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ABBREVIATIONS  28 

ATIS – Adipose tissue insulin sensitivity 29 

BAM – Black (west) African men 30 

WEM – White European men 31 

Rd – Rate of disappearance 32 

Ra – Rate of appearance 33 

VAT – Visceral adipose tissue 34 

SAT – Subcutaneous adipose tissue 35 

IMCL – Intramyocellular lipids 36 

IHL – Intrahepatic lipids 37 

MRI – Magnetic resonance imaging 38 

MRS – Magnetic resonance spectroscopy   39 

HISI – Hepatic insulin sensitivity index 40 

PISI – Peripheral insulin sensitivity index  41 

BMI – Body mass index  42 

T2D – Type 2 diabetes  43 
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ABSTRACT 44 

Objectives: In men of black west African (BAM) and white European (WEM) ethnicity, we 45 

aimed to 1) compare adipose tissue, peripheral and hepatic insulin sensitivity, and 2) investigate 46 

associations between ectopic fat and insulin sensitivity by ethnicity. 47 

Design and Methods: In overweight BAM (n=21) and WEM (n=23) with normal glucose 48 

tolerance, we performed a two-step hyperinsulinaemic–euglycaemic clamp with infusion of 49 

[6,6 2H2]-glucose and [2H5]-glycerol to measure whole body, peripheral, hepatic and adipose 50 

tissue insulin sensitivity (lipolysis). Visceral adipose tissue (VAT), intrahepatic lipids (IHL) 51 

and intramyocellular (IMCL) lipids were measured using magnetic resonance imaging and 52 

spectroscopy. Associations between insulin sensitivity and ectopic fat were assessed using 53 

Pearson’s correlation coefficient by ethnicity and regression analysis. 54 

Results: There were no ethnic differences in whole body or tissue-specific insulin sensitivity 55 

(all p>0.05). Suppression of lipolysis was inversely associated with VAT and IHL in WEM but 56 

not BAM (VAT: WEM r=-0.68, p<0.01; BAM r=0.07, p=0.79. IHL: WEM r=-0.52, p=0.01; 57 

BAM r=-0.12, p=0.63). IMCL was inversely associated with skeletal muscle insulin sensitivity 58 

in WEM but not BAM (WEM r=-0.56,p<0.01; BAM r=-0.09, p=0.75) and IHL was inversely 59 

associated with hepatic insulin sensitivity in WEM but not BAM (WEM r=-0.53, p=0.02; BAM 60 

r=-0.13, p=0.62). 61 

Conclusions: Ectopic fat deposition may play a lesser role in reducing insulin sensitivity in 62 

men of black African ethnicity, and may not be driven by lipolysis. Resistance to storing VAT, 63 

IHL and IMCL may enable men of black African ethnicity to maintain comparable insulin 64 

sensitivity to white Europeans.  65 

 66 

Keywords: Black African, Hepatic insulin sensitivity, Intrahepatic lipid, Intramyocellular 67 

lipid, Lipolysis, Skeletal muscle insulin sensitivity  68 
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INTRODUCTION 69 

The risk of developing type 2 diabetes (T2D) is disproportionately high in populations of black 70 

compared to white ethnicity (1, 2). In black populations, T2D is more likely to occur within 71 

the normal body mass index (BMI) range (19.5-24.9 kg/m2) (3) and at a lower waist 72 

circumference (4) compared to white groups.  73 

 74 

Insulin resistance for carbohydrate metabolism is a well-established early defect in the 75 

pathogenesis of T2D (5). Resistance to the antilipolytic effect of insulin in adipose tissue has 76 

also been identified as an early defect, occurring prior to the onset of hyperglycaemia (6). 77 

Adipose tissue insulin resistance results in increased fatty acid release, with deposition in non-78 

adipose tissue sites as ectopic fat (7, 8). This is known to trigger and exacerbate insulin 79 

resistance (9). Several theories have been proposed to explain the development of ectopic fat 80 

and insulin resistance. The “spillover theory” proposes that multiple dysfunctions of 81 

subcutaneous adipose tissue (SAT), including insulin resistance (10), allow fatty acids to be 82 

deposited as visceral adipose tissue (VAT) (7, 11). Dysfunctional SAT combined with highly 83 

lipolytic VAT leads to the release of fatty acids into the portal and peripheral circulations. The 84 

“portal theory” proposes that delivery of fatty acids from VAT to the liver, via the portal 85 

circulation, results in accumulation of intrahepatic lipid (IHL), which subsequently leads to the 86 

development of hepatic insulin resistance (12-14). Fatty acids entering the peripheral 87 

circulation are understood to lead to fat deposition within skeletal muscle cells (termed 88 

intramyocellular lipids, IMCL) (13, 15). Whilst there is compelling evidence linking IMCL 89 

with peripheral insulin resistance (16, 17), there is debate in this field due to observations that 90 

athletes, who are highly insulin sensitive, present with relatively high IMCL levels (18).  91 

 92 
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Compared to populations of white ethnicity, black populations are reported to exhibit lower 93 

ectopic fat (namely VAT and IHL) (19-23), yet large cohort studies indicate that they display 94 

pronounced insulin resistance (24), creating a paradox. Studies using more sensitive measures 95 

of insulin resistance at a tissue specific level, alongside measurement of ectopic fat depots 96 

related to T2D are scarce in non-diabetic black populations and have been restricted to obese 97 

women (25). These have reported no ethnic differences in peripheral insulin sensitivity, but 98 

lower hepatic insulin sensitivity in white compared to black women. Furthermore, they report 99 

that peripheral insulin sensitivity does not associate with either VAT or IMCL in black women 100 

but hepatic sensitivity does associate with VAT and IHL, suggesting that VAT and IHL play a 101 

key role in hepatic insulin resistance in black women (25).  Similarly, in vivo studies assessing 102 

adipose tissue insulin sensitivity are mainly confined to obese women. They have provided 103 

inconsistent results, showing either no difference (26-28) or reduced lipolysis (29-31) in black 104 

compared to white populations.  105 

 106 

While studies in women provide persuasive evidence of ethnic distinctions in the 107 

pathophysiology of T2D, gender differences in physiology (greater hyperinsulinaemia and 108 

insulin resistance in women (32, 33)) and body composition (less VAT and more SAT in 109 

women (34)) suggest investigations in black men are required. We aimed to assess and compare 110 

whole body, skeletal muscle, hepatic and adipose tissue insulin sensitivity in normally glucose 111 

tolerant black west African (BAM) and white European men (WEM), and to evaluate 112 

relationships between tissue specific insulin sensitivity with VAT, IHL and IMCL, to explore 113 

ethnic distinctions in the pathophysiology of type 2 diabetes.     114 
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MATERIALS AND METHODS 115 

Participants 116 

The participants included in this analysis were recruited as part of the South London Diabetes 117 

and Ethnicity Phenotyping (Soul-Deep) study, phase II (35). The aim of the Soul-Deep II study 118 

was to investigate ethnic differences in insulin sensitivity, beta-cell function and ectopic fat 119 

deposition in men of Black (west) African (BAM) and white European (WEM) ethnicity. The 120 

study was approved by the London Bridge National Research Ethics Committee (15/LO/1121). 121 

Data collection took place between April 2016 and May 2018. Participants were recruited from 122 

local GP practices, newspaper advertisements, King’s College London university staff and 123 

student email, religious groups, leafleting and posters where permitted. All participants 124 

provided informed consent prior to any study procedures.  125 

Non-diabetic Black (west) African (BAM) and white European men (WEM) aged 18-65 years, 126 

with a BMI between 20-40 kg/m2 were eligible to take part; the aim of recruitment was to 127 

achieve comparable BMI and age between the ethnic groups, without targeting a specific 128 

weight status. Ethnicity was defined by self-reported parental and grandparental birthplace; 129 

normal glucose tolerance was confirmed by a 2-hour plasma glucose <7.8mmol/l following a 130 

75g oral glucose tolerance test at screening. Participants were excluded if they were being 131 

treated with any medications known to affect the study outcomes, suffering from kidney or 132 

liver damage (serum creatinine >150 μmol/l or serum alanine transaminase level >2.5-fold 133 

above the upper limit of the reference range), or were unwilling and/or unable to comply with 134 

the study protocol.  135 

Prior to each visit, participants were required not to eat after their usual carbohydrate-136 

containing evening meal (no less than 10 hours prior to study), refrain from strenuous physical 137 

activity for 48 hours and alcohol for 24 hours and avoid smoking on the morning of their visit.  138 

Hyperinsulinaemic–euglycaemic clamp 139 
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A two-step hyperinsulinaemic–euglycaemic clamp with a stable glucose and glycerol isotope 140 

infusion was used to assess whole body and tissue specific insulin sensitivity. Upon arrival at 141 

the clinical research facility in King’s College Hospital, participants were advised to empty 142 

their bladder and were weighed on a body composition analyser (Tanita MC780MA) to 143 

determine fat free mass and body weight for infusion calculations. A cannula for blood 144 

sampling was placed in the dorsum of one hand in a retrograde fashion, the hand was kept in a 145 

warming unit at 55º to mimic arterialised sampling. Duplicate baseline samples were taken to 146 

assess background glucose and glycerol isotopic enrichments. An infusion cannula was then 147 

inserted into an antecubital fossa vein on the adjacent arm for infusions of 20% (wt/vol) 148 

glucose, insulin (Actrapid, Novo Nordisk, Bagsvaerd, Denmark) bound to albumin in a 4% 149 

autologous blood/saline solution, [6,6-2H2]-glucose and [2H5]-glycerol tracers (CK Gases, 150 

Cambridgeshire, UK). To begin the basal phase, a primed (2.0 mg/kg), continuous infusion 151 

(0.02 mg/kg−1 min−1) of [6,6-2H2]-glucose and a primed (0.12 mg/kg), continuous infusion 152 

(0.0067 mg/kg−1 min−1) of [2H5]-glycerol were initiated at -120 minutes (36). Blood samples 153 

were taken at -30, -20, -10 and 0 minutes for basal assessments. The clamp began at 0 minutes 154 

with a primed continuous insulin infusion at a rate of 10 mU m−2 BSA min−1 (low dose insulin 155 

phase) for 2 hours for assessment of adipose tissue and hepatic insulin sensitivity. For the final 156 

2 hours, the [2H5]-glycerol isotope infusion was terminated, the insulin infusion rate was re-157 

primed and increased to 40 mU m−2 BSA min−1 (the high dose insulin phase) for assessment of 158 

whole body and peripheral (skeletal muscle) insulin sensitivity (37, 38). Euglycaemia (5 159 

mmol/l) was achieved using 20% glucose enriched with [6,6-2H2]-glucose (8 mg/g glucose 160 

with low-dose insulin and 10 mg/g with high-dose insulin) to maintain a constant tracer-to-161 

tracee ratio. The glucose was given at variable rates, based on plasma glucose samples drawn 162 

every 5 minutes and measured on a bedside glucose analyser (Yellow Spring Instruments, 2300 163 

STAT Glucose Analyzer, Yellow Springs, OH, USA). Blood was drawn at 30, 60, 90, 100, 164 
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110, 120, 150, 180, 210, 220, 230 and 240 minutes for the assessment of plasma glucose 165 

concentration and isotopic enrichment and insulin concentration (38).   166 

Magnetic resonance imaging and spectroscopy for ectopic fat quantification  167 

Magnetic resonance imaging (MRI) was used assess visceral adipose tissue (VAT) and 168 

intrahepatic lipids (IHL). Proton-magnetic resonance spectroscopy (1H-MRS) was used to 169 

assess intramyocellular lipids (IMCL). Full details of this methodology can be found in (39). 170 

In brief, participants arrived at the MRI unit of Guy’s Hospital, London following an overnight 171 

fast. Participants were scanned in a 1.5T Siemens Aera scanner, axial 2-point Dixon MRI 172 

images were acquired from the abdomen, from which fat and water images were produced. 173 

Images were analysed using imaging software (HOROS V 1.1.7; www.horosproject.org; 174 

accessed 21/10/2017) to quantify VAT and IHL. VAT area was assessed using a single slice at 175 

the L4-5 spinal anatomical position. IHL was quantified using 2 abdominal MRI images 30 176 

mm apart encompassing both the superior and inferior view of the liver. A 4-circular region of 177 

interest analysis was conducted to determine the hepatic fat fraction (%) in each region. IHL 178 

was calculated as the mean of all 8 regions of interest. Quantification of IMCL in the soleus 179 

muscle of the right leg was derived from a 1H-MRS scan on a 1.5T Siemens system with an 180 

extremity RF coil to obtain muscle images. From these images two localised proton spectra 181 

were obtained, a water-suppressed lipid spectra and a lipid-suppressed water spectra. The Java-182 

Based Magnetic Resonance User Interface software was used to identify and quantify the 183 

IMCL peaks expressed in arbitrary units (40). 184 

Laboratory analysis 185 

Plasma glucose and glycerol isotope enrichments were measured by gas chromatography-mass 186 

spectrometry on an Agilent GCMS 5975C MSD (Agilent Technologies, Wokingham, UK) 187 

using selected ion monitoring to determine the tracer-to-tracee ratio. The isotopic enrichment 188 

of glucose was determined as the penta-O-trimethylsilyl-D-glucose-O-methoxime derivative 189 

http://www.horosproject.org/
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(41). The isotopic enrichment of plasma glycerol was determined as the tert-butyl trimethylsilyl 190 

(tBDMS) glycerol derivative (42). Plasma insulin concentration was measured by 191 

immunoassay using chemiluminescent technology (ADVIA Centaur System, Siemens 192 

Healthcare, Camberley, UK).  193 

Calculations 194 

Whole body insulin sensitivity was quantified using the M value (mg/kg FFM min-1) measured 195 

during the final 30 minutes of the high dose insulin phase of the clamp. It is calculated as total 196 

glucose disposal corrected for deviations in plasma glucose concentration. The M value was 197 

divided by mean plasma insulin concentration during the high dose insulin phase, giving M/I 198 

(mg kg FFM min-1) / (pmol/l) as another assessment of whole body insulin sensitivity (37). 199 

Steele’s non-steady-state equations modified for stable isotopes (43) were used to determine 200 

peripheral glucose utilisation (glucose rate of disappearance, Rd (μmol /kg FFM min-1)), 201 

endogenous glucose production (glucose rate of appearance, Ra (μmol /kg FFM min-1)) and 202 

whole body lipolysis (glycerol Ra (μmol /kg FFM min-1) ) at basal and during the different 203 

phases of the clamp. Glucose kinetic calculations were modified to incorporate the [6,6-2H2]-204 

glucose isotope enriched 20% glucose (44). Optical segment analysis was used to smooth the 205 

glucose and glycerol enrichment concentrations over the clamp time course (45). 206 

Peripheral insulin sensitivity was determined as the percentage increase in the rate of glucose 207 

disappearance from basal to the final 30 minutes of the high dose insulin phase. The peripheral 208 

insulin sensitivity index (PISI) was also calculated as the glucose Rd (μmol /kg FFM min-1) / 209 

mean plasma insulin concentration (pmol/l) during the final 30 minutes of the high dose insulin 210 

phase (46). Peripheral insulin sensitivity is predominantly driven by skeletal muscle glucose 211 

uptake but also captures adipose tissue glucose uptake hence, we have used PISI as an 212 

assessment of skeletal muscle insulin sensitivity.  213 
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Endogenous glucose production (glucose Ra) was calculated by subtracting the exogenous 214 

glucose infusion rate from total glucose Ra. Hepatic insulin sensitivity was measured as the 215 

percentage suppression of endogenous glucose production from basal to the final 30 minutes 216 

of the low dose insulin phase (47). Hepatic insulin sensitivity was also quantified during the 217 

basal and low dose insulin phase using the hepatic insulin sensitivity index (HISI), which is the 218 

reciprocal of the product of endogenous glucose production (glucose Ra) and mean plasma 219 

insulin (46).  220 

Adipose tissue insulin sensitivity was measured as the percentage suppression of whole body 221 

lipolysis (glycerol Ra) from basal to the final 30 minutes of the low dose insulin phase (47). 222 

Adipose tissue insulin sensitivity was also quantified during the basal and low dose insulin 223 

phase using the adipose tissue insulin sensitivity index (ATIS) which is the reciprocal of the 224 

product of whole body lipolysis (glycerol Ra) and basal plasma insulin (46). 225 

Statistical analysis 226 

The Soul-Deep II study was powered on a primary outcome of insulin secretory function (48). 227 

Allowing a difference of one standard deviation to be detected with 90% power and 2-sided 228 

significance, we aimed to recruit 23 per group, allowing for 20 per group to complete the 229 

protocol. 230 

Data were assessed for normality using the Shapiro-Wilks test and histograms. A log 10 231 

transformation was performed where data were skewed. Data which were normally distributed 232 

are presented as mean (SD), data which required log 10 transformation are presented as 233 

geometric mean (95% CI), data which remained skewed after log transformation are presented 234 

as median (lower-upper IQR). Ethnic comparisons of insulin sensitivity were assessed using 235 

the independent samples t-test for normally distributed data and Mann-Whitney test for non-236 

normally distributed data. The mean difference (95% CI) and ratio of the geometric mean (95% 237 

CI) are presented where appropriate. Adjustment of the insulin sensitivity measures for VAT 238 
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and IHL were made using linear multiple regression. Pearson’s correlation analyses were used 239 

to assess the associations between insulin sensitivity measures and ectopic fat. Interaction by 240 

ethnicity was assessed using a linear multiple regression with ethnicity*ectopic fat depot used 241 

as the interaction term. Statistical significance was defined as p <0.05 and data analyses were 242 

performed using SPSS software, version 25 (IBM Analytics, Armonk, NY, USA).   243 
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RESULTS 244 

Participant characteristics 245 

The participant characteristics of the 21 BAM and 23 WEM are displayed in Table 1; by design 246 

the groups were comparable in age and BMI. There were no differences in body fat, waist 247 

circumference, blood pressure, HbA1c, cholesterol, fasting and post-load glucose between 248 

ethnicities; however, BAM exhibited lower fasting triglycerides compared to WEM. Data on 249 

ectopic fat depots in these volunteers, as previously reported by our group (39), showed lower 250 

VAT and IHL in BAM but similar IMCL (included in Table 1 for reference). 251 

Whole body insulin sensitivity 252 

The glucose and insulin profiles during the hyperinsulinaemic–euglycaemic clamp are shown 253 

in Supplementary Figure 1. BAM exhibited a trend towards greater mean plasma insulin during 254 

the high dose insulin phase (ratio of the geometric mean and 95% CI of 1.10 (1.00, 1.21), 255 

p=0.05). There were no ethnic differences in whole body insulin sensitivity, measured as either 256 

M value (BAM: 9.65 (2.32) vs WEM: 9.51 (3.86) mg/kg FFM min-1, p=0.89) or M/I (BAM: 257 

0.0171 (0.0059) vs WEM: 0.0189 (0.0094) ((mg/kg FFM min-1) / (pmol/l)), p=0.44). 258 

Associations between VAT, IHL and IMCL with whole body insulin sensitivity (measured as 259 

either M value or M/I) are shown in Supplementary Table 1. When combining all participants 260 

as a single cohort, there were significant inverse associations between VAT, IHL, and IMCL 261 

with whole body insulin sensitivity; however, when assessing the ethnic groups separately, 262 

these relationships were significant in WEM but weaker or absent in BAM.  263 

Adipose tissue insulin sensitivity 264 

Adipose tissue insulin sensitivity (ATIS) index did not differ by ethnicity during the basal or 265 

insulin stimulated state (Table 2). Insulin mediated suppression of glycerol was used as a 266 

measure of adipose tissue insulin sensitivity to lipolysis and was not significantly different by 267 

ethnicity (mean difference (95% CI) -8.55 (-22.0, 4.90) %, p=0.21), Supplementary Figure 2A. 268 
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There was a trend towards lower adipose tissue insulin sensitivity to lipolysis when adjusting 269 

for VAT in BAM (adjusted mean difference (95% CI) -12.4 (-26.9, 2.21) %, p=0.09). Across 270 

the whole cohort, adipose tissue insulin sensitivity did not correlate with VAT, IHL or IMCL 271 

(Figure 1A-C). However, when assessing WEM and BAM separately, adipose tissue insulin 272 

sensitivity to lipolysis correlated with VAT and IHL in WEM but there were no significant 273 

correlations in BAM (Figure 1A & B). When modelled with suppression of lipolysis, ethnicity 274 

had no significant interaction with VAT (p=0.12) or IHL (p=0.58). There were no significant 275 

correlations between the suppression of lipolysis and IMCL in either ethnic group (Figure 1C).  276 

Peripheral insulin sensitivity  277 

We found no ethnic differences in peripheral insulin sensitivity, measured as percentage 278 

increase in glucose utilisation from the basal to high dose insulin phase of the clamp (BAM 279 

304.82 (111.11) vs WEM 286.24 (138.44) %, p =0.63), Supplementary Figure 2B. There was 280 

also no ethnic difference when accounting for the insulin concentration during the high dose 281 

insulin phase, using PISI (mean difference (95% CI) -1.06 x10-2 (-3.87 x10-2 ,1.74 x10-2 ) (μmol 282 

/kg FFM min-1 )/ pmol/l, p=0.43), Table 2. Adjusting PISI for VAT (which we have previously 283 

reported as lower in BAM), resulted in significantly lower PISI in BAM (adjusted mean 284 

difference (95% CI) -3.47 x10-2 (-5.67 x10-2 , -1.27 x10-2 ) (μmol /kg FFM min-1 )/ pmol/l, 285 

p<0.01). Across the whole cohort, PISI correlated significantly with VAT and IMCL (Figure 286 

1D-E). When assessing WEM and BAM separately, PISI correlated significantly with VAT 287 

and IMCL in WEM; however, in BAM the association with VAT was weaker (Figure 1D) and 288 

there was no association with IMCL (Figure 1E). When modelled with PISI, interactions 289 

between ethnicity and VAT and between ethnicity and IMCL were not significant (p=0.11 and 290 

p=0.11, respectively).  291 

Hepatic insulin sensitivity  292 
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We found no ethnic differences in the basal or insulin stimulated hepatic insulin sensitivity 293 

index (HISI), Table 2. Using suppression of endogenous glucose production as a measure of 294 

hepatic insulin sensitivity, we found no evidence for an ethnic difference (mean difference 295 

(95% CI) -4.15 (-14.83, 6.53) %, p =0.21), Supplementary Figure 2C. Adjusting hepatic insulin 296 

sensitivity for VAT, resulted in lower mean hepatic insulin sensitivity in BAM (mean 297 

difference (95% CI) -10.9 (-21.2, -0.72) %, p=0.04). Adjusting hepatic insulin sensitivity for 298 

IHL (which we have previously reported as lower in BAM), resulted in no ethnic difference in 299 

hepatic insulin sensitivity (adjusted mean difference (95% CI) -7.33 (-17.9, 3.24) %, p=0.17). 300 

Across the whole cohort, hepatic insulin sensitivity correlated with VAT and IHL (Figure 1F-301 

G). When assessing WEM and BAM separately, hepatic insulin sensitivity correlated 302 

significantly with VAT in both ethnicities (Figure 1F); however, the correlation with IHL was 303 

only significant in WEM (Figure 1G). When modelled with suppression of endogenous glucose 304 

production, interactions between ethnicity and VAT and between ethnicity and IHL were not 305 

significant (p=0.50 and p=0.66, respectively).   306 
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DISCUSSION 307 

In this study we have shown that whilst BAM and WEM display comparable whole body, 308 

skeletal muscle, hepatic and adipose tissue insulin sensitivity, the relationships between insulin 309 

sensitivity and ectopic fat are ethnically distinct.  310 

 311 

Resistance of adipose tissue to the antilipolytic effect of insulin is suggested to be a primary 312 

abnormality in the pathophysiology of T2D that occurs before the onset of hyperglycaemia (6). 313 

It has been proposed that VAT and ectopic fat accumulate as result of dysfunctional lipolysis, 314 

which allows an increase in circulating fatty acids, and other adipocyte abnormalities, 315 

described in the “spillover theory” (10, 49). Our study, which is the first to compare men of 316 

black African and white European ethnicity, shows that there are no associations between 317 

lipolysis and VAT, IHL or IMCL in BAM. Our findings agree with Albu et al. who showed a 318 

relationship between suppression of lipolysis and VAT in obese white women but not in black 319 

women (31). Together, these findings suggest lipolysis may not be driving the accumulation of 320 

ectopic fat in black people of either gender, suggesting the “spillover theory” may not hold true 321 

in this ethnic group.  322 

 323 

Visceral fat, IHL and IMCL play an integral role in the development of insulin resistance and 324 

T2D (12, 16, 17); however, black populations are consistently reported to exhibit lower levels 325 

of VAT (19-23) despite their high T2D risk. Our finding of lower VAT in BAM is in agreement 326 

with the literature. Despite this, we found comparable levels of insulin sensitivity. We 327 

investigated associations between VAT and insulin sensitivity and found that both peripheral 328 

and hepatic insulin sensitivity were significantly associated with VAT in both ethnicities. This 329 

leads us to believe that VAT is detrimental to skeletal muscle and hepatic insulin sensitivity in 330 

both ethnic groups, but that this impact occurs at lower VAT levels in BAM compared to WEM, 331 
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a so-called lower threshold. Our finding of a significant association between VAT and hepatic 332 

insulin sensitivity is consistent with earlier work in obese black women (25), however, our data 333 

in healthy men also show an association between VAT and skeletal muscle insulin sensitivity 334 

which has not been found in women (25, 50). This conflicting result may be due to the 335 

aforementioned studies focusing on women with severe obesity whilst our participants were 336 

only mildly overweight, or gender itself may explain the conflicting results, adding to the 337 

evidence for gender differences in T2D pathophysiology (33).  338 

 339 

Accumulation of IHL is proposed to be central to the development of hepatic insulin resistance. 340 

The “portal theory” describes the accumulation of IHL, which develops from the flux of fatty 341 

acids from VAT to the liver, via the portal vein. It is, therefore, not surprising that we found 342 

lower IHL in BAM, given the lower levels of VAT that they exhibited. Whilst our data from 343 

WEM corroborates the current understanding of T2D pathophysiology such that hepatic insulin 344 

sensitivity was significantly associated with IHL (14), we found no evidence for this 345 

relationship in BAM. This contrasts with data from studies in black women whereby IHL is 346 

associated with hepatic sensitivity (25, 26). This may point to IHL being more harmful in black 347 

women than men, although the obesity status of the women may also have contributed to this 348 

result (33).  349 

 350 

Intramuscular lipids, which accumulate as a result of skeletal muscle cells taking up fatty acids 351 

from the peripheral circulation, have been shown to be correlated with skeletal muscle insulin 352 

resistance (15). Whilst we saw a significant relationship between IMCL and skeletal muscle 353 

insulin sensitivity in WEM, this relationship was not present in BAM. This finding agrees with 354 

other studies (51-53), and suggests that skeletal muscle insulin resistance develops 355 

independently of IMCL in BAM. 356 
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 357 

In contrast to the extensive evidence base that reports pronounced insulin resistance in 358 

populations of black African ethnicity (24, 54), we showed no ethnic differences in insulin 359 

sensitivity at a whole body and tissue specific level. The contrast in these findings are likely 360 

due to the different methodologies used to measure insulin sensitivity. In our study we have 361 

used the clamp method, which is a direct assessment of insulin sensitivity (37), while other 362 

methods estimate insulin sensitivity through indirect modelling. The use of such methods in 363 

black populations has been criticised because of the reduced insulin clearance and higher 364 

insulin levels that they exhibit, which may lead to an underestimation of modelled insulin 365 

sensitivity. Indeed, in an ethnic comparison of direct and indirect measures of insulin 366 

sensitivity, Pisprasert et al. showed no difference in insulin sensitivity using the clamp, while 367 

surrogate indices showed greater insulin resistance in African-Americans compared to white 368 

Americans. These data suggest caution should be applied when using indirect assessments of 369 

insulin resistance in black populations (55). Our findings are supported by several metabolic 370 

studies using glucose clamps and isotopes, which have also found comparable insulin 371 

sensitivity in healthy black and white communities (25, 26, 55-57). Our experimental design 372 

also limited potential confounding factors; participants were similar in BMI, participants with 373 

impaired glucose tolerance were excluded and our data collection included only men. 374 

 375 

We have previously published a description of the ectopic fat status for the current set of 376 

participants (39) in which we found no ethnic differences in IMCL, but significantly lower 377 

VAT and IHL in BAM. In the current study we adjusted our insulin sensitivity data for VAT 378 

and found lower whole body, skeletal muscle and hepatic insulin sensitivity in BAM. The 379 

reduced insulin sensitivity following adjustment for VAT, and the lower VAT storage in the 380 

presence of similar lipolysis, suggests that the detrimental effects of VAT occur at lower levels 381 
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in BAM and a resistance to storing VAT allows BAM to maintain comparable insulin 382 

sensitivity to WEM. In comparison, adjusting for IHL did not explain the similar hepatic insulin 383 

sensitivity and provides more evidence for an independent relationship between IHL and 384 

hepatic insulin sensitivity in BAM. Lower ectopic fat storage, despite similar lipolysis, may 385 

point to an increased tendency towards fat oxidation over ectopic storage in BAM; further 386 

studies assessing fatty acid oxidation are needed to explore this possibility.  387 

 388 

Although one of the strengths of this study was the use of rigorous measurements of insulin 389 

sensitivity and ectopic fat, we recognise that our conclusions for the associations between 390 

insulin sensitivity and ectopic fat may be limited by our sample size. While our sample size is 391 

comparable to other studies of this nature, it does affect the statistical adjustment for VAT/IHL 392 

and interaction analysis. Our insulin sensitivity data are based on lean mass assessed by 393 

bioimpedance methodology; this uses calculations which are not ethnically sensitive and could 394 

potentially lead to underestimation of lean mass and thus overestimating insulin sensitivity in 395 

BAM (58). Finally, although the aim of our recruitment was to achieve comparable BMIs in 396 

our groups, this resulted in a tendency towards lower waist circumferences in BAM, which 397 

may have also contributed to differences in the metabolic characteristics that we studied. A 398 

study in which the groups are matched for waist circumference would help to elucidate these 399 

effects. 400 

 401 

In summary, our data suggest that increased lipolysis due to adipose tissue insulin resistance 402 

may not be driving ectopic fat deposition in BAM. Additionally, ectopic fat accumulation in 403 

the liver and skeletal muscle may play less of a role in reducing insulin sensitivity in BAM 404 

compared to WEM. We provide evidence that the detrimental effects of VAT on glucose uptake 405 

and the suppression of endogenous glucose production occur at a lower VAT level in BAM. 406 
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We conclude that current theories regarding the accumulation of ectopic fat and its impact on 407 

insulin sensitivity may not apply in BAM, who display a resistance to storing visceral and 408 

hepatic fat. Future work, assessing the impact of ectopic fat on insulin secretory function, is 409 

vital before excluding ectopic fat as the culprit behind the increased prevalence of T2D in black 410 

populations.  411 



20 

 

Declaration of interest: Authors declare that there is no conflict of interest that could be 412 

perceived as prejudicing the impartiality of the research reported 413 

Funding: This work was supported by Diabetes UK (project grant number: 14/0004967)  414 

Author Contributions: LMG, SAA, AMU, JLP designed the study; OB, OH, ML, CM 415 

FSM, GCE acquired the data, OB, OH, FSM, AMU performed the data analysis, OB LMG, 416 

SAA, AMU contributed to the interpretation, OG, LMG drafted the article and all authors 417 

contributed to revising the intellectual content before approving the final article. JLP is 418 

supported by the NIHR Biomedical Research Centre based at Guy’s and St Thomas’ NHS 419 

Foundation Trust and King’s College London and is an NIHR Senior Investigator. The views 420 

expressed are those of the authors and not necessarily those of the NHS, the NIHR or the 421 

Department of Health. 422 

Acknowledgments: The authors would like to thank: Andrew Pernet, Bula Wilson, Marcia 423 

Henderson-Wilson, Marietta Stadler (Diabetes Research Group, King’s College Hospital, 424 

London, UK) for their contribution to the participant metabolic assessments; Louisa Green 425 

and Elka Giemza (Clinical Research Facility, Kings College Hospital, London, UK) for 426 

accommodating the participants and researchers for the metabolic assessments; Tracy Dew 427 

(Affinity Biomarker Labs, Imperial College, London, UK) Nicola Jackson, Lucy Coppin 428 

(Diabetes and Metabolic Medicine, University of Surrey, Guildford, UK) and Anne-429 

Catherine Perz (Nutritional Science Department, King’s College London, London, UK) for 430 

their assistance with the laboratory sample analysis; and the participants for their 431 

commitment and patience.   432 



21 

 

REFERENCES 433 

1. Health Survey for England 2004: The Health of Minority Ethnic Groups– headline tables 2004 434 
[Available from: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-435 
for-england/health-survey-for-england-2004-health-of-ethnic-minorities-headline-results. 436 
2. Goff LM, Ladwa M, Hakim O, Bello O. Ethnic distinctions in the pathophysiology of type 2 437 
diabetes: a focus on black African-Caribbean populations. Proceedings of the Nutrition Society. 438 
2019:1-10. 439 
3. Zhang Q, Wang Y, Huang ES. Changes in racial/ethnic disparities in the prevalence of Type 2 440 
diabetes by obesity level among US adults. Ethnicity & health. 2009;14(5):439-57. 441 
4. Tillin T, Sattar N, Godsland IF, Hughes AD, Chaturvedi N, Forouhi NG. Ethnicity-specific 442 
obesity cut-points in the development of Type 2 diabetes - a prospective study including three ethnic 443 
groups in the United Kingdom. Diabetic medicine : a journal of the British Diabetic Association. 444 
2015;32(2):226-34. 445 
5. DeFronzo RA. From the Triumvirate to the Ominous Octet: A New Paradigm for the 446 
Treatment of Type 2 Diabetes Mellitus. Diabetes. 2009;58(4):773-95. 447 
6. Gastaldelli A, Gaggini M, DeFronzo RA. Role of Adipose Tissue Insulin Resistance in the 448 
Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes. 449 
2017;66(4):815-22. 450 
7. Gaggini M, Carli F, Gastaldelli A. The color of fat and its central role in the development and 451 
progression of metabolic diseases. Hormone molecular biology and clinical investigation. 2017;31(1). 452 
8. Trouwborst I, Bowser SM, Goossens GH, Blaak EE. Ectopic Fat Accumulation in Distinct 453 
Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Frontiers in 454 
nutrition. 2018;5:77. 455 
9. Gastaldelli A. Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in 456 
the pathogenesis of type 2 diabetes mellitus. Diabetes research and clinical practice. 2011;93:S60-457 
S5. 458 
10. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The Subtle Balance between Lipolysis and 459 
Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients. 2015;7(11):9453-74. 460 
11. Virtue S, Vidal-Puig A. It's not how fat you are, it's what you do with it that counts. PLoS 461 
biology. 2008;6(9):e237. 462 
12. Jin ES, Szuszkiewicz-Garcia M, Browning JD, Baxter JD, Abate N, Malloy CR. Influence of liver 463 
triglycerides on suppression of glucose production by insulin in men. The Journal of clinical 464 
endocrinology and metabolism. 2015;100(1):235-43. 465 
13. Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN. 466 
Molecular evidence supporting the portal theory: a causative link between visceral adiposity and 467 
hepatic insulin resistance. American journal of physiology Endocrinology and metabolism. 468 
2005;288(2):E454-61. 469 
14. Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, Buzzigoli E, Sironi AM, 470 
Cersosimo E, Ferrannini E, et al. Relationship between hepatic/visceral fat and hepatic insulin 471 
resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496-506. 472 
15. Gemmink A, Goodpaster BH, Schrauwen P, Hesselink MKC. Intramyocellular lipid droplets 473 
and insulin sensitivity, the human perspective. Biochimica et biophysica acta Molecular and cell 474 
biology of lipids. 2017;1862(10 Pt B):1242-9. 475 
16. Brons C, Grunnet LG. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in 476 
insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? European 477 
journal of endocrinology. 2017;176(2):R67-r78. 478 
17. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 479 
diabetes. Diabetes Care. 2009;32 Suppl 2:S157-63. 480 

https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2004-health-of-ethnic-minorities-headline-results
https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2004-health-of-ethnic-minorities-headline-results


22 

 

18. Daemen S, Gemmink A, Brouwers B, Meex RCR, Huntjens PR, Schaart G, Moonen-Kornips E, 481 
Jorgensen J, Hoeks J, Schrauwen P, et al. Distinct lipid droplet characteristics and distribution 482 
unmask the apparent contradiction of the athlete's paradox. Molecular metabolism. 2018;17:71-81. 483 
19. Hakim O, Bello O, Bonadonna RC, Mohandas C, Shojee-Moradie F, Jackson N, Boselli L, 484 
Whitcher B, Shuaib H, Alberti K, et al. Ethnic differences in intrahepatic lipid and its association with 485 
hepatic insulin sensitivity and insulin clearance between men of Black and White ethnicity with early 486 
type 2 diabetes. Diabetes, obesity & metabolism. 2019. 487 
20. Goedecke JH, Levitt NS, Lambert EV, Utzschneider KM, Faulenbach MV, Dave JA, West S, 488 
Victor H, Evans J, Olsson T, et al. Differential Effects of Abdominal Adipose Tissue Distribution on 489 
Insulin Sensitivity in Black and White South African Women. Obesity. 2009;17(8):1506-12. 490 
21. Staiano AE, Broyles ST, Gupta AK, Katzmarzyk PT. Ethnic and sex differences in visceral, 491 
subcutaneous, and total body fat in children and adolescents. Obesity (Silver Spring, Md). 492 
2013;21(6):1251-5. 493 
22. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an 494 
insulin resistance paradox? Hepatology. 2009;49(3):791-801. 495 
23. Hayes P, Adams K, Dave J, Goedecke J. Ethnic-Specific Associations between Abdominal and 496 
Gluteal Fat Distribution and the Metabolic Complications of Obesity: Implications for the Use of 497 
Liposuction. Plastic Surgery: An International Journal. 2013:1-14. 498 
24. Haffner SM, D'Agostino R, Saad MF, Rewers M, Mykkanen L, Selby J, Howard G, Savage PJ, 499 
Hamman RF, Wagenknecht LE, et al. Increased insulin resistance and insulin secretion in nondiabetic 500 
African-Americans and Hispanics compared with non-Hispanic whites. The Insulin Resistance 501 
Atherosclerosis Study. Diabetes. 1996;45(6):742-8. 502 
25. Goedecke JH, Keswell D, Weinreich C, Fan J, Hauksson J, Victor H, Utzschneider K, Levitt NS, 503 
Lambert EV, Kahn SE, et al. Ethnic differences in hepatic and systemic insulin sensitivity and their 504 
associated determinants in obese black and white South African women. Diabetologia. 505 
2015;58(11):2647-52. 506 
26. Chung ST, Courville AB, Onuzuruike AU, Galvan-De La Cruz M, Mabundo LS, DuBose CW, 507 
Kasturi K, Cai H, Gharib AM, Walter PJ, et al. Gluconeogenesis and risk for fasting hyperglycemia in 508 
Black and White women. JCI insight. 2018;3(18). 509 
27. Nielsen SR, Sumner AE, Miller BV, 3rd, Turkova H, Klein S, Jensen MD. Free fatty acid flux in 510 
African-American and Caucasian adults--effect of sex and race. Obesity (Silver Spring, Md). 511 
2013;21(9):1836-42. 512 
28. Berk ES, Kovera AJ, Boozer CN, Pi-Sunyer FX, Albu JB. Metabolic inflexibility in substrate use 513 
is present in African-American but not Caucasian healthy, premenopausal, nondiabetic women. The 514 
Journal of clinical endocrinology and metabolism. 2006;91(10):4099-106. 515 
29. Danadian K, Lewy V, Janosky JJ, Arslanian S. Lipolysis in African-American children: is it a 516 
metabolic risk factor predisposing to obesity? The Journal of clinical endocrinology and metabolism. 517 
2001;86(7):3022-6. 518 
30. Racette SB, Horowitz JF, Mittendorfer B, Klein S. Racial differences in lipid metabolism in 519 
women with abdominal obesity. American journal of physiology Regulatory, integrative and 520 
comparative physiology. 2000;279(3):R944-50. 521 
31. Albu JB, Curi M, Shur M, Murphy L, Matthews DE, Pi-Sunyer FX. Systemic resistance to the 522 
antilipolytic effect of insulin in black and white women with visceral obesity. The American journal of 523 
physiology. 1999;277(3):E551-60. 524 
32. Falkner B, Hulman S, Kushner H. Gender differences in insulin-stimulated glucose utilization 525 
among African-Americans. American journal of hypertension. 1994;7(11):948-52. 526 
33. Goedecke JH, George C, Veras K, Peer N, Lombard C, Victor H, Steyn K, Levitt NS. Sex 527 
differences in insulin sensitivity and insulin response with increasing age in black South African men 528 
and women. Diabetes research and clinical practice. 2016;122:207-14. 529 
34. Bidulescu A, Liu J, Hickson DA, Hairston KG, Fox ER, Arnett DK, Sumner AE, Taylor HA, 530 
Gibbons GH. Gender differences in the association of visceral and subcutaneous adiposity with 531 



23 

 

adiponectin in African Americans: the Jackson Heart Study. BMC Cardiovascular Disorders. 532 
2013;13(1):9. 533 
35. Goff L. Soul-Deep: the South London Diabetes and Ethnicity Phenotyping Study Protocol. 534 
2013. 535 
36. Shojaee-Moradie F, Baynes KCR, Pentecost C, Bell JD, Thomas EL, Jackson NC, Stolinski M, 536 
Whyte M, Lovell D, Bowes SB, et al. Exercise training reduces fatty acid availability and improves the 537 
insulin sensitivity of glucose metabolism. Diabetologia. 2007;50(2):404-13. 538 
37. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin 539 
secretion and resistance. The American journal of physiology. 1979;237(3):E214-23. 540 
38. Bello O, Mohandas C, Shojee-Moradie F, Jackson N, Hakim O, Alberti KGMM, Peacock JL, 541 
Margot Umpleby A, Amiel SA, Goff LM. Black African men with early type 2 diabetes have similar 542 
muscle, liver and adipose tissue insulin sensitivity to white European men despite lower visceral fat. 543 
Diabetologia. 2019. 544 
39. Hakim O, Bello O, Ladwa M, Christodoulou D, Bulut E, Shuaib H, Peacock JL, Umpleby AM, 545 
Charles-Edwards G, Amiel SA, et al. Ethnic differences in hepatic, pancreatic, muscular and visceral 546 
fat deposition in healthy men of white European and black west African ethnicity. Diabetes research 547 
and clinical practice. 2019;156:107866. 548 
40. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user 549 
interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance 550 
spectroscopy signals. Computers in biology and medicine. 2001;31(4):269-86. 551 
41. Shojaee‐Moradie F, Jackson NC, Jones RH, Mallet AI, Hovorka R, Umpleby AM. Quantitative 552 
Measurement of 3‐O‐Methyl‐D‐ glucose by Gas Chromatography‐Mass Spectrometry as a Measure 553 
of Glucose Transport In Vivo. Journal of Mass Spectrometry. 1996;31(9):961-6. 554 
42. Flakoll PJ, Zheng M, Vaughan S, Borel MJ. Determination of stable isotopic enrichment and 555 
concentration of glycerol in plasma via gas chromatography-mass spectrometry for the estimation of 556 
lipolysis in vivo. Journal of chromatography B, Biomedical sciences and applications. 2000;744(1):47-557 
54. 558 
43. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. 559 
Annals of the New York Academy of Sciences. 1959;82:420-30. 560 
44. Finegood DT, Bergman RN, Vranic M. Estimation of endogenous glucose production during 561 
hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous 562 
glucose infusates. Diabetes. 1987;36(8):914-24. 563 
45. Finegood DT, Bergman RN. Optimal segments: a method for smoothing tracer data to 564 
calculate metabolic fluxes. The American journal of physiology. 1983;244(5):E472-9. 565 
46. Kim JY, Nasr A, Tfayli H, Bacha F, Michaliszyn SF, Arslanian S. Increased Lipolysis, Diminished 566 
Adipose Tissue Insulin Sensitivity and Impaired β-cell Function Relative to Adipose Tissue Insulin 567 
Sensitivity in Obese Youth with Impaired Glucose Tolerance (IGT). Diabetes. 2017. 568 
47. Brouwers B, Schrauwen-Hinderling Vera B, Jelenik T, Gemmink A, Havekes B, Bruls Y, 569 
Dahlmans D, Roden M, Hesselink Matthijs KC, Schrauwen P. Metabolic disturbances of non-alcoholic 570 
fatty liver resemble the alterations typical for type 2 diabetes. Clinical Science. 2017;131(15):1905-571 
17. 572 
48. M Ladwa, O Bello, F Shojee‐Moradie, JL Peacock, AM Umpleby, SA Amiel, KGMM Alberti, 573 
Goff L. Hyperinsulinaemia in healthy black Africans is driven by reduced hepatic insulin clearance. 574 
Diabetic Medicine. 2019;36(S1):24-6. 575 
49. Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. 576 
Biochimie. 2016;125:259-66. 577 
50. Goedecke JH, Levitt NS, Lambert EV, Utzschneider KM, Faulenbach MV, Dave JA, West S, 578 
Victor H, Evans J, Olsson T, et al. Differential effects of abdominal adipose tissue distribution on 579 
insulin sensitivity in black and white South African women. Obesity (Silver Spring, Md). 580 
2009;17(8):1506-12. 581 



24 

 

51. Ingram KH, Lara-Castro C, Gower BA, Makowsky R, Allison DB, Newcomer BR, Munoz AJ, 582 
Beasley TM, Lawrence JC, Lopez-Ben R, et al. Intramyocellular lipid and insulin resistance: differential 583 
relationships in European and African Americans. Obesity (Silver Spring, Md). 2011;19(7):1469-75. 584 
52. DeLany JP, Dubé JJ, Standley RA, Distefano G, Goodpaster BH, Stefanovic-Racic M, Coen PM, 585 
Toledo FGS. Racial Differences In Peripheral Insulin Sensitivity and Mitochondrial Capacity in the 586 
Absence of Obesity. The Journal of Clinical Endocrinology & Metabolism. 2014;99(11):4307-14. 587 
53. Lawrence JC, Newcomer BR, Buchthal SD, Sirikul B, Oster RA, Hunter GR, Gower BA. 588 
Relationship of intramyocellular lipid to insulin sensitivity may differ with ethnicity in healthy girls 589 
and women. Obesity (Silver Spring, Md). 2011;19(1):43-8. 590 
54. Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ. Ethnic differences in the 591 
relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. 592 
Diabetes Care. 2013;36(6):1789-96. 593 
55. Pisprasert V, Ingram KH, Lopez-Davila MF, Munoz AJ, Garvey WT. Limitations in the use of 594 
indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and 595 
superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes 596 
Care. 2013;36(4):845-53. 597 
56. Raygor V, Abbasi F, Lazzeroni LC, Kim S, Ingelsson E, Reaven GM, Knowles JW. Impact of 598 
race/ethnicity on insulin resistance and hypertriglyceridaemia. Diabetes & vascular disease research. 599 
2019;16(2):153-9. 600 
57. Allister-Price C, Craig CM, Spielman D, Cushman SS, McLaughlin TL. Metabolic markers, 601 
regional adiposity, and adipose cell size: relationship to insulin resistance in African-American as 602 
compared with Caucasian women. International journal of obesity (2005). 2018. 603 
58. Nightingale CM, Rudnicka AR, Owen CG, Donin AS, Newton SL, Furness CA, Howard EL, 604 
Gillings RD, Wells JCK, Cook DG, et al. Are Ethnic and Gender Specific Equations Needed to Derive Fat 605 
Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and 606 
White European Origin? Results of the Assessment of Body Composition in Children Study. PLOS 607 
ONE. 2013;8(10):e76426. 608 

609 



25 

 

Table 1:Participant characteristics 610 

Characteristic BAM 

n=21 

WEM 

n=23 

P 

Age (years) a 25 (22 – 40) 29 (25 – 53) 0.18 

BMI (kg/m2) 26.8 (3.6) 26.5 (4.5) 0.82 

Waist Circumference (cm) b 87.5 (83.4, 91.8) 92.8 (87.1, 99.0) 0.13 

Systolic BP (mm/Hg) 124.0 (11.9) 121.9 (9.1) 0.52 

Diastolic BP (mm/Hg) b 70.3 (65.5, 75.5) 70.7 (67.2, 74.3) 0.91 

Total Cholesterol (mmol/l) b 4.26 (3.85, 4.73) 4.65 (4.23, 5.11) 0.20 

LDL (mmol/l) 2.73 (0.84) 2.99 (0.82) 0.33 

HDL (mmol/l) a 1.2 (1.2 – 1.4) 1.2 (1.1 – 1.4) 0.86 

Triglycerides (mmol/l) b 0.67 (0.59, 0.77) 0.99 (0.81, 1.21) <0.01 

Fasting glucose (mmol/l) 5.1 (0.5) 5.2 (0.4) 0.55 

2-hour post load glucose (mmol/l) 5.28 (1.13) 5.09 (1.26) 0.61 

Ectopic fat depots    

Visceral adipose tissue (VAT), L4-5 

(cm2)b 

46.1 (34.4 - 61.7)c 79.0 (55.4 - 112.5) 0.02 

Hepatic fat fraction (HFF) (%) 3.78 (1.13)c 6.08 (5.04) 0.04 

Intramyocellular lipid (IMCL) (AU)d 0.030 (0.015) 0.030 (0.014) 0.87 

Data expressed as mean (SD) for normally distributed data 611 
adata expressed as median (IQR) for non-normally distributed data 612 
bgeometric mean (95% CI) for log transformed data 613 
csample size=20 614 
dsample size; BAM=18, WEM=22615 
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Table 2: Substrate kinetics before and after insulin adjustments during the basal state and the 616 

hyperinsulinaemic–euglycaemic clamp 617 

 Basal state Hyperinsulinaemic–euglycaemic clamp 

 BAM 

n=21 

WEM 

n=23 
P 

BAM 

n=20 

WEM 

n=23 
P 

Glycerol Ra 

μmol /kg FFM min-1 

 

1.11 (0.71 – 2.72)a 1.55 (1.29 – 2.27)a 0.10 0.64 (0.52, 0.78)b 0.77 (0.63, 0.93)bd 0.17 

Adipose tissue insulin 

sensitivity index; ATIS 

(μmol /kg FFM min-1 · 

pmol/l)-1 

14.62 x10-3 

(10.36 x10-3, 

20.70 x10-3)b 

12.16 x10-3   

(9.06 x10-3, 16.31 

x10-3)b 

0.40 10.2 x10-3  

(4.61 x10-3) 

9.04 x10-3  

(4.46 x10-3) 

0.42 

Glucose Ra 

μmol /kg FFM min-1 

13.60 (1.24) 13.74 (1.33) 0.72 4.37 (3.94 – 5.64)a 3.23 (2.71 – 6.14)ac 0.38 

Hepatic insulin sensitivity 

index; HISI 

(μmol /kg FFM min-1 · 

pmol/l)-1 

 

1.57 x10-3  

(6.61 x10-4) 

1.70 x10-3  

(7.18 x10-4) 

0.56 1.35 x10-3  

(9.23 – 16.32 x10-4) 

a 

1.68 x10-3  

(11.57 – 23.59 x10-

4)ac 

0.41 

Glucose Rd 

μmol /kg FFM min-1 

- - - 51.14 (44.61 – 

60.16)a 

50.48 (38.43 – 

67.72)a 

0.87 
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Glycerol and glucose isotope kinetics derived from the basal post absorptive state and during the hyperinsulinaemic–euglycaemic clamp. 618 

Glycerol Ra and Glucose Ga was derived from the low dose insulin phase (10 mU m−2 BSA min−1 ). Glucose Rd was derived during the high 619 

dose insulin phase (40 mU m−2 BSA min−1 ) infusion during the hyperinsulinaemic–euglycaemic clamp. Hepatic insulin sensitivity index (HISI) 620 

and peripheral insulin sensitivity index (PISI) are corrected for by insulin at the basal state and during the high dose insulin phase respectively.  621 

Data expressed as mean (SD) 622 
adata expressed as median (IQR) 623 
bgeometric mean (95% CI) 624 
csample size; 21 625 
dsample size; 22 626 

Ra = Rate of appearance 627 

Rd = Rate of disappearance  628 

 629 

Peripheral insulin 

sensitivity index 

(μmol /kg FFM min-1 )/ 

pmol/l 

 

- - - 9.71 x10-2   

(3.43 x10-2) 

10.78 x10-2 

 (5.32 x10-2) 

0.43 
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Figure 1: Associations between ectopic fat and tissue specific insulin sensitivity 630 

631 

632 
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633 

 634 

Data presented using the Pearson correlation coefficients. Peripheral insulin sensitivity index was measured during the high dose insulin phase 635 

(40 mU m-2 BSA min-1), suppression of endogenous glucose production and whole body lipolysis was measured during the low dose insulin 636 

phase (10 mU m-2 BSA min-1). 637 
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Supplementary table 1: Associations between whole body insulin sensitivity and ectopic fat 638 

  VAT area (cm2) IHL (%) IMCL (AU) 

M; 

mg/kg FFM min-1 

Whole cohort r=-0.67, p<0.01 r=-0.61, p<0.01 r=-0.36, p=0.03 

BAM r=-0.46, p=0.06 r=-0.18, p=0.48 r=0.00, p=0.98 

WEM 

 

r=-0.80, p<0.01 r=-0.72, p<0.01 r=-0.52, p=0.01 

M/I; 

((mg/kg FFM min-1) / 

(pmol/l)) 

Whole cohort r=-0.63, p<0.01 r=-0.61, p<0.01 r=-0.40, p=0.01 

BAM r=-0.56, p=0.02 r=-0.34, p=0.17 r=-0.10, p=0.71 

WEM 

 

r=-0.78, p<0.01 r=-0.73, p<0.01 r=-0.54, p=0.01 

Correlation coefficients determined using Pearson’s correlation. VAT, IHL and IMCL were log transformed to improve normality. 639 

Abbreviations: BAM, Black West African men; IHL, intrahepatic lipid; IMCL, intramyocellular lipid; VAT, visceral adipose tissue; WEM, 640 

White European men  641 

 642 
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Supplementary figure 1: Hyperinsulinaemic–euglycaemic clamp time course 643 

644 

 645 

Data expressed as mean (SEM). Plasma glucose (A) and insulin (B) and concentrations 646 

during the hyperinsulinaemic–euglycaemic clamp. Data expressed as Mean ± SD per time 647 

point. 648 
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Supplementary figure 2: Percentage change in glucose and glycerol kinetics during the 649 

hyperinsulinaemic–euglycaemic clamp 650 

 651 

652 

 653 

(A) Suppression of whole body lipolysis during low dose insulin phase, presented as mean 654 

(SD) (B) Increase in peripheral glucose utilisation during high dose insulin phase, presented 655 

as mean (SD) (C) Suppression of endogenous glucose production during low dose insulin 656 

phase, presented as median (IQR). 657 


