
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1038/s41467-019-12476-z

Link to publication record in King's Research Portal

Citation for published version (APA):
Visconti, A., Le Roy, C. I., Rosa, F., Martin, T. C., Mohney, R. P., Weizhong, L., de Rinaldis, E., Bell, J. T.,
Venter, J. C., Nelson, K. E., Spector, T. D., & Falchi, M. (2019). Interplay between the human gut microbiome
and host metabolism. Nature Communications, 10(1), Article 4505. https://doi.org/10.1038/s41467-019-12476-z

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1038/s41467-019-12476-z
https://kclpure.kcl.ac.uk/portal/en/publications/73f6cf2f-e22e-4c61-a447-5f570cb54051
https://doi.org/10.1038/s41467-019-12476-z


 

1 
 

Interplay between the human gut microbiome and host metabolism 
Alessia Visconti1,†, Caroline I. Le Roy1,†, Fabio Rosa1, Niccolo’ Rossi1,2, Tiphaine C. 

Martin1,3,4, Robert P. Mohney5, Weizhong Li6,7, Emanuele de Rinaldis8, Jordana T. Bell1, J. 

Craig Venter6,7, Karen E. Nelson6,7, Tim D. Spector1,+,*, Mario Falchi1,+,* 

 
1Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK.  
2BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 

Lisbon, Portugal 
3Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 

USA  
4The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
5Metabolon, Inc., Morrisville, NC, USA  
6Human Longevity, Inc., San Diego, CA, USA 
7Current address, J. Craig Venter Institute, La Jolla, CA, USA 
8Cluster of Precision Immunology, Sanofi, 640 Memorial Drive, Cambridge, MA, 02149, USA. 

 
† These authors contributed equally 
+ These authors jointly supervised this work 

 

Correspondence:  

Mario Falchi: mario.falchi@kcl.ac.uk 

Tim Spector: tim.spector@kcl.ac.uk 

 

Abstract  

The human gut is inhabited by a complex and metabolically active microbial ecosystem . 

While many studies focused on the effect of individual microbial taxa on human health, their 

overall metabolic potential has been under-explored. Using whole-metagenome shotgun 

sequencing data in 1,004 twins, we first observed that unrelated subjects share, on average, 

almost double the number of metabolic pathways (82%) than species (43%). Then, using 

673 blood and 713 faecal metabolites, we found metabolic pathways to be associated with 

34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while 

species showed less than 3,000 associations. Finally, we estimated that the microbiome was 

involved in a dialogue between 71% of faecal and 15% of blood metabolites. This study 

underlines the importance of studying the microbial metabolic potential rather than focusing 

purely on taxonomy to find therapeutic and diagnostic targets, and provides a unique 

resource describing the interplay between the microbiome and the systemic and faecal 

metabolic environments. 
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Introduction 

The human gut is home to trillions of microbes that form a complex community referred to as 

the gut microbiota. The metabolic activity of the gut microbiota is essential in maintaining 

host homeostasis and health, as proven, for instance, by the study of germfree animals1,2. 

Although the presence of a microbiota is vital, variations in its composition induce metabolic 

shifts that may result in alterations of host phenotype3. The gut microbiome is highly 

malleable and can be altered throughout lifespan mostly by environmental factors, such as 

diet and medication4–6. Although the external environment plays an important role in shaping 

the gut microbiome community, the host can affect the microbial ecosystem through its 

immune system, and has also an impact on the faecal metabolic content7–9. 

The joint study of microbiome and metabolome has been suggested as the most promising 

approach to evaluate host-microbiome interactions10. However, studying the metabolic 

holobiont is complex, and few studies have tackled this issue in humans at any scale. Our 

group previously used 16S rRNA gene amplicon data to confirm that the gut microbiome is 

exceptionally metabolically active, and that the faecal metabolome may improve our 

estimation of the gut microbiota impact on health11. However, it is not possible to fully 

capture the metabolic activity of the gut microbiome using 16S rRNA gene amplicon 

sequencing techniques alone, and the use of the more comprehensive whole shotgun 

metagenomic sequencing (WMGS) is necessary. Indeed, WMGS not only detects the 

taxonomic composition at higher resolution but also allows inferring its function, thus 

allowing the study of the metabolic potential of the microbial community.  

Here, we study the effect of this metabolic activity on host health. We assess the impact of 

the gut microbiome on both the gut and host systemic metabolism by using WMGS and 

untargeted faecal and blood metabolomics data. We find multiple associations between the 

gut microbiome (taxonomic composition and microbial metabolic function) and faecal and 

blood metabolites. In addition, we identify a number of microbial species and metabolic 

functions likely to play a leading role in the gut-systemic metabolic interplay. 

 

Results 

Microbial metabolic pathways are shared across subjects 

Whole metagenomic shotgun sequencing (WMGS) was performed on faecal samples 

provided by 1,054 volunteers from the TwinsUK registry, of which 1,004 surpassed quality 

control with an average of 39M high-quality microbial reads per sample (Methods, 

Supplementary Table 1). Taxonomic profiling identified, in the kingdoms of archaea and 

bacteria, 14 phyla, 24 classes, 37 orders, 74 families, 182 genera, and 580 species present 

in at least one sample (Methods). Each species was observed in a median of 2.7% of the 
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samples, and 12% of species were sample-specific (Figure 1). The most ubiquitous species 

were from the Subdoligranulum genus (unclassified species), Ruminococcus obeum, 

Ruminococcus torques, and Faecalibacterium prausnitzii, all detected in more than 98% of 

the samples (Supplementary Figure 1). Microbial metabolic detection (as described by the 

MetaCyc microbial metabolic pathways) identified 434 non-redundant pathways, which were 

detected in most samples (Methods). Each pathway was observed in a median of 91.6% of 

the samples, with 12% of the pathways present in all samples and only 2% being sample-

specific (Figure 1). 

Microbial metabolic pathways were widely shared between individuals, compared to their 

taxonomical composition. Indeed, multiple known species (up to 465, and 29 on average) 

identified from the WMGS data, plus a large number of unclassified species, contributed to 

the abundance of each microbial metabolic pathway (Supplementary Data 1). As a 

consequence, pathway prevalence within our dataset strongly correlated with the number of 

species in which it could be detected (Spearman’s ρ=0.34; P=9.4x10-9), i.e., pathways 

present in the largest number of species were also those with highest prevalence (and vice 

versa). When comparing pairs of unrelated individuals, we observed that, on average, they 

shared 82% of the pathways but only 43% of the species (paired Wilcoxon’s test P<2x10-16, 

Supplementary Figure 2, Methods).  

 

Microbiome and faecal metabolic content are strongly linked 

Faecal metabolomics and WMGS data were available for 479 individuals, and generated on 

the same faecal samples. 713 annotated metabolites were measured in more than 50 

individuals and tested for association with the gut microbiome at both taxonomic and 

functional levels using PopPAnTe12, which uses a variance component framework and the 

matrix of the expected kinship between each pair of individuals to model the resemblance 

between family members. Sex and age at sample collection were included as covariates 

(Methods, Figure 2). As expected, both the composition of the gut microbiome and its 

metabolic function were widely associated with the faecal metabolic content. At a 5% false 

discovery rate (FDR) we found 16,133 associations with microbial metabolic pathways and 

2,493 associations with microbial species (Supplementary Data 2 and 3). In particular, 

99.7% of the metabolic pathways were significantly associated with 95% of the faecal 

metabolites, while 90% of the species were associated with 82% of the faecal metabolites 

(Methods; Figure 2). We observed 48% and 51% positive associations with microbial 

metabolic pathways and species, respectively. On average, each metabolite level was 

associated with 4 species and 24 pathways. In addition, 145 (20%) metabolites were 

associated to a single species, while only 50 of them (7%) were associated to a single 

pathway. Five microbial species played a major metabolic role and were independently 
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associated with 10% of the faecal metabolites (Supplementary Figure 3): unclassified 

Subdoligranulum spp. (149 metabolites), Akkermansia muciniphila (106 metabolites), 

Roseburia inulinivorans (105 metabolites), Methanobrevibacter smithii (96 metabolites), and 

Roseburia intestinalis (92 metabolites). In contrast, the top-five microbial metabolic 

pathways were associated with more than 53% of the faecal metabolites, with the pathways 

of L-rhamnose degradation I, Kdo transfer to lipid IVA III (Chlamydia), CDP diacylglycerol 

biosynthesis I and II and NAD biosynthesis I from aspartate associating with 226, 218, 215, 

215, and 206 faecal metabolites, respectively.  

We calculated the enrichment of the associated metabolites for metabolic super-pathways 

(as annotated by Metabolon, Inc.; Methods). Faecal metabolites associated with microbial 

species were enriched for a decrease in amino acids (PAGE adj P=1.6x10-4) and an 

increase in lipids (PAGE adj P=1.9x10-3), while metabolites associated with metabolic 

pathways were enriched for a decrease in lipids (PAGE adj P=8.0x10-5), and an increase in 

both nucleotides (PAGE PAGE adj P=0.02) and carbohydrates (PAGE adj P=0.03).  

B vitamins in faeces were strongly associated with both species and metabolic pathways, 

with riboflavin (vitamin B2), nicotinate (vitamin B3), pantothenate (vitamin B5), pyridoxine 

(vitamin B6), biotin (vitamin B7) associated with 9 to 27 species and with 48 to 155 microbial 

pathways (Supplementary Data 2 and 3). Finally, 16 associations were observed between 

faecal vitamin E (alpha, beta, gamma and delta tocopherol) and species/pathways. 

Eleven of the 82 drug or drug-derived metabolites detected by the Metabolon platform in 

faeces were present in at least 50 samples with matching metagenomics data. At the 

species level, we observed six associations with three of these metabolites passing an FDR 

threshold of 5% (Supplementary Data 2). One association was between 3-hydroxyquinine (a 

degradation product of quinine, used against malaria, but also contained as a flavouring in 

beverages, including tonic water) and unclassified Anaerotruncus spp. (β=0.68, SE=0.18. 

P=4.02x10-5). Two negative associations were identified between salicylic acid (a precursor 

of aspirin) and Methanobrevibacter smithii (β=-0.53, SE=0.17, P = 2.21x10-4) and 

unclassified Anaerotruncus spp. (β=-0.62, SE=0.17, P=2.13x10-4). Finally, N-

carbamylglutamate (a drug that can be used for the treatment of hyperammonemia) was 

associated with F. prausnitzii (β=0.68, SE = 0.18, P = 2.21x10-4), Odoribacter splanchnicus 

(β=0.88, SE=0.25, P=3.93x10-4), and Blautia hydrogenotrophica (β=-0.57, SE=0.15, P = 

1.17x10-4). At FDR 5%, a total of 101 associations were observed between microbial 

metabolic pathways and faecal metabolites annotated as drugs or and drug-derived 

metabolites (Supplementary Data 3). Namely: 3-(N-acetyl-L-cystein-S-yl) acetaminophen (26 

associations, metabolite derived from paracetamol), 3-hydroxyquinine (1 association), 4-

acetamidophenol (24 associations, metabolite derived from paracetamol), carboxyibuprofen 



 

5 
 

(2 associations, metabolite derived from ibuprofen), N-carbamylglutamate (8 associations) 

and salicylic acid (40 associations). 

 

 

The microbiome associates with host systemic metabolites 

Blood metabolomics profiling was available for 859 individuals with WMGS data. Faecal and 

blood samples were collected, on average, 0.9 years apart, with 41% of our samples 

collected within one week, and 91% within two years (Supplementary Figure 4). Intra-

individual correlation analysis of tested metabolites showed a good correlation between 

samples collected up to 2 years apart (N=149, mean Pearson’s ρ=0.53, SD: 0.12, 1st-3rd 

interquartile range: 0.47-0.60), as confirmed by a permutation analysis (Pempirical=1x10-4, 

Methods). We further observed that metabolomics stability persists over longer periods of 

time (Supplementary Table 2), in line with previous literature suggesting that human 

metabolic profiles are conserved for up to seven years13. 

673 annotated metabolites (including 369 metabolites also measured in faeces) were 

measured in more than 50 individuals, and used in this study. At a 5% FDR, we identified 

2,030 associations with microbial metabolic pathways and 254 associations with microbial 

species, of which 44 and 43% were positive, respectively (Figure 2; Supplementary Data 4 

and 5). In particular, 86% and 34% of the microbial metabolic pathways and species, 

respectively, associated with 33% and 24% of the studied blood metabolites, respectively, 

with a total of 309 unique blood metabolites (46%) associated with the microbiome. The 

species showing the largest number of associations with blood metabolites were 

Lactobacillus acidophilus (N=30), and Lactobacillus fermentum (N=14; Supplementary 

Figure 5). The metabolite sebacate showed the highest number of associated species 

(N=11), followed by tartronate (N=9), phenylacetylglutamine (N=8), and p-cresol sulfate 

(N=6). On average, each blood metabolite was associated with two species (with 118 

species associating with a single metabolite) and 10 metabolic pathways (with 93 pathways 

associating with a single metabolite). The three microbial metabolic pathways showing the 

largest number of associations with blood metabolites were the super pathways of L-

phenylalanine and L-alanine biosynthesis, and the pathway of urate biosynthesis/inosine 5'-

phosphate degradation (30, 26, and 24, respectively). Four blood metabolites were 

associated with more than 100 microbial metabolic pathways: phenylacetylglutamine 

(N=143) and p-cresol-glucuronide (N=102), two known gut microbial-derived metabolites, as 

well as tyramine O-sulfate (N=130), that can be synthesized by a Eubacterium enzyme14, 

and 1,5-anhydroglucitol (N=129), that is present in a wide variety of food products.  

 

Pathways have a broader metabolic footprint than species 
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Overall, we identified about seven times more associations between faecal and blood 

metabolites and microbial metabolic pathways than microbial species. We observed that 

pathways found in a larger number of species have a stronger impact on the metabolome, 

with a significant positive correlation between the number of species contributing to each 

pathway and the number of associations between the pathway and both faecal and blood 

metabolites (Spearman’s ρ=0.27, P=2x10-6, and ρ=0.33, P=1x10-9, respectively).  

Our results confirmed a wide network of associations between the gut microbiome and the 

faecal metabolome, which extends to the systemic metabolome. At a 5% FDR, we identified 

360 microbial metabolic pathways associating with 679 faecal and 222 blood metabolites, 

and 233 microbial species associating with 582 faecal and 160 blood metabolites. We 

observed that age at the sample collection had a negligible effect on the number of 

significant associations identified between faecal and blood metabolites and both microbial 

metabolic pathways and species (Methods, Supplementary Table 3, Supplementary Data 6-

9, Supplementary Figure 6). Similarly, correction for drug intake (antibiotics, metformin, and 

proton-proton inhibitor -- PPI), which was assessed in a small subset of our study sample 

(N=411, Methods), appeared to minimally affect the number of significant associations 

between the metagenome and the faecal and blood metabolome (Supplementary Table 4, 

Supplementary Data 10-13).  

Notably, in both faeces and blood, the majority of the metabolic pathways were associated 

with metabolites apparently unrelated to their functions. Indeed, only 999 out of 4,891 unique 

faecal metabolite-pathway associations (20%) and 186 out of 419 unique blood metabolite-

pathway associations (44%), respectively, linked 155 faecal and 42 blood metabolites to 

pathways either producing or consuming them (Methods). 

Most microbial metabolic pathways (85%) associating with one or more metabolites in the 

faeces also associated with one or more metabolites in blood (Supplementary Table 5). In 

contrast, the majority of microbial species only associated with faecal metabolites alone 

(58%, Supplementary Table 5). Still, 31% of species showed association with both faecal 

and blood metabolites, suggesting important effects on host systemic metabolism for this 

subset. Specifically, 4,861 pairs of faecal-blood metabolites co-associated with the same 

species and 108,565 pairs with the same metabolic pathway. Among these associations, 

152 pairs involved exactly the same named metabolite in both faeces and blood (145 with 

metabolic pathways, and only seven with species; Table 1, Supplementary Data 14), while 

113,274 pairs involved a different metabolite in faeces and blood (unique pairs N=27,608). 

Sebacate, threonate, and p-cresol sulfate, in both faeces and blood, showed the largest 

number of associations with pathways and with species in both faeces and blood.  

 

The microbiome interfaces faecal and systemic metabolism  
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We further investigated the full set of faecal-blood co-associating pairs of metabolites to 

better understand whether the observed associations were randomly coincident at the same 

species or pathway, or if they were suggesting interplay between the gut and systemic 

environments. We assessed, through simulations, the probability that the microbiota was 

involved in the dialogue between faecal and blood metabolites (Methods). We hypothesised 

that, if the species (or metabolic pathway) was involved in the dialogue between faecal and 

blood metabolites, these were expected to more strongly correlate in individuals for which 

the species (or metabolic pathway) was present than in the remaining samples. Significantly 

higher correlations were observed between co-associated faecal-blood metabolite pairs 

when species (or metabolic pathways) were detected (PEmpirical = 1 × 10−3 for species, and 

PEmpirical = 0.03 for pathways). These results suggested that at least some of the observed 

faecal and blood metabolite associations were likely not randomly coincident at the same 

species (or pathway), thus supporting the analysis of this subset of faecal metabolite - blood 

metabolite - species/pathway trios with the P-gain approach15 (Supplementary Figure 7). 

The P-gain statistic compares the increase in strength of association with the species (or 

pathway) when using the metabolite ratios compared to the smaller of the two P values 

when using the two metabolite abundances individually. A strong reduction in P value 

indicates that two metabolite levels may be linked by a mechanism that involves the gut 

microbiota. To carefully assess a significance threshold for the P-gain statistics in our 

dataset, we estimated its empirical null distribution through simulations. We obtained a P-

gain threshold of 73 for species and of 42 for metabolic pathways at an experimental-wide α-

level of 0.05 (Methods). P-gains passing these thresholds are reported in Supplementary 

Data 15 and 16, and included 31% of the P-gains with species (1,325/4,232 co-associated 

metabolite pairs) and 19% with microbial metabolic pathways (16,839/88,452 co-associated 

metabolite pairs). The P-gain statistics suggested a potential dialogue between 36% of the 

faecal metabolites and 5% of the blood metabolites, involving 12% of the species (N=29). 

This communication was wider with the microbial metabolic pathways, involving 70% of the 

faecal and 14% of blood metabolites, and 67% of the pathways (N=247).  

At the species level, unclassified Subdoligranulum spp. accounted for 49% of the putative 

communications, and F. prausnitzii, R. inulinivorans, M. smithii, E. rectale, and A. 

muciniphila together contributed to a further 36%. In contrast, the results at the pathway 

level were not dominated by a limited number of pathways, with the top six contributing only 

towards 24% of the observed dialogue. 

 

Methanogens associate with adiposity  

Threonate in blood showed the highest P-gains and a large number of significant faecal-

blood associations (with 61 faecal metabolites, including threonate levels in faeces). All 
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associations involved M. smithii, the main archeon in the human gut16, present in 62% of our 

metagenomic samples. Threonate is produced from vitamin C under oxidative conditions17. 

In both blood and faeces, threonate was also associated with two microbial pathways linked 

to methanogenesis: coenzyme factor 420 biosynthesis (β=0.94, SE=0.18, P=2.2x10-7) and 

methanogenesis from H2 and CO2 (β=0.93, SE=0.18, P=3.3x10-7), to which M. smithii 

contributes, in our sample, for about 47% (the remaining attributable to Methanosphaera 

stadtmanae, < 1%, and to unclassified species, 53%; Methods). The role of M. smithii, and 

of other methanogenic microbes in human health is still unclear, however, several studies 

suggested that its depletion is linked to obesity18,19. We found it to be significantly negatively 

associated with the percentage of visceral fat (β=-0.09, SE=0.04, P=0.013; Supplementary 

Table 6). We also observed a significant negative association (P<0.05/3=0.017, 

Supplementary Table 6) between blood threonate and three measures of adiposity, namely 

BMI (β=-0.48, SE=0.12, P=3.2 x10-5), and the percentage of total body (β=-0.41, SE=0.10, 

P=4.3 x10-5) and visceral fat (β=-0.48, SE=0.11, P=2.6 x10-5), while faecal threonate was not 

associated with any measure of adiposity (P>0.05). Moreover, 31 out of 61 faecal 

metabolites whose dialogue with blood threonate via M. smithii was confirmed by the P-gain 

statistic were significantly associated with measures of adiposity (N=49, 

P<0.05/(61x3)=1.3x10-3; Supplementary Data 17). 

 

Discussion 

Microbiome studies are mainly focused on the effect of individual microbial taxa on human 

health, while the metabolic potential of microbes has been largely overlooked.  

A previous report on a small sample of female subjects (N = 18) showed that, despite a high 

β-diversity at the phyla level, between 26-53% of the ‘enzyme’-level functional groups were 

shared among samples20. Higher similarity of microbial metabolic pathways vs organismal 

abundances was also observed by the larger (N = 242) Human Microbiome Project21. This 

may be explained by the high redundancy of metabolic pathways across different microbial 

species22. Our larger study validates these findings, and estimates that 12% of the 

microbiome metabolic potential (as described by the MetaCyc microbial metabolic pathways) 

is present in all individuals. More in general, a random pair of unrelated subjects shares on 

average 82% of their microbial metabolic pathways, while this is the case for only 43% of the 

species. We also observed that microbial metabolic pathways are highly redundant, with up 

to 465 identified species (and a possibly large number of unknown ones) sharing the same 

metabolic pathway.  

Using 713 faecal and 673 blood metabolites measured by Metabolon, Inc. and WGMS data, 

we conducted a microbiota-wide association study. Our results showed that the gut 

metagenome (both at the species and at the metabolic pathway level) widely associates with 
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both the gut and host systemic metabolism. At 5% FDR, we identified association between 

the faecal metabolites and 90% of the microbial species and 99.7% of the microbial 

metabolic pathways. In particular, metabolic pathways were significantly associated with 

95% of the faecal metabolites, while microbial species were associated with 82% of the 

faecal metabolites. The results at the taxonomic level were comparable to those previously 

reported in a recent study on the TwinsUK cohort leveraging 16S rRNA gene amplicon 

data11. In both studies, we observed that over 90% of microbes were associated with a vast 

proportion of the measured gut metabolites (>80%). The WMGS data used in this study 

allowed us to extend these observations, by improving the precision of the taxonomic 

associations at the species level rather that at the genus level. For instance, we were able to 

identify five species interacting with at least 10% of the studied faecal metabolites. Four of 

them (Subdoligranulum spp., A. muciniphila, R. inulinivorans, and R. intestinalis) were 

present in at least 80% of the population and are already known for their ability to affect 

faecal metabolic content23–26. Additionally, the WMGS data allowed the inference of 

microbial metabolic pathways and their association with the faecal metabolome, which could 

not be performed on the previous TwinsUK study. Interestingly, among the numerous 

microbiome-metabolome associations identified in this study, a large proportion was 

involved with the metabolism of vitamins. For instance, we observed over 700 associations 

with vitamin B-related metabolites. While B vitamins are mostly provided to the host through 

diet, these can also be synthesised by lactic acid bacteria27. Our results show a similar 

number of positive and negative associations with vitamin B metabolites, suggesting that the 

microbiome is not only involved in the biosynthesis of vitamins B but also in its degradation. 

Drugs can be metabolised by the gut microbiota, and they may affect both the metabolic 

activity of the gut microbiome and its composition28,29. In our analyses, we identified 

associations between six species and 101 microbial metabolic pathways and six out of 

eleven drugs and drug-related metabolites detected in faeces through the Metabolon 

platform in a sufficient number of subjects. 

In this study, we also evaluated the impact of the gut microbiome on the host systemic 

metabolism. We showed that nearly half of the blood metabolites (N=309, 46%) were 

associated with microbial species and/or metabolic pathways. More exactly, 34% of the 

species and 86% of the pathways were associated with 24% and 33% of the metabolites, 

respectively. Two bacteria stood out as playing a major role: L. acidophilus (5%) and L. 

fermentum (2%), both known for their probiotic properties30–32. Notably, a previous study on 

the TwinsUK cohort observed that 72% of blood metabolites were under host genetic 

influence33. Interestingly, 144 out of 309 microbiome-associated blood metabolites (47%) 

identified in our study were not heritable. Heritabilities for the remaining 165 blood 

metabolites ranged from 10% to 78%, with a mean value of 47% (Supplementary Data 18). 
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This suggests that, despite the widespread host genetic effects on blood metabolites, the gut 

microbiome might play a role on the systemic metabolism that is independent from the host 

genome.  

In our dataset, composed predominantly of active middle-aged women, we observed that 

associations between the gut microbiome and both the faecal and systemic metabolisms 

were minimally impacted by age. This is in line with previous observations that show that, in 

absence of external perturbation, the gut microbiome of healthy adults remains relatively 

stable for years34,35. We also observed, in a small subset of our study sample, that 

antibiotics, metformin, or PPI intake had a minimal effect on the associations between the 

microbiome and the metabolome, although this is likely due to the limited number of 

individuals taking any of these three drugs. 

Bile acids (BAs) metabolism has been associated with gut microbiota composition in many 

studies. Indeed, the gut microbiota shapes the composition of the BA pool (by hydrolysis and 

hydroxy group dehydrogenation of primary BAs to secondary BAs) and BAs can affect the 

growth of certain gut bacteria36–38. In faeces, 5% and 3% of the total number of associations 

between faecal metabolites and metabolic pathways and species, respectively, were with 

BAs, over 80% of which were with secondary BAs. In blood, 6% of all associations with 

species and 3% of all associations with metabolic pathways were with BAs. Again, 

secondary BAs were more associated (over 70% of all BAs associations) than primary BAs 

with both species and metabolic pathways.  

Sebacate was the faecal metabolite that associated with the greatest number of species and 

metabolic pathways. Sebacate metabolism has been poorly studied. However, a 

pharmacokinetic study of sebacate in rats has revealed, post-ingestion, a low systemic 

bioavailability, suggesting that this may be explained by direct beta-oxidation of sebacate 

(i.e., sebacate degradation) by the liver, and that only traces of the compound could be 

detected in faeces39. Another study on rats also revealed the absence of sebacate in faeces 

after intravenous injection of the radioactive compound40,  indicating that it is unlikely that 

systemic sebacate level affects the gut microbiome through its excretion in the gut. 

Sebacate can be used as primary carbon source by some gut commensals (Pseudomonas 

aeruginosa and Pseudomonas multilivoran)41. Thus, the observed low post-ingestion level of 

sebacate in both faeces and blood in rats, and the numerous associations identified by our 

study between faecal and blood sebacate and the gut microbiome may also be due to its 

utilisation by gut bacteria as carbon source. Endogen sebacate, naturally found in blood, can 

be synthesized, in rats, through omega-oxidation in starvation periods, before undergoing 

beta-oxidation to produce succinate and be used as energy source through 

neoglucogenese42,43. It was also reported that gut bacteria may affect liver beta-oxidation 

through modulation of the immune system in mice44. Therefore, an 
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alternative/complementary hypothesis might be that the high number of associations 

observed between blood sebacate and the gut microbiome might picture the effect that the 

gut microbiome exerts on liver functions45.  

Altogether, our results indicate an intense interplay between the gut microbiome and its host. 

While only a small number of metabolites were found to be associated to a same species (or 

pathway) in both metabolic environments (N=152), we detected more than 27,000 unique 

pairs of faecal-blood metabolites which were associated with the same microbial species 

and/or metabolic pathway (co-associated metabolites). The limited size of our study sample 

makes it unsuitable to test causality using a Mendelian randomisation method46. 

Nonetheless, using two complementary approaches, we showed that, first, co-associated 

metabolites are more strongly correlated in the presence of the associated species or 

metabolic pathways (PEmpirical = 1x10-3 and 0.03, respectively), and, second, that a significant 

dialogue, as assessed through the P-gain statistic, exists between 71% of the faecal and the 

15% of blood metabolites, involving 12% of the species and 67% of the pathways. We 

highlight four potential mechanisms that could underlie the interplay between these two 

metabolomic environments (Figure 3). First, the interplay could be triggered by the metabolic 

activity of the microbiome47. Second, the gut microbiome could mediate metabolite transfer 

through the gut barrier by affecting its integrity, as suggested, for example, by the 

associations involving the same named species and metabolites in both blood and faeces 

(Table 1). Indeed, these associations showed opposite direction of effects, suggesting that 

microbes may modulate the absorption of the metabolites by the host rather than its 

bioavailability. Third, microbial growth could be impacted by secretion of metabolites by the 

host within the gut as extensively discussed regarding bile acids37,48. Fourth, the host-gut 

microbiome interplay could also be triggered by non-metabolic interactions including 

microbial secretion of peptides or direct cell-cell interactions49, which could not be 

investigated in the present study.  

We observed about seven times more associations between metabolites and microbial 

metabolic pathways than species. This trend was even stronger when studying the faecal-

blood dialogue, with nearly 13 times more co-associated metabolite pairs identified by 

means of the P-gain statistics for microbial metabolic pathways than species. These results 

support the claim that looking at functions rather than taxonomy alone gives a better 

appreciation of the true gut microbiome metabolic activity10. We suggest that this large 

number of associations with metabolic pathways is likely due to functional redundancy. 

Nonetheless, the majority of the metabolic pathways, especially in faeces, were associated 

with metabolites apparently unrelated to their functions, with only 20 and 44% of the faecal 

metabolite-pathway associations and blood metabolite-pathway associations linking 

metabolites with the MetaCyc metabolic pathways either producing or consuming them. 
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Therefore, we cannot exclude that part of the observed associations with pathways are 

driven by the concerted action of microbial sub-communities rather than only by the specific 

function of the pathways.  

This study has some limitations. First, we used data from a cohort including only individuals 

of European ancestry and composed predominantly of middle-aged woman (96%, average 

age 65 years old). Therefore, our results may not generalise to diverse populations. Ideally, 

data collected in other larger cohorts and meta-analyses would be necessary to confirm our 

novel findings. Second, despite the large-scale sample, this is a cross-sectional study, and 

no causal relationship between the microbiome and the metabolome can be inferred from 

the identified associations. Third, while WMGS data allow us to infer the functional capability 

of the microbial community, it does not provide information on which microbial metabolic 

pathways are actually active. Metatranscriptomic data will help in bridging this gap, also 

allowing discerning between associations with microbial metabolic pathways that are 

connected to their specific function or that are simply a proxy for microbial sub-communities. 

Forth, stool consistency and microbial cell count, which can have an influence on the gut 

microbiota composition50,51, were not recorded in this study. Finally, the results obtained in 

this study are not quantitative, since all analyses were carried out using relative 

abundances. This imply that the identified associations report the effect of microbial 

species/metabolic pathways proportion rather than of their actual concentration. 

 

In conclusion, we first confirmed the key role played by the microbiome on the faecal and 

host systemic metabolism. Next, we described the microbiome effect on the interplay 

between the two metabolic compartments. We observed that only a few key species, but 

many common microbial functions, are substantially associated with faecal and blood 

metabolic profiles. Therefore, microbial metabolic pathways should be considered beyond 

their primary function and interpreted as proxies for microbial communities, interacting with 

their surrounding environment. Future treatments designed to improve host health through 

the modulation of the gut microbiome should optimally target functionally-related microbial 

communities rather than single organisms. Moreover, with this study, we make available to 

the scientific community a unique resource providing a detailed investigation of the dialogue 

between the microbiome and the faecal and blood metabolome, which will help in 

pinpointing potential biomarkers and targets capable of modulating the abundances of 

metabolites and of species and functions relevant for human health for further investigations, 

and inform microbiology research on potential new metabolic functions of the gut 

microbiome. Results are made fully available through extensive Supplementary Materials 

and through a Web portal (http://www.metabgut.org) where they can be queried and 

visualised both graphically and as interactive tables.  
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Methods 

TwinsUK cohort 

The TwinsUK adult twin registry includes about 14,000 subjects, predominantly females, 

with disease and lifestyle characteristic similar to the general UK population52. 

Metagenomics sequencing was performed on 1,054 randomly selected samples, while 

faecal and blood metabolomics was assessed in 479 and 859 individuals with 

metagenomics data, respectively.  

Twins collected fecal samples at home, and the samples were refrigerated for up to 2 days 

prior to their annual clinical visit at King’s College London, when they were stored at −80°C 

for an average of 2.3 ± 1.0 years at -80°C before processing. Both faecal metabolomics and 

WMGS data were generated on the same faecal samples. Blood samples, collected during 

the clinical visit, were stored at −80°C for an average of 1.8 ± 1.2 years before processing. 

Faecal and blood samples were collected, on average, 0.9 ± 1.3 years apart. 

St. Thomas’ Hospital Research Ethics Committee approved the study, and all twins provided 

informed written consent.  

 

DNA extraction, library preparation, and sequencing  

A 3-mL volume of lysis buffer (20 mM Tris-HCl pH 8.0, 2 mM Sodium EDTA 1.2% Triton X-

100) was added to 0.5 g of stool sample, and the sample vortexed until homogenized. A 1.2 

mL volume of homogenized sample and 15 mL of Proteinase K (Sigma Aldrich, PN.P2308) 

enzyme was aliquoted to a 1.5 mL tube with garnet beads (Mo Bio PN. 12830-50-BT). Bead 

tubes were then incubated at 65°C  for 10 min and then 95°C  for 15 min. Tubes were then 

placed in a Vortex Genie 2 to perform bead beating for 15 min and the sample subsequently 

spun in an Eppendorf Centrifuge 5424. 800 uL of supernatant was then transferred to a 

deep well block and DNA extracted and purified using a Chemagic MSM I (Perkin Elmer) 

following the manufacturer’s protocol. Zymo Onestep Inhibitor Removal kit was then 

performed following manufacturer’s instructions (Zymo Research PN. D6035). DNA samples 

were then quantified using Quant-iT on an Eppendorf AF2200 plate reader. 

Nextera XT libraries were prepared manually following the manufacturer’s protocol (Illumina, 

PN. 15031942). Briefly, samples were normalized to 0.2 ng ml-1 DNA material per library 

using a Quant-iT picogreen assay system (Life Technologies, PN. Q33120) on an AF2200 

plate reader (Eppendorf), then fragmented and tagged via tagmentation. Amplification was 

performed by Veriti 96 well PCR (Applied Biosystems) followed by AMPure XP bead cleanup 

(Beckman Coulter, PN. A63880). Fragment size for all libraries were measured using a 

Labchip GX Touch HiSens. Sequencing was performed on an Illumina HiSeq 2500 using 
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SBS kit V4 Chemistry, with a read length of 2x125 bp. Sequencing of 1,054 samples yielded 

an average number of reads of 54M per sample before quality control. 

 

Taxonomic profiling, and functional annotation 

Paired-end reads were processed using the YAMP pipeline (v. 0.9.1)53. Briefly, we first 

removed identical reads, potentially generated by PCR amplification54. Next, reads were 

filtered to remove adapters, known artefacts, phix174, and then quality trimmed (PhRED 

quality score < 10). Reads that became too short after trimming (N < 60 bp) were discarded. 

We retained singleton reads (i.e., reads whose mate has been discarded) in order to retain 

as much information as possible. Contaminant reads belonging to the host genome were 

removed (build: GRCh37).  Low quality samples, i.e., samples with less than 15M reads 

after QC were discarded (N=4). Next, MetaPhlAn255 (v. 2.6.0) and the HUMAnN2 pipeline56 

(v 0.10.0), both included into the YAMP pipeline, were used to characterise the microbial 

community composition and its functional capabilities, respectively. Functional capabilities of 

the microbial community were described by the MetaCyc metabolic pathways, and assessed 

using the UniRef90 proteomic database annotations. HUMAnN2 was also used to evaluate 

the percentage of species contributing to the abundance of each microbial metabolic 

pathway. 

A principal component analysis evaluated using the taxonomic profiling was used to identify 

and discard ecologically abnormal samples (N=37). If sample scores were greater than 3 

times the standard deviation on one of the first 10 principal components the sample was 

labelled as outlier and discarded. Finally, we removed individuals not of European ancestry 

(N=9, self-reported via questionnaire) resulting in 1,004 samples with an average number of 

reads of 39M (39 males, 965 female), all living in the UK at the time of specimen collection 

(Supplementary Table 1). The dataset included 161 monozygotic twin pairs (N=322), 201 

dizygotic twin pairs (N=402), and 280 singletons.  

Taxonomic and microbial metabolic pathways relative abundances were arcsine square-root 

transformed, filtered for outliers using the Grubbs outlier test (significance threshold P=0.05), 

and standardised to have zero mean and unit variance57. Under the assumption that a zero 

relative abundance meant impossibility to detect the taxum/pathway rather than its absence, 

zero values were considered as not available (NA). 

 

Metabolomics profiling 

Metabolite ratios were measured from fecal samples and blood by Metabolon, Inc., 

Morrisville, North Carolina, USA, by using an untargeted UPLC-MS/MS platform. Details to 

help reproducing the present findings using comparable non-commercial methodologies are 

available in the Supplementary Methods and in Zierer et al.11, for faecal metabolome, and 
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Long et al.33, for blood metabolome. Briefly, faecal samples were lyophilised then extracted 

at a constant per-mass basis while blood samples were used directly for extraction at a 

constant per-volume basis. Proteins and other macromolecules were removed using 

methanol precipitation. Samples were run using four different methods, against three 

controls (a pooled sample, extracted water -blank- and a cocktail of standards). Metabolites 

were identified by comparison to a referenced library of chemical standards58, and area-

under-the-curve analysis was performed for peak quantification and normalised to day 

median value. To ensure high quality of the dataset, control and curation processes were 

subsequently used to ensure true chemical assignment and remove artefacts and 

background noise. Details regarding the platform used for each individual metabolite are 

provided as Supplementary Data 19 and 20. A total of 1,116 metabolites were measured in 

the 480 faecal samples, including 850 of known chemical identity used in this study. In 

blood, a total of 902 metabolites were measured in 859 individuals, 687 of which had known 

chemical identities. Metabolites were scaled by run-day medians, and log-transformed. 

Faecal metabolites were further scaled to have mean zero and standard deviation one. 

Metabolites that were indicated as below detection level (zero) were considered as not 

available (NA).  

 

Temporal stability of the metabolic profiles 

The blood metabolomic data used in this study belonged to a larger set of 2,070 individuals, 

with longitudinal measurements up to three time points33, which we used to assess the blood 

metabolomic stability over time.  

In line with the difference observed between the metagenomic and blood metabolomic data 

used in this study, where about 90% of our samples were collected no more than 2 years 

apart (Supplementary Figure 4), we extracted all the individuals having two measurements 

within a 2-year time frame (N=149), and ensuring that their metabolomic profiles were 

assessed in the same batch in order to limit potential variability due to batch effects. We 

then removed, for each tested metabolite’s profile, outliers (values further away than 3 

standard deviations from the dataset mean), scaled the data to have mean zero and 

standard deviation one, and assessed the intra-individual correlations using the Pearson’s ρ. 

To confirm that the observed correlations were not due to chance, we then built 10,000 

datasets including 149 randomly paired metabolomic profiles from unrelated subjects 

extracted from the whole metabolomics dataset, ensuring that each pair was measured in 

the same batch. We then used the Wilcoxon’s test to assess the probability of observing a 

greater average intra-individual correlation in the 149 individuals with measurements taken 2 

years apart compared to that observed the random sets. To further verify the stability of the 
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intra-individual correlation over larger time frames, we evaluated the intra-individual 

correlation for measurements taken up to 10 years apart (and within the same batch). 

 

Shared microbiome between unrelated individuals 

For all individuals in our datasets, we codified the absence/presence of a microbial 

species/metabolic pathways with 0 and 1, respectively. Then, after having identified all 

possible pairs of unrelated individuals (N=1,006,288), we assessed for each pair the 

percentage of shared species/pathways as the ratio between the number of 

species/pathways which were present in both members and the number of 

species/metabolic pathways which were present in at least one of them. The distribution of 

percentages obtained for species and pathways across all pairs were then compared using 

a paired Wilcoxon’s test. 

 

 

 

Metagenome-wide association study 

Associations of faecal and blood metabolites with species and microbial metabolic pathways 

transformed relative abundances were carried out using PopPAnTe (v, 1.0.2)12, which uses 

a variance component framework and the matrix of the expected kinship between each pair 

of individuals, generated using the pedigree information, to model the resemblance between 

family members. Sex and age at the sample collection were included as covariates. Only 

pairs of metabolites-species/pathways with at least 50 observations were tested for 

association. In these analyses, we used all the available samples with faecal metabolites 

(N=479) and with blood metabolites (N=859). The significance of the associations was 

evaluated by comparing the likelihood of a full model, including the species/metabolic 

pathways in the fixed effect, and the likelihood of a null model where these effects were 

constrained to zero. Associations passing a false discovery rate (FDR) threshold of 5% were 

considered significant. FDR was evaluated using Storey’s method59. 

 

Age effect 

To assess the effect of age in our analyses, associations of faecal and blood metabolites 

with species and microbial metabolic pathways transformed relative abundances were 

carried out using PopPAnTe, with only pairs of metabolites-species/pathways with at least 

50 observations tested for association. We compared, in the same dataset, the results of two 

models: one including only sex as covariate, and the other including both sex and age at 

sample collection. In both models, associations passing an FDR threshold of 5% and having 
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concordant direction of effects in the two experimental settings were considered as 

unaffected by age. 

 

Effect of medication 

Self-reported use of antibiotics, proton-proton inhibitor (PPI) drugs, and metformin was 

available for 411 individuals with metagenomic data. Only 13, 26 and 33 out of these 411 

individuals were using metformin, PPI, and antibiotics, respectively, with two individuals 

taking both metformin and PPI, and two other individuals taking both PPI and antibiotics, 

while 343 individuals (84%) were not taking any of these medications. We compared the 

results obtained using an association model that included only sex and age at the sample 

collection as covariates with those obtained, in the same set of individuals, using an 

association model which had also information on the use of the three reported drugs (each 

drug included as fixed effect in the PopPAnTe linear mixed model and coded as: 1 = taking 

the drug or 0 = non taking the drug). Associations passing an FDR threshold of 5% in both 

experimental settings and showing concordant direction of effects were considered 

unaffected by these drugs. 

 

Enrichment analysis 

Enrichment analysis was performed using the super-pathways annotation provided by 

Metabolon, Inc. Metabolites were grouped in the following eight super-pathways: amino acid, 

carbohydrate, cofactors and vitamins, energy, lipid, nucleotide, peptide, and xenobiotics. As 

done previously11, enrichment P values were evaluated using the parametric analysis of 

gene set enrichment (PAGE) algorithm60 using 10,000 random permutations as implemented 

in the piano R package61 (v 1.20). The PAGE algorithm, being based on a two-tailed Z 

score, can evaluate whether each super-pathway is significantly enriched for an increase or 

a decrease of the amount of metabolites which it includes. 

 

Linking metabolites to MetaCyc metabolic pathways 

We downloaded from the MetaCyc62 Web interface (version 22.6) the list of all compounds 

(univocally identified using the MetaCyc compound identifier, and, when available, the InChi 

Key). Then, using the MetaCyc SmartTables function (option: pathways of compound; 

https://metacyc.org/PToolsWebsiteHowto.shtml#TAG:__tex2page_sec_6), we generated a 

table assigning them to the pathways they belonged to. Finally, for all the metabolites 

associated to at least one pathway in faeces and/or blood, we generated a second table 

listing their InChi Key, when known. We were able to annotate 627/679 and 198/222 faecal 

and blood metabolites, respectively. An inner joint of the two tables, using the InChi Key as 

key, highlighted that 155 and 42 of the faecal and blood metabolites annotated in the 
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previous step (and involved in 4,891 and 419 unique associations, respectively) were 

assigned to at least one of the MetaCyc metabolic pathways. This table was used to 

evaluate the proportion of metabolites associated to pathways that also included the 

metabolites as substrate or product. 

 

Gut-host metabolic dialogue 

We selected all pairs of metabolites that were observed in at least 100 individuals and were 

associated with the same species/metabolic pathway in both environments (co-associated 

metabolites) and used two approaches to detect and validate the presence of an interplay 

between the gut and the systemic host metabolism.  

First, we hypothesised that, if a species (or pathway) is involved in the dialogue between 

faecal and blood metabolites, these metabolites would be expected to be more strongly 

correlated in the presence of the species (or pathway) than in its absence. We used the 

missingness observed in our WMGS data to test this hypothesis. Indeed, while we are not 

able to measure it, we can confidently assume that a variable proportion of missing data in 

our dataset are likely to include truly missing species (or pathways). We tested this 

hypothesis through simulations. We selected all pairs of co-associated metabolites 

interacting with species (or pathways) with at least 30 missing observations, and built 1,000 

random datasets which included 1,000 pairs of metabolites matched by correlation and 

sample size to the original set of co-associated metabolites. These new pairs were then 

combined with species (or pathways) having the same missingness pattern of the actual 

associated species (or pathways). Then, we used these simulated datasets to assess the 

probability of observing increased correlation between metabolites when the species (or 

pathway) was present in the co-associated metabolites compared to the matched pairs.  

Second, we evaluated, for each pair of co-associated metabolites, its P-gain statistic 

(Supplementary Figure 7), which allows determining whether the ratio between the two 

metabolites is more informative than the single metabolites alone, therefore suggesting the 

presence of a relationship between them15. To this aim, we first evaluated the log ratios 

between each pair of co-associated metabolites. Then, we associated the single metabolites 

and the obtained ratios with the specific species/pathway by fitting a linear mixed effect 

model in R (package lme4, v. 1.1.18), including age and sex as fixed effects, and family 

structure as a random effect. All association tests were carried out between pairs of co-

associated metabolites and metagenomic data with at least 100 complete observations (i.e., 

having metagenomic data and metabolic profile for both co-associated metabolites 

available). Finally, we evaluated the P-gain statistic as the ratio between the minimum P 

value obtained using the single metabolites alone and the P value obtained using their 

ratio15. It has previously suggested that a critical P-gain threshold taking into account 
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multiple test correction, under the assumption of a type I error rate of 0.05, would be 10 

times the number of tests15. However, it has also been observed that the magnitude of the 

P-gain statistic can be reduced by the increasing correlation between the metabolites and 

their ratio, and increased by an increasing sample size15, two parameters which varied 

greatly in our dataset. We, therefore, estimated a null distribution empirically using a 

conservative assumption of no interplay between metabolites associated with different 

species or pathways. Therefore, we build a null distribution of P-gain statistics using 100,000 

pairs of randomly selected metabolites which were associated at 5% FDR with two different 

species (or pathways) but were matched 1-to-1 by correlation and sample size to the co-

associated metabolite pairs. We used the top 5% P-gain value as the critical P-gain 

threshold.  

 

Adiposity phenotypes data and association study 

Subjects were asked to remove their shoes, and height (in cm) was measured using a 

stadiometer. Weight (in kg) was measured on digital scales. Total and visceral fat mass 

percentage was determined in 1,141 individuals with metagenomic and/or metabolomic data 

available by DXA (Dual-Energy X-ray Absorptiometry; Hologic QDR; Hologic, Inc., Waltham, 

MA, USA) whole-body scanning by a trained research nurse. The QDR System Software 

Version 12.6 (Hologic, Inc., Waltham, MA, USA) was used to analyse the scans. 

Measurements greater than 3 standard deviations from the dataset mean were excluded 

from the analysis. To ensure the normality of their distribution, the data were rank-based 

inverse normalized. Associations with M. Smithii, blood and faecal threonate, and 61 faecal 

metabolites whose dialogue with blood threonate via M. smithii was confirmed by the P-gain 

statistic, were carried out by fitting a linear mixed effect model in R (package lme4, v. 

1.1.18), including age and sex as fixed effects, and family structure as a random effect. 

 

Data availability 

Data generated during the study are available as Supplementary Data, while a web interface 

for querying the associations between microbiome and metabolites is available at: 

http://www.metabgut.org. Results are shown as interactive tables and can also be visualised 

graphically. Data on TwinsUK twin participants are available to bona fide researchers under 

managed access due to governance and ethical constraints. Raw data should be requested 

via our website (http://twinsuk.ac.uk/resources-for-researchers/access-our-data/) and 

requests are reviewed by the TwinsUK Resource Executive Committee (TREC) regularly. 

The raw metagenomic sequences are available from the European Nucleotide Archive 

website (study accession number: PRJEB32731). 
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Code availability 

The source code used to assess the dialogue between the gut and systemic host 

metabolism, is available at: https://github.com/alesssia/microbiome_metabolome_interplay. 
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Figure 1. Gut microbiome composition. The composition of the gut ecosystem is unique 

to an individual while its functionality is maintained across the population. Pie charts 

represent the percentage of species (on the left) and microbial metabolic pathways (on the 

right) present in less than 1% of the population (dark blue), between 1% and 25% (light 

blue), between 25% and 50% (turquoise), between 50% and 75% (brown), and more than 

75% (yellow). 
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Figure 2. Study design and number of associations. The top of the Figure reports the 

number of microbial species and metabolic pathways which were detected in at least 50 

individuals with metabolomics and WMGS data, and that were used in the study, and the 

number of associations tested. The bottom of the Figure reports the number of associations 

that were significant at 5% FDR, along with the number and percentage of metabolites, 

microbial species, and microbial metabolic pathways involved. Association testing was 

performed using PopPAnTe12, in order to model the resemblance between family members. 

Sex and age at the sample collection were included as covariates. 
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Figure 3. Summary of possible mechanisms of metabolic dialogue. The Figure 

highlights the possible four mechanisms implicated in the interplay between the gut 

microbiome, the faecal metabolome, and the blood metabolome. (1) Small dashed lines: 

metabolites are produced by the microbiota and then absorbed, resulting in associations 

between the microbiome and both the blood and faecal metabolites. (2) Large dashed lines: 

the microbiome affects the gut barrier integrity, resulting in alterations of metabolites 

absorption (i.e., the same metabolite is associated with a species/pathway in both blood and 

faeces, but the directions of effects are opposite). (3) Light continuous line: metabolites 

produced by the host, such as bile acids, affect microbial growth. (4) Bold continuous line: 

direct microbiome to host cell interactions that result in host systemic modulation (i.e., 

species are associated with blood metabolites but not with faecal metabolites).  
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Tables 

 
Table 1. Association between species and the same named metabolite. For each 

association, in faeces (F) and blood (B), we report the number of observations (N), effect 

size (β), standard error (SE), and P value (P). 

Species Metabolite FN Fβ FSE FP BN  Bβ BSE BP 

Akkermansia muciniphila p-cresol sulfate 443 -0.35 0.11 7.74x10-4 829  0.47 0.10 6.36x10-6 

Bacteroidales bacterium ph8 sebacate  406  0.68 0.18 1.65x10-4 718 -0.50 0.09 4.33x10-9 

Eubacterium rectale p-cresol sulfate 444  0.45 0.11 2.84x10-5 823 -0.45 0.11 2.09x10-5 

Methanobrevibacter smithii threonate 287 -0.65 0.14 3.31x10-6 527  1.01 0.16 4.09x10-10 

Oscillibacter spp. 3-phenylpropionate 418 -0.54 0.11 1.95x10-6 799 -0.55 0.10 1.02x10-7 

Roseburia inulinivorans p-cresol sulfate 433  0.43 0.10 1.09x10-5 802 -0.53 0.10 1.45x10-7 

Subdoligranulum spp. p-cresol sulfate 461 -0.32 0.10 9.86x10-4 854 0.62 0.10 1.75x10-9 

 

 
 

 


