distribution P
(i)
j (vj) now appearing in (10). Iterating the reasoning as before, and

further removing the node j ∈ ∂i in the network in which the node i had already been

removed, one can write

P
(i)
j (vj) =

1

Z
(i)
j

exp

(
−βλ

2
v2
j

) ∏
`∈∂j\i

∫
dv` exp (βJj`vjv`)P

(j)
` (v`) , (11)

where the symbol ∂j\i denotes the neighbourhood of j excluding i.

Equation (11) has now become a self-consistent equation for the cavity probability

distributions, which can be solved by a Gaussian ansatz for P
(i)
j (vj)

P
(i)
j (vj) =

√
βΩ

(i)
j

2π
exp

−βH(i)
j

2

2Ω
(i)
j

 exp

(
−β

2
Ω

(i)
j v

2
j + βH

(i)
j vj

)
, (12)
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where the parameters Ω
(i)
i and H

(i)
j are called cavity fields. This ansatz is chosen

to obtain a solution v whose components are not peaked at zero in the β → ∞
limit. Inserting the Gaussian ansatz (12) in (11) and performing the resulting Gaussian

integrals, one obtains

P
(i)
j (vj) =

1

Z
(i)
j

exp

(
−β

2
λv2

j

) ∏
`∈∂j\i

exp

β
2

(
Jj`vj +H

(j)
`

)2

Ω
(j)
`

 . (13)

Comparing the coefficients of the same powers of vj between (12) and (13), we obtain

the following two self-consistent relations which define the cavity fields Ω
(i)
i and H

(i)
j

Ω
(i)
j = λ−

∑
`∈∂j\i

J2
j`

Ω
(j)
`

, (14)

H
(i)
j =

∑
`∈∂j\i

Jj`

Ω
(j)
`

H
(j)
` . (15)

These equations have been obtained before in [41].

The Gaussian ansatz (12) can then be inserted in (10), resulting in a Gaussian

distribution for the single-site marginals

Pi (vi) =
1

Zi
exp

(
−β

2
Ωiv

2
i + βHivi

)
, (16)

where the N coefficients Ωi and Hi are given by the following equations

Ωi = λ−
∑
j∈∂i

J2
ij

Ω
(i)
j

, (17)

Hi =
∑
j∈∂i

Jij

Ω
(i)
j

H
(i)
j . (18)

Here, Ω
(i)
j and H

(i)
j are the fixed-point solutions of (14) and (15).

In the limit β →∞, the marginal distribution (16) converges to

Pi(vi) = δ

(
vi −

Hi

Ωi

)
, (19)

from which one concludes that the components of the top eigenvector of the fixed matrix

J (a single instance of the ensemble) must be given by v
(i)
1 = Hi/Ωi, where Hi and Ωi

are the values obtained from (17) and (18), after the fixed-points of the recursions (14)

and (15) have been obtained.

A detailed discussion on how to solve the above recursions in practice and on the

role of the (yet unspecified) multiplier λ is deferred to Appendix A. Although this
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derivation only relies on the tree-like approximation for the local connectivity and is

arguably very easy and intuitive, it is not particularly interesting as it stands: the

complexity of the cavity algorithm for a single instance is actually higher than a high-

precision, direct diagonalisation of the matrix J , therefore it is of little practical use per

se. It is, however, a conceptually necessary ingredient to discuss infinite-size matrices,

as we do in the next subsection.

3.2. Thermodynamic limit N →∞

In an infinitely large network, it is no longer possible to keep track of an infinite number

of cavity fields. Following [41], we consider first the joint probability density that the

cavity fields of type Ω
(i)
j and H

(i)
j take up values around ω and h

q (ω, h) = Prob
(

Ω
(i)
j = ω,H

(i)
j = h

)
=

(
N∑
i=1

ki

)−1 N∑
i=1

∑
j∈∂i

δ
(
ω − Ω

(i)
j

)
δ
(
h−H(i)

j

)
, (20)

where N is now large but finite. This is a properly normalised pdf: indeed, we can

associate two cavity fields Ω
(i)
j and H

(i)
j to any link (i, j) of the network. Since every

node i is the source of ki links, their total number is given by
∑N

i=1 ki.

Next, one may appeal to the single-instance update rules given by (14) and (15)

to characterise the above distribution self-consistently, as is done in [41]. It should be

stressed that in an infinitely large network links can only be distinguished by the degree

of the node they are pointing to. Thus, for a given edge (i, j) pointing to a node j of

degree k, the values ω and h of the pair of cavity fields Ω
(i)
j and H

(i)
j living on this edge

are determined respectively by the k − 1 values {ω`} and {h`} of the cavity fields Ω
(j)
`

and H
(j)
` living on each of the edges connecting j with its neighbours ` ∈ ∂j\i. In an

infinite system, these values can be thought of as k − 1 independent realisations of the

random variables of types Ω
(i)
j and H

(i)
j , drawn from their joint pdf q(ω, h). The entries

of J that appear in the single instance recursions (14) and (15) are replaced by a set

{K`}k−1 of k − 1 independent realisations of the random variable K, each distributed

according to the pdf p(K) of bond weights. The full distribution q(ω, h) is then obtained

by weighing each edge contribution with the probability r(k) of having a random link

pointing to a node of degree k and summing up over all possible degrees up to kmax,

leading to the self-consistency equation

q (ω, h) =
kmax∑
k=1

r (k)

∫ [k−1∏
`=1

dq (ω`, h`)

]〈
δ

(
ω − λ+

k−1∑
`=1

K2
`

ω`

)
δ

(
h−

k−1∑
`=1

h`K`

ω`

)〉
{K}k−1

,

(21)

where dq (ω`, h`) ≡ dω`dh`q (ω`, h`), and the average 〈·〉{K}k−1
is taken over k − 1

independent realisations of the random variable K. We recall that
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r (k) =
kp (k)

〈k〉
, (22)

where p (k) is the probability of having a node of degree k and 〈k〉 =
∑

k kp (k) [71].

The sum in (21) starts from k = 1 since we should not be concerned with isolated nodes.

Eq. (21) is generally solved via a population dynamics algorithm (see Section 6 for

details). In some exceptional cases, such as for adjacency matrices of random regular

graphs, it can be solved analytically (see discussion in sections 4.1.2 and 4.2.2 below).

In a similar fashion, the joint pdf of the coefficients Ωi and Hi can be expressed as

Q (Ω, H) =
1

N

N∑
i=1

δ (Ω− Ωi) δ (H −Hi) . (23)

In this case, there is a pair of marginal coefficients Ωi and Hi living on each node. Since

in the infinite size limit the nodes can only be distinguished by their degree, following

the same line of reasoning that led to (21), the joint pdf of the random variables of the

type Ωi and Hi in the thermodynamic limit can be written as

Q (Ω, H) =
kmax∑
k=0

p (k)

∫ [ k∏
`=1

dq (ω`, h`)

]〈
δ

(
Ω− λ+

k∑
`=1

K2
`

ω`

)
δ

(
H −

k∑
`=1

h`K`

ω`

)〉
{K}k

,

(24)

where p(k) is the degree distribution. Here, q (ω`, h`) is the fixed-point distribution

of cavity fields, i.e. the solution of the self-consistency equation (21), which should

therefore be solved beforehand.

The distribution of the top eigenvector’s components in the thermodynamic limit

is then obtained in terms of the pdf Q (Ω, H) in (24), exploiting the analogy with the

single-instance case in (19), and reads

%(u) =

〈
1

N

N∑
i=1

δ
(
u− v(i)

1

)〉
=

∫
dΩdH Q (Ω, H) δ

(
u− H

Ω

)
. (25)

Both equations (21) and (24) still depend on the parameter λ: it must be fixed

taking into account the normalisation of the top eigenvector. This condition amounts

to requiring that

1 = 〈u2〉 =

∫
dΩdH Q (Ω, H)

H2

Ω2
. (26)

Crucially, the value of λ for which the above normalisation condition is satisfied turns

out to be exactly equal to the typical largest eigenvalue, λ ≡ 〈λ1〉J . Indeed, for every

λ > 〈λ1〉J , the distribution of the h’s shrinks to a delta peak located at zero, whereas

for λ < 〈λ1〉J , negative values of the ω’s start to appear while the h’s grow without

bounds in the self-consistency solution of (21). This is not surprising, since λ < 〈λ1〉J
is precisely the range of values for λ that makes the Gibbs-Boltzmann distribution (7)

not normalisable.
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As a final remark on the cavity solution, the equations (21) and (25) will match

respectively (69) and (111) obtained via the replica method in Section 4 below.

The discussion above has the advantage of leading rather quickly to the results (24)

and (25). It is, however, instructive to reconsider this problem from the point of view of

the replica approach, which provides a lengthier but rather systematic procedure, and

arrives at the very same equations while departing from very different premises. Both

approaches (cavity or replicas) present different advantages and drawbacks - especially

if seen through the prism of full mathematical rigour - and it is therefore of interest

to compare them back to back. For the sake of clarity, we will keep the two pathways

(typical largest eigenvalue vs. density of top eigenvector’s components) clearly separate

until the point where we realise that the same self-consistency equation governs the

statistics of both quantities.

4. Replica derivation

In this section, we evaluate the average location of the largest eigenvalue and the density

of top eigenvectors’ components within the replica framework. The starting point of our

analysis is the formalism pioneered in [42]. However, our derivation is not confined to

specific connectivity distributions of the matrix entries as in [42], and thus provides a

rather general and robust methodology that can be applied to any graph with finite

mean connectivity and bounded maximal degree. We also make a quite transparent

and convincing case for the equivalence between the cavity and replica methods in these

problems. Moreover, as we did for the cavity approach, we thoroughly discuss bounds

on the value of parameters that guarantee a converging solution.

4.1. Typical largest eigenvalue

Consider again a N × N symmetric matrix Jij = cijKij. The joint distribution of the

matrix entries is

P ({Jij}|{ki}) = P ({cij}|{ki})
∏
i<j

δKij ,Kji
p (Kij) , (27)

where, in the framework of the configuration model [61], the distribution P ({cij}|{ki})
of connectivities {cij} compatible with a given degree sequence {ki} is given by

P ({cij}|{ki}) =
1

M
∏
i<j

δcij ,cji

( c
N
δcij ,1 +

(
1− c

N

)
δcij ,0

) N∏
i=1

δ∑
j cij ,ki

, (28)

and the pdf p (Kij) of bond weights (with compact support and upper edge ζ) can be

kept unspecified until the very end.

It has been shown in many works [49, 59] that a convenient shortcut for the

calculation consists in replacing the “microcanonical” Eq. (28) with the standard Erdős-

Rényi connectivity distribution



CONTENTS 13

P ({cij}) =
∏
i<j

δcij ,cji

( c
N
δcij ,1 +

(
1− c

N

)
δcij ,0

)
. (29)

Although Eq. (29) technically gives rise to an unbounded Poisson degree distribution

with mean c – and therefore a largest eigenvalue whose location typically grows with

N [20] – the final results (e.g. Eq. (68)) can be easily adjusted and extended to cover any

degree distribution p(k) with finite mean and bounded largest degree. For simplicity,

we will therefore consider the distribution of the matrix entries to be simply

P ({Jij}) = P ({cij})
∏
i<j

δKij ,Kji
p (Kij) (30)

at the outset, where P ({cij}) is given by (29). Once the Erdős-Rényi Poissonian degree

distribution has appeared in the formulae, it will be straightforward to replace it with

the actual finite-mean degree distribution of interest (for instance, the truncated Poisson

distribution (2)). In Appendix B, we will however provide a first-principle derivation for

sparse graphs with a generic degree distribution p(k), without relying on any shortcut.

The average of the largest eigenvalue can be computed as the formal limit

〈λ1〉J = lim
β→∞

2

βN
〈lnZ〉J , Z =

∫
dv exp

[
β

2
(v, Jv)

]
δ
(
|v|2 −N

)
, (31)

in terms of the quenched free energy of the model defined in (6).

The average over J is computed using the replica trick as follows

〈λ1〉J = lim
β→∞

2

βN
lim
n→0

1

n
ln 〈Zn〉J , (32)

where n is initially taken as an integer, and then analytically continued to real values

in the vicinity of n = 0.

The replicated partition function is

〈Zn〉J =

∫ ( n∏
a=1

dva

)〈
exp

(
β

2

n∑
a=1

N∑
i,j

viaJijvja

)〉
J

n∏
a=1

δ
(
|va|2 −N

)
. (33)

Taking the average w.r.t the joint distribution (30) of matrix entries yields [49]

〈
exp

(
β

2

n∑
a=1

N∑
i,j

viaJijvja

)〉
J

= exp

[
c

2N

∑
i,j

(〈
eβK

∑
a viavja

〉
K
− 1
)]

, (34)

where 〈·〉K denotes averaging over the single-variable pdf p (K) characterising the i.i.d.

bond weights Kij.

We also employ a Fourier representation of the Dirac delta enforcing the

normalisation constraints
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n∏
a=1

δ
(
|va|2 −N

)
=

∫ ∞
−∞

(
n∏
a=1

β

2

dλa
2π

)
n∏
a=1

exp

[
−i
β

2
λa

(
N∑
i=1

v2
ia −N

)]
. (35)

The replicated partition function thus becomes

〈Zn〉J =

(
β

4π

)n ∫ ( n∏
a=1

dvadλa

)
exp

(
i
β

2
N
∑
a

λa

)
exp

(
−i
β

2

∑
a

∑
i

λav
2
ia

)

× exp

[
c

2N

∑
i,j

(〈
eβK

∑
a viavja

〉
K
− 1
)]

. (36)

In order to decouple sites, we introduce the functional order parameter

ϕ (~v) =
1

N

N∑
i=1

n∏
a=1

δ (va − via) , (37)

where the symbol ~v denotes a n-dimensional vector in replica space. We enforce its

definition using the integral identity

1 =

∫
NDϕDϕ̂ exp

{
−i

∫
d~v ϕ̂ (~v)

[
Nϕ (~v)−

∑
i

n∏
a=1

δ (va − via)

]}
. (38)

In terms of this order parameter and its conjugate, the replicated partition function can

be written as

〈Zn〉J =

(
β

4π

)n
N

∫
DϕDϕ̂d~λ exp

(
−iN

∫
d~vϕ̂ (~v)ϕ (~v)

)
× exp

[
Nc

2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eβK

∑
a vav

′
a

〉
K
− 1
)]

exp

(
i
β

2
N
∑
a

λa

)

×
∫ n∏

a=1

dva exp

(
−i
β

2

∑
a

∑
i

λav
2
ia

)
exp

[
i
∑
i

∫
d~vϕ̂ (~v)

n∏
a=1

δ (va − via)

]
.

(39)

The multiple integral in the last line above factorises into N identical copies of the same

n-dimensional integral, and can thus be written as

I = exp

[
NLog

∫
d~v exp

(
−i
β

2

∑
a

λav
2
a + iϕ̂(~v)

)]
, (40)

where Log denotes the principal branch of the complex logarithm.
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Therefore, the replicated partition function takes a form amenable to a saddle point

evaluation for large N (where we assume we can safely exchange the limits n → 0 and

N →∞)

〈Zn〉J ∝
∫
DϕDϕ̂d~λ exp

(
NSn[ϕ, ϕ̂, ~λ]

)
, (41)

where

Sn[ϕ, ϕ̂, ~λ] = S1 [ϕ, ϕ̂] + S2 [ϕ] + S3(~λ) + S4[ϕ̂, ~λ] , (42)

and

S1[ϕ, ϕ̂] = −i

∫
d~vϕ̂(~v)ϕ(~v) , (43)

S2[ϕ] =
c

2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eβK

∑
a vav

′
a

〉
K
− 1
)
, (44)

S3(~λ) = i
β

2

∑
a

λa , (45)

S4[ϕ̂, ~λ] = Log

∫
d~v exp

[
−i
β

2

∑
a

λav
2
a + iϕ̂(~v)

]
. (46)

The stationarity of the action Sn w.r.t. variations of ϕ and ϕ̂ requires that the

order parameter at the saddle point ϕ? and its conjugate ϕ̂? satisfy the following coupled

equations

iϕ̂?(~v) = c

∫
d~v′ϕ?(~v′)

[〈
exp

(
βK

∑
a

vav
′
a

)〉
K

− 1

]
, (47)

ϕ?(~v) =
exp

[
−iβ

2

∑
a λav

2
a + iϕ̂? (~v)

]∫
d~v′ exp

[
−iβ

2

∑
a λav

′2
a + iϕ̂?(~v′)

] , (48)

which have to be solved together with the stationarity conditions w.r.t each component

λā of ~λ

1 =

∫
d~v exp

[
−iβ

2

∑
a λav

2
a + iϕ̂?(~v)

]
v2
ā∫

d~v exp
[
−iβ

2

∑
a λav

2
a + iϕ̂? (~v)

] ∀ā = 1, . . . , n . (49)

The equations (47) and (48) bear a striking resemblance with the saddle-point

equations leading to the spectral density of Erdős-Rényi random graphs [46,49], except

for the fact that the “Hamiltonian” of our problem is real-valued and includes the

inverse temperature β. Following [49], we will now search for replica-symmetric solutions

written in the form of superpositions of uncountably infinite Gaussians with a non-zero

mean. This ansatz will be preserving permutational symmetry between replicas, but (at

odds with the choice in [49]) not the rotational invariance in the space of replicas‡:

‡ A rotationally invariant ansatz would not produce a physically meaningful result for this problem.
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λā = λ ∀ā = 1, . . . , n , (50)

ϕ?(~v) =

∫
dωdh π (ω, h)

n∏
a=1

1

Zβ(ω, h)
exp

[
−β

2
ωv2

a + βhva

]
, (51)

iϕ̂?(~v) = ĉ

∫
dω̂dĥ π̂(ω̂, ĥ)

n∏
a=1

exp

[
β

2
ω̂v2

a + βĥva

]
, (52)

where

Zβ(x, y) =

√
2π

βx
exp

(
βy2

2x

)
. (53)

To justify the procedure above, on one hand the replica symmetric ansatz has been

known for quite a while to lead to the correct results for the spectral problem of sparse

random matrices [45, 46, 49, 72]. On the other hand, it is known that expressing the

order parameter as a superposition of Gaussian pdfs provides the correct solution for

harmonically coupled system [51].

In (51) and (52), π and π̂ are normalised joint pdfs of the parameters appearing in

the Gaussian distributions, while ĉ is introduced taking into account that iϕ̂(~v) needs not

be normalised. The advantage of writing an ansatz in this form is that - once inserted

into (47) and (48) - it makes it possible to perform explicitly the ~v-integrals, eventually

leading to simpler coupled equations for π and π̂, as detailed below. The convergence of

the ~v-integrals will also impose the following conditions on ω and ω̂: ω > ω̂ and ω > ζ

(where ζ is the upper edge of the support of the pdf p(K) of bond weights).

As a further remark, the different signs in front of ω and ω̂ in (51) and (52) are

picked with an eye towards performing the subsequent ~v-integrals: since iϕ̂?(~v) is not a

pdf, ω̂ being positive is not problematic.

Rewriting the action in terms of π and π̂, after performing the ~v-integrations, and

extracting the leading n→ 0 contribution yields

S1[π, π̂] = −ĉ− ĉn
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h+ ĥ)

Zβ(ω, h)
, (54)

S2[π] =
c

2
n

∫
dπ(ω, h)dπ(ω′, h′)

〈
ln
Z

(2)
β (ω, ω′, h, h′, K)

Zβ (ω, h)Zβ (ω′, h′)

〉
K

, (55)

S3(λ) = i
β

2
nλ , (56)

S4[π̂, λ] = ĉ+ n

∞∑
s=0

pĉ (s)

∫
{dπ̂}s Log Zβ

(
iλ− {ω̂}s, {ĥ}s

)
, (57)

where we have introduced the shorthands

Z
(2)
β (ω, ω′, h, h′, K) = Zβ(ω′, h′)Zβ

(
ω − K2

ω′
, h+

h′K

ω′

)
(58)
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and {dπ̂}s =
∏s

`=1 dω̂`dĥ`π̂(ω̂`, ĥ`), along with {ω̂}s =
∑s

`=1 ω̂` and {ĥ}s =
∑s

`=1 ĥ`.

The symbol pĉ(s) denotes a Poissonian degree distribution pĉ(s) = ĉse−ĉ/s! with mean

ĉ, which naturally arises in the calculation. We note that the O(1) terms in S1 and S4

cancel, so that Sn = O(n) as expected.

The full action in terms of π and π̂ now reads

Sn = S1[π, π̂] + S2[π] + S3(λ) + S4[π̂, λ] . (59)

The stationarity condition w.r.t λ entails

∂S

∂λ

∣∣∣
λ=λ?

= 0⇒ 1 =
∞∑
s=0

pĉ(s)

∫
{dπ̂}s〈v2〉P̄ , (60)

where the average 〈·〉P̄ is taken with respect to the Gaussian measure

P̄ (v) =

√
β (iλ? − {ω̂}s)

2π
exp

−β
2

(iλ? − {ω̂}s)

(
v − {ĥ}s

iλ? − {ω̂}s

)2
 . (61)

More explicitly, (60) reads

1 =
∞∑
s=0

pĉ(s)

∫
{dπ̂}s

 1

β(iλ? − {ω̂}s)
+

(
{ĥ}s

iλ? − {ω̂}s

)2
 . (62)

We note that the β-dependent term vanishes as β →∞.

The stationarity condition with respect to variations of π, δS
δπ

= 0, entails the

condition

ĉ

c

∫
dπ̂(ω̂, ĥ) ln

Zβ(ω − ω̂, h+ ĥ)

Zβ(ω, h)
=

∫
dπ(ω′, h′)

〈
ln
Z

(2)
β (ω, ω′, h, h′, K)

Zβ(ω, h)

〉
K

+
γ

c
, (63)

where γ is a Lagrange multiplier introduced to enforce the normalisation of π. Given

the definition of Z
(2)
β , (63) is equivalent to

ĉ

c

∫
dπ̂(ω̂, ĥ) lnZβ(ω − ω̂, h+ ĥ) =

∫
dπ(ω′, h′)

〈
lnZβ

(
ω − K2

ω′
, h+

h′K

ω′

)〉
K

+
γ

c
.

(64)

The condition that (64) must hold for all ω and h can be translated into

π̂(ω̂, ĥ) =

∫
dωdh π(ω, h)

〈
δ

(
ω̂ − K2

ω

)
δ

(
ĥ− hK

ω

)〉
K

, (65)

where c = ĉ to enforce normalization of π̂.

Similarly, the stationarity condition with respect to variations of π̂, δS
δπ̂

= 0, produces

the condition
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∫
dπ(ω, h) lnZβ

(
ω − ω̂, h+ ĥ

)
=
∞∑
s=1

s

c
pc(s)

∫
{dπ̂}s−1Log Zβ(iλ? − {ω̂}s−1 − ω̂, {ĥ}s−1 + ĥ)

+
γ̂

c
, (66)

where γ̂ is the Lagrange multiplier enforcing the normalisation of π̂. We can then

conclude that the saddle-point pdf π must satisfy

π(ω, h) =
∞∑
s=1

s

c
pc(s)

∫
{dπ̂}s−1δ (ω − (iλ? − {ω̂}s−1)) δ(h− {ĥ}s−1) . (67)

Inserting (65) into (67) yields, after simple algebra

π(ω, h) =
∞∑
s=1

s

c
pc(s)

∫
{dπ}s−1

〈
δ

(
ω −

(
iλ? −

s−1∑
`=1

K2
`

ω`

))
δ

(
h−

s−1∑
`=1

h`K`

ω`

)〉
{K}s−1

,

(68)

where the brackets 〈·〉{K}s−1
denote averaging with respect to a collection of s− 1 i.i.d.

random variables K`, each drawn from the bond weight pdf p(K).

We recall at this point that the replica derivation started under the simplifying

assumption that the connectivity distribution was that of a standard Erdős-Rényi graph

(see (30)). This implies that the degree distribution pc(s) - naturally appearing in (68) -

is a Poisson distribution with unbounded support. However, Eq. (68) remains formally

valid for any degree distribution pc(s) with finite mean c. In our case, it is then necessary

to consider (2) and manually correct§ (68) to account for the existence of a maximal

degree, therefore yielding

π(ω, h) =
kmax∑
s=1

r(s)

∫
{dπ}s−1

〈
δ

(
ω −

(
iλ? −

s−1∑
`=1

K2
`

ω`

))
δ

(
h−

s−1∑
`=1

h`K`

ω`

)〉
{K}s−1

,

(69)

where r(s) is the link-degree distribution (22). Note that (69) is formally identical to

the self-consistent equation (21) found for the cavity field pdf, after the identification

π(ω, h) ≡ q(ω, h).

The constant term λ ≡ iλ? – which turns out to be real-valued – needs to be tuned

so as to enforce (62) for β →∞, which reads (trading π̂ for π)

1 =
kmax∑
s=0

pc(s)

∫
{dπ}s

〈 ∑s
`=1

h`K`

ω`

λ−
∑s

`=1

K2
`

ω`

2〉
{K}s

, (70)

§ Obviously, the “truncated” Eq. (69) would have been obtained anyway without any shortcuts, had

we started from the exact connectivity distribution (28) at the outset. This is explicitly shown in

Appendix B.
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where – to avoid introducing more cumbersome notations – pc(s) now indicates the

actual bounded degree distribution (2).

Surprisingly, even though the cavity and replica methods depart from completely

different assumptions, they converge towards the same result: this has been already

shown in [53] for the spectral problem in the Erdős-Rényi case.

A few remarks are in order:

• For the action to converge, we have obtained the following conditions ω > ζ, ω > ω̂

and λ ≡ iλ? > {ω̂}s, where ζ is the upper bound of the support of the bond weights

p(K).

• Thanks to the structure of π̂ (65), the entire action can be just expressed in term

of π (68) and λ (70).

• The value of λ ≡ iλ? is real, and corresponds to the typical value of the largest

eigenvalue 〈λ1〉J , as will be shown in subsection 4.1.1. This is of course again

compatible with the cavity results.

• In Eq. (69), the contribution corresponding to s = 1 in the sum gives rise to the

term δ(ω−λ) on the right hand side. Therefore, we expect to see a pronounced peak

at the location of λ = 〈λ1〉J in the plot of the marginal pdf π(ω) =
∫

dh π(ω, h),

once the contributions coming from nodes of different degrees are “unpacked”. This

is confirmed in Fig. 4 below.

• Both the cavity and replica approaches can be safely extended to non-Poissonian

degree distributions as well, as long as the mean connectivity c remains finite as

N →∞, thus considerably enlarging the class of models for which the equivalence

between cavity and replicas holds true.

4.1.1. Erdős-Rényi graph: weighted adjacency matrix. We proceed here with the case

of a weighted adjacency matrix of sparse Erdős-Rényi graphs, with bounded maximal

degree and bond weights drawn from the pdf p(K). The pure {0, 1}-adjacency matrix

case is recovered considering p(K) = δ(K − 1). Given the distributions (69) and (65)

at stationarity and recalling (B.18), the O(n) terms of the action Sn in (B.19) - keeping

only the leading β →∞ term - are expressed as:

S1 [π, π̂] = −nc
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h+ ĥ)

Zβ(ω, h)

' −ncβ
2

∫
dπ(ω, h)dπ(ω′, h′)

〈(
h+ h′K

ω′

)2

ω − K2

ω′

− h2

ω

〉
K

= −ncβ
2
I1 , (71)
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S2[π] = n
c

2

∫
dπ(ω, h)dπ(ω′, h′)

〈
ln
Zβ

(
ω − K2

ω′
, h+ h′K

ω′

)
Zβ(ω, h)

〉
K

' nc
β

4

∫
dπ(ω, h)dπ(ω′, h′)

〈(
h+ h

′
K
ω′

)2

ω − K2

ω′

− h2

ω

〉
K

= nc
β

4
I1 , (72)

S3 (λ) =
β

2
nλ , (73)

S4[π̂, λ] = n
∞∑
s=0

pc(s)

∫ [ s∏
`=1

dπ̂(ω̂`, ĥ`)

]
Log Zβ

(
λ− {ω̂}s, {ĥ}s

)

' n
β

2

∞∑
s=0

pc(s)

∫ [ s∏
`=1

dπ̂(ω̂`, ĥ`)

]
(∑s

`=1 ĥ`

)2

λ−
∑s

`=1 ω̂`

 . (74)

Multiplying and dividing the integrand of (74) by λ −
∑s

`=1 ω̂`, and using (62) (for

β →∞), we get

S4[π̂, λ] = n
β

2
λ− nβ

2

∞∑
s=1

pc(s)s

∫
dπ̂(ω̂, ĥ){dπ̂}s−1

( ∑s−1
`=1 ĥ` + ĥ

λ−
∑s−1

`=1 ω̂` − ω̂

)2

ω̂ . (75)

Multiplying the second term by 1 =
∫

dωdhδ (ω − (λ− {ω̂}s−1)) δ(h − {ĥ}s−1), and

using (67), we obtain (after some manipulations)

S4[π, λ] = n
β

2
λ− ncβ

2

∫
dπ(ω, h)dπ(ω′, h′)

〈
K2

ω′

(
h+ h′K/ω′

ω −K2/ω′

)2
〉
K

= n
β

2
λ− ncβ

2
I2 .

(76)

Summing up all terms, the action at the saddle point reads

Sn =
nβ

2

(
− c

2
I1 − cI2 + 2λ

)
, (77)

which would imply from (32) for the average of the largest eigenvalue the formula

〈λ1〉J = − c
2
I1 − cI2 + 2λ . (78)

However, we were able to numerically show that at the saddle point

λ = c

(
I2 +

1

2
I1

)
, (79)
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implying that

〈λ1〉J = λ , (80)

as expected from the corresponding cavity calculation. The identity (79) can be more

easily checked numerically once expressed in the alternative way

〈λ1〉J = λ = c

∫
dπ(ω, h)dπ(ω′, h′)

〈(
h+ h′K

ω′

ω − K2

ω′

)(
h′ + hK

ω

ω′ − K2

ω

)
K

〉
K

, (81)

which has the additional advantage of showing explicitly that λ ≡ iλ? is indeed a real-

valued quantity.

The bottom panels in Fig. 2 show the marginal distributions π(ω) =
∫

dh π(ω, h)

and π(h) =
∫

dω π(ω, h) for the case of a pure Erdős-Rényi {0, 1}-adjacency matrix, for

which p(K) = δ(K−1). Figure 4 instead shows π(ω) and π(h) for the case of a weighted

Erdős-Rényi adjacency matrix, with a uniform bond pdf p(K) = 1/2 for K ∈ (1, 3).

4.1.2. Random regular graph: adjacency matrix. We now consider the simpler and

analytically tractable case of the random regular graph (RRG). A RRG with connectivity

c is characterized by the property that every node has exactly c neighbours, or

equivalently every row of its {0, 1}-adjacency matrix has exactly c nonzero entries. This

implies that the largest eigenvalue of such matrix is 〈λ1〉J = λ = c (deterministically),

and its corresponding eigenvector has all identical components v1 = (1, 1, ..., 1)T .

In this case, the Poissonian degree distribution featuring in (68) can be safely

replaced by δs,c. Furthermore, if we consider the pure adjacency matrix case (i.e. with

p(K) = δ(K − 1)), (68) and (70) become

π(ω, h) =

∫
{dπ}c−1δ

(
ω −

(
λ−

c−1∑
`=1

1

ω`

))
δ

(
h−

c−1∑
`=1

h`
ω`

)
, (82)

1 =

∫
{dπ}c

( ∑c
`=1

h`
ω`

λ−
∑c

`=1
1
ω`

)2

, (83)

which can be exactly solved by the ansatz

π(ω, h) = δ(ω − ω̄)δ(h− h̄) , (84)

leading to the following equations for the parameters ω̄, h̄ and λ

ω̄ = λ− c− 1

ω̄
, (85)

h̄ = (c− 1)
h̄

ω̄
, (86)

1 =

(
ch̄/ω̄

λ− c/ω̄

)2

. (87)

Eq. (86) entails that ω̄ = c − 1. Then, inserting this value in (85), the value of λ is

λ = c.
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Figure 2. All panels refer to the Erdős-Rényi adjacency matrix in the limit N →∞.

The plots are obtained via the population dynamics algorithm described in Section

6. In all cases, the mean connectivity is c = 4, kmax = 16 and the population

size is NP = 106. The resulting typical top eigenvalue is 〈λ1〉J ≈ 5.254. Top left

panel: comparison between results for the density of top eigenvector’s components (see

(25) or equivalently (111)), obtained with population dynamics (red stars) and direct

diagonalisation (green diamonds). Top right panel: density of the top eigenvector’s

components in the Erdős-Rényi case: the thick blue line is the full pdf, whereas the

thinner curves underneath indicate the contributions from nodes of various degree from

k = 0 to k = 16. Only the degree contributions up to k = 11 are labelled: all the

other (larger) degree contributions are barely distinguishable as they fall on top of

each other in the tail of the distribution. Bottom left panel: marginal distribution

of the inverse single site variances ω. The thick dashed line represents the full pdf,

the thinner curves underneath stand for the single degree contributions, from k = 1

to k = 16. The rightmost peak at ω = λ corresponds to k = 1: the degree decreases

as the peaks are centered at lower ω. Also in this case, only the degree contributions

up to k = 11 are highlighted. Bottom right panel: marginal pdf of the single-site

bias fields h. Again, the thick dashed line represents the full distribution, the thinner

curves stand for the degree contributions from k = 1 to k = 16. The leftmost peak at

h = 0 corresponds to k = 1: as h grows, the pdf π(h) receives contributions from higher

degrees. Also in this case, only the degree contributions up to k = 11 are highlighted.
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Figure 3. This panel refers to the behaviour of the typical largest eigenvalue in the

Erdős-Rényi adjacency matrix case as the maximum degree kmax is varied. The value

of 〈λ1〉 is found via popolation dynamics for any fixed value of kmax. Each value has

been then checked against direct diagonalisation estrapolation at N →∞. The mean

connectivity parameter c̄ appearing in (2) is set to 4, whereas the population size is

NP = 106 for any data point. Clearly, the mean degree c tends to c̄ = 4 as kmax

increases. As expected, 〈λ1〉 grows as kmax increases, but the growth becomes slower

as the probability of finding a node of higher and higher degree becomes negligible

even in the thermodynamic limit.

The value of h̄ can then be found exploiting the normalization condition (87),

yielding h̄ = c− 2.

The action at the saddle-point reads then

Sn = n
β

2

h̄2

ω̄

[
− ω̄ + 1

ω̄ − 1
+

2

ω̄ − 1
+ 1

]
+ n

β

2
c = n

β

2
c , (88)

and therefore, the typical largest eigenvalue is

〈λ1〉J = lim
β→∞

2

βN
lim
n→0

1

n
Nn

β

2
c = c , (89)

equal to λ as expected.

4.2. Density of the top eigenvector’s components

In this statistical mechanics framework, the quantity

%̃β (u) =

〈
1

N

N∑
i=1

δ (u− vi)

〉
(90)

is defined such that in the limit β → ∞ it gives the density of the top eigenvector

components for a given N × N sparse symmetric random matrix J . The simple angle
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Figure 4. Marginal distributions π(ω) and π(h) for Erdős-Rényi weighted adjacency

matrices in the limit N → ∞. The graphs are obtained via the population dynamics

algorithm. Here the mean connectivity is c = 4, kmax = 16 and the population size

is NP = 106. The bond weight distribution is chosen to be uniform, specifically

p(K) = 1/2 for all K ∈ [1, 3]. The resulting typical top eigenvalue is 〈λ1〉J ≈ 10.8407.

Top panel: marginal distribution of the ω-variables; the thick blue line represents

the full distribution, the thinner curves underneath correspond to the various degree

contributions from k = 1 up to k = 16. The contribution of nodes with degree k = 1

corresponds to the peak located at ω = 〈λ1〉J ≈ 10.8407, as expected from Eq. (69).

The peculiar structure of the distribution π(ω) in the case of the pure adjacency matrix

(see Fig. 2) where every single degree contribution corresponds to a specific peak in

π(ω) is lost here, due to the presence of nontrivial bond weights. As in Fig. 2, only the

degree contributions up to k = 11 are labelled. Bottom panel: marginal distribution

of the bias fields h; again, the thick blue line represents the full distribution, while the

thinner curves underneath correspond to the different degree contributions. Again,

only the degree contributions up to k = 11 are labelled.
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brackets 〈...〉 stands for thermal averaging, i.e. with respect to the Gibbs-Boltzmann

distribution (6) of the system

Pβ,J(v) =
exp

(
β
2

(v, Jv)
)
δ
(
|v|2 −N

)∫
dv′ exp

(
β
2
(v′, Jv′)

)
δ
(
|v′|2 −N

) . (91)

Defining an auxiliary partition function as

Z(β)
ε (t, J ;u) =

∫
dv exp

[
β

2
(v, Jv) + βt

∑
i

δε (u− vi)

]
δ
(
|v|2 −N

)
, (92)

where δε is a smooth regulariser of the delta function, the quantity (90) can be formally

expressed as

%̃β(u) = lim
ε→0+

1

βN

∂

∂t
lnZ(β)

ε (t, J ;u)
∣∣∣
t=0

. (93)

Averaging now over the matrix ensemble

%β(u) = 〈%̃β (u)〉J (94)

and sending β →∞ at the very end, the density of the top eigenvector’s components is

eventually given by the remarkable formula

%(u) = lim
β→∞

lim
ε→0+

1

βN

∂

∂t

〈
lnZ(β)

ε (t, J ;u)
〉
J

∣∣∣
t=0

. (95)

To compute the average of the logarithm of the auxiliary partition function

Z
(β)
ε (t, J ;u), we will employ the replica trick once again〈

lnZ(β)
ε (t, J ;u)

〉
J

= lim
n→0

1

n
ln
〈
[Z(β)

ε (t, J ;u)]n
〉
J
. (96)

We can anticipate that the replicated partition function will take the form

〈
[Z(β)

ε (t, J ;u)]n
〉
J
∝
∫
DϕDϕ̂d~λ exp

[
NS(β)

n

[
ϕ, ϕ̂, ~λ; t, ε;u

]]
, (97)

where ϕ and ϕ̂ are functional order parameters. In a saddle point approximation for

large N 〈
[Z(β)

ε (t, J ;u)]n
〉
J
≈ exp

[
NS(β)

n

(
ϕ?, ϕ̂?, ~λ?; t, ε;u

)]
, (98)

where the starred objects satisfy self-consistency equations in which t can be safely set to

zero: indeed, the partial derivative ∂
∂t

in (95) only acts on terms containing any explicit

dependence on t, and not through any other indirect functional dependence. Inserting

(98) into (96), and assuming that

S(β)
n

(
ϕ?, ϕ̂?, ~λ?; t, ε;u

)
∼ nsβ (t, ε;u) + o(n) (99)
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as n → 0 (in a replica-symmetric setting), the final expression for the average density

of top eigenvector’s components for N →∞ reduces to

%(u) = lim
β→∞

1

β
s′β (0, 0;u) , (100)

where (·)′ stands for differentiation with respect to t.

Interestingly, we will find that the stationarity conditions defining ϕ?, ϕ̂? and λ? at

the saddle point for t = 0 are just identical to those found in the replica calculation for

the largest eigenvalue. The explicit n-dependence of the action S
(β)
n

(
ϕ?, ϕ̂?, ~λ?; t, ε;u

)
is extracted by representing the order parameters ϕ and ϕ̂ as an infinite superposition

of Gaussians, as previously done for the leading eigenvalue calculation.

In the next subsections, we will apply this formalism to the weighted Erdős-Rényi

and random regular adjacency matrices case.

4.2.1. Erdős-Rényi graph: weighted adjacency matrix. The average replicated partition

function becomes

〈
[Z(β)

ε (t, J ;u)]n
〉
J

=

∫ n∏
a=1

(dva)

∫ n∏
a=1

(
β

4π
dλa

)
exp

(
i
β

2
N
∑
a

λa

)

× exp

[
c

2N

∑
ij

(〈
eβK

∑
a viavja

〉
K
− 1
)
− i

β

2

∑
a

∑
i

λav
2
ia + βt

∑
a

∑
i

δε (u− via)

]
,

(101)

in complete analogy with (36).

By introducing the functional order parameter

ϕ(~v) =
1

N

∑
i

∏
a

δ (va − via) (102)

via the usual integral identity

1 =

∫
NDϕDϕ̂ exp

{
−i

∫
d~vϕ̂(~v)

[
Nϕ(~v)−

∑
i

∏
a

δ (va − via)

]}
, (103)

the replicated partition function can be once again cast in a form that allows for a saddle

point approximation〈
[Z(β)

ε (t, J ;u)]n
〉
J
∝
∫
DϕDϕ̂d~λ exp

[
NS(β)

n

[
ϕ, ϕ̂, ~λ; t, ε;u

]]
, (104)

where the action S
(β)
n

[
ϕ, ϕ̂, ~λ; t, ε;u

]
is the sum of four terms

S(β)
n

[
ϕ, ϕ̂, ~λ; t, ε;u

]
= S1[ϕ, ϕ̂] + S2[ϕ] + S3(~λ) + S4[ϕ̂, ~λ; t, ε;u] , (105)
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where for simplicity we omit the full dependence on variables on the right hand side.

The first three contributions are identical to those appearing in the largest eigenvalue

calculation (see (43), (44) and (45)). The explicit t and u dependence is confined to the

fourth contribution,

S4[ϕ̂, ~λ; t, ε;u] = Log

∫
d~v exp

[
−i
β

2

∑
a

λav
2
a + βt

∑
a

δε (u− va) + iϕ̂ (~v)

]
. (106)

The saddle point equations for ϕ?, ϕ̂? (where we can safely set t = 0) are then

identical to those (see (47) and (48)) appearing in the calculation for the average largest

eigenvalue. Therefore we can follow the same strategy as before, and represent ϕ?

and ϕ̂? as uncountably infinite superposition of Gaussians, whose parameters fluctuate

according to joint pdfs π and π̂ as in (51) and (52). Such joint pdfs satisfy the very

same self-consistency equations as in (68) and (65) and for these reasons we can use

the same label as before. The only difference with respect to the previous case is in the

extra t-derivative that we have to take from the contribution S4(ϕ̂?, λ; t, ε;u).

Inserting the ansatz

iϕ̂?(~v) = ĉ

∫
dω̂dĥ π̂(ω̂, ĥ)

n∏
a=1

exp

(
β

2
ω̂v2

a + βĥva

)
(107)

into (106), and expanding eiϕ̂?(~v) =
∑

s≥0
(iϕ̂?(~v))s

s!
, we obtain (in the limit n→ 0)

S4(ϕ̂?, λ?; t, ε;u) = ĉ+ n
∞∑
s=0

pĉ (s)

∫
{dπ̂}s Log

∫
dv exp

[
−i
β

2
λ?v2 + βtδε (u− v)

+
β

2
{ω̂}sv2 + β{ĥ}sv

]
. (108)

Therefore, we can isolate the function sβ(t, ε;u) in (99) as

sβ(t, ε;u) =
∞∑
s=0

pc (s)

∫
{dπ̂}s Log

∫
dv exp

[
−β

2
λv2 + βtδε (u− v)

+
β

2
{ω̂}sv2 + β{ĥ}sv

]
, (109)

in view of the identifications ĉ = c and iλ? ≡ λ as before. Taking the t-derivative and

setting t and ε to zero, we get

s′β(0, 0;u) = β

∞∑
s=0

pc (s)

∫
{dπ̂}s

exp
[
−β

2
(λ− {ω̂}s)u2 + β{ĥ}su

]
∫

dv exp
[
−β

2
(λ− {ω̂}s)v2 + β{ĥ}sv

] .
Taking the β →∞ limit as in (100), we eventually find
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%(u) =
∞∑
s=0

pc(s)

∫
{dπ̂}s δ

(
u− {ĥ}s

λ− {ω̂}s

)
. (110)

Expressing everything in terms of the π-distribution, indicating with pc(s) the actual

degree distribution (2) and truncating the series at the largest degree kmax (as we did

in previous sections), we eventually obtain

%(u) =
kmax∑
s=0

pc(s)

∫
{dπ}s

〈
δ

u− ∑s
`=1

h`K`

ω`

λ−
∑s

`=1

K2
`

ω`

〉
{K}s

, (111)

where π(ω, h) satisfies the self-consistent equation (69) (to be solved via population

dynamics), supplemented with the normalisation condition (70). Once again, the

brackets 〈·〉{K}s denote averaging w.r.t to a collection of s i.i.d random variables K`,

each drawn from the bond weight pdf p(K).

Eq. (111) essentially recovers Eq. (25) found with the cavity method. As a general

remark, it is worth noticing that the β-dependent distribution %β(u) had already arisen

naturally in the eigenvalue calculation when evaluating the stationarity conditions with

respect to λ. In fact, the distribution in (61) is exactly identical to %β(u). Moreover,

in the cavity formalism, %β (u) is closely related to the single-site marginal of a single

instance (16).

We remark once again that – in analogy with the typical largest eigenvalue

calculation – the validity of Eq. (111) is not restricted to a truncated Poisson degree

distribution (2). It actually provides the density of the top eigenvector’s components

for the weighted adjacency matrix of any configuration model with finite connectivity

and bounded maximal degree as a weighted superposition of delta functions, one for

each degree of the graph. It is then natural to identify the quantity
∑s

`=1
h`K`
ω`

λ−
∑s

`=1

K2
`

ω`

as the

contribution to the density coming from nodes of degree s.

The s = 0 contribution from isolated nodes indeed gives rise to the sharp peak

at u = 0. The %(u) of a Erdős-Rényi {0, 1}-adjacency matrix is shown in Figure 2

(top panels), whereas the case of weighted Erdős-Rényi adjacency matrices is shown in

Figure 5.

4.2.2. Random regular graph: adjacency matrix In this case, building on subsection

4.1.2 and recalling that pc(s) = δs,c and p(K) = δ(K − 1), the ratio in (111) simply

becomes c(c− 2)/[c(c− 1)− c] = 1, entailing

%(u) = δ (u− 1) , (112)

as expected.
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4.2.3. Large-c limit for weighted adjacency matrices We consider now the large c-

limit of Erdős-Rényi graphs (more generally, any configuration model graph for which
σ2
k

〈k〉2 = 〈k2〉−〈k〉2
〈k〉2 → 0 as 〈k〉 = c → ∞). A meaningful large-c limit is obtained for Eq.

(68) by rescaling each instance of the bond random weights as Kij = Jij/
√
c, leading to

π(ω, h) =
∑
s≥1

s

c
pc(s)

∫
{dπ}s−1

〈
δ

(
ω − λ+

1

c

s−1∑
`=1

J 2
`

ω`

)
δ

(
h− 1√

c

s−1∑
`=1

h`J`
ω`

)〉
{J }s−1

.

(113)

In the c� 1 limit, the s-sum in Eq. (113) is restricted to s = c±O(σk) (with σk =
√
c

for Erdős-Rényi graphs), so that the argument appearing in the first δ-function on the

r.h.s of this equation can be evaluated by appeal to the Law of Large Number (LLN).

This entails that

ω = λ− 1

c

s−1∑
`=1

J 2
`

ω`
(114)

is non-fluctuating , hence the self-consistency equation demands that

π (ω, h) = δ(ω − ω̄)× P (h) , (115)

with (by the LLN)

ω̄ = λ− 1

c

s−1∑
`=1

J 2
`

ω̄
= λ− 〈J

2〉J
ω̄

. (116)

Specializing to 〈J 2〉J = 1, we see that

ω̄1,2 =
1

2

(
λ±
√
λ2 − 4

)
, (117)

which requires λ ≥ 2 to have real positive ω̄.

Similarly, the argument of the second δ-function on the r.h.s of (113) exhibits a

scaling that allows one to conclude (for 〈J`〉J = 0) that

h =
1√
c

k−1∑
`=1

h`J`
ω`

=
1√
c

k−1∑
`=1

h`J`
ω̄
∼ N (0, σ2

h)

by appeal to the Central Limit Theorem. The variance follows using independence of

the {h`} and {J`}

σ2
h = 〈h2〉 =

1

cω̄2

s−1∑
`=1

〈h2
`〉〈J 2

` 〉J =
σ2
h

ω̄2
. (118)

This equation allows a finite variance if and only if ω̄2 = 1, which requires λ = ±2,

i.e. that λ – the most probable location of the largest eigenvalue – is at the edge of the

Wigner semi-circle (and we require the positive solution).

To obtain the distribution %(u) of eigenvector components, it is instructive and

more direct to look back at the cavity equations (24), (25) and (26). After the rescaling

K` = J`/
√
c and in the large c-limit, it is easy to see from (24) that Ω = ω̄ and that
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H is a sum of Gaussians, and thus itself Gaussian, of variance σ2
h/ω̄

2 ≡ σ2
h by (118). It

then follows from the normalisation condition (26) that σ2
h = 1, so eventually

%(u) =
1√
2π

e−u
2/2 . (119)

Looking now at the variable η = u2, and noting that positive and negative u give rise

to the same η, one obtains by the simple transformation of pdf’s

%(η) =
1√
2πη

e−η/2 , (120)

which is the standard form of Porter-Thomas distribution for real-valued (invariant)

random matrices (see [23], Eq. (9.10)).

5. Application: sparse random Markov transition matrices

In this section, we cross-check the formalism with an ensemble of transition matrices W

for discrete Markov chains in an N -dimensional state space. The evolution equation for

the probability vector p(t) is given by

p(t+ 1) = Wp(t) . (121)

The transition matrix W is such that Wij ≥ 0 ∀(i, j) and
∑

iWij = 1 ∀j. For an

irreducible chain, the top right eigenvector of the matrix W corresponding to the

Perron-Frobenius eigenvalue λ1 = 1 represents the unique equilibrium distribution, i.e.

v1 = peq. The matrix W is in general not symmetric: however, if the Markov process

satisfies a detailed balance condition, i.e. Wijp
eq
j = Wjip

eq
i , it can be symmetrised via a

similarity transformation, yielding

W S
ij = (peq

i )−1/2Wij(p
eq
j )1/2 . (122)

The symmetrised matrix W S will be the target of our analysis: even though it is

not itself a Markov matrix since the columns normalisation constraint is lost, in view

of the detailed balance condition W S has the same (real) spectrum of W , and its top

eigenvector v1 is given in terms of the top right eigenvector of W , peq, as

v
(i)
1 = (peq

i )1/2 . (123)

We will consider the case of an unbiased random walk: the matrix W is then defined

as

Wij =

{
cij
kj
, i 6= j

1, i = j and kj = 0 ,
(124)

where cij represents the connectivity matrix and kj =
∑

i cij is the degree of the node

j. In this case, the top right eigenvector of W is proportional to the vector expressing

the degree sequence: for our purposes, we choose the inverse of the mean degree as
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proportionality constant, i.e. peq
i = ki/ 〈k〉. The symmetrised matrix W S is expressed

as

W S
ij =


cij√
kikj

, i 6= j

1, i = j and kj = 0 ,

Figure 5. Density of the top eigenvector components %(u) for Erdős-Rényi weighted

adjacency matrices in the limit N →∞. The graphs are obtained via the population

dynamics algorithm. As in Fig. 4, the mean connectivity is c = 4, kmax = 16 and the

population size is NP = 106. The bond weight distribution is chosen to be uniform,

specifically p(K) = 1/2 for all K ∈ [1, 3]. Top panel: the thick blue line represents

the full distribution %(u), whereas the thinner curves underneath indicate the various

degree contributions k = 0, 1, 2, 3, ... Once again, the peak at u = 0 is given by the

contribution of isolated nodes (k = 0). Larger degree nodes contribute to the tail of the

distribution. Once again, only the degree contributions uo to k = 11 has been labelled.

Bottom panel: the comparison between results for the density of components (25)

or equivalently (111) of the top eigenvector obtained with population dynamics (red

stars) and results obtained with direct diagonalisation (green diamonds) shows perfect

agreement between the two.
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with its top eigenvector being v
(i)
1 =

√
ki/ 〈k〉. Therefore, we expect that

%(u) =
∑
k≥kmin

p(k)δ

(
u−

√
k

〈k〉

)
, (125)

where p(k) is the degree distribution of the connectivity matrix {cij}.
In order to avoid isolated nodes and isolated clusters of nodes, we consider a shifted

Poissonian degree distribution with kmin = 2, i.e.

p(k) =
e−cck−2

(k − 2)!
1k≥2 , (126)

with mean degree 〈k〉 = c+ 2.

The single-instance cavity treatment starts from the Gibbs-Boltzmann distribution

Pβ,WS (v) =
1

Z
exp

{
β

[
1

2

N∑
ij

vi
cij√
kikj

vj −
λ

2

N∑
i

v2
i

]}
, (127)

which, after the change of variable ṽi = vi/
√
ki, becomes

Pβ,WS (ṽ) =
1

Z
exp

{
β

[
1

2

N∑
ij

ṽicij ṽj −
λ

2

N∑
i

kiṽi
2

]}
. (128)

It is convenient to frame and solve the problem in terms of the vector ṽ, since

in this case the matrix involved in the analysis is just the standard {0, 1}-adjacency

matrix of the underlying graph, as in [58, 59]. The cavity single-instance equations for

this problem read

Ω
(i)
j = λkj −

∑
`∈∂j\i

1

Ω
(j)
`

, (129)

H
(i)
j =

∑
`∈∂j\i

H
(j)
`

Ω
(j)
`

, (130)

whereas the equations for the single-site marginal coefficients read

Ωi = λki −
∑
j∈∂i

1

Ω
(i)
j

, (131)

Hi =
∑
j∈∂i

H
(i)
j

Ω
(i)
j

. (132)

In the thermodynamic limit N →∞, the equations (129) and (130) lead to

q (ω, h) =
∞∑
k=2

k

〈k〉
p (k)

∫ [k−1∏
`=1

dq (ω`, h`)

]
δ

(
ω − λk +

k−1∑
`=1

1

ω`

)
δ

(
h−

k−1∑
`=1

h`
ω`

)
,

(133)
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in complete analogy with (21).

Similarly, equations (131) and (132) lead to

Q (Ω, H) =
∞∑
k=2

p (k)

∫ [ k∏
`=1

dq (ω`, h`)

]
δ

(
Ω− λk +

k∑
`=1

1

ω`

)
δ

(
H −

k∑
`=1

h`
ω`

)
,

(134)

entailing that the density of the top eigenvector’s components in the space of vectors ṽ

is given by

% (ũ) =

∫
dΩdHQ (Ω, H) δ

(
ũ− H

Ω

)
, (135)

which follows from the general theory.

As before, (133) and (134) are efficiently solved via a population dynamics

algorithm: as expected, the convergence is attained for λ = 1, i.e. in correspondence

of the largest eigenvalue of W S. Running the simulations, we find that the distribution

%(ũ) converges to a delta peak centered at a finite real positive value: this behaviour

agrees perfectly with the theoretical predictions, because it precisely implies that %(u)

must be given by (125). Indeed, the two quantities are related via the aforementioned

change of variables, u ← ũ
√
k, and the constant value the variables ũ converge to

corresponds to 1/
√
〈k〉, once the normalisation is fixed according to (26).

Figure 6. Density of the top eigenvector’s components for sparse Markov matrices

representing the transition matrices of unbiased random walks in the thermodynamic

limit N → ∞. The histogram has been produced by population dynamics with a

population of size NP = 106, specialised to the case of a shifted Poissonian degree

distribution with minimum degree kmin = 2 and average degree 〈k〉 = 6 (c = 4). The

simulation results (blue crosses) match the theoretical predictions (red dashed bars).

As a concluding remark, we notice that the same route can be followed to

characterise the top eigenpair statistics of the so-called tilted Markov transition matrix

[73] appearing in the context of rare events for random walks on networks [74]. This

will be discussed in a separate publication.
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6. Population dynamics

The population dynamics algorithm employed to solve (69) is deeply rooted in the

statistical mechanics of spin glasses [75, 76]. In our context, it can be summarised as

follows.

Two coupled populations with NP members each {(ωi, hi)}1≤i≤Np
are randomly

initialised, taking into account that ωi > ζ, where ζ is the upper edge of the support of

the pdf p(K).

For any suitable value of iλ∗ ≡ λ ∈ R, the following steps are iterated until stable

populations are obtained:

(i) Generate a random s ∼ s
c
pc (s), where c = 〈s〉

(ii) Generate s− 1 i.i.d random variables K` from the bond weights pdf p(K)

(iii) Select s− 1 pairs (ω`, h`) from the population at random; compute

ω(new) = λ−
s−1∑
`=1

K2
`

ω`
, (136)

h(new) =
s−1∑
`=1

h`K`

ω`
, (137)

and replace a randomly selected pair (ωj, hj) where j = 1, ..., NP with the pair(
ω(new), h(new)

)
.

(iv) Return to (i).

Convergence is assessed by looking at the first moments of the vector formed by the NP

samples. A sweep is completed when all the NP pairs (ωj, hj) of the population have

been updated at least once according to the steps above.

The procedure to evaluate (24) (or alternatively (25)) is almost identical, except

for the details concerning the s-sampling. Starting from two coupled populations with

NP members {(Ωi, Hi)}1≤i≤NP
, the following steps are iterated:

(i) Generate a random s ∼ pc (s), where c = 〈s〉
(ii) Generate s i.i.d random variables K` from the bond weights pdf p(K)

(iii) Select s pairs (ω`, h`) from the population {(ωi, hi)}1≤i≤NP
at random; compute

Ω(new) = λ−
s∑
`=1

K2
`

ω`
, (138)

H(new) =
s∑
`=1

h`K`

ω`
. (139)

(iv) Replace a randomly selected pair (Ωj, Hj) where j = 1, ..., NP with the pair(
Ω(new), H(new)

)
, which is then a new sample from Q(Ω, H). It can be used via

Eq. (25) to create u(new) = H(new)/Ω(new) as a new sample from %(u).
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(v) Return to (i).

The value of the parameter λ controls the convergence of the algorithm: indeed, the

convergence to a non-trivial distribution is achieved only when λ is equal to the typical

largest eigenvalue 〈λ1〉J , as prescribed by the theory: for any λ > 〈λ1〉J , the variables

of type h will shrink to zero, whereas for λ < 〈λ1〉J they will blow up in norm. Hence,

the value λ = 〈λ1〉J is the only value for which the normalisation condition (70) (or

equivalently (26)) can be satisfied, in complete agreement with the replica predictions.

In view of the expected behaviour described above, we will initially start from a

large value of λ, which is then progressively decreased until convergence is achieved. A

suitable starting value is given by the largest degree kmax that appears in the connectivity

distribution. The value of kmax is fixed in such a way that pc(kmax)NP ≥ 1: only if this

condition is met, the value kmax appears at least once in the degree array that is created

to sample from pc(k). Because of this choice, the largest degree depends on the limits of

the machine that is used to run the population dynamics algorithm: with a population

of size NP = 106, we are able to reach kmax = 16. By using a typical mean degree

of c = 4, the normalisation constant N in (2) is not very different from 1, and the

truncation of the Poisson distribution is - for all practical purposes - ineffective.

Once λ has been set to the only value (= 〈λ1〉J) for which a non-trivial finite

normalisation can be found, the value of such normalisation can be adjusted by properly

rescaling the h’s. Such rescaling is always allowed due to the linear nature of the

recursion that governs their update. This recursion will be discussed in detail in

Appendix A.

The population dynamics algorithm can also be employed to evaluate numerically

the integral in (81). The integral has the following structure:

I =

∫
dπ(ω, h)dπ(ω′, h′) 〈f (ω, h, ω′, h′, K)〉K , (140)

where f is a generic function of the cavity fields and K. Once the correct value of

λ = 〈λ1〉J has been found, a number Neq of equilibration sweeps is performed, following

the protocol illustrated above.

After equilibration, a variable F = 0 is initialised. Then for j = 1, . . . , Nmeas:

(i) Perform a sweep

(ii) Pick (ω, h) and (ω′, h′) at random, generate K ∼ p(K) and compute

f (ω, h, ω′, h′, K).

(iii) Update F : F = F + f (ω, h, ω′, h′, K).

The value of the integral (140) is approximated by invoking the law of large numbers,

as

I ' F

Nmeas

, (141)

where the typical fluctuation is of the order of 1/
√
NPNmeas.
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7. Conclusions

In summary, we have further developed a formalism - pioneered by Kabashima

and collaborators - to compute the statistics of the largest eigenvalue and of the

corresponding top eigenvector for some ensembles of sparse symmetric matrices, i.e.

(weighted) adjacency matrices of graphs with finite mean connectivity. The top

eigenpair problem can be recast as the optimisation of a quadratic Hamiltonian on the

sphere: introducing the associated Gibbs-Boltzmann distribution and a fictitious inverse

temperature β, the top eigenvector represents the ground state of the system, which is

attained in the limit β → ∞. In order to extract this limit, we have employed two

methods, cavity and replicas, both borrowed from the Statistical Mechanics approach

to disordered systems. We first analysed the case of a single-instance matrix within a

“grand canonical” cavity framework. The single-instance cavity method leads fairly

quickly to superficially appealing recursion equations, however it has the obvious

drawback of enlarging - and not reducing - the complexity of the problem: indeed,

it turns a N -dimensional problem involving the single matrix J into an Nc dimensional

problem - where c = 〈k〉 > 1 is the mean degree - involving the non-backtracking

operator B, as detailed in Appendix A.

However, the cavity single-instance recursions constitute an essential ingredient to

arrive at the equations (21), (25) and (26) for the associated joint probability densities of

the auxiliary fields of type Ω and H that characterise the typical largest eigenvalue and

the statistic of the top eigenvector in the thermodynamic limit N → ∞. Moreover,

the exact same equations (see (68), (111) and (70)) are found via the completely

alternative replica derivation, entailing that the two methods are equivalent in the

thermodynamic limit. Within the population dynamics algorithm employed to solve

the stochastic recursion (21) (or equivalently (68)), we are able to identify the typical

largest eigenvalue as the parameter controlling the convergence of the algorithm, and

unpack the contributions coming to nodes of different degrees to the average density

of the top eigenvector’s components. The simulations show excellent agreement of the

theory with the direct diagonalisation of large matrices. As a further cross-check of

the formalism, we computed the average density of the top eigenvector’s components

of sparse Markov matrices representing unbiased random walks on a sparse network

under the detailed balance condition, thus retrieving the expected relation between

such components and the node degrees of the underlying network.
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The solution of the single instance self-consistency equations and the

non-backtracking operator.

The set of self-consistency equations (14) and (15) for the cavity fields, supplemented

with (17) and (18) for the coefficients of the marginal distributions, constitutes the full

solution of the top eigenpair problem for a single instance of a sparse matrix. Even

in this case, the convergence of the update equations (14) and (15) is dictated by the

value of the parameter λ, which once again is related to the possibility to normalise the

resulting top eigenvector.

Note that (15) is a linear recursion driven by the operator B, whose elements can

be defined as

B(i,j),(k,`) =


Jj`

Ω
(j)
`

i 6= ` ∧ j = k

0 otherwise
. (A.1)

B is an example of non-backtracking operator, first introduced by Hashimoto in [77].

For a given graph, the Hashimoto non-backtracking operator B̃ in its original form

counts the number of paths from a node i to a node ` passing through a third node j,

for every choice of these three different nodes. It is defined as

B̃(i,j),(k,`) =

{
1 i 6= ` ∧ j = k

0 otherwise
. (A.2)

In our case, if the absolute value of the largest eigenvalue of the modified non-

backtracking operator B is greater than 1, the absolute values of the cavity fields H
(i)
j ’s

will blow up, whereas if it smaller than 1, they will shrink to zero. Therefore, λ must be

tuned appropriately in (14) to prevent the linear recursion (15) from landing on a trivial

solution. Indeed, when λ is “too large”, the Ω
(i)
j ’s will be large too, resulting in a largest

eigenvalue of B with magnitude smaller than 1. This would suggest to progressively

decrease λ from a large value down to its lower bound λ1, necessary to ensure that

the optimisation problem is well-defined. In other words, the largest eigenvalue of the

operator B must be exactly 1 for the H
(i)
j ’s to have a finite norm. This will happen only

when λ = λ1.

Collecting the H
(i)
j ’s in a 2M =

∑N
i=1 ki dimensional vector, Eq. (15) can be

rewritten as a linear vector iteration driven by B as

H
(i)
j =

∑
(k,`)

B(i,j),(k,`)H
(k)
` , (A.3)

where the entries B(i,j),(k,`) are defined in (A.1). Relabelling with a new, single index a

any pair of connected indices (i, j), (A.3) reads

Ha =
2M∑
b=1

BabHb , (A.4)

which can interpreted as a vector linear iteration,
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Figure A1. Cavity single instance. The example refers to a single Erdős-Rényi

adjacency matrix of size N = 2000 and mean degree c = 4. In the upper panel,

the plot of the ratio η? (see (A.7)) as a function of the parameter λ: λ is lowered

(blue diamonds) until η? = 1. In correspondence of this value, λ = λ1 (red circle).

The cavity method predicts the value λ1 = 5.251599, to be compared with the value

λdiag1 = 5.251575 obtained by direct diagonalisation, resulting in a relative error of

0.001%. In the lower panel, the histogram of top eigenvector components of the same

matrix as predicted by (19) shows perfect agreement with the components obtained

by direct diagonalisation.

H t = BH t−1 , (A.5)

with the index t labelling each iteration.

Starting from a certain initial condition H0, the solution of (15) is obtained after

successive iterations according (A.5) until H t stabilises. The stability can be assessed by

looking at the norm of the vector H t. After a suitable number of iterations t, expanding

the initial condition vector in the basis {bi} formed by the right eigenvectors of B, the

leading contribution is expressed in terms of its top eigenpair

H t = BtH0 = Bt

(
2M∑
i=1

ci(0)bi

)
≈ c1(0)γt1b1 , (A.6)

where the contributions coming from the other eigenpairs {bi, γi} are exponentially

suppressed, all the other eigenvalues of B being smaller than γ1.
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The ratio ηt of the norms of two successive iterations approaches a constant value

η? as t→∞, corresponding to the absolute value of largest eigenvalue of B,

ηt =
‖H t‖∥∥H t−1

∥∥ =

∥∥BH t−1

∥∥
‖H t−1‖

→ η? = |γ1| . (A.7)

Thus, the convergence of (15) is attained when the value of η? = |γ1| reaches 1 as

λ approaches λ1 from above. We again recall that λ = λ1 is the smallest possible value

such that the cavity partition function (8) is well defined, and so the actual value λ1 can

be found by asymptotic extrapolation. Figure A1 shows an example of this procedure.

We remark that the procedure above holds only if the largest eigenvalue of B is

real: if it is complex, there will be a pair of complex conjugate first eigenvalues, i.e.

those with the largest norm, which dictate the asymptotic behavior of (A.5). In this

case, the bi-orthonormal basis of left and right eigenvectors must be taken into account

H t ≈ c1(0)γt1b1 + c2(0)(γ?1)tb?1 , (A.8)

where the coefficients c1(0) and c2(0) are in general complex. Therefore, the quantity ηt
does not approach a steady limit for large t in this case, and oscillations arise. In fact,

it can be shown that

‖H t‖
2∥∥H t−1

∥∥2 = η2 [|c1|2 + |c2|2 + 2a cos (2φt+ ψ)]

[|c1|2 + |c2|2 + 2a cos (2φ (t− 1) + ψ)]
, (A.9)

where

a = α|c1||c2| , (A.10)

ψ = φ1 − φ2 + θ . (A.11)

Here, (|c1|, |c2|) and (φ1, φ2) are the moduli and phases of the complex coefficients c1(0)

and c2(0), η is the ratio of the radial part of the vectors H t and H t−1, α and θ are

respectively the modulus and the phase of the dot product between the right (and left)

eigenvector b1 (respectively b?1) with itself, and % and φ are the modulus and phase of

the pair of the complex eigenvalues with the largest norm.

In this case, the recursion (A.5) does not converge to a single limit, and the

cavity formalism does not lead to an acceptable solution. Therefore, the strongest

limitation of the single instance cavity method is that the largest eigenvalue γ1 of the

non-backtracking operator B associated to the matrix J must be real. This restriction

unfortunately rules out a variety of interesting sparse matrix ensembles.

Appendix B.

Exact replica calculation for the largest eigenvalue for any bounded degree

distribution p(k).

In this appendix, we show how to get the typical largest eigenvalue with the replica

method without any shortcut in the calculation. We will thus employ the distributions
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(27) and (28) to perform the averaging w.r.t the matrix ensemble. We recall that

the parameter c appearing in (28) stands for the actual mean of the bounded degree

distribution of interest, which may in general differ from the parameter c̄ of the truncated

Poisson distribution (see (2)). They tend to coincide only if kmax is large. This procedure

is general and holds for any graph within the configurational model with degree sequence

originated by a finite-mean degree distribution p(k).

Following the same reasoning in Section 4.1, the replicated partition function is

given by (33). Taking the average w.r.t the joint distribution (28) of matrix entries

yields [61]

〈
exp

(
β

2

n∑
a=1

N∑
i,j

viaJijvja

)〉
J

=
1

M

∫ π

−π

(
N∏
i=1

dφi
2π

)
exp

(
−i
∑
i

φiki

)

× exp

[
c

2N

∑
i,j

(〈
eβK

∑
a viavja+i(φi+φj)

〉
K
− 1
)]

, (B.1)

where 〈·〉K denotes averaging over the single-variable pdf p (K) characterising the i.i.d.

bond weights Kij. A Fourier representation of the Kronecker deltas expressing the

degree constraints in (28) has been employed. As in Section 4.1, we also employ a

Fourier representation of the Dirac delta enforcing the normalisation constraint. The

replicated partition function thus becomes

〈Zn〉J =
1

M

(
β

4π

)n ∫ ( n∏
a=1

dvadλa

)
exp

(
i
β

2
N
∑
a

λa

)
exp

(
−i
β

2

∑
a

∑
i

λav
2
ia

)

×
∫ π

−π

(
N∏
i=1

dφi
2π

)
exp

(
−i
∑
i

φiki

)
exp

[
c

2N

∑
i,j

(〈
eβK

∑
a viavja+i(φi+φj)

〉
K
− 1
)]

.

(B.2)

In order to decouple sites, we introduce the functional order parameter

% (~v, φ) =
1

N

N∑
i=1

δ (φ− φi)
n∏
a=1

δ (va − via) , (B.3)

where the symbol ~v denotes a n-dimensional vector in replica space. We then consider

its integrated version [61]

% (~v) =

∫
dφ eiφ% (~v, φ) =

1

N

N∑
i=1

eiφi

n∏
a=1

δ (va − via) , (B.4)

and enforce the latter definition using the integral identity

1 =

∫
ND%D%̂ exp

{
−i

∫
d~v %̂ (~v)

[
N% (~v)−

∑
i

eiφi

n∏
a=1

δ (va − via)

]}
. (B.5)
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In terms of the integrated order parameter (B.4) and its conjugate, the replicated

partition function can be written as

〈Zn〉J =
1

M

(
β

4π

)n
N

∫
D%D%̂d~λ exp

(
−iN

∫
d~v%̂ (~v) % (~v)

)
exp

(
i
β

2
N
∑
a

λa

)

× exp

[
Nc

2

∫
d~vd~v′%(~v)%(~v′)

(〈
eβK

∑
a vav

′
a

〉
K
− 1
)]∫ π

−π

(
N∏
i=1

dφi
2π

)
e−i

∑
i φiki

∫ n∏
a=1

dva exp

[
−i
β

2

∑
a

∑
i

λav
2
ia + i

∑
i

eiφi

∫
d~v%̂ (~v)

n∏
a=1

δ (va − via)

]
. (B.6)

The multiple integral in the last line above is the product of N n-dimensional integrals,

each related to a degree ki. It can be written as

I =
N∏
i=1

∫ π

−π

dφi
2π

∫
d~vi exp

(
−iφiki − i

β

2

∑
a

λav
2
ia + i%̂(~vi)e

iφi

)

= exp

[
N∑
i=1

Log

∫
d~vi exp

(
−i
β

2

∑
a

λav
2
ia

)
I[ki, ~vi]

]
, (B.7)

where Log denotes the principal branch of the complex logarithm, and

I[ki, ~vi] =

∫ π

−π

dφi
2π

exp
(
−iφiki + i%̂(~vi)e

iφi
)
. (B.8)

Each of the φi integrals can be performed by rewriting the last exponential factor as a

power series, viz.

I[ki, ~vi] =

∫ π

−π

dφi
2π

e−iφiki

∞∑
s=0

(i%̂(~vi)
s)

s!
eisφi =

∞∑
s=0

(i%̂(~vi)
s)

s!
δs,ki =

(
i%̂(~vi)

ki
)

ki!
∀ki ,

(B.9)

with i = 1, . . . , N . Thus, by invoking the Law of Large Numbers, the single site integral

I (B.7) can be expressed as

I = exp

[
N∑
i=1

Log

∫
d~vi exp

(
−i
β

2

∑
a

λav
2
ia

) (
i%̂(~vi)

ki
)

ki!

]

= expN
kmax∑
k=kmin

p(k)

[
Log

∫
d~v exp

(
−i
β

2

∑
a

λav
2
a

)
(i%̂(~v))k − Log(k!)

]
, (B.10)

where we have used
1

N

N∑
i=1

Logf(ki) '
kmax∑
k=kmin

p(k)Logf(k) , (B.11)
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where p(k) is the actual degree distribution of the graph.

As in Section 4.1, the replicated partition function takes a form amenable to a

saddle point evaluation for large N

〈Zn〉J ∝
∫
D%D%̂d~λ exp

(
NSn[%, %̂, ~λ]

)
, (B.12)

where

Sn[%, %̂, ~λ] = S1 [%, %̂] + S2 [%] + S3(~λ) + S4[%̂, ~λ] . (B.13)

The terms S1, S2 and S3 are equal to those found in Section 4.1, respectively (43), (44)

and (45), whereas

S4[%̂, ~λ] =
kmax∑
k=kmin

p(k)

[
Log

∫
d~v exp

(
−i
β

2

∑
a

λav
2
a

)
(i%̂(~v))k − Log(k!)

]
. (B.14)

As in Section 4.1, we then search for replica-symmetric saddle-point solutions

written in the form of superpositions of uncountably infinite Gaussians with a non-zero

mean,

λā = λ ∀ā = 1, . . . , n , (B.15)

%?(~v) = %0

∫
dωdh π (ω, h)

n∏
a=1

1

Zβ(ω, h)
exp

[
−β

2
ωv2

a + βhva

]
, (B.16)

%̂?(~v) = %̂0

∫
dω̂dĥ π̂(ω̂, ĥ)

n∏
a=1

exp

[
β

2
ω̂v2

a + βĥva

]
, (B.17)

where

Zβ(x, y) =

√
2π

βx
exp

(
βy2

2x

)
, (B.18)

and – with a modest amount of foresight – we use the same notation as before for the

distributions π and π̂. The %0 and %̂0 are determined such that the distributions π(ω, h)

and π̂(ω̂, ĥ) are normalised. The %0 in (B.16) is needed since %?(~v) is the saddle-point

expression of the integrated order parameter.

Rewriting the action in terms of π and π̂, after performing the ~v-integrations, and

extracting the leading n→ 0 contribution yields

Sn = S1[π, π̂] + S2[π] + S3(λ) + S4[π̂, λ] , (B.19)
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with

S1[π, π̂] = −i%0%̂0 − i%0%̂0n

∫
dπ(ω, h)dπ̂(ω̂, ĥ) ln

Zβ(ω − ω̂, h+ ĥ)

Zβ(ω, h)
, (B.20)

S2[π] =
c

2

(
%2

0 − 1
)

+ n
c

2
%2

0

∫
dπ(ω, h)dπ(ω′, h′)

〈
ln
Z

(2)
β (ω, ω′, h, h′, K)

Zβ (ω, h)Zβ (ω′, h′)

〉
K

,

(B.21)

S3(λ) = i
β

2
nλ , (B.22)

S4[π̂, λ] = cLog(i%̂0)−
kmax∑
k=0

p(k)Log(k!) + n

kmax∑
k=0

p(k)

∫
{dπ̂}k Log Zβ

(
iλ− {ω̂}k, {ĥ}k

)
,

(B.23)

where we have taken into account that kmin = 0 and we have introduced the shorthands

Z
(2)
β (ω, ω′, h, h′, K) = Zβ(ω′, h′)Zβ

(
ω − K2

ω′
, h+

h′K

ω′

)
(B.24)

and {dπ̂}s =
∏s

`=1 dω̂`dĥ`π̂(ω̂`, ĥ`), along with {ω̂}s =
∑s

`=1 ω̂` and {ĥ}s =
∑s

`=1 ĥ`.

We note that the action contains O(1) and O(n) terms as n → 0: the O(1) terms

are cancelled by theO(1) terms arising from the evaluation of the normalisation constant

M at the saddle-point. Indeed, by following a very similar reasoning as in (B.1), we

find that

M =

∫ π

−π

(
N∏
i=1

dφi
2π

)
e−i

∑
i φiki exp

[
c

2N

∑
i,j

(
ei(φi+φj) − 1

)]
. (B.25)

We then introduce in (B.25) the scalar order parameter

%0 =
1

N

N∑
i=1

eiφi (B.26)

via the integral representation

1 =

∫
N

d%0d%̂0

2π
exp

[
−i%̂0

(
N%0 −

∑
i

eiφi

)]
. (B.27)

By using the same argument as in (B.10), the normalisation constant M can be

written in a form amenable to a saddle-point evaluation,

M =

∫
N

d%0d%̂0

2π
exp

[
N

(
−i%0%̂0 +

c

2
(%2

0 − 1) + cLog(i%̂0)−
kmax∑
k=0

p(k)Log(k!)

)]

=

∫
N

d%0d%̂0

2π
exp [NSM(%0, %̂0)] . (B.28)
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The stationarity conditions for SM are

∂SM
∂%0

= 0⇒ i%̂0 = c%0 , (B.29)

and
∂SM
∂%̂0

= 0⇒ i%0 =
c

%̂0

. (B.30)

entailing that

i%0%̂0 =c , (B.31)

%2
0 = 1 . (B.32)

The two conditions above exhibit a gauge invariance [61]. Once the same gauge has

been chosen for the saddle-point solution ofM and the O(1) terms of the action (B.19)

in the numerator, they cancel out so that the action (B.19) is O(n) as expected.

Thus, taking into account the cancellation coming from (B.31) and (B.32), the

action terms in (B.19) read exactly as those found in Section 4.1, thus proving that the

“shortcut” derivation in 4.1 is perfectly legitimate. According to the present derivation,

the degree distribution p(k) appearing in the single-site term S4 is already the true

degree distribution of the graph, and does not require any a posteriori correction.
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[61] Reimer Kühn and Jort Van Mourik. Spectra of modular and small-world matrices. Journal of

Physics A: Mathematical and Theoretical, 44(16):165205, 2011.
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[75] Marc Mézard and Giorgio Parisi. The Bethe lattice spin glass revisited. The European Physical

Journal B-Condensed Matter and Complex Systems, 20(2):217–233, 2001.

[76] Florent Krzakala, Federico Ricci-Tersenghi, Lenka Zdeborova, Riccardo Zecchina, Eric W Tramel,

and Leticia F Cugliandolo. Statistical Physics, Optimization, Inference, and Message-Passing

Algorithms: Lecture Notes of the Les Houches School of Physics-Special Issue, October 2013.

Number 2013. Oxford University Press, 2016.

[77] Ki-ichiro Hashimoto. Zeta functions of finite graphs and representations of p-adic groups. In

Automorphic forms and geometry of arithmetic varieties, pages 211–280. Elsevier, 1989.
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