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Analysis of high volumes of network traffic for Advanced Persistent Threat detection

Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, Alessandro Guido

Department of Engineering “Enzo Ferrari”
University of Modena and Reggio Emilia, Italy

Abstract

Advanced Persistent Threats (APTs) are the most critical menaces to modern organizations and the most challenging attacks to
detect. They span over long periods of time, use encrypted connections and mimic normal behaviors in order to evade detection
based on traditional defensive solutions. We propose an innovative approach that is able to analyze efficiently high volumes of
network traffic to reveal weak signals related to data exfiltrations and other suspect APT activities. The final result is a ranking
of the most suspicious internal hosts; this rank allows security specialists to focus their analyses on a small set of hosts out of
the thousands of machines that typically characterize large organizations. Experimental evaluations in a network environment
consisting of about 10K hosts show the feasibility and effectiveness of the proposed approach. Our proposal based on security
analytics paves the way to novel forms of automatic defense aimed at early detection of APTs in large and continuously varying
networked systems.

Keywords: Security analytics, Traffic analysis, Advanced Persistent Threats, Data exfiltration.

1. Introduction

Advanced Persistent Threats [1, 2] (APTs) represent the most
critical menace to modern organizations. Unlike automated
broad-range attacks, APTs are human-driven infiltrations, per-
petrated over long periods of time, customized for the targeted
organization after some intelligence analyses, possibly on open
sources, and can even leverage unknown exploits to infiltrate
vulnerable systems [3]. The economic cost for an organiza-
tion that is a victim of an APT can reach even millions of dol-
lars [4], and its reputation may be compromised. Since large
corporate networks continue to increase in terms of traffic and
number of connected devices, it is a tough research challenge
to design and implement advanced network monitoring sys-
tems and security analytical algorithms that can detect APT
attacks in a rapid way. Traditional security solutions based
on pattern matching (e.g., [5]) work well for detecting known
attacks, but they cannot identify APTs because attackers typi-
cally exploit unknown vulnerabilities, and use standard proto-
cols and encrypted communications (e.g., HTTPS) to evade de-
tection [1]. Moreover, existing traffic analyzers are able to de-
tect common types of attacks (e.g., distributed denial of service
and worms [6, 7, 8, 9, 10]), but they are inadequate to identify
APTs because an expert attacker mimics normal behavior and
compromises a limited number of specific hosts thus avoiding
spreading infections as typical automatic malware does. An-
other problem of present detection systems installed in large
architectures is represented by the huge numbers of generated
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alarms, at least in the order of thousands per day. A similar
context would require either a large number of dedicated secu-
rity analysts or, more likely, the need to overlook most alarms.
As an additional observation, our focus on traffic logs reflects a
realistic enterprise scenario in which host-based logs (e.g., sys-
tem calls) would be extremely expensive to collect and analyze.

The real goal of this paper should be clear: we do not aim to
identify the hosts that are surely compromised because this is
an unrealistic goal in the APT case. Instead, we want to detect
-out of thousands hosts characterizing the information system
of a large organization- the few hosts that show some suspi-
cious activities. In such a way, we allow security analysts to
be more effective because they can focus their competence and
attention on a limited number of hosts. As a means to reach this
goal, we propose a novel framework that is able to gather and
analyze huge volumes of traffic and can detect some of the key
phases of APT-related activities corresponding to data exfiltra-
tions [1]. These features are extracted and evaluated over time
for all internal hosts, each corresponding to a point in a multi-
dimensional feature space. Suspiciousness of movements and
positions is evaluated for each host by inspecting its past and
by comparing it to the other hosts of the observed network. The
final output is a ranked list of hosts, that allows the security
analysts to concentrate their expertise on the top-k suspicious
ones.

Special attention is given to the scalability and efficiency of
the proposed framework, as most analyses can be executed in
parallel for each internal host. By analyzing the network flows
instead of raw traffic data, our approach achieves high perfor-
mance and limited computational and storage costs. As addi-
tional remarkable feature, the proposed framework can work
even for encrypted communications because it does not need to
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inspect payload data.
The main contributions of this paper can be summarized as

following:

• we characterize network statistics of real and large net-
work environments, and define a model aimed to detect
APT-related activities with specific attention to data exfil-
trations;

• we propose a set of algorithms that are able to score suspi-
ciousness of APT activities by evaluating movements and
positions of the internal hosts in a multidimensional fea-
ture space over time;

• we design and implement a prototype that is applied to a
real networked system consisting of about 10K hosts and
that demonstrates the feasibility and effectiveness of the
proposed approach.

To the best of our knowledge, this paper presents the first pro-
posal of models, algorithms and analyzers integrated in a real
prototype that can support security analysts to detect the most
suspicious hosts that may be involved in APT-related activities
and specifically in data exfiltrations. Indeed, despite the rel-
evant risk represented by APTs, few results exist for detecting
similar attacks. Most papers [11, 12, 13, 14, 15] consider one or
more case studies of famous APTs, describe their main features,
and propose some best practice with no attempt to consider a
general framework for automatic or semi-automatic detection.
Other solutions [16, 17, 18] are focused on the design of the
main components of a framework for identifying APTs, but
they do not propose detection rules and leave details to future
works. Friedberg et al. [19] present a solution that considers
the analysis of host-based security logs and is complementary
to our network-based approach. Moreover, in our experience,
in large network scenarios it is almost impossible to gather and
analyze host-based security logs because this activity requires
the deployment of software agents on each computer and has
high costs in terms of performance and management overhead.

The remainder of the paper is structured as follows. Section 2
compares our work with related literature. Section 3 describes
the typical lifecycle of an APT and the challenges related to
their detection. Section 4 presents an overview of the proposed
framework. Section 5 motivates the choice for features that are
tailored to efficiently detect possible data exfiltrations in large
network environments. Section 6 defines how suspicious move-
ments in the feature space are evaluated and how the different
metrics are combined into a ranking score. Section 7 presents
an experimental evaluation on a real large network environment
consisting of about 10K hosts. Finally, Section 8 presents con-
clusions and possible directions for future research.

2. Related Work

We propose a novel framework for ranking internal hosts that
are likely to be involved in APT attacks by monitoring high
volumes of network traffic efficiently and effectively. Our pro-
posal combines heuristics based on knowledge related to known

APTs with behavioral and statistical models that are able to cap-
ture suspicious network activities.

The main motivation behind our work relies in the observa-
tion that traditional security solutions based on pattern match-
ing (e.g., solutions based on network intrusion detection sys-
tems [5, 20, 21]) are not adequate for identifying APTs, due
to the usage of encrypted covert communication channels and
zero-day attacks. Most proposals based on statistical traf-
fic analyses that could work in presence of encryption are
mainly focused on anomaly detection [22] of more popular
types of attacks (e.g., distributed denial of service [9, 10] or
worms [23, 24]), and do not consider APTs; moreover, the fact
that attackers in APTs try to mimic normal behavior [1] further
complicates detection through statistical analyses.

We can consider three main related areas in the literature:
APT detection, botnet detection, and insider threat detection.

2.1. APT detection

Despite the relevance of the APT problem, the literature fo-
cusing on this topic is still limited. Most articles [11, 1, 2] de-
scribe and analyze popular and publicly disclosed APT cases,
such as Stuxnet [12], Duqu [13] and Flame [14]. However,
these studies only discuss some mitigation techniques mainly
based on best practices, and do not discuss solutions for auto-
matic detection of APTs.

Other works [25, 16] try to formalize the APT detection prob-
lem. In [25], the authors propose a 7-phase detection model to
identify different steps of an APT. In [16], the authors propose
an attack pyramid that aims to capture movements of an at-
tacker through different domains (e.g., physical, network, appli-
cation). In [17] the authors propose possible building blocks for
a framework of APT detection. However, all these approaches
are limited to the proposal of guidelines that should be used to
build methods for APT detection, but the definition of detection
rules and approaches is left to future work.

A more practical work based on graph analytics [26] pro-
poses a new metric that measures the vulnerability of a net-
work environment with respect to the risk of privilege escala-
tion. However, this work focuses on the proposal of a single
graph-based metric, that is intended only as a means to evaluate
the vulnerability of a network to APTs (especially when grant-
ing new privileges to users) but does not help in detection of
APTs in operational environments.

In another interesting work [19] the authors propose an
anomaly detection system for identifying APTs from several
security logs. However, their approach requires a huge num-
ber of logs (also collected on individual hosts) that are often
impractical to obtain, and the output of their proposal may be
extremely difficult to interpret for a security analyst, since their
approach is agnostic to the given input. On the other hand,
our focus on network traffic is more practical and our output
is easier to interpret, as it consists of a ranked list of hosts that
performed suspicious network activities possibly related to data
exfiltrations or key phases of APTs.

Other related works focus specifically on the detection of
data exfiltrations. Some of them [27, 28] require a big amount



of host-based log data that would be unfeasible to collect in
large organizations, whereas our focus is on network traffic
that can be easily collected through some network probes in-
side the organization. Bertino et al. [29] focus on the analysis
of DataBase Management System (DBMS) access logs in or-
der to detect suspicious patterns for possible exfiltrations, but
do not consider network traffic and their approach is limited
to the detection of possible DBMS-based exfiltrations. Liu et
al. [30] propose a framework for detecting data exfiltrations
through analysis of network communications, and their ap-
proach is based on automatic signature generation but has two
major shortcomings. First, the authors assume that attackers
perform plaintext communications that can be matched with
their signatures, whereas most APTs use encrypted or obfus-
cated communications [1]. Moreover, they assume that all sen-
sitive data is known a-priori in order to be able to generate the
signatures for detecting their exfiltration. On the contrary, our
proposal can be applied even if the attacker uses encrypted com-
munications and standard protocols such as HTTPS, since it
does not require payload analysis. In addition, we do not re-
quire to define a-priori the set of sensitive data that could be
exfiltrated.

2.2. Botnet detection

It is also interesting to compare the problem of APT de-
tection with the botnet detection domain [31]. A botnet is a
huge set of distributed compromised hosts, controlled by one
or more command and control servers. Several approaches
(e.g., [32, 33, 34]) have been proposed in the literature in the
last few years for detecting infected hosts and command and
control servers related to botnet activities. However, there are
some core differences that prevent the adoption of botnet meth-
ods in the APT domain.

First, the scale of the problem is completely different:
while botnets consist of thousands or millions of hosts, APTs
are human-driven attacks directed at a specific organization.
Hence, botnet approaches that aim to detect similar behaviors in
groups of hosts (e.g., through clustering of traffic features) can-
not be applied in the APT domain. This is because only a few
internal hosts are infected, and command and control servers
may use targeted protocols with only a subset of victim hosts.
Hence, it is not possible to perform broad-range clustering anal-
yses as those proposed in the botnet detection literature in or-
der to determine huge volumes of hosts with anomalous traffic
patterns. Moreover, infection strategies are different: whereas
APTs often use spear phishing and zero-day exploits, botnets
may try to replicate by themselves in a more aggressive way.
Our framework is specifically tailored to the APT domain, and
takes into account the specific limitations and challenges related
to the identification of suspicious hosts.

2.3. Insider threat

Insider threat research [35] shares some similarities with
the APT problem as well. Indeed, an APT aims to take con-
trol of a legitimate host inside of an organization, and the at-
tacker will try to emulate normal behavior in order to avoid

detection. However, an important difference is that an insider
may not need to exfiltrate the data through a network, hence
many approaches of insider threat detection focus on host-based
logs [36] and honeypot strategies [37] instead of analyzing net-
work traffic as it is done in our approach. An important ob-
servation is that the framework proposed in this paper could be
easily integrated in insider threat detection systems, while its
approach based on traffic analyses can contribute significantly
to existing insider threat solutions, although insider threat de-
tection is not its primary objective.

3. Scenario

In this section we introduce the lifecycle of modern APTs
and the main intuitions behind the proposed framework for
ranking suspicious hosts.

3.1. APT lifecycle

APTs have peculiar characteristics that make their detection
extremely challenging [2]. Unlike traditional attacks, they are
targeted to a specific organization, often use zero-day vulnera-
bilities, and span over long periods of time (a “low-and-slow”
approach). They attempt to simulate normal behaviors and the
use of strategies like social engineering complicates their de-
tection even more.

Another peculiar aspect is that APTs are often conducted
by cybercrime organizations and not by individuals [1]. Each
member of the group has peculiar skills and knowledge that
increases difficulty of detection for defenders and security ana-
lysts. For the sake of simplicity, in the remainder of this paper
we will refer to them with singular form: attacker.

We now discuss the APT characteristics that might be cap-
tured by inspecting traffic data and security logs. In particular,
we refer to the definition of APTs proposed by [1], that identi-
fies five main phases:

1) reconnaissance;
2) compromise;
3) maintaining access;
4) lateral movement;
5) data exfiltration.

In the reconnaissance phase, the attacker aims to identify
possible entry points in the victim organization. From a traf-
fic perspective, it may involve scan operations from external
networks.

In the compromise phase, the attacker typically creates
a spear phishing email that contains an attachment that, if
opened, exploits a zero-day vulnerability to infect a victim ma-
chine, with the purpose of infiltrating the target network. In
particular, the malicious software that installs on the victim host
is often referred to as RAT: Remote Access Trojan, or Remote
Administration Tool.

In the maintaining access phase, the RAT contacts a com-
mand and control server (CnC) of the attacker in order to re-
ceive commands that must be performed on the target network.
A peculiarity of this phase is that the connection is initialized
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Figure 1: Distribution of the number of connections to external hosts initiated by internal hosts.

by the victim host and not by the attacker [1]. This occurs for
two main reasons: (i) connections initialized by internal hosts
are usually allowed by the organization firewall, and (ii) in this
way the attacker can improve his chances of not being detected.
This is because a download from an external host would be ex-
tremely suspicious, and it would be easily detected by tradi-
tional security solutions such as intrusion detection systems [5].

In the lateral movement phase, the attacker tries to gain ac-
cess to other hosts inside the target network with greater priv-
ileges that might be required to access valuable resources. For
example, the RAT may try to perform an internal scan on the ob-
served network, or try to initialize new connections with other
internal hosts (e.g., via SSH).

Finally, in the data exfiltration phase, the stolen data is sent
to one or more remote servers controlled by the attacker. This
phase can be performed either in a burst, in which all data are
exfiltrated at once, or in a low-and-slow way, if the attacker
wants to continuously steal data. Some recent examples [3] of
data exfiltration are represented by the Adobe Leak in 2013, in
which 9 GB of encrypted password data were stolen, and Ashley
Madison in 2015, in which attacker leaked their databases (the
size of one of the databases was about 40 GB).

Each phase has particular characteristics that may leak some
information that may be captured from traffic logs. In the up-
coming subsection, we show why it is extremely challenging
to detect phases of APTs with respect to traditional external at-
tacks, with special attention to the data exfiltration phase.

3.2. Challenges in APT detection

There are several characteristics of the APT scenario that
make it extremely more challenging than any other external
threat. We can identify the following main motivations:

• imbalanced data: APTs hide in weak signals among huge
amounts of data, and are hence very difficult to detect; un-
like botnets [31], in APTs usually only a few hosts get
infected, hence command and controls (CnC) and victims
are harder to detect;

• base-rate problem: since APTs are related to very rare
events that span over long periods of time, the number of
false positives can easily be extremely high [38];

• lack of publicly available data: this well-known shortcom-
ing for network security is even more critical when consid-
ering the APT domain, since most companies that are vic-
tim of APTs have no interest in releasing logs and details
about such events;

• use of encryption and standard protocols (e.g., HTTPS)
prevents efficacy of commonly adopted network security
solutions, such as signature-based intrusion detection sys-
tems [5].

To better understand the issues related to APT detection,
let us consider the following example. An intuitive approach
for detecting communications with CnCs, RATs or possible at-
tempts of data exfiltration would be to isolate and analyze con-
nections with external hosts that have been rarely contacted
from the internal hosts of an organization. This idea looks plau-
sible because an APT attacker does not want to be discovered,
hence he will try to perform only a limited number of commu-
nications.

However, analyses that we performed on a real and large net-
work environment consisting of about 10K hosts revealed that
most network statistics still follow heavy-tailed distributions.
For example, let us consider in Figure 1 the distribution of the
number of contacts established by internal hosts toward exter-
nal IP addresses. The X-axis represents the number of contacts
from internal hosts to external IP addresses during one day. The
Y -axis represents the number of unique external IP addresses
that were contacted exactly x times. As an example, the first
3 bars in the histogram 1(a) show that about 2M external IP
addresses were contacted only once, about 1M were contacted
twice, and about 220K were contacted 3 times. Figures 1(a)
and 1(b) report the same distribution on a linear and logarith-
mic scale, respectively. Other network statistics and results re-
ferring to different time granularities (e.g., hour, week) are not
reported for space reasons and correspond to similar results.



From these figures, we can conclude that most of the external
hosts are contacted only once or a few times.

This heavy-tailed nature of network statistics is partially re-
lated to the recent widespread adoption of cloud providers, that
are now commonly used for remote storage and Web applica-
tions. By analyzing the characteristics of the observed network
environment, we have verified that even during short periods
of time (e.g., one hour) the variety of external addresses cor-
responding to content delivery networks and cloud providers
contacted by internal hosts is really high. Moreover, the major-
ity of external IP addresses are contacted only a few times. This
result was unexpected, because when considering the external
addresses contacted by all internal hosts in a large network en-
vironment, we would expect that the set of external addresses
corresponding to cloud providers would be limited or at least
contacted many times, since all the organization internal hosts
belong to the same geographical area. This high variability of
range of IP addresses holds for different cloud providers and
for different time windows (hour, day, month). A possible so-
lution would be to whitelist all cloud providers as benign, but
if the objective is the identification of APTs, this is not a viable
option, since the attacker can easily create cloud accounts as
CnCs or as data exfiltration points [39, 40]. Hence, the pres-
ence of an extremely dynamic range of IP addresses related to
different cloud providers further complicates APT detection.

This nature of the network statistics complicates the appli-
cation in the APT domain of several well-known statistical ap-
proaches for anomaly detection [22], such as:

• threshold-based approaches [41], that would not work
well because no effective threshold can be set on a heavy-
tailed distribution;

• clustering approaches [42], that would likely find two
main clusters, one related to the head, and one related to
the tail of the distribution;

• boxplot rule [41], that would not be effective for outlier
detection as the underlying distributions are not Gaussian.

Since we are aware that traditional anomaly detection ap-
proaches are extremely difficult to adopt in modern network
environments [43, 44], we propose an innovative framework in
the APT domain that allows to rank the hosts involved in sus-
picious activities possibly related to APTs. The proposed ap-
proach models the behavior of individual hosts as feature points
in a multidimensional space, and compares internal host statis-
tics both with respect to their past and with respect to all the
other internal hosts. The proposed framework then assigns a
score to each internal host on the basis of the suspiciousness
of its movements and positions in the feature space. This al-
lows the security analysts to focus only on the top-k suspicious
hosts, instead of manually inspecting huge volumes of data. In
particular, in this paper we focus on the ranking of hosts pos-
sibly related to data exfiltration activities, as a first effort of a
more comprehensive framework for APT detection.

An overview and the details of the proposed framework will
be described in the upcoming sections.

4. Framework overview

In this section, we present an overview of the proposed
framework for ranking internal hosts possibly involved in data
exfiltrations as part of APTs. The final output is an ordered list
of hosts that performed suspicious network activities possibly
related to APTs. In this way, security analysts can focus only
on the manual investigation of the top-k suspicious hosts.

The main objective of our framework is to overcome chal-
lenges posed by APT detection through an innovative approach
with the following characteristics:

• unlike many existing APT detection solutions that require
analyses of huge amount of host-based logs, we focus on
traffic information that can be easily collected through net-
work probes deployed in the observed network environ-
ment;

• to efficiently deal with high volumes of network traffic,
we extract and analyze flow records; this design choice
achieves better results both in terms of storage occupation
and in terms of computational cost for the analysis;

• unlike the majority of existing anomaly detection ap-
proaches that focus mainly on network-wide statistics, we
focus on individual hosts and on comparative statistics
to identify the hosts that perform suspicious activities (i)
with respect to their past behavior, and (ii) with respect to
the other internal hosts of the organization;

• we propose a set of features that is tailored to identify hosts
possibly involved in data exfiltrations;

• moreover, the proposed ranking approach does not rely
on deep packet inspection, hence it can work even on en-
crypted traffic.

We refer to a scenario of an enterprise network consisting of
a few thousands of hosts. Figure 2 reports the main phases of
the proposed framework:

1) flow collection and storage;
2) feature extraction;
3) feature normalization;
4) computation of suspiciousness scores;
5) ranking.

We observe that the second, third and fourth phases can be
executed independently for each internal host, hence the pro-
posed approach can scale to very large networks comprising
more than hundreds of thousands of hosts by executing these
phases in parallel.

Since raw traffic data would be impractical to analyze and
store, the first phase aims to collect flow records [6, 7]. Each
record contains some information extracted from the IP header,
such as source and destination addresses and ports, and protocol
(e.g., TCP, UDP, ICMP). The adoption of flow records instead
of raw traffic data brings several advantages in terms of perfor-
mance for the approach:



Figure 2: Framework overview.

• flow records can be efficiently stored and compressed,
even when they are collected for long periods of time (e.g.,
years);

• processing of flow records is computationally more feasi-
ble than analyzing huge volumes of raw traffic data [6].

Since in this paper we are interested in the ranking of suspicious
activities possibly related to data exfiltrations, we focus only on
outgoing traffic generated by internal hosts, that is, on the be-
havior of traffic flows directed from internal to external hosts.
We recall that this choice is under the realistic assumption that
all malicious connections related to an APT will be initiated by
internal hosts, as an APT attacker wants to evade detection [1].
Any connection initiated by external hosts to internal hosts not
corresponding to servers can be marked as suspicious by adopt-
ing traditional intrusion detection systems [5].

The second phase of our framework involves extraction of
features that are relevant for data exfiltration. These features
are computed for each internal host every time interval T (e.g.,
once per day). Details, examples and motivations on the cho-
sen features will be discussed in Section 5. We highlight that
feature extraction is performed by a dedicated server that ana-
lyzes network flows, hence this activity does not consume com-
putational resources on any production host in the monitored
network environment.

The third phase involves a normalization of the different fea-
tures, since each of them is characterized by a different heavy-
tailed distribution, hence they must be normalized for compari-
son purposes. This is achieved through a normalization metric
taken from [45], that is specifically tailored to normalize heavy-
tailed distributions with different characteristics.

For each internal host and for each time ti, the fourth phase
involves the computation of statistics related to host movement
in the feature space, in order to evaluate suspiciousness by con-
sidering both magnitude and direction. In particular, our ap-
proach considers three points in the feature space:

• the feature values of the host at present time, ti;

• the centroid of the feature values of the same host in a
historical window of size W , that is, between ti−1−W and
ti−1;

• the centroid of the feature values of all hosts at time ti.

The historical window is used to represent the past behavior
of the hosts in the network. The direction of the movement
with respect to the recent past is also taken into account, so that
movements along uncommon directions are considered suspi-
cious.

Finally, in the fifth phase the ranking algorithm assigns a sus-
piciousness score to each internal host, that allows it to be com-
pared with all the other hosts. In particular, the level of suspi-
ciousness is evaluated as a linear combination of:

• normalized distance of an internal host with respect to the
centroid of the feature space;

• percentage increment of the magnitude of the movement;

• unlikelihood of the direction of the movement, with re-
spect to the movements of all the internal hosts in the ob-
served network environment.

The result is a ranked list of suspicious hosts, that analysts can
use to focus only on the top-k suspicious ones.

The details for each of these phases will be discussed in the
upcoming sections, along with several examples and evalua-
tions on flow records collected from a real network consisting
of about 10K hosts.

5. Feature extraction and normalization

In this section, we present and motivate a set of features that
we extract for each internal host with the purpose of detecting
possible data exfiltrations. Then, we discuss how the compo-
nents of each feature vector are normalized and compared.
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Figure 3: Distribution of feature vectors for the whole internal hosts population.

5.1. Feature extraction

For each internal host in the observed network environment,
we extract a set of features that is tailored to detect data exfil-
trations through analysis of suspicious and rare movements in
the feature space.

Let us define HI and HE as the sets of internal and external
hosts, respectively. For each internal host h ∈ HI , a feature
vector xt(h) is computed that is defined as the following or-
dered tuple:

xt(h) =
(
x1
t (h), x2

t (h), . . . , xNt (h)
)

(1)

where xit(h) corresponds to the value of the i-th component of
the feature vector at time t, with respect to internal host h. In
particular, the feature vector values xit(h) are computed every
sampling period T . This allows building a time series with the
feature vector values for each internal host h ∈ HI . These
series will be used in the next phases for evaluating the move-
ments of a host over time. For the sake of simplicity, unless
otherwise specified, in the remainder of the paper we use a sim-
plified notation in which we omit h, that is: the feature vector
of internal host h is referred to as xt(h) = xt, with components
xit(h) = xit.

Without loss of generality, in this paper we refer to a time
granularity T = 1 day, because we have verified that this is a
good granularity for several reasons, among which:

• APTs involve operations that could go on for days or
months [1], hence excessively fine time granularities (e.g.,
minutes) could generate too much noise in the analysis;

• by producing a ranked list of suspicious hosts once per
day, the security analyst can easily focus on the top-k sus-
picious hosts for manual investigation.

It is also possible to consider other time granularities, according
to the characteristics of the observed network environment and
to possible domain knowledge of the security analyst.

We now propose a set of features that are aimed to recognize
hosts involved in suspicious network activities possibly related
to the data exfiltration phase of an APT:

1) numbytes: number of megabytes uploaded by internal hosts
to external addresses (i.e., possible points of exfiltration);

2) numflows: number of flows (typically connections) to exter-
nal hosts initiated by internal hosts;

3) numdst: number of external IP addresses related to a con-
nection initiated by an internal host.

We now motivate the choice for each of these features.
numbytes allows us to monitor deviations of uploaded bytes,

as they may correspond to data exfiltrations. For example, if a
host exhibits a tenfold increase in the amount of uploaded bytes,
it may be involved in APT-related activities. In this paper, the
amount of bytes uploaded by internal hosts is represented in
megabytes.

numflows is used to monitor data transfers initiated by in-
ternal hosts [1, 2]. Exfiltrations are initiated by internal hosts
for two main reasons: (i) outgoing connections are not blocked
by most firewalls; (ii) connections initiated by external hosts
would look suspicious and could be easily detected through tra-
ditional signature-based intrusion detection systems [5].

numdst makes it possible to identify anomalous behaviors
that involve a change in the number of distinct destinations con-
tacted by each internal host. As an example, if the number of
external IPs contacted within a given time window by an in-
ternal host remains stable while the number of uploaded bytes
or connections greatly increases, it may correspond to a data
exfiltration or APT-related activities.



We are aware that numflows and numdst are correlated to
some extent: if the number of flows initiated by an internal host
increases greatly, the number of destinations is expected to in-
crease as well. The opposite is true for a decreasing number of
flows. Although the machine learning community usually rec-
ommends to choose uncorrelated features to maximize the in-
formation contained in a feature vector [46], we observe that we
are not interested in a classification problem, but rather in iden-
tifying suspicious movements in the feature space. Hence, we
willingly choose two correlated features to capture the presence
of internal hosts moving in directions of the feature space that
violate the expected correlation between numflows and numdst.

A representation of the distribution of these features with re-
spect to about 10K hosts of a real network environment is re-
ported in Figure 3. In particular, we have that Figures 3(a), 3(b)
and 3(c) report on the X-axis numbytes, numdst, and num-
flows, respectively, as a function of the number of internal hosts
on the Y -axis in linear scale. Figures 3(d), 3(e) and 3(f) re-
port the same features on a logarithmic scale. We observe that
for x > 100 all the features follow a long-tailed distribution.
As discussed in Section 3, this complicates the application of
many anomaly detection algorithms, such as threshold-based
ones [22].

A 3D representation of the proposed feature space is reported
in Figure 4, where the three axes represent the different features
in logarithmic scale. It is possible to observe that, when con-
sidered as a whole, the internal hosts cover several positions
in the feature space. By monitoring their movements and their
distances both from their history and from the centroid of the
feature space, we aim to detect the most anomalous hosts, that
might be related to data exfiltration activities.
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Figure 4: Example of representation of the internal hosts in the feature space
with logarithmic scale.

5.2. Feature normalization

To perform a fair comparison of the movements and posi-
tions of the internal hosts, we have to normalize their distribu-
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Figure 5: Scale normalization with two-sided quartile weighted median.

tions. One of the most common normalization techniques is
range normalization [41], that maps a distribution in a range
between 0 and 1 by normalizing with respect to the maximum
and the minimum of a range of values. However, we showed
that in the considered context each feature is characterized by
a different long-tailed distribution (Figures 3). Hence, out-of-
scale values are frequent, and range normalization would yield
poor results because most values would be near 0.

To overcome this issue we adopt the two-sided quartile
weighted median (QWM) metric [45, 47, 48], that is defined
as:

QWM(D) =
Q.75(D) + 2 ·Q.50(D) +Q.25(D)

4
(2)

where Qk(D) corresponds to the k-th quantile of the dataset
D. We observe that this measure takes into account both the
median of the values (Q.50), and the variance of the data, that
is represented by the first and third quartiles. This makes the
QWM robust and independent of the distribution of the data,
and also suitable to normalize values of heavy-tailed distribu-
tions to similar central tendencies.

If we consider the feature vector xt at time t related to an
internal host h, we can obtain the normalized feature vector x̄t

by performing on each component xit, i ∈ {1, 2, . . . , N} the



following normalization:

x̄it =
xit

QWM(Xi
t)

(3)

where Xt is the set of feature vectors of all internal hosts
h ∈ HI , and Xi

t is the set of the i-th components. We ob-
serve that normalization is performed with respect to the whole
population to fairly compare the behaviors of all internal hosts.

The effectiveness of QWM normalization for our scenario is
demonstrated by Figures 5(a) and 5(b). Figure 5(a) represents
through boxplots [41] the distributions of the three features
(numbytes is expressed in MB, while numdst and numflows are
pure numbers), computed on a real network of about 10K hosts.
Figure 5(b) shows that the scales and the major descriptive
statistics of the different distributions become comparable after
QWM normalization. In the upcoming sections we will assume
that all the feature values xt have already been normalized.

6. Computation of suspiciousness scores

Let us consider the normalized feature vector of the internal
host h at time t:

xt = (x1
t , x

2
t , x

3
t ) (4)

where xit are numbytes (x1
t ), numdst (x2

t ) and numflows (x3
t ).

At each time t we compute for each internal host three sus-
piciousness scores:

• s1
t : distance from the centroid of the feature space;

• s2
t : magnitude of the movement in the feature space;

• s3
t : unlikelihood of movement direction.

Sections 6.1, 6.2 and 6.3 present the details and motivations for
the computation of these scores. Finally, Section 6.4 discusses
how these three scores are combined to compute the final sus-
piciousness score of each internal host.

6.1. Distance from feature space centroid
First, we compute a score s1

t that depends on the position of
the host h at time t with respect to all the other internal hosts.
The purpose is to determine whether a host at time t is situated
in an anomalous region of the multidimensional feature space.

Let us consider Xt as the set of all positions of internal hosts
in the feature space at time t, that is:

Xt = {xt(h) : h ∈ HI} (5)

We then define c(Xt) as the centroid of the feature space at
time t. In particular, it is computed as:

c(Xt) =

(∑
h x

1
t (h)

|Xt|
,

∑
h x

2
t (h)

|Xt|
,

∑
h x

3
t (h)

|Xt|

)
, h ∈ HI (6)

where xit(h) is the i-th component of the feature vector xt of
internal host h ∈ HI , and |Xt| represents the cardinality of Xt.
Hence, the centroid is a feature vector resulting from the mean

of the components of the feature vectors associated with all the
hosts.

Finally, for each internal host h we can compute the score s1
t

as the Euclidean distance dt between the feature vector xt and
the centroid of the feature space c(Xt):

s1
t = dt(xt(h), c(Xt)) =

√√√√ 3∑
i=1

(
xit(h)− ci(Xt)

)2
(7)

The higher the value of s1
t , the farther an internal host is from

the centroid of the feature space.
We observe that the feature vector normalization through the

QWM discussed in Section 5.2 is fundamental for a fair com-
putation of the magnitude of dt in Eq. 7. If the magnitude was
computed over non-normalized features, there would always be
one feature overwhelming the others (see also Figures 5).

6.2. Magnitude of movement in the feature space
The purpose is to identify a distance metric that is suitable

for measuring suspiciousness of movements of internal hosts in
the feature space.

The movement of xt from t − 1 to t is represented as a dis-
tance vector in a Euclidean space:

xt − xt−1 = (x1
t − x1

t−1, x
2
t − x2

t−1, x
3
t − x3

t−1) (8)

A drawback of this representation is that the magnitude of the
distance vector will most likely be higher for internal hosts that
are far from the origin of the feature space. For instance, if a
host usually uploads about 10GB of data per day with a stan-
dard deviation of 1GB, then its distance vector would be always
higher than a host that normally uploads a few MB per day and
then suddenly uploads 100MB, although a tenfold increment
would be really suspicious with respect to possible data exfil-
trations.

Moreover, if we compare xt with respect to xt−1 only, we
are implicitly assuming that xt−1 is representative of the past
behavior of the host. Such assumption may not be appropriate
in real networks. A time window is a more feasible approach
and creates an evolving behavioral baseline for each internal
host. We define βt−1(W ) as the centroid of the set of features
vectors {xt−1, . . . ,xt−1−W }, where W is the size of the time
window. βt−1(W ) is defined as:

βt−1(W ) =
(
Q.50(∪jx1

j ), Q.50(∪jx2
j ), Q.50(∪jx3

j )
)

(9)

where j ∈ {t −W − 1, . . . , t − 1}, and each i-th component
of βt−1(W ) corresponds to the median of the last W values of
the component xit of feature vector xt.

We can now define a distance metric to measure movements
in the feature space. To take into account relative deviations
and movements, we define the movement vector mt as the rel-
ative difference between the feature point xt and the centroid
βt−1(W ), that is:

mt =
xt − βt−1(W )

βt−1(W )
= (10)

=

(
x1
t − β1

t−1(W )

β1
t−1(W )

,
x2
t − β2

t−1(W )

β2
t−1(W )

,
x3
t − β3

t−1(W )

β3
t−1(W )

)



This definition of mt allows to fairly determine how much a
host deviated from his previous positions.

Finally, the second score s2
t is the magnitude of mt:

s2
t =‖mt ‖=

√√√√ 3∑
i=1

(
xit − βi

t−1(W )

βi
t−1(W )

)2

(11)

The score s2
t is important to determine how much a host has

changed its position with respect to its recent history. For exam-
ple, if a host suddenly increases his upload rate with respect to
its past values, it may be exfiltrating information to one or more
external addresses. A similar risk exists if the number of exter-
nal addresses contacted by that host suddenly decreases greatly
while the amount of megabytes uploaded remains stable.

6.3. Likelihood of movement direction in the feature space
The magnitude of mt by itself is not sufficient to determine

the suspiciousness of a host movement in the feature space.
This score is designed to take into account the direction of the
movement vector. Uncommon directions (i.e., directions with
low probability) should be considered more suspicious. For ex-
ample, a movement in a direction where the number of flows
increases while the number of destinations decreases is unusual.

The direction of mt related to an internal host is represented
by the unit vector m̂t that is defined as the following ratio:

m̂t =
mt

‖mt ‖
= (ut, vt, wt) (12)

where ut, vt and wt are the components of the unit vector m̂t.
In Figure 6, we report a real-world example of movement

directions related to a large network environment consisting of
about 10K hosts. Each line in this figure represents a differ-
ent unit vector m̂t related to a different internal host, where the
axes correspond to ut, vt and wt. To improve readability, this
figure only shows 1000 unit vectors that were randomly sam-
pled among all unit vectors (one for each active host) generated
in a day. It is possible to observe that the unit vectors together
form a sphere, thus implying that several directions are explored
at least once. However, we highlight that the distribution of unit
vectors is not uniform, and some regions are much more popu-
lated than others. This implies that movements in some direc-
tions are more common than movements in other directions.

To understand the distribution of unit vectors of internal
hosts, it is convenient to use spherical coordinates [41], that
can be obtained from the components ut, vt and wt through the
following equations:

ρ =
√
u2
t + v2

t + w2
t (13)

ϕ = arccos

(
wt√

u2
t + v2

t + w2
t

)
(14)

θ = arctan

(
vt
ut

)
(15)

where ρ ≥ 0 is the length (magnitude) of the vector, 0◦ ≤ ϕ ≤
180◦ and −180◦ ≤ θ ≤ 180◦ are two angles that describe the
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Figure 6: Representation in the (ut, vt, wt)-space of the unit vectors m̂t cor-
responding to the movement directions within a day for a network with about
10K hosts.

direction of the movement in the feature space. Since all unit
vectors m̂t have ρ = 1 by definition, only two variables (ϕ
and θ) are required to represent the direction of the unit vector.

Figure 7 shows a histogram representing the number of inter-
nal hosts with a certain direction (ϕ, θ) on the Z-axis, and the
values of ϕ and θ on the other two axes. This figure refers to
the statistics of about 10K hosts, computed over a day. Similar
results are achieved for the other days in the observed environ-
ment, and are not reported only for space reasons.
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Figure 7: Histogram of likelihood of directions ϕ and θ in the feature space
related to 10K internal hosts.



From Figure 7, it is clear that most internal hosts move just
in a small subset of the possible directions. Hence, movements
in less common directions represent a viable indicator of sus-
piciousness. In particular, we can observe two space regions
characterized by a much higher population.

To better understand the histogram in Figure 7, we report the
2D projections for ϕ and θ in Figures 8(a) and 8(b), respec-
tively.

One of the most populated regions in Figure 7 corresponds
to values of ϕ between 110◦ and 135◦ and values of θ between
−180◦ and −130◦. This space region includes movement vec-
tors for which all three features decrease. In particular, the
highest spike within this region represents vectors for which the
three components decrease proportionally with respect to each
other. Intuitively, this region captures all hosts for which the
network activity (uploaded bytes, number of destinations and
number of flows) decreases with respect to their recent history.

The other highly populated region in Figure 7 is character-
ized by values of ϕ between 80◦ and 90◦ and values of θ be-
tween 0◦ and 30◦. This space region captures movements for
which all three features increase. In particular ut (correspond-
ing to the number of uploaded bytes) increases more than vt
(number of destinations) and wt (number of flows), while vt
and wt grow proportionally with respect to each other. We
can conclude that a considerable increase in the number of up-
loaded bytes with respect to the previous history is quite com-
mon, while strong increases in the number of destinations or in
the number of flows are less frequent.

The other less populated regions of Figure 7 correspond to
movements in unlikely directions. In particular, for low values
of both ϕ and θ the number of uploaded bytes and of destina-
tions decreases, while the number of flows increases. Moreover,
for high values of both ϕ and θ the number of uploaded bytes
and the number of flows decreases, while the number of desti-
nations increases.

The third score s3
t is defined as:

s3
t = 1− Pr(m̂t) (16)

where Pr(m̂t) represents the probability of a certain direction
in the feature space, computed as the value of a bin divided
by the total number of internal hosts. Hence, 1 − Pr(m̂t) is
its complement probability, that represents the unlikelihood of
moving in a certain direction in the feature space. The higher
s3
t , the more suspicious is the direction followed by the host.

6.4. Computation of the final score
The final step of our framework for APT detection is to com-

pute the final score for each host of the internal network by
combining the three suspiciousness scores described in Sec-
tions 6.1, 6.2 and 6.3.

The final score St is computed as a linear combination of
scores s1

t , s2
t and s3

t . In particular, we adopt the following for-
mula:

St =

3∑
j=1

(
δjt · sjt

)
(17)

where δjt is a normalization weight associated with the j-th
score. Since the three scores are characterized by different
bounds, scales and distributions, we normalize them by defin-
ing δjt through the QWM metric [45, 47]:

δjt =

∑
k,k 6=j QWM(skt )∑

kQWM(skt )
, k ∈ {1, 2, 3} (18)

We note that the QWM values related to the different scores
are normalized with respect to the sum of all QWMs.

The final output of our framework is a list of internal hosts
ranked in descending order with respect to the final score St.
Security analysts can use this list to prioritize manual and time
consuming scrutiny of network and system activities of suspi-
cious internal hosts.

7. Experimental evaluation

In this section we evaluate the performance and effectiveness
of the proposed framework by implementing and deploying a
prototype on a real and large network consisting of about 10K
hosts. In particular, we applied the framework to five months of
network flow records and report the most significant results.

The proposed evaluation aims to demonstrate three main as-
pects:

• feasibility of execution times and storage requirements for
our framework in a real operational environment;

• ability to identify hosts that exhibit suspicious behaviors
compatible with data exfiltrations;

• sensitivity of the proposed approach with respect to differ-
ent classes of hosts and different sizes of exfiltrations.

Section 7.1 describes the testbed and the experimental setup,
along with details about execution times and storage require-
ments of the proposed framework. In Section 7.2 we present
some detailed experimental results referring to different exfil-
trations on a particular day, whereas Section 7.3 presents a
comprehensive analysis and comparison of the results of the
proposed framework over a five months period with respect
to different classes of hosts, different sizes of exfiltration, and
the common ranking approach used in traditional security so-
lutions. Finally, Section 7.4 summarizes and discusses experi-
mental results.

7.1. Experimental testbed and framework performance

We first describe the experimental setting and the perfor-
mance and storage requirements of our approach.

We build a prototype of the proposed framework (Section 4)
using different programming languages and tools for each
phase:

• the first phase is realized through the nprobe tool [49] that
collects flow records in the observed large network envi-
ronment;



0 45 90 135 180
ϕ

0

100

200

300

400

500

600

700

800

N
um

be
r

of
in

te
rn

al
ho

st
s

(a) movements on ϕ (degrees)

−180 −135 −90 −45 0 45 90 135 180
θ

0

200

400

600

800

1000

1200

N
um

be
r

of
in

te
rn

al
ho

st
s

(b) movements on θ (degrees)

Figure 8: Likelihood of movement directions in the feature space with respect to ϕ and θ.

• the second and third phases are implemented in Go, where
we read and extract the features from the flow records gen-
erated by nprobe;

• the fourth and fifth phases are realized in Python, where
we extract, elaborate and rank the suspiciousness scores
of each internal host.

The prototype is then deployed on a machine equipped with
eight 2.5GHz cores, 128GB of RAM and a 512GB SSD hard
drive.

Without loss of generality, we consider a sampling period
T = 1 day (i.e., the host ranking is performed once per day),
and a historical window W = 14 days (i.e., for each host we
build its behavioral baseline on the basis of a two-week win-
dow).

In particular, the flow records have been collected in a real
large network environment (class B) with the characteristics re-
ported in Table 1.

Characteristic Average value

number of hosts ≈ 10, 000 active internal hosts
bitrate ≈ 600 Mbps (business hours)
number of flows ≈ 140 millions records per day

Table 1: Main characteristics of the observed network environment.

We observe that the ranking is performed for all the 10K
hosts by analyzing over 140 millions flow records per day. The
main performance and storage requirements referring to T = 1
day and W = 14 days are reported in Table 2.

Statistic Time/Storage required
[for one day of data]

Storage of flow records ≈ 1.7 GB
Feature extraction and normalization ≈ 70÷ 80 seconds
Score computation and ranking ≈ 10÷ 20 seconds

Table 2: Main performance and storage requirements statistics of the proposed
framework related to the analysis of one day of data.

We observe that hardware requirements and execution times
of the proposed solution are low and compatible with realis-
tic use cases. Moreover, even though the monitored network
generates high volumes of network traffic, the storage space re-
quirements make long-term logging and analysis feasible. In
our environment, the storage occupation is of about ≈ 47 GB
per month, and ≈ 500 GB per year.

7.2. Detection of artificially injected exfiltrations

We now consider the effectiveness of the proposed approach
by injecting data exfiltrations in the observed real network en-
vironment. The purpose of this experiment is to verify whether
the proposed approach is able to capture data exfiltrations de-
spite the huge noise related to the traffic statistics of 10K hosts.

To inject exfiltrations we first selected a random working day
t̄ (February 5th, 2016) and the host h̄ that in t̄ uploaded a num-
ber of bytes equal to the median of the number of bytes up-
loaded by all internal hosts. We then executed two experiments
that simulate two well known security incidents:

• exfiltration of 40GB of data, approximately the same size
of one of the databases exfiltrated from Ashley Madi-
son [3];

• exfiltration of 9GB of data, approximately the amount of
data in the Adobe password leak case [3].

We also observe that the main parameters are T = 1 day,
W = 14 days. Moreover, the optimal number of bins for the
score s3

t from Eq. 16 has been computed on the basis of the
Freedman–Diaconis rule [50] iterated over different days. In
the observed environment the optimal number of bins is 10× 5
(ten bins for the θ axis and five for the ϕ axis).

Table 3 and Table 6 report the first 10 hosts ranked by sus-
piciousness score (for the 40 GB and 9 GB exfiltrations, re-
spectively), together with the values of each of the three partial
scores. The columns of this table report the total scores St and
the details of the individual scores s1

t , s2
t and s3

t , respectively.
The scores associated with the injected exfiltrations are repre-
sented in bold.



Host Score St s1
t s2

t s3
t

h̄ 6499.72 6141.14 6249.63 0.85
h1 4083.40 636.69 4224.00 0.85
h2 652.88 7258.66 12.55 0.85
h3 633.70 7173.14 0.32 0.87
h4 341.73 10.94 356.72 0.76
h5 280.47 3166.87 0.41 0.85
h6 185.51 2005.66 8.32 0.74
h7 158.17 1224.06 51.84 0.85
h8 136.76 1522.31 1.79 0.85
h9 128.50 1441.60 0.59 0.85

Table 3: Top-10 hosts ranked by suspiciousness score, exfiltration of 40 GB.

Feature βt̄−1(W ) xt̄

numbytes ≈ 6.4 MB 40004 MB
numdst ≈ 185.7 168
numflows ≈ 1982.4 1457

Table 4: Feature vector values and history for host h̄, exfiltration of 40 GB.

Moreover, in Table 4 we report the feature vector xt̄ of h̄,
and the centroid βt̄−1(W ) that represents its past behavior.

It is possible to observe that in this case our approach placed
the host h̄ at the first place, with a final score St, well above
those of the other internal hosts. While this result may seem
trivial, we highlight that for the day t̄ the top uploader was h3

(ranked 4th), that uploaded more than 47 GB, and the second
uploader was h2 (ranked 3rd), that uploaded about 46 GB. Host
h̄ uploaded about 4 MB, and after the injection reached about
40 GB. If hosts were ranked according to the number of up-
loaded bytes, h̄ would be in the third position. On the other
hand, using our approach host h̄ is ranked in the first place
due to high values of all three partial scores. In particular, the
high value of s1 is determined by the large amount of bytes up-
loaded by h̄ after having injected the exfiltration, that places h̄
far from the centroid of the feature space that represents all in-
ternal hosts. The high value of the score s2 is caused by the
sudden increase of uploaded bytes with respect to the recent
history of h̄. Finally, the value of s3 shows that the movement
of h̄ with respect to its previous history followed an uncommon
direction, because the number of uploaded bytes increased con-
siderably while the number of destinations and flows decreased
(as shown in Table 4).

For the sake of comparison, Table 5 reports the complete fea-
ture values of all the other hosts included in the top-10 (hosts
h1 to h9).

Results related to the exfiltration of 9 GB are presented in
Table 6.

In this experiment host h̄ was ranked as the second most sus-
picious host, before h2 that uploaded 46 GB. We observe that
in traditional security systems that commonly sort hosts accord-
ing to the number of uploaded bytes, h̄ would only achieve the
seventh position. Table 7 reports the centroid and the feature
vector for h̄ after the injection of the 9 GB exfiltration.

Host numbytes numdst numflows

h1 47267 5362 100326
h2 46712 11 787
h3 20623 38673 179658
h4 18829 792 14571
h5 13122 259 82637
h6 9457 601 6868
h7 8043 189 13902
h8 6264 1059 16651
h9 4225 68 591

Table 5: Feature values for hosts h1 to h9 at day t̄.

Host Score St s1
t s2

t s3
t

h1 4070.95 637.97 4224.00 0.85
h̄ 1466.94 1373.19 1405.88 0.85
h2 709.83 7259.93 12.55 0.85
h3 690.03 7174.41 0.32 0.87
h4 340.30 10.54 356.72 0.76
h5 305.41 3168.14 0.41 0.85
h6 201.31 2006.93 8.32 0.74
h7 167.67 1225.34 51.84 0.85
h8 148.69 1522.44 1.79 0.85
h9 139.91 1442.87 0.59 0.85

Table 6: Top-10 hosts ranked by suspiciousness score, exfiltration of 9 GB.

Feature βt̄−1(W ) xt̄

numbytes ≈ 6.4 MB 9004 MB
numdst ≈ 185.7 168
numflows ≈ 1982.4 1457

Table 7: Feature vector values and history for host h̄, exfiltration of 9 GB.

7.3. Sensitivity analysis and comparative evaluation

In this section we evaluate the effectiveness of the proposed
approach for different classes of internal hosts. The following
experiments are not limited to a single day, but cover the whole
set of available data, which is about five months of network
flow records. We recall that the number of bytes uploaded by
internal hosts follows a long-tailed distribution (see Figures 3(a)
and 3(d)). To provide a comprehensive evaluation, for each day
we selected seven representative hosts, each characterized by
an amount of uploaded bytes corresponding to a specific quan-
tile in the daily uploaded bytes distribution. We consider the
following quantiles: 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99.
This choice allows us to evaluate the effectiveness of the pro-
posed approach for low uploaders, mid uploaders and big up-
loaders.

After the selection, each representative host is chosen as
source of artificially injected exfiltrations. To evaluate the sen-
sitivity of the proposed approach, for each day and for each rep-
resentative host we injected data exfiltrations of different sizes:
50 MB, 100 MB, 200 MB, 500 MB, 1 GB, 2 GB, 5 GB and
10 GB. These experiments allowed us to simulate the full spec-
trum of possible data exfiltrations, from low-and-slow to burst



Exfiltration size r0.01 r0.05 r0.25 r0.5 r0.75 r0.95 r0.99

50 MB 99.29 99.29 97.86 85.00 43.57 35.00 32.86
100 MB 99.29 98.57 97.86 82.86 42.14 37.14 33.57
200 MB 99.29 100.00 97.86 87.14 50.71 37.86 34.29
500 MB 99.29 100.00 99.29 89.29 57.14 37.86 31.43
1 GB 99.29 100.00 99.29 92.86 67.86 38.57 30.00
2 GB 99.29 100.00 99.29 96.43 76.43 41.43 29.29
5 GB 99.29 100.00 99.29 97.14 84.29 43.57 32.86
10 GB 99.29 100.00 99.29 98.57 90.71 52.86 35.71

Table 8: Percentage of instances in which the position by score computed with our framework is higher than the position obtained with common-ranking approach.

Exfiltration size r0.01 r0.05 r0.25 r0.5 r0.75 r0.95 r0.99

50 MB 42.50 43.50 45.00 117.50 202.50 225.00 50.00
100 MB 23.00 23.50 25.00 64.00 125.50 149.00 49.50
200 MB 11.00 11.00 12.00 37.50 72.50 96.00 46.00
500 MB 5.00 6.00 6.00 17.00 32.00 48.50 36.50
1 GB 3.00 3.00 3.00 9.50 17.00 31.00 29.00
2 GB 2.00 2.00 2.00 4.50 9.50 22.50 20.50
5 GB 1.00 1.00 1.00 2.00 5.00 10.50 11.50
10 GB 1.00 1.00 1.00 2.00 3.00 5.00 7.00

Table 9: Median position by score obtained with our framework.

Exfiltration size r0.01 r0.05 r0.25 r0.5 r0.75 r0.95 r0.99

50 MB 353.00 353.00 350.00 323.00 255.00 129.50 38.00
100 MB 164.00 164.00 164.00 159.00 142.00 103.00 37.00
200 MB 97.50 97.50 97.50 96.00 92.00 77.00 33.50
500 MB 54.00 54.00 53.50 53.50 53.00 51.00 26.50
1 GB 34.50 34.50 34.00 34.00 33.50 33.00 20.00
2 GB 18.50 18.50 18.50 18.50 18.00 17.00 14.00
5 GB 10.00 10.00 10.00 10.00 10.00 9.50 8.00
10 GB 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Table 10: Median position obtained with common-ranking approach.

data leaks. Finally, for each day and for all combinations of the
7 representative hosts and the 8 different kind of data exfiltra-
tion, we computed the score for all internal hosts and ranked
them accordingly.

The most common approach for detecting data exfiltration is
to leverage standard network analysis tools and rank internal
hosts with respect to the number of uploaded bytes [51, 52, 53].
In the following, we refer to this method as common-ranking.
To verify the effectiveness of our approach we also compare
against the results of common-ranking.

The comparison is reported in Table 8, where each column
refers to a different representative host; that is, r0.01 repre-
sents the host corresponding to 0.01-quantile, r0.05 represents
the host corresponding to 0.05-quantile and so on. Each row
denotes a different exfiltration size. Each cell represents the
number of times in which the ranking based on the proposed
approach led to better results (that is, a higher position) with
respect to common-ranking. As an example, the value 99.29%
contained in the top-left cell means that for 139 out of 140 days,

the ranking based on the score value resulted in a higher posi-
tion than the one obtained by common-ranking. Table 8 shows
that the proposed approach leads to better ranking for all ex-
filtration sizes and for all hosts up to the 0.5-quantile (column
r0.5). Columns r0.75 and r0.95 show mixed results, where the
proposed approach fares better for exfiltration sizes higher than
200 MB. As expected, column r0.99 favors common-ranking,
because high-uploaders are always among the top positions in
a ranking based on uploaded bytes, independently of possible
data exfiltrations.

This is a significant achievement because: (i) our solution
performs better for a majority of the internal hosts; (ii) it high-
lights suspicious behaviors in hosts that would not have been
considered otherwise, because a ranking based on uploaded
bytes is always dominated by the minority of big uploaders.

Besides comparing the two different rankings, it is impor-
tant to analyze their results. Since both approaches prioritize
hosts that should undergo further time-consuming analysis, in-
jected exfiltrations should be associated to the highest priori-



ties. Median ranks computed through the proposed approach
and through common-ranking are presented in Tables 9 and 10,
respectively.

Each cell in these table contains the median rank for a com-
bination of a representative host and an exfiltration size, com-
puted over 140 days. As an example, the first cell in Table 9
that contains value 42.50 means that an exfiltration of 50 MB
for a host corresponding to the 0.01-quantile of daily uploaded
bytes has a position higher or equal than 42.50 for at least half
of the days. On the other hand, Table 10 shows that the same
host for the same exfiltration size has a median rank of 353.

Since both the ranking approaches support security analysts
in focusing on the most suspicious hosts, their results are effec-
tive only if hosts subject to data exfiltrations are ranked within
the top-k positions, where k depends on the amount of ma-
chines that a security analyst can analyze and is constrained
by available time and resources. In this evaluation, we consider
two different scenarios: the first one represents an environment
where resources allow checks on k = 50 machines each day
(that is, about 0.05% of the hosts in the considered network);
the second scenario represents a more resource-constrained sce-
nario in which an analyst can analyze only k = 5 machines per
day. In both cases, we consider as useful all positions included
in the top-k. In Tables 9 and 10, useful results for the first sce-
nario are highlighted in gray, while useful results for the second
scenario are written in bold.

In the first scenario we can observe that our proposal gen-
erates useful results for all exfiltration sizes (including those
smaller than 1 GB) for representative hosts up to 0.25-quantile
and for r0.99. For representative hosts r0.5, r0.75 and r0.95,
the proposed approach detects exfiltrations of at least 200 MB,
500 MB and 500 MB, respectively. On the other hand,
common-ranking is never able to detect exfiltrations smaller
than 1 GB for any representative host up to 0.95-quantile.

In the second scenario, the proposed approach clearly out-
performs common-ranking for all representative hosts up to the
0.95-quantile. In the considered network environment, a daily
upload of 10 GB is enough to be ranked as the fifth highest
uploader, hence common-ranking is only able to identify exfil-
trations of at least 10 GB.

7.4. Summary of results
All experimental results demonstrate that the proposed ap-

proach is an improvement with respect to common-ranking. In
particular:

• it allows security analysts to quickly identify low-and-slow
exfiltrations for the majority of internal hosts;

• for low- and mid-uploaders the proposed approach yields
consistently better results with respect to common-
ranking;

• our approach is not biased towards big-uploaders that al-
ways occupy the highest positions in the common-ranking,
independently of exfiltration activities;

• even low- and mid-uploaders can be classified as the most
suspicious hosts.

From the perspective of an attacker, if the network is moni-
tored only through common-ranking, an exfiltration of 500 MB
per day would not be detected in most of the cases. On the other
hand, if our approach is applied, an exfiltration of 500 MB per
day would be always detected. To execute an exfiltration while
avoiding detection, an attacker has to carefully choose the host
from which the exfiltration takes place. The rational choice for
the attacker is to execute low-and-slow exfiltrations from mid-
to-high uploaders that are above the 0.5-quantile and below the
0.99-quantile. This choice does not depend only on the uploads
of a single compromised machine, but also on the network traf-
fic generated by all the other hosts in the network. It is quite
unlikely that even an expert attacker is able to gather this in-
formation. Hence, we can claim that our proposal makes it ex-
tremely difficult to evade detection.

8. Conclusions

We have proposed the first framework that is able to identify
and rank suspicious hosts possibly involved in data exfiltrations
related to APTs. Our approach gathers and analyzes only net-
work traffic data. We propose a set of features that is specifi-
cally tailored to detect possible data exfiltrations, and we define
a suspiciousness score for each internal host. The final output
is a ranked list of suspicious hosts possibly involved in data ex-
filtrations and other APT-related activities. The effectiveness
of the proposed solution has been proved by implementing a
prototype that is deployed on a real large network environment.
The proposed approach is able to analyze about 140 millions
of flows related to approximately 10,000 internal hosts in about
2 minutes. Experimental results demonstrate the ability of the
framework to identify burst and low-and-slow exfiltrations. Our
proposal paves the way to novel forms of efficient and auto-
mated traffic analyses related to APT activities. Future work
includes the integration of correlation systems with respect to
other network security assets, such as data flows and alerts com-
ing from intrusion detection systems.
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