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ABSTRACT

Regulatory T cells (Tregs) are a lymphocyte subset with intrinsic immunosuppressive properties 

that can be expanded in large numbers ex vivo and have been shown to prevent allograft 

rejection and promote tolerance in animal models. To investigate the safety, applicability and 

biological activity of autologous Treg adoptive transfer in humans, we conducted an open-label, 

dose escalation, Phase I clinical trial in liver transplantation. Patients were enrolled while 

awaiting liver transplantation or 6-12 months post-transplant. Circulating Tregs were isolated 

from blood or leukapheresis, expanded under GMP conditions, and administered i.v at either 0.5-

1 million Tregs/kg or 3-4.5 million Tregs/kg. The primary endpoint was the rate of dose limiting 

toxicities occurring within 4 weeks of infusion. The applicability of the clinical protocol was poor 

unless patient recruitment was deferred until 6-12 months post-transplantation. Thus, only 3 out 

of the 17 patients consented while awaiting liver transplantation were dosed. In contrast, all 6 

patients consented 6-12 months post-transplantation received the cell infusion. Treg transfer 

was safe and transiently increased the pool of circulating Tregs and reduced anti-donor T cell 

responses. Our study opens the door to employing Treg immunotherapy to facilitate the 

reduction or complete discontinuation of immunosuppression following liver transplantation.
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INTRODUCTION

Regulatory T cells (Tregs) are a subset of cluster of differentiation (CD4)-positive T cells that 

constitutively express the Forkhead Box P3 (Foxp3) transcription factor and have the capacity to 

migrate to sites of inflammation and exert a wide range of immunosuppressive effects. Animal 

studies indicate that Tregs play a key role in maintaining immune homeostasis and preventing 

autoimmunity (1). Furthermore, they can recognize allogeneic major histocompatibility complex 

(MHC) molecules and suppress allograft rejection, and are essential for the induction and 

maintenance of transplantation tolerance through the mechanisms of ‘linked suppression’ and 

‘infectious tolerance’ (2).  

Although human Tregs constitute a small proportion (5-7%) of circulating CD4+ T cells, they are 

attractive candidates for immunotherapeutic purposes given that they can be isolated and 

expanded in large numbers in vitro without losing their immunoregulatory properties (3). Clinical 

studies have demonstrated the safety of Treg adoptive transfer in graft-versus-host disease and 

type 1 diabetes mellitus (4–7). Furthermore, a number of trials have been initiated both in kidney 

and in liver transplantation (8,9). Liver transplantation constitutes an appealing clinical setting to 

evaluate the effects of Treg transfer given the lower immunogenicity of liver allografts and the 

substantial clinical experience that has been derived from trials of complete immunosuppression 

discontinuation (10). In this setting, infusion of a single dose of a Treg-enriched autologous 

leukocyte cell product (generated by culturing peripheral blood mononuclear cells with 

irradiated donor leukocytes in the presence of costimulation blockade), was recently shown to 

successfully induce operational tolerance in 7 out of 10 splenectomised living donor liver 

transplant recipients treated with cyclophosphamide and conventional immunosuppression (11). 

Despite these encouraging early results, key questions regarding the overall clinical applicability 

of Treg immunotherapy, the optimal clinical design, and the immunological effects of Treg 

infusion in human liver transplant recipients remain to be answered. We recently described the 

first Good Manufacturing Practice (GMP)-compliant protocol for the ex vivo expansion of 

polyclonal Tregs from prospective liver transplant recipients (12). This protocol, which included 

up to three rounds of stimulation in the presence of Rapamycin, was successful in expanding 

circulating Tregs >100-fold, maintained their Foxp3 expression levels and increased their A
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suppressive function. Importantly, expanded Tregs exhibited a stable non-inflammatory 

phenotype even after being challenged with a cocktail of inflammatory cytokines.  We report 

here the results of a First-in-Human Phase I clinical trial evaluating the safety and immunological 

effects of purified, ex vivo expanded and adoptively transferred autologous polyclonal Tregs in 

adult liver transplant recipients. 

MATERIALS & METHODS

Study Design

This was a two-site, open-label, dose escalation, Phase I clinical trial conducted at King’s College 

Hospital London and University Hospitals Plymouth (UK), assessing the safety, applicability and 

biological activity of autologous Treg immunotherapy in the setting of adult cadaveric liver 

transplantation. Participants received a single intravenous infusion of ex vivo expanded 

autologous polyclonal Tregs 3-16 months post liver transplantation. The trial was approved by 

the UK National Research Ethics Service (Reference 13/SC/0604, 10/1/2014) and the Medicines 

and Healthcare Products Regulatory Agency (MHRA), and was registered at ClinicalTrials.gov 

(identifier NCT02166177). All data supporting the results in the paper will be archived in an 

appropriate public repository.

Participants

Patients were initially enrolled while awaiting liver transplantation and their participation 

confirmed on the day of transplantation. Inclusion criteria at the time of transplantation were: 1) 

age 18-70 years; 2) MELD score 25; 3) no previous transplantation or need for simultaneous 

liver-kidney transplantation; 4) absence of autoimmune disease, active viral disease, EBV 

seronegativity or hepatocellular carcinoma outside of Milan criteria; 5) Leukocyte count 

>1500/uL and platelet count >50,000uL; 6) recipient of a brain dead liver donor; 7) recipient of a 

cardiac death liver donor if donor age <50 years old, warm ischemia time <20 minutes and cold 

ischemia time <8 hours. For Treg isolation, 250mL of whole blood were collected during the 

induction of anesthesia. Participants received Thymoglobulin induction (3 doses of 1.5 mg/kg i.v 

between post-transplant days 1 to 7), Tacrolimus (1 mg twice daily on post-transplant day 1 with 

doses subsequently adjusted to reach 5-8 ng/mL trough levels), and Methylprednisolone (500mg A
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intra-operatively followed by tapering and discontinuation on post-transplant week 10).  

Between post-transplant weeks 6 and 8, patients initiated Rapamycin (5-8 ng/mL trough levels) 

and decreased the levels of Tacrolimus (2-5 ng/mL). Three months post-transplant a liver biopsy 

was performed to exclude subclinical allograft damage and patients were admitted for Treg 

infusion. 

Due to the difficulties of enrolling patients prior to transplantation when following the protocol 

described above, 26 months after its initiation the trial design was amended and all subsequent 

patients were recruited 6-12 months post-transplantation. Otherwise, the same 

inclusion/exclusion criteria were maintained. Immediately after enrolment, patients had their 

immunosuppressive regimen switched to combined Tacrolimus and Rapamycin (trough levels 2-

5ng/mL and 2-8 ng/mL, respectively) and two months afterwards they underwent leukapheresis 

to collect the starting material for Treg manufacture. This was followed by a protocol liver biopsy 

and by the infusion of Tregs 4 months after enrolment. The amended study protocol did not 

require Thymoglobulin induction. This Phase I trial did not include attempts at 

immunosuppression discontinuation.

Dose escalation 

Two doses of expanded Tregs were assessed: 0.5-1 million Tregs/kg and 3-4.5 million Tregs/kg. 

Dose escalation criteria were as follows: i) after the treatment of the first 3 patients with 0.5-1 

million Tregs/kg, if dose limiting toxicities were observed in 1/3 patients, the cohort would be 

expanded to 3 additional patients at the same dose; ii) if toxicity was observed in ≥2 out of the 6 

patients, dose escalation would stop; iii) if 0/3 or ≤1/6 dose limiting toxicities were observed in 

the 3 or 6 patients, then the dose would be defined as well tolerated and a new cohort of 3 to 6 

patients would be treated with 3-4.5 million Tregs/kg. 

Study endpoints

The primary endpoint was the rate of dose limiting toxicities within the 4 weeks following 

infusion. Dose limiting toxicities were defined as: a) occurring in the first 72 hours post infusion 

including: National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE; 

Version 4.0) ≥grade 2 cytokine release syndrome, ≥grade 2 injection site reaction, ≥ grade 2 fever A
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and/or rigors, ≥grade 3 bronchospasm, ≥grade 3 hypoxia; (b) occurring in the first 30 days of the 

infusion including: ≥grade 3 infection, ≥grade 3 haematological complication, any CTCAE ≥grade 3 

toxicity not clearly related to underlying disease, moderate or severe acute rejection. Secondary 

endpoints were: acute and chronic toxicity associated with Treg infusion; incidence of 

major/opportunistic infections; malignancy; rejection; graft loss; patient mortality; sequential 

liver and renal function tests; immunosuppressive drug doses and levels; changes in 

immunological parameters following Treg infusion.

Isolation and manufacture of polyclonal Tregs

250 mL of whole blood or 180 mL of leukapheresis product were collected and transferred to the 

GMP Cell Therapy. The manufacture protocol as well as the phenotypic characteristics, functional 

properties and stability of the expanded Tregs have been previously reported (12) and are 

described in detail as Supplementary Information. 

Treg infusion

Patients were admitted on the day of infusion. The cryopreserved Treg product was thawed in a 

37C water bath, diluted in an infusion bag containing 50mL of 5% human albumin solution 

(Albunorm, Octapharma) and infused via a peripheral cannula over 15 minutes with an additional 

50 mL of 5% human albumin added to the bag to ensure delivery of the full dose. Pre-medication 

consisted in oral Paracetamol (1g) and chlorphenamine (4mg) 30 minutes prior to infusion. All 

patients were monitored for 12 hours post infusion prior to discharge. 

Immunomonitoring studies

Specimens: sequential peripheral blood samples were collected at 9 different time points 

between enrolment and the end of follow-up. Blood was collected into EDTA vacutainers and 

employed fresh in flow cytometric experiments or used to isolate peripheral blood mononuclear 

cells (PBMCs) that were cryopreserved. Serum specimens were isolated and cryopreserved.

Quantification of donor-specific alloimmune responses: The proportion of alloreactive CD8+ 

memory T cells was assessed in cryopreserved PBMCs collected immediately before Treg A
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infusion, 7 days and 1 month afterwards, employing the Food & Drug Administration (FDA)-

approved PleximmuneTM test (13,14). This assay uses flow cytometry to quantify the number of 

recipient CD8+ CD45RO+ memory T cells expressing CD154 following 16h culture with surrogate 

donor PBMCs (matched to donor at a minimum of one antigen each at human leukocyte antigen 

(HLA)-A, -B, and -DR loci) or 6-loci mismatched third party PBMCs). Similar experiments were 

conducted to quantify the frequency of CD154-positive memory CD8+ T cells following culture 

with an overlapping peptide mix of CMV pp65 antigen.

Detection of serum cytokines and chemokines: We employed the LEGENDplex™ Multi-Analyte 

Flow Assay kits (Human Cytokine panel 2, Human Proinflammatory Chemokine panel and Human 

Th Cytokine panel) according to the manufacturer’s instructions. 

Flow cytometry and time-of-flight mass cytometry (CyTOF) immunophenotyping: The flow 

cytometry reagents and staining protocols employed were designed and standardized in 

collaboration with the ONE Study EU Consortium and have already been described 

(Supplementary Table 1) (15).  The antibody panel, staining protocol and data analysis strategy 

for the CyTOF experiments are described as Supplementary Information. 

RESULTS

Patient flow, changes to study design and clinical outcomes

Between 2/6/2014 and 9/8/2016 a total of 414 patients awaiting liver transplantation were 

screened to participate in the trial, 17 were consented, 10 withdrew from the study before or at 

the time of transplantation, and 7 were transplanted (Figure 1). Out of 7 patients who were 

transplanted, 4 were withdrawn from the study before Treg infusion due to: 1) hepatic artery 

occlusion requiring re-transplantation followed by death caused by disseminated fungal 

infection; 2) development of proteinuria that precluded initiation of Rapamycin; and 3) failure to 

manufacture the required number of Tregs (in 2 patients). The remaining 3 patients received an 

infusion of 1 million Tregs/kg 83-110 days post-transplant and were followed-up for a total of 12 

months. Following the protocol amendment, we screened 125 patients between 12/9/2016 and 

1/3/2017 and consented 6 patients 221-354 days post-transplant. All 6 proceeded to receive an 

infusion of 4.5 million Tregs/kg (Figure 1) 112-151 days after enrolment and were followed-up for 

6 months following Treg infusion. All 9 patients received the stipulated immunosuppression A
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regimen as per protocol; there were no episodes of rejection during the follow-up period and all 

protocol liver biopsies performed before Treg infusion revealed normal histology or minimal 

changes (data not shown). Patient characteristics are summarised in Table 1 and Supplementary 

Table 5.

Manufacture of ex vivo expanded Tregs

Tregs were isolated from 11 patients (5 from whole blood and 6 from leukapheresis). The 

manufacture process failed in 2 patients (all of them from the first cohort of patients). The first 

case was due to insufficient number of Tregs (49 million Tregs), likely resulting from the very low 

number of Tregs isolated from blood (1.5 million Tregs as compared to 5.9 million, which was the 

mean from all whole blood Treg isolations). The second failure was due to a low frequency of 

Tregs in the final product (46% of CD4+CD25+Foxp3+). In the 9 successful manufacture runs, cells 

were expanded 21 to 486 fold yielding between 1250 and 22,530 million cells containing 61-92% 

Tregs. As compared to whole blood, the use of leukapheresis products allowed a reduction in the 

duration of Treg culture (from 36 to 24 days) and the need for lower expansion rates to achieve 

the target dose (Table 2). The use of immunosuppressive drugs by the trial participants at the 

time of leukapheresis did not hamper the Treg manufacture process, as Tregs were successfully 

expanded from all 6 recipients recruited 6-12 months post-transplant (Table 2). 

Characteristics of manufactured Tregs and effects on the phenotype of circulating immune cells 

following infusion

In the 6 patients who received the 4.5 million Tregs/kg infusion, a transient increase in circulating 

Tregs was noticeable by flow cytometry as soon as 3 days post-infusion and persisting for 1 

month. This increase was larger than what was observed after initiating Rapamycin and was not 

detected in the 3 patients receiving 1 million Treg/kg (Figure 2A). To better understand the fate 

of the infused Tregs and their impact on the pre-existing Treg compartment in the 6 patients 

receiving 4.5 million Tregs/kg, we conducted an in-depth phenotypic characterisation using 

CyTOF in sequentially collected samples (Figure 2B-E). We first performed a hierarchical 

clustering analysis to compare the phenotypic heterogeneity of expanded and circulating Tregs. 

The expanded Tregs were more homogeneous than the corresponding circulating Tregs, A
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reflecting the effects of the prolonged in vitro culture (Figure 2C). A more detailed analysis 

revealed that the expanded Tregs were more proliferative than the pre-infusion circulating Tregs 

(as assessed by Ki67 expression) and exhibited higher levels of CD25, CTLA4, CD38, Gata binding 

protein 3 (GATA3), Programmed cell death protein 1 (PD1), CD274 (PD Ligand 1), OX40, CD69, 

HLA-DR, CD7 and lower levels of Helios, chemokine receptor (CCR)-7, C-X-C chemokine receptor 

(CXCR)-4 and CD127 (Figure 2D). We next investigated whether, following infusion, circulating 

Tregs exhibited changes in the markers that were most characteristic of the manufactured cells. 

One week after infusion we detected a significant increase in the expression of CD38, which was 

no longer detected 3 weeks later (Figure 2E). A similar trend was observed for Ki67, CD7, HLA-DR, 

CD274, PD1, and CTLA4 (Supplementary Figure 1). To better track the infused Tregs and to 

explore their impact on the population structure of the pool of pre-existing circulating Tregs, we 

identified the three sub-populations of circulating Tregs that most resembled expanded Tregs 

phenotypically (Figure 3A and Supplementary Figure 2) and plotted their evolution over time. In 

keeping with the flow cytometric experiments, the density of the three sub-populations 

increased noticeably 7 days after infusion, but this was no longer apparent 1-month post infusion 

(Figure 3B and C). We performed exhaustive immunophenotypic experiments on circulating non-

Treg immune cell subsets as well, using both flow cytometry (Supplementary Tables 3&4) and 

CyTOF (Supplementary Figures 3&4), but observed no significant changes in association with the 

infusion of Tregs.

Safety of Treg infusion

No adverse events were observed after infusing 1 million Tregs/kg in Patients P01-P03. Patient 

P04, however, developed fever >39C associated with rigors (CTCAE ≥ grade 2) without 

hemodynamic compromise 16 hours after having received 468 million Tregs (4.5 million cells/kg). 

The patient developed transient neutropenia, lymphopenia and mild liver graft dysfunction 

(Figure 4A). Detailed radiological and microbiological evaluations were negative. Serum cytokine 

analysis revealed a significant increase in interleukin (IL)-12 p40 (IL-2p40), IL-27, C-X-C motif 

chemokine ligand (CXCL)-10 (CXCL10), C-C motif chemokine ligand (CCL)-2 (CCL2), IL-5, IL-2, 

interferon gamma (IFNG), CXCL9 and CXCL11 1 day after Treg infusion with gradual decrease by 

day 3 and complete normalization by day 7 (Figure 4B). As per the study protocol, the high-grade A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

pyrexia was considered a dose limiting toxicity and resulted in the expansion of the 3.0-4.5 

million Tregs/kg cohort to 6 participants. The infusion of Tregs did not result in serum cytokines 

changes in the remaining 5 patients receiving 4.5 million Tregs/kg (Figure 4B). Of note, the levels 

of IL-12p40, IL-18, IL-27, IL-33, CCL17, CCL3, CXCL10, CXCL9 and CXCL11 were already higher in 

P04 than in the remaining participants immediately before Treg infusion, suggesting that the 

adverse event may not be solely attributable to the Treg infusion. 

Impact of Treg infusion on donor-specific T cell responses

In the 6 recipients who received 4.5 million Tregs/kg, a gradual decrease of T cell responses (as 

assessed by the up regulation of CD154 on memory CD8+ T cells) directed against donor-type 

cells was observed (p-value=0.066). While these changes did not reach statistical significance, the 

trend was clearly different from the responses directed against third-party cells (p-value=0.3) or 

the Cytomegalovirus (CMV) pp65 antigen (p-value=0.5), which remained stable throughout the 

study period. In contrast, in the 3 recipients dosed with 1 million Tregs/kg we observed no 

decrease in donor-specific T cell responses in association with cell infusion (Figure 5). 

DISCUSSION

Liver transplantation constitutes an optimal clinical scenario to explore the effects of novel 

immunotherapeutic approaches, as it provides an experimental setting in which the timing and 

identity of the antigenic challenge are known and the therapeutic intervention can be planned so 

as to minimize the influence of clinical confounders. Furthermore, the accumulated clinical 

experience with trials of immunosuppression withdrawal has provided a clear understanding of 

the kinetics of rejection and/or tolerance and allowed the stratification of patients according to 

their immunological risk. 

Our study was designed to investigate the feasibility of Treg adoptive transfer in liver transplant 

recipients and to determine the safety and immunological effects of this intervention. Key 

aspects of the trial design were: i) the isolation of Tregs immediately before transplantation; ii) 

the use of Thymoglobulin to induce lymphodepletion and reduce effector T cells; iii) the 

administration of combined immunosuppression with low dose Tacrolimus and Rapamycin to 

minimize the deleterious effects of these drugs on Treg function (21,22); and iv) the decision to A
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defer cell infusion until 3 months post-transplant to protect Tregs from the effects of 

Thymoglobulin and to avoid the complications often observed shortly after surgery. The overall 

applicability of this protocol was very low. This was mainly due to the small proportion of 

patients awaiting transplantation who met the strict inclusion/exclusion criteria. Additional 

hurdles were the unpredictable timing of the surgical procedure when employing cadaveric 

donors, which put considerable strain on the GMP facility; the frequent use of marginal liver 

grafts in our centre; the development of complications either before or after transplantation that 

compromised the safety of the study; and the difficulties of growing large numbers of Tregs 

under strict GMP conditions from peripheral blood collected at the time of transplant. As such, 

our experience greatly differs from the clinical study reported by Todo et al. in Japan(11), in 

which 10 consecutive living donor liver transplant recipients were treated with a non-GMP cell 

product. The clinical implementation of the study drastically improved after allowing inclusion of 

stable recipients 6-12 months post-transplant (although due to the strict eligibility criteria its 

overall applicability was still low). This provided enough time to perform an elective 

leukapheresis and reduced the high drop-out rate observed when approaching patients before 

transplantation. Thus, following the amendment, all 6 participants consented were successfully 

dosed. Of note, Thymoglobulin induction was removed from the amended protocol, as this 

medication has been associated with a high incidence of immune side effects such as cytokine 

storm when administered to patients who have not been pre-treated with high-dose 

immunosuppressants (23,24).

The safety profile of the Treg manufactured product was very good, with no increased incidence 

of infections or cancer and only a single patient experiencing an infusion reaction, classed as a 

dose limiting toxicity. While the doses of Tregs infused were lower than what has been 

administered in type 1 diabetes(7), our highest dose was in the range of the number of Tregs 

contained within the cell product infused in the liver transplant trial from Japan (31-466 x 106 

CD4+Foxp3+ T cells)(11). The lack of signs of over-immunosuppression is very reassuring, 

considering that the Tregs had been expanded under polyclonal conditions and were therefore 

potentially capable of exerting non-specific suppressive effects. This finding is important and has 

implications for the development of alternative immunotherapies currently under evaluation, 

such as donor-reactive Tregs and chimeric antigen receptor (CAR)-expressing Tregs (3,25), which A
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preferentially recognize the transplanted organ and therefore should even be safer than the cell 

product tested in our trial. 

Tregs are long-lived and tend to migrate to the sites of inflammation. The kinetics of persistence 

and migration of ex vivo expanded Tregs following adoptive transfer, however, is still not well 

understood. In murine transplant models Tregs tend to accumulate in the graft and draining 

lymph nodes (26,27), although Lee et al. were not able to detect transferred Tregs beyond 14 

days after infusion into murine islet transplant recipients(28). In non-transplanted non-human 

primates, adoptively transferred Tregs were shown to be short-lived, as their numbers declined 

rapidly during the first week after infusion(29,30), albeit a small number of cells were still 

detected both in blood and in secondary lymphoid tissues for >50 days (29). In human 

hematopoietic stem cell transplantation, infused Tregs could be tracked in blood using HLA 

markers up to 14 days (5).  On the other hand, in type 1 diabetes and kidney transplant patients, 

expanded Tregs labelled with Deuterium exhibited a peak in the circulation 7-14 days after 

infusion and rapidly decreased thereafter, with approximately 20% of them being still detectable 

in blood 1 year after infusion (7,8). In the patients enrolled in our study and treated with 4.5 

million Tregs/kg the number of circulating Tregs rapidly increased following infusion and 

remained higher than before infusion for at least 1 month. These transient changes likely 

corresponded to the detection of adoptively transferred Tregs, given that they were not 

observed after initiating Rapamycin treatment and closely matched the kinetics that have been 

observed following the transfer of Deuterium-labelled Tregs. Furthermore, CyTOF experiments 

revealed that the rise in circulating Tregs was associated with increases in the specific Treg sub-

populations that most closely resembled the infused Tregs. The changes in the repertoire of 

circulating Treg subpopulations were however very transient and did not persist as long as the 

increase in the total number of circulating CD25highCD127- Tregs. This suggests that ex vivo 

expanded Tregs rapidly change their phenotype following infusion or, alternatively, that 

endogenous Tregs proliferate and contribute to the enlarged Treg compartment observed 

between weeks 1 and 4 post-infusion. Neither our study nor previously published reports, 

however, can adequately address the homing and long-term viability of adoptively transferred 

Tregs. The fact that they do not persist in large numbers in the circulation may denote 

accelerated cell death as a result of low IL-2 availability or preferential migration into peripheral A
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tissues. This will remain an open question until non-invasive imaging technologies capable of 

tracking injected cells for long periods of time are successfully developed in humans. 

The development of donor specific hyporesponsiveness is considered one of the hallmarks of 

transplantation tolerance. An intriguing finding of our study is the impact of the transferred Tregs 

on donor-reactive T cell responses, which, in the 6 patients who received 4.5 million Tregs/kg, 

decreased 1 week after infusion and remained low 4 weeks after adoptive transfer, without 

obvious changes being observed in T cell responses directed against third-party alloantigens or 

CMV. This is a highly unusual finding, which has not been reported in comparably stable liver, 

intestine or hepatocyte transplant recipients longitudinally monitored with the same 

alloreactivity assay (31–33). The fact that patients who received 1 million/kg Tregs did not 

develop donor-specific hyporesponsiveness further suggests a potential causal and dose-effect 

relationship, although we cannot exclude an influence of Thymoglobulin-induced lymphopenia, 

which only observed in the low-dose Treg cohort. Of note, the pattern of donor-specific T cell 

responses observed by Todo et al. following cell infusion was similar to what we detected in our 

trial(11). While it is not possible to formally establish a causal link between the development of 

donor hyporesponsiveness and Treg infusion, our findings could be explained by the preferential 

survival and/or proliferation after infusion of Treg clones with anti-donor alloreactivity, which is 

an observation that has been documented in experimental animal models(26). This would be in 

keeping with the lack of clinically apparent non-specific immunosuppressive effects observed 

following Treg infusion. Alternatively, the infused Tregs could have amplified the well-

documented capacity of liver allografts to delete donor-reactive T cell clones (34,35).

In summary, we have described here the successful expansion under GMP conditions of 

polyclonal Tregs isolated from both end stage liver disease patients awaiting liver transplantation 

and stable liver transplant recipients under maintenance immunosuppression. Treg infusion was 

safe, well tolerated and exerted a potentially beneficial effect on donor-specific immune 

responses. The implementation of the clinical protocol was however challenging and its 

applicability was reliant on deferring patient recruitment and cell infusion until at least 6 months 

post-transplant. Future studies should address the capacity of this strategy, alone or in 

combination with lymphodepletive therapies, to facilitate the reduction or even the complete 

discontinuation of anti-rejection medications following liver transplantation.A
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 FIGURE LEGENDS

Fig. 1. Identification, enrolment and follow-up of eligible subjects. (A) Original trial design 

targeting patients awaiting liver transplantation. (B) Amended trial design targeting patients 6-12 

months post-transplant.

Fig. 2. In-depth phenotypic characterisation of expanded and circulating Tregs employing 

CyTOF. (A) Barplots displaying the results of flow cytometric experiments assessing the 

sequential changes in the proportion of Tregs (defined by either CD4+CD25highCD127- or 

CD25highFOXP+ expression) among circulating CD4+ T cells in the 3 patients receiving 1million 

Tregs/kg and the 6 patents receiving 4.5 million Tregs/kg. Asterisks denote p<0.05. (B) 

Representative dot plot showing the expression of CD25 and Foxp3 in expanded (left panel) and 

circulating (right panel) Tregs after gating for CD3+, CD4+, and CD8- cells employing CyTOF. (C) 

Heatmap displaying the median expression of 29 markers employed to characterize expanded 

and circulating Tregs by CyTOF (gated as described in B) before and at different time points 

following cell infusion: Pre-infusion, 1 week post-infusion (Post 1W), 1 month post-infusion (Post 

1M), 3 months post-infusion (Post 3M). Rows represent individual markers and columns 

represent patient samples. The colour in each cell reflects the relative expression level of the 

corresponding marker in the corresponding sample. Asterisks denote p<0.05 when comparing 

the expanded Tregs and the circulating pre-infusion Tregs. (D) Dendogram derived from a 

hierarchical clustering analysis of the patterns of variation in the expression of the 29 phenotypic 

markers shown in B in the 24 samples analysed using CyTOF. The horizontal axis corresponds to 

the samples; the vertical axis corresponds to the dissimilarity between clusters. (E) Expression 

levels of CD38 in expanded and circulating Tregs at different time points following cell infusion.

Fig. 3. Sequential changes in circulating Treg subsets following infusion of 4.5 million Tregs/kg. 

(A) SPADE algorithm clustering of circulating Tregs before cell infusion based on the viSNE 

analysis of the markers assessed by CyTOF and described in Figure 2B. Data show all viable single 

cells hierarchically clustered according to similar protein expression levels. The nodes 1, 9 and 10 

identify the Treg subpopulations expressing the highest levels of the 10 parameters more 

differentially expressed in expanded Tregs as compared to pre-infusion circulating Tregs (CD38, 

Ki67, OX40, CD25, CD69, GATA3, CCR4, CTLA4, PD1 and HLA-DR). Bubble size and colour intensity A
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correspond to population density. (B) Cumulative frequency of circulating Tregs clustered on 

nodes 1, 9 and 10 at different time points before and after cell infusion grouping all 6 patients 

together. (C) Representative viSNE density plots (top panel) and SPADE analyses (bottom panel) 

corresponding to circulating Tregs assessed at different time points before and after infusion. For 

SPADE analyses, bubble size represents population density and colour denotes the magnitude of 

expression of the 3 representative markers (KI67, CD38 and HLA-DR). An increase in nodes 1, 9 

and 10 is noticeable 1 week, but not 1 month or 3 months, after cell infusion.

Figure 4. Liver tests and serum cytokine patterns in patients receiving Treg infusion. (A) 

Sequential changes in liver tests and blood cell count of P04 following infusion of 4.5 million 

Treg/kg. (B) Sequential changes in serum cytokine levels in all 6 patients receiving 4.5 million 

Tregs/kg.

Figure 5. Sequential changes in donor and third-party alloimmune responses. (A) 

Representative dot plots corresponding to P07, displaying the expression of CD154 on memory 

CD8+ T cells collected before Treg infusion and cultured with surrogate donor or third party cells. 

(B) Sequential allospecific (left panel) and CMV-specific (right panel) memory CD8+ T cell 

responses in the 6 patients receiving 4,5 million Tregs/kg. (C) Sequential allospecific memory 

CD8+ T cell responses in the 3 patients receiving 1 million Tregs/kg. For all experiments, dot plots 

display median and standard deviation of the proportion of CD45RO+CD8+ T cells expressing 

CD154 in response to surrogate donor or third party cells, CMV pp65 or phorbol 12-myristate 13-

acetate (PMA), as described.
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Table 1: Clinical and demographic characteristics of enrolled patients 

 

 

 

 

 

Abbreviations:  Treg – CD4+CD25+Foxp3+ regulatory T cell; SVR – Sustained viral response; DBD – Donation after brain death;  

DCD – Donation after circulatory death; HCV – hepatitis C virus; HCC – hepatocellular carcinoma; ID –  study number; SALF – seronegative subacute liver failure; NA – not available.  

ID Dose 

Cohort 

(10
6
 

Tregs/Kg) 

Sex Age Liver Disease 

Aetiology 

Graft Type 

& Donor 

Age (Years) 

Time of Treg 

Infusion 

(post-

transplant 

days) 

Lymphocyte 

count at time 

of Treg 

infusion 

(10
9
/L) 

Bilirubin at 

time of 

infusion 

(mol/L) 

AST at 

time of 

infusion 

(IU/L) 

Creatinine 

at time of 

infusion 

(mol/L) 

Lymphocyte 

count at 6 

months 

(10
9
/L) 

Bilirubin 

at 6 

months 

(mol/L) 

AST at 6 

months 

(IU/L) 

Creatinine 

at 6 months 

(mol/L) 

P01 1.0  M 42 Cryptogenic cirrhosis DBD 70 83 0.61 7 22 56 1.03 16 26 72 

P02 1.0  M 57 Haemochromatosis DBD 74 110 0.41 6 21 148 0.63 10 36 145 

P03 1.0  M 67 Alcoholic cirrhosis DBD 76 95 0.41 4 11 133 NA NA NA NA  

P04 4.5  F 47 SALF DBD 39 335 2.20 6 28 74 2.26 5 36 76 

P05 4.5  M 57 HCC + HCV cirrhosis DBD 24 413 1.48 12 26 86 1.02 10 33 88 

P06 4.5  M 48 Alcoholic cirrhosis DBD 62 481 1.21 11 26 65 1.50 8 22 58 

P07 4.5  M 46 HCC + HCV cirrhosis DBD 75 406 1.41 12 26 60 1.32 10 26 72 

P08 4.5  M 63 Alcoholic cirrhosis DBD 47 446 1.34 7 22 85 1.17 6 30 85 

P09 4.5  M 58 Alcoholic cirrhosis DCD 61 438 0.71 5 20 100 1.08 5 19 92 
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Table 2: Characteristics of the Treg manufactured product 

 

ID 

Blood / 

leukopheresis 

volume (L) 

Starting Treg 

number (x106) 

Final Treg 

number 

(x106) 

Expansion 

(fold-change) 

% 

Viability* 

% 

CD4+CD25+ 

FoxP3+* 

% 

CD8+* 

1:1 

Suppression* 

(%) 

1:5 

Suppression* 

(%) 

1:10 

Suppression* 

(%) 

Total number 

Tregs infused 

(x106) 

Viability 

after 

thawing (%) 

P01 0.248 7.2 3480 486 96.8 85.3 1.4 94.18 83 65.32 96 77.4 

P02 0.291 3.2 1250 390.6 95.1 69.9 0.4 93.2 95.4 92.2 65 64.5 

P03 0.280 8.8 3193 362.9 95.7 66.5 2.6 72.596 76.9 16.667 88 58 

P04 0.175 105 4089 38.9 97 78 2.3 97.9 90.9 88.1 468 77.9 

P05 0.168 190 22530 118.6 96.5 77.4 0.3 97.36 97.58 81.82 395 73.1 

P06 0.171 136.3 9145 67.1 98.6 82.8 3.2 86.15 95.96 92.09 440 76.7 

P07 0.166 253.3 7893 31.2 98.9 83.8 0.1 95.9 79.7 86.2 339 89 

P08 0.171 288.5 5986 20.8 97.6 61.2 0.2 99.1 98.6 90.7 375 84.9 

P09 0.163 102 4702 46.1 96.1 91.8 0.3 97.3 96.2 72.3 340 78 

* Assessed before Treg product cryopreservation 
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382	Excluded	(not	mutually	exclusive	categories)	

					195	Indication	for	transplantation	

					49			Thrombopenia		

					7					Age	>70	years	old	

					1					Leukopenia	

					107	CMV	IgG	negative		

					16			EBV	IgG	negative		

					18			MELD	>25	

					32			Previous	transplantation
	

					11			Previous	non-HCC	malignancy		

					32			History	of	autoimmune	disease		

					5					HCC	outside	of	Milan	criteria		

	

50	Met	medical		inclusion/exclusion	criteria	

								 

18		 Excluded	due	to	distance	from	

transplant	centre	

	

17	Consented	

								 

32		Eligible	patients	

								 

15		Declined	consent		

								 

10		Withdrawn	before	transplantation	

									4	DCD	Graft	outside	of	criteria	

									2	Clinical	deterioration	

									2	Logistical	reasons	

									2	Clinical	improvement	

	 

7		transplanted								 

4	Withdrawn	before	Treg	dosing		

					2	failure	to	manufacture	Tregs	

					1	graft	loss	

					1	proteinuria	 	

	 

3			Received	Treg	infusion	

								 

125	patients	transplanted	at	King’s	College	Hospital	and	>18	

years	old	were	screened	

	108	Excluded	(not	mutually	exclusive	categories)	

					16			Indication	for	transplantation	

					0					Thrombopenia		

					3					Age	>70	years	old	

					2					Leukopenia	

					3					EBV	IgG	negative		

					13			Previous	transplantation	

					6					Previous	non-HCC	malignancy		

					7					History	of	autoimmune	disease		

					10			High	risk	of	HCC	recurrence	

					3					Detectable	CMV	DNA	

					2					Death	

					15			eGFR	<40	

					24		Post-transplant	complications	/	Investigtor	

												led	decision	to	exclude	

					4				Participation	in	other	clinical	trials	

					2				ALT	≥	2	x	upper	limit	of	normal	

					2				Non-tacrolimus	based	immunosuppression	

						

	

17	Met	medical		inclusion/exclusion	criteria	

								 

5		 Excluded	due	to	distance	from	

transplant	centre	

	

12		Eligible	patients	

								 

6		Declined	consent		

								 

6	Consented	

								 

6			Received	Treg	infusion	
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Figure	5		
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