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Background: Preterm birth is the leading risk factor for perinatal white matter injury,
which can lead to motor and neuropsychiatric impairment across the life course. There
is an unmet clinical need for therapeutics. White matter injury is associated with an
altered inflammatory response in the brain, primarily led by microglia, and subsequent
hypomyelination. However, microglia can release both damaging and trophic factors in
response to injury, and a comprehensive assessment of these factors in the preterm
central nervous system (CNS) has not been carried out.

Method: A custom antibody array was used to assess relative levels of 50 inflammation-
and myelination-associated proteins in the cerebrospinal fluid (CSF) of preterm infants in
comparison to term controls.

Results: Fifteen proteins differed between the groups: BDNF, BTC, C5a, FasL,
Follistatin, IL-1β, IL-2, IL-4, IL-9, IL-17A, MIP-1α, MMP8, SPP1, TGFβ, and TNFβ

(p < 0.05). To investigate the temporal regulation of these proteins after injury, we
mined a gene expression dataset of microglia isolated from a mouse model of
developmental white matter injury. Microglia in the experimental model showed dynamic
temporal expression of genes encoding these proteins, with an initial and sustained
pro-inflammatory response followed by a delayed anti-inflammatory response, and a
continuous expression of genes predicted to inhibit healthy myelination.

Conclusion: Preterm CSF shows a distinct neuroinflammatory profile compared to term
controls, suggestive of a complex neural environment with concurrent damaging and
reparative signals. We propose that limitation of pro-inflammatory responses, which
occur early after perinatal insult, may prevent expression of myelination-suppressive
genes and support healthy white matter development.

Keywords: preterm birth, brain injury, inflammation, cerebrospinal fluid, microglia, myelination

INTRODUCTION

Preterm birth is closely associated with white matter injury and life course impairments
including cerebral palsy, learning difficulty, autism spectrum disorder, and psychiatric disease
(Volpe, 2009; Johnson and Marlow, 2017). A characteristic feature of white matter injury
is oligodendrocyte dysmaturation, which is driven in part by immune dysregulation, and
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results in hypomyelination (Back and Miller, 2014; Hagberg
et al., 2015). Magnetic resonance imaging studies show that
generalized atypical white matter tract development is often
apparent in preterm infants at term-equivalent age (Batalle et al.,
2017; Telford et al., 2017), which suggests that interventions to
prevent injury and support normal myelination may need to
be applied during the perinatal period. Therefore a priority is
to better understand the immune mediators and receptors that
drive preterm white matter injury in order to identify therapeutic
targets that promote healthy white matter development.

Neuropathological analyses of post-mortem tissue have shown
robust activation of central nervous system (CNS)-endogenous
immune cells, microglia, which express pro-inflammatory
markers (iNOS, TNFα, IL-1β, and IL-6) (Yoon et al., 1997;
Haynes et al., 2009); and systemic inflammation due to co-
morbidities of preterm birth such as chorioamnionitis and
necrotizing enterocolitis, is associated with abnormal white
matter on magnetic resonance imaging in vivo (Shah et al., 2008;
Anblagan et al., 2016; Barnett et al., 2018).

Elevated levels of inflammatory proteins in blood or
cerebrospinal fluid (CSF) are associated with perinatal brain
injury and increased risk of adverse neurodevelopmental
outcome (Yoon et al., 1996; Nelson et al., 1998; Savman et al.,
1998; Bartha et al., 2004; Viscardi et al., 2004; Carlo et al., 2011;
Armstrong-Wells et al., 2015; Basu et al., 2015). However, protein
levels in plasma do not always correlate with those in the CSF
in preterm infants with white matter injury, demonstrating that
blood analyses may not reflect events in the CNS (Ellison et al.,
2005; Rajkumar et al., 2018). Furthermore, a comprehensive
assessment of inflammation-associated factors in preterm CSF
has not been carried out. Here, we asked whether a large-
scale measurement of inflammatory markers in preterm CSF,
including measures of factors known to be detrimental or
supportive of white matter development, could provide a broader
understanding of the neuropathology of preterm brain injury.

MATERIALS AND METHODS

Participants
We recruited two groups of neonates from the Royal Infirmary
of Edinburgh between June 2014 and September 2015 who
required CSF sampling, usually for the evaluation of suspected
meningitis: 17 preterm neonates with mean (SD) postmenstrual
age (PMA) at birth 27.14 (2.14) weeks; and 20 term infants
with mean (SD) PMA at birth 39.86 (1.86) weeks. The mean
(SD) PMA at CSF sampling was 29.29 (2.86) weeks for preterm
infants and 40.29 (2.0) weeks for term infants. There were
no significant differences in the proportion of infants with
CSF contaminated by blood defined as red blood cell count
>1000 cells/mm3 (50% versus 42%, p = 0.73). Methods for
sampling and storage of CSF, and the clinical phenotype of
participants including plasma C-Reactive Protein, full blood
count, CSF total protein and glucose concentrations and CSF
microscopy have been reported previously (Pataky et al., 2017).
No infant in either group had meningitis; 10 out of 17 of the
preterm infants and 8 out of 20 of the term infants were classified

as having blood stream infection (BSI) at the time of CSF
sampling, defined as either (1) blood culture grew a pathogenic
bacterial species; or (2) the blood culture was negative or grew
coagulase negative Staphylococcus (CoNS) and the infant had
one or more signs of generalized infection (apnoea, temperature
instability, feeding intolerance, worsening respiratory distress,
or hemodynamic instability) and the attending neonatologist
treated with IV antibiotics for ≥5 days. The difference in
proportion of infants with BSI in each group was not statistically
significant (p = 0.33).

This study was carried out in accordance with the
recommendations of UK National Research Ethics Service
with written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the South East Scotland
Research Ethics Committee (14/SS/044). Written parental
informed consent was obtained for CSF sampling, and the
study was approved by the UK National Research Ethics Service
(14/SS/044).

Custom Antibody Microarray
A custom antibody array (“G-series” from Tebu-bio/RayBiotech)
against 50 human analytes was generated to detect relative
levels of: activin-A (INHBA), Brain-derived neurotrophic
factor (BDNF), bone morphogenetic protein (BMP)2,
BMP4, BMP7, betacellulin (BTC), cluster of differentiation
(CD)200, Complement 5a (C5a), C-reactive protein (CRP), Fas
ligand (FasL), follistatin, furin, Galectin-3 (Gal3), granulocyte
macrophage colony-stimulating factor (GM-CSF), insulin-like
growth factor-1 (IGF-1), interferon-gamma (IFNγ), insulin,
interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9,
IL-10, IL-12p40, IL-12p70, IL-13, IL-17A, IL-17B, IL-17C,
IL-17F, IL-18, monocyte chemoattractant protein-1 (MCP1),
macrophage inflammatory protein 1-alpha (MIP1α), MIP1β,
matrix metalloproteinase (MMP) 8, MMP-9, nerve growth factor
(NGF)-β, neurotrophic factor 3 (NT3), Osteopontin (SPP1),
placental growth factor (PLGF), regulated on activation, normal
t cell expressed and secreted (RANTES), stem cell factor (SCF),
tumor necrosis factor (TNF)-α, TNFβ, transforming growth
factor-beta (TGFβ), urokinase-type plasminogen-activator
(uPA), vascular endothelial growth factor-C (VEGF-C). Arrays
were carried out according to the manufacturer’s instructions.
Briefly, antibodies printed onto sub-arrays were dried at room
temperature (RT) for 2 h, then blocked for 30 min. Fifty
microliters of CSF from each case was incubated with one
sub-array for 2 h at RT, then washed with gentle rocking. Sub-
arrays were then incubated with biotin-conjugated sandwich
antibodies for 2 h at RT, washed thoroughly, then incubated with
streptavidin-Cy3. Following washes in water, slides were read at
532 nm excitation frequency.

Antibody Array Data Analysis
Detected values of Cy3 intensity were normalized to an internal
median background level on each slide. Analytes of interest
were defined as those where the median value of the preterm
group was outside the interquartile range of the controls. For
analyses designed to generate hypotheses about group differences
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for gene expression studies, the distribution of values according
to gestation category (preterm versus term) was investigated
using independent samples Mann–Whitney U test, individual
test p-values are reported, and a threshold of <0.05 was
used to select proteins for microglia gene expression analysis.
Analyses were performed using SPSS 21.0 (SPSS Inc., Chicago,
IL, United States).

Animal Protocol
Experimental protocols were approved by the Bichat-Robert
Debre (France) ethical committee under the reference 2011-
14/676-0053, and met the guidelines for the United States
Public Health Service’s Policy on Humane Care and Use of
Laboratory Animals (NIH, Bethesda, MD, United States).
We housed the OF1 strain mice (Charles River; L’Arbresle,
France) under a 12 h light-dark cycle with ad libitum food
and water. On P1 pups were sexed, all males were kept but
litters were maintained at 9–11 pups. Assessments of injury and
outcomes were made only in male animals as females do not
display white matter injury in response to this paradigm. The
preponderance to injury in males is similar to what is observed
in preterm born infants (O’Driscoll et al., 2018). Neonatal
received twice a day (bid) from P1 to P4 and once on P5 a 5 µl
intra-peritoneal (ip) injection of 10 µg/kg/injection recombinant
mouse IL-1β in phosphate buffered saline (PBS; R&D Systems,
Minneapolis, MN, United States) or PBS alone (control). IL-1β

exposure, as reported previously, sets up a complex systemic
inflammatory response (Favrais et al., 2011) and then a complex
central neuroinflammatory response (Krishnan et al., 2017;
Van Steenwinckel et al., 2018). This leads to microgliosis,
oligodendrocyte maturation arrest, hypomyelination and
cognitive deficits (Favrais et al., 2011; Schang et al., 2014;
Krishnan et al., 2017; Van Steenwinckel et al., 2018) reminiscent
of what is observed in preterm born infants (Billiards et al.,
2008; Verney et al., 2012; Caldinelli et al., 2017; Spittle et al.,
2017).

Neural Tissue Dissociation and
Magnetic-Activated Cell Sorting
At P1, P5, and P10, we collected brains for cell dissociation
and CD11b-positive cell enrichment using a magnetic coupled
antibody extraction technique (MACS), as previously described
(Schang et al., 2014; Krishnan et al., 2017) and according to
the manufacturer’s protocol (Miltenyi Biotec, Bergisch Gladbach,
Germany). In brief, we pooled brains (n = 4 at P1, n = 3
at P5, and n = 2 at P10) and after removing the cerebellum
and olfactory bulbs they were dissociated using the Neural
Tissue Dissociation Kit. A total of six samples per group and
per time point were generated with at least four independent
litters per group. Using anti-CD11b MicroBeads we captured the
CD11b+ cells and after elution, we centrifuged the isolated cells
for 5 min at 600 g and then conserved them at −80◦C. The
purity of MACSed CD11B+ fraction has been validated using
FACS analysis of CD11B fluorescence, and with RT-qPCR of
the positive and negative cell fractions as previously described
(Schang et al., 2014; Krishnan et al., 2017) and revealed the

negative fraction has gene expression levels 98% lower than found
in the respective primary cultures of astrocytes, neurons, and
oligodendrocytes.

Microarray Analysis
As previously published, Miltenyi Biotec (France) performed
microarrays (Mouse Agilent Whole Mouse Genome Oligo
Microarrays, 8 × 60K) on 6 samples per time point per group
for CD11b enriched cell samples from P1, P5, and P10 mice
exposed to IL-1β or PBS; a total of 24 samples (Krishnan
et al., 2017). Preparation of samples for array analysis has been
previously described (Husson et al., 2005; Chhor et al., 2013;
Krishnan et al., 2017). The Agilent feature extraction software
was used to process microarray image files. We only included
signal intensities above background. Signal intensity values were
background subtracted and uploaded following instructions
by Miltenyi Biotec GmbH (Stefan Tomiuk) and PerkinElmer
(Matt Hudson) into GeneSifter Analysis Edition v4.01 for
further analysis as previously described (Gustavsson et al.,
2007). The pre-processed signal intensity values were median
normalized, and the gene expression in neuroinflammatory
and PBS controls were compared at P1, P5, and P10 using
t-test (p < 0.05) with Benjamini-Hochberg multiple testing
correction.

RESULTS

Differential Levels of
Inflammation-Associated Proteins in
Pre-term vs. Term Infant Cerebrospinal
Fluid
To conduct a comprehensive assessment of CNS inflammatory
state in preterm infants and associate this with factors affecting
myelination, we designed an antibody array assessing expression
of 50 proteins with functions in regulating inflammation and
myelination (Table 1). This approach was optimal to assess
relative protein levels in neonatal CSF because it allowed high-
content simultaneous screening of low volumes of fluid with high
sensitivity and a broad range of detection.

We found that 28 protein levels had a median value in CSF
from preterm infants that was outside the interquartile range of
the controls (Table 1, bold type); these represented proteins with
known functions in enhancing or resolving inflammation, as well
impairing or supporting myelination (Table 1). The distribution
of 15 proteins differed in preterm CSF from that of the controls
(p-value <0.05), and 5 analytes were increased in preterm CSF
at a threshold of p < 0.01: C5a, interleukin (IL)-9, osteopontin
(SPP1), Fas ligand (FasL), and follistatin. These data demonstrate
that preterm CSF has a distinct inflammatory profile compared
to term controls that includes both pro-inflammatory and anti-
inflammatory proteins, as well as those which can support or
impair myelination.

1http://jhu.genesifter.net/login
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TABLE 1 | Median (IQR) normalized fluorescence intensity of 50 cerebrospinal fluid analytes from term control infants and preterm infants.

Analyte Function Control Preterm p-Value

Median IQR Q1–Q3 Median IQR

C5a (Hc) � 1378.5 1382.5 680.8–2063.3 3592.6 2540.3 0.001∗∗

CRP � 28446.4 20206.4 15120.2–35326.6 35217.1 18532.5 0.133

GM-CSF (Csf2) � 255.6 91.2 212.2–303.5 330.2 284.2 0.125

IFNγ �� 403.2 127.0 328.4–455.4 402.4 159.3 0.916

IL-1α � 490.5 81.4 450.6–532.0 581.9 546.13 0.220

IL-1β �� 52.1 73.3 10.0–83.3 108.8 338.8 0.014∗

IL-2 � 413.1 77.8 367.7–445.5 520.5 298.0 0.030∗

IL-6 �� 580.0 3259.5 413.8–3673.3 706.2 8133.4 0.869

IL-8 � 19466.8 55521.7 16192.7–71714.4 18370.4 79637.3 0.707

IL-9 �� 188.8 76.1 136.9–213.1 242.6 233.23 0.005∗∗

IL-12p40 � 62.5 87.3 22.8–110.1 83.3 206.6 0.167

IL-12p70 � 164.3 80.0 110.1–190.0 220.1 219.8 0.177

IL-17A �� 202.1 45.4 182.5–227.9 296.4 225.6 0.028∗

IL-17B � 104.6 20.0 96.3–116.3 107.0 125.4 0.798

IL-17C � 508.8 99.8 456.7–556.5 546.2 246.9 0.052

IL-17F � 72.5 73.2 22.8–96.0 62.6 214.0 0.619

IL-18 � 80.9 49.6 50.0–81.0 101.8 129.0 0.326

MCP-1 (Ccl2) � 116104.0 10004.9 112697.7–122702.6 109752.5 40956.0 0.283

MIP1α (Ccl3) � 211.5 282.6 118.0–400.6 1054.5 4168.5 0.015∗

MIP1β (Ccl4) � 6715.4 17113.7 5549.0–22562.7 26868.7 31793.7 0.133

PIGF � 593.2 375.6 438.0–813.6 948.0 1180.7 0.056

RANTES � 182.8 1590.6 115.7–1706.3 736.4 14673.8 0.244

TNFα ��� 1095.9 167.4 1036.8–1204.2 1242.3 935.8 0.074

TNFβ � 452.6 68.8 404.4–473.3 504.0 380.4 0.011∗

uPA � 8733.4 8969.4 4470.1–13439.5 12527.5 18004.0 0.149

CD200 � 98.9 61.3 58.4–119.7 113.6 163.9 0.326

IL-4 � 402.7 80.7 340.7–421.4 430.6 176.6 0.042∗

IL-5 � 299.9 58.6 271.5–330.1 301.9 258.2 0.798

IL-10 �� 481.6 787.9 429.1–1216.9 917.7 6406.5 0.341

IL-13 � 382.8 93.4 336.2–429.5 416.3 330.8 0.104

Activin-A (INHBA) �� 238.2 62.7 204.9–267.6 271.1 314.6 0.257

BDNF � 101.6 18.6 95.3–113.9 145.8 191.5 0.024∗

BTC � 304.7 49.3 273.3–322.6 354.0 256.7 0.045∗

β-NGF � 206.4 169.2 119.1–288.2 339.6 550.56 0.117

NT-3 � 85.7 55.20 49.9–105.1 106.7 147.0 0.283

Furin �� 360.4 580.5 189.6–770.1 464.7 995.9 0.537

Galectin-3 � 1598.1 1419.0 859.2–2278.2 1069.9 4638.26 0.892

IGF-1 � 2005.4 574.4 1685.3–2259.6 2048.0 662.5 0.812

Insulin (Ins1) � 180.6 70.3 149.0–219.3 253.8 271.8 0.074

SCF (Kitl) � 346.7 287.7 230.9–518.6 419.4 631.8 0.326

SPP1 �� 1209.4 1828.0 766.5–2594.4 3064.4 4333.1 0.007∗∗

TGFβ �� 706.2 122.0 640.7–762.7 919.0 600.0 0.013∗

VEGF-C � 250.6 100.1 209.6–309.7 233.7 312.5 0.641

BMP2 � 191.5 168.6 100.5–269.1 140.3 301.7 0.752

BMP4 � 116.1 90.1 72.4–162.5 106.0 173.1 0.845

BMP7 � 196.5 211.8 156.2–232.0 246.0 221.5 0.104

FasL � 290.1 159.6 203.1–362.7 967.0 1484.7 0.001∗∗

Follistatin (Fst) � 920.6 286.0 754.3–1040.3 1683.0 1192.8 0.007∗∗

MMP8 �� 319.7 187.2 219.5–406.7 416.7 1319.90 0.026∗

MMP-9 � 156.4 126.2 110.8–237.0 244.8 1378.6 0.125

Bold type highlights analytes with median concentration in CSF from preterm infants that was outside the IQR of analyte concentration from controls; ∗p < 0.05,
∗∗p < 0.01. �Pro-inflammatory function; � anti-inflammatory function; �supporting oligodendrocyte lineage responses and myelination; � impairing oligodendrocyte
lineage responses and myelination.
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Mapping of Dynamic Regulation of
Inflammatory and
Myelination-Associated Proteins During
Experimental Developmental Brain Injury
To better understand how the proteins elevated in preterm
infant CSF are regulated after injury, we mined an existing
dataset in which dynamic changes in microglia gene expression
were measured in an experimental model of developmental
white matter injury. In this model, damage was induced by
intraperitoneal injections of recombinant IL-1β (10 µg/ml) prior
to the onset of myelination (twice daily from postnatal day [P]1
to P4 and one injection at P5) (Figure 1A). This paradigm
mimics the pathophysiology of human perinatal brain injury
by chronically impairing oligodendrocyte differentiation and
myelination, as evidenced by immunostaining of myelin proteins,
the oligodendrocyte lineage and electron microscopy (Favrais
et al., 2011; Krishnan et al., 2017).

We analyzed microglia gene expression at the time of
inflammation initiation (P1), during the subsequent phase when
oligodendrocyte differentiation is impaired (P5), and when
hypomyelination is observed (P10). Eleven of 15 proteins we
found to be altered in human preterm CSF were significantly
regulated at the mRNA level by microglia during the course
of white matter injury (Figure 1B). At P1, microglia from
IL-1β-treated mice showed an upregulation of pro-inflammatory
genes Il1b and Tnf and concomitant downregulation of
anti-inflammatory gene Il4 (Figure 1C). Tgfb1, which
supports oligodendrocyte lineage survival, proliferation,
and differentiation (Dutta et al., 2014; Palazuelos et al., 2014),
was upregulated simultaneously with Mmp8, which is associated
with myelin damage (Folgueras et al., 2008; Figure 1C). At
P5, microglia upregulated pro-inflammatory genes C5a (Hc),
Il1b, Il2, Il17a, and showed a sustained downregulation of
Il4 (Figure 1D). Also upregulated were genes predicted to
inhibit oligodendrocyte health and differentiation: Mmp8
(Folgueras et al., 2008), Fasl (associated with oligodendrocyte
death) (Wosik et al., 2003), and Fst (which would inhibit
activin-A-driven oligodendrocyte differentiation) (Dillenburg
et al., 2018; Figure 1D). At P10, Il1b, Tnf, and Fasl were still
upregulated, however, concomitant upregulation of Il4 and
pro-myelination gene Spp1 (Osteopontin) may indicate late
attempts to resolve inflammation and counter white matter
damage (Figure 1E). Il1b and Il4, prototypical pro- and anti-
inflammatory cytokines respectively, were found to be regulated
in expression throughout injury, with a sustained upregulation
of Il1b and a delayed Il4 response (Figure 1F). With regards to
genes regulating myelination, although pro-survival/myelination
genes Tgfb1 and Spp1 were slightly upregulated early and late
in injury, respectively, genes whose products are predicted to
impair white matter health were upregulated at all time points
(Figure 1G). This data suggest that the proteins enriched in
human preterm CSF are dynamically expressed by microglia
following developing white matter insult, with an initial and
sustained pro-inflammatory response followed by a delayed
anti-inflammatory response, and a continuous expression of
genes predicted to inhibit healthy myelination.

DISCUSSION

In this study, we identified a distinct inflammatory signature
in preterm CSF relative to term controls. A comprehensive
and sensitive measure of CSF protein levels by antibody
array identified 15 factors which were relatively increased in
preterm samples, and which have been previously associated
with regulating inflammation and myelination. This revealed
a complex preterm neural environment, with concurrent pro-
and anti-inflammatory responses, and pro- and anti-myelination
factors. Data-mining of microglia transcriptomes in the context
of experimental perinatal brain injury revealed that microglia can
express the majority of these factors following insult, and they
are dynamically regulated over time, mirroring the complexity
of inflammatory and myelination-regulating factors measured in
the human samples. Although some of these genes are expressed
by microglia in healthy developing brain (Il1b, Ccl3, Tnf, Spp1,
and Tgfb1) (Zhang et al., 2014), the rapid increase of pro-
inflammatory gene expression in microglia in this experimental
model shortly after the first injection of IL-1β, concomitant with
sustained expression of genes predicted to impair myelination,
highlight the importance of early intervention to limit damage to
the developing white matter.

Five proteins were increased in preterm CSF vs. controls at
the threshold p < 0.01: C5a, IL-9, SPP1, FasL, and Follistatin.
C5a is a component of the complement cascade which we
previously showed to be increased in human preterm CSF by
enzyme-linked immunoabsorbant assay (Pataky et al., 2017),
validating our novel approach of using antibody array to identify
differentially expressed proteins in CSF samples. Although C5a
has been associated with normal brain development (Benard
et al., 2008) and neuroprotection (Biggins et al., 2017), it may
have damaging functions as inhibition of its receptor C5aR
attenuates excitotoxic perinatal brain injury (Pedroni et al., 2013)
and C5a is increased in the CSF of children with demyelinating
disease (Horellou et al., 2015). In addition, we identified IL-9
as a novel preterm birth-associated CNS cytokine in humans.
Although we found it is not regulated by microglia in the IL-
1β injury model, it may be expressed by other cell types such as
Th9 lymphocytes. In experimental models it has roles in mast
cell activation and excitotoxicity (Patkai et al., 2001), neonatal
cortical neuronal apoptosis (Fontaine et al., 2008), autoimmune
demyelination (Li et al., 2011), and regulation of astrocyte
chemokine production (Ding et al., 2015); our data support a role
for IL9 in the human inflammatory response to preterm birth.
In addition, its expression can be driven by TGFβ (Beriou et al.,
2010), which when overexpressed by microglia is associated with
hypomyelination (Nobuta et al., 2012). IL-9 may also have direct
actions on oligodendrocyte lineage cells, as these express the IL-9
receptor and IL-9 treatment inhibits their differentiation in vitro,
although, notably, it can encourage differentiation if co-supplied
with IFN-γ (Ding et al., 2015).

The remaining three highly enriched proteins have been
implicated in regulating the oligodendrocyte lineage and
myelination. Osteopontin (SPP1) in particular has been
suggested as a blood biomarker for neonatal encephalopathy
(Graham et al., 2018) and it is highly induced by hypoxic
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FIGURE 1 | Dynamic expression of human preterm CSF signature proteins at the gene expression level in microglia following experimental brain injury. (A) Mouse
model of developmental white matter injury. (B) Fold change in gene expression in microglia isolated from IL-1β mouse model of developmental white matter injury,
values at postnatal (P) day 1, 5, and 10 indicated, with p-values ∗p<0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001; � pro-inflammatory function, � anti-inflammatory function,
� supporting oligodendrocyte lineage responses and myelination, � impairing oligodendrocyte lineage responses and myelination. (C–E) Fold change in expression
of genes in microglia isolated from IL-1β injury model compared to vehicle control, at postnatal days (P) 1, 5, and 10. Significantly upregulated genes shown in
magenta, significantly downregulated genes shown in green. (F) Dynamic regulation of Il1b and Il4 over the course of injury. (G) Fold change in expression over
vehicle control for genes associated with impairing myelination (blue) and those supporting myelination (purple).

injury, where a protective role is suggested by decreased
oligodendrogenesis in a knockout mouse subjected to hypoxic-
ischemic injury (van Velthoven et al., 2011). This beneficial role
may be dependent on mode of neural injury or age, as in adult
mice SPP1 exacerbates autoimmune-mediated demyelination
and is not required for regeneration of myelin on previously
myelinated axons (Zhao et al., 2008). Nonetheless, it can directly
increase myelin protein expression and myelination in vitro
(Selvaraju et al., 2004). Another protein we detected in preterm
CSF which may directly modulate myelination is follistatin,
which sequesters activin-A to prevent its binding to activin
receptors. This would be predicted to impair myelination,
as we have recently shown these receptors to be required
for oligodendrocyte differentiation and myelin maturation
in healthy white matter development and following injury

(Dillenburg et al., 2018). Lastly, the increase in Fas ligand in
preterm CSF may indicate direct targeting of oligodendrocytes,
as it has been associated with induction of oligodendrocyte death
in a variety of neurological disorders (Austin and Fehlings, 2008).

Our study has some limitations. Although no infant in the
study group had meningitis, a proportion of preterm and term
infants had BSI at the time of CSF sampling. Therefore, it is
possible that systemic inflammation contributed to observed
alterations in the CSF inflammatory profile, although this
potential confounding effect is likely to be balanced across the
groups.

Our study was not designed to investigate the effect
of astrocyte-mediated cytokine production, which could
contribute to neuroinflammation as has been suggested by
some experimental perinatal white matter injury models
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(Nobuta et al., 2012; Shiow et al., 2017). In future work,
investigating gene expression in other cell types including
astrocytes and neurones may be informative.

Altogether, these findings identify a CSF signature in response
to preterm birth, which reflects a complex environment that
can both drive injury and support myelination. The pathological
outcome of preterm birth may thus reflect a balance between
damaging and reparative factors, which implies that effective
therapies may need to operate on multiple targets. We propose
that early therapeutic intervention could pre-empt the robust
pro-inflammatory response and boost pro-repair mechanisms to
support healthy myelination.
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