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Abstract 

A long association has been established between infectious inflammation and 

diseases of the salivary glands (SGs). However, the prompt responses of the 

exocrine tissues to these types of injuries remain unclear. Accordingly, an acute 

inflammation model was developed by the retrograde intraductal injection of a 

double-stranded (ds) RNA analogue; polyinosinic:polycytidylic acid (poly(I:C)), 

into the submandibular glands (SMGs), through Wharton’s duct. The main aim of 

this study was to investigate the early functional and immune events downstream 

of exposure to this viral-like inflammagen. The first part of the current study 

highlighted that the SMGs responded to the locally injected poly (I:C) by a rapid 

decline in saliva secretion, which stopped completely after 24 hours of infection. 

The early loss of function perceived, paralleled the upregulated expression of 

Toll-like receptor-3 (TLR3) and that incited blocking of the receptor in vivo to 

assess its role in the loss of function. The outcome of these experiments 

confirmed that dysfunction of the acutely inflamed glands resulted from ligation 

of TLR3 and initiation and propagation of downstream cytokines. The current 

study revealed for the first time the possibility of using a protease inhibitor to 

restrict TLR3 neo-synthesis, dampen inflammation, fine-tune anti-viral innate 

immune responses and retrieve TLR3-induced loss of SMG function. 

Next, the role played by the acute inflammatory cells which infiltrated the SMGs 

following poly (I:C) infection was examined. Despite successful depletion of these 

cells, the glands’ secretory functions were not retrieved, verifying that TLR3 has 

induced dysfunction independent of the invasive acute cell infiltration.  
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In the last part of this study, it was demonstrated that the TLR3-inhibited, 

functionally-protected SMGs revealed loss of the pro-inflammatory cytokine, 

inducible nitric oxide synthase (iNOS), which displayed extensive acinar 

upregulation in response to poly (I:C) infection. Selective blocking of iNOS by 

aminoguanidine protected the secretory function of the poly (I:C) treated glands 

and specified iNOS as the earliest signal which disrupts the secretory machinery 

after innate immune activation.  

To assess the injurious contributions of iNOS and its rapidly derived cytotoxic 

oxidant peroxynitrite, in the acute SG model, the gland homogenates were 

immunoblotted with the peroxynitrite marker, 3-nitrotyrosine, which revealed 

extensive nitration of a plethora of the gland proteins, including proteins at the 

electrophoretic mobility of the endoplasmic reticulum (ER) SERCA2 channel. 

Immunohistochemistry further revealed the physical co-localization of 

peroxynitrite and the critical regulator of calcium homeostasis, SERCA2. To 

comprehensively investigate the impact of this finding on the cellular calcium 

levels of the infected glands, a novel protocol which allowed assaying of [Ca2+]i  

changes ex vivo was developed, optimized and applied to the aminoguanidine 

treated and non-treated mice. Through this protocol, iNOS-mediated 

dysregulations in resting and stimulated calcium were recorded. The set of 

experiments which followed these findings revealed upregulation of the unfolded 

protein response, global transcriptional downregulation of key water driving 

molecules and altered subcellular localization of these critical membranous 

receptors, water channels and ion transporters. All these changes in response to 

a single poly (I:C) dose, were remarkably reversed when the SMGs were treated 

with the iNOS inhibitor; aminoguanidine.  
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1.1 Salivary Glands 

1.1.1 Types and Anatomy of Salivary Glands 

Human and murine SGs can be classified according to size into: (i) three paired 

major glands; parotid (PG), submandibular (SMG) and sublingual (SLG), and (ii) 

numerous glands forming minor packages located in the labial, palatine, buccal, 

lingual and sublingual submucosae (Denny et al., 1997, Amano et al., 2012). 

Based on secretion: saliva from the PG is entirely serous. While the SLGs are 

mucous; the SMGs produce mixed serous and mucous saliva. Major SGs of both 

humans and rodents are essentially similar in their anatomical architecture which 

comprises secretory end pieces (acini) and arborized ductal structures that open 

into the oral cavity. Table 1-1 and Figure 1.1 compare the prominent anatomic 

features of mice and human SGs.  

Table 1-1 Comparison of anatomical features of major SGs in mice and human (Piper M. Treuting, 
2012). 

Feature Mouse Human 

Submandibular • Largest; located in ventral 
cervical region. 

• Duct opens caudal to lower 
incisors (Amano et al., 2012). 

• In digastric triangle, anterior to 
digastric and posterior to stylohyoid 
ligament. 

• SMG Wharton’s duct opens with 
SLG Bartholin’s in the sublingual 
caruncle (Holmberg and Hoffman, 
2014). 

Sublingual • Located in ventral cervical 
subcutaneous region. 

•  Small single lobe. 

•  Close association with 
submandibular; duct opens 
caudal to lower incisors. 

• Smallest major gland. 

•  located above the mylohyoid below 
the mucosa of the middle to anterior 
mouth floor. 

Parotid • Located in ventral cervical 
subcutaneous region. 

•  Diffuse multi-lobed. 

•  Duct opens near lower molars 
 

• Largest gland. 

•  Triangular base at zygomatic arch 
and apex just inferior to the angle of 
the mandible. 

•  Extends posterior to the ear and 
anterior to cover masseter. 

• Stensen’s duct opens in the mouth by 
second maxillary molar. 
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Figure 1.1 Mouse and human salivary glands. 
A: Mouse regional cervical anatomy and sub-gross histologic section of cervical soft tissues from 
a male mouse. The SMG is the largest in the mouse, whereas the PG is relatively diffuse. B: 
Gross dissection of mouse ventral cervical region. Paired salivary glands are bilaterally located 
and outlined in black. The submandibular (SMG) and sublingual (SLG) glands are encapsulated 
with common fascia (Piper M. Treuting, 2012). C: Human regional cervical anatomy. D: Acini and 
arborized anatomy of salivary glands.  Lymph nodes (LN). 
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1.1.2 Histomorphology of The Acinar and Duct Systems of SGs 

A typical SG is surrounded by a fibrous connective tissue capsule, which sends 

remote septae to divide the gland into lobes and lobules. Salivary glands are 

made of three epithelial cell types: acinar, ductal and myoepithelial. The pattern 

of arrangement of these cells is similar in both mice and humans: glandular acini 

connect to intercalated ducts (ID) which drain to intralobular striated ducts (SD) 

and then interlobular ducts that finally merge into excretory ducts (ED) to empty 

into the oral cavity. In addition, the myoepithelial cells usually associate with both 

acini as well as intercalated ducts (Amano et al., 2012), figure 1.2. 

 

 

 

 

 

 

 

 

 

 

The acinus, the secretory end piece of salivary glands; produces and secretes 

the primitive saliva into the central lumen. Parotid acini have small pyramidal cells 

with regular nuclei, apical pink staining due to zymogen granules, and basal 

basophilia, when stained with haematoxylin & eosin (H&E).  

Figure 1.2 Basic SG unit.  
Salivary glands are made of three epithelial cell types: acinar, ductal and 
myoepithelial cells. Acinar cells organized into pyramidal acini are connected to a 
network of ducts classified into: intercalated, striated and excretory ducts. 
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Similarly, the SMG acini stain basophilic in histologic sections, with basal nuclei 

and may contain apical cytoplasmic mucin droplets. The sublingual acini are large 

pyramidal mucous-producing cells with abundant pale blue vacuolated cytoplasm 

(Piper M. Treuting, 2012). Figure 1.3 reveals the histologic features and variances 

between mice and human SGs. 

 

 

 

 

 

 

 

 

 

 

Like the human SGs, the duct system of rodents is composed of the ID, SD, ED 

and main excretory ducts. The IDs are lined by cuboidal to flattened epithelium in 

mice and cuboidal epithelium in humans. Intralobular SDs are lined by cuboidal 

to low-columnar cells in mice and tall columnar cells with large, apically located 

nuclei in humans. Both species have characteristic eosinophilic striations in the 

basal cytoplasm of the striated ducts.  

M 

 

 

H 

P                                  SMG                                          SLG                                         

Figure 1.3 Comparative histology of salivary glands in human and mice.  
Parotid acini (P) in mice (M) and humans (H) are serous-secreting with apical 
cytoplasmic zymogen granules that stain pink with H&E. In both species, the SMG 
serous acini and ducts are numerous and clearly identified. In humans, 
seromucinous and mucous cells are lighter pale-blue staining and more prominent 
than in mice. In both species, mucinous acini predominate in the SLGs. 
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These striations are caused by enfolding of the basal plasma membrane. 

Interlobar EDs have cuboidal epithelium. The main excretory ducts in the mouse 

are lined by cuboidal cells that transform to stratified squamous (oral mucosa) at 

the duct opening (Piper M. Treuting, 2012). In addition, mice have a unique ductal 

arrangement in the SMGs, which contain granular convoluted ducts (GCD) 

connecting the intercalated ducts to the striated ducts. This segment of ducts 

within the SMGs has sexual dimorphism in mice, since it is testosterone 

dependent (Chai et al., 1993). In males, cells lining the GCD are large and 

columnar containing bright pink granules. In females, cells are smaller with less 

distinct granules (Jayasinghe et al., 1990), figure 1.4.  

 

 

 

 

 

 

The GCD produces and secretes a variety of bioactive polypeptides, hormones, 

and cell growth factors including epidermal growth factor (EGF), nerve growth 

factor (NGF) (Gresik, 1994), brain-derived neurotrophic factor (BDNF) (Kondo et 

al., 2010, Tsukinoki et al., 2006), hepatocyte growth factor (HGF) (Amano et al., 

1994, Amano and Iseki, 2001), insulin-like growth factor 1 (IGF-I) (Amano and 

Iseki, 1993, Amano and Iseki, 2001), transforming growth factor (TGF) -α (Wu et 

al., 1993) and -β (Amano et al., 1991, Amano and Iseki, 2001).  

Figure 1.4 Sexual dimorphism in mouse SMGs. 
Tissue sections from female (1) and male (2) SMGs showing the histologic 
dimorphism between each sex. Note the excess GCDs (arrow) in male 
SMGs as well as the intense eosinophilia reflecting abundance of 
secretory granules (Linda H. Kooistra and Abraham Nyska).  
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1.1.3 Functional and Secretory Pathway Variations in Mouse SG Acinar 

Cells 

In mice, the PG, SMG, and SLG glands secrete 90% of the whole mouth saliva. 

Although all 3 major SGs appear to secrete fluid by a similar molecular 

mechanism, each gland contributes differently to this percentage, which denotes 

that the secretory machinery is functionally inequivalent for each gland. The PG 

secretes approximately 30% more saliva than does the SMG and 6-fold more 

than does the SLG, suggesting that the PG has a more robust secretory 

mechanism. These differences in flow rate are neither entirely dependent on the 

gland weight nor on the acinar volume of each SG (Kondo et al., 2015). To 

appreciate why the PG acini secrete significantly more saliva than do the SMG 

and SLG, the complex process of salivary fluid secretion must be briefly 

demonstrated. In short, Cl- uptake by the basolateral Na-K-Cl cotransporter 1 

(NKCC1) (Haas, 1989, Haas and Forbush, 1998, Haas, 1994) elevates the 

intracellular Cl- concentration above its electrochemical equilibrium. This will 

promote the Ca2+-activated Cl- efflux by the apical channel; Transmembrane 

Protein 16A (TMEM16A) (Yang et al., 2008, Romanenko et al., 2010), once the 

acinar cells are stimulated by the cholinergic agonist; acetylcholine and 

intracellular calcium [Ca2+]i mobilization takes place (Nauntofte, 1992, Ambudkar, 

2014). Consequently, these events comprise the driving force for Na+ and water 

movement through the tight junction complex and apical water channels, 

respectively (Melvin et al., 2005), figure 1.5.  
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According to (Kondo et al., 2015), both TMEM16A protein expression and the 

muscarinic agonist-induced Cl- efflux mediated by this channel were greater in 

the PG acinar cells than in SMG and SLG, which highlighted the essential role 

played by this channel in the mouse salivary acinar cells. In addition to the 

TMEM16A Cl- enhanced expression and activity, they demonstrated that the PG 

and SMG likely secrete greater volumes of fluid than do the SLG because they 

display a larger increase in the [Ca2+]i-stimulated response and more NKCC1 

activity. Interestingly, they showed that the SLG, which exhibits relative deficiency 

in these functional determiners, rely on the basolateral Cl-/HCO3
-
  anion 

exchanger (Novak and Young, 1986, Melvin and Turner, 1992, Nguyen et al., 

2004) in Cl- uptake to compensate for the absence of NKCC1 activity (Catalan et 

al., 2015).  

    

Figure 1.5 Illustration summary of the saliva 
secretion mechanism in mouse acinar cells.  
Muscarinic agonist-stimulated Ca2+ release, and Cl-   
efflux into the lumen via the apically located TMEM16A 
channel. Towards osmotic balance, Na+ will follow Cl- 
into the lumen and NaCl will drive transcellular water 
movement.  
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1.2 Salivary Gland Secretion, Calcium Homeostasis & Dysfunction 

1.2.1 Control of Salivary Secretion 

Parasympathetic and sympathetic arms of the autonomic nervous system interact 

simultaneously on secretory acinar cells to generate a reflex secretion of saliva 

(Proctor and Carpenter, 2007). While the parasympathetic stimulation functions 

to evoke a large volume of saliva, the sympathetic nerves will induce a protein-

rich secretion (Anderson et al., 1995, Asking and Gjorstrup, 1987, Carpenter et 

al., 2000, Matsuo et al., 2000). 

1.2.1.1 Parasympathetic Control: Fluid Secretion and Modification of 

Electrolytes  

Parasympathetic nerves are secretomotor and their stimulation will cause the 

SGs to secrete a large volume of watery fluid that is high in electrolytes and low 

in proteins (Proctor, 1998, Proctor, 2016). In addition, parasympathetic activity 

causes blood vessels to dilate, thereby providing the gland with a source of water 

for secretion (Villa et al., 2016). The parasympathetic nerve supply to the major 

SGs (Khurana, 2009, Hall, 2011) is best summarized as in table 1-2 and figure 

1.6.  

Table 1-2 Summary of parasympathetic nerve supply to the SGs. 

 

 PG SMG/SLG 

Preganglionic 
nerve supply 

Arise from inferior salivary 
nucleus (dorsal nucleus of IXth 
nerve) of medulla. 

Arise from superior salivary 
nucleus (dorsal of the VIIth nerve). 

Preganglionic 
nerve fibres 

Run via the tympanic nerve and 
small superficial petrosal nerve 
to the otic ganglion 

Run in nervous intermedius 
(sensory division of VII nerve), join 
the facial nerve and leave by its 
chorda tympani branch to join the 
lingual nerve. 

Ganglion Otic Submandibular 

Postganglionic 
nerve fibres 

From the Otic ganglion join the 
auriculotemporal nerve to the 
parotid gland 

Arise from the submandibular 
ganglion and supply the glands 
along with the blood vessels. 
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The SG fluid secretion in response to parasympathetic stimulation occurs in two 

phases; acinar secretion of isotonic saliva; which has the same Na+, Cl-, K+ and 

HCO3
- concentrations as plasma (Khurana, 2009), followed by duct modification 

phase, which results in the final hypotonic saliva secreted into the mouth. As 

previously illustrated, fluid secretion following the action of the parasympathetic 

postganglionic transmitter; acetylcholine on the acinar M3 muscarinic receptors 

(M3R) (Proctor and Carpenter, 2014), involves increase [Ca2+]i and ion transport. 

The first phase comprises activation of phospholipase Cβ (PLCβ) which cleaves 

phosphatidylinositol 1,4, bisphosphate (PIP2) to produce diacylglycerol (DAG) 

and the soluble signalling molecule inositol 1,4,5, trisphosphate (IP3) (Berridge, 

1993, Melvin et al., 2005). IP3, then activates the endoplasmic reticulum (ER)-

Ca2+ release channels; IP3 receptors (IP3Rs), which induce Ca2+ release from 

the ER stores (Mikoshiba, 2007).  

Tympanic nerve  

Figure 1.6 Diagram illustrating the parasympathetic nerve supply to the SGs.  
(Hall, 2011). 
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Ryanodine receptor 2 (RyR2) is another main intracellular Ca2+ release channel, 

abundantly localized in the basal region of acinar cells (Zhang et al., 1999). 

Positioned as such, it is presumed to play a role in globalization of the Ca2+ signal 

in acinar cells following stimulation, by spreading Ca2+ to sites of the ER where 

IP3Rs are sparse or those at a distance from the site of IP3 generation 

(Ambudkar, 2014). IP3-mediated Ca2+ release via IP3R, and the resultant 

depletion of endoplasmic reticulum calcium  [Ca2+]ER, will then be detected by the 

ER-binding protein sensor STIM1 (Liou et al., 2005, Zhang et al., 2005, Zeng et 

al., 2008, Yuan et al., 2009, Hogan et al., 2010, Cheng et al., 2013, Prakriya, 

2013), which will trigger further influx of extracellular calcium across the 

membranous store-operated calcium channels (SOC) of acinar cells (Putney, 

1990) and will ensure sustained salivary secretion (Melvin et al., 2005, Ambudkar, 

2014), figure 1.7. 

 

  

 

 

 

 

 

 

 

 

Figure 1.7 Intracellular mechanisms of calcium release in salivary acinar cells.  
The illustrated model describes 2 principal intracellular pathways of calcium 
mobilization. Acetylcholine binding to its cognate M3R (G protein-coupled receptor) 
results in production of inositol 1,4,5-trisphosphate (IP3), which causes ER calcium 
release. Calcium-induced calcium release (CICR) is brought about by calcium 
activation of the RyR2 channels. Adapted from (Petersen and Tepikin, 2008). 

STIM1 
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In the resting acinar cells: NKCC1, Na+/H+ and Cl-/ HCO3- exchanger mediate Cl- 

influx across the basolateral membrane of acinar cells to accumulate chloride 

ions (Cl-), 4–5-fold above electrochemical equilibrium (Foskett, 1990, Zeng et al., 

1997). The use of NKCC inhibitors showed that NKCC activity mediates about 

70% of the Cl− uptake that is secreted across the luminal membrane to drive 

secretory glands fluid secretion (Melvin et al., 2005). The central role of NKCC1 

in salivary glands fluid and electrolyte secretion was further established by 

deletion of the Nkcc1 gene in mice, which resulted in about 70% inhibition of 

salivary secretion (Evans et al., 2000). 

The second phase in stimulated saliva secretion follows the increase in [Ca2+]i 

and starts with activation of the apical Cl- channel; TMEM16A (Arreola et al., 

1996, Hayashi et al., 1996). TMEM16A activation will release Cl- into the central 

acinar lumen, which will be followed by sodium movement by a paracellular 

course through the tight junctions (Zhang et al., 2013). It is important to note that 

the muscarinic Ca2+-dependent fluid secretion was completely abolished in the 

salivary glands of TMEM16A null (Tmem16A−/−) mice, concluding the essential 

role played by this channel in fluid secretion in the adult salivary glands (Catalán 

et al., 2015). 

Typically, the transcellular accumulation of NaCl ions in the acinar lumen will 

result in the obligatory osmotic water flow (Lee et al., 2012b). Although water can 

cross the membrane bilayer, water flow in secretory cells is facilitated by the 

water channels; aquaporins (AQPs). The luminal membrane of acinar cells 

express AQP5, which plays an indispensable role in exocrine glands’ fluid 

secretion by providing highly permeable water channels  (Krane et al., 2001).  
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This was confirmed by the: (i) 60% reduction in secretion observed in the AQP5 

knockout mice (Alper, 2009, Melvin et al., 1988), (ii) aberrant trafficking of AQP5 

in Sjögren’s syndrome patients (Evans et al., 1999, Roussa et al., 1999), (iii) 

markedly decreased labelling intensity of AQP5 in severely damaged irradiated 

SGs (Takagi et al., 2003) and (iv) disrupted trafficking of the water channel in 

Streptozotocin-induced diabetic mice, featuring xerostomia (Ishikawa et al., 

2004). In addition, since AQP5 appears to regulate the water permeability of the 

paracellular pathway, its deletion disrupted integrity of the tight junction and 

reduced the paracellular water permeability (Evans et al., 1999).  

After acinar fluid secretion, saliva enters the duct modification phase, whereby 

salivary ducts secrete K+ and HCO3
- and reabsorb Na+ and Cl- (Cook DI, 1994). 

The hypotonicity of secreted saliva indicates that ducts are relatively impermeant 

to water (Melvin et al., 2005). The prevailing model for fluid and electrolyte 

transport in salivary ducts accounts for Na+ and Cl- influx into the duct cell 

luminally, through electroneutral pathways, i.e. a Na+/H+ exchanger (Luo et al., 

2001) a Cl-/HCO3
- exchanger (Lee et al., 1998) and through Na+ (Cook et al., 

1998) and Cl- (Zeng et al., 1997) channels. Large amounts of sodium and chloride 

will be transported out of the ductal cell and into the glandular interstitium via the 

basolateral sodium/potassium ATPase (sodium pump) and Cl- channels, 

respectively (Proctor, 2016). Moreover, the HCO3
- accumulated in the cytosol via 

the basolateral Na+/H+ exchanger (NHE1) will enter the lumen in exchange for Cl- 

at the apical Cl-/HCO3
- exchanger (Cook DI, 1994). Figure 1.8 summarizes the 

acinar secretion and duct modification phases of secreted saliva. 
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Figure 1.8 Model depicting the mechanism of fluid and electrolyte secretion.  
A: Shows the major transporters in the basolateral and luminal membranes of acinar cells. The 
major Cl- loading transporter at the basolateral membrane is NKCC1. TMEM16a/Ano1 is the 
major Ca2+-activated Cl- channel at the luminal membrane. B: Fluid and electrolyte secretion by 
acinar cells is regulated by Ca2+ mobilizing receptors and is a Cl- secretion-driven process. The 
receptor-evoked [Ca2+]i increase is initiated at the apical pole where the Ca2+ signaling 
complexes are located and activates TMEM16a/ Ano1.  The Ca2+-mediated channel activation 
results in luminal Cl- efflux. C: Na+ then follows the Cl- into the acinar lumen through the tight 
junction. D: Model for the modification of primary saliva by ductal secretion. Salivary duct cells 
secrete K+ and HCO3- and reabsorb Na+ and Cl- to produce the final saliva. The salivary duct 
epithelium is tight allowing no water movement, thus resulting in hypotonic saliva (NBCe1-A/B 
electrogenic Na+/HCO3- cotransporters A/B, ENaC epithelial Na+ channel, CFTR cystic fibrosis 
transmembrane conductance regulator). 
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1.2.1.2 Sympathetic Control and Protein Secretion 

The preganglionic sympathetic nerve fibres originate from the lateral horn cells of 

T1 and T2 segments of the spinal cord and enter the paravertebral sympathetic 

chain via ventral roots to synapse with cells in the superior cervical ganglion. 

Subsequently, the postganglionic fibres run along the carotid artery branches and 

supply the major and minor salivary glands by travelling along the blood vessels 

(Ekström J 2012), figure 1.9.  

 

 

 

 

 

 

 

The main sympathetic neurotransmitter is noradrenaline (NA) (BJ Baum, 1999). 

NA released from sympathetic nerve endings binds to β1 adrenoceptors on 

acinar cells and increases G protein-coupled adenylate cyclase activity with the 

generation of increased levels of intracellular messenger; adenosine 30,50-cyclic 

monophosphate (cAMP) (BJ Baum, 1999).  Exocytosis of salivary proteins in 

parotid and submandibular acini is triggered mainly by cAMP and is potentiated 

by elevated Ca2+ (Quissell et al., 1992, Scott and Baum, 1985).  

T2 

T1 

Superior 
Cervical 
Ganglion 

Carotid Artery 

SG 

Figure 1.9 Sympathetic nerve supply to the salivary glands  
(BJ Baum, 1999). 
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1.2.2 Calcium Signalling Homeostasis and Disruption  

1.2.2.1 Key Molecular Determinants of [Ca2+]i Homeostasis 

[Ca2+]i is a critical factor in the regulation of a plethora of physiological functions, 

including muscle contraction, secretion, metabolism, gene expression, cell 

survival and cell death. The key regulator of [Ca2+]i homeostasis is determined by 

a balance between the 'initiating' responses that introduce [Ca2+]i into the 

cytoplasm and the 'terminating' responses through which [Ca2+]i  is removed by 

the combined action of buffers, pumps and exchangers.  

As previously mentioned in the current chapter, introduction of cytosolic Ca2+ 

follows activation of plasma membrane M3R and generation of IP3, which will 

bind to the ER receptor; IP3R, to release [Ca2+]ER (Yule, 2001, Mikoshiba, 2007). 

On the other hand, removal of Ca2+ from the cytoplasm following termination of 

the secretion stimulus, maintains the resting level of Ca2+ at approximately 100 

nM and ensures that the internal stores are kept loaded (Berridge et al., 2003). 

Different pumping mechanisms are activated via the increased [Ca2+]i and are 

responsible for elimination of cytosolic Ca2+: the plasma-membrane Ca2+-

ATPASE (PMCA), the Na+/Ca2+ exchanger (NCX) and the sarco(endo)plasmic 

Ca2+-ATPase (SERCA). Both SERCA and NCX contribute equally to Ca2+ 

clearance, which accounts for approximately 80% of the removal (Schwaller, 

2012). SERCA uses the energy of ATP to drive Ca2+ across the membrane 

against the ion gradient, by forming a high-energy intermediate acyl-phosphate 

(Toyoshima, 2009). Moreover, SERCA plays a major role in Ca2+ homeostasis in 

the cells by controlling the SOCE activity (Bolotina, 2004) and reloading Ca2+ 

stores at the end of cell stimulation.  
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Alternatively, NCX is an ion transporter that can rapidly expel calcium ions from 

the cell by utilizing the energy stored in the transmembrane sodium gradient to 

allow influx of three sodium ions and extrusion of one calcium ion (Hilge, 2012, 

Ottolia and Philipson, 2013). Similar to SERCA, PMCA is responsible for fine 

tuning of Ca2+ level in the cell by pumping out Ca2+across the PM at the expense 

of ATP, against a Ca2+ gradient (Niggli et al., 1982).  

Although the ER is accepted as the major organellar Ca2+ buffer, several other 

subcellular organelles are known to eliminate cytosolic Ca2+ and maintain it at 

significantly higher levels than in the cytoplasm, figure 1.10. Golgi apparatus 

secretory-pathway Ca2+ATPases (SPCAs), the mitochondrial uniporter (MCU), 

peroxisomes, and endosomes/lysosomes are all examples of organelles 

responsible for Ca2+ sequestration into their compartments (Prins and Michalak, 

2011). 
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Figure 1.10 [Ca2+]i Elimination Portals.  
Ca2+ is stored within several different organelles: ER, Golgi 
apparatus, mitochondria, and peroxisomes. A typical Ca2+ 
release pathway ultimately stimulates releasing of Ca2+ from 
the ER lumen. Note that the Golgi apparatus also contains IP3R 
molecules and thus may contribute to Ca2+ release from stores. 
Golgi Ca2+ uptake occurs via SPCA pumps. Ca2+ released from 
the ER has several different fates, including: uptake by 
mitochondrial MCU, or extrusion from the cell via PMCA and 
Na+/Ca2+ exchanger plasma membrane proteins. Orai1 
functions as a plasma membrane Ca2+ channel that allows for 
Ca2+ entry from the extracellular milieu into the cytoplasm, 
where it is taken up by SERCA into the ER lumen. Peroxisomes 
are known to maintain Ca2+ at higher levels than in the 
cytoplasm. Elevated Ca2+ levels in the ER and in the Golgi 
apparatus, will mostly be bound to buffering proteins, as shown 
within these organelles. BiP/GRP78 binding protein/glucose-
regulated protein of 78-kDa; CRT, calreticulin; GRP94, 
glucose-regulated protein of 94-kDa; IP3, inositol 
trisphosphate; IP3R, inositol trisphosphate receptor; NCX, 
Na+/Ca2+ exchanger; P54/NEFA, DNA binding/EF hand/acidic 
amino acid rich region protein; PDI, protein disulfide isomerase; 
SPCA, secretory pathway Ca2+-transport ATPase. Adapted 
from (Prins and Michalak, 2011). 
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1.2.2.2 Calcium and endoplasmic reticulum stress 

Within the ER lumen, Ca2+ is present either in free-form or buffered via ER 

resident chaperones (Michalak and Opas, 2009), namely: Calreticulin, 

Immunoglobulin Binding Protein BiP/GRP78, GRP94, Protein Disulfide 

Isomerase (PDI). One characteristic uniting the ER Ca2+ buffers is their 

multifunctionality. Instead of being limited to serving as a passive sponge for Ca2+ 

within the organelle, Ca2+-buffering proteins are responsible for a variety of 

processes, including chaperoning for post-translational protein modification and 

folding, regulation of apoptosis, and regulating Ca2+ release pathways (Bravo et 

al., 2013).  

The multi-functional nature of the ER enables it to sense and integrate many of 

the incoming cell signals, in particular, the changes in free and bound Ca2+ 

concentrations in and outside of the ER compartment (Krebs et al., 2015). To fulfil 

this critical function, GRP78/BiP; an ER Ca2+-binding protein associates with 

other ER transmembrane proteins; ATF6, IRE1 and PERK. The recruitment of 

Bip to these proteins is stabilized only by high Ca2+ concentrations (Suzuki et al., 

1991). Thus, depleted and un-replenished Ca2+ stores which can lead to 

compromised action of calcium-activated chaperones will result in: (i) rapid 

accumulation of mis-folded proteins, (ii) dissociation of BiP from IRE1, PERK and 

ATF6 and (iii) activation of what’s known by the unfolded protein response (UPR) 

pathway (Krebs et al., 2011), figure 1.11. 
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Figure 1.11 The Unfolded Protein Response pathway.  
At a normal [Ca2+]ER: the ER-stress sensors are scaffolded and inactivated by GRP78/BiP. ER-
resident chaperones facilitate the proper folding of the nascent protein and prevent its 
aggregation. Protein trafficking and quality-control mechanisms work normally. In contrast, when 
the [Ca2+]ER is remarkably decreased and not replenished: the function of chaperones 
becomes disturbed and unfolded proteins accumulate and act as a sponge for luminal 
GRP78/BiP. As a consequence, ER-stress sensors are devoid of GRP78/BiP and become 
activated. a- Dissociation of binding immunoglobulin protein (BiP) from inositol-requiring enzyme 
1α (IRE1α), or direct binding of misfolded proteins to IRE1α, activates the endoribonuclease 
domain of IRE1α, which non-conventionally splices an intron from unspliced X-box binding protein 
1 (XBP1u) mRNA to produce XBP1s mRNA that encodes a potent transcriptional activator, 
XBP1s. Among the target genes of XBP1s are genes encoding proteins that increase the protein-
folding capacity of the endoplasmic reticulum (ER) and that assist in the degradation of misfolded 
proteins by ER-associated degradation (ERAD). In addition, the entry of newly synthesized 
proteins into the ER is limited by the degradation of mRNA through regulated IRE1α-dependent 
decay of mRNA (RIDD). b- PKR-like ER kinase (PERK)- dependent phosphorylation of eukaryotic 
translation initiation factor 2α (eIF2α) inhibits ribosome assembly, which causes a translational 
block and allows the cell to manage temporary ER stress. Activating transcription factor 4 (ATF4) 
escapes translation inhibition under ER stress conditions and induces the transcription of genes 
that promote survival, including those involved in compensatory autophagy (see inset box). Once 
ER stress is resolved, eIF2α is dephosphorylated by the GADD34–protein phosphatase 1 (PP1) 
complex to restore protein translation. In addition, the unfolded protein response can activate 
apoptosis, mainly through C/EBP homologous protein (CHOP). c- Upon BiP dissociation from 
ATF6α during ER stress, ATF6α travels to the Golgi compartment where it is processed by the 
Golgi enzymes site 1 protease (S1P) and S2P to produce a cytosolic p50 fragment. ATF6p50 
functions as a transcription factor that activates transcriptional programmes that increase ER 
capacity and protein folding, and that remove misfolded proteins from the ER for degradation 
(ERAD) (Grootjans et al., 2016). 
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An outstanding key task of acinar cells in the exocrine glands is the synthesis and 

packaging of proteins for transport. Accordingly, the ER of these cells is highly 

developed to accommodate the Ca2+ as well as the protein overload that can be 

experienced throughout their secretory role. As a consequence, secretory acinar 

cells may be highly sensitive to environmental conditions that impose ER stress 

like exposure to pathogenic inflammatory stimuli (Bettigole and Glimcher, 2015), 

particularly viral infections (Isler et al., 2005, Pavio et al., 2003, Tardif et al., 

2002).  

1.2.2.3 Disrupted Ca2+ Signalling in Dysfunctional Salivary Glands 

Interestingly, due to the complexity of the signal which induces salivation, the 

integral acinar cell response to muscarinic receptor activation, with temporal and 

spatial [Ca2+]i increase, can be prone to disruption. In fact, both physiologic and 

pathologic conditions can target acinar Ca2+ homeostasis. 

Ageing has always been associated with the depletion of acinar tissue, 

hyperplasia of ducts and fibrosis of connective tissues in the salivary glands 

(Meisel et al., 1988). It is possible that these structural changes result in salivary 

insufficiency and xerostomia in the elderly (Niedermeier et al., 2000). Importantly, 

ageing is associated with signs of damage to many proteins including the Ca2+ 

handling proteins (Puzianowska-Kuznicka and Kuznicki, 2009). Of specific 

interest, studies have clearly demonstrated age-related cytosolic Ca2+ signal 

modulation in the aging parotid glands (Mahay et al., 2004, Salih et al., 1997, 

Maki et al., 1989). These studies suggested impaired or altered IP3-induced Ca2+ 

release from the ER in the aging parotid acinar cells, which in turn declined 

calcium influx machineries (Mahay et al., 2004).  



42 

 

Drugs are reported to induce dry mouth (Sreebny and Schwartz, 1997, 

Guggenheimer and Moore, 2003). Furthermore, xerostomia has been considered 

as a side effect of different classes of antihypertensive therapies (Nonzee et al., 

2012). In particular, Hattori et al., suggested that the calcium channel blockers 

which are clinically administered for hypertension, can cause dry mouth by 

inhibiting the non-selective cation and voltage-dependent Ca2+ channels that are 

involved in resting salivation (Hattori and Wang, 2007). 

Reactive oxygen species (ROS) are critical intracellular signalling factors that 

control cellular metabolism. However, high ROS levels exceeding the cellular 

antioxidant capacity cause detrimental effects with pathological consequences 

(Gorlach et al., 2015). ROS can be generated in irradiated salivary glands, that 

can lead to long-term irreversible dysfunction (Ambudkar and Muallem, 2016). In 

response to irradiation, the transient receptor potential melastatin-like 2 

(TRPM2); a Ca2+-permeable non-selective cation channel, is activated by ROS 

metabolites (Di et al., 2012) and contributes to irreversible salivary gland 

dysfunction by enhancing Ca2+ entry in salivary gland cells (Liu et al., 2013). In a 

variety of cell types, Ca2+ entry via TRPM2 has been associated with increased 

cell death and apoptosis (Ambudkar and Muallem, 2016).  

Diabetes: xerostomia and pathological thirst (polydipsia) are two closely related 

complaints among diabetic patients which have been associated with impaired 

functions of the salivary glands (Fedirko et al., 2006). Due to the substantial 

[Ca2+]i changes recorded in different cell types (Biessels et al., 2002, Kruglikov et 

al., 2004, Lagadic-Gossmann et al., 1996) and the altered Ca2+-ATPase activity 

and expression in other tissues (Balasubramanyam et al., 2001, Evcimen et al., 

1999, Vetter et al., 2002, Kim et al., 2001), Ca2+ dysregulation is currently 
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considered a basic pathology associated with diabetes complications. 

Importantly, experimental studies on diabetic rats revealed a marked decrease in 

saliva flow, protein content and amylase activity in response to pilocarpine 

stimulation, which paralleled abnormalities in acinar cell Ca2+ signalling (Fedirko 

et al., 2006, Murai et al., 1996, Watanabe et al., 2001). Furthermore, Fedirko, 

Kruglikov et al. 2006, described dramatic changes in Ca2+ homeostasis and 

signaling in acinar cells of rat submandibular salivary gland after 6–7 weeks of 

Streptozotocin-induced diabetes (Fedirko et al., 2006). Ca2+ alterations in the 

diabetic model comprised: (i) increased sensitivity and Ca2+-mobilizing ability of 

muscarinic receptors, (ii) increased Ca2+ influx across the PM through the G-

protein coupled Ca2+ channel; TRP6 and (iii) elevated resting [Ca2+]i levels. 

Moreover salivary gland acinar cells from the diabetic rats exhibited delayed 

clearance of IP3-induced Ca2+ signals, slower replenishment of [Ca2+]ER and 

diminished endoplasmic reticulum calcium [Ca2+]ER content. These later findings 

were all substantiated to be related to dramatic reduction in the Ca2+ transporting 

abilities of both PMCA and SERCA pumps. 

Sjӧgren’s syndrome (SS) is a chronic autoimmune disease that results in 

lymphocytic infiltration and loss of secretory function in salivary and lacrimal 

glands (Nikolov and Illei, 2009). However, dysfunctional SGs of SS patients 

poorly correlate with inflammation (Shen et al., 2013, Xuan et al., 2013). Early 

studies have shown the upregulated expression of inducible nitric oxide synthase 

(iNOS) in the labial salivary glands of patients with SS when compared to healthy 

controls (Konttinen et al., 1997).  Nitric oxide (NO) production from iNOS is known 

to be long-lasting and at relatively high concentrations when compared to the 

other two isotypes; endothelial (eNOS) and nNOS (Nathan and Xie, 1994).  
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Experiments which investigated the outcome of prolonged exposure of acinar 

cells to nitric oxide reported declined responsiveness of these cells to 

acetylcholine (Dawson et al., 2006), by desensitizing their receptors to stimulation 

(Caulfield et al., 2009). Furthermore, high levels of NO in SS patients (Caulfield 

et al., 2009, Konttinen et al., 1997, Ludviksdottir et al., 1999, Wanchu et al., 2000, 

Pertovaara et al., 2007) have been implicated in NO-mediated s-nitrosylation of 

receptors or other proteins involved in the Ca2+ evoked secretion signal (Caulfield 

et al., 2009). S-nitrosylation is the coupling of NO moiety to a reactive cysteine 

thiol to form an S-nitrosothiol; SNO, which ultimately alters the protein structure 

and function (Stamler et al., 1992a, Stamler et al., 1992b). 

More recently, an important advancement in understanding the signal alteration 

underlying functional loss in SS patients, emerged from data which provided 

definitive evidence that IP3R deficits in acinar cells and subsequent decrease in 

neurotransmitter-stimulated Ca2+ signalling trigger the secretory dysfunction in 

those patients (Teos et al., 2015).  

 

 

 

 

 

  



45 

 

1.3 SG Infections (Sialadenitis) 

1.3.1 General Risk Factors  

Primary mechanisms predisposing to acute infections of the salivary glands 

involve: (i) stasis of flow and (ii) retrograde contamination by bacterial flora from 

the oral cavity (McQuone, 1999). The most prevalent inciting factor in stasis of 

flow is dehydration which is commonly seen: in postoperative patients, in those 

taking particular medications with xerostomia side effects like antihistamines and 

in post-irradiated patients or with certain medical conditions like hepatic and renal 

failures and diabetes mellitus (McQuone, 1999). Interestingly, the reduced 

secretion rate may also be initiated by an autoimmune mechanism (SS) or some 

other process, which is probably either developmental or related to a previous 

virus infection (Banks, 1968). Mechanical obstruction (sialoliths) is another factor 

which precipitates stasis of flow. Sialoliths are more commonly seen in the 

submandibular ductal system (McQuone, 1999), because of the more viscous 

(worsened in a dehydrated state) glycoprotein consistency, upward course of the 

duct, and higher concentrations of calcium carbonate and calcium phosphate 

than are found in the parotid glands (Knepil and Fabbroni, 2008).  

Even with 85% to 90% of sialoliths being found in the submandibular glands, 

sialadenitis remains more prevalent in the parotid glands. This preferential 

predominance is due to the parotid gland fulfilling both risk factors mentioned 

beforehand. First, the relatively long, narrow parotid duct which is adapted to thin 

serous secretions is readily obstructed by small calculi or even by mucus plugs 

formed as a result of change in the content of the saliva, which is known to occur 

in certain circumstances (Patey, 1966).  
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This in addition to the secretory composition variances in both glands; the parotid 

glands secretion which is mostly serous, contain a higher concentration of 

fibronectin, which promotes the adherence of Streptococcus and S aureus 

around the ductal orifice (Mandel and Surattanont, 2002). Alternatively, the 

greater proportion of mucinoid substance in the sublingual and submandibular 

glands contains lysosomes, immunoglobulin A antibodies, and glycoproteins that 

bind epithelial cells and competitively inhibit bacterial attachments (McQuone, 

1999). 

1.3.2 Viral SG Infections 

A long association has been established between viral infections and diseases of 

the salivary gland, which respond by reduced saliva production and/or swelling 

(Jeffers and Webster-Cyriaque, 2011). Although all salivary glands are 

susceptible to viral infection, the parotid and the submandibular glands are most 

prone (Chandak et al., 2012). Furthermore, murine models of viral infection have 

demonstrated that the SG is a unique site in regards to virus–cell interactions. 

Assisted by the abundant capillary supply and extraordinary high rate of blood 

flow (Lu and Jacobson, 2007), viruses can reach the SGs as a consequence of 

secondary viremia, with blood monocytes playing a major role in dissemination 

(Stoddart et al., 1994). Furthermore, in these viral models, the SGs maintained a 

chronic infection, with the infectious virus replicating for months after viral 

clearance from all other organs. Interestingly, the persistent virus was selectively 

sequestered in vacuoles of glandular acinar epithelial cells (Jonjic et al., 1989), 

suggesting that the host immune response to viruses at mucosal sites, like the 

SGs, may be different from systemic immunity; in that clearance is protracted and 

the incidence of reactivation is high (Lu and Jacobson, 2007). 
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1.3.3 Viruses Implicated in SG Pathology 

Mumps is the most common viral SG infection, and the profound xerostomia 

produced by mumps is well recognized  (Banks, 1968). It is caused by a single 

stranded RNA virus belonging to the genus Rubula virus and the family 

Paramyxoviridae. In humans, mumps is the most common cause of non-

suppurative acute sialadenitis; 85% of cases occur in children younger than 15 

years (McQuone, 1999).  

It has no animal reservoir and is therefore purely a human disease (Senanayake, 

2008). The disease is highly contagious and spreads by airborne droplets from 

salivary, nasal, and urinary secretions. There is a primary viral infection of the 

oral cavity, after which the virus replicates within the upper respiratory tract and 

local reticuloendothelial and lymphoid systems. Subsequently, there is a period 

of 7–10 days of viremia, during which other organs can become infected (Singh 

et al., 2006).  Symptoms include acute onset of unilateral or bilateral tender, self-

limited swelling of the parotid gland, lasting two or more days without other 

apparent cause. In 10% of cases, other salivary glands may also be involved 

(Senanayake, 2008).  

Discovered in cultured Burkitt's lymphoma cells (Epstein et al., 1964), Epstein-

Barr virus (EBV) is an enveloped DNA herpesvirus that is transmitted by saliva 

and is shed even in apparently healthy subjects (Gerber et al., 1972). 

Identification of EBV in chronic nonspecific sialadenitis, Warthin's tumour and 

lymphoepithelial carcinoma, is highly suggestive of its role in these lesions (Kim 

et al., 1999). EBV infects the oropharyngeal epithelium and replicates there. Then 

it infects the surrounding B lymphocytes in a form of latent infection. The infected 
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B lymphocytes then re-infect the epithelial cells of other tissues via circulation in 

the blood (Hatton et al., 2014).  

In addition to the large percentage of Human Immunodeficiency Virus (HIV)-

infected patients which have been reported with SS-like conditions and dry mouth 

(Ulirsch and Jaffe, 1987), Human immunodeficiency virus-associated salivary 

gland disease (HIV/SGD) is another oral manifestation of HIV infection (Schiodt 

et al., 1989).  A low, unstimulated, whole-saliva flow rate has been associated 

with HIV/SGD (Grimoud et al., 1998, Flaitz et al., 1998). In addition, quantitative 

changes have been detected in saliva of HIV/SGD patients; such as lower 

secretory rates of sodium, calcium chloride, cystatin, lysozyme, and total anti-

oxidant capacity, which affect the homeostasis of the oral cavity and account for 

significant morbidity during the progression of HIV disease (Lin et al., 2003). 

Histologically, HIV/SGD is characterized by hyperplastic, intra-parotid lymph 

nodes and/ or predominant CD8+ T-cells peri-ductal lymphatic infiltrates. 

Histochemical analysis has revealed acinar atrophy, ductal dilation, and mild to 

moderate fibrosis with collagen deposition (McArthur et al., 2003).  

Several DNA, RNA and retroviruses have been considered important co-factors 

in the development of SS. In fact, two mechanisms have been reported to 

correlate viral infections to development of SG autoimmunity. Viral proteins 

exhibiting structural or functional molecular mimicry with host components can 

result in production of autoantibodies in SS patients (Navone et al., 2005). 

Moreover, activation of the innate immune responses upon viral recognition, 

results in a prolonged inflammatory response that may lead to chronic 

inflammation with activation of adaptive immune responses (Francis and Perl, 

2010). Whereas the DNA viruses that have been studied in association with SS 
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are cytomegalovirus (CMV) and EBV (Saito et al., 1989, Mariette et al., 1991, 

Maitland et al., 1995), the RNA viruses detected within the salivary glands of SS 

patients are hepatitis C (HCV) and Coxsackie virus (Triantafyllopoulou et al., 

2004, Carrozzo, 2008). Table 1-3 lists the viruses which are related to salivary 

gland diseases (Jeffers and Webster-Cyriaque, 2011). 

 

Table 1-3 Viruses Detected in SGs (Jeffers and Webster-Cyriaque, 2011) 

Virus Associated Disease(s) 

BK virus (polyomavirus family) HIV-SGD 

Paramyxovirus Mumps 

Human immunodeficiency virus 
(HIV) 

HIV-SGD, SS 

Epstein-Barr virus (EBV) Benign Lymphoepithelial Cysts (BLC), salivary gland 
tumors, SS 

Cytomegalovirus (CMV) Sialadenitis 

Coxsackie virus SS 

Human T-lymphotropic virus 
(HTLV) 

SS 

Human herpes virus 6 (HHV-6) Parotitis 

Human herpes virus 7 (HHV-7) Parotitis 

Kaposi sarcoma virus (KSHV) Warthin’s tumor, SS-associated parotid MALT 
lymphomas 

Influenza Parotitis 

Parainfluenza virus (PIV) Parotitis 

Guinea pig CMV Guinea pig CMV infection 

Hepatitis C SS 

Mouse CMV (MCMV) Acute and chronic SGD 

Mouse polyomavirus (PyV) Mouse parotid tumor 

Encephalomyocarditis (EMC) Sialodacryoadenitis 
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1.3.4 Double Stranded (ds) RNA 

Invading pathogens are recognized by several innate receptors, termed pattern 

recognition receptors (PRRs), which are located both at the cell surface and intra-

cytosolic. These sensors function to generate immune responses against 

conserved structures on microorganisms, known as pathogen-associated 

molecular patterns (PAMPs) (Melchjorsen, 2013).  Albeit the diversity of viral 

PAMPs; which include: surface structures, genomic material, and capsids, the 

intermediates generated during the replication cycle can also constitute PAMPs. 

In fact, the dsRNA produced during the replication of many RNA and DNA viruses 

(Kawai and Akira, 2007) is considered a hallmark PAMP and the most potent viral 

trigger of innate immune signalling (Nellimarla and Mossman, 2014). 

1.3.4.1 Origin of dsRNA 

It has been commonly assumed that the major source of cellular dsRNA is viral 

infections (Wang and Carmichael, 2004). Viruses possess unique long stretches 

of dsRNA (Brencicova and Diebold, 2013), the origin of which is diverse. RNA 

viruses with double-stranded genomes induce the innate immune response 

through their genome itself. This property, however, is not exclusive to these 

viruses, and as mentioned beforehand, it is generally accepted that most viruses 

also produce dsRNAs when replicating (Jacobs and Langland, 1996). While it 

was suggested that the electronegative properties of dsRNA would limit its ability 

to disseminate (Majde, 2000), studies reported travel of dsRNA between cells 

and tissues in plants and nematodes (Obbard et al., 2009). Similarly, in 

Drosophila, studies have reported that viral dsRNA travels from the site of 

infection and induces antiviral responses in neighbouring or uninfected cells 

(Saleh et al., 2009). 
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As opposed to viral dsRNAs, which are often much longer, endogenous (self) 

dsRNAs are commonly found in short stretches (<20bp) (Kato et al., 2008). Self 

dsRNA can arise from microRNAs (miRNAs) which are constantly synthesized 

by the cell (Gantier and Williams, 2007). Micro-RNAs represent an abundant and 

important class of noncoding RNA species, which can enter the sequence-

specific RNA interference (RNAi) pathway, where they mediate the destruction of 

targeted mRNAs (Rana, 2007). In addition to microRNA, necrosis in the absence 

of infection also releases self dsRNA, leading to inflammatory and autoimmune 

responses (Nellimarla and Mossman, 2014). 

In the laboratory, most studies utilize dsRNA substitutes to look at the dsRNA-

mediated-IFN antiviral response in a reproducible manner (DeWitte-Orr and 

Mossman, 2010). Synthetic poly(I:C), which consists of stretches of inosine and 

cytidine forming dsRNA-like motifs (Michelson et al., 1967), has been extensively 

used since its discovery, half a century ago, to mimic viral dsRNA. Both animals 

and humans develop an acute phase response characteristic of viral infections 

following treatment with poly (I:C) (Caskey et al., 2011). Moreover, studies have 

demonstrated that a single local administration of poly (I:C) induces inflammatory 

responses in the lungs of mice similar to that observed in the lungs of patients 

with chronic obstructive pulmonary disease (Harris et al., 2013). Also, poly (I:C) 

was shown to play a significant role in disruption of self-tolerance and 

establishment of an autoimmune response as seen in poly (I:C) induced 

autoimmune uveitis (Ren et al., 2011) and myasthenia gravis (Cufi et al., 2013). 

  



52 

 

1.3.4.2 Uptake of dsRNA 

Poly (I:C) internalization is the best studied model of dsRNA uptake in both in 

vitro and in vivo studies. Poly (I:C) is internalized into cells through clathrin-

mediated endocytosis and delivered to endosomal TLR3 and to cytoplasmic 

MDA5 (melanoma differentiation-associated gene 5) (Kato et al., 2008). Previous 

studies confirmed that the cytoplasmic lipid raft protein; raftlin, is essential for poly 

(I:C) cellular uptake in human myeloid DCs and epithelial cells. In raftlin 

knockdown cells, poly (I:C) neither enters the cell nor activates TLR3 and MDA5, 

further indicating that cellular uptake is a prerequisite for dsRNA-induced cellular 

responses. Upon poly (I:C) stimulation, raftlin migrates from the cytoplasm to the 

cell surface, where it associates with the clathrin–AP-2 (clathrin associated 

adaptor protein-2) complex and induces cargo delivery (Watanabe et al., 2011), 

figure 1.12. 

 

 

 

 

 

Figure 1.12 Extracellular poly (I:C) uptake. 
Poly (I:C) is recognized by cell surface uptake receptor and 
delivered to the TLR3-resident endosomes through Rarftlin- and 
clathrin-dependent endocytosis. Upon ligand recognition, TLR3 
activates IRF3 and NF-κB via TICAM-1, leading to production of 
type I IFN and inflammatory cytokines, respectively. Adapted from 
(Misako Matsumoto, 2016)  
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Furthermore, studies have shown that class A scavenger receptor (SR-As); a cell 

surface pattern recognition receptor (PRR), is critical for poly (I:C) induction of 

inflammatory responses (Limmon et al., 2008). In fact, the ubiquitously expressed 

SR-As mediate dsRNA entry via clathrin-mediated endocytosis, delivering them 

to intracellular dsRNA-binding proteins and inducing antiviral responses both in 

vitro and in vivo (DeWitte-Orr et al., 2010). The role played by scavenger 

receptors was further confirmed by studies which showed that downregulation of 

these critical sensors inhibited dsRNA uptake (Rocha et al., 2011). 

Other different mechanisms of dsRNA uptake have been reported: while uptake 

by B cells is mediated through their B-cell receptor (BCR) (Leadbetter et al., 

2002), bone marrow derived macrophages (BMDMs) depend on CD14 for dsRNA 

internalization (Lee et al., 2006). Finally, CD11b has also been found to 

essentially facilitate the internalization of poly (I:C) in peritoneal macrophages 

and RAW 264.7 cells (Zhou et al., 2013). 
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1.3.4.3 Innate Sensing of dsRNA  

It has been known for many years that introduction of synthetic or naturally 

occurring dsRNAs into the cytoplasm can trigger nonspecific and global immune 

responses in animals (Cunnington and Naysmith, 1975). Since dsRNA is the 

most potent trigger of the innate immune system, it is not surprising that cells 

possess several receptors for its recognition (figure 1.13).  

 

 

 

 

 

 

 

 

1.3.4.3.1 Toll-like receptor (TLR) 

TLRs were the first PRRs to be identified and have been most thoroughly studied 

(Lester and Li, 2014). First acknowledged in Drosophila, the Toll receptor was 

shown to be important for host defence against fungal infection (Lemaitre et al., 

1996). Subsequently, 15 subfamilies of TLRs have been identified in vertebrates 

(Takeda et al., 2003b). These transmembrane receptors, which localize to both 

the PM and endolysosomal compartments (figure 1.14), play key roles in 

development, homeostasis and injury repair (Ramnath et al., 2016). 

 

Figure 1.13 Recognition and biological effects of dsRNA 
signalling pathways 
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Each TLR is specialized in recognition of distinct PAMPs among which TLR3, 7, 

8 and 9 recognize foreign nucleic acids (Blasius and Beutler, 2010). TLR7 and 

TLR8 recognize virus-derived ssRNA (Diebold et al., 2004, Heil et al., 2004, Lund 

et al., 2004), while TLR9 recognizes microbial non-methylated CpG-containing 

DNA (Hemmi et al., 2000). TLR3 is the only TLR that recognizes virus-derived 

dsRNA and its synthetic analogue, poly (I:C) (Alexopoulou et al., 2001), as well 

as self RNAs derived from damaged cells via its ectodomain (Takemura et al., 

2014). 

 

 

 

Figure 1.14 TLRs  
TLRs are membrane-bound receptors localized at the cellular or 
endosomal membranes, recognizing PAMPs via the leucine-rich 
repeats (LRR) domain and transducing signals to the intracellular 
environment through the Toll–IL-1 receptor (TIR) domain 
(Mogensen, 2009). 
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1.3.4.3.1.1 TLR3 Structure and Ligand Binding 

TLR3 is a type I integral transmembrane glycoprotein. Similar to all TLRs, TLR3 

possess an extracellular domain or ectodomain (ECD) comprising 19–25 tandem 

copies of leucine-rich repeats (LRRs), a transmembrane domain, and an 

intracellular Toll/IL-1 receptor (TIR) domain (Akira and Takeda, 2004) (figure 

1.17). The crystal structure of the TLR3 ectodomain resembles a long solenoid 

bent into the shape of a horseshoe, of which one face is largely masked by 

carbohydrate, whereas the other is unglycosylated. Each turn of the solenoid 

corresponds to a single LRR sequence from a total of 23 leucine-rich repeats 

(Bell et al., 2005). Binding of dsRNA to TLR3 induces the receptor to 

homodimerize (Liu et al., 2008), causing a structural rearrangement where the 

TIR domains come into close contact and provide a “platform” for the adaptor 

protein TIR domain-containing adapter protein inducing IFNβ (TRIF) (O'Neill and 

Bowie, 2007), figure 1.15. This structural re-organization is essential for ligand 

binding of both viral dsRNA and poly (I:C) (Wang et al., 2010). 

 

 

 

 

 

 

 

 

Figure 1.15 TLR3 Structure and Dimerization.  
TLR3 consists of an ECD containing: 23 LRRs and the N (N-terminal) and C (C-
terminal) regions, the transmembrane domain, the cytoplasmic linker region and the 
TIR (Toll–IL-1 receptor) domain. The TIR domain is critical in signalling of TLR3 
through interaction with downstream signal adaptor molecules. dsRNA interacts with 
both an N- and a C-terminal-binding site of each TLR3 ECD (Liu et al., 2008). The two 
LRR-CT regions come together, which is essential for stable receptor–ligand complex 
formation and facilitates the dimerization of the cytoplasmic TIR domain (Wang et al., 
2010).  
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Several studies using different lengths of the preferential TLR3 ligand; poly(I:C), 

indicated that longer duplexes of at least 40-50 bp are prerequisites to induce 

TLR3 signalling (de Bouteiller et al., 2005, Okahira et al., 2005). This length 

requirement would help avoid inappropriate recognition of cellular ssRNAs with 

short hairpin structures or mature siRNAs or miRNAs (Peisley and Hur, 2013). 

 

1.3.4.3.1.2  TLR3 Intracellular Trafficking and Maturation  

Endosomal TLR maturation is tightly regulated through a combination of receptor-

specific intracellular trafficking and proteolysis. The concept of TLR signalling 

being functionally intertwined with the cellular membrane trafficking machinery 

has received much attention in recent years (Barton and Kagan, 2009). However, 

despite great progress in the identification of the molecular components of TLR 

signalling pathways, still little is known about whether and how regulators of the 

endosomal/phagosomal trafficking system affect TLR signalling and function, 

particularly under inflammatory in vivo conditions. TLR9 resides predominantly in 

the ER in resting cells (Leifer et al., 2004) and reaches the acidic endolysosomal 

compartments after stimulation by dsDNA (Barton et al., 2006, Tabeta et al., 

2006). In contrast, TLR3 is continuously exported to the Golgi and accumulates 

in the endolysosomal compartments, where it undergoes a single cleavage by 

cathepsins and the two fragments remain associated without disruption even 

after ligand binding (Toscano et al., 2013) (figure 1.16). 
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Monoclonal antibodies generated against the TLR3 ectodomain revealed that at 

steady state, there exists three forms of TLR3: a full length, 130 kDa highly 

glycosylated TLR3, a C-terminal fragment observed after cathepsin cleavage and 

another isoform which is predicted to represent the N-terminal fragment of 

cleaved TLR3 (Garcia-Cattaneo et al., 2012, Toscano et al., 2013, Murakami et 

al., 2014). Furthermore, immunoblotting analysis revealed the increased 

expression levels of the cleaved C-terminal fragment of TLR3 following exposure 

to poly (I:C).  

Figure 1.16 Proposed model of TLR3 trafficking and maturation.  
(1) TLR3 is neosynthesized and N-glycosylated in the ER. (2) it crosses the Golgi apparatus 
where it is fully glycosylated to become EndoH resistant. TLR3 exits the Golgi to enter the 
endosome membrane where it is cleaved by cathepsins (3). The two proteolytic fragments remain 
associated to fully signal (4) (Toscano et al., 2013). Interestingly, acidified endosomes are 
required not only for cleavage of TLR3 but also for activation of cleaved TLR3, likely by inducing 
a conformational change required for signalling. The strongest response to dsRNA is achieved 
between pH 5.7 and 6.7 (de Bouteiller et al., 2005), which corresponds to endosomal pH range 
(Cain et al., 1989). As with other endosomal TLRs, TLR3 trafficking and subsequent cleavage 
and signalling, depend on the transporter protein UNC93B1 (an ER chaperone with 12 
membrane-spanning domains). It interacts with transmembrane segments of TLR3 (Tabeta et al., 
2006). Beside its role in TLR3 trafficking, Unc93b1 is also important for TLR3 cleavage and 
stability by protection from ubiquitination and degradation (Qi et al., 2012). 
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Importantly, it is the cleaved form of TLR3 that signals from endosomes upon 

ligand recognition in nonimmune (epithelial) and immune (MDDC) cells (Garcia-

Cattaneo et al., 2012). Based on the TLR3 3D structure, the predicted TLR3 

cleavage site has been localized within the region which encompasses the 

LRR12 flexible loop that protrudes from the lateral face of the ectodomain, hence 

it is potentially well exposed to proteases (Choe et al., 2005, Park et al., 2008) 

(figure 1.17).  

 

 

 

 

 

 

 

 

 

In epithelial cells, TLR3 cleavage depends on cysteine protease cathepsins B 

and H, as poly (I:C)-dependent TLR3 signalling is inhibited and cleavage is 

reduced in cells exposed to the cathepsin inhibitor; z-FA-fmk or silenced for both 

cathepsins using siRNA (Garcia-Cattaneo et al., 2012). 

 

 

 

Figure 1.17 TLR3 cleavage.  
It occurs at the LRR 12 loop facilitated by its 
structural protrusion from the helix and exposure 
to the endolysosomal cysteine proteases. 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjf-p7T947QAhUBaxQKHVIxCUsQjRwIBw&url=http://cmr.asm.org/content/21/1/13.figures-only&bvm=bv.137904068,d.ZGg&psig=AFQjCNG84-K_CUw3P2AisK3FK-3P7WA71w&ust=1478343140931141
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1.3.4.3.1.3 TLR3-Mediated Innate Immune Responses  

As formerly mentioned, TLR3 is assembled in the endoplasmic reticulum, from 

where it is recruited to endosomes by the transmembrane protein UNC93B1 (Kim 

et al., 2008). Although TLR3 signals exclusively via the TRIF pathway, all other 

TLRs use the adaptor MyD88. The alanine residue present in the TLR3 TIR 

domain plays a major role in this uniqueness, as evidenced by mutation of TLR3 

Ala795 into a proline; present in other TLR TIR domains, which resulted in 

MyD88-biased signalling (Verstak et al., 2013). The cascade of events triggered 

upon TLR3 engagement by its ligands; example poly (I:C), commences by the 

receptor homodimerization and recruitment of TRIF (Kaisho and Akira, 2006, 

O'Neill and Bowie, 2007), after which TLR3 signalling diverges into several 

distinct arms, figure 1.18.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 TLR3 Signalling Pathway 
(Ramnath et al., 2017) 



61 

 

TRIF activates the serine/threonine tank binding kinase-1 (TBK-1), which directly 

binds to and phosphorylates IRF3 (Sato et al., 2003). Phosphorylated IRF3 

(pIRF3) dimerizes and translocates to the nucleus and leads to the transcription 

of IFN-β (Honda and Taniguchi, 2006, O'Neill and Bowie, 2007). IFN-β signals in 

an autocrine fashion to activate the transcription factors signal transducer and 

activator of transcription (STAT) 1 and 2, resulting in the activation of type I IFN 

stimulated genes (ISGs) and subsequent anti-viral responses (Platanias, 2005).  

In addition, the transcription factor NF-κB is induced through TLR3 stimulation 

(Kaisho and Akira, 2006, Gauzzi et al., 2010, Sen and Sarkar, 2005, O'Neill and 

Bowie, 2007, Matsumoto et al., 2011). The C-terminal region of TRIF contains a 

receptor-interacting protein homotypic interaction motif (RHIM), which is essential 

for its interaction with the serine/threonine kinase receptor-interacting protein 

kinase (RIPK)1 (Meylan et al., 2004). RIPK1 interacts with TRAF6 which 

polyubiquitinates transforming growth factor β activated kinase 1 (TAK1) and IκB 

kinase-related kinase γ (IKKγ) (Jensen and Thomsen, 2012). IKKγ directly 

associates with IKKα and IKKβ, while TAK1 forms a complex with TAK1 binding 

proteins 1, 2, and 3 (TAB1, 2, and 3) and then phosphorylates IKKβ (Brown et 

al., 2011). The activated IKK complex then phosphorylates IκBα facilitating its 

ubiquitination and degradation, and the release and activation of NF-κB (Jensen 

and Thomsen, 2012, Gauzzi et al., 2010, Mathes et al., 2008). The TRIF-RIPK1 

axis is a central control point in cell survival/death pathways, since RIPK1 also 

associates with Fas-associated death domain (FADD), via a death domain 

interaction (Kaiser and Offermann, 2005). This subsequently leads to the 

assembly of a death-inducing signalling complex that contains caspase-8.  
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Homodimerized caspase-8 undergoes autocatalytic processing and activation, 

leading to RIPK1 cleavage and inactivation, followed by apoptotic cell death. 

However, if caspase-8 heterodimerizes with a non-catalytically active homologue 

of caspase-8, FLICE-like inhibitory protein, it is partially activated. This complex 

is not able to cleave RIPK1 adequately to cause apoptosis, and therefore 

mediates cell survival (Kaiser and Offermann, 2005). Furthermore, if caspase-8 

activity is compromised, RIPK1 cleavage is completely prevented, thereby 

allowing it to interact with RIPK3 to form a necrosome, leading to necroptotic cell 

death (Kaiser et al., 2011, Oberst et al., 2011). Thus, RIPK1 acts as a central 

signalling hub in dictating whether TLR3 signalling promotes survival, apoptotic 

cell death or necroptotic cell death. Importantly, TLR-3 induced apoptotic cells 

discharged into the extracellular space, will release endogenous death 

associated molecular patterns (DAMPs), exposing molecular hydrophobic 

portions that were normally hidden in a healthy living cell. DAMPs are a rapidly 

growing class of potent inflammatory stimuli. They act in an autocrine manner, 

alerting the host of damage, but can also amplify inflammation leading to further 

tissue damage (Prince et al., 2011).  

  

1.3.4.3.2 RIG-I-Like Receptors, RLRs 

The RLR family is another cytosolic dsRNA sensor comprising 3 closely related 

members of RNA helicases, RIG-I, MDA-5, and LGP2, which can detect 

cytoplasmic dsRNA, generated during replication of RNA viruses (Kawai and 

Akira, 2008, Loo and Gale, 2011, Dixit and Kagan, 2013). All 3 members contain 

centrally located RNA helicase domains, whereas RIG-I and MDA5, but not 

LGP2, have 2 N-terminal caspase-recruitment domains (CARDs) (figure 1.19). 
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The helicase domain is responsible for the recognition of RNA, whereas the 

CARD domains are required for downstream signalling. LGP2, which lacks the 

CARD domains, cooperates with RIG-I and MDA-5 and enhances their functions 

(Moresco and Beutler, 2010, Satoh et al., 2010, Childs et al., 2013). Studies have 

shown that the length of dsRNA is a determinant for the recognition by specific 

RLRs; RIG-I and MDA-5 can preferentially detect short and long dsRNA species, 

respectively (Kato et al., 2008).  Since poly (I:C) is a mixture of various lengths of 

RNA species, it can be recognized by both RIG-I and MDA-5 (Chattopadhyay 

and Sen, 2014). Upon activation by cytoplasmic dsRNA, RIG-I and MDA-5 

activate downstream signalling via the CARD containing adaptor protein IPS-1, 

which binds to them through CARD–CARD interaction (Bruno Miguel Neves, 

2012) (figure 1.20). 

 

 

 

Figure 1.19 RLR structural domains  
((Bowzard et al., 2011). 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwihoeSJ74_QAhWsK8AKHZp6BMAQjRwIBw&url=http://www.cell.com/trends/biochemical-sciences/fulltext/S0968-0004(11)00047-8&bvm=bv.137904068,d.ZGg&psig=AFQjCNFaNKD3IJzARwCebb6d_t63oPyorQ&ust=1478375174457015
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1.3.4.3.3 dsRNA-activated protein kinase (PKR) 

PKR is a central player in the cytoplasmic response to dsRNA. PKR is an 

interferon-inducible, dsRNA-activated Ser/Thr protein kinase (Clemens, 1997, 

Proud, 1995). This enzyme is normally present only at low levels in cells and 

exists in an unphosphorylated, inactive form (Hovanessian, 1989, Samuel, 1991). 

When dsRNA binds to PKR, this induces its dimerization, auto-phosphorylation 

and activation (Wang and Carmichael, 2004). Consequently, pPKR 

phosphorylates a number of substrates, the most important of which is the 

eukaryotic initiation factor 2 (eIF-2α) (Samuel, 1979), which results in global 

cellular inhibition of protein synthesis (Samuel, 1993).  

Figure 1.20 RLR signalling.  
RIG-I and MDA5 function as cytosolic sensors of short and long 
dsRNAs, respectively. Binding of dsRNAs to these receptors 
activates signalling through the adaptor protein IPS-1, located in 
the outer mitochondrial membrane or on peroxisomes. 
Mitochondrial IPS-1 leads to activation of NF-κB and IRF3/IRF7 
through the IKK complex and TBK1/IKKi, respectively, which 
results in the production of inflammatory cytokines, type I 
interferons and interferon-stimulating genes (ISGs). In turn, 
peroxisomal IPS-1 induces early expression of ISGs via 
transcription factor IRF1 (Bruno Miguel Neves, 2012).  
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The activation of PKR is independent of the sequence of dsRNAs but depends 

on both their concentration and on their length. PKR is activated by low 

concentrations of dsRNAs but inhibited by higher concentrations (Samuel 1993). 

Activated PKR can mediate signal transduction in response to dsRNAs (Proud, 

1995), figure 1.21. In addition, there is evidence that dsRNAs can trigger 

apoptosis through PKR (Gil and Esteban, 2000) by activation of the Fas-

associated death domain/caspase 8 pathways (Balachandran et al., 1998) or of 

caspase 9 (Gil et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.21 dsRNAs can bind to and activate PKR.  
Activated PKR phosphorylates a number of targets, including 
the translation factor eIF2, leading to translation inhibition.  It can 
phosphorylate IκB, releasing it from the transcription factor NF-
κB, which can now be translocated to the nucleus, where it 
activates the expression of genes having NF-κB binding sites. 
These genes include beta interferon (Thanos and Maniatis, 
1995), Fas (Donze et al., 1999), p53 (Cuddihy et al., 1999), Bax 
(Gil and Esteban, 2000), and others (Williams, 2001).  
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1.3.4.3.4 2’,5’-AS/RNase L. 

In addition to the PKR pathway, the 2’,5’-oligoadenylate synthetase (2’,5’-

AS)/RNase L pathway responds to dsRNA. IFN signalling leads to the induction 

of oligoadenylate synthetases (OAS1), which following activation by long double 

stranded RNA (dsRNA), generates 2’-5’-linked oligoadenylates (2-5A) 

(Hovanessian, 2007). 2-5A then binds to RNase-L, leading to its dimerization and 

enabling its nuclease activity (Tanaka et al., 2004). RNase L, which is a widely 

expressed cytoplasmic endoribonuclease, catalyses the degradation of viral and 

cellular RNAs (Li et al., 1998), including mRNAs, thus inhibiting protein synthesis 

(Iordanov et al., 2000) (figure 1.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22 2',5'-oligoadenylate synthetase 1 (OAS1)  
OAS1 is expressed at low constitutive levels and is upregulated by type I interferons (IFNs). OAS1 
protein accumulates in the cell cytoplasm as an inactive monomer. Following activation by 
dsRNA, the enzyme oligomerizes to form a tetramer that synthesizes 2',5'-oligoadenylates (using 
ATP as a substrate) that, in turn, activates the constitutively expressed inactive ribonuclease L 
(RNaseL). RNase L then forms a crossed dimer and degrades RNA that is of both cellular and 
viral origin, leading to the inhibition of viral propagation (Hornung et al., 2014). 
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1.4 Aims of The Study 

A long association has been established between viral infections and diseases of 

the salivary gland. However, the mechanism(s) by which primary viral infections 

can induce glandular injury and compromise the secretory machinery are not well 

understood. Previous studies demonstrated that multiple systemic injections of 

poly (I:C) in SS prone NZB/WF1 mice, resulted in loss of glandular function 

(Nandula et al., 2013, Deshmukh et al., 2009). These studies hypothesized the 

involvement of cumulative effects of type I IFN production and other inflammatory 

cytokines in the perceived glandular hypofunction (Deshmukh et al., 2009).  

The aims of this study were: 

1-To develop a viral mimic model based on direct injection of poly (I:C) into the 

SMGs and activation of local exocrine innate immunity, ruling out any possible 

extraneous impacts arising either from systemic delivery responses or 

autoimmune susceptibility of mice.   

2- To utilize the SG model to verify the initial impact of these types of infections 

on the functional responses of the glands. 

3- To comprehensively characterize the early molecular events and innate 

immune signalling pathways that can be triggered by viruses and potentially 

contribute to acute exocrine injury and dysfunction.  

 

 

 

 



68 

 

Chapter 2                                                                             

Materials And Methods 
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2.1 Viral Mimic Model Development 

Female C57BL/6 mice, weighing 18-21 grams (Harlan Labs Ltd., Loughborough, 

UK), were aged between 10-12 weeks at the start of the experiments. They were 

housed in a temperature-controlled environment under a 12 h light–dark cycle 

with free access to food and water. All procedures were approved by the local 

ethics committee, and performed in accordance with the Home Office license. 

Female mice were chosen due to studies suggesting that they possess the 

combined capacity of: (1) heightened sensitivity to infectious and injurious stimuli 

(in the form of increased number of tissue macrophage with a greater density of 

pathogen/injury-sensing TLRs), (2) more efficient phagocytosis and NADPH 

oxidase-mediated killing by resident macrophage that eliminate pathogens faster 

than in males and (3) increased population of resident anti-inflammatory T-

lymphocytes that selectively prevent excessive macrophage-derived cytokine 

production without affecting phagocytosis. Based on these findings, the 

mechanisms that regulate leukocyte function in females are more efficient to that 

in males as rapid detection and elimination of pathogens increases the threshold 

for pathogen-induced tissue injury in females (Scotland et al., 2011). In addition, 

relative rarity of the granular convoluted tubules in the female submandibular 

glands, which were used in this study, render them histologically and functionally 

more comparable to the human glands.   

To develop the mouse model, we cannulated the mouse SMGs as previously 

performed in rats (Correia et al., 2010) and mice (Bombardieri et al., 2012). 

Submandibular glands were used in this study for ease of cannulation, in addition 

to the gland encapsulation, lacking in the mouse parotid glands, which makes it 

much easier to identify and excise all infiltrated and inflamed tissues. 
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Initially, a glass cannula (Supelco, 25715, PA- USA) was stretched over a flame 

(figure 2.1 A) and fitted into a polyethylene tube with 0.28 mm inner diammeter. 

Polyinosinic–polycytidylic acid sodium salt (P1530-25MG, Sigma-Aldrich) was 

then diluted in 0.9% saline solution to a final concentration of 4mg/ml. Towards 

consistent, visualised and flawless submandibular gland (SMG) injection, poly I:C 

was pre-mixed with Trypan blue (T8154-100ML-Sigma- Aldrich) prior to injection. 

Eighty micrograms of poly (I:C) in 20 µls were loaded in a 0.3 ml syringe (613-

4900, VWR International). Finally, the glass cannula, polyethylene tube and 

syringe were mounted on a fixed holder as the setting in figure 2.1 B exemplifies. 

 

 

 

 

 

 

 

 

For recovery experiments, mice were anaesthetised intraperitoneally (i.p) with 0.1 

ml of combined 5 mg Ketamine/1 mg Xylazine. Under a stereomicroscope, the 

glass cannula was inserted into Wharton’s duct and poly (I:C) was injected slowly 

and constantly into the left SMG (Correia et al., 2010) (figures 2.3 A, B and C). 

The same volume of the vehicle (0.9% saline and Trypan blue) was delivered to 

the right SMG as a contralateral negative control. 

 

Figure 2.1 Pre-injection Set-up.  
A: Stretching of glass cannula over a flame. B: Final 
Injection Setup 

A B 
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Prior to tracheal exposure and endotracheal intubation, the animal was i.p 

anaesthetized with 150 µl of Pentobarbital Sodium (Euthatal, Merial) 1 mg/ml. A 

minor tracheal cut was performed and a polyethylene tube was inserted gently 

into the trachea to avoid asphyxia caused by accumulation of lung fluids during 

pilocarpine induced functional assessment. Skin incision over the mylohyhoid 

muscle was made and followed by gentle maceration of the posterior and medial 

fibres to form an oval shaped tissue slit over the submandibular and sublingual 

ducts. Through these surgical breaches, the submandibular ducts on both sides 

were medially and partially cut to avoid cutting of the laterally adjacent sublingual 

gland (SLG) ducts.  

Polyethylene tubes were fitted into the needles of two insulin syringes and a 

pilocarpine stock solution (Sigma Ltd) of 10 mg/ml was diluted in saline to 0.1 

mg/ml from which 0.1 ml was injected i.p. to stimulate salivation. The tissue slits 

were flushed briefly with saline and local anaesthetic to avoid contamination of 

the streamed saliva with any blood or tissue fluids.  

Figure 2.2 SMG Retrograde Ductal Injection.  
A: Microscopic depiction of pre-fabricated glass cannula inserted into Wharton 
Duct for poly (I:C) delivery B:  Left SMG with clear Trypan blue-poly (I:C) 
injection. C: Excised SMG showing specific retrograde SMG injection. 

A B C 

SMG 

SL
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After approximately 5-7 min post pilocarpine injection, saliva started flowing from 

the duct incisions and accumulating into the primed myelohoid cavities. Pooled 

saliva was drawn with the insulin syringes for 5 minutes and collected into pre-

weighed Eppendorf tubes (figures 2.3 A and B). The volume of collected saliva 

calculated (1mg = 1μl saliva) was used to assess the flow rate expressed as μl 

saliva/min. for different experiments in the present research, saliva was collected 

and mice were culled at: 6hrs, 9hrs, 24 hrs days- post poly I:C delivery. 

 

 

  

 

 

The SMGs were carefully excised and dissected from the SLGs, then weighed 

on a sensitive balance and sectioned. Tissues for histopathologic examination 

and immunohistochemistry were fixed in 10% neutral buffered formalin [50 ml 

37% formaldehyde, 450 ml distilled water, 3.25 gm sodium phosphate, dibasic 

(Na2HPO4), 2 gm sodium phosphate, monobasic (NaH2PO4)]. Other tissue pieces 

were stored in RNAlater® (R0901-100ml, Sigma-Aldrich) in -20°C freezer for 

future analyses (RTqPCR and protein analysis).  For calcium signalling and flow 

cytometry experiments, tissues were flushed with Dulbecco’s phosphate buffered 

saline (PBS) (D8537-100ml, Sigma-Aldrich) to eliminate hair and blood then 

preserved in Hanks’ Balanced Salt solution (H9394-100ML, Sigma-Aldrich) until 

reaching the appropriate facility where the experiments were conducted on the 

same day. 

Figure 2.3 Extraoral saliva collection.  
A: Myelohoid muscle slits enclosing the accumulated saliva. B: 
Saliva collection overall setup 
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2.2 Histopathologic Examination 

Following formalin fixation, salivary gland tissues were briefly washed in distilled 

water, enclosed in uniquely numbered/labelled cassettes, rinsed in distilled water, 

drained and held in 70% alcohol while setting up the processing machine (Leica 

TP1020). Once the tissue processing was completed, cassettes were transferred 

into the embedding station (Leica TP1020) and salivary gland tissues were 

embedded and allowed to cool on the cold plate. After 30 mins, the blocks were 

removed from their base moulds and 5 µm sections cut with a microtome, 

mounted on glass slides and placed on a hot plate for a minimum of 1 hour. 

Paraffin is hydrophobic and impervious to aqueous solutions, so removal of the 

wax was done by immersing tissue sections in three changes of xylene (a 

hydrocarbon solvent), then hydrating them in three changes of absolute alcohol 

followed by thorough rinsing in water. Sections were stained in Mayer 

hematoxylin for 1 minute, blued in a weakly alkaline ammonia solution and 

submerged in aqueous eosin. Following eosin staining, slides were rinsed and 

passed through several changes of alcohol to remove all traces of water, then 

dipped in several baths of xylene to clear the tissues and render them completely 

transparent. A thin layer of DPX mounting medium was applied on each tissue 

section followed by a glass cover slip. Mounted tissue sections were ready to 

examine under light microscope attached to a digital camera, to capture 

significant histopathologic and morphologic changes following poly (I:C) and 

vehicle injections into the SMGs.       
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2.3 Immunohistochemistry 

Three µm tissue sections were microtome cut and mounted on Superfrost™ Plus 

adhesive glass slides (10149870-Fisher Scientific Ltd) and placed on a hot plate 

for 1 hour. In order to standardize immunohistochemistry, increase staining 

intensity and reduce non-specific background staining, Trilogy™ (Cell Marque, 

Rocklin, CA-920P-06) was used for deparaffinization, rehydration, and 

unmasking (Chang et al., 2013) .  Slides were placed in a plastic rack and in a 

staining pot filled with approx. 800 ml of Trilogy™. Since this product performs its 

purpose only when boiled under pressure, the pot with slide rack was placed in 

an autoclave adjusted to boil at 121°C and chamber pressure approximately 15 

psi for 10 minutes. After the autoclave run came to an end, slides were retrieved 

from the Trilogy™ solution and washed thoroughly for 5 minutes with 1X TBS 

immunobuffer wash. Then slides were drained very briefly on absorbent tissue 

(all efforts should be made hence after to avoid tissue dryness and later on false 

positive results). To block endogenous peroxidase activity and avoid non-specific 

background reactions, sections were incubated in 3% hydrogen peroxide solution 

for 20-30 minutes. Slides were washed for 5 minutes in 1X TBS buffer and ringed 

using a delimiting ‘PAP’ pen (S2002-dako). To block non-specific epitopes on the 

tissue samples, sections were incubated with 1% BSA in 1X TBS and azide, 

pH7.6 for 5 minutes. The blocking buffer was flicked off and the primary antibody 

(see each relevant chapter) was applied at the appropriate working dilution 

overnight at 4°C. On the following day, slides were rinsed in 1X TBS and 

washed for 10 mins in 500ml 1X TBS. Excess solution was flicked off and 

sections were incubated for 60 mins at room temperature with a secondary 

antibody raised against the appropriate primary antibody host. Slides were then 

rinsed in 1X TBS and washed once for 10 mins in the 500ml 1X TBS.  
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Colour was developed for 5-10 mins in DAB solution (34002-Pierce™) and slides 

were washed under running tap water for 5 mins. Counterstaining was performed 

by dipping slides for 2 mins in Mayer haematoxylin and washing under a running 

tap until clear. Blue colour was developed with ammonia solution, and optimal 

intensity of nuclear staining under was checked light microscope. Slides were 

dehydrated by rinsing thoroughly in three changes of absolute alcohol, and 

cleared by dipping in 2 changes of xylene, 5 mins each. Slides were DPX-

mounted and left to set before thorough examination under the light microscope. 

2.4 Gland homogenization, Protein extraction and Western Blotting 

Tissues stored in RNAlater® were retrieved and weighed on a sensitive balance 

and placed in 2 ml lysing matrix tubes (Lysing Matrix D, 6913-100-MP 

Biomedicals) with cell lysis buffer (AA-LYS-10 ml- RayBiotech, Inc., Norcross, 

GA) and protease inhibitor cocktail (1:10 dilution, Calbiochem, UK). Tubes were 

fitted in FastPrep™ tissue homogenizer (MP Biomedicals Santa Ana, CA) 

carousel which was adjusted to allow sample disruption with the lysing beads in 

60 seconds (20 seconds X 3 intervals). Samples were briefly centrifuged at 4°C, 

this was followed by incubation on ice on a gentle rocker for 30 mins. 

Subsequently, protein homogenates were retrieved from the lysing matrix tubes 

and transferred to labelled Eppendorf tubes which were then sonicated on ice for 

5 minutes. Homogenized samples were centrifuged at 10,000 g for 20 mins at 

4°C and supernatants were collected without disrupting the pellet, aliquoted and 

stored at -80°C for later use. For accurate measurement of the extracted protein 

concentration, Qubit® 3.0 Fluorometer (Q33216, Invitrogen™, UK) was used. 

Three assay tubes for the standards and one for each sample were setup. 200 
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μL of Qubit® working solution was prepared by diluting the Qubit® reagent 1:200 

in Qubit® buffer for each standard and experimental sample (figure 2.4). 

 

 

 

 

 

 

 

 

Homogenates were diluted 1:5 with distilled water and prepared for SDS-PAGE 

by mixing with DTT 1:10 and LDS 1:4. Tubes were centrifuged, vortexed and 

boiled at 100°C for 3 mins, during which running buffer (NP0002, Novex™) was 

prepared at 1:20. Samples were then electrophoresed on precast 4-2% SDS-

PAGE gel (NuPAGE® Novex™ Bis-Tris Gels, Invitrogen™ UK) at 200V and 

200mA for 35 mins. During this period, 0.2 µm pore–size nitrocellulose 

membrane (1620112, Bio-Rad, UK) were cut and soaked in buffer: 25 ml transfer 

buffer (BT00061, Novex™), 50 ml methanol and 375 ml distilled water, together 

with sponge pads and filter papers. Electro-transfer of proteins was done for 1 

hour according to standard protocol (Invitrogen, UK, Paisley) at 30V and 200mA.  

 

 

Figure 2.4 Outline for protein concentration measurement using Qubit® kit. 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjC-5qGvvfRAhVFWxoKHV77BbwQjRwIBw&url=https://www.thermofisher.com/kr/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-fluorometer.html&bvm=bv.146094739,d.ZGg&psig=AFQjCNGViL80DEo2sv8yFVit4GiIkJwKQQ&ust=1486333527297964
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Following protein transfer, membranes were blocked with 5% bovine serum 

albumin (BSA) in TBS-T (20 mM TRIS, 150 mM NaCl, 0.1% Tween-20, PH 7.6), 

washed three times (5 minutes each) in TBS-T and incubated at 4°C overnight 

with the appropriate working dilutions of primary antibodies (will be mentioned in 

each relatable chapter) in blocking buffer. On the next day, the membrane was 

incubated with the recommended dilution of conjugated secondary antibody in 

blocking buffer at room temperature for 1 h followed by three washes of TBS-T, 

5 min each. For signal development, an Enhanced Chemioluminescence 

substrate (ECL, GE Healthcare, UK) was prepared following the kit 

manufacturer's recommendations and applied over the membranes. Excess 

reagent was flicked and positive and negative protein expression was assessed 

and captured using ChemiDoc™ MP System (Bio-Rad, UK).  

 

2.5 RTqPCR Analysis 

RNAlater® -stored SMGs were weighed and 5-15 mg of tissues were placed in 2 

ml lysing matrix tubes with 20X RNA-Bee™ and homogenized with FastPrep™ 

tissue homogenizer (MP Biomedicals Santa Ana, CA) for 60 seconds (20 

seconds X 3 intervals). RNeasy® Micro Kit (74004, Qiagen) was used for total 

RNA extraction according to the manufacturer’s protocol. RNA concentration as 

well as the A260/280 and A260/230 ratios were then measured with the NanoDrop ND-

1000 Spectrophotometer (Thermo Fischer Scientific, Nottingham UK).  iScript™ 

cDNA Synthesis kit (170-8890, Bio-Rad) was used to reverse transcribe 100 ng 

of extracted RNA. 20 µl of reverse transcription (RT) reaction was incubated as 

follows: 5 minutes at 25°C, 30 minutes at 42 °C, 5 minutes at 85 °C and the 

reaction was terminated by transferring the tubes to ice (4 °C).  
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qPCR reactions (10 µl) were prepared by adding all required components 

according to table 2-1 and scaled according to the number of samples. 

 

Table 2-1 RTqPCR Reaction Mix 

Component Volume per 10 µl 
reaction 

Final 
Conentration 

SsoAdvanced ™ Universal SYBR Green Supermix 
(172-5271, Bio-Rad) 

5 1X 

Primers (PrimerDesign™, Ltd.) 

(will be mentioned in each relevant chapter) 

2 600 nM 

cDNA template 3 __ 

 

The main steps of RTqPCR is depicted in figure 2.5. the three main steps 

comprising the RTqPCR protocol are repeated 40 times or cycles. In first cycle, 

the double stranded template DNA strand is first denatured into 2 single strands 

by heating to above 90°C, so that the region to be specifically amplified can be 

made accessible. The temperature is then cooled to between 40-60°C and the 

annealing step starts by primers bind to the complementary sequence, and serve 

to “prime” the DNA synthesis reaction. The third step, DNA synthesis or 

extension is carried out by a thermo stable DNA polymerase which catalyzes the 

synthesis of a new strand from the primed single strand template (Aldape et al., 

2002). 

 

 

 

 

 

Figure 2.5 Stages of PCR: denaturation, annealing and elongation. 
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Thermal cycling was performed using Corbett RotorGene 6000 System (Qiagen, 

UK) following the protocol in table 2-2.  

 

Table 2-2 Corbett RotorGene Setting 

Setting/Mode Polymerase 
Activation and DNA 

Denaturation 

Amplification Melt Curve 
Analysis 

Denaturation Annealing Cycles 

Fast 

 

2 mins at 98°C 15 secs 30 secs 40 65-95 °C 

0.5 °C 
increment 

2-5 sec 
/step 

 

In all RTqPCR experiments, relative gene quantification was assessed according 

to the "Delta Delta CT" (ΔΔCT) (Winer et al., 1999), where ΔΔCT= [Ct GOI Exp – 

Ct HKG Exp]-[Ct GOI Cal – Ct HKG Cal]: Ct: cycle threshold, GOI: gene of interest, 

Exp: poly (I:C)-injected glands, HKG: housekeeping gene showing the highest 

stability within each experiment condition, Cal: control glands injected by the 

vehicle. 

2.6 Statistical Analysis 

Results were shown as mean ± SEM (standard error of means). Statistical 

significance between individual comparisons was determined using Student t-

test. For multiple comparisons, one-way ANOVA with Sidak’s (selected pairs) 

pairwise test were used. The calculations were performed with the statistical 

software package GraphPad Prism (version 7). P values ≤ 0.05 were considered 

statistically significant. 
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Chapter 3                                    

TLR3 Mediated SMG 

Dysfunction Independent of 

Acute Cellular Infiltrate 
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3.1 Introduction 

The dsRNA is the most potent viral stimulant of the innate arm of the immune 

system, and is largely believed to be an intermediate replication by-product 

generated by most viruses (Jacobs and Langland, 1996). The synthetic dsRNA; 

poly (I:C) has been extensively studied for its capability to induce the 

characteristic innate immune responses, closely mimicking those associated with 

viral infections; such as: loss of epithelial integrity, inflammatory cytokine 

production and declined functions (Lever et al., 2015).  

TLR3 is a dsRNA sensor found in mammals and is activated by viral dsRNA or 

poly (I:C). Traditionally, newly synthesized endogenous TLR3 is transported 

through the ER and Golgi apparatus to endosomes, aided by the multi-pass 

transmembrane protein UNC93B1 (Kim et al., 2008). Within the endosomes, 

TLR3 is rapidly processed by cathepsins to generate a short fragment which 

corresponds to the C-terminal, functional form of the receptor. Once ligated by 

poly (I:C), TLR3 protein expression is up-regulated, leading to the accumulation 

of this cleaved terminus (Garcia-Cattaneo et al., 2012). 

At the signalling level, poly (I:C) binding to TLR3 will be followed by recruitment 

of the adaptor molecule; TRIF, and initiation of a signalling cascade, leading to 

upregulation of type I IFN and inflammatory cytokines, via activation of IRF3 and 

NF-κB, respectively (Kawasaki and Kawai, 2014). Previous data demonstrated 

the combined contribution of type I IFNs and IL-6 in inducing salivary gland 

hypofunction (Nandula et al., 2013). Moreover, in various viral models, poly (I:C) 

prompted an acute inflammatory response, featuring the migration and activation 

of innate immune cells, principally neutrophils and monocytes (Clarke et al., 2014, 

Kanaya et al., 2014, De Alba et al., 2015).  
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Beside efficiency of these cells in combating viral infections (Gabriel et al., 2013), 

tissue damage can be collaterally mediated by: ROS, superoxides, inflammatory 

cytokines and NETs (Hemmers et al., 2011, Drescher and Bai, 2013). This, in 

addition to their destructive potential via a number of inherent proteases; namely: 

neutrophil elastase (NE), cathepsin G and myeloperoxidase (MPO) (Kanaya et 

al., 2014).  In particular, MPO which is predominantly stored in lysosomes of 

monocytes as well as azurophilic granules of PMNs (Klebanoff, 2005), is one of 

the most abundant enzymes released on neutrophil activation and predominantly 

involved in tissue damage (Nagra et al., 1997, Eiserich et al., 2002, Malle et al., 

2003). It has been implicated in downregulation of aquaporins at the gene level 

(Sakai et al., 2014), in addition to disruption of plasma membrane ion transport 

channels (N.S. MacCallum, 2007) and epithelial tight junction proteins (Kucharzik 

et al., 2001).  

Despite the thoroughly documented injurious consequences of all the formerly 

mentioned molecular events, the sequelae of acute exposure of the SGs to viral 

infections have never been comprehensively investigated. In this chapter, we 

developed a novel acute SG model via intraductal retrograde infusion of the 

synthetic viral analogue; poly (I:C), into the C57/B6 mouse SMGs. The developed 

model is unique in rapidly and reliably demonstrating the functional and immune 

consequences prompted by the exocrine SGs, upon local exposure to the potent 

viral mimetic.  
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3.2 Materials and Methods 

3.2.1 Surgical Procedure and Saliva Collection 

Chapter 2, paragraph 2.1 details the surgical procedures, the method of saliva 

collection and calculation of flow rates.  

3.2.2 TLR3 Inhibition and LY6G/LY6C Depletion Models 

Table 3-1 summarizes the drugs and doses used in the experiments of the current 

chapter.  

Table 3-1 Drugs used in in vivo injections 
Drug Mechanism Source Catalogue 

Number 
Dose Administration 

Protocol 

TLR3/dsRNA 
Complex 
Inhibitor 

Competitively 
inhibits dsRNA 

binding to TLR3. 

Calbiochem 

Merck 
Millipore 

614310 i.p. 1 
mg/mouse 

(Takemura et 
al., 2014) 

+  

50 ng 
combined to 

poly (I:C) 
local 

injection(Chin
tala et al., 

2015) 

i.p injection at the 
same time of 

combined TLR3 
/dsRNA+poly (I:C) 

local injection 

Ly-6G (Gr-1) 
Clone: RB6-8C5 

Reacts with 
mouse Ly6G 

eBioscience 16-5931 i.p. 200 
µg/mouse 

(Daley et al., 
2008)  

24 hrs prior to poly 
(I:C) local injection 

 

In the TLR3-inhibitor model, the contralateral SMGs received the vehicle (saline 

and trypan blue) in addition to the TLR3/dsRNA inhibitor drug dose given in 

combination with the poly (I:C). 
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3.2.3 Immunohistochemical Analysis 

Paraffin-embedded SMG sections were deparaffinised, rehydrated and antigen 

retrieved by autoclaving with Trilogy™ as detailed in chapter 2, paragraph 2.3. 

Subsequently, slides were incubated in hydrogen peroxide to block endogenous 

peroxidase activity and protein block to inhibit non-specific background reaction. 

After incubation with the specific primary antibodies (table 3-2), the detection was 

completed using the compatible host HRP-conjugated secondary antibodies. 

Nuclear and counterstaining was done with Mayer’s haematoxylin or 

VECTASHIELD Antifade Mounting Medium with DAPI (vector laboratories, H-

1200) in case of fluorescence imaging. 

Table 3-2 Primary Antibodies Used in Immunohistochemical Analysis 

 

 

 

Antibody 
Source & Catalogue 

Number 
Host Working 

Dilution 

J2 anti-dsRNA SCICONS Budapest, 
Hungary, J2-1511 

Mouse 1:1500 

TLR-3 Abcam, Ltd, ab62566 Rabbit 1:10000 

MDA 5 Abcam, Ltd, ab69983 Rabbit 1:450 

RIG I Bioss Inc., bs-0993R Rabbit 1:700 

Cox2 Abcam, Ltd, ab133466 Rabbit 1:400 

iNOS Novus Biologicals, USA, 
NB300-605 

Rabbit 1:650 

Interferon-gamma (IFN-γ) Proteintech 
Europe,15365-1-AP 

Rabbit 1:2500 

Phospho-NF-κB (p50) 
Santa Cruz 

Biotechnology, sc-
271908 

Mouse 1:900 

Cleaved caspase 3 R&D Systems, MAB835 Rabbit 1:280 

Myeloperoxidase BosterBio, USA, 
PB9057 

Rabbit 1:1000 

Goat anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor® 594 conjugate 

Thermo Fisher 
Scientific, A-11005   

Goat 1:1000 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:200 
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3.2.4 Western Blotting 

SMG protein extracts were electrophoresed on precast 4-2% SDS-PAGE gel and 

transferred to nitrocellulose membrane as detailed in chapter 2, Paragraph 2.4. 

Membranes were incubated with primary antibody, followed by 1 hr incubation 

with the appropriate secondary antibody (table 3-3). Subsequently, signal 

development and exposure with Enhanced Chemioluminescence and 

ChemiDoc™ MP System were performed. 

Table 3-3 List of Antibodies Used in Western Blots 

 

3.2.5 RTqPCR  

Total RNAs isolated from SMG tissues (stored in RNAlater®) were extracted 

using RNeasy® Micro Kit (Qiagen) and 100 ng of extracted RNAs were reverse-

transcribed in a 20 μL reaction using the iScript™ cDNA Synthesis kit. 

Quantitative real time PCR (qRT-PCR) was carried out as detailed in chapter 2, 

Paragraph 2.5. All mouse primers were synthesized by PrimerDesign™, Ltd and 

are listed in Table 3-4. All experiments were performed in triplicate. 

 

 

 

 

Antibody 
Source & Catalogue 

Number 
Host Working 

Dilution 

TLR-3 Abcam, Ltd, ab62566 Rabbit 1:10000 

Myeloperoxidase BosterBio, USA, PB9057 Rabbit 1:1000 

Β-actin Sigma, A2228 Mouse 1 μg/mL 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:2000 

Polyclonal Goat Anti-Mouse 
Immunoglobulins- HRP 

Dako, P0447 Goat 1:1000 
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          Table 3-4 List of Primers used 

Gene Accession 
NO 

MX-1 (MX dynamin-like GTPase 1) NM_010846 

ISG-15 (ISG15 ubiquitin-like modifier) NM_015783 

OAS1a (2'-5' oligoadenylate synthetase 1A (Oas1a) NM_145211 

PKR  NM_011163 

IL 6 NM_031168 

IL 1β NM_008361 

TNF NM_013693 

TLR3 (Toll-like receptor 3) NM_126166 

MDA5 (Interferon induced with helicase C domain 1 (Ifih1),  NM_027835 

RIG1 (DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (Ddx58) NM_172689 

Chemokine (C-X-C motif) ligand 1 (Cxcl1), KC NM_008176 

Chemokine (C-X-C motif) ligand 2 (Cxcl2), MIP2-a NM_009140 

Chemokine (C-X-C motif) ligand 5 (Cxcl5), LIX NM_009141 

Chemokine (C-X-C motif) ligand 15 (Cxcl15), IL-8 NM_011339 

Chemokine (C-C motif) ligand 2 (Ccl2), MCP-1 NM_011333 

HPRT (Hypoxanthine guanine phosphoribosyl transferase) NM_013556 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) NM_008084 

 

3.2.6 Histologic Examination 

As described in chapter 2, paragraph 2.2, following gland excision and formalin 

fixation of tissues, samples were processed, embedded in paraffin, microtome 

sectioned, stained with H&E and examined under a light microscope. 

3.2.7 Flow Cytometric Analysis 

Excised glands were rinsed with PBS, minced and transferred through a 100 µm 

cell strainer mesh (352369, Corning Life Sciences, DL) using a syringe plunger 

into a 50 ml Falcon tube.  The mesh was washed 3 times with Dulbecco’s 

phosphate buffered saline and the tube was centrifuged at 600 g for 10 minutes. 

The supernatant was discarded and 3 ml fresh PBS was pipetted up and down 

several times to further dissociate any cell clumps.  
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The tube was centrifuged again at 600 g for another 10 minutes after which the 

supernatant was discarded. 3 ml cell staining buffer (420201, Biolegend, UK) was 

applied on top of the cells and pipetted up and down before the whole volume 

was passed through a 35µm nylon mesh of a cell strainer cap fitted to 5mL 

Falcon® tube with round bottom (352235, Corning). Twenty microliters of this 

preparation were pipetted in a 0.5 ml tube for cell counting, whereas the whole 

cell suspension was transferred to a 15 ml Falcon tube and centrifuged at 600 g 

for 10 minutes. According to the number of cells in the cell suspension, the 

volume of the blocking antibody; TruStain fcX™ anti-mouse CD16/32 (101319, 

Biolegend) was calculated and cells were incubated at 1.0 µg per 106 cells for 5-

10 minutes on ice prior to immunostaining. After 10 minutes, the Falcon tube with 

TruStain fcX™-blocked cells was centrifuged at 600 g for 10 minutes and the 

supernatant was discarded. Immunostaining with the fluorochrome-conjugated 

antibodies followed directly without an intermediate washing step. The anti-

mouse antibodies used and their isotype controls (Biolegend, UK) are shown in 

table 3-5.  

 

              Table 3-5: Antibodies and Isotype Controls Used in Flow Cytometry Experiments 

 

 

 

Cells: Neutrophils, Macrophages, Monocytes 

Fluorochromes FITC PE PE/CY7 APC APC/CY7 

Antibody Panel F4/80 CD45 CD11b LY6G LY6C 

Catalogue Number 123107 103207 101215 127613 128025 

Isotype Control  Rat IgG 2a Rat IgG 2b Rat IgG 2b Rat IgG 2a Rat IgG 2c 

Catalogue Number 400505 400607   400617   400511   400719   
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Supernatant over centrifuged cells was discarded and cells were re-suspended 

in 300 µl cell staining buffer. All antibodies were diluted 1:100 in the cell staining 

buffer and in a 96-well plate with rounded bottom, 50 µl of the cell suspension 

was mixed with 50 µl of each panel and incubated for 2 hrs in the dark at 4 °C. 

Compensations for spillover and spectral overlap were established by labelling 6 

tubes for each of the 5 fluorochromes used and 1 for a fluorochrome-free tube as 

an unstained sample.  

Twenty microliters of OneComp eBeads® (01-1111-41, eBioscience, Ltd, UK) 

was mixed with 0.5 µl of each fluorochrome and 80 µl of the cell staining buffer 

and incubated in the same 96-well plate holding the cell suspensions, antibodies 

and isotype controls. An automated compensation algorithm in BD™ FACSDiva 

6.1 software (BD Biosciences) was used to read the spectral overlap values from 

single-color compensation controls in sequential acquisitions. Spectral overlap 

values were automatically calculated by the software and applied to the 

experiment.   

After 2 hrs, the 96-well plate was retrieved from the fridge and 100 µl cell staining 

buffer was dispensed on each stained sample and pipetted up and down several 

times. The plate was then centrifuged at 600 g at 4°C for 10 minutes. After plate 

centrifugation, cells were seen precipitated at the well bottoms, vigorous 

propelling of the supernatants was done and 150 µl cell staining buffer was 

applied to each well. Precipitated cells were thoroughly mixed with the dispensed 

cell staining buffer and the content of each well was re-transferred through a 

35µm nylon mesh of a cell strainer cap fitted to a 5mL Falcon® tube to finally and 

completely dissociate any cell that may have clustered and to prevent clogging 

of the machine fluidic system. 
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All samples were analysed using a 3-laser (405, 488 and 630 nm) 5-color BD 

FACS Canto II flowcytometer (BD Bioscience). Thresholds on Forward Scatter 

(FSC) and Side Scatter (SSC) were set to: 505 V for FSC and 571 V for SSC and 

the positive population was gated and recorded. The flow rate of the cytometer 

was set to medium while acquiring and recording 100,000 events for each 

sample. Data for each sample was stored as an FCS 3.0 file and subsequently 

analysed by Flowing Software 2.5.1. Mean fluorescence intensity (MFI) of isotype 

controls was subtracted from the MFI measured for specific markers to control 

for background auto-fluorescence and non-specific fluorescence. The gating 

strategy employed in the analysis was designed to detect and discriminate 

LY6G+/LY6C+ cells. 
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3.3  Results 

3.3.1 Establishment of the acute viral mimic model: Poly (I:C) 

Internalization and Induction of an Antiviral State in the SMGs  

Despite the extensive use of poly(I:C) in diverse experimental models, very little 

is known about its uptake and intracellular fate. Accordingly, it was mandatory to 

validate internalization of the poly (I:C), since the well-characterized dsRNA-

binding proteins are intracellular (Saunders and Barber, 2003). To achieve this 

objective, dsRNA monoclonal antibody was used to immunolabel poly (I:C) and 

track its fate, 6hrs and 24 hrs post retrograde duct injection. The vehicle-injected 

SMGs did not show any dsRNA-positive signal. Conversely, the ducts and acini 

of the poly (I:C)-injected SMGs showed retention of poly (I:C) up till 24 hrs 

following its injection, figure 3.1. 

 

 

 

 

 

 

 

 

 

 

A 

B C 

Figure 3.1 Immunolabelling of poly (I:C) with the monoclonal dsRNA J2 antibody.  
A: Control vehicle-injected SMG. B: 6hrs post poly (I:C) injection, dsRNA was 
immunolocalized in duct cells (yellow arrows) as well as acinar cells (blue arrows). C: 24 hrs 
post poly (I:C) injection, more dispersed and less immunostaining intensity of poly (I:C) in duct 
cells (yellow arrows) as well as acinar cells (blue arrows). Original magnification= 40x. 
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To ensure the reliability of a single local poly (I:C) dose in the induction of an 

antiviral condition in the SMGs, we examined the expression of the best 

characterized antiviral genes including MX1, ISG15, OAS1 and PKR. Real-time 

qRT-PCR results showed that poly (I:C) prompted a significant upregulation in 

these gene, 6hrs post its local introduction (Figure 3.2). The interferon-inducible 

MX1 antiviral gene showed the highest expression relative to HPRT 

housekeeping gene and the vehicle injected control glands, followed by ISG15, 

OAS1 and finally; PKR.  
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Figure 3.2 mRNA expression of MX1, ISG15, OAS1 and PKR antiviral genes. 
Upregulation of all antiviral genes in the SMGs, 6 hrs post poly (I:C) injection (6h 
P-PIC) compared to the vehicle injected control glands (V-C). Data represent 
means ± SEM (n=3). **p≤0.01 ***P≤0.001 and ****p≤0.0001. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired Two Tailed t test 
 

MX1 ISG15 OAS1 PKR 

P value <0.0001 <0.0001 0.001 0.0002 

P value summary **** **** ** *** 
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3.3.2 Poly (I:C) Induced SMG Hypofunction 

To explore the functional response of the SMGs to poly (I:C), the mean flow rates 

of pilocarpine-stimulated saliva was measured from control and infected glands 

for 5 minutes: 6hrs, 9hrs and 24 hrs following poly (I:C) retrograde injection. For 

simplicity of analysis, all vehicle-injected control SMGs showing approximately 

equal flow rates at different time points were assembled in one group, to which 

the experimental flow rates following poly (I:C) injection were compared. The poly 

(I:C) injected glands exhibited progressive and rapid loss of function, which 

started 6 hrs post its retrograde injection and was further deteriorated by 9 hrs, 

until the glands ceased secretion completely after 24 hrs of poly (I:C) 

innoculation. No difference in mean flow rates was recorded between the vehicle 

injected glands and un-injected normal SMGs, figure 3.3.  

 

 

 

 

  

 

 

 

 

 

One Way ANOVA 

P value <0.0001 

P value summary **** 

Dunnett's test Summary P Value 

V-C vs. C-UN ns 0.1927 

V-C vs. 6H **** 0.0001 

V-C vs. 9H **** 0.0001 

V-C vs. 24H **** 0.0001 

Figure 3.3 Salivary Flow rates in Control and Poly (I:C)-Injected SMGs. 
Scatter plot analysis of the mean ± SD SMG flow rates after 6h, 9h and 24h of poly (I:C) 
intraductal injection, all compared to the vehicle injected glands (V-C). Non-injected SMGs (C-
UN) were compared to the vehicle injected ones to assess the impact of retrograde injection 
on the gland functional capabilities, and a non-significant change was seen between the two 
groups. Conversely, poly (I:C) induced an extremely significant reduction in mean flow rates 
as early as 6 hrs of its infusion and ultimately lead to complete impairment of the SMG function 
after 24 hrs. ****: P<0.0001, ns: non-significant. 
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3.3.3   Loss of SMG Secretion in Response to The Viral Mimic is TLR3 

Mediated 

3.3.3.1 Characterization of the dsRNA Sensors in the SMG. 

To assess receptors that sense dsRNA in the SMGs, we examined the 

expression of TLR3 and the cytoplasmic RLR receptors; MDA5 and RIG-I at the 

mRNA as well as their subcellular protein expression pattern. qRT-PCR revealed 

that poly (I:C) significantly upregulated all dsRNA sensors in the SMGs, after 6 

hrs of poly (I:C) intraductal infusion, figure 3.4. Since these results indicated that 

SMGs are equipped to upregulate functional endosomal and cytoplasmic dsRNA 

sensors, immunohistochemical staining was performed consequently to identify 

cell phenotypes expressing these receptors.  

Basal expression level was first determined for the three dsRNA receptors, TLR3 

showed intense membranous and cytoplasmic immunostaining in intercalated 

ducts. Conversely, the cytosolic dsRNA receptors; MDA5 and RIG-I were 

immunolocalized almost exclusively in resident peri-ductal immune cells. 

Following poly (I:C) introduction, TLR3 showed immunopositivity in the 

basolateral membranes of acinar and duct cells with increased numbers of 

intensely stained intercalated ducts. On the other hand, the glands which 

received poly (I:C) revealed intense MDA5 and moderate RIG-I immunostaining, 

exclusively limited to infiltrating immune cells which embraced ducts and acini. 

Frequently, MDA5 and RIG-I positive immune cells were seen extruded into duct 

lumena, figure 3.4. 
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Figure 3.3.4 Expression of dsRNA sensors; TLR3, MDA5 and RIG-I. 
Right: Transcriptional upregulation of all dsRNA sensors in the SMGs, 6 hrs post 
poly (I:C) injection (6h P-PIC). Data represent means ± SEM (n=3). ****p≤0.0001. 
V-C: vehicle injected control, HPRT: Hypoxanthine guanine phosphoribosyl 
transferase (housekeeping gene). Left: Immunoexpression of the dsRNA sensors.  
A- basal TLR3 expression in intercalated duct cells B- poly (I:C) injection induced 
intense membranous and cytoplasmic positivity of intercalated ducts (arrow) as well 
as moderate basolateral staining of the acinar and duct cells. C- MDA5 expression 
in resident immune cells of the saline injected control SMGs. D- MDA5 positive 
immunostaining following poly (I:C) injection was exclusively detected in peri-ductal 
and peri-acinar infiltrating immune cells, MDA5 positive cells was commonly seen 
extruded in duct lumen (arrows). E- RIG-I labelling the resident immune cells in the 
control SMG (arrow). F-  poly (I:C) injected glands showing moderate 
immunostaining of infiltrating inflammatory cells. Note the extrusion of RIG-I 
positive cells into the duct lumen (arrow). Original magnification =40x 
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3.3.3.2 TLR3/dsRNA complex inhibition 

Expression of TLR3 in the ducts of the control SMGs, as well as its intense 

epithelial immunolocalization post poly (I:C) injection, incited the priority to assess 

its role in the perceived SMG injury. A TLR3/dsRNA competitive inhibitor was 

used to competitively disrupt poly (I:C) binding to TLR3. Previous studies 

documented that poly (I:C) exposure increased the expression of the cathepsin-

cleaved C-terminus form of TLR3 which directly correlates to its signalling 

capacity (Garcia-Cattaneo et al., 2012). The outcome of TLR3 blocking was 

investigated initially by analysing the expression levels of neo-generated, TLR3 

C-terminal, using a polyclonal antibody raised against 15 amino acids near the 

carboxy terminus of TLR3. Immunohistochemistry and western blotting were 

conducted on the control as well as the poly (I:C)-injected glands, treated and 

non-treated with the TLR3/dsRNA complex inhibitor.  Results revealed that the 

TLR3/dsRNA inhibitor, caused an extremely significant downregulation of the 

TLR3 C-terminus in the poly (I:C)-injected glands, compared to its widely-

upregulated expression, 9 hrs post poly (I:C) injection, figure 3.5.  
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ANOVA summary 

P value <0.0001 

P value summary **** 

Sidak's multiple comparisons test Summary P Value 

V-C vs. TLR-I+PIC ** 0.0015 

PIC vs. TLR-I+PIC **** <0.0001 

Figure 3.5 TLR3 C-terminal expression in the SMGs following competitive inhibition by 
dsRNA/TLR3 complex molecule.  
LEFT: The basal intercalated duct-positive immunoexpression of TLR3 C-terminal (arrows) was 
extensively upregulated 9 hrs post poly (I:C) injection (9h-PPIC), TLR3 was seen immunolabelling 
all ducts and acinar cells. Following administration of the dsRNA/TLR3 complex (TLR-I) which 
competes with poly (I:C) over TLR3 binding, the TLR3 C-terminal was remarkably downregulated 
and positive TLR3 immunostain was exclusively seen in intercalated ducts (arrows) in a pattern 
comparable to the vehicle injected control glands (V-C). Original magnification=25x. RIGHT: 
Similar results were seen in the representative western blots of the tested groups, TLR3 
expression was calculated as TLR3/β-actin ratio fold change from control saline injected glands. 
ANOVA showed an extremely significant reduction in the receptor in dsRNA/TLR3-treated glands, 
9 hrs post poly (I:C) exposure. Additionally, the level of TLR3 C-terminus even revealed a very 
significant decrease below the basal level seen in the vehicle injected control glands. Data 
represent mean ± SD of three independent experiments for each tested group. **p≤0.01, **** 
p<0.0001 
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To detect the TLR3 signal which prompted the perceived loss of function, mRNA 

and protein levels of cytokines and inflammatory mediators downstream TLR3 

inhibition were investigated using qRT-PCR and immunohistochemistry, 

respectively. Figure 3.6 reveals the extremely significant transcriptional reduction 

of pro-inflammatory cytokines in the glands which received the TLR3 inhibitor in 

conjunction with the poly (I:C), versus those which didn’t receive it, normalized to 

the relevant, vehicle injected control glands and GAPDH housekeeping gene (in 

the TLR-inhibited glands) and HPRT (in the glands which received poly (I:C) only 

without the inhibitor). 
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Figure 3.6 mRNA Expression of pro-inflammatory cytokines; IL6, IL1β and TNF-α. 
The TLR3/dsRNA complex inhibitor significantly reduced the transcriptionally upregulated pro-
inflammatory cytokines, 9 hrs post poly (I:C) injection (9h P-PIC). Data represents means ± SEM 
(n=3). *P≤0.05, **p<0.01 ****p<0.0001, NS: non-significant, TLR-I: TLR3/dsRNA inhibitor 
complex, V: vehicle (trypan blue, saline and TLR3/dsRNA inhibition drug). 
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Next, immunohistochemistry was performed to explore the: (i) expression of other 

pro-inflammatory cytokines, (ii) induction of apoptosis and the (iii) acute 

inflammatory cellular infiltrate, downstream TLR3 ligation and following its 

inhibition. Histologic sections from mouse SMGs treated with the vehicle, poly 

(I:C) or poly (I:C) along with TLR3-inhibitor were stained with H&E and 

immunolabelled with antibodies against IFN-γ, Cox2, NF-κB, iNOS and cleaved 

caspase-3 (csp-3). Figure 3.7 reveals that the TLR3/dsRNA inhibitor has 

successfully interfered with NF-κB nuclear translocation in response to poly (I:C) 

stimulation and declined the parenchymal expression of the assessed antibodies. 

Moreover, H&E staining of these tissue sections revealed efficient elimination of 

the acute inflammatory cells which infiltrated the tissues in response to poly (I:C) 

injection, figure 3.7. 
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Figure 3.7 Immunohistochemical representation of IFN-γ, Cox2, NF-κB, iNOS and 

cleaved csp-3 markers as well as H&E histology. 
Analysis of the vehicle injected control (V-C) glands and 9 hrs post poly (I:C) local 
administration in glands treated and non-treated with the TLR3/dsRNA inhibitor (TLR-I) 
revealed the remarkable reduction in expression of the tested proteins in response toTLR3 
inhibition. H&E sections of TLR3/dsRNA blocker treated and non-treated SMGs showed 
the efficient depletion of the infiltrating immune cells in response to TLR3 competitive 
inhibition Original magnification of immunohistochemistry photomicrographs= 25x. 
H&E=16x. 
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3.3.3.3 TLR3 Inhibition Protected the SMG from Secretory Dysfunction.   

At the functional level, inhibition of: (i) poly (I:C) binding to TLR3, (ii) TLR3 C-

terminal neo-synthesis and (iii) subsequent downstream immune signals, 

protected the SMG secretory functions. The mean flow rates of the glands which 

received the TLR3 inhibitor in conjunction with poly (I:C) was similar to the 

contralateral glands which received the vehicle, Figure 3.8. 

 

  

 

 

 

 

 

 

 

 

 

Two-tailed Paired t test 

P value 0.8169 

P value summary ns 

Two-tailed Unpaired t test 

P value 0.0026 

P value summary ** 

A                                                         B 

Figure 3.8 Functional analysis of the SMGs in response to TLR3 inhibition.  
Data represent mean ± SD of the TLR3 inhibited glands (TLR3/dsRNA inhibitor + 
poly (I:C) & TLR3/dsRNA inhibitor + Vehicle). A: Inhibition of TLR3 in the current 
model sustained a constant salivary flow rate even after 9hrs of poly (I:C) exposure. 
B: The lost saliva secretion, 9 hrs post poly (I:C) injection was very significantly 
preserved upon combining the TLR3 competitive inhibitor to the viral mimic. N=3 
for each tested group. **: P ≤ 0.01, NS: Non-significant. 
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3.3.4 TLR3 Mediated SMG Dysfunction Independent of Acute Inflammatory 

Infiltrate    

3.3.4.1 Poly (I:C)-Mediated Transcriptional Upregulation of Neutrophil and 

Monocyte Chemo-attractants   

In various viral models, poly (I:C) induced migration and activation of acute 

inflammatory cells, principally neutrophils and monocytes. qRT-PCR was 

performed to explore the mRNA expression of chemokines that organize 

trafficking of these acute inflammatory leukocytes. Results showed that 

retrograde duct injection of a single poly (I:C) dose induced an extremely 

significant up-regulation of four genes encoding neutrophil chemoattractants: 

keratinocyte-derived chemokine (KC)/CXCL1, macrophage-inflammatory 

protein-2 (MIP-2)/CXCL2, lipopolysaccharide-induced chemokine (LIX)/CXCL5, 

and CXCL15/lungkine (mouse IL-8) which exhibited the highest mRNA 

expression. In addition, the monocyte chemoattractant protein-1 (MCP-1)/CCL2 

revealed very significant upregulation in response to poly (I:C).  mRNA 

expression of the tested chemokines was calculated relative to HPRT internal 

control and the vehicle injected glands, figure 3.9. 
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Figure 3.9 mRNA Expression of pro-inflammatory chemokines; CXCL1, CXCL2, CXCL5, 
CXCL15 and CCL2. 
Extremely significant upregulation of all neutrophil chemo-attractants and very significant 
increase in the monocyte chemokine; CCL2, 6hrs post poly (I:C) introduction (6h P-PIC). Data 
represents means ± SEM (n=3). **p<0.01 ****p<0.0001.  
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3.3.4.2 Invasive Infiltration of Immune Cells Showing High MPO-Positivity  

The former PCR findings, in addition to the results seen in figure 3.7 which 

indicated a highly positive, TLR-3-driven inflammatory signal, incited us to 

explore the intensity and pattern of immune cell distribution in the SMGs. 

Accordingly, sections from the control and poly (I:C)-injected glands, at various 

experimental time points, were stained with H&E. Besides, based on the 

transcriptional overexpression of the neutrophil and monocyte chemo-attractants, 

we verified the predominance of these immune cell subsets in the SMG tissues 

using MPO, which is expressed in lysosomes of monocytes as well as azurophilic 

granules of neutrophils.  

The H&E stained sections revealed that the SMGs which were injected and non-

injected with the vehicle showed normal histology in the form a compact lobular 

structure with packed acini having pale basophilic cytoplasm and basal nuclei. 

The ductal system was patent and included intercalated, striated and secretory 

ducts with supporting connective tissues, all exhibiting normal appearance. Six 

hours post poly (I:C) inoculation, the SMG vasculature exhibited margination and 

transmigration of acute inflammatory cells. The infected glands displayed an 

apparently normal histomorphologic feature with oedema and pervasive 

inflammatory cells that were sometimes seen extruded into duct lumens. 

Surprisingly, the inflammatory cells were seen invading the duct lining from the 

blood vessels direction, pushing and flattening the native duct epithelial cells. 

Similarly, inflammatory cells were frequently seen invading and occupying acinar 

cells adjacent to blood vessels. By 9hrs, widespread infiltration of immune cells 

was displayed in extended stromal spaces, obscuring interlobular ducts and 

invading inter-acinar tissues.  
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Likewise, SMG morphology was still well-maintained after 24 hours of poly (I:C) 

injection, some infrequent vacuolar degeneration and interlobular oedema 

transformed some parts of the gland into an island-like appearance. Diffuse 

inflammatory cell infiltrate was seen throughout the whole glandular tissues, with 

the predominant cells exhibiting the multilobulated, doughnut-shaped nucleus 

which characterizes active neutrophils. Immunolabelling the SMG tissues with 

MPO revealed that after 6 hrs of introducing the viral mimetic, MPO-positive cells 

were seen clustering perivascularly and peri-ductally. Nonetheless, obvious 

migration of these cells to more distant and widespread inter-acinar orientations 

was detected at this early time point.  

By 9 hrs, more extensive MPO positivity was perceived and the immune cells 

were seen within the gland acini and ducts. 24 hrs post poly (I:C) infusion, MPO 

positive cells were ubiquitously detected in interlobular, inter-acinar and more 

interestingly intra-acinar locations, analogous to the H&E intrusive patterns. 

Remarkably, the peri-ductal infiltrating cells at 6hrs displayed a confined 

homogenous cytoplasmic MPO positivity, whereas a spattered-like 

immunostaining pattern was seen in the inter-acinar and more pronounced in the 

intra-acinar MPO positive cells at 9hrs and 24 hrs post poly (I:C) introduction, 

figure 3.10.  
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Figure 3.10 H&E and MPO Immunostain of control and poly (I:C)-injected SMGs.  
A: histomorphology of normal un-injected SMG and B: vehicle injected control SMG. 
C: Negative MPO expression in the vehicle injected control SMG. D: 6 hrs post poly 
(I:C) showing apparently preserved histomorphology, with inflammatory cells extruded 
into duct lumens. E: higher magnification of D revealing margination and transmigration 
(arrow) of inflammatory cells. F: the peri-ductal and sporadic inter-acinar cells are MPO-
positive. G: Another higher magnification photomicrograph showing invasion of the 
infiltrating inflammatory cells into the SMG duct lining from all directions where blood 
vessels are sited, note the apparent replacement of native duct epithelial cells (now 
pushed and flattened, (arrows)) by the plethora of infiltrating cells. H: Extensive 
infiltration of stromal acute inflammatory cells, 9 hrs after poly (I:C) injection. I: MPO-
positive cells invading ducts and interlobular spaces, 9 hrs after poly (I:C). J: 24 hrs 
following poly (I:C): edema and widening of the interlobular and inter-acinar spaces 
transforming the gland architecture into island-like morphology, with diffuse 
inflammatory cell infiltrate broadly occupying the expanded spaces. K: cells exhibiting 
the histologic features of neutrophils (doughnut-shaped /multilobulated nuclei) can be 
seen interlobular, inter-acinar and intra-cinar (arrow). L: intra-acinar (red arrow) and 
intra-ductal (black arrow) MPO-positive cells, 24 hrs after poly (I:C). Original 
Magnification A, B, J =16X. C, D, F, H, L=25X. E, G, I, K, =40X 
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3.3.4.3 Ly6G/Ly6C Depletion in the Acute SG Dysfunction Model 

Repressed MPO-Positive Cells 

Immunohistochemistry substantiated abundant MPO-positive cellular infiltrate in 

response to the viral mimetic. Accordingly, we hypothesized that these cells may 

be major contributors in the poly (I:C)-mediated SMG injury and hypofunction. To 

validate our theory, we used the RB6-8C5 monoclonal antibody which binds to 

neutrophils (Hickey, 2012) and monocytes (Jutila et al., 1988). 200 µg of the 

depletion antibody; RB6-8C5 was administered intraperitoneally into the mice, 24 

hrs before poly (I:C) local injection, and saliva was collected 24hrs after 

introduction of the viral mimic. Successful depletion of the acute inflammatory cell 

infiltrate was reflected in the flow cytometry results, which showed that the CD45+ 

fraction was declined from 21.47% in the poly (I:C) injected SMGs, to 8.62% in 

the viral mimic-infected SMG from mice primed with the depletion antibody. 

Moreover, gating the CD45+ cells within the F4/80- CD11b+ channel, revealed that 

the Rb6-8C5 depletion drug efficiently reduced the LY6G+/LY6C+ populations, 

figure 3.11. 
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CD45+: 7.05% CD45+21.47% CD45+: 8.62% CD45+: 8.07% 

V-C                                    24h P-PIC                           Rb6-8C5+24h P-PIC                    Rb6-8C5+V 

Figure 3.11 Representative flow cytometry analysis images of RB6-8C5 treated and non-
treated glands. 
Cell suspensions of SMGs from mice which received the viral mimic versus animals which were 
primed with the granulocyte depletion drug, 24hrs before receiving the poly (I:C). For neutrophil 
discrimination, cells were serially gated in the CD45+F4/80-CD11b+LY6C+LY6G+ channels. 
Obvious decline in the percentage of CD45+ cells was perceived in the depleted animals. Note 
the absence of distinct immune cell populations in the SMGs from mice which were exposed to 
the depletion drug in contrast to the very characteristic CD45+F4/80-CD11b+LY6C+LY6G 
populations seen 24 hrs post poly (I:C) injection. 
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3.3.4.4 Depletion of LY6C/LY6G Eliminated the MPO Positive Cells. 

To explore if RB6-8C5 had efficiently depleted the MPO-positive immune cell 

populations in the SMGs, immunohistochemistry and western blot analysis were 

conducted which showed that the Rb6-8C5 antibody successfully repressed 

MPO expression in the SMGs, figure 3.12.  
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 MPO 62 KDa 
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Figure 3.12 RB6-8C5 depleted MPO positive cells.  
(A&C) Photomicrograph of SMG tissue sections injected only with poly (I:C) and (B&D) with the 
Rb6-8C5 depletion antibody followed by the viral mimic after 24 hrs. Original magnification: A, 
B=10X, C, D=25X. Representative western blot confirming reduction in MPO protein expression 
in response to Rb6-8C5 depletion drug, 24 hrs post poly (I:C) retrograde injection (P-PIC). 
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3.3.4.5 SMG Functional Capacity in Response to Immune Cell Depletion 

Depletion of LY6G+/LY6C+ inflammatory cells, 24 hrs prior to poly (I:C) retrograde 

duct injection did not induce any recovery in the SMG function, 24 hrs following 

exposure to the viral mimic. A significant reduction in mean flow rates of the 

SMGs which received the viral mimic was perceived independent of immune cell 

depletion, figure 3.13. 
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P value 0.0422 
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Figure 3.13 SMG flow rates 48 hrs following the RB6-8C5 
administration and 24 hrs post poly (I:C) retrograde injection.  
Data represents mean ± SD from three independent mice 
experiments and shows persistent loss of secretion of the SMGs 
independent of immune cell depletion.  *p≤0.05 
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3.4 Discussion 

In the current study, we demonstrated the development of an acute viral SG 

dysfunction model based on the retrograde ductal injection of a synthetic dsRNA; 

poly (I:C), into the SMGs. By developing this model, we aimed at mimicking and 

characterizing the acute functional, tissue and signalling changes sequential to 

primary exposure of the SMGs to a viral mimetic.  

Poly (I:C) is a viral analogue, it has been consistently used in vitro and in vivo to 

study IFN-based pathways in a reproducible manner (DeWitte-Orr and Mossman, 

2010). Studies reported that poly (I:C) is internalized into cells via clathrin-and 

raftlin- mediated endocytosis where it co-localizes with endosomal TLR3 (Kato et 

al., 2008). However, despite of the extensive poly (I:C) use in diverse 

experimental models, its uptake and intracellular fate have been rarely 

demonstrated (Nellimarla and Mossman, 2014). Therefore, to verify the 

consistent and reliable parenchymal infectivity of poly (I:C) in the present model, 

initial experiments aimed at visualizing its internalization and retention in the SMG 

ducts and acini. The J2 monoclonal antibody is the gold standard in dsRNA 

detection and an extremely useful tool for the recognition of acute, and potentially 

persistent viral infection in formalin-fixed, paraffin-embedded tissue samples 

(Richardson et al., 2010). Vehicle injected control glands were negatively stained 

with the dsRNA monoclonal antibody, suggesting that it does not detect 

endogenous species of dsRNA that might be present in the cells (such as 

microRNAs or transferRNAs). This is in accordance with the fact that these 

endogenous dsRNA species are usually less than 50 bp in length and the 

antibody reportedly recognises only those dsRNA species which exceed 50 bp in 

length (Schonborn et al., 1991).  
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On the contrary, the dsRNA monoclonal J2 antibody positively stained acinar and 

duct cells which internalized the poly (I:C) as early as 6 hrs post its retrograde 

infusion. Immunofluorescent staining of the SMG tissues further disclosed the 

ability of the gland epithelial cells to hold the viral mimic for 24 hrs post its 

inoculation, which may be reflect the role played by the exocrine tissues in 

retaining viruses during infection periods. Given the role played by viruses in 

triggering SG disease and dysfunction, the detection of dsRNA 

immunohistochemically might provide a straightforward approach to substantiate 

infection or even tropism. In addition, this provides an efficient method for  

following up therapeutic interventions, prior to embarking on other time and 

money consuming methods example viral microarrays (Weller et al., 2016), or in-

situ hybridization (Hilton et al., 1992).  

Importantly, the SGs in the current model displayed a rapidly progressive 

functional decline, which started after 6 hrs of poly (I:C) infusion and nearly 

peeked after 9 hrs, until the SMGs ceased secretion completely after 24 hrs. 

Previous studies demonstrated that multiple, systemic injections of poly (I:C) in 

SS prone NZB/WF1 mice, resulted in loss of glandular function (Deshmukh et al., 

2009, Nandula et al., 2013). The model represented herein is unique in 

demonstrating the direct influence of innate immune activation on the SG 

functional responses, ruling out possible extraneous impacts arising either from 

systemic delivery responses or autoimmune susceptibility of mice.  
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In the current model, loss of SMG functions upon local exposure to poly (I:C) 

paralleled upregulation of the dsRNA sensors; TLR3, MDA5 and RIG-I. 

Nonetheless, the parenchymal immunoexpression of TLR3 in the control and poly 

(I:C)-stimulated glands raised the postulation that TLR3 is the most likely receptor 

which may have responded to poly (I:C) by interfering with saliva secretion. In 

contrast, since MDA5 and RIG-I exclusively immunolabelled the infiltrating 

immune cells, these cytosolic receptors were theoretically considered as one of 

the TLR3 acute responses in the viral mimic model, rather than active contributors 

in the perceived loss of function. To verify our hypothesis, experiments were 

planned to selectively inhibit TLR3 in vivo and assess its exclusive role in the poly 

(I:C)-driven secretory dysfunction. 

Previous studies have revealed that in the absence of stimuli; TLR3 is found as 

both a full-length 130 kDa protein corresponding to the highly-glycosylated 

receptor and a shorter form which corresponds to the C-terminal fragment that 

accumulates in the cells after cleavage by cathepsin (Garcia-Cattaneo et al., 

2012). In addition, exposure to poly (I:C) has been shown to upregulate the TLR3 

C-terminal, which was correlated to the signalling capacity of the receptor 

(Garcia-Cattaneo et al., 2012). Initially, we depicted the endogenous expression 

of the TLR3 C-terminus in the SMGs using an antibody against 15 amino acids 

in this fragment. Immunohistochemistry clearly demonstrated that the positive 

signal was exclusively seen in the intercalated ducts in the normal SMGs.  This 

novel illustration may reflect the readily defensive property of these ducts in 

confronting viral infections via expressing the functional form of the receptor 

(Garcia-Cattaneo et al., 2012).  
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Furthermore, immunohistochemistry and western blot analysis revealed the 

significant increase in the TLR3 C-terminus, following poly (I:C) introduction, this 

phenomenon was previously illustrated and indicates a positive feedback loop 

that regulates the constant expression of TLR3 in epithelial cells, to maintain an 

antiviral response throughout the duration of infection (Garcia-Cattaneo et al., 

2012).  

To analyse the role played by the TLR3 C-terminal in the acute SMG dysfunction, 

we used a TLR3/dsRNA complex inhibitor to competitively interfere with poly (I:C) 

binding to TLR3.  Expectedly, the SMGs which received a TLR3 inhibitor that 

competes with poly (I:C) over the receptor binding, did not show any upregulation 

of the C-terminus. Our results show for the first time the importance of ligand 

binding in vivo for the neo-synthesis of this fragment. More distinctively, these 

experiments revealed that the in vivo inhibition of TLR3 C-terminus accumulation, 

paralleled effective rescue of the poly (I:C)-mediated loss of secretion.  

Interestingly, experiments conducted to validate the efficiency of the drug 

complex in inhibition of TLR3 showed partial mRNA downregulation of the poly 

(I:C)-induced pro-inflammatory cytokines; IL6, IL-1β and TNF-α as well as 

incomplete inhibition of IFN-γ and Cox2 protein expression, all of which, may be 

attributed to the signalling contribution of the cytoplasmic dsRNA sensors; MDA5 

and RIG-I. Conversely, TLR3 blocking in the infected SMGs, proficiently inhibited: 

(i) acute inflammatory cell infiltration, (ii) cleaved caspase-3 positive acinar cells, 

(iii) nuclear translocation of NF-κB and (iv) upregulated expression of the pro-

inflammatory mediator; iNOS. Based on these findings, the potential role played 

by each of the efficiently inhibited signals downstream TLR3/dsRNA blocking 
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were chosen for successive investigation to identify the early, acute, TLR-3- 

mediated event which interfered with saliva secretion.        

TLR3 inhibition in the current model, interfered with infiltration of immune cells 

into the poly (I:C)-injected glands. These findings are in accordance with previous 

studies which revealed that in absence of TLR3, skin wounds displayed defective 

recruitment of neutrophils and macrophages, in association with decreased 

expression of the chemokines; MIP-2/CXCL2, MIP-1α/CCL3, and MCP-1/CCL2, 

(Lin et al., 2011). To investigate the role played by the infiltrating immune cells in 

the TLR3-mediated loss of function, we started by characterizing the immune cell 

chemo-attractants that were upregulated upon exposure to the viral mimic. qRT-

PCR was conducted on the control and poly (I:C)-injected SMGs, which 

highlighted the immediate induction of the neutrophils’ chemoattractants; CXC: 

KC/CXCL1, MIP-2/CXCL2, LIX/CXCL5 and CXCL15 (DeVries et al., 2003), in 

addition to expression of CC-chemokine (MCP-1/CCL2) encoding monocytes. 

These results initially indicated the phenotype of immune cells which may have 

infiltrated the SMGs sequential to poly (I:C) infection.  

The former PCR results were followed up by microscopic examination of the SMG 

tissue sections, which revealed that poly (I:C) induced widespread infiltration of 

inflammatory cells having the histologic features of active neutrophils (bilobed 

nucleus).  Surprisingly, a unique pattern of intra-acinar and intra-ductal invasive 

distribution was displayed by these cells. They were frequently seen dislocating 

and flattening the resident duct nuclei, in addition to being commonly extruded 

into the lumens. Interestingly, duct cells (Ogawa et al., 2002), as well as acinar 

cells (Dios, 2010) have demonstrated ability to respond to inflammatory signals 

by the production of chemokines.  
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Accordingly, the inherent ability of the salivary gland epithelial cells to produce 

these low molecular weight chemo-attractants may have guided the infiltrating 

immune cells to the perceived intra-epithelial invasive positions.  

Next, immunolabelling the SMG tissues with a polyclonal antibody against MPO 

revealed that the robustly recruited immune cells, tethering, transmigrating and 

invading into ducts and acini were MPO positive, which emphasized their 

neutrophil/monocyte identity (Klebanoff, 2005), and directed towards using RB6-

8C5 as the appropriate method for their specific depletion. The discovery that 

high doses of RB6-8C5 are very effective at removing neutrophils from the 

circulation, gave researchers a convenient and reproducible approach for 

assessing the contribution of neutrophils to experimental models of inflammation. 

RB6-8C5 binds to 2 members of the Ly6 family of leukocyte-expressed markers; 

Ly6C and Ly6G (Hickey, 2012). The mechanism by which RB6-8C5 can deplete 

immune cells is based on the demonstrated inability of neutrophils to respond to 

chemotactic stimuli, in the presence of this monoclonal antibody. Furthermore, 

the recruitment capabilities of neutrophils were significantly compromised upon 

Ly6G ligation, this is due to diminished surface levels and function of crucial 

adhesion molecules as the β2 integrins; CD11a and CD11b (Hickey, 2012), figure 

3.14. 
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In addition, RB6-8C5 was shown to bind to Ly6C which is not only expressed on 

neutrophils, but also on dendritic cells (DCs), and subsets of monocytes, 

macrophages, and lymphocytes (Jutila et al., 1988, Hestdal et al., 1991, Kung et 

al., 1991, Jutila et al., 1994). Thus, in the present study, RB6-8C5 antibody was 

used to dually deplete neutrophils and monocytes and investigate their injurious 

role in the acute virally-mediated loss of function. Histopathology, flow cytometry, 

immunohistochemistry and western blot showed that priming of the mice with 

RB6-8C5 markedly attenuated immune cell invasion into the SMGs, after 24hrs 

of poly (I:C) treatment.  

 

Figure 3.14 Ly6G. 
A GPI-linked protein, is present at high levels on 
the neutrophil surface, although its function is 
unknown. Wang et al (Wang et al., 2012) showed 
that Ly6G is co-localized with β2 integrins, and 
that antibody ligation of Ly6G reduces β2 integrin 
expression and inhibits neutrophil recruitment. 
Professional illustration by Kenneth X. Probst., 
(Hickey, 2012). 
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Surprisingly, treatment of mice with the anti-Ly6G/Ly6C which efficiently 

restrained tissue inflammation and eliminated the MPO-positive immune cells, 

did not induce functional recovery. These experiments verified that TLR3 

interfered with the secretory ability of the SMGs independent of the invasive 

immune cell signal. Findings from the current experiments, combined to other 

neutrophil-independent injury models (Raeburn et al., 2002, de Vries et al., 2003) 

and studies which frequently demonstrate irrelevance between secretory 

hypofunction and immune cellular infiltration (Shen et al., 2009, Shen et al., 

2013), strongly implicate alternative impairment mechanisms by which the SG 

epithelial cells endogenously respond to injury and suggest a bystander role of 

the early acute and later lymphocytic infiltrations in exocrine dysfunction.  

In conclusion, results presented in the current chapter identified the exclusive role 

played by TLR3, in the poly (I:C)-mediated loss of secretion. Our findings 

highlighted for the first time the basal and stimulated expression of the functional 

form of TLR3; the C-terminal fragment and suggested its blockade as a promising 

therapeutic strategy for the treatment of SG diseases with viral implications. 

Moreover, the results demonstrated herein undoubtedly excluded the invasively 

infiltrating neutrophils; one of the robustly induced and fundamentally damaging 

signals, from the contribution to the acute TLR3-mediated secretory dysfunction. 

Experiments in the upcoming chapters will verify alternative injurious signals 

downstream of TLR3 activation and correlate their induction to the loss of function 

in the mouse model.  
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Chapter 4                                        

Pan Caspase Inhibitor; z-VAD-

fmk Protected the SMG From 

the TLR3-Mediated Dysfunction                                                                                                

 

  



121 

 

4.1 Introduction 

Evidence has accumulated over the years that poly (I:C) can directly trigger 

apoptosis in many types of cells by activating TLR3. Moreover, studies have 

indicated that adaptor proteins involved in TLR3 signalling pathways play crucial 

roles in initiating apoptosis (Zhao et al., 2012). Specifically, the key adaptor of 

TLR3 signalling pathway; TRIF, was shown to be indispensable for apoptotic cell 

death (Yamamoto et al., 2002).  

Apoptosis has been considered as one of the main factors which may be related 

to loss of SG secretory function (Hayashi, 2011). In fact, death of ductal and 

acinar cells are considered major mechanisms for salivary gland dysfunction of 

patients with SS (Horai et al., 2016) and following irradiation of salivary glands 

(Acauan et al., 2015).  

We reported in the previous chapter that TLR3 has triggered an apoptotic signal 

in the poly (I:C)-infused glands, marked by the increased expression of cleaved 

caspase-3-positive cells. Caspase family members function as important signals 

in the last step of several apoptosis signalling pathways (Vaux and Strasser, 

1996). The cell permeable pan- caspase inhibitor; z-Val-Ala-Asp (Ome) fluoro-

methyl-ketone (z-VAD-fmk), was reported to have a strong antiapoptotic effect in 

vivo (Li et al., 2000), via irreversibly binding to the catalytic site of caspase 

proteases (Gregoli and Bondurant, 1999). Therefore, we hypothesized that by 

systemic administration of this caspase inhibitor, we can protect the SMG 

parenchymal cells from apoptosis, rescue the compromised secretory machinery 

and identify induction of apoptosis as the injury signal which induced dysfunction 

in the current model.  
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Unexpectedly, the conducted experiments unravelled novel, off-target properties 

of z-VAD-fmk which culminated in recovery of the TLR3-induced loss of function, 

independent of apoptosis inhibition.  
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4.2 Materials and Methods 

4.2.1 z-VAD-fmk Mouse Model 

Table 4-1 summarizes the z-VAD-fmk dose and administration protocol used in 

the current chapter. 

Table 4-1 In vivo inhibition dose and protocol of the z-VAD-fmk model 

Mechanism Source Catalogue 
Number 

Dose Administration 
Protocol 

General 
Caspase 
Inhibitor 

BD 
Pharmingen™ 

550377 10mg/kg 
(Equils et al., 

2009) 

i.p. 30 min prior to Poly 
(I:C) local injection 

 

4.2.2 Immunohistochemical Analysis 

Paraffin-embedded SMG sections were deparaffinised, rehydrated and antigen 

retrieved by autoclaving with Trilogy™ as detailed in chapter 2, paragraph 2.3. 

Subsequently, slides were incubated in hydrogen peroxide to block endogenous 

peroxidase activity and protein block to inhibit nonspecific background reaction. 

After incubation with the specific primary antibodies (table 4-2), the detection was 

completed using the compatible host HRP-conjugated secondary antibodies. 

Nuclear and counterstaining was done with Mayer’s haematoxylin, then slides 

were examined for immunopositivity under the light microscope. 
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Table 4-2 Primary Antibodies Used 

 

4.2.3 Western Blotting 

SMG protein extracts were electrophoresed on precast 4-2% SDS-PAGE gel and 

transferred to nitrocellulose membrane as detailed in chapter 2, Paragraph 2.4. 

Membranes were incubated with the primary antibody, followed by 1 hr incubation 

with the appropriate secondary antibody (table 4-3). Subsequently, signal 

development and exposure with enhanced chemiluminescence and ChemiDoc™ 

MP System were performed. 

Table 4-3 List of Antibodies Used in Western Blots 

 

Antibody 
Source & Catalogue Number Host 

Working 
Dilution 

Cleaved caspase 3 R&D Systems, MAB835 Rabbit 1:280 

TLR-3 Abcam, Ltd, ab62566 Rabbit 1:10000 

Myeloperoxidase BosterBio, USA, PB9057 Rabbit 1:1000 

IFN-beta Bioss USA, bs-0784R Rabbit 1:1100 

Cox2 Abcam, Ltd, ab133466 Rabbit 1:400 

Interferon-gamma (IFN-γ) Proteintech Europe,15365-1-AP Rabbit 1:2500 

Phospho-NF-κB (p50) 
Santa Cruz Biotechnology, sc-

271908 
Mouse 1:450 

iNOS Novus Biologicals, USA, NB300-
605 

Rabbit 1:650 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:200 

Antibody 
Source & Catalogue 

Number 
Host 

Working 
Dilution 

Cleaved Caspase 3 Novus Bio, NB100-56113 Rabbit 1:5000 

TLR-3 Abcam, Ltd, ab62566 Rabbit 1:10000 

Β-actin Sigma, A2228 Mouse 1 μg/mL 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:2000 

Polyclonal Goat Anti-Mouse 
Immunoglobulins- HRP 

Dako, P0447 Goat 1:1000 
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4.2.4 RTqPCR  

Total RNAs isolated from SMG tissues (stored in RNAlater®) were extracted 

using RNeasy® Micro Kit (Qiagen) and 100 ng of extracted RNAs were reverse-

transcribed in a 20 μL reaction using the iScript™ cDNA Synthesis kit. 

Quantitative real time PCR (qRT-PCR) was carried out as detailed in chapter 2, 

Paragraph 2.5. All mouse primers were synthesized by PrimerDesign™, Ltd and 

are listed in Table 4-4. All experiments were performed in triplicate. 

           Table 4-4 List of Primers used 

Gene 
Accession 

Number 

MX-1 (MX dynamin-like GTPase 1) NM_010846 

ISG-15 (ISG15 ubiquitin-like modifier) NM_015783 

IL 6 NM_031168 

IL 1β NM_008361 

 Interferon gamma (Ifng) NM_008337 

TLR3 (Toll-like receptor 3) NM_126166 

MDA5 (Interferon induced with helicase C domain 1 (Ifih1), 
transcript variant 1) 

NM_027835 

HPRT (Hypoxanthine guanine phosphoribosyl 
transferase) 

NM_013556 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) NM_008084 

 

4.2.5 Histologic Examination 

As described in chapter 2, paragraph 2.2, following gland excision and formalin 

fixation of tissues, samples were processed, embedded in paraffin, microtome 

sectioned, stained with H&E and examined under a light microscope. 
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4.2.6 PCR Array of Mouse Toll-Like Receptor Signaling Pathway 

The Mouse RT² Profiler Toll-Like Receptor (TLR) signaling pathway array 

(Qiagen, PAMM-018Z) profiles the expression of 84 genes central to TLR-

mediated signal transduction and innate immunity, including members of the TLR 

signaling family as well as adaptor and effector proteins, members of the NFκB, 

JNK/p38, IRF and JAK/STAT signaling pathways downstream of TLR activation. 

RNA for the control and poly (I:C) injected glands were extracted as detailed in 

chapter 2 Paragraph 2.6. Genomic DNA elimination and reverse transcription 

were performed on 800 ng of extracted RNA, using the RT2 First Strand Kit 

(330401, Qiagen), according to the manufacturer’s protocol. 20 µl of the PCR 

reaction mix (table 4-5) was added to individual wells of the RT2 Profiler PCR 

array format R (PAMM-018ZR, Qiagen) and the thermal cycler was set according 

to http://www.SABiosciences.com/pcrarrayprotocolfiles.php.  

 

               Table 4-5 PCR Components Mix 

2x RT2 SYBR Green ROX FAST Mastermix (330520, Qiagen) 1150 µl 

cDNA synthesis reaction 102 µl 

RNase-free water 1048 µl 

Total Volume 2300 µl 

 

A threshold value above the background signal was chosen and the CT values 

for the run samples were extracted to an excel sheet and analysed using the web-

based PCR Array Data Analysis Software available at 

www.SABiosciences.com/pcrarraydataanalysis.php. Table 4-6 lists the TLR- 

related genes incorporated in the PCR array. 

 

 

http://www.sabiosciences.com/pcrarrayprotocolfiles.php
http://www.sabiosciences.com/pcrarraydataanalysis.php
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Table 4-6 Gene table: RT² Profiler PCR Array 

Gene Table  

Position Unigene GeneBank Symbol Description Gene Name 

A01  Mm.4475 NM_013482 Btk Bruton agammaglobulinemia 
tyrosine kinase 

AI528679, xid 

A02  Mm.336851 NM_009812 Casp8 Caspase 8 CASP-8, FLICE, MACH, 
Mch5 

A03  Mm.290320 NM_011333 Ccl2 Chemokine (C-C motif) ligand 
2 

AI323594, HC11, JE, 
MCAF, MCP-1, MCP1, 
SMC-CF, Scya2, Sigje 

A04  Mm.3460 NM_009841 Cd14 CD14 antigen - 

A05  Mm.89474 NM_009855 Cd80 CD80 antigen B71, Cd28l, Ly-53, Ly53, 
MIC17, TSA1 

A06  Mm.1452 NM_019388 Cd86 CD86 antigen B7, B7-2, B7.2, B70, CLS1, 
Cd28l2, ETC-1, Ly-58, 
Ly58, MB7, MB7-2, TS, A-2 

A07  Mm.439656 NM_009883 Cebpb CCAAT/enhancer binding 
protein (C/EBP), beta 

C, EBPbeta, CRP2, IL-
6DBP, LAP, LIP, NF-IL6, 
NF-M, Nfil6 

A08  Mm.3996 NM_007700 Chuk Conserved helix-loop-helix 
ubiquitous kinase 

AI256658, Chuk1, Fbx24, 
Fbxo24, IKBKA, IKK1, Ikka, 
NFKBIKA 

A09  Mm.248327 NM_019948 Clec4e C-type lectin domain family 4, 
member e 

C86253, Clecsf9, Mincle 

A10  Mm.4922 NM_009969 Csf2 Colony stimulating factor 2 
(granulocyte-macrophage) 

Csfgm, GMCSF, Gm-CSf, 
MGI-IGM 

A11  Mm.1238 NM_009971 Csf3 Colony stimulating factor 3 
(granulocyte) 

Csfg, G-CSF, MGI-IG 

A12  Mm.877 NM_021274 Cxcl10 Chemokine (C-X-C motif) 
ligand 10 

C7, CRG-2, INP10, IP-10, 
IP10, Ifi10, Scyb10, gIP-10, 
mob-1 

B01  Mm.490895 NM_007922 Elk1 ELK1, member of ETS 
oncogene family 

Elk-1 

B02  Mm.5126 NM_010175 Fadd Fas (TNFRSF6)-associated 
via death domain 

Mort1, FADD 

B03  Mm.246513 NM_010234 Fos FBJ osteosarcoma oncogene D12Rfj1, c-fos, cFos 

B04  Mm.207047 NM_010439 Hmgb1 High mobility group box 1 DEF, HMG-1, Hmg1, SBP-
1, amphoterin, p30 

B05  Mm.334313 NM_008284 Hras1 Harvey rat sarcoma virus 
oncogene 1 

H-ras, Ha-ras, Harvey-ras, 
Hras-1, Kras2, c-H-ras, c-
Ha-ras, c-rasHa, ras 

B06  Mm.433409 NM_010472 Agfg1 ArfGAP with FG repeats 1 AU045498, 
C130049H11Rik, C85612, 
D730048C23Rik, Hrb, 
RAB, Rip 

B07  Mm.6388 NM_010479 Hspa1a Heat shock protein 1A Hsp70-3, Hsp70.3, Hsp72, 
hsp68, hsp70A1 

B08  Mm.1777 NM_010477 Hspd1 Heat shock protein 1 
(chaperonin) 

60kDa, Hsp60 

B09  Mm.1245 NM_010510 Ifnb1 Interferon beta 1, fibroblast IFN-beta, IFNB, Ifb 

B10  Mm.240327 NM_008337 Ifng Interferon gamma IFN-g, Ifg 
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B11  Mm.277886 NM_010546 Ikbkb Inhibitor of kappaB kinase 
beta 

AI132552, IKK-2, IKK-beta, 
IKK2, IKK[b], IKKbeta 

B12  Mm.874 NM_010548 Il10 Interleukin 10 CSIF, Il-10 

C01  Mm.103783 NM_008351 Il12a Interleukin 12A IL-12p35, Il-12a, Ll12a, p35 

C02  Mm.15534 NM_010554 Il1a Interleukin 1 alpha Il-1a 

C03  Mm.222830 NM_008361 Il1b Interleukin 1 beta IL-1beta, Il-1b 

C04  Mm.896 NM_008362 Il1r1 Interleukin 1 receptor, type I CD121a, CD121b, IL-iR, 
Il1r-1 

C05  Mm.14190 NM_008366 Il2 Interleukin 2 Il-2 

C06  Mm.1019 NM_031168 Il6 Interleukin 6 Il-6 

C07  Mm.2856 NM_010559 Il6ra Interleukin 6 receptor, alpha CD126, IL-6R, Il6r 

C08  Mm.38241 NM_008363 Irak1 Interleukin-1 receptor-
associated kinase 1 

AA408924, IRAK, IRAK-1, 
IRAK1-S, Il1rak, Plpk, 
mPLK 

C09  Mm.152142 NM_172161 Irak2 Interleukin-1 receptor-
associated kinase 2 

6330415L08Rik, AI649099, 
IRAK-2 

C10  Mm.105218 NM_008390 Irf1 Interferon regulatory factor 1 AU020929, Irf-1 

C11  Mm.489648 NM_016849 Irf3 Interferon regulatory factor 3 C920001K05Rik, IRF-3 

C12  Mm.275071 NM_010591 Jun Jun oncogene AP-1, Junc, c-jun 

D01  Mm.87787 NM_010735 Lta Lymphotoxin A LT, LT-[a], LT-alpha, LT[a], 
LTalpha, Ltx, TNF-beta, 
TNFSF1, Tnfb, Tnfsf1b, 
hlb382 

D02  Mm.3177 NM_010739 Muc13 Mucin 13, epithelial 
transmembrane 

114, A10, 14, A10, 
AI159736, Lrrp, Ly64, NJ-1 

D03  Mm.2639 NM_010745 Ly86 Lymphocyte antigen 86 MD-1, MD1 

D04  Mm.116844 NM_016923 Ly96 Lymphocyte antigen 96 ESOP-1, MD-2, MD2 

D05  Mm.18494 NM_008928 Map2k3 Mitogen-activated protein 
kinase kinase 3 

AW212142, MEK3, MKK3, 
Prkmk3, mMKK3b 

D06  Mm.412922 NM_009157 Map2k4 Mitogen-activated protein 
kinase kinase 4 

JNKK1, MEK4, MKK4, 
PRKMK4, Sek1, Serk1 

D07  Mm.15918 NM_011945 Map3k1 Mitogen-activated protein 
kinase kinase kinase 1 

MAPKKK1, MEKK1, Mekk 

D08  Mm.258589 NM_172688 Map3k7 Mitogen-activated protein 
kinase kinase kinase 7 

B430101B05, C87327, 
Tak1 

D09  Mm.21495 NM_016700 Mapk8 Mitogen-activated protein 
kinase 8 

AI849689, JNK, JNK1, 
Prkm8, SAPK1 

D10  Mm.43081 NM_013931 Mapk8ip3 Mitogen-activated protein 
kinase 8 interacting protein 3 

BB120594, D17Wsu15e, 
JIP-3, JSAP1, JSAP1a, 
JSAP1b, JSAP1c, JSAP1d, 
Jip3, Syd2, mKIAA1066 

D11  Mm.68933 NM_016961 Mapk9 Mitogen-activated protein 
kinase 9 

AI851083, JNK2, Prkm9, 
p54aSAPK 

D12  Mm.213003 NM_010851 Myd88 Myeloid differentiation 
primary response gene 88 

- 

E01  Mm.256765 NM_008689 Nfkb1 Nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells 1, p105 

NF-KB1, NF-kappaB, NF-
kappaB1, p105, p50, p50, 
p105 
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E02  Mm.102365 NM_019408 Nfkb2 Nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells 2, p49/p100 

NF-kappaB2, lyt, p49, p49, 
p100, p50B, p52 

E03  Mm.170515 NM_010907 Nfkbia Nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells inhibitor, alpha 

AI462015, Nfkbi 

E04  Mm.220333 NM_010908 Nfkbib Nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells inhibitor, beta 

IKB-beta, IKappaBbeta, 
IkB, IkBb 

E05  Mm.300795 NM_010909 Nfkbil1 Nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells inhibitor-like 1 

Def-7, IKBL 

E06  Mm.238146 NM_172766 Nfrkb Nuclear factor related to 
kappa B binding protein 

A530090G11Rik 

E07  Mm.87062 NM_011630 Nr2c2 Nuclear receptor subfamily 2, 
group C, member 2 

TAK1, Tr4, mKIAA4145 

E08  Mm.28957 NM_023324 Peli1 Pellino 1 2810468L03Rik, 
A930031K15Rik, 
AA409794, AI586297, 
D11Ertd676e 

E09  Mm.21855 NM_009402 Pglyrp1 Peptidoglycan recognition 
protein 1 

PGRP, PGRP-S, Pglyrp, 
Tag7, Tasg7, Tnfsf3l 

E10  Mm.212789 NM_011144 Ppara Peroxisome proliferator 
activated receptor alpha 

4933429D07Rik, 
AW742785, Nr1c1, PPAR-
alpha, PPARalpha, Ppar 

E11  Mm.378990 NM_011163 Eif2ak2 Eukaryotic translation 
initiation factor 2-alpha kinase 
2 

2310047A08Rik, 
4732414G15Rik, 
AI467567, AI747578, Pkr, 
Prkr, Tik 

E12  Mm.292547 NM_011198 Ptgs2 Prostaglandin-endoperoxide 
synthase 2 

COX2, Cox-2, PGHS-2, 
PHS-2, Pghs2, TIS10 

F01  Mm.4869 NM_009044 Rel Reticuloendotheliosis 
oncogene 

c-Rel 

F02  Mm.249966 NM_009045 Rela V-rel reticuloendotheliosis 
viral oncogene homolog A 
(avian) 

p65 

F03  Mm.112765 NM_138952 Ripk2 Receptor (TNFRSF)-
interacting serine-threonine 
kinase 2 

2210420D18Rik, CARD3, 
CARDIAK, CCK, 
D4Bwg0615e, RICK, RIP2 

F04  Mm.34580 NM_019786 Tbk1 TANK-binding kinase 1 1200008B05Rik, AI462036, 
AW048562 

F05  Mm.203952 NM_174989 Ticam1 Toll-like receptor adaptor 
molecule 1 

AW046014, AW547018, 
TICAM-1, TRIF 

F06  Mm.149280 NM_173394 Ticam2 Toll-like receptor adaptor 
molecule 2 

B430113A10, TICAM-2, 
TRAM, Tirp, Trif 

F07  Mm.23987 NM_054096 Tirap Toll-interleukin 1 receptor 
(TIR) domain-containing 
adaptor protein 

AA407980, 
C130027E04Rik, Mal, 
Tlr4ap, Wyatt 

F08  Mm.273024 NM_030682 Tlr1 Toll-like receptor 1 - 

F09  Mm.87596 NM_011905 Tlr2 Toll-like receptor 2 Ly105 

F10  Mm.33874 NM_126166 Tlr3 Toll-like receptor 3 AI957183 

F11  Mm.38049 NM_021297 Tlr4 Toll-like receptor 4 Lps, Ly87, Ran, M1, Rasl2-
8 
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F12  Mm.116894 NM_016928 Tlr5 Toll-like receptor 5 - 

G01  Mm.42146 NM_011604 Tlr6 Toll-like receptor 6 - 

G02  Mm.489377 NM_133211 Tlr7 Toll-like receptor 7 - 

G03  Mm.196676 NM_133212 Tlr8 Toll-like receptor 8 - 

G04  Mm.44889 NM_031178 Tlr9 Toll-like receptor 9 - 

G05  Mm.1293 NM_013693 Tnf Tumor necrosis factor DIF, TNF-a, TNF-alpha, 
TNFSF2, TNFalpha, Tnfa, 
Tnfsf1a 

G06  Mm.116683 NM_009397 Tnfaip3 Tumor necrosis factor, alpha-
induced protein 3 

A20, Tnfip3 

G07  Mm.474976 NM_011609 Tnfrsf1a Tumor necrosis factor 
receptor superfamily, 
member 1a 

CD120a, FPF, TNF-R, 
TNF-R-I, TNF-R1, TNF-
R55, TNF-alphaR1, 
TNFAR, TNFR60, TNFRI, 
TNFRp55, TNFalpha-R1, 
Tnfr-2, Tnfr1, p55, p55-R 

G08  Mm.103551 NM_023764 Tollip Toll interacting protein 4930403G24Rik, 
4931428G15Rik 

G09  Mm.264255 NM_001033161 Tradd TNFRSF1A-associated via 
death domain 

9130005N23Rik, 
AA930854 

G10  Mm.292729 NM_009424 Traf6 Tnf receptor-associated 
factor 6 

2310003F17Rik, AI851288, 
C630032O20Rik 

G11  Mm.440187 NM_080560 Ube2n Ubiquitin-conjugating enzyme 
E2N 

1500026J17Rik, 
AL022654, BB101821, 
UBC13 

G12  Mm.360108 NM_023230 Ube2v1 Ubiquitin-conjugating enzyme 
E2 variant 1 

0610011J09Rik, AI256840, 
CROC-1, CROC1, 
D7Bwg1382e, UEV-1 

H01  Mm.3317 NM_010368 Gusb Glucuronidase, beta AI747421, Gur, Gus, Gus-r, 
Gus-s, Gus-t, Gus-u, Gut, 
asd, g 

H02  Mm.299381 NM_013556 Hprt Hypoxanthine guanine 
phosphoribosyl transferase 

C81579, HPGRT, Hprt1 

H03  Mm.2180 NM_008302 Hsp90ab1 Heat shock protein 90 alpha 
(cytosolic), class B member 1 

90kDa, AL022974, 
C81438, Hsp84, Hsp84-1, 
Hsp90, Hspcb 

H04  Mm.304088 NM_008084 Gapdh Glyceraldehyde-3-phosphate 
dehydrogenase 

Gapd 

H05  Mm.391967 NM_007393 Actb Actin, beta Actx, E430023M04Rik, 
beta-actin 

H06  N/A SA_00106 MGDC Mouse Genomic DNA 
Contamination 

MIGX1B 

H07  N/A SA_00104 RTC Reverse Transcription 
Control 

RTC 

H08  N/A SA_00104 RTC Reverse Transcription 
Control 

RTC 

H09  N/A SA_00104 RTC Reverse Transcription 
Control 

RTC 

H10  N/A SA_00103 PPC Positive PCR Control PPC 

H11  N/A SA_00103 PPC Positive PCR Control PPC 

H12  N/A SA_00103 PPC Positive PCR Control PPC 
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4.3 Results 

4.3.1 Investigating the Role of Apoptosis in TLR3-Mediated SMG 

Dysfunction 

Intraperitoneal priming of mice with the pan caspase inhibitor; z-VAD-fmk was 

undertaken to inhibit apoptosis and assess the role of TLR-3 mediated cell death 

in the SMG hypofunction perceived. The SMG flow rates from the z-VAD-treated 

mice showed an extremely significant recovery compared to the approximate loss 

of secretion perceived in the non-treated animals, 9hrs post poly (I:C) 

introduction, figure 4.1. 

 

 

 

 

 

 

   

  

 

Unpaired t test 

P value 0.0007 

P value summary *** 

Paired t test 

P value 0.4587 

P value summary ns 

Figure 4.1 SMG flow rates in response to z-VAD-fmk treatment.  
Data represent the mean ± SD SMG flow rates of the control (V-C: trypan blue and saline) and 
poly (I:C) (PIC)-injected glands from mice treated and non-treated with z-VAD-fmk, 9 hrs post 
poly (I:C). An extremely significant recovery was perceived in the SMGs from mice which received 
a single i.p injection of z-VAD-fmk, 30 mins before the poly (I:C) retrograde injection. Ns: non-
significant, ***p≤0.001 
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Western blot analysis and immunohistochemistry were performed to validate the 

efficient inhibition of apoptosis by z-VAD-fmk and correlate this to the preserved 

SMG functions. Surprisingly results obtained from these experiments revealed 

the incomplete elimination of the cleaved csp-3 immunolabelled apoptotic cells in 

the SMGs, despite priming the mice with the pan caspase inhibitor, figure 4.2. 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

-  -           +           + 

-  +           -           + 

+       +         -         - 

Figure 4.2 Caspase-3 expression in the SMGs from z-VAD-fmk treated and non-treated 
mice.  
A: Western blot analysis demonstrated that the control vehicle-injected SMG tissue extracts 
revealed the 32 KD pro-caspase 3 only and lack of its proteolytic cleavage.  Poly (I:C) injection 
induced apoptosis in the SMGs and the pro and cleaved bands were clearly seen. The glands 
from mice primed with z-VAD-fmk prior to poly (I:C) injection exhibited incomplete inhibition of 
apoptosis which was demonstrated by expression of the cleaved csp-3 positive band. B: 
Immunohistochemically, cleaved caspase-3 immunolabelled cells were still clearly depicted in the 
in acini of SMG tissue sections from z-VAD-primed mice. Original magnification= 25x. 
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4.3.2 Investigating Off-Target Effects of z-VAD-fmk 

These unexpected results prompted us to broadly investigate the likely off-target 

therapeutic effect of the pan caspase inhibitor, z-VAD-fmk, which protected the 

viral mimic-infected SMGs. To provisionally assess the histomorphology of the 

tissues, H&E sections from SMGs of the z-VAD-treated and non-treated mice 

were microscopically examined. Surprisingly, the viral mimic-infected glands from 

the z-VAD treated mice were inflammation- and edema-free; two hallmark 

features which were widely observed in the poly (I:C) injected glands lacking 

priming with the caspase inhibitor, figure 4.3. Although we have previously shown 

that loss of function in the current model is independent of neutrophil infiltration, 

we aimed at confirming the unpredictable anti-inflammatory effect which z-VAD 

conferred on the viral mimic-infected glands by labelling these tissues with MPO 

and comparing the results to those perceived in the dsRNA/TLR3 inhibition 

model. Immunohistochemistry similarly confirmed the H&E results, whereby the 

SMGs from the z-VAD-treated mice displayed broad MPO negative 

immunoreactivity, parallel to that seen in the TLR3-inhibited glands, figure 4.3. 
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Based on these finding, we hypothesized that z-VAD which can efficiently inhibit 

cathepsin activity (Schotte et al., 1999, Rozman-Pungercar et al., 2003), might 

have protected the viral mimic induced SMG dysfunction via interfering with the 

cathepsin-mediated proteolytic processing of TLR3 (Garcia-Cattaneo et al., 

2012) and subsequent generation of the C-terminal cleaved isoform.  

A straightforward verification of our hypothesis came from probing gland 

homogenates from mice pre-treated with z-VAD with the TLR3 C-terminal 

antibody and comparing the results with the glands which received the viral mimic 

only. Figure 4.4 illustrates the extremely significant, declined expression of the 

cleaved form of the receptor in the glands of the z-VAD-treated group, in contrast 

to its upregulated expression in the non-treated mice which received poly (I:C) 

only.   
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Sidak's multiple comparisons test Summary P Value 

V-C vs. z-VAD+PIC ns 0.4280 

PIC vs. z-VAD+PIC *** 0.0002 

ANOVA summary 

P value 0.0002 

P value summary *** 

Figure 4.4 TLR3 C-terminal immunohistochemistry and western blots following z-VAD-fmk 
treatment. 
A: Excessive tissue upregulation of TLR3 C-terminal in the ducts and acini following poly (I:C) 
exposure, and its remarkable retraction when mice were pre-treated with z-VAD-fmk. B: TLR3 
expression was calculated as TLR3/β-actin ratio fold change from control saline injected glands. 
ANOVA showed an extremely significant reduction of the receptor C-terminal isoform in the z-
VAD treated group following poly (I:C) exposure, which was retracted to a level non-significant 
from that expressed in the control vehicle glands. Data are representative of three independent 
experiments for each tested group. ns: non-significant, ***p≤0.001.  
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4.3.3 Mapping Poly (I:C)-Induced Innate Immune Signals Following z-VAD-

fmk  

Mouse RT2 Profiler™ TLR PCR array was used to provide wide-ranging analysis 

of TLR-related, innate immune adaptor and effector genes and downstream 

signalling pathways. We analysed a total of 84 genes in the SMGs, 6 hrs post 

vehicle and poly (I:C) injection, in the z-VAD-fmk treated and non-treated mice. 

Unpredictably, z-VAD-fmk damped the expression level of all TLR-related genes, 

compared to the extensive transcriptional upregulation seen in the SMGs which 

received the poly (I:C) only, figure 4.5 
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6 hrs P-PIC  

 

 

 

 

 

 

 

                 6h P-PIC                                z-VAD-fmk + 6h P-PIC 

z-VAD- + 6 hrs P-PIC 

 

Figure 4.5 Heat map of TLR PCR array. 
Differential expression of 84 genes in SMGs stimulated with poly (I:C), normalized to the control 
contralateral glands and GUSB housekeeping gene in case of z-VAD non-treated and β-actin in 
z-VAD treated mice. The fluorescence range from high (red) to low (green) is indicated by the 
coloured bar and reflects the degree of fluorescence intensity/gene expression. Note the overall 
decline in the SMG innate immune-related genes following priming the mice with z-VAD-fmk and 
interference with neo-generation of the TLR3 C-terminal.   
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Next, to confirm this novel, off-target role played by z-VAD-fmk in controlling 

innate immunity following SMG infection with a viral mimic, qRT-PCR was carried 

out to further analyse the mRNA expression levels of dsRNA-response genes 

and pro-inflammatory cytokines in the SMGs of z-VAD-fmk treated mice. Bar 

charts in figure 4.6 and 4.7 clearly demonstrate the overall significant decline in 

tested genes in the z-VAD-fmk group, compared to the poly (I:C)-upregulated 

responses seen in the glands from non-treated mice, all normalized to the 

‘relevant’ vehicle injected control glands and GAPDH housekeeping gene (for the 

glands from z-VAD-fmk treated mice) and HPRT (in the glands which received 

poly (I:C) only). 
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ANOVA ISG15 MX1 TLR3 MDA5 

P value <0.0001 <0.0001 <0.0001 <0.0001 

P value summary **** **** **** **** 

Sidak's multiple comparisons test MX1 
 

ISG15 
 

TLR3 
 

MDA5 
 

V-C vs. 6h P-PIC **** <0.0001 **** <0.0001 **** <0.0001 **** <0.0001 

6h P-PIC vs. z-VAD+PIC **** <0.0001 **** <0.0001 **** <0.0001 **** <0.0001 

z-VAD+PIC vs. z-VAD+V ns 0.8738 * 0.0191 ns 0.9886 * 0.0116 
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Figure 4.6 mRNA Expression of dsRNA response genes: antiviral genes; MX1 and ISG15 
as well as the dsRNA sensors; TLR3 and MDA5.  
SMGs from z-VAD-fmk-treated animals showed either non-significant (TLR3 and MX1) or mild 
activation (MDA5 and ISG15) of the dsRNA response genes compared to the extremely 
significant upregulation of these genes, 6hrs following poly (I:C) (6h P-PIC) in the glands from z-
VAD-fmk non-treated animals. Data represents means ± SEM (n=3). ns: p>0.05, *P≤0.05, 
****p≤0.0001.  
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ANOVA  IL-1B IL-6 IFN-G 

P value <0.0001 <0.0001 <0.0001 

P value summary **** **** **** 

Sidak's multiple comparisons test 
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V-C vs. 6h P-PIC **** <0.0001 **** <0.0001 **** <0.0001 

6h P-PIC vs. z-VAD+PIC **** <0.0001 **** <0.0001 **** <0.0001 

z-VAD+PIC vs. z-VAD+V **** <0.0001 ** 0.0058 **** <0.0001 
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Figure 4.7 mRNA Expression of genes encoding pro-inflammatory cytokines; 
IL-1β, IL-6 and IFN-γ.  
z-VAD-fmk remarkably downregulated the pro-inflammatory cytokine response 
perceived 6 hrs following poly (I:C) (6h-P-PIC) injection. Data represents means ± 
SEM (n=3). **P≤0.01, ****p≤0.0001 
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To confirm the PCR outcome which identified a novel non-specific immune 

regulatory role of the cysteine protease inhibitor; z-VAD-fmk, tissue sections were 

immunolabelled with cytokines, which have been prominently upregulated in 

response to local poly (I:C) injection. Figure 4.8 clearly demonstrates an overall 

reduction in the immunhohistochemical expression of tested cytokines in tissues 

from mice primed with z-VAD-fmk in contrast to the non-primed ones. 

Interestingly, in the SMGs from z-VAD-treated mice, traces of IFN-β, Cox2 and 

IFN-γ cytokines were perceived in the glandular parenchymal tissues, which 

parallels their minimal transcriptional activation recorded by the RT2 profiler 

arrays (figure 4.5). Conversely, NF-κB nuclear translocation and iNOS 

immunoexpression were completely inhibited in the protected SMGs from mice 

primed with z-VAD-fmk. 
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Figure 4.8 Immunohistochemical analysis of pro-inflammatory cytokines 
expression in the control-vehicle and poly (I:C) injected SMGs of the z-VAD-fmk 
treated and non-treated mice.  
Note the remarkably reduced protein expression of IFN-β, Cox2 and IFN-γ in response 
to z-VAD priming. On the contrary, NF-κB nuclear translocation which was abundantly 
seen 9h post poly (I:C) (insets) and extensive iNOS immunoexpression, were 
completely inhibited to levels comparable to the control glands. Original 
magnification= 25x.   
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4.4 Discussion 

In the current chapter, a novel mechanism was reported, whereby the pan 

caspase inhibitor z-VAD-fmk: (i) restricted TLR3 C-terminal neo-generation, (ii) 

limited the innate immune responses and (iii) guarded against the TLR3-induced 

loss of SMG function. Initial experiments to investigate the role of apoptosis in the 

current dysfunction model, revealed two contradictory results: priming mice with 

the pan caspase inhibitor efficiently preserved saliva secretion, despite of the 

incomplete elimination of cleaved caspase 3-positive signal.  

Key players involved in apoptosis are the eight cysteine aspartyl proteases 

caspase- 2, -3, -6, -7, -8, -9, -10, -12 (Earnshaw et al., 1999). Typically, the 

extrinsic apoptotic signalling pathway mediated by caspase 8 (Donepudi et al., 

2003) as well as the intrinsic pathway mediated by caspase 9 (Wang, 2001), 

converge into cleavage of caspase 3, which then triggers the appearance of the 

apoptotic morphology, particularly DNA/nuclear fragmentation (Krammer, 2000). 

In the current model, the persistent cleaved caspase 3 positive signal in the 

presence of z-VAD-fmk, can be attributed to the dose of the pan caspase 

inhibitor, which at many instances turn out to be highly unspecific at the 

concentrations widely used to test programmed cell death (Schotte et al., 1999). 

Also, previous studies have suggested non-caspase, serine proteases, which 

might be active under cellular stress conditions, as upstream prerequisites to 

caspase-3 processing as well as cytochrome c release and apoptosis, even in 

the presence of z-VAD-fmk (Egger et al., 2003). Finally, Marsden et al., proposed 

that a yet unknown z-VAD-fmk -insensitive caspase acting aside or upstream of 

mitochondria was responsible for intrinsic cell death, in the presence of z-VAD-

fmk (Marsden et al., 2002). 
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Attempts to broadly investigate the unexpected rescuing effect of z-VAD-fmk, 

revealed depletion of MPO positive cells in the poly (I:C) injected glands, similar 

to what was demonstrated in the TLR3/dsRNA inhibition model. The overlapping 

of these findings, suggested that the pan caspase inhibitor has unexpectedly 

targeted TLR3 activation and inhibited its downstream inflammatory response. 

Cathepsin B has already been considered an essential component in TLR3 

signalling, by proteolytically processing TLR3 to generate the functional C-

terminal form of the receptor, crucial for signalling (Garcia-Cattaneo et al., 2012, 

Murakami et al., 2014, Toscano et al., 2013). Indeed, it has been shown that z-

VAD-fmk concentrations that are commonly used to reveal a role of caspases, 

can potently bind and inhibit cysteine proteases of the cathepsin family, mainly 

Cathepsin B (Schotte et al., 1999). The reason for this non-specific binding is 

unclear, given that the structures and catalytic sites of caspases do not resemble 

those of cathepsin B (Chou et al., 1997, Podobnik et al., 1997). However, 

cathepsins possess broad substrate specificity that can explain its proposed 

inhibition by z-VAD-fmk (Turk et al., 2001). By considering the previously 

documented z-VAD-fmk ‘off-target’ effects (Satoh et al., 2013, Rozman-

Pungercar et al., 2003, Wu et al., 2011, Schotte et al., 1999) and its non-specific 

inhibition of cathepsins (Schotte et al., 1999), we hypothesized that z-VAD-fmk 

may have inhibited TLR3-driven immune responses and subsequent SMG 

dysfunction by interfering with cathepsin-mediated TLR3 cleavage in acidic 

compartments, figure 4.9.  
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Cysteine cathepsins constitute the largest cathepsin family, including 11 

members; cathepsins B, C, F, H, K, L, O, S, W, V and X (Rawlings et al., 2012). 

They are synthesized as inactive precursors that are normally activated in the 

acidic environment of lysosomes. Although, cathepsin B inhibition by z-VAD-fmk 

has not been comprehensively verified in the current model, immunoblotting of 

the SMG homogenates from the z-VAD-fmk treated group revealed that the pan 

caspase inhibitor had efficiently inhibited the neo-synthesis of TLR3 C-terminal 

fragment and accounted for a novel anti-viral, regulatory role of this drug.  

To overcome the constrains of large-scale experimental analysis of the complex 

innate immune responses to TLR3, and in the meantime broadly investigate the 

novel z-VAD-fmk immune regulatory role, we used an array of 84 genes encoding 

TLR-related adaptor and effector molecules. Six hrs post its infusion, poly (I:C) 

predictably upregulated TLR3 expression, as well as IFN-β and acute pro-

inflammatory cytokine genes; IL-1α, IL-1β, IL-6, TNF-α and IFN-γ.  

 

TLR3/dsRNA 

inhibitor  z-VAD-fmk 

MPO 

+ Cells 

TLR3 Competitively inhibit 

poly (I:C) binding 

Non-specifically inhibit 

cathepsin-mediated 

TLR3 processing 

Figure 4.9 Hypothesis to explain z-VAD-fmk therapeutic and anti-
inflammatory effects in the acute viral SMG dysfunction model. 
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In addition, we identified CXCL10 (interferon gamma-induced protein 10, IP-10), 

a chemokine that promotes leukocyte trafficking (Muller et al., 2010) and directly 

contributes to the pathogenesis of excessive neutrophil-mediated inflammation 

(Ichikawa et al., 2013). Alongside its protective role during viral infections, 

CXCL10 may enhance the severity of these types of infections and cause 

apoptosis (Sui et al., 2004) as well as calcium dysregulation (Sui et al., 2006). 

Other several interesting groups of genes showed remarkable upregulation in the 

TLR array, example the CD14 which has been shown to bind poly (I:C) at the cell 

surface (Lee et al., 2006). In addition, HMGB1 and the Hspa1a genes were 

upregulated in the current model in response to poly (I:C), possibly due to DAMPs 

released subsequent to TLR-3 induced apoptosis and necroptosis (Cunningham 

et al., 2004, Wang and Carmichael, 2004, Leadbetter et al., 2002). Finally, 

previous studies reported that components of the TLR2 and NOD2 signalling 

cascade had been significantly upregulated upon monocytes recruitment into 

acutely inflamed tissues (Zigmond et al., 2012), which may justify the 

upregulation of the TLR2-MyD88-NOD2-RIPK2 signalling axis in the current 

acute viral mimic model.  

The pattern of innate, TLR-related gene transcription in the SMGs following poly 

(I:C) injection shifted towards baseline and declined levels when mice were 

primed with z-VAD-fmk. Besides, the immunohistochemical analysis, revealed 

that the poly (I:C)-induced NF-κB nuclear translocation and extensive protein 

expression of IFN-β, IFN-G, Cox2 and iNOS, were retracted or completely 

inhibited in response to priming with z-VAD-fmk. These results clearly signify the 

inhibitory effect which the pan caspase inhibitor had on TLR3 downstream 

signalling.  
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In this regard, it is worth noting that that protease inhibitors have been used 

successfully to dampen inflammation during HIV and HCV infections (Equils et 

al., 2004). Their therapeutic ability was shown to rely on the interaction with the 

proteasome, which is important for degradation of inhibitor κB, restricting NF-κB 

nuclear translocation, hence, its activation.  

Although much has been learned on the biochemical and cell biological 

characteristics of TLRs, the integration of their signalling pathways into the 

trafficking network, under inflammatory conditions, remains to be defined.  

Endosomal cathepsins have been documented to cleave TLR9, as a prerequisite 

to its activation (Ewald et al., 2008, Park et al., 2008, Sepulveda et al., 2009). 

However, newly synthesized TLR9 is retained in the ER at steady state until 

exposed to CpG DNA ligand, which promotes its trafficking to endosomes (Fukui 

et al., 2009), where it is subjected to cathepsin-mediated proteolytic processing 

to initiate signalling (Ewald et al., 2011, Park et al., 2008). In contrast, in vitro 

experiments have shown that: in the absence of ligand, TLR3 is transported to 

the endosome via a classical-secretion pathway, where cleavage occurs and a 

pool of cleaved C-terminal fragment accumulates there, ready to signal (Garcia-

Cattaneo et al., 2012). Since the antibody against the TLR3 C-terminus has 

detected minimal expression of this fragment in the SMGs of the z-VAD treated 

group, this residual positivity may probably correspond to the control cellular 

pools of the basally-cleaved TLR3.  

In the current study, incomplete inhibition of the innate immune signals has been 

observed in the SMGs from mice primed with z-VAD-fmk. These signals can be 

attributed either to the cytosolic RLRs or the initial innate immune signals which 

took place following ligation of basal TLR3.  
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Also, these detected signals may have been truncated by z-VAD-fmk, which 

interrupted TLR-3 neo-synthesis and propagation of its downstream responses. 

Our results undoubtedly highlight, the possibility of fine-tuning innate immune 

responses using z-VAD-fmk or similar protease inhibitor drugs in vivo, which can 

provide promising clues into developing therapeutic approaches against SG viral 

infections.  

Finally, functional analysis of the z-VAD-fmk treated SMGs revealed the 

therapeutic effects that can be achieved by z-VAD-fmk in acute SG dysfunctions. 

Based on cytokine profiling of the protected glands following TLR3 inhibition and 

z-VAD-fmk treatment, we observed that functional rescue in both models 

paralleled complete blocking of the potent pro-inflammatory cytokine, iNOS. 

Given this recurrent finding and the injurious role played by iNOS in salivary gland 

injury and dysfunction (de la Cal et al., 2006, Takeda et al., 2003a, Hanaue et al., 

2007, Konttinen et al., 1997), we hypothesized the potential involvement of this 

innate immune cytokine in the TLR-3 mediated loss of function. Therefore, in the 

next chapter, iNOS expression and its potential injurious effects in the acute viral 

SMG model will be comprehensively characterized. 
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Chapter 5                                 

Injurious Contribution of 

Inducible Nitric Oxide Synthase 

in the Acute SMG Dysfunction 

Model                                                                                                                

  



151 

 

5.1 Introduction 

In a previous chapter of this thesis, the synthetic dsRNA analogue has induced 

SMG injury and loss of function, in TLR3-dependent manner. In addition, it was 

demonstrated that the functionally-preserved, TLR3-inhibited SMGs (in the 

dsRNA/TLR3 and z-VAD-fmk models) revealed loss of the extensively 

upregulated pro-inflammatory cytokine; iNOS. Nitric oxide synthase (NOS) is the 

enzyme responsible for converting L-arginine into nitric oxide in the presence of 

O2. Three isoforms of NOS are known in mammals: two constitutive isoforms 

(NOS1 or nNOS, produced by neurons; NOS3 or eNOS, produced by endothelial 

cells) and one inducible isoform (iNOS or NOS2) (Knowles and Moncada, 1994). 

In contrast to constitutive NOS isoforms which produce nitric oxide (NO) within 

seconds, with direct and short acting activities, inducible NOS produces very 

large, toxic amounts of NO in a sustained manner (Salvemini et al., 2003), which 

plays regulatory roles at nearly each phase of the inflammatory response (Guzik 

et al., 2003).  

iNOS expression can be induced by a wide range of stimuli, such as microbial 

products and cytokines. Signal transduction via MyD88 or TRIF converge in the 

activation of the transcription factor NF-κB, which upregulates iNOS transcription. 

Cytokines such as IL-1β, which also activates the signalling pathway of MyD88 

and IRAK and TNF-α also induces the production of iNOS by activating NF-κB 

(Uehara et al., 2015). Additional participating transcription factors include AP-1, 

STAT1a and IRF-1 (Tripathi et al., 2007) (figure 5.1). 
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A very likely event during the inflammatory response is the side by side 

generation of large amounts of iNOS-driven NO and superoxide anion (O2-), 

where the reaction of these unstable molecules will yield a more stable and more 

potent cytotoxic peroxynitrite (ONOO-) (Channon and Guzik, 2002, Guzik et al., 

2002) (figure 5.2). No enzyme is required to form peroxynitrite because no 

enzyme can possibly catalyze any reaction as fast. Consequently, the kinetics of 

the reaction of superoxide with NO make the formation of peroxynitrite inevitable 

in vivo (Pacher et al., 2007).  

 

 

Figure 5.1 Overview of iNOS induction by TLR 
agonists and cytokines.  
iNOS expression can be induced and/or potentiated by 
PAMPs, DAMPs, and cytokines. TLR, IL-1R, and TNFR 
signalling induce the activation of AP-1 and NF-kB, the 
main transcription factor involved in iNOS expression. 
Further, IFN-R activates STAT1, which in turn can 
directly promote iNOS transcription and alternatively 
promote the synthesis of interferon regulatory factor 1 
(IRF1), another transcription factor that positively 
regulates iNOS transcription. In turn, TGF-β inhibits NF-
κB activation thus suppressing iNOS expression (Uehara 
et al., 2015) 
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Peroxynitrite accompanies various inflammatory responses, and has been 

proposed to play an important role in mediating NO-related cellular injury (Szabo, 

2003). Previous studies have suggested peroxynitrite-promoted modulations of 

cell signalling, induction of oxidative injury (Pacher et al., 2007), release of matrix 

metalloproteinases (MMPs) (Ichikawa et al., 2014) and nitration of tyrosine 

residues (Ischiropoulos, 1998). Alongside its contribution to multiple pathways of 

cytotoxicity (Szabo, 2003), peroxynitrite has been shown to inhibit a variety of ion 

pumps including calcium pumps (Klebl et al., 1998), calcium-activated potassium 

channels and also membrane Na+/K+ ATP-ase activity (Muriel and Sandoval, 

2000). Another major aspect of peroxynitrite-dependent cytotoxicity relies on its 

ability to trigger lipid peroxidation in membranes (Radi et al., 1991), causing 

membrane permeability and fluidity changes with significant biological 

consequences (Richter, 1987).  

 

Figure 5.2 Scheme of Nitric oxide, superoxide 
and the product of their reaction peroxynitrite 
formation.  
iNOS catalyses the oxidation of L-arginine to L-
citrulline, producing NO, which combined with 
superoxides to yield peroxynitrite, nitrites and 
nitrates (Salvemini et al., 2003). 
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The implication of iNOS (Konttinen et al., 1997) with accumulated damage from 

NO (Konttinen et al., 1997, Kimura-Shimmyo et al., 2002, Takeda et al., 2003a, 

Dawson et al., 2006) and peroxynitrite (Hanaue et al., 2007) in the loss of saliva 

production, have been previously reported. Experiments which investigated the 

effect of NO on the SG secretory function, validated desensitization of the SMG 

acinar cells after prolonged exposure to NO (Caulfield et al., 2009). In addition, 

NO has been shown to mediate Ca2+ disruption, either via tyrosine nitration of 

SERCA-ATPase (Xu et al., 1999, Viner et al., 1999) and inhibition of Ca2+ uptake 

from cytosol or S-nitrosylation of RyR (Xu et al., 1998) and excessive Ca2+ 

release to cytosol. Based on this, it has been reported that through its ability to 

disturb ER Ca2+ homeostasis (Oyadomari et al., 2002), NO can initiate the ER 

stress pathway (Oyadomari et al., 2001, Xu et al., 2004). Since the salivary 

glands’ ER is involved in extensive folding, processing and trafficking of newly 

synthesised secretory and membrane proteins, these exocrine tissues are 

exceptionally sensitive to ER stress and its inhibitory impact on integral formation 

of key receptors, channels and transporters.  

The aim of the present chapter was to determine the temporal expression and 

possible injurious contributions of the pro-inflammatory mediator; iNOS and its 

subsequent oxidant; peroxynitrite, in the SMG acute dysfunction model.  
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5.2 Materials & Methods 

5.2.1 iNOS Inhibition Model 

To investigate the possible injurious effect of iNOS on the SMG functions, we 

used the selective iNOS inhibitor, aminoguanidine (AG). Table 5.1 summarizes 

the AG doses used in the experiments of the current chapter. 

Table 5-1 Aminoguanidine Hydrochloride used in in vivo injections 

Mechanism Source, 
Catalogue 
Number 

Dose and Administration Protocol 

Selective 
iNOS 

Inhibitor 

Sigma, 396494 For short term inhibition:  100mg/kg i.p. AG 
(Tunctan et al., 1998) and 0.1 mg AG combined with 
poly (I:C): tissue and saliva collection after 9 hrs of 
poly (I:C). 

For long term inhibition (MacFarlane et al., 1999): 
2.5% AG in drinking water for 7 days. Poly (I:C) local 
injection in conjunction with 0.1 mg AG: tissue and 
saliva collection after 24 hrs of poly (I:C). 

 

The vehicle injected control gland received: trypan blue, saline, and 0.1 mg 

aminoguanidine. 

5.2.2 Immunohistochemistry 

Paraffin-embedded SMG sections were deparaffinised, rehydrated and antigen 

retrieved by autoclaving with Trilogy™ as detailed in chapter 2, paragraph 2.3. 

After incubation with the specific primary antibodies (table 5-2), the detection was 

completed using the compatible host HRP-conjugated or fluorescent conjugated 

secondary antibodies. Nuclear and counterstaining was done with Mayer’s 

haematoxylin or Vectashield Antifade DAPI Mounting Medium (Vector 

Laboratories, H-1200), respectively. 
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Table 5-2 Primary Antibodies Used 

 

5.2.3 Western Blotting 

SMG protein extracts were electrophoresed on precast 4-2% SDS-PAGE gel and 

transferred to nitrocellulose membrane as detailed in chapter 2, Paragraph 2.4. 

Membranes were incubated with primary antibody (table 5-3), followed by 

application of anti-rabbit secondary antibody. Subsequently, signal development 

and exposure with Enhanced Chemioluminescence and ChemiDoc™ MP 

System were performed. 

 

Antibody 
Source & Catalogue 

Number 
Host 

Working 
Dilution 

iNOS 
Novus Biologicals, 
USA, NB300-605 

Rabbit 1:1000 

3-Nitrotyrosine Millipore, 05-233 Mouse 1:1000 

SERCA2 ATPase 
Novus Biologicals, 

NBP2-20305 
Rabbit 1:1000 

Aquaporin 5 (AQP-5) 
Santa Cruz 

Biotechnology, sc-
9890 

Goat 1:1000 

Na-K- CL-Cotransporter 1 (NKCC1) 
ABCAM, ab59791 Rabbit 1:6000 

Muscarinic 3 Receptor (M3R) 

Santa Cruz 
Biotechnology, sc-

9108 
Rabbit 1:1000 

Transmembrane member 16A (TMEM16A) 
ABCAM, ab53213 Rabbit RTU 1:1 

Cathepsin B (S-12) 
Santa Cruz 

Biotechnology, sc-
6493 

Goat 1:1000 

CD107a / LAMP-1 clone H4A3 Exbio, 10-671-C025 Mouse 1:1000 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:200 

Polyclonal Goat Anti-Mouse 
Immunoglobulins- HRP 

Dako, P0447 Goat 1:100 

Polyclonal Rabbit Anti-Goat 
Immunoglobulins/HRP 

Dako, P0160 Rabbit 1:200 

Goat anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor® 594 conjugate 

Thermo Fisher 
Scientific, A-11005 

Goat 1:1000 

Donkey anti-Rabbit IgG (H+L) Secondary 
Antibody, Alexa Fluor 488 

Thermo Fisher 
Scientific, A-21206 

Donkey 1:1000 
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Table 5-3 List of Antibodies Used in Western Blots 

 

5.2.4 RTqPCR  

Total RNAs isolated from SMG tissues (stored in RNAlater®) were extracted 

using RNeasy® Micro Kit (Qiagen) and 100 ng of extracted RNAs were reverse-

transcribed in a 20 μL reaction using the iScript™ cDNA Synthesis kit. 

Quantitative real time PCR (qRT-PCR) was carried out as detailed in chapter 2, 

Paragraph 2.5. All mouse primers were synthesized by PrimerDesign™, Ltd and 

are listed in Table 5-4. 

            Table 5-4 List of Primers used 

Gene Accession Number 

X-box binding protein 1 (Xbp1) NM_013842 

heat shock protein 5 (Hspa5) (BIP) (GRP 78) NM_001163434 

DNA-damage inducible transcript 3 (Ddit3) 
(CHOP) 

NM_007837 

actin, beta (Actb) NM_007393 

HPRT (Hypoxanthine guanine phosphoribosyl 
transferase) 

NM_013556 

Aquaporin 5 (AQP-5) 
NM_009701.4 

Na-K- CL-Cotransporter 1 (NKCC1) 
Solute carrier family 12, member 2 (Slc12a2) 

NM_009194.3 

Muscarinic 3 Receptor (M3R) 
NM_033269.4 

Transmembrane member 16A (TMEM16A) 
NM_178642.5 

 

Antibody Source & Catalogue Number Host 
Working 
Dilution 

3-Nitrotyrosine Millipore, 05-233 Mouse 1:1000 

Phospho-eIF2alpha (Ser51) Cell Signaling Technology, 9721 Rabbit 1:1000 

Β-actin Sigma, A2228 Mouse 1 μg/mL 

Polyclonal Goat Anti-Rabbit 
Immunoglobulins-HRP 

Dako, P0448 Goat 1:2000 

Polyclonal Goat Anti-Mouse 
Immunoglobulins- HRP 

Dako, P0447 Goat 1:1000 
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5.2.5 Microplate Intracellular Calcium Assays 

 We developed a novel protocol for assessment of Ca2+ signalling in the acinar 

units of the control and poly (I:C)-injected SMGs after their isolation from the 

C57/B6 mice, using the benchtop, multi-mode, FlexStation 3. The main outline of 

the protocol is illustrated in figure 5.3 

 

 

 

Figure 5.3 Illustrated summary of the novel protocol for measuring [Ca2+]i 
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• Reagents  

1. HEPES (Sigma-Aldrich, Cat. # H3375). 

2. NaCl (Sigma-Aldrich, Cat. # S7653). 

3. KCl (BDH, AnalaR, Cat. # 101984L). 

4. MgCl2 (Sigma-Aldrich, Cat. # M8266). 

5. CaCl2 (Sigma-Aldrich, Cat. # C-4901). 

6. Glucose (Sigma-Aldrich, Cat. # G8270). 

7. Glutamine (Sigma-Aldrich, Cat. # G7513). 

8. MEM Non-Essential Amino Acids Solution (100X) (Thermo Fisher 

Scientific (Life Technologies) Cat. # 11140050). 

9. Bovine serum albumin (BSA) (Sigma-Aldrich, Cat. # A2153). 

10. Collagenase from Clostridium histolyticum (Type-4 collagenase) (Sigma-

Aldrich, Cat. # C5138). 

11. Soybean Trypsin Inhibitor (Thermo Fisher Scientific (Life Technologies), 

Cat. # 17075029). 

12. Corning® Cell-Tak (Fisher Scientific Ltd, Cat. # 354240).  

13. NaHCO3 (Sigma-Aldrich, Cat. # S6014). 

14. Fura-2 AM (Molecular Probes™, Cat. # F-1201). 

15. Probenecid (Sigma-Aldrich, Cat. # P8761). 

16. Half-area, 96-well plates ((Fisher Scientific Ltd, Cat # 10717804). 

17. Carbachol (CCh) (Santa Cruz Biotechnology, Cat. # sc-202092).  

18. Ionomycin (IM) (Santa Cruz Biotechnology, Cat. # sc-3592). 

19. Culture grade dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Cat. # 

276855). 

20. Dulbecco phosphate buffered saline (DPBS) (Sigma-Aldrich, Cat. # 

D8662). 
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• Recipes  

1. HEPES incubation buffer:  A- Ca2+-containing buffer: 20 mM HEPES, 

95 mM NaCl, 4.7 mM KCl, 0.6 mM MgCl2, 1.3 mM CaCl2, 10 mM glucose, 

2 mM glutamine, and 1 × minimum Eagle's medium non-essential amino 

acids, pH 7.4. The buffer was oxygenated for 20 minutes before use. B: 

Ca2+-free buffer: prepared as previous, with the exception that 1M EGTA 

Ca2+ chelator was added and CaCl2 was omitted.  

2. BSA incubation buffer: BSA, 1% w/v final added to 25 ml of the HEPES 

buffer. 

3. Collagenase digestion buffer (CDB): 1.1 mg/ml type-4 collagenase and 

1 mg/ml soybean trypsin inhibitor added to 6 ml of BSA incubation buffer.  

4. Sodium bicarbonate (NaHCO3) neutral buffer solution: 0.1 M sodium 

bicarbonate, pH 8.0 was prepared by dissolving 420 mg NaHCO3 in 50 ml 

ultrapure distilled water. 

5. For coating of a half area 96-well plate: dilute 30 µl of Corning® Cell-

Tak in 2 ml of the neutral bicarbonate buffer. 

6. Fura-2 AM stock solution: Suspend 1 mg of lyophilized Fura-2 AM with 

DMSO to yield a 1 mM stock. Aliquot this stock and keep at all times in the 

dark at -20 oC. 

7. 1M probenecid: dissolve in 1 M NaOH (50 mg/ml), yielding a clear, 

colorless solution  

8. Fura-2 working solution: 4 µl Fura-2 AM stock, 4µl probenecid 1M and 

4 ml HEPES buffer. Caution: Buffer preparation and cell loading were 

performed in the dark to prevent degradation of the Fura-2. 

 



161 

 

• Assay plate preparation:  

To maintain acinar units in place throughout the FlexStation 3 measurements, 

Corning® Cell-Tak adhesive was used to coat the half-area, 96-well assay plates 

which were used in these experiments. Corning® Cell-Tak adhesive is a 

formulation of the "polyphenolic proteins" (Waite and Tanzer, 1981) extracted 

from the marine mussel, Mytilus edulis. This family of related proteins is the key 

component of the glue secreted by the mussel to anchor itself to solid structures 

in its natural environment (Waite, 1983).  

1. On the day preceding the experiment, the NaHCO3 neutral buffer solution 

was filter-sterilized.  

2. The amount of Corning® Cell-Tak required for each well in the assay plate 

was calculated according to the manufacturer’s recommendations: 0.56 

µg Corning® Cell-Tak/well.  

3. The correct amount of Corning® Cell-Tak was diluted into the neutral 

buffer, mixed thoroughly, and dispensed into the assay plate wells within 

10 minutes.  

4. The plate cover was placed and the coated assay plate was incubated 

overnight at room temperature. 

5. On the next day (the day of the experiment), the unevaporated Cell-Tak 

was poured off and each well was washed with 200µl filter-sterile distilled 

water to remove the bicarbonate.  

➢ Hint: it is of extreme importance not to place the Cell-Tak-coated assay plate 

in the CO2 incubator while preparing the compound plate, otherwise Cell-Tak 

will lose its activity and acinar units will be detached from the plate bottom 
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when the secretagogues are added and severe inconsistency in fluorescence 

recording will occur. 

• Isolation and preparation of the SMGs 

1. The SMGs were dissected out and rinsed with Hanks balanced salt 

solution  

2. Excised SMG was minced with scalpels or curved scissors in a labelled 

weighing boat, containing 1 ml of the CDB.  

3. The gland homogenate was transfered to a 50ml falcon tube and 

incubated in 4ml CDB, in a 37 °C water bath for 30 min.  

4. After the digestion was complete, the CDB was carefully pipetted-out and 

replaced with 6 ml of BSA incubation buffer.  

5. The tube was shaken vigorously by hand for 10 secs, in order to disperse 

the cells into smaller acinar units, figure 5.4.  

6. The physiologic units were allowed to settle, then the supernatant was 

discarded and replaced with HEPES buffer-containing Fura-2 AM.  

 

 

 

 

 

 

 

 

 
Figure 5.4 Representative example of the physiologic acinar units obtained in the present protocol 
following collagenase digestion. 
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➢ Hint: care should be taken to remove the BSA buffer completely, followed by 

replacement with HEPES incubation buffer.  

• Dye loading 

1. To prevent leakage of the dye from the cells, add 1 mM probenecid; an 

organic anion transport blocker, to the dye buffer.  

2. The acinar units (in the falcon tube) were incubated in 4 ml Fura-2 working 

solution in a CO2 incubator at 37°C for 1 hour.  

3. During this period, the FlexStation 3 was switched on and the temperature 

was adjusted to 37°C.   

4. After one hour, the acinar units were washed with HEPES buffer once. 

5. The final HEPES buffer volume to be dispensed on the acinar units was 

calculated according to number of wells to be seeded, using the following 

formula: final HEPES buffer per gland= number of wells to be seeded x 75 

(final volume/well in the assay plate).  

6. After seeding the HEPES buffer/acinar units into the assay plate, it was 

covered and placed into its allocated position in the FlexStation, until 

preparation of the compound plate is complete. Caution: Do NOT do this 

step in the CO2 incubator. 

➢ Hint:  

It is essential to take into consideration the importance of having relatively equal 

density of acinar units per well. To achieve this: 

o Pipette the digested acinar units gently up and down frequently 

between each transfer of HEPES buffer/acinar units into the wells of 

the assay plate.  
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o We recommend performing this critical step near an inverted 

microscope to frequently check uniform density of the seeded acinar 

units. 

• Compound plate preparation:  

1. The stock solutions of the cholinergic receptor agonist; CCh and the 

calcium ionophore; IM were prepared in DMSO  

2. The intermediate and working solutions were prepare in DPBS, Table 5-5.  

 

Table 5-5 Carbachol and ionomycin preparation 

Carbachol stock solution (100mM): 100 mg CCh in 5.47 ml DMSO. 

Intermediate: 1:100 (in DPBS) 

Final conc. (µM) in assay plate Initial conc. (µM) in compound plate CCh (µl) Buffer (µl) 

50 200 40 160 

20 80 16 184 

10 40 8 192 

Ionomycin stock solution (3mM): 5 mg IM in 2.23 ml DMSO 

Intermediate: No intermediate is required 

Final conc. (µM) in 
assay plate 

Initial conc. (µM) in 
compound plate 

IM (µl) Buffer (µl) 

6 30 2 198 

 

Caution 1: The FlexStation will be set-up to transfer 25 µl CCh followed by 25 µl 

IM, from the compound plate columns to the 75 µl buffer/acinar units’ columns in 

the assay plate. Accordingly, it is very important to take into consideration that 

determination of the final concentrations in the compound plate, depends on the 

buffer volume in the corresponding well of the assay plate, before the compound 

addition, Figure 5.5. 
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Figure 5.5 Step-wise illustration of compound plate preparation 

                

 

Caution 2: It is very important to note that the compound concentration is subject 

to change after each compound addition (in experiments where multiple 

compounds are used). 

• Equipment 

FlexStation 3 (Molecular Devices, Inc.) benchtop scanning fluorometer is used to 

measure changes in fluorescence of the fura-2 stained acinar units upon 

agonists’ transfer from the compound plate to the pre-designated set of wells in 

the assay plate.  

1. The FlexStation 3 was set-up to record changes in calcium signals before 

(baseline) and after compound additions, as demonstrated in Table 5-6.  
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2. For baseline fluorescence reading, the settings were adjusted similar to 

that demonstrated in Table 2, except that:  

(i) An endpoint read type was selected 

(ii) The compound transfer option was not selected.  

3. The emission ratios with excitation wavelengths of 340 and 380 nm were 

recorded every 6 seconds after compound applications, for 3 minutes.  

4. Experimental data was processed directly using the SoftMax Pro software 

(otherwise it can be copied and pasted into any spreadsheet program, 

such as Microsoft Excel). 
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Table 5-6 Flexstation setting 

• Read mode                      FL 

• Read type                        Flex  

• Category  

1. Wavelength [2 wave length pairs] 

• Excitation:  Lm1 340 nm                        Emission: Lm1 510 

                   Lm2 380 nm                                        Lm2 510 

Auto cut-off. 

2. Plate type 

• 96-well Corning half area flat clear bottom 

3. Read area settings 

• Select all (read the whole plate) 

4. PMT and optics settings 

• PMT Gain: Medium 

• Flashes per Read: 6 

5. Timing settings 

• Total run time: 3 mins 

• Interval: 6 secs. 

• Number of reads: 21 

6. Compound transfer 

• Number of transfers: 2 

Parameter Compound 1 (CCh) Compound 2 (IM) 

Initial volume (µl) 75 100 

Pipette height * 90 100 

Volume  25 25 

Rate (µl/sec) * 2 2 

Time point  20 120 

* The parameters for the integrated FlexStation pipettor require optimization for each assay. The 
dispensation height of the pipettor and the speed of dispensation should be adjusted to ensure 
optimal delivery of the compounds to the specific plates being used. Optimal delivery should not 
cause cell disruption but should allow adequate mixing of the compounds in the well. To assist 
adequate mixing of compounds, the volume of agonist added to the well is typically 25% of the 
final well volume. The optimal dispenser speed may vary according to how well cells adhere to 
the bottom of the well (Marshall et al., 2005). 

7. Compound plate type 

➢ Costar 96 opaque 3 ml 

8. Pipette tips and layout  

➢ Subject to experimental condition 

9. Compound and tips column  

➢ Subject to experimental condition 

10.  No trituration. 
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5.3 Results 

5.3.1 Temporal iNOS Upregulation in the Acute Viral Mimic Model 

To examine the temporal acute induction of inducible nitric oxide synthase in 

response to SMG viral mimic inoculation, immunohistochemical analysis was 

performed on tissue sections from the poly (I:C) injected glands as early as 3 hrs 

post its retrograde infusion. It can be clearly seen from figure 5.6 the early intense 

acinar immunoexpression of the pro-inflammatory mediator in response to the 

viral mimic.  

 

  

 

 

 

 

 

 

 

 

 

V-C 

6h P-PIC 9h P-PIC 24h P-PIC 

3h P-PIC 

Figure 5.6 iNOS immunoexpression in the SMGs.  
Photomicrographs showing the basal negative expression of iNOS, in the vehicle injected 
SMGs. 3hrs following poly (I:C) introduction: moderate acinar immunolabelling of the 
acute inflammatory mediator was seen. 6h post poly (I:C): increased acinar iNOS 
immunolabelling. 9hrs and 24 hrs after viral mimic injection: iNOS was intensely 
expressed in focal acinar areas beside its extensive mild expression in all acinar cells. 
Original magnification: V-C=16x, all other images=40x. 
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5.3.2 Functional Recovery in Response to iNOS Inhibition 

It was important subsequently to substantiate the injurious role that may have 

been played by iNOS in the acute SMG dysfunction. Short and long term 

inhibition of iNOS using AG, protected the SMG functions significantly despite 

harbouring a potent viral mimic, figure 5.7.  

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the inhibited production of nitric oxide in response to aminoguanidine 

treatment, tissue sections from AG-treated and non-treated SMGs were 

immunostained for peroxynitrite, using 3-Nitrotyrosine marker. Microscopic 

Unpaired t test (9h) 

P value 0.0088 

P value summary ** 

Paired t test (9h) 

P value 0.9221 

P value summary ns 

Unpaired t test (24h) 

P value <0.0001 

P value summary **** 

Paired t test (24h) 

P value 0.0597 

P value summary ns 

Figure 5.7 Functional analysis following the selective iNOS inhibitor; aminoguanidine. 
Enhancement of the SMGs’ secretory function from mice treated with aminoguanidine compared 
to the glands from the untreated animals which received the viral mimic only. Summary of 
statistical analysis for the mean flow rates of the vehicle and poly (I:C) injected glands in both 
groups. ns: Non-significant, **p≤0.01, ****p≤0.0001.   
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examination of the stained sections showed that 3-nitrotyrosine is restricted to 

the SMG vasculature of the control groups. In the SMGs which received the viral 

mimic, 3-NT showed remarkable upregulation in the glandular parenchyma and 

stromal cells, in addition to the intense vascular immunoexpression. Conversely, 

AG reduced markedly the peroxynitrite marker to levels and profiles similar to the 

control glands, where 3-NT was seen exclusively in the abundant dilated blood 

vessels, which were not responsive to selective iNOS inhibition by AG, figure 5.8 

A. Immunolabelling the SMGs with DAB peroxidase allowed a clear preview of 

the acinar expression of 3-NT induced by poly (I:C) in the AG-primed and non-

primed SMGs. Importantly, the peroxynitrite marker intensely labelling acinar 

plasma membranes was markedly reduced in response to AG and limited only to 

the stromal blood vessels, figure 5.8 B. 
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Figure 5.8 Immunohistochemical staining of 3-nitrotyrosine.  
A: In the upper panel, basal immunoprofile of the peroxynitrite marker in the control SMGs of the AG treated 
and non-treated mice. Note the restricted immunoexpression of the gland vasculature in both groups. In the 
lower immunofluorescent images, poly (I:C) induced an extensive expression of the peroxynitrite marker in the 
ducts (yellow arrow), stroma (green arrow) as well as the basal surfaces of acinar cells (blue arrow), all 
obviously declined with AG treatment. B: DAB-labelled SMGs, demonstrating the strong and specific 
membranous nitrotyrosine expression in the acinar cells following poly (I:C) exposure, which was limited to the 
gland vasculature (showing intense nitrotyrosine positivity) in the AG treated animals. Original magnification 
of upper panels=20x, insets=40x, DAB labelled glands=40x. 
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5.3.3 Characterizing the Potential Injurious Contributions of iNOS in The 

Acute SMG Dysfunction Model  

5.3.3.1 Peroxynitrite-Induced Nitration of Myriad of SMG Proteins. 

To investigate the extent of SMG proteins’ nitration with peroxynitrite, western 

blot analysis was conducted. Tissue extracts of glands injected with the vehicle 

and poly (I:C) in presence or absence of aminoguanidine were probed with 3-NT 

antibody. Figure 5.9 reveals the excessive nitration of the gland proteins upon 

single exposure to the viral mimic.  In contrast, AG suppressed the nitrosative 

stress signal and 3-NT expression was retracted to the control level. 

 

 

 

 

 

 

 

 

 

 
Figure 5.9 Western blot representation of the peroxynitrite marker; 3-
Nitrotyrosine. 
Induction of "nitroxidative stress" in the SMGs following poly (I:C) introduction (P-
PIC), a plethora of SMG proteins exhibited tyrosine nitration which was markedly 
reduced upon aminoguanidine treatment. 
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5.3.3.2 SERCA2 ATPase Co-localization with 3-Nitrotyrosine 

Western blot analysis of 3-Nitrotyrosine in the poly (I:C) injected SMGs revealed 

a noticeable band at the level of SERCA2 ATPase; 110 Kda, figure 5.9. To verify 

physical co-localization of 3-nitrotyrosine staining with SERCA2 ATPase, 

immunohistochemistry was performed to confirm the possibility of interaction 

between peroxynitrite and this key regulator of calcium transport (Periasamy and 

Kalyanasundaram, 2007).   

Figure 5.10 A shows the normal distribution of the calcium pump in the vehicle 

injected SMGs. The fluorescence signal observed was arranged in dense peri-

nuclear clusters in the cytosol of the acinar and duct cells coinciding with the 

normal ER distribution. Figure 5.10 B clearly displays co-localization between the 

3-NT and SERCA-ATPase proteins after poly (I:C) retrograde injection. Following 

AG treatment, the iNOS inhibitor succeeded in blocking peroxynitrite formation, 

hence the subsequent, potentially injurious, co-localization with the calcium 

pump, figure 5.10 C.   
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Figure 5. 5.10 Co-localization of 3-NT 
and SERCA2 ATPase.  
A:  immunofluorescence representation 
of the: negative NT expression in the 
normal SMGs. Note the clustered peri-
nuclear SERCA2 ATPase 
immunolocalization. 
 
 
 
 
 
 
 
 
 
B:  Abundant co-localization of the 
upregulated 3-NT staining with SERCA2, 
9hrs post infection with a viral mimetic. 
 
 
 
 
 
 
 
 
 
 
 
C: AG-treated SMGs revealing the 
obvious decline of 3-NT expression and 
the regular SERCA2 labelling of the SMG 
cells.  
 
 

DAPI SERCA2 ATPase 3-NT Merged 
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5.3.3.3 Poly (I:C) Mediated-Disruption of Calcium Homeostasis 

Co-localization of 3-NT and SERCA2 pump raised the possibility that the viral 

mimic may have mediated calcium disruption in the SMGs. Accordingly, a novel 

protocol was optimized and implemented to study poly (I:C)-induced changes of 

Ca2+ release from the ER, using a mAChRs agonist; carbachol. Fura-2 ratio 

(340/380) versus time was monitored for 2 minutes using Flexstatio 3. The 

preliminary experiments conducted revealed that in general, addition of variable 

concentrations of carbachol [5µM to 100µM] to the vehicle-injected SMG acinar 

units resulted in prompt [Ca2+]i mobilization from intracellular ER stores, which 

was reflected as a sharp signal increase that peaked for 12 seconds after the 

secretagogue application. This peak was then followed by a plateau phase, 

whereby [Ca2+]i oscillated in the form of elevated and depressed repetitive cycles.  

In the poly (I:C) treated gland, we noticed an overall decrease in the amplitude of 

[Ca2+]i release from the ER upon carbachol addition, whereby drug 

concentrations [100µM-10µM] induced a minimally amplified [Ca2+]i response, but 

at an extremely significant lower level (p<0.0001) compared to the vehicle 

injected control glands. On the contrary, when the poly (I:C) injected gland was 

stimulated with low agonist concentration [5µM], a sharp decrease in [Ca2+]i 

mobilization was recorded, which barely reached above baseline, figure 5.11. 
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The Flexstation 3 further 

permitted recording of the baseline calcium, prior to compound addition, which 

Two-way ANOVA 

Source of Variation P value 

Interaction <0.0001 **** 

Carbachol Conc. <0.0001 **** 

PIC Injection <0.0001 **** 

Sidak's multiple comparisons test 

VC vs PIC 

P Value 

100 uM <0.0001 **** 

50 uM <0.0001 **** 

20 uM <0.0001 **** 

10 uM <0.0001 **** 

5 uM <0.0001 **** 
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Figure 5.11 Fura-2-detected fluorescent signals in SMGs.  
Differential changes in [Ca2+]i between Fura-2-loaded vehicle injected control glands (V-C) and 
those infused with poly (I:C) (P-PIC) after addition of different carbachol concentrations. 
Carbachol which was added after 20 seconds of baseline recording, induced a sharp increase in 
the fluorescence signal, which remained at an elevated level constantly up till 100 seconds 
following carbachol addition. Note the extremely significant reduction in calcium release in the 
poly (I:C)-treated group, in response to the high and low carbachol concentrations tested. All data 
is expressed as Δ340/380 (maximal [Ca2+]i increase after carbachol minus its basal expression 
prior to stimulation).  Bar chart represents the two-way ANOVA carried out to compare the mean 
± SEM Δ 340/380 of various carbachol concentrations on ER calcium release in both groups. 
Statistical analysis revealed an extremely significant reduction in [Ca2+]i in the glands which 
received poly (I:C) compared to the vehicle injected controls, a finding which was consistent with 
all carbachol concentrations tested, as shown by the Sidak’s pairwise analysis, ****p≤0.0001. P-
PIC: post poly (I:C). 
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surprisingly revealed an extremely significant increase in Fura-2 340/380 ratio, in 

the poly (I:C) injected glands, compared to the control group, figure 5.12.  

 

 

 

 

  

 

 

 

 

Following these initial results, additional experiments were directed to detect the 

effect of AG treatment on the extremely disrupted calcium signalling. Acinar units 

from SMGs of AG treated and non-treated animals were prepared and for 

simplicity of analysis, these experiments were conducted using a single 

carbachol concentration (50µM). Figure 5.13 shows the extremely significant 

recovery conferred by AG treatment on the poly (I:C) injected glands and 

validates the detrimental consequences of extensive iNOS upregulation on acinar 

calcium homeostasis.   

Unpaired t test 
 

P value <0.0001 

P value summary **** 

Figure 5.12 The baseline 340/380 ratio recorded prior to 
compound application.  
Unpaired t-test revealed that the acinar cells from poly (I:C) 
injected SMG had an extremely significant high basal Ca2+ 
compared to the vehicle injected control SMG. **** p≤0.0001. 
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To investigate whether iNOS mediated a reduced carbachol response via 

depleting ER stores, we assessed the amount of [Ca2+]ER using ionomycin (an 

ionophore that, in the absence of external Ca2+, releases Ca2+ from the 

intracellular stores in a receptor-independent manner (Albert and Tashjian, 

1986). We found that Ca2+ liberation from internal stores induced by ionomycin 

was significantly decreased in the poly (I:C) injected glands when incubated in a 

calcium free buffer, and that the AG-mediated recovery of the carbachol-

stimulated calcium release, demonstrated in figure 5.13, paralleled a relatively 

maintained [Ca2+]ER level, figure 5.14. 

ANOVA  

P value <0.0001 

P value summary **** 

Sidak's multiple 
comparisons test 

Adjusted 
P Value 

Summary % 
Change 

V-C vs. P-PIC <0.0001 **** -91% 

AG-PIC vs. AG-VC 0.0052 ** -13% 

P-PIC vs. AG-PIC <0.0001 ****  

V-C vs. AG-VC 0.0306 *  
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Figure 5.13 Fura-2-detected fluorescent signals in SMGs in response to 50 µM carbachol 
stimulation.  
SMGs from mice treated or not treated with AG as well as the appropriate vehicle injected controls 
were used and carbachol was added to detect the [Ca2+]i response in the acinar units. Stimulated 
Ca2+ response graph represents the Δ340/380 (maximal [Ca2+]i increase after carbachol 
application minus its basal expression prior to stimulation). Sidak’s pairwise comparison revealed 
the extremely significant recovery of the poly (I:C) injected glands when pre-treated with the 
selective iNOS inhibitor; AG. Data represents the mean ± SEM Δ 340/380 following carbachol 
addition, *p≤0.05, **p≤0.01 and ****p≤0.0001 
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To dually assess the impact of extracellular calcium and iNOS inhibition on 

resting calcium levels in the control and poly (I:C) injected glands, the physiologic 

units were incubated in calcium free and calcium containing buffers and 

stimulated with the calcium ionophore; ionomycin. Recording of baseline calcium 

using the Flexstation 3 revealed some interesting findings that can be 

summarized as follows: (i) removal of calcium from the buffer and addition of a 

chelator, did not change baseline calcium levels in the vehicle-injected control 

glands of the tested groups. In the AG non-treated group (ii) the extremely 

significant increase (53%) in baseline calcium of the poly (I:C) injected glands, 

compared to the control glands, was extremely reduced when calcium was 

removed from the incubation buffer. (iii) Even in the absence of extracellular 

calcium, the physiologic clusters of the poly (I:C) injected glands showed an 

extremely significant increase (13%) in basal calcium compared to the vehicle 

ANOVA summary 

P value <0.0001 

P value summary **** 

Sidak's multiple 
comparisons test 

P Value Summary % 
Change 

V-C vs. P-PIC <0.0001 **** -70% 

AG-VC vs. AG-PIC <0.0001 **** -36% 

P-PIC vs. AG-PIC <0.0001 **** 
 

V-C vs. AG-VC 0.011 * 
 

Figure 5.14 Ionomycin-induced Ca2+ release from the intracellular stores.  
Isolated acinar cells of vehicle and poly (I:C) injected SMGs from AG treated and non-treated 
animals were incubated in Ca-free medium. ANOVA followed by Sidak’s pairwise comparison 
revealed that the viral mimic induced an extremely significant reduction in mean±SEM ionomycin-
stimulated Ca2+ release from the internal stores and that AG mediated an extremely significant 
recovery in the ionomycin stimulated response of the poly (I:C) injected glands. *p≤0.05, **p≤0.01 
and ****p≤0.0001 
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injected control, suggesting interplay of more than one mechanism in disrupting 

resting [Ca2+]i. In the AG-treated group: (iv) poly (I:C) still induced 13% increase 

in basal calcium, and (v) it wasn’t until the physiologic clusters of this group were 

incubated in a calcium-free buffer, when the resting [Ca2+]i nearly paralleled the 

reference levels recorded in the control gland, figure 5.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA AG Non-Treated Group 
 

P value <0.0001 

P value summary **** 

 

Sidak's multiple comparisons test 

P Value Summary 
% 

Change 

V-C Ca vs. V-C nCa 0.9962 ns 
 

P-PIC Ca vs. P-PIC NCa <0.0001 **** 
 

V-C Ca vs. P-PIC Ca <0.0001 **** 52% 

V-C nCa vs. P-PIC NCa 0.0004 *** 13% 

ANOVA summary AG-Treated Group 

P value <0.0001 

P value summary **** 

Sidak's multiple comparisons test Summary P Value % Change 

AG+V-C Ca vs. AG+V-C NCa ns 0.9948 
 

AG+PIC Ca vs. AG+PIC NCa **** <0.0001 
 

AG+V-C Ca vs. AG+PIC Ca **** <0.0001 13% 

AG+V-C NCa vs. AG+PIC NCa ns 0.1361 -1.70% 

Figure 5.15 Baseline 340/380 ratio in the SMGs treated or not treated with AG.  
ANOVA followed by Sidak’s multiple comparison analysis revealed the differential change in 
baseline calcium among the tested physiologic units as explained in the text above. Ns: Non-
significant, ***p≤0.001, ****p≤0.0001. Ca: Calcium-containing buffer, NCa: Incubation buffer free 
of CaCl2 and containing 1M EGTA. 
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5.3.3.4 AG Inhibited Poly (I:C)-Induced Lysosomal Discharge  

The finding that poly (I:C)-injected glands maintained a significantly high resting 

Ca2+ despite calcium chelation from the extracellular medium, directed us 

towards assuming leakage of an intracellular Ca2+-rich organelle. Lysosomes 

contain up to 600 mM calcium (Christensen et al., 2002, Lloyd-Evans et al., 

2008), nearly matching the concentration described for the classic calcium 

storage organelle; the ER (Bygrave and Benedetti, 1996). To assess whether 

poly (I:C) has induced lysosomal membrane breach and sequential release of the 

organelle contents, we assessed the basal immunoexpression of the lysosomal 

protease; cathepsin-B, in the control SMGs and following poly (I:C) injection in 

the AG-treated and non-treated mice. In the control vehicle injected glands, 

cathepsin B was widely localized in the SMG duct cells. Six hrs post its intraductal 

infusion, poly (I:C) induced extra-lysosomal cathepsin B immunolocalization, its 

widespread tissue distribution and its depletion by 9 hrs of ductal infusion. 

Surprisingly, AG priming of the SMGs resulted in efficient interference with 

cathepsin B release from their characteristic perinuclear lysosomal localization 

up till 24 hrs post poly (I:C) injection, compared to its complete depletion in the 

AG non-treated mice, figure 5.16.  
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Figure 5.16 Cathepsin B immunoexpression in the SMGs. 
Photomicrographs showing: A the characteristic fine perinuclear granules of cathepsin B 
consistent with its lysosomal localization in the vehicle injected control glands. B: 6hrs post the 
viral mimic: cathepsin B was extensively seen in the SMG tissues and not only restricted to their 
peri-nuclear ductal localization. In addition, the fine granular cathepsin B immunoreactivity was 
replaced by enlarged granules or diffused cytoplasmic staining (arrows), suggesting the leakage 
of the cathepsin B from the lysosomes into the cytosol. C, E: 9hrs and 24 hrs respectively, 
sporadic cathepsin B was seen in the ducts. D, F: AG treated SMGs after 9 hrs and 24 hrs 
respectively, revealed the efficient retention of the peri-nuclear lysosomal protease in the ducts 
of these glands. Original magnification: V-C, 9h P-PIC, AG+24h P-PIC= 25x and 6h P-PIC, 
AG+9h P-PIC, 24h P-PIC= 40x. 
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The cathepsin B extra-lysosomal discharge was further confirmed by its co-

localization with the lysosomal marker; Lamp-1. The vehicle injected SMGs 

revealed constant ductal co-expression of cathepsin B and Lamp-1, figure 5.17 

A.  Upon poly (I:C) exposure, co-localization of the lysosomal markers was 

markedly lost and cathepsin B was seen within acinar cells in addition to their 

normal duct localization, figure 5.17 B. Conversely, AG treatment relatively 

maintained the perinuclear ductal cathepsin B expression as marked by physical 

co-localization with Lamp-1, figure 5.17 C. 
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DAPI CATH-B Merged Lamp1 

Figure 5.17 Co-localization of Lamp1 
and Cathepsin B.  
A:  Double immunofluorescent staining of 
cathepsin B and Lamp-1 in the vehicle 
injected control glands. Note the co-
localization of both lysosomal proteins in 
the SMG ducts.  
 
 
 
 
 
 
 
B: 9hrs post poly (I:C), some preserved 
ductal co-localization of the lysosomal 
markers in addition to the extra-lysosomal 
cathepsin B in the duct cytoplasm as well 
as the surrounding acinar cells.  
 
 
 
 
 
 
 
 
 
C: 9hrs post AG and poly (I:C), showing 
retention of peri-nuclear cathepsin B in 
lysosomes evidenced by the co-
localization of both lysosomal markers in 
the duct cells. 
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5.3.3.5 AG Interfered with Induction of ER stress in the SMG Dysfunction 

Model 

Since Ca2+ is central to the regulation of processing and targeted dispatch of 

proteins in the ER, including crucial SG receptors, channels and transporters, we 

hypothesized that Ca2+ dysregulation in the current model has induced an ER 

stress condition which may have interrupted the ER Ca2+-dependent roles of 

protein synthesis and transport. ER-stress can induce the transcriptional 

activation of chaperones and protein folding-associated molecules to reduce the 

burden of protein synthesis in the ER (Zhang and Kaufman, 2006, Kimata and 

Kohno, 2011). Accordingly, to evaluate whether poly (I:C) has triggered ER 

stress, qRT-PCR analysis of ER-stress related genes; XBP1, GRP78 (Bip) and 

CHOP were performed. Poly (I:C)-injected SMGs displayed significant 

upregulation in the ER-stress related genes, an effect that was efficiently 

prevented by the iNOS selective inhibitor; AG, figure 5.18.  
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ANOVA Bip CHOP XBP-1 

P value <0.0001 0.0001 <0.0001 

P value summary **** *** **** 

Sidak's multiple comparisons test 
 

Bip 
 

CHOP 
 

XBP-1 
 

V-C vs. 9h P-PIC **** <0.0001 * 0.0301 **** <0.0001 

9h P-PIC vs. AG+9h P-PIC **** <0.0001 **** <0.0001 **** <0.0001 

AG+9h P-PIC vs. AG+V ns 0.4686 * 0.044 ns 0.8572 

Figure 5.18 mRNA expression of ER stress related genes; Bip, CHO and XBP-1.  
SMGs of mice treated or not-treated with AG were injected with the vehicle or poly (I:C). Tested 
genes were normalized to HPRT in both groups. A single aminoguanigine treatment restricted 
the significant acute upregulation of ER stress related genes, 9 hrs post poly (I:C) administration. 
Data represent means ± SEM (n=3). *p<0.01, ***p<0.001, ****P < 0.0001, ns: non-significant. 
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5.3.3.6 Downregulation of Water and Ion Transport Molecules 

Following the substantiation of ER stress induction in the acute viral mimic model, 

we aimed to substantiate the UPR-triggered mRNA decay (Grootjans et al., 2016) 

of key water driving molecules in the viral mimic model. qRT-PCR revealed an 

extremely significant downregulation (approximately 80% of the baseline level) in 

the mRNA expression levels of all tested genes. Importantly, retrieval of the 

downregulated genes was perceived in all aminoguanidine treated animals, 

figure 5.19. 
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ANOVA   AQP-5 NKCC1 TMEM16A M3R 

P value <0.0001 <0.0001 <0.0001 <0.0001 

P value summary **** **** **** **** 

Sidak's multiple comparisons test 
 

AQP5 
 

NKCC1 
 

TMEM16A 
 

M3R 
 

V-C vs. 24h P-PIC **** <0.0001 **** <0.0001 **** <0.0001 **** <0.0001 

24h P-PIC vs. AG+24h P-PIC *** 0.001 **** <0.0001 **** <0.0001 ** 0.0054 

AG+24h P-PIC vs. AG+V ns 0.3172 ns 0.9803 ns >0.9999 ns 0.1954 

Figure 5.19 mRNA expression of genes encoding water driving molecules; AQP5, NKCC1, 
TMEM16A and M3R.  
SMGs of mice treated or not-treated with AG were injected with the vehicle or poly (I:C). SMGs 
were harvested 24 hrs post the local injections, and tested genes were normalized to HPRT in 
AG non-treated glands and B-actin in AG-treated groups. Long term inhibition of iNOS, by 
incorporating aminoguanidine in drinking water for seven days prevented the extremely significant 
downregulation of the mRNA of key water driving molecules. Data represent means ± SEM (n=3). 
**p≤0.01, ***p≤0.001, ****P < 0.0001, ns: non-significant. 
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5.3.3.7 Disrupted Subcellular Localization of Water and Ion Transport 

Proteins 

Next, we used antibodies against M3R, AQP-5, NKCC1 and TMEM16A, to 

confirm the reduced expression of these water driving molecules at the protein 

level and assess their immunolocalization. Immunoperoxidase labelling of SMGs 

from AG treated and non-treated mice revealed the following expression patterns 

for the control vehicle injected glands: (i) AQP-5 exhibited a strong, furrow-

shaped expression on the apical domains of acinar cells. Similarly, (ii) TMEM16A, 

showed intense, trough-like immunoexpression on luminal surfaces of acinar 

cells. Interestingly, TMEM16A was frequently seen as a thick branch-like 

connector linking multiple acinar and ductal lumena together. Moreover, (iii) 

NKCC1 revealed intense positive basolateral immunostaining of acinar cells as 

well as specific cells of all types of ducts. Finally, (iv) the muscarinic receptor; 

M3R, revealed a punctate basolateral membranous immunolabelling of acinar 

cells. 24 hrs following poly (I:C) retrograde infusion, a remarkable reduction was 

seen in all key water driving molecules. In addition, a markedly disrupted and 

altered immunolocalization of these molecules was displayed in the form of 

punctate, beaded and shrunken acinar cytoplasmic granules and thick patches. 

Predominantly, AG maintained the normal immunolocalization patterns of the 

tested proteins at a level comparable to that seen in the control vehicle injected 

glands, figure 5.20. 
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Figure 5.20 Immunohistochemistry of key water driving molecules; AQP5, NKCC1, 
TMEM16A and M3R.  
Control SMG showed A: positive furrow-like AQP-5 immunostaining on the luminal membranes 
of acinar cells. B: strong basolateral and apical NKCC1 as well as specific duct cell positivity 
(yellow arrows). C: TMEM16A immunolabelling of acinar apical domains as well as acinar-ductal 
interconnecting branches. D: M3R visualized using fluorescently labelled secondary antibody. 
M3R displayed a punctate expression pattern in the basal membrane of acini and in the 
cytoplasm and membrane of epithelial cells lining the intercalated and striated ducts. 24 hrs post 
poly (I:C) E: thickened membrane patches of AQP-5 (green arrows), basolateral staining (red 
arrows), as well as granular cytoplasmic immunostaining (black arrows). F: NKCC1 revealed an 
irregular intense, granular cytoplasmic expression. G: TMEM16A expression showing reduced 
and altered positive cytoplasmic granularity. H: M3R staining was remarkably reduced compared 
to the control glands. AG-treated glands; I, J, K and L: Obvious recovery of the expression level 
and subcellular localization of all tested water and ion transport proteins in response to AG 
treatment. Original magnification=40x 
  

 

Figure 5.20 Immunohistochemistry of key water driving molecules; AQP5, NKCC1, TMEM16A 
and M3R in Control SMGs and poly (I:C)-injected glands from AG-treated and non-treated mice.  
Control SMG showed A: positive furrow-like AQP-5 immunostaining on the luminal membranes 
of acinar cells. B: strong basolateral and apical NKCC1 as well as specific duct cell positivity 
(yellow arrows). C: TMEM16A immunolabelling of acinar apical domains as well as acinar-ductal 
interconnecting branches. D: M3R visualized using fluorescently labelled secondary antibody. 
M3R displayed a punctate expression pattern in the basal membrane of acini and in the 
cytoplasm and membrane of epithelial cells lining the intercalated and striated ducts. 24 hrs post 
poly (I:C) E: thickened membrane patches of AQP-5 (green arrows), basolateral staining (red 
arrows), as well as granular cytoplasmic immunostaining (black arrows). F: NKCC1 revealed an 
irregular intense, granular cytoplasmic expression. G: TMEM16A expression showing reduced 
and altered positive cytoplasmic granularity. H: M3R staining was remarkably reduced compared 
to the control glands. AG-treated glands; I, J, K and L: Obvious recovery of the expression level 
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5.4 Discussion 

In the current chapter, we proposed an acute viral-mediated SG dysfunction 

mechanism, by which iNOS impaired saliva secretion via: dysregulating Ca2+ 

homeostasis, inducing ER stress and altering key water driving regulators at the 

gene and protein levels. Our results assigned iNOS upregulation as one of the 

earliest signals which takes place after acute infections of SGs. Moreover, we 

have shown the prompt parallel increase in peroxynitrite formation which 

culminated into nitrotyrosinilation of a plethora of SMG proteins.  

To investigate the contribution of iNOS to the viral hypofunction perceived, we 

used systemic and local administrations of a selective iNOS inhibitor; 

aminoguanidine hydrochloride (Waz et al., 1997, Viaro et al., 2000). Since pilot 

experiments revealed that a single i.p. dose of AG was only sufficient to inhibit 

iNOS up till 9 hrs post poly (I:C) retrograde injection, we employed a longer-term 

inhibition protocol to acquire sufficient iNOS retraction 24 hrs post poly (I:C) 

(MacFarlane et al., 1999). Functional analysis of the AG-treatment model 

revealed an extremely significant recovery of the poly (I:C) injected glands at 9hrs 

and 24 hrs post infection.  

Long-lasting and high levels of iNOS-derived NO has been hypothesized to 

directly nitrosylate functional proteins and disrupt essential cellular processes 

(Kimura-Shimmyo et al., 2002). In addition, peroxynitrite is believed to be 

responsible for the harmful effects of iNOS-derived NO during inflammation 

(Aydogan et al., 2006), via its rapid reaction with proteins to mediate radical 

tyrosine nitration and 3-nitrotyrosine production (Bigelow, 2009). In the present 

study, we were able to show that the AG-preserved saliva secretion paralleled 

decreased nitration of the SMG proteins and marked reduction of 3-nitrotyrosine 
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protein expression in the homogenates and tissue sections. Inhibition of the 

peroxynitrite marker in response to iNOS selective inhibition is in accordance with 

the previous demonstration that reactive nitrogen species production in mice is 

completely dependent upon the NO derived from iNOS (Koarai et al., 2002). Our 

results which verified the protective effects of AG on injured SGs, are in 

agreement with studies reporting the functional rescue afforded by: (i) selective 

iNOS inhibition in LPS-infected SMGs (Lomniczi et al., 2001) and (ii) peroxynitrite 

scavenging in irradiated SGs (Hanaue et al., 2007).  

Immunofluorescence staining of the SMG tissue sections treated with AG 

demonstrated that 3-NT positivity was predominantly perceived in blood vessels. 

A similar phenomenon was seen in AG-treated, irradiated SGs (Hanaue et al., 

2007), whereby AG, which extensively attenuated 3-NT, did not completely block 

its expression in the gland vasculature. These results may demonstrate that even 

though AG inhibited iNOS, which was the major source of NO-derived NT during 

the acute infection, eNOS which is responsible for most of the vascular NO 

produced and much less sensitive to AG (Alderton et al., 2001), may have given 

rise to the residual 3-NT in the AG treated glands.  

The current acute viral mimic SMG model demonstrated excessive, iNOS-driven 

co-localization of the peroxynitrite marker and SERCA2 ATPase pump. As a 

rational outcome from vicinity with a potent oxidant, we assumed inhibition of 

SERCA2 ATPase activity, and loss of its tight control on the ER as well as 

cytosolic calcium levels. To assess our hypothesis, we intended to measure the 

carbachol induced Ca2+ release from the ER as well as the basal cytosolic 

calcium levels in the AG-treated and non-treated SMGs.  
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The novel protocol developed for assessment of calcium responses utilizes small 

clusters (5-20 cells) of parenchymal cells and represents a powerful tool to study 

the physiological and pathophysiological features of calcium homeostasis in vivo. 

Fura-2, is by far the most commonly used ratiometric dye for imaging Ca2+ signals 

in intact cells. It exhibits excitation spectrum changes upon Ca2+ binding such that 

the Ca2+-free form is excited maximally at 380 nm while the Ca2+ bound form is 

excited maximally at 340 nm, figure 5.21. Both forms emit fluorescence with a 

peak at 510 nm, allowing for a simple excitation ratio (Marshall et al., 2006).  

 

 

 

 

 

 

 

 

 

 

Figure 5.21 FURA-2.  
A: Structural changes of Fura-2 by esterase activity and Ca2+ binding. Fura-2 AM ester is Ca2+ 
insensitive and nonpolar. Once inside the cell, esterase enzymes sequentially cleave the AM 
groups to leave Fura-2-free acid (Ca2+ sensitive, polar) trapped inside the cell, where it is able to 
bind Ca2+. B: carbachol is a muscarinic receptor agonist that initiates a signalling pathway, 
resulting in the release of Ca2+ within seconds. Fura-2 exhibits a calcium dependent excitation 
spectral shift to report the 340/380 ratio (adapted from (Wang et al., 2015)). C: Schematic 
illustration of intracellular calcium changes as recorded by Flexstation 3. The raw data depicts 
the typical signals obtained from a fura-2-loaded cell when it is excited at 340 and 380 nm. Agonist 
stimulation will cause an increase in the 340nm signal and a decrease in the 380nm signal. 
Addition of an ionophore (Ionomycin) in the presence of Ca 2+ will liberate Ca2+ from all intracellular 
stores and will result in the F340max and F380min. 
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Using a Flexstation 3 microplate fluorescent reader, baseline and variations of 

Fura-2 emission ratio were determined in the vehicle and poly (I:C) injected 

SMGs, from the AG treated and non-treated mice. We were able to record 

dramatic changes in Ca2+ homeostasis and signalling in the parenchymal clusters 

of mouse SMG, 24 hrs after poly (I:C) introduction. Disruption in stimulated [Ca2+]i 

responses was observed in the form of reduced liberation of Ca2+ from the ER 

(evoked by either carbachol in Ca2+-containing or ionomycin in Ca2+-free 

medium). In addition, elevated resting [Ca2+]i levels was recorded prior to 

compound applications. These results demonstrate the superimposition of 

several mechanisms implicated in the disruption of Ca2+ homeostasis.  

The reduction in magnitude of Ca2+ release from the intracellular stores 

independent of activation of IP3R; i.e. with ionomycin, suggested the diminished 

[Ca2+]ER content. This was expectedly reflected on the impairment of carbachol-

stimulated Ca2+ release. SERCA2 isoform of the sarco/endoplasmic reticulum 

Ca2+-ATPase is sensitive to cellular conditions of inflammation and oxidative 

stress as evidenced by the common appearance of 3-nitrotyrosine-modified 

forms of SERCA2 in diseases of human and rodent models (Bigelow, 2009). 

Since SERCA pump plays a major role in the rate-limiting replenishing of 

intracellular calcium stores after secretagouge-stimulated calcium release 

(Berridge et al., 2000, Bers, 2002, Vangheluwe et al., 2005, Homann et al., 2006), 

the physical co-localization of SERCA2 ATPase and peroxynitrite may explain 

the inability of the pump to replenish [Ca2+]ER, accounting for the reduced Ca2+ 

content in the intracellular store.  
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Importantly, AG which prevented ONOO- accumulation, induced an extremely 

significant recovery in the stimulated calcium response to carbachol and 

ionomycin, which further highlights the injurious contribution of the upregulated 

iNOS and it derivative; peroxynitrite in the impairment of salivary cells functioning 

following acute infections. Though, not comprehensively verified, it is worth noting 

that the extensively expressed acinar peroxynitrite may have similarly co-

localized and disrupted other critical cytosolic and organellar Ca2+ regulators in 

the current model of acute SG dysfunction.  

The novel protocol developed, further allowed the recording of resting [Ca2+]i, 

which showed extremely significant elevation in the poly (I:C) injected glands, 

prior to secretagogue additions. To investigate the basis of this finding, two 

buffers were formulated and used for preparation and incubations of the SMGs 

(Naftilan and Oparil, 1982, Pitelka et al., 1983). Our results demonstrated the 

overlap of more than one mechanism contributing to elevating baseline [Ca2+]i. 

Removal of calcium from the extracellular buffer as well as treatment of the mice 

with AG, remarkably retrieved the basal [Ca2+]i levels, which denoted the likely 

breach of the plasma membranes in the poly (I:C) injected SMGs, mediated by  

iNOS or its derivative; peroxynitrite. The sites of peroxynitrite formation are 

assumed to be spatially associated with the sources of superoxide (such as the 

plasma membrane NADPH oxidases) (Szabo et al., 2007). In addition, a major 

aspect of peroxynitrite-dependent cytotoxicity relies on its ability to trigger lipid 

peroxidation in membranes, resulting in degeneration of membrane lipids (Hogg 

and Kalyanaraman, 1999, Radi et al., 1991) and changes in membrane 

permeability and fluidity, with significant biological consequences (Richter, 1987).  
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In the current model, immunohistochemical staining revealed the preferential 

localization of 3-NT in the acinar cell membranes, which may account for the 

unrestrained efflux of Ca2+ from the extracellular buffer, facilitated by the likely 

peroxynitrite-damaged plasma membranes.  

Despite removal of Ca2+ from the prepared buffers, the baseline calcium level 

was not completely restored in the poly (I:C) injected glands, which indicated an 

intracellular leakage source, that may have contributed to the perceived increase 

in baseline Ca2+. Lysosomes contain up to 600 mM calcium (Christensen et al., 

2002, Lloyd-Evans et al., 2008), nearly matching the ER concentration (Bygrave 

and Benedetti, 1996). Immunostaining of the SMG tissue sections injected with 

the viral mimetic verified lysosomal membrane permeabilization (LMP) and the 

sequential release of the most abundant protease; cathepsin B (Rossi et al., 

2004). These results were further validated by immunofluorescent dissociation of 

cathepsin B from lysosomal Lamp-1. Interestingly, cathepsin B may constitute an 

amplifying feedback loop, in which a small amount of released cathepsin B 

triggers more extensive LMP from outside the lysosome (Johansson et al., 2010, 

Liu et al., 2003). Several mechanisms can disrupt the integrity of the lysosomal 

membranes (Serrano-Puebla and Boya, 2016). Although the exact trigger for 

disruption of lysosomes in the current model has not been comprehensively 

investigated, we were able to verify the involvement of iNOS-dependent 

mechanisms. In fact, iNOS expression has been shown to evoke an increase in 

ROS production (Zhao et al., 2010), which can penetrate lysosomes and produce 

highly toxic intermediates that damage lysosomal membrane proteins, such as 

Hsp70 (Serrano-Puebla and Boya, 2016).  
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The ER is involved in folding, processing and trafficking of newly synthesised 

secretory and membrane proteins (Chan et al., 2011). The resting free Ca2+ 

concentration in the ER is three to four orders of magnitude higher than cytosolic 

Ca2+. Disruption of ER homeostasis, as caused by alterations in [Ca2+]ER 

concentration, leads to the accumulation of unfolded proteins and activation of a 

specific stress response (Rutkowski and Kaufman, 2004). In the current research, 

disruption of calcium homeostasis justified our rationale that exposure to 

excessive iNOS may have likewise driven the gland into an acute stressful 

condition, warranting UPR activation. To verify this hypothesis, we analysed the 

upregulation of genes encoding key chaperones and folding sensors as markers 

of UPR activation in the AG treated and non-treated glands. In the current model, 

we found that a single poly (I:C) dose induced iNOS-dependent UPR activation, 

after 9 hrs of its introduction, manifested by the increased transcriptional 

expression of XBP1, GRP78 (Bip), CHOP. Our results are in harmony with 

studies showing that pro-inflammatory cytokines could induce ER stress in 

cultured cells, possibly via the generation of nitric oxide (Oyadomari et al., 2001, 

Kharroubi et al., 2004). These studies demonstrated the role played by nitric 

oxide in: i) downregulation Serca2b expression, ii) depletion of ER calcium stores, 

and iii) induction of the ER stress pathway. Similarly, pancreatic studies reported 

NO-mediated induction of ER stress in rat pancreatic islets, a finding which was 

prevented by the iNOS blocker; NG-methyl-L-arginine (LMA) (Cardozo et al., 

2005). In their study, they demonstrated that blocking NO production with LMA 

prevented cytokine-induced SERCA2b inhibition, ER Ca2+ depletion, xbp-1 

mRNA processing, CHOP expression, and β-cell death.  
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The high demand for protein synthesis in specialized secretory SG cells requires 

an evolved mechanism to properly fold, process, and release proteins. This 

renders the SGs particularly sensitive to ER stress evolution.  

With a conceptual identification of key mediators of the UPR in place, subsequent 

experiments turned towards investigating the relation between the verified SG 

stress, with its well documented negative impact on the mRNA and cellular 

protein realms and the compromised secretory machinery. Saliva secretion is 

predominantly initiated by the exciting effect of Acetylcholine on acinar M3 

receptors (Proctor, 2006), followed by a multistage process which is coordinated 

through several ion channels and transporters, water channels, as well as 

polarized calcium signalling events. Therefore, we examined the mRNA 

expression of key water driving molecules; M3R, AQP5 water channel, as well as 

NKCC1 and TMEM16A ion transporters, 24 hrs following poly (I:C) injection in 

the AG-treated and non-treated glands. Our results revealed the global 

downregulation of the tested genes in the mouse SMGs following poly (I:C) 

administration. In a process known as regulated IRE1 dependent decay (RIDD), 

pIRE-1α degrades ER associated mRNAs encoding mostly secretory proteins as 

well as cytosolic mRNAs, to reduce protein synthesis and allow the endoplasmic 

reticulum (ER) to recover from the accumulation of misfolded proteins (Hollien 

and Weissman, 2006, Hollien et al., 2009). Our results can possibly signify the 

role played by the non-specific nuclease activity which may have been perceived 

subsequent to the acute evolution of ER stress.  
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Owing to the pivotal role played by the ER in calcium-activated protein folding 

and targeted transport (Tsai and Weissman, 2010), we presumed that iNOS-

driven ER calcium depletion may have mediated defective protein folding as well 

as protein retention in the ER (figure 5.22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To substantiate our hypothesis, immunohistochemical staining of the 

membranous water driving molecules was performed in the control and 

experimental glands from AG-treated and non-treated mice.  

Figure 5.22 Illustrated representation of 
iNOS-mediated disruption of membrane 
trafficking.  
Dysregulation of [Ca2+]ER induced by iNOS or 
its oxidative derivative; peroxynitrite induced 
ER stress. Disruption of ER homeostasis may 
have caused misfolded proteins to be retained 
in the ER or in the Golgi, leading to loss-of-
function. 
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Immuno-analysis revealed that in the vehicle-injected control glands, AQP-5, 

TMEM16A were immunolocalized to the apical membranes of acinar cells. The 

furrow-shaped immunostaining pattern displayed by these molecules in normal 

glands represent the lateral intercellular canaliculi between neighbouring acinar 

cells, which are a specialized form of the lumen extending from the apical side 

towards the basal side between acinar cells (Pinkstaff, 1980, Segawa et al., 

1998). In addition, the TMEM16A interconnecting branches seen represent the 

acinar-intercalated duct segments, where the ion channel is more frequently 

expressed in the distal portions of these ducts toward the acini (Chenevert et al., 

2012). On the other hand, M3R and NKCC1 have predominantly immunolabelled 

the basolateral membranes of acinar cells and to a much lesser extent, NKCC1 

was seen in duct cells, which may account for a functional role of Cl- uptake in 

these ducts. These results are in agreement with Walcott et al., who 

demonstrated the presence of NKCC1 in the basolateral membranes of duct and 

acinar cells of mice (Walcott et al., 2005). Conversely, SMGs which received the 

viral mimic exhibited aberrant immunoexpression after 24 hrs, with all 

membranous proteins displaying a granular cytoplasmic pattern. Similar 

accumulation of proteins in intracellular inclusion bodies has been reported in 

neurodegenerative disease featuring intracellular Ca2+ dysregulation with 

consecutive endoplasmic reticulum Ca2+ depletion (Grosskreutz et al., 2010). The 

preserved membranous localization of these proteins in the AG treated glands 

suggest that iNOS and its derivatives may have directly interfered with the SMG 

protein transport, presumably in an ER stress dependant manner.  

 

 



201 

 

Studies which deleted AQP5 (Ma et al., 1999, Krane et al., 2001), NKCC1 (Evans 

et al., 2000) and TMEM16A (Ousingsawat et al., 2009, Catalan et al., 2015) 

revealed vast reduction in saliva secretion. The present study demonstrates, for 

the first time, that loss of saliva secretion following acute SG infections and 

extensive iNOS upregulation, paralleled the ectopic cytoplasmic expression of 

membranous water and ion transport proteins.  

The current SG dysfunction model develops rapidly, with clearly defined initial 

triggering and pathogenic processes. Accordingly, we were able to 

comprehensively characterize the signals which sequentially prompted loss of 

function. The perceived iNOS-driven dysregulation of Ca2+ homeostasis and the 

resultant ER stress-induced aberrant expression of key membranous water 

driving proteins, projected the dysfunction mechanisms by which acute infections 

can impair the salivary gland secretory machinery. 
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Chapter 6                                 

General Discussion 
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Acute infections are often associated with SG pathology. To decipher the signal 

which triggers injury and dysfunction in the acutely infected SGs, it was essential 

to develop an in vivo model dually featuring functional compromise and innate 

immune exocrinopathy. Although viruses do not normally reach the SGs via a 

retrograde ductal route, we injected poly (I:C) locally into the SMGs to avoid 

systemic delivery, which is more likely to dilute the poly (I:C) and minimize the 

chance of its efficient exposure to the parenchymal cells. The cannulation 

technique established, allowed for the development of a reliable and reproducible 

mouse model, whereby intraductal conveyance of poly (I:C) pre-mixed with trypan 

blue fulfilled our aim in consistently ensuring successful infusion and delivering 

the same amount of the viral mimic into the SMGs (even when other drugs: 

TLR3/dsRNA inhibitor, RB6-8C5, z-VAD-fmk and AG, were systemically or locally 

used). In addition, this local innate immune activation protocol allowed us to rule 

out possible extraneous impacts that can arise from systemic delivery of the 

inflammagen. Another advantage of the current model was the possibility of 

temporally characterizing the innate immune events occurring in conjunction with 

the loss of function, this helped us during the quest for the signal which induced 

the early perceived dysfunction. For example, although it was completely 

surprising that the invasive MPO positive neutrophils/monocytes which infiltrated 

the gland 6hrs post poly (I:C) injection were bystanders in the current model 

(given their injurious roles during acute microbial infections), it became clear that 

extensive iNOS expression as early as 3hrs following delivery of the viral mimic 

has initialized the dysfunction signal even earlier than the immune cell infiltration. 

These results similarly, excluded any role played by potentially detrimental 

cytokines; like IL-1β, COX2 and IL-6, in the perceived loss of function.  
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To protect against viral infection, the host innate immune system has evolved 

sensors of nucleic acids. The same nucleic acid sensors that defend against 

viruses may also contribute to the SG pathogenesis (Holdgate and St Clair, 

2016). In the current model of SG dysfunction, we have shown the indispensable 

injurious role played by TLR3. TLR3 activation must be strictly regulated; one 

mechanism by which this is achieved is its compartmentalization to intracellular 

locations where it is unlikely to encounter its ligand unless infection or tissue 

damage occurs (Oshiumi et al., 2003). Moreover, therapeutic modulation of TLR3 

pathways has offered an attractive strategy to fight a variety of diseases. Cheng 

et al, successfully used specific small molecule agents to target the protein-RNA 

interface and disrupt dsRNA binding to TLR3 (Cheng et al., 2011). Interestingly, 

to evaluate the drug’s inhibitory activity, they monitored the NO level as an 

indicator of poly (I:C)-induced TLR3 activation. In the current study, we used a 

thiophenecarboxamidopropionate compound that acts as a direct, competitive 

and high affinity inhibitor of dsRNA binding to TLR3 and selectively antagonizes 

stimulated TLR3 by blocking signalling at the receptor level. We showed for the 

first time that in vivo inhibition of TLR3 effectively rescues viral-induced secretory 

hypofunction and ameliorates injury-inducing downstream signals. Thus, our 

findings suggest blockade of TLR3 as a new therapeutic strategy for the 

treatment of SG or oral diseases with viral implications. Previous studies have 

shown that the TLR3/dsRNA complex inhibitor can be highly protective against 

TLR3-mediated tissue injury, even when administered after exposure to the 

damaging agent (Takemura et al., 2014).  
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Accordingly, the TLR3 inhibition mouse model presented in this study may be 

promising for assessment of the functional and pathologic consequences of 

restricting this PRR in mice with well-established chronic inflammation or 

autoimmune diseases.  

One of the main and unexpected findings in the present study is the role played 

by the protease inhibitor; z-VAD-fmk in regulating the innate immune responses 

via controlling upregulation of TLR-3 and restricting its downstream signalling. 

The roles of endolysosomal proteases in innate immunity through the activation 

of TLRs has been previously highlighted. Endolysosomal TLRs are synthesized 

as quiescent pro-forms that have to be proteolytically activated to carry out their 

function (Bird et al., 2009). This has been shown for TLR9 (Ewald et al., 2008, 

Matsumoto et al., 2008, Park et al., 2008), TLR7 (Ewald et al., 2008) and TLR3 

(Garcia-Cattaneo et al., 2012, Toscano et al., 2013). Interestingly, analyses of 

several protease-deficient cells and of the effects of protease inhibitors have 

concluded that no single protease is responsible for TLR7 or TLR9 processing, 

indicating that there is redundancy in this reaction (Ewald et al., 2008, Matsumoto 

et al., 2008, Park et al., 2008).  

Previously, it has been shown that z-VAD-fmk inhibition of caspase 3 led to the 

down-regulation of JNK/SAPK and NF-kB, which were required for LPS-induced 

iNOS expression and NO production  (Chakravortty et al., 2001). In the current 

model, we showed efficient control of TLR3 upregulation and abrogation of a wide 

array of cytokines in response to z-VAD-fmk, rendering this pan caspase inhibitor 

a promising immune-modulating drug that can restrict the tissue damaging effects 

of uncontrolled cytokine and signal propagation following acute viral infections.   
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Previous studies designed to investigate the role played by innate immunity in 

SG injury, considered type-I IFNs to be the chief contributors to dysfunction 

(Nandula et al., 2013). The outcome of our study, showing iNOS as the innate 

immune damaging signal may not be contradictory with these studies, since type-

I interferons can promote upregulation of iNOS in various models (Zwaferink et 

al., 2008, Utaisincharoen et al., 2004, Bogdan et al., 2000). In addition, deletion 

of type-I IFN receptor; IFNAR-1, has substantially compromised iNOS induction 

(Huys et al., 2009).  

This is due to the multiple binding sites for factors modulated by type-I IFNs 

recognized in the promoter region of the iNOS gene, including IFN-stimulated 

response element (ISRE), and IFN-regulatory factor element (IRF-E) (Xie et al., 

1993). The scenario which may have taken place following introduction of poly 

(I:C) can be summarized in figure 6.1. TLR3 C-terminal which has been basally 

detected in the intercalated ducts may have initiated the entire response to poly 

(I:C) entry, inducing nuclear translocation of NF-κβ in these cells and upregulating 

IFN-β and IFN-γ. In turn, the released interferons may have signalled the 

neighbouring duct and acinar cells to: (i) enhance TLR3 mRNA synthesis 

(Miettinen et al., 2001), (ii) activate NF-κβ (Yang et al., 2005) and (iii) upregulate 

iNOS (Zwaferink et al., 2008, Utaisincharoen et al., 2004), which prompted the 

acinar cells into a state of injury and loss of function.   
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Different studies have shown that acinar cells are able to activate signalling 

pathways involved in the expression of inflammatory mediators (Gukovsky et al., 

1998, Ramudo et al., 2009, Ramnath et al., 2009, Dios, 2010). This changed the 

classically recognised theory that glandular injury would trigger a local and 

systemic inflammatory response, in which the immune cells play the central role. 

In addition, the exocrine acinar cells have displayed efficient ability to produce: 

(i) cytokines such as TNF-α, IL-6 and IL-1β (Gukovskaya et al., 1997, Blinman et 

al., 2000, Kim et al., 2000), (ii) chemokines such as CXCL1 (KC), monocyte 

chemoattractant protein-1 (MCP-1) or CCL2 and macrophage inflammatory 

protein 2 (MIP­2) or CXCL2 (Blinman et al., 2000) and (iii) adhesion molecules 

example intercellular adhesion molecule 1 (ICAM-1) (Zaninovic et al., 2000, 

Ramudo et al., 2007).  

Figure 6.1 Summary illustration depicting propagation 
of the immune signal initialized in TLR3 positive 
intercalated ducts to the neighbouring acinar and duct 
cells.  
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One of the interesting findings in the present study is the demonstrated ability of 

SG epithelial cells to overexpress different types of inflammatory mediators in 

response to innate immune activation. We have shown that during acute 

infection: (i) NF-κB was translocated to both ductal and acinar nuclei, (ii) SMG 

ducts displayed enhanced production of IFN-β, IFN-γ and Cox2 and (iii) acinar 

cells intensively expressed IFN-β, and iNOS. By showing that the exocrine 

parenchyma expresses these cytokines as early as 6 hrs after injection of an 

inflammagen, we clearly demonstrate the dominant role of these cells in releasing 

the first inflammatory signals in response to the injury initiated within them, 

independent of the bystander role assigned to the infiltrating immune cells.  

The most important finding in the current study is the pattern of [Ca2+]i disruption 

which was detected very early in the acinar cells upon their exposure to the viral 

mimic, TLR3 stimulation and iNOS overproduction. We have shown that this 

trilogy can trigger: (i) Ca2+ depletion from intracellular endoplasmic reticulum 

stores, (ii) increase Ca2+ entry through the plasma membrane, (iii) release Ca2+ 

from membrane-perturbed lysosomes and (iv) potentially affect Ca2+ pumps. 

Previous studies have allocated responses that can prevent Ca2+ mobilization as 

candidates for pathogenesis of SS (Caulfield et al., 2009) and radiation-induced 

SG damage (Coppes et al., 2005). In fact, these studies were based on earlier 

reports relating the pathological inhibition of salivary secretion to NO release 

(Konttinen et al., 1997). Alternatively, due to the increased occurrence of 

glandular destruction in SS (Duffy and O’Reilly, 2016) and following irradiation 

(Marino et al., 2014), release of DAMPs can represent a sustained endogenous 

source of  TLR3 ligation, which can amplify the cycle of iNOS overexpression, 

NO production and Ca2+ signal disruption.  
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The present study may not only relate to the combination of events that drive 

glands from SS or irradiated patients to stop secretion but also outline the early 

time course of possible interaction between the immune system and interference 

with stimulus-secretion coupling.  

In the final part of this study, it was revealed, for the first time, that one of the 

early acute events following exposure to a viral mimic and/or TLR3 stimulation is 

the activation of ER stress. In the current model, ER stress can be simply related 

to [Ca2+]ER depletion, which may have culminated into loss of function by 

downregulating the mRNA machinery, protein translation or disrupted trafficking 

of key membranous water-driving molecules.  

Interestingly, a mouse model of acute pancreatitis revealed that induction of ER 

stress provides acini an opportunity to suppress their secretory function and 

regenerate damaged cells, as evidenced by the acinar and centroacinar 

regenerative response which followed the exocrine disease (Hess et al., 2011). 

Indeed, ER stress is implicated in various inflammatory pathological conditions 

(Grootjans et al., 2016) and investigations have revealed a reciprocal regulation 

between ER stress and inflammation.  ER stress can directly initiate inflammatory 

pathways and, in turn, pro-inflammatory stimuli such as ROS, TLR ligands and 

cytokines can trigger ER stress — such that the resulting UPR activation can 

further amplify inflammatory responses (Zhang et al., 2006). To what extent our 

results reproduce the chronic state that occurs in SG inflammation is an open 

question and ER stress may provide the link between chronic SG inflammation 

and loss of function. The scenario of acute viral SG injury and dysfunction 

generated by the present model can be summarized as in figure 6.2.    
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Figure 6.2 Summary illustration depicting the main TLR-3 mediated signalling events that 
induced SMG injury and loss of secretion and the drugs used to counteract the poly (I:C) 
injurious effects.   
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The results presented in the current study have demonstrated clearly the 

mechanisms underlying loss of saliva secretion following exposure to primary 

viral infections. However, the mouse model developed herein outlines further 

aspects of research worthy of investigation. 

➢ Development of an SS Model Based Solely on Multiple Poly (I:C) 

Injections 

Initial independent experiments (not shown) provisionally showed that a total of 

four intraductal infusions of poly (I:C) (single injection/week for four consecutive 

weeks), resulted in loss of function, 24 hrs after the last injection received and 

infiltration of all SMG lobules with 1-3 peri-vascular immune cell clusters. 

Nevertheless, auto-antibody formation has not been verified, it may be promising 

to follow up with this protocol, towards: (i) possible development of an SS model, 

based uniquely on dynamic cycles of acute viral infections and (ii) verifying if the 

injurious mechanisms operating in the presented acute model are comparable to 

those perceived in the chronic autoimmune state.     

➢ Role Played by Cathepsins in SMG Injury and Dysfunction 

Primary experiments (two mice) utilizing the cathepsin B inhibitor; CA-074, 

revealed recovery of the poly (I:C) injected glands. Further reproducibility of these 

experiments added to the broadly verified z-VAD-fmk results provide a 

comprehensive foundation upon which further work can be executed to entirely 

confirm the beneficial role of cathepsin B inhibition in diseases featuring 

uncontrolled innate immune activation by endosomal TLRs (TLR3, 7, 8, 9 and 13 

(O'Neill et al., 2013)). 
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➢ Identification of the Mechanisms Involved in LMP 

In the present SMG mouse model, a single injection of poly (I:C) rapidly triggered 

global disruption of lysosomal membranes and release of the organelle contents, 

as early as 9 hrs post infection. Lysosomes form an ‘‘Achilles heel’’ for cancer 

cells by sensitizing them to death pathways through LMP, providing a potential 

new anti-cancer target. Through appropriate stimuli, the lysosome membrane is 

permeated to release lysosomal enzymes, especially cathepsin B, into the 

cytosol (Gao et al., 2014). Release of cathepsin B activates caspase-dependent 

death pathways, promoting cancer cell death even if those cancer cells are 

resistant to normal apoptotic pathways (Boya and Kroemer, 2008). Thus, many 

approaches have been developed to induce LMP, such as oxidation (Denamur 

et al., 2011) and cytotoxic cytokines (Erdal et al., 2005). Among these, reactive 

oxygen species (ROS)-associated oxidation has attracted much attention 

because it can cause rapid lysosomal leakage and dysfunction, causing cells to 

undergo apoptosis with high efficacy at low dose (Lin et al., 2010). However, ROS 

is generally cytotoxic and not cell specific, therefore, new strategies to selectively 

induce ROS-triggered LMP in cancer cells are needed for current anticancer 

therapy so as to prevent  harmful side effects and increase treatment efficacy 

(Gao et al., 2014).  The viral mimic provoked local LMP and cathepsin B release 

in the present mouse model. Thorough investigation of the mechanisms 

underlying poly (I:C)-triggered LMP may offer promising opportunities to limit this 

phenomenon to cancer cells, via driving them to express or signal in the same 

way which prompted the SMG duct cell lysosomes to disrupt and release their 

contents into the surrounding tissues. 
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➢ TLR3 Modulation in Chronic Mucosal Inflammation and 

Autoimmunity  

The current study unravelled two mechanisms which efficiently controlled TLR3 

upregulated expression and downstream inflammatory mediators in the SMGs, 

despite the presence of a potent stimulant; poly (I:C). The use of protease 

inhibitors in oral mucosal and SG diseases featuring chronically stimulated TLR3 

receptors may act as brakes that can regulate and fine-tune the repeated cycles 

of mucosal damage by cytokines and apoptotic signals.  

➢ Regeneration of the mouse SMGs Following Activation of the Innate 

Immunity 

Stimulation of TLR3 causes rapid and global changes in the expression of 

epigenetic modifiers to enhance chromatin remodeling and nuclear 

reprogramming (Lee et al., 2012a). In the context of regenerative medicine, 

epigenetics is becoming a pivotal area of interest (Consalvi et al., 2016). The 

current model may be insightful for the study of regeneration following acute viral 

infections and the epigenetic events in SGs following injury, supported by the 

synchronized innate immune activation and TLR3 ligation. Moreover, owing to 

the resident stem or progenitor cell population harbored by SGs, which is capable 

of regenerating the parenchyme (Denny et al., 1993),  stem cell-derived 

extracellular vesicles appear to be naturally equipped to mediate tissue 

regeneration (Ono et al., 2015) and recent evidence suggests their therapeutic 

potential for targeted delivery of exogenous miRNAs (Vlassov et al., 2012). 

Isolating and characterizing the exosomes secreted in the regeneration phase of 

this rapid-developing model can provide valuable information on the extracellular 

niches that can drive regeneration of injured SGs.  
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