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Abstract 

 
        With the advanced telecommunication technologies, the patients can receive a 

good quality of medical care. In the past decades, many telecommunication 

technologies have been proposed and used to process patients’ electronic medical 

records (EMR). For the most of current EMR systems, patients only can get access 

to some simple medical files, for example, the personal details, description of health 

condition from physicians, chart records between patients and physicians, and 

payment bill, etc. However, with more detailed medical records, physicians could 

provide more effective medical services, which is not only saving the vital time for 

patients but also medical expenses. In this research, we proposed the systems that 

patients and physicians can get access to the EMR including medical images and 

videos with low transmission delay at any time. The primary objective of this 

research is to come up with new allocation systems and cache patient’s EMR in 

different location of the patient’s daily life. The patients and physicians can access 

EMR timely when needed. The proposed systems could decrease the transmission 

delay and provide more effective and efficient medical care for patients. Three 

systems have been proposed based on femtocaching, dynamic vision sensor, edge 

computing, game theory and deep Q-learning in this research. 

          For the first system, we allocate patient’s medical records (text/words, images, 

and videos) to the femtocachings which are set up close to the nearest hospitals of 

the home area, workplace, family home, friends’ home and other places according 

to the patient’s social life. Femtocaching has been used to choose and cache the best 

medical files. Dynamic vision sensor has been proposed to decrease the size of 

medical video files due to the fact that the medical video files account for a large 

part of EMR. Dynamic vision sensor takes video according to the reflection of light 
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and how fast the subjects move. It is the first time that femtocaching technology 

and dynamic vision sensor have been proposed in the health care area. 

        Different from the previous system, for the second system, an auction-based 

and non-cooperative game theory algorithm based on edge computing has been 

proposed for patients to share their edge devices to others instead of themselves only. 

Edge computing has been used to process medical records instead of cloud 

computing. There has been a large volume of research of cloud computing that has 

been conducted in the health care area in the last decade. However, there is an 

increase in the amount of medical data correlating with the rapidly increasing 

number of internet of things (IoT) devices. Cloud computing, especially, is not 

efficient enough for those health devices that require very short response times, this 

could cause intolerable network latency. Edge computing could cache and process 

computing tasks at the edge of the network without transferring to the cloud network 

and protect the privacy of patients. A competitive game mechanism is proposed by 

combining with the patient’s health condition and telecommunication channel 

quality on the edge. The system would compare the priority of patients and allocate 

medical files based on the results of the game theory algorithm.  

        In our third system, we proposed a new sharing algorithm based on deep Q-

learning to allocate and cache the medical records of multiple patients. The new 

system provides more fair and humanized medical care services comparing with the 

last system. In our last system, all the medical parameters in the game theory 

allocation algorithm have the same weights, which would cause the situation that 

the patient has higher illness severity but lower priority. However, in this new 

system, the patients with a higher level of illness severity have higher priority and 

lower waiting time to be served. The system would not stop seeking the caching 

path for patients until the best Q value is found. 

        At last, according to the overall picture of the research conducted, the main 

conclusions together with some directions for the future works are presented. 
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Chapter 1 

Introduction 

 
        Telemedicine is the use of telecommunication and information technologies to 

provide medical care from a distance [1]. Medical information can be exchanged 

from one site to another via electronic communications to improve, maintain, or 

assist patients’ health status [2]. 

        In the early days, telemedicine was mainly used to connect doctors working 

with a patient in one place with medical experts in other places [3]. Telemedicine 

is very beneficial for people in rural areas where clinical professionals are not 

available or for patients who are difficult to reach [4]. Throughout the next few 

decades, the equipment needed for telemedicine is still complex and expensive, and 

the usage of telemedicine is growing, but it is still very limited. The rise of the 

internet era has brought with it profound changes in the practice of telemedicine [5]. 

It not only improves the popularization of smart devices for high-quality medical 

files transmission, but also provides the possibility of remote medical care for 

patients in the home, workplace, or other places and an alternative to professional 

care for on-site medical treatment. Internet-based health care has made phenomenal 

growth over the past decades and is becoming an increasingly important part of 

healthcare infrastructure [6]. 

        By applying telecommunication technologies, all patients, physicians, hospitals, 

and other medical equipment were connected effectively. For the patients, medical 

gateway, such as mobile devices, receives medical data from patients and sends to 

physicians, hospital, and emergency department. For the physician, they receive the 

medical data from telecommunication devices and provide the corresponding 

medical services, for example inquiring the health condition of patients, and giving 
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suggestions and instructions, and ambulances if the urgent situation happened. 

According to the research, around 40 percent of doctors reported that they currently 

access their telemedicine programs through a mobile computer or tablet, the ability 

to access patient information directly from those same machines will greatly 

streamline their processes [7]. For the tele-medical care, the satisfaction rates of 

patients are consistently quite high. More than 80% of patients find their 

telemedicine care to be satisfactory [8]. 

        Electronic Medical Records (EMR) is an essential part of telemedicine, which 

can improve the quality of patient care and decrease medical errors [9]. In the early 

days, most patient care records are paper-based and not well-organized. They are 

usually incomplete and can hardly be accessed in time [10], which means the patient 

cannot get efficient and effective medical support. An important trend in medical 

informatics is the adoption of electronic patient record systems that facilitate access 

to clinical information and work toward preventing the loss or misplacement of 

information [11] [12].  

        With telecommunication technologies, patient medical records can be well-

organized and kept more secure [13]. Medical records can be used without 

considering distance barriers, which permits communications between patient and 

medical staff with both convenience and accuracy. It is also used to save lives in 

critical care and emergency situation [14]. According to the research [15], 28 

percent of physicians who use telemedicine services conduct their video visits 

through an EMR platform, with an additional 38 percent reporting that they would 

like to have that capability in the future. 

        In this research, novel and advanced telecommunication technologies 

including femtocaching technology, edge computing, dynamic vision sensor, 

auction-based non-cooperative game theory, and deep Q-learning have been 

proposed to access medical records with low transmission delay and save more time 

for clinical professions and patients. 
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1.1 Thesis Contributions 

        In the past decades, many telecommunication technologies have been proposed 

and used to process patients’ electronic medical records. However, for the most of 

current EMR systems, patients only can access some simple medical files [16]. In 

this research, we proposed the systems that patients and physicians can access the 

whole EMR including medical images and videos with low transmission delay at 

any time. The primary objective of this research is to allocate and cache patient’s 

EMR in different location of patient’s daily life. The patients and physicians can 

access EMR timely when needed. The proposed systems could decrease the 

transmission delay and provide more effective and efficient medical care for patients. 

        This study provides new ideas to current heath care filed combining with the 

telecommunication viewpoints. More specifically, this study builds three new 

systems to access and cache medical records with low delay for patients and 

physicians. New allocation and caching algorithm of medical records have been 

proposed as well. The results show that the proposed systems could save more time 

for patients and provide more efferent medical care services comparing with the 

traditional medical services. 

 

1.1.1 Key Outcomes 

        The contributions of this thesis cover the simulation and performance analysis 

of five different scenarios, including the system with location-aware femtocaching, 

edge computing, DVS camera, auction-based non-cooperative game theory and deep 

Q-learning. The Key outcomes of this work in the form raised issues and novel 

solutions, systems design, allocation and caching algorithms, system simulation 

analysis are summarized as follows. 

 

1. The first system is focused on a new electronic medical records allocation 

method in order to improve the transmission of medical files over wireless 



1.1 Thesis Contributions 

 

4 

 

networks by using location-aware femtocaching and DVS camera. In the 

previous study [17] [18], femtocaching is proposed to receive and cache 

popular videos of new media platform. For the users who want to watch the 

videos, they can download from femtocaching instead of macro base station, 

thus decreasing the burden of networks. For the dynamic vison sensor, 

which has been proposed to decrease the size of medical video files. DVS 

is a very new and novel technology as well and not yet universal, which 

takes video according to the reflection of light and how fast the subjects 

move. In the previous research [19] [20] [21] [22], there are a few researches 

applied DVS into transportation monitoring and pedestrian walking 

monitoring. DVS camera could save more resources, such as devices battery 

life and storage capacity of camera to current monitoring system, especially 

for the patients with sleep disorder. In our proposed system, we divided 

electronic medical records into three levels according to the type and the 

size of medical files (words/text, images, and videos). The EMR is allocated 

in femtocachings efficiently and effectively according to our proposed 

medical records allocation algorithm by applying knapsack model with 

penalty minimization. Due to the limited storage capacity of caches, not all 

the caches have the enough space for medical files, especially medical 

images and videos. The proposed medical records allocation algorithm 

would choose the most suitable files to cache based on three important 

factors. In this system, a new medical video capture method is proposed as 

well to reduce the size of visual medical files by applying DVS camera 

technology. We compared the scenarios of system with femtocaching and 

DVS technology, femtocaching only, and without the proposed system. The 

simulation results show that the transmission delay is 9.79min, 16.59min, 

and 124.4min respectively in the best situation. For the worst situation, the 

simulation results show that the transmission delay is 27.37min, 139.65min, 

and 247.47min respectively. Therefore, the transmission delay can be 
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improved by 88.94% to 92.13% by applying the system with femtocaching 

and DVS. 

2. In the second system, a sharing system has been proposed for patients to 

share their edge devices to others nearby. A non-cooperated auction-based 

game theory mechanism has been applied to compete storage capacity 

among the patients based on edge computing. Edge computing is proposed 

to process and cache EMR instead of cloud computing. There is a large 

volume of researches of cloud computing have been conducted in health 

care area in last decade [23] [24]. However, there is an increase in the 

amount of data correlating with the rapidly increasing number of internet of 

things (IoT) devices. The speed of data transportation is becoming the 

bottleneck for the cloud-based computing paradigm [25]. Cloud computing, 

especially, is not efficient enough for those health devices that require very 

short response times, thus could cause intolerable network latency. Edge 

computing could cache and process computing task at the edge of the 

network without transferring to the cloud network and protect the privacy 

of patients. Edge computing could off load partly or whole data processing 

from cloud and provide more efficient and safer services. Patient can control 

their own medical data, made by wearable sensors, at the edge. In the 

previous research, game theory has been used in many filed, especially, for 

the network resources and spectrum allocation in telecommunication [26] 

[27] [28]. In our proposed study, game theory is applied on the edge to 

compete the allocation and caching priority by combining with patient’s 

health condition and telecommunication channel condition. Four medical 

factors have been considered, including the severity of illness, the size of 

the medical records that patient wants to cache, the queueing time that 

patients have been waited, and the rewards that patients got by sharing edge 

caching with other patients. In the proposed non-cooperative game, all the 

patients are players. They use their combined value as a bid to compete. 
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Nash Equilibrium has been presented as a desirable outcome. The results 

show that the proposed system can decrease the transmission delay by 56.87% 

to 93.69% in the best situation and by 25.94% to 57.75% in the worst 

situation comparing with the system without sharing edge devices. On the 

other hand, the results show that more shared edge devices, higher channel 

capacity patients can get, which means the proposed system encourages 

more patients to share their storage capacity of edge devices to others.  

3. In the last system, we considered that all the medical factors have same 

weight. However, the priority is based on a combination value. It is possible 

that for the patients who has higher illness servility but cannot get timely 

and effective health care services. Therefore, in this system, we introduced 

a new allocation algorithm based on deep Q-learning [29] [30] for patients 

to cache their medical files to adjacent edge devices. M/M/1 queueing model 

with preemptive priority is proposed for queueing time of patients. On the 

other hand, the medical files of patients only can be cached in one edge 

caching in the last system. However, in this new system, the medical files 

can be cached in multiple edge caching devices dispersedly. The processing 

time including queueing time and caching time would be decreased 

significantly. According to the simulation results, patients could get more 

efficient medical care by applying the proposed system and save at least 

71.14% transmission time comparing with the traditional method. We 

compared this research with our last system as well, the results show that 

new allocation algorithm saves 20.57% time more for the whole of system, 

which means other patients who want to cache medical records in edge 

devices could get medical care in a quicker manner. The proposed system 

provides more fair and humanized medical care services, the patients with 

higher level of illness severity have higher priority and lower waiting time 

to be served. 
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1.1.2 List of Publications 

The list of publications related to the main contributions of this thesis are stated 

as follows.  

 

(1) Z. Chen and M. Shikh-Bahaei, “Location-Aware Distributed File Allocation for 

Low-Delay Access to Electronic Medical Records”, 38th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 

IEEE, pp. 5372-5375, 2016. 

(2) Z. Chen, T. Shikh-Bahaei, P. Luff, and M. Shikh-Bahaei, “Edge Caching and 

Dynamic Vision Sensing for Low Delay Access to Visual Medical Information,” 

39th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), IEEE, pp. 1238-1241, 2017. 

(3) Z. Chen, T. Shikh-Bahaei, P. Luff, M. Shikh-Bahaei, “Edge Computing for Low 

Delay to Cache and Transfer Electronic Medical Records,” Advances in 

Intelligent System and Computing, Springer, vol. 869, pp. 474-486, 2018. 

 

1.2 Outline of the Thesis 

The rest of the thesis is organised as follows. Chapter 2 provides the 

preliminaries on the required background for understanding the research area 

addressed in this thesis. In addition, this chapter presents the related works in health 

care based on femtocaching, DVS camera, edge computing, game theory and deep 

learning.  

        The main contributions of this thesis, which are related to the application of 

three distinct area: location-aware femtocaching technology with dynamic vision 

sensor camera, auction-based non-cooperated game theory based on edge 

computing and deep Q-learning are discussed in Chapters 3, 4, and 5. Each 

contribution chapter addresses a new medical files transmission system and 
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scenario. The performance analysis of system and simulation results are presented 

in the end of each chapter. Based on the overall picture of the research conducted 

in the thesis, the main conclusions together with some directions for future work 

are presented in Chapter 6. 
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Chapter 2 

Preliminaries and Related work 

 
        This chapter provides detailed overview of the existing research works and 

telecommunication technologies in health care area. Telecommunication 

technologies are providing advanced method to traditional medical services. It 

streamlines the health system resources and brings more applications to give 

effective medical care. Therefore, a large volume of research with respect to novel 

medical systems, medical data processing and patient care solutions has been done 

in order to bring the best benefit for patients or improve the medical care services. 

At the beginning of this chapter, the mainstream telecommunication technologies 

in health care area, including wearable sensors, big data and internet of things (IoT), 

have been addressed. The existing research work is explained. Then, the 

background studies about electronic medical records and current medical records 

system and platform are presented, respectively. Last but not least, the related works 

of the femtocaching, DVS camera, edge computing, game theory and deep learning 

in health care filed are conducted. It includes the basic background of above 

technologies and existing research achievements. 

 

2.1 Telecommunication in Health Care Area 

        Telecommunication brings massive change to current health care area，which 

provides more efficient medical service to patients. According to the research, it is 

estimated that the 20 to 64 years old group will decrease to 55% and the over 65 

group will increase to 28% by the year 2050, which means more medical services 

and budget are required [31]. As shown as in Figure 2.1, the expenditures of health 
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care increase with age population. Therefore, many researchers are looking for 

more efficient method to provide more efficient healthcare. 

 

 

 
Figure 2.1: Public Heath Care Expenditure by Age Groups [31]. 

 

        Nowadays, more and more patients are using medical sensors to improve their 

self-care ability and to obtain more accurate and effective medical services. In the 

near future, real-time medical data generated by medical sensors will increase 

significantly [32]. It is estimated that by 2020, the number of internet-connected 

devices might reach 50 billion, and the increase of network traffic of these devices 

might have a significant impact on networks, data centers and smart connected 

products [33]. Wearable sensors have diagnostic, as well as monitoring applications. 

Physiological measures of interest in rehabilitation include heart rate, respiratory 

rate, blood pressure, blood oxygen saturation, and muscle activity [34]. 
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Figure 2.2: Illustration of a Remote Health Monitoring System Based on Wearable 

Sensors [34]. 

 

        Wearable sensors are used to collect physiological and movement data from 

the patient to enable monitoring of the patient’s health. Medical sensors are 

deployed based on the patient’s health condition and the patient’s consent. For 

example, when monitoring a patient with congestive heart failure or a patient with 

chronic obstructive pulmonary disease, the sensors for monitoring vital signs such 

as heart rate and respiratory rate will be deployed. For rehabilitation monitoring of 

stroke survivors at home or for monitoring of elder patients with mobile assist 

devices, wearable sensors will be deployed to collect patient’s movement data. 

Wireless communication is relied upon to transmit patient’s data to a mobile phone 

or an access point and relay the information to a remote center via the internet. 

Emergency situations (such as falls) are detected by data processing implemented 

throughout the health care system, and an alert message is sent to the emergency 

service center to provide immediate assistance to the patient. Family members and 
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caregivers will receive an alert when the patient is under an emergency situation. 

They can also be notified when a patient needs help, such as taking his/her 

medication. On the other hand, clinical personnel also can remotely monitor 

patient’s health status and be alerted in case a medical decision has to be made. 

In [35], a small and sufficient breathing sensor has been proposed to monitor 

breathing every day. The sensor is applied to make sounds and get the attention of 

others when an emergency occurs. It is possible to reduce the number of deaths by 

allowing faster medical intervention. The breathing detection system aims to use a 

small, comfortable sensor that may be operated for long periods of time with a small 

battery. The algorithm is tested in the presence of noise sources and shows an 

average success rate of 91.3%. In [36], authors present an automatic fall detection 

system called SmartFall by applying a fall detection sensor. Fall-induced injury has 

become a leading cause of death for the elderly. Many elderly people rely on canes 

as an assistive device to overcome problems such as balance disorder and leg 

weakness, which are believed to have led to many incidents of falling. In the research, 

authors present the design and the implementation of SmartFall, an automatic fall 

detection system. The results show that SmartFall system achieves a near perfect fall 

detection rate in the experiments. In [37], authors present a novel ear-worn sensor to 

measure heart rate on a mobile patient. The sensor is designed to be physically 

comfortable with low power consumption and have the ability to manage harsh 

sensing environments such as those introduced by electromagnetic interference 

(EMI) and increased temperature or humidity. The experimental results have shown 

that the sensor system is capable of detecting heart rate at a number of locations on 

the body. 

       The data extracted from these medical sensors can provide a huge diagnostic 

value to the patient’s health indicators. However, the number of sensors deployed 

around the world is growing at a rapid pace and continuously generate enormous 

amounts of data [38] [39]. Ultimately, these sensors will generate big data [40]. The 

data we collect may not have any value unless we analyse, interpret, and understand 
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it. To analyse the huge amount of data from various sensors, big data technology has 

been proposed to address this issue.  

        In [31]. The author proposed a new medical application for elder people with 

chronic disease to improve their self-care ability and quality of life by using big data 

technology. The technology platform manages and processes huge volume data from 

medical sensors. A data capture system has been proposed to acquire and transfer 

patients’ vital information to the system for processing. In [41], a robust, easy to use 

health big data system is proposed to collect diabetes patient’s medical data and 

manage diseases. The system also provides a platform for patients to discuss and 

share treatment management questions, experiences and challenges. The system 

allows patients to find multiple similar patients to discuss, not only one. The system 

would send up-to-date information, videos and news articles as well to all the patient 

to meet all of their disease management needs. 

        On the other hand, the IoT has been proposed to address the data issues. IoT 

offers a world of networked devices, cloud-based applications and services, with 

diverse cooperation mechanisms and where big data analytics enables getting 

objective data and information, and well-grounded decision making [33]. It 

seamlessly connects smart sensors attached to the human body for physiological 

monitoring and daily medication management. 

        In [42], An IoT-based intelligent home-centric healthcare platform iHome 

Health-IoT System has been proposed. The network architecture of iHome consists 

of three network layers: the first one is smart medical service layer. Doctors can 

efficiently manage a large group of patients from this layer. The second one is 

medical resource management layer, which includes administration and 

management of medical resources; the last one is sensor data collecting layer, which 

is the basis of the entire network. The proposed platform seamlessly fuses IoT 

devices (e.g., wearable sensors and intelligent medicine packages) with in-home 

healthcare services (e.g., telemedicine) for an improved user experience and service 

efficiency. The feasibility of the implemented iHome Health-IoT platform has been 
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proven in field trials. In [43], author proposed a novel architectural framework called 

H3IoT to monitor health of elderly people at home based on IoT technology. A 5-

layered system was proposed including user application layer, internet application 

layer, information processing layer, local communication layer and physiological 

sensing layer for elderly people can be monitored at home by their relatives, doctors, 

nearby hospitals, and care takers where in staying at remote location. H3IoT has 

many advantages as it is mobility, cheap, easy to use, simple layered design, and 

delay tolerant. 

 

2.2 Electronic Medical Records 

        Electronic Medical Records integrate patients’ clinical data and constitute a 

main source of reference for their care [11]. It is very important for the hospital or 

general practitioner (GP) to access patient’s EMR in order to provide efficient, 

effective, and safe medical services [44] [45]. In early times, like some still in use 

today, patient’s medical records are based on pen and paper. These paper-based 

medical records are not well organised, which are usually incomplete and can 

hardly be accessed in time [10], which means the patient cannot get timely and 

effective medical support. More inherent problems with paper records include 

legibility, clarity and the ease with which they can be lost. Multiple records must 

be created and maintained, such as a medical chart and an X-ray folder. Each 

usually requires separate storage and maintenance. This gets even more 

complicated when patients visit multiple facilities or departments [46]. 

        In order to provide efficient and precise medical care [2], an important trend 

in medical informatics is the adoption of electronic patient record systems that 

facilitate access to clinical information and work toward preventing the loss or 

misplacement of information [11]. By implementing EMR, patients’ medical data 

can be tracked over an extended period of time by multiple healthcare providers 

[47]. It can help to identify those who are due for preventive check-up and screening 
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and monitor how each patient measures up to certain requirements like vaccinations 

and blood pressure readings. On the other side, EMR is universal, which means that 

instead of having different charts at different healthcare facilities [48], a patient will 

have one electronic chart that can be accessed from any healthcare facility using 

EMR software [49]. 

        In the past decades, many telecommunication technologies have been 

proposed and used to process patients’ EMR [14]. Many EMR systems have been 

designed and developed to process medical data. These technologies and systems 

permit communications between patient and medical staff with both convenience 

and fidelity, as well as the transmission of medical, imaging and health informatics 

data from one site to another. Doctors can quickly log in to their protected accounts 

from any computer or mobile device to pull up patient information for a remote 

appointment. The online patient portals allow patients to access their own records 

without making a trip to the office, which is especially important for those who 

receive their care virtually [50]. On the other side, health care providers or 

organisations do not provide effective access for patients to their own data and they 

show little willingness to share patient’s medical data to other health care providers. 

However, EMR system is able to exchange cached data among the health care 

providers according to standard in securing a consensus. Hence having the right 

EMR system in place is essential for maximizing the quality of medical services. 

        With the advanced telecommunication technologies, the patient medical 

records can be accessed efficiently and shared among hospitals, which is essential 

in delivering the quality of medical care services [13]. The most obvious 

improvement by using EMR systems is the increase in accuracy and efficiency [46]. 

 

2.3 Related Works 

The related works of the femtocaching, DVS camera, edge computing, game 

theory and deep learning in health care filed are conducted in this section. It 
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includes the basic background of above technologies and existing research 

achievements. 

 

2.3.1 Femtocaching Networks 

        Femtocaching is femtocell-like base station with weak backhaul links but large 

storage capacity. Femtocaching was first proposed in [18]. Authors suggest 

femtocaching network to handle increasing demands for video content in 

wireless/mobile devices. Femtocaches form a wireless distributed caching network 

that assists the macro base station by handling requests of popular files that have 

been cached. Due to the short distances between femtocaches and users, the 

transmission of cached files can be done very efficiently. Femtocaches can cache 

popular files and serve requests from mobile user terminals (UTs) by enabling 

localized communication and hence frequency reuse. Because the most popular files 

are stored in the cache and are thus always available locally to the UTs that are 

requesting it. The results show that the number of users that can be served is 

increased by as much as 400% to 500%. 

        In [17], authors present a different architecture for the same issues by 

considering using the wireless terminals themselves as caches, which can distribute 

video through device-to-device communications. In the system, femtocaching is 

operated in conjunction with a traditional, macro cellular base station. Clearly, the 

smaller the percentage of file requests that has to be fulfilled by the macro base 

station, however, the larger the number of UTs that can be served. The simulation 

results show that this approach improves video throughput by one to two orders-of-

magnitude and allows an improvement in the video transmission delay without 

deployment of any additional infrastructure. 

        In [51], author proposed a new content updating method for femtocaching 

based on previous researches. The previous work does not provide any method to 

update contents in caches of helpers when the ranking changes. The number of 
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contents that can be cached is very limited because the sizes of contents are usually 

huge. If the femtocachings cache unnecessary contents, the maximum benefit from 

caching might not be achieved.  

In [18], femtocaching placement algorithm is proposed to identify the popular 

contents in the system and cache the popular contents only. The complexity of the 

proposed method is less than the previous algorithm in femtocaching. The 

simulation results show that the proposed method has an acceptable performance 

considering overall cache hit rates and more suitable for updating than the 

femtocaching placement algorithm. 

 

2.3.2 Dynamic Vision Sensor Camera Technology  

        A dynamic vision sensor is a sensor that detects temporal contrast of brightness 

and has the fastest response time compared to conventional frame-based sensors, 

which detects static brightness per every frame. The fastest response time allows fast 

motion recognition, which is a very attractive function in the view of consumers. A 

conventional video camera records at something like 30 or perhaps even 60 frames 

per second. However, DVS is event-based. When subjects move faster, DVS takes 

more frames per second. When subjects move slower, DVS takes less frames per 

second. In particular, it is low power consumption due to the event-based processing, 

which is a key feature for mobile applications [52].   

        In [20], a DVS camera is applied into a traffic intersection, which is shown in 

Figure 2.3. The sensor outputs a measurement only when the light changes. When 

the light level crosses that threshold, the sensor produces a “change-detection event” 

and triggers an illuminance measurement. The results for the entire pixel array can 

be viewed for a given time slice, but only changing pixels contribute to these images: 

the positive and negative level-crossing events (white and black, respectively, 

middle right) and associated illuminance measurements (nonblack areas, bottom 

right). 
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In [19], DVS camera is proposed for a person tracking application, which is 

shown in Figure 2.4. The left two images are from a 2 second video sequence, which 

have been extracted for illustration. On the right side, the tracking results is provided 

according to the system simulation. The circles indicate the locations of different 

persons. A unique ID number identifies the person and an arrow indicates the 

direction and speed of movement. As we can find from the tow right pictures, ID 

198, 155, 171, and 222 have been correctly tracked while ID 227 was a shadow 

effect that disappeared in the next sequence. The results show that the tracking 

algorithm could significantly reduce the computational burden comparing to the 

traditional video-based tracking surveillance systems. 

 

 

 
Figure 2.3: A Traffic Intersection by Applying DVS camera [20]. 
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Figure 2.4: A Passenger Tracking Application by Applying DVS Camera [19]. 

 

2.3.3 Edge Computing Networks 

       In the edge computing network, data is processed by the device itself or by a 

local computer or server, rather than being transmitted to a public cloud or data 

center platform, which increases the edge responsibility and allows computation and 

services to be hosted at the edge, and reduces the network latency and bandwidth 

consumption [53]. Edge computing concept has been discussed only from a 

theoretical perspective so far. However, there are some related approaches that are 

similar to this concept [54].  

        A new edge computing network named Cloudlet has been proposed to 

overcome long latency of data exchange between the public clouds and edge device 

through the internet when offloading computation to the public. Cloudlet-based 

offloading is proposed where mobile devices offload computational to the less 

resourceful server near the user proximity accessible using Wi-Fi access point [55]. 
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Cloudlet networks can provide cloud computing services to mobile devices, such as 

smartphones, tablets and wearable devices, within close geographical proximity. 

The results show that Cloudlet networks could improve the response time of 

applications running on mobile devices, decrease the latency and provide better 

resource allocation [56] [57] [58]. 

        In [59], authors proposed FemtoClouds system that provides a dynamic and 

self-configuring multiple device cloud system to scale the computation of Cloudlet 

by coordinating multiple mobile devices. FemtoClouds could decrease the network 

latency during computational offloading to the traditional cloud data center by 

applying the nearby unutilized mobile devices as edge computing devices. The 

results show that FemtoClouds system provides a community-based computing 

service by minimizing the dependent on corporate infrastructure and scaling the 

computation capability. 

In [60], an edge cloud architecture named REPLISOM, has been proposed to 

reduce cloud responsiveness under long term evolution (LTE) environment when 

multiple IoT devices replicate memory objects to the edge network. In REPLISON 

system, instead of pushing the new updated memory object, the edge cloud pulls the 

memory replica to the respective clone virtual machine. The results show that 

REPLISOM could decrease the latency and cost during offloading when multiple 

IoT devices replicate updated object to the nearby edge cloud. The analysis and 

numerical evaluation show that the proposed system could reduce the cost for cloud 

offloading, transmission delay, and energy consumption significantly in terms of the 

IoT applications given the massive number of devices but with tiny memory sizes. 

 

2.3.4 Game Theory 

        Game theory is a mathematical tool used in understanding and modelling 

competitive situations which imply the interaction of rational decision makers with 

mutual and possibly conflicting interests. Nowadays game theory has been widely 
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applied to different subjects. In telecommunication areas, game theory has been 

proposed to efficiently allocate the resources of wireless networks to users, 

optimize the performance of networks and control distributed systems [61].  

        In [28], authors propose a novel method to allocate wireless resources based on 

game theory in terms of transmit power and wireless spectrum. In other to find the 

optimal allocation results, each mobile user would bid for the limited wireless 

resources from physical substrate wireless networks and compete the same resources 

with others. Three different resources request strategies are proposed including 

price-based, correlation-based, and water-filling-based respectively. The simulated 

results show the benefits and revenues of the virtual wireless networks and physical 

substrate wireless network are both optimized, thus maximizing the aggregate 

spectrum efficiencies over wireless-resources-virtualized mobile cloud-computing 

wireless networks. 

        In [26], it presents the current state of optimizing resource allocation in 

LTE/LTE-A networks based on game theory. In current wireless network, resource 

allocation is becoming more complicated in the results of multi-cell, multi-user, 

multi-antenna and multipath fading. By applying the game theory, the results show 

the system could achieve better performances in term of system delay, network 

throughput, fairness index, and packet loss ratio, etc. 

 

2.3.5 Deep Learning Algorithm 

        Deep learning allows computational and processing systems that are 

composed of different multiple layers based on neural networks to learn 

representations of data with multiple levels of abstraction [62], which is different 

from traditional machine learning that how to extract information from the raw data 

[63]. More recently, deep learning has been applied to process aggregated electronic 

medical records in health care area, including both structured (e.g. laboratory tests, 

medications and diagnosis, etc.) and unstructured (e.g. free-text clinical notes) data. 



2.3 Related Works 

 

22 

 

The results from current research show that deep learning obtains better results than 

conventional machine learning model. The deep learning applied to the health care 

has been mostly based on two neural networks, including convolutional neural 

networks (CNNs) [64] and recurrent neural networks (RNNs) [65]. 

        In [66], authors proposed a four-layer convolutional neural networks based on 

deep learning to predict congestive heart failure and chronic obstructive pulmonary 

disease. The results show that proposed networks could bring significant advantages 

over the baselines. In [67], an end-to-end deep learning dynamic network named 

DeepCare based on recurrent neural networks has been proposed to infer current 

illness states and predicts future medical outcomes. Moreover, the medical 

interventions are combined into the model to dynamically shape the predictions. 

DeepCare was evaluated for disease progression modelling intervention 

recommendation and future risk prediction on diabetes and mental health patients. 

In [68], an end-to-end recurrent neural networks model called Doctor AI has been 

proposed to predict diagnoses according to the health care history of patients. The 

evaluation showed significantly higher recall than conventional medical services. 

Patients could get more timely medical intervention and save medical expenses. 
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Chapter 3  

A Location-Aware Distributed File 

Allocation Method for Low-Delay 

Access to Electronic Medical Records 

 

3.1 Introduction 

        Electronic medical records integrate patients’ clinical data and constitute a main 

source of reference for their care [69]. EMR can keep medical files well organized 

and more secure. It is important for the hospitals or physicians to access patient’s 

EMR in order to provide efficient, effective, and safe health care services [70] [71]. 

It is important to be able to share patients’ medical records among the hospitals as 

well, which not only provides a vital and efficient reference to patients and 

physicians, but also saves more medical care expense [72]. However, many health 

care providers or organisations do not provide effective access for patients to their 

own data and do not share patient’s medical data with other health care providers. 

One of the important reasons is different hospitals have different medical standards. 

The medical records from different medical service providers are difficult to share 

with others. On the other hand, for most of current EMR systems, patients only can 

access some simple medical files [16]. However, with more detailed medical records, 

physicians could provide more precise medical services [9]. With the advanced 

telecommunication technologies, the patient medical records can be accessed timely 

and shared among hospitals, which is essential in delivering the quality of medical 

care services [13].  
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        In this chapter, a new medical files allocation system is proposed to transfer, 

allocate, and cache EMR by applying location-aware femtocaching technology and 

dynamic vision sensor camera. The purpose of this new system is to provide whole 

EMR access with low-delay transmission instead of basic medical files. By applying 

the new system, medical professions can provide effective medical services to 

patients based on their locations at any time. We applied location-aware 

femtocaching technology to the nearest hospitals of patient’s daily location [73]. 

Medical records are allocated and cached in different femtocaches by using the 

proposed allocation algorithm. Femtocaching is femtocell-like base station with 

large storage capacity. The surest way to increase the system capacity of a wireless 

link by getting the transmitter and receiver closer to each other, which creates the 

dual benefits of higher-quality links and more spatial reuse. One of the means to 

achieve this with higher system capacity and lower delay is based on femtocaching. 

Femtocaching is proposed to set up near the hospitals in this research. Due to the 

short distances between requesting devices and femtocaching, the cached medical 

files can be transmitted efficiently [17]. Femtocaching can specially decrease packet 

delay when users repeat their requests for the same file.  

        In particular, for the first time, exploiting the recently developed dynamic 

vision sensor technology is investigated here to achieve smaller medical visual data 

files in our proposed tele-health system. According to the size and type of medical 

files, the whole EMR is divided into three categories (text/word, digital image, and 

video/audio) in the proposed system. However, the medical video size (e.g. in-

patient monitoring), accounts for a big part of the EMR (around 70%), which could 

cause a huge delay when physicians access to patient medical records. Dynamic 

vision sensor camera is proposed to decrease the medical video size, which not only 

saves more time for transmission of visual medical data, but also provides more 

storage capacity for caching more patients’ medical files. The transmission delay is 

decreased significantly by combing location-aware femtocaching technology and 

dynamic vision sensor camera. 
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3.1.1 The Overview of Femtocells Networks 

        In the mobile wireless networks, the demand for higher data rates and lower 

power consumptions is continuously increasing, while the capacity provided by the 

existing macrocell networks is limited [74]. This phenomenon motivates the 

research and development for femtocell networks, where each femtocell base station 

(FBS) is installed at each customer’s home or office. The FBS is a short-range, low-

cost, and low-power base station. It can communicate with macrocell networks by 

broadband connections such as digital subscriber line (DSL), cable modem, or a 

separate wireless backhaul channel [75]. Femtocells can provide high data rates and 

quality of service (QoS) with low transmission power for consumers.  

        The structure of femtocell networks is shown in Figure 3.1. There are several 

femto-networks operating within the coverage of the Macro-network. Each femto-

network is composed of a base station (abbreviated as femto-BS) and multiple 

mobile stations (abbreviated as femto-MSs) which is connected to the femto-BS. 

The macro-network is composed of a base station (abbreviated as Macro-BS) and 

multiple mobile stations (abbreviated as Macro-MSs) connected to the Macro-BS. 

Deploying femtocell networks embedded in the macro-cell coverage greatly benefits 

communication quality in variety of manners [76]. The advantages of applying 

femtocell are the followings. 

 Better coverage and capacity. Due to their short transmit receive distance, 

femtocells can greatly lower transmit power and achieve a higher signal-to-

noise ratio (SNR). 

 Improved macro-cell reliability. The network traffic can be absorbed into the 

femtocell networks. The macro-cell base station can provide more resources 

and better services to other users. 

 Cost benefits. Femtocell deployments will reduce the operating and capital 

expenditure costs for operators. The deployment of femtocells will reduce 

the need for adding macro base station towers. 
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      Figure 3.1: The Structure of Femtocell Networks [71]. 

 

        Femtocaching is base station with large storage capacity based on femtocell 

network. In [18], author proposed a new wireless distributed caching system to assist 

the macro base station to handle requests of popular files that have been cached by 

using the femtocaching. If the user requests a file that is cached in adjacent or local 

femtocachings, the femtocachings handle the request. The macro base station 

manages the requests that cannot be handled by femtocaching. Duo to the short 

distances between femtocachings and users, the transmission of cached files can be 

done very efficiently.   

        In this research, we introduced a new method for decreasing the transmission 

delay of medical records delivery networks. The key idea by applying a distributed 

femtocaching is to allocate and store the most suitable files, and transmit them, upon 

request, via short-range wireless links to the nearest hospital. The femtocaching is 

low-cost because storage capacity has become exceptionally cheap (according to 

recent prices, two terabytes cost approximately 100 dollars), while the loading of the 
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files to the femtocaching can occur through a low-rate (and thus cheap and robust) 

backhaul links at low demand times, such as, at night [18]. 

 

3.1.2 The Overview of Location-aware Network 

        Location-aware technology is any technology that is able to detect its current 

location and then manipulate this data to control events and information. Location 

is detected through the use of various sensors and methods of calculating 

geographical location such as through globe position system (GPS) technology and 

cell tower triangulation. Location-aware devices are able to give directions relative 

to the location, access geographically aware services and data, as well as broadcast 

the location of the device. Location-aware technology is often enabled in a device 

through the integration of electronic modules, ranging from a full GPS device that 

can be installed in vehicles to small GPS microchips integrated in mobile devices 

such as phones and tablets. The location-aware technology in the device interfaces 

with the operating system of the device to deliver location-aware or location-

specific services.  

         Location-aware network has been wildly used. Location information is 

becoming an integral part of different mobile devices. Current mobile services can 

be enhanced with location-aware features, thus providing the user with a smooth 

transition towards context-aware services. Potential application fields can be found 

in areas such as travel information, shopping, entertainment, event information and 

different mobile professions. Some applications for Android and iOS feature 

different data and content based on the location of the devices, such as showing 

different events or tourist destinations, landmarks and even restaurants. Large 

campuses can use location-aware technology to guide students, especially 

newcomers, to specific locations such as classrooms and laboratories. The 

technology is increasingly being used in location guidance, especially in vehicles 

(GPS navigation) and for directing tourists in new cities. 
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        A mobile phone can be located by the telecom operator in the network. The 

positioning is based on identifying the mobile network cell in which the phone is 

located, or on measuring distances to overlapping cells. In urban areas the accuracy 

can be down to 50 meters. Considering the issue of security, if the user wants to use 

location-aware services from other service providers, the location has to be 

transferred to the other service provider and the telecom operator must to get 

permission for this from the user [77].  

        The hospital workers are highly mobile. Their work includes visiting patients, 

locating resources, such as medical records, or consulting with other specialists. The 

information required by these specialists is highly dependent on their location. 

Access to a patient’s laboratory results might be more relevant when the physician 

is near the patient’s location and not elsewhere [11]. Many chronic patients are 

highly mobile as well. They are constantly changing location to perform their daily 

life. It is important for the nearest hospital professions to access their EMR 

immediately once an emergency has occurred [78].  

        In the proposed system, we describe a location-aware medical data system that 

was developed to provide access to patients’ EMR, based on patients’ location 

(home area, work place, family’s home, friends’ home, and other places). Due to the 

various staying time of patient in different location and the limited storage capacity 

of femtocaching, the femtocaching would choose the most suitable medical files to 

cache. Once an emergency has occurred, the physician can access the patient’s EMR 

with low delay. The purpose is to provide a comprehensive medical service for 

patients no matter where the patient is. 

 

3.1.3 Overview of Medical Video and Dynamic Vision Sensor 

        Medical video is a significant part of the health care area. Video was selected 

to provide important reference to physicians and an additional option for close 

supervision and offered increased privacy and as a result, decreased stress for the 
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patients [79]. In [80], video has been used to monitor the patients with sleep disorder 

or sleepwalking. The sleeping behaviour of patients is recorded by camera at night. 

According to the monitoring video, physicians could provide effective medical 

services to patients. These results suggest that video captures most of the important 

features of the disorder. Video monitoring is proposed to reduce the number of falls 

for patients as well. Through remote monitoring of patients via video surveillance 

technology, trained hospital staff can observe the activity of multiple high-risk 

patients from a central location on each floor. The results show that video monitoring 

could significantly reduce the number of falls and more importantly, the injuries they 

often cause. For patient privacy, the video is live and not recorded. Used in 

conjunction with advanced communications and other procedures, video monitoring 

can lower staffing requirements while reducing risk and exposure for patients and 

the facility itself [81]. However, the size of medical video is huge and has significant 

data redundancy issues. For example, monitoring the patient who has sleep disorder 

or sleep walking condition, the effective part of monitoring is when patient starts to 

move or walk. However, the monitoring camera would keep recording during the 

whole night no matter patient is sleeping or walking. In this chapter, DVS 

technology is proposed to reduce the size of visual medical files. The transmission 

delay can be decreased when transferring the medical files among the hospitals. The 

clinical professionals could access the EMR within a shorter time and provide more 

efficient health care services. 

        DVS camera is different to the conventional video camera; it can detect 

temporal contrast of brightness and contains an array of asynchronous autonomous 

self-signaling pixels which respond quickly to relative changes according to the 

intensity of light [82]. The conventional video cameras are frame based, which 

means the camera captures a certain number of still images in one second and rapidly 

plays it back, giving the viewer the illusion of motion [20]. Conventional video 

cameras have two main disadvantages:  
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 The first being the limited number of frames which will miss most of 

movement if the objects move too fast [21]. For example using a conventional 

video camera with 30 frames per second to record the punches of a boxer; the 

camera cannot avoid the problem that all the image sensors have the same 

timing source. This weakness leads to inadequate data when analysing 

nuances of the boxer’s arm motion. Higher frames and sophisticated post 

processing may improve this case. However, limited bandwidth, power and 

computing resources again limit this possibility.  

 The second disadvantage is the huge storage capacity required due to the large 

quantity of data produced by these cameras. The real-time object tracking 

system based on video data processing requires large computational effort 

and is consequently done on high-performance computer platforms [22]. For 

example in using a conventional video camera to monitor and record the sleep 

behavior pattern of a narcolepsy patient at home, only the data relating to the 

patients’ movements are needed. However, huge unvalued and redundant 

data where the subjects are not moving including the furniture and other 

unchanging parts of the room is recorded and processed by the monitoring 

system, which significantly increases processing time and causes a waste of 

storage space and transmission bandwidth.  

        Compared with the conventional camera, the DVS camera has the fastest 

response time in recognising fast motion. As mentioned before, the conventional 

camera is frame-based. However, the DVS camera is event-based. Sampling with 

different rates along with the intensity changing of light not only provides more 

accurate analysis for the fast motions, but also decreases the use of storage capacity, 

bandwidth and power [20].  

A DVS camera typically requires orders of magnitude lower storage capacity 

than that of a conventional frame-based camera [72]. For the working pattern of 

DVS, when subjects move faster, DVS camera takes more pictures per second. 
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When subjects move slower, DVS camera takes less pictures per second. If there is 

no change of subjects, DVS camera does not take any pictures. 

        In [19], the authors use DVS camera to track the real-time movement of 

vehicles. The sensor outputs a measurement only when the light striking a pixel 

shifts by a present amount. When the light level crosses that threshold, circuitry 

attached to the pixel produces a “change-detection event” and triggers an 

illuminance measurement, encoded by the interval between two more events. The 

results show it can reduce the computation burden significantly compared to 

traditional traffic surveillance systems. In [73], it shows a demonstration of the 

algorithm on simulated DVS camera for a person tracking application. The data has 

been simulated from a video sequence with a resolution of 140×180 pixels that is 

close to developed 128×128 imager. Authors presented an embedded vision system 

and tracking algorithm using data from an asynchronous transient vision sensor for 

real-time applications. The results show that the tracking algorithm benefits from 

the capability of this imager to detect relative intensity changes and on its efficient 

asynchronous communication, which significantly reduces the computational 

burden as compared to traditional video-based traffic surveillance systems, 

enabling a low cost, low power consuming, and high bandwidth utilization 

implementation. 

 

3.1.4 Three Levels of Electronic Medical Records 

        In a standard EMR, the patients’ data regarding all diagnosis, symptoms, 

prescribed medications, previous tests, and future anticipations are stored [83]. In 

our proposed system, EMR is defined into three levels according to the type and size 

of the files. The first level is a text/word type document, which contains all the basic 

information of patients, medical history, and conversation between physician and 

patient, etc. The second level corresponds to digital image files, which gives an idea 

of the patient’s disease status. The digital images include X-rays, ultrasounds, and 
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MRI (Magnetic Resonance Imaging), etc., which provide an immediate and 

directive information to physician. The third level is video and audio type, which 

mostly records the daily behavior or living habit of patient, especially for the patient 

monitoring.  

 

Table 3.1: Three Levels Electronic Medical Records 

Three Levels EMR The Type of Document 

The First Level Text/Word 

The Second Level Digital Image  

The Third Level Video and Audio 

 

 First Level: identification sheet, problem list, progress record, future 

anticipation, hospital administration records, email between medical 

professions and patients, billing records. The size of each file is up to 500MB. 

 Second Level: X-rays (up to 2GB), ultrasounds (up to 5GB), Magnetic 

Resonance Imaging (MRI, up to 10GB), Computed Tomography (CT, up to 

15GB), Positron Emission Tomography (PET, up to 20GB), Computed 

Radiography (CR, up to 15GB). 

 Third Level: Medical Video records (up to 100GB), Medical Audio records 

(up to 100 GB). 

        As we can find, the size of the second and third level is much larger than text 

and word files. At the moment, most hospitals use a separate storage device, such 

as a mobile hard disk, to cache medical images. However, in terms of patients, they 

could lose them easily. For the physician, it becomes really difficult to access the 

medical images again to provide effective medical services. For the medical 

video/audio, the transmission delay is a big challenge, especially monitoring patient 

online. In this chapter, we proposed a new system to allocate and cache the three 
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levels EMR and decrease the transmission delay when physicians access to medical 

files. 

 

3.1.5 Contributions and Structure of Chapter 

        In the previous study [17] [18], femtocaching is proposed to receive and cache 

popular videos of new media platform. For the users who want to watch the videos, 

they can download from femtocaching instead of macro base station, thus 

decreasing the burden of networks. In our research, we allocate patient’s medical 

records to the nearest hospitals of home area, work place, family home, friends’ 

home, and other places according to the patient’s social life. Location-aware 

femtocaching has been used to caching patients EMR and set up close to all the 

hospitals. The recently developed dynamic vision sensor technology is exploited to 

achieve smaller medical visual data files in our proposed tele-health system. DVS 

camera could improve the bandwidth utilization and save more resources, such as 

devices battery life and storage capacity of camera to current monitoring system, 

especially for the patients monitoring. The DVS camera only takes video when 

patient is moving. It is the first time that femtocaching technology and DVS camera 

are proposed in healthcare area. 

        We divided electronic medical records into three levels according to the type 

and the size of medical files (word/text, image, and video/audio). The EMR is 

allocated in femtocaches efficiently and effectively according to our proposed 

medical records allocation algorithm by applying knapsack model with penalty 

minimization. Due to the limited storage capacity of caches, not all the caches have 

the enough space for medical files, especially medical images and videos. The 

proposed medical records allocation algorithm would choose the most suitable files 

to cache based on three important penalty parameters including the staying time of 

patient in one location, the importance of medical records to patient’s current health 

condition, and the transmission delay of medical files. The purpose is to provide the  
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medical files in a timely manner and reduce delay when medical files are being 

shared and allocated among the hospitals. The simulation results show that the 

proposed scheme can drop the transmission delay of EMR by 43.57% to 86.66% 

compared with the scenario without using location-aware femtocaching technology. 

We also compared the simulation results of transmission delay with DVS camera 

technology, which could decrease the transmission delay by 41% to 80.4% more 

compared to the scenario with femtocaching only, which means the transmission 

delay can be improved by 88.94% to 92.13% comparing with the scenario without 

proposed system. It is a significant improvement comparing to traditional EMR 

transmission. 

        The rest of the chapter is organized as follows. In Section 3.2, we provide the 

system model with location-aware femtocaching based on patient’s daily location. 

Section 3.3 focuses on the medical records allocation algorithm and system analysis. 

This is followed by the three penalty parameters and transmission delay calculation.  

In Section 3.4, a comprehensive performance evaluation has been conducted. 

Finally, Section 3.5 concludes the chapter. 

 

3.2  System Scenario and Modeling 

        A new system is proposed to allocate patient EMR by using femtocaching and 

knowledge of patients’ location. In the proposed scenario we assume that patients 

have wearable mobile devices with positioning facility to record their locations, and 

the registered hospitals have the complete EMR of the respective patients.  

 

3.2.1 Location-aware Wearable Sensors for Health Condition 

Tracking 

        A new system is proposed to decrease the medical video size, transfer, allocate 

and cache patient medical records by using DVS camera and location-aware 
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femtocaching technologies. In the proposed system, we assume that patients use 

location-aware wearable sensor devices to monitor their health condition and record 

their location at real time. The wearable sensor has two main functions in our 

scenario.  

 The first one is the detection of emergency situations (e.g. falls). In an 

emergency situation, an electronic impulse produced by patient’s body may 

be above or below the critical value. The sensor would then send an 

emergency message to the hospital and clinical professionals. The patients 

can receive immediate medical services [84]. The caregivers and family of 

the patient are notified when the emergency situation happens. Other 

notifications would be sent in many cases, for example, if the patient 

requires assistance in taking their medicine. Clinical personnel can remotely 

monitor patient’s status and be alerted in case a medical decision has to be 

made.  

 The second main function of the sensor is the recording of the patient’s 

location. Using this approach, a warning about the fall and the location of 

the subject undergoing monitoring is transmitted to a caregiver or family 

member via SMS, email and Twitter messages, etc. This approach can 

record how long the patient stays in this location, which provides an 

effective reference to allocate medical records to the femtocaching of the 

nearest hospital. 

 

3.2.2 The Proposed New System by Applying Femtocaching and 

DVS Camera 

        Firstly, we consider a scenario with one location, as shown in Figure 3.2, 

Femtocaching A and Femtocaching R are located in the nearest hospital of patient’s 

home area and the registered hospital respectively. We assume that the registered 
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hospital has the complete EMR of the patients. Femtocaching A downloads medical 

records from registered hospital during low data traffic times, e.g. at night, then 

allocates and caches the suitable medical files by using the proposed medical 

records allocation algorithm.  

        Considering the limited storage capacity, the Femtocaching A would cache the 

most important suitable medical records by applying the allocation algorithm. Due 

to the close distance between Femtocaching A to the home hospital, the respective 

physician can access patient’s medical files very efficiently. In this monitoring 

system, we install DVS camera and wearable sensors in the home area (e.g. for 

tracking the sleeping pattern of a patient suffering from sleep disorder). The data 

produced by DVS cameras and wearable sensors are transmitted to Femtocaching 

A. The nearest hospital of home area would update all the new medical records to 

registered hospital during the low data traffic times as well. The system would 

ensure the registered hospital keep the latest medical records for patients.  

 

 

 

Figure 3.2: The Scenario of Femtocaching Applied in Home Area. 

 



3.2 System Scenario and Modeling 

37 

 

        Here we consider a typical case where a patient each day on average spends 

10 hours in the home environment, 8 hours in workplace, 3 hours for visiting 

relatives, 2 hours for visiting friends and 1 hour at other locations. The scenario is 

shown in Figure 3.3. The probabilities for spending time at each location are 

41.67%, 33.33%, 12.5%, 8.33% and 4.17%, respectively. Same as the home 

environment, the DVS camera and wearable sensors are located in workplace of 

patient (e.g. for tracking the diet information and blood sugar level for a patient 

who is suffering diabetes). In the family’s home, friend’s home, and other places, 

patients use wearable sensors to record current health situations. Femtocaching C, 

Femtocaching D, and Femtocaching E are set up near the hospitals for visiting 

relatives, friends and other places respectively. All the hospitals in different location 

receive, allocate, and cache the medical records from the registered hospital. The 

real time medical data from wearable sensors and DVS camera would be sent to the 

nearest femtocaching. The physicians could provide effective medical care to the 

patients once the emergency situation occurs. The latest medical records would be 

updated to the registered hospital after patient receives health care services from 

one of the hospitals. The system would ensure the registered hospital keeps the 

latest medical records for patients. Therefore, wherever the patient stays in, the 

nearest hospital can access the medical records and provide effective and efficient 

medical services to the patients by applying the proposed system.  

        In the proposed system, it is an ideal situation that physicians can provide 

effective medical services with the cached files in femtocaching. However, if 

physicians need more medical records which are not cached in femtocaching, the 

registered hospital has to send it to the nearest hospital through macro base stations, 

which costs more vital and precious time for patients and can decrease the health 

care quality. Therefore, having an effective medical records allocation algorithm is 

very important. The new allocation algorithm based on knapsack model with 

penalty minimization is proposed in next section to determine which medical files 

has higher priority to be stored in the femtocaching firstly. 
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Figure 3.3: The Proposed Scenario Based on Patients’ Daily Activities. 
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3.2.3 DVS camera for visual medical data 

        In our proposed system, video records account for most of the space of EMR. 

We study a scenario with limited edge caching capacity. We assume that video 

records require storage capacity of 200GB. However, the size of video files, such 

as those for recording elders’ fall or monitoring alzheimer patients, can be much 

greater than 200GB, especially if a high-resolution camera is deployed. In the 

proposed system, we have used common international format（CIF）resolution 

DVS cameras as CIF resolution (352x240) is typically used by mid-level stand-

alone digital video recorders (DVRs) when recording real time videos. It is also 

typically used by high-end systems for remote internet viewing specifically 

monitoring and surveillance cameras.  

        IniLabs [85], a company specialized in DVS technology, studied sleep 

behaviour pattern by using 128x128 DVS cameras. The DVS only outputs the 

subjects’ movements. A whole night of sleep can be recorded in 100 MB of storage 

and played back in less than a minute. Activity levels can be automatically extracted, 

and any parts of the recording can be viewed at one millisecond resolution. The bit 

rate for 128x128 DVS cameras are suggested to be 256kbps.The bit rate of a CIF 

camera is 512kbps. Hence if we use 352x240 CIF with DVS to record the sleep 

behaviour pattern for a whole night, the size of the video will be around 200MB. 

However, the size of recorded visual data using conventional CIF resolution 

cameras is around 2.35GB (512x12x3600/8/1024) for a whole night.  

 

3.3 Analytical Model with Femtocaching and DVS 

        In the first part of this section, the medical records allocation algorithm is 

proposed to choose the most suitable files to cache in femtocaching based on three 

important penalty parameters including the staying time of patient in one location, 

the importance of medical files to patient’s current health condition, and the 

transmission delay of medical files. The optimised allocation results have been 
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calculated. For the second part, we analysed the system. The medical record 

transmission delay is addressed. 

 

3.3.1 Medical Records Allocation Algorithm 

        Due to the storage capacity limitation of the femtocaching, a medical records 

allocation algorithm is proposed to select the most suitable medical records stored 

in the femtocaching. We assume the capacities of femtocachings are different. In 

our case study, the capacities of Femtocaching A, B, C, D, and E are 100GB, 500GB, 

100GB, 50GB, and 10GB, respectively. For the Femtocaching R, we assume it has 

enough storage to keep the whole EMR. 

        The wireless distributed caching network with femtocaching technology 

proposed by [8] selects the files according to popularity, which is not applicable to 

the healthcare environment setting due to ethical concerns. Therefore, we deploy 

knapsack model with penalty minimization [9] for optimizing the process of 

femtocaching file placement. Each part of EMR is correlated to a series of penalty 

parameters according to the patient’s staying time in one location, the importance 

of the medical records in terms of the disease of the patient, and the size of the EMR 

files. The total value of all three penalty parameters would decide the priority of 

each type of files. In the proposed knapsack model, the optimization problem is to 

minimize the overall penalty in order to determine the EMR with the lowest penalty 

and highest priority to be stored in the femtocaching.  

 

a). The staying time of the patient in one location 

        The staying time of the patient is one of the important penalty factors. The 

patients who stay longer in one area should be given higher priorities to cache 

medical files which are related to the disease of patient [86]. Therefore, the events 

of higher priority should be associated with lower penalties. The optimisation 
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problem will be modelled by Equation (3.1), where 𝛼௙ is equivalent to the staying 

time penalty parameters of patient in one area [87]: 

 

Minimize: 

𝑃 = ෍ 𝛼௙

௙∈ெ

𝑥௙ 

Subject to: 

                                       𝑥௙= 0 or 1                                                    (3.1) 

where 

𝑃: The total penalty. 

𝑀 : The set of medical records including text/word, image, video/audio, and 

video/audio with DVS camera. 

𝛼௙: The penalty coefficient of choosing File 𝑓. 

𝑥௙: The decision variable of caching File 𝑓 in femtocaching or not. 

        The wearable location-aware device would record the amount of time that a 

patient should stay in one location. Patient who has the smallest penalty parameters 

has the highest priority to cache medical records in home area. We consider that the 

sum of staying time by hours and penalty coefficient values is 24. Therefore, in the 

proposed system, the penalty coefficient of home area, workplace, family’s home, 

friend’s home, and other locations is 14, 16, 21, 22 and 23 respectively. The main 

purpose of this factor is to decide which femtocaching the system should cache at 

first place.    

 

b). The importance of medical records 

        According to the disease condition, the importance of medical records should 

be considered for placement algorithm. For example, the patients with fractures, the 

X-ray images are more important than video and audio files in terms of diagnosing 
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the disease [88]. Therefore, the EMR allocation algorithm should associate higher 

priority to the images file. The updated optimization model in Equation (3.1) after 

inclusion of the penalty parameters 𝜆௙ corresponding to the importance of medical 

records is shown below: 

 

Minimize: 

𝑃 = ෍ 𝛼௙

௙∈ெ

𝑥௙ + ෍ 𝜆௙

௙∈ெ

𝑦௙ 

Subject to: 

                                       𝑥௙ , 𝑦௙ =0 or 1                                                   (3.2) 

where: 

𝜆௙: The penalty parameters of the importance of medical records. 

𝑦௙: The decision variable of caching File 𝑓 in femtocaching or not. 

        We assume that image file is the most important part according to the patient’s 

disease condition and the video/audio file is the least important part in our proposed 

system. Therefore, the medical image files have the highest priority to cache and 

have the smallest penalty coefficient. The penalty coefficient 𝜆௙ of three type of 

medical files can be presented as in Table 3.2. The main purpose of this factor is to 

decide which medical file that femtocaching should cache at first place. 

 

Table 3.2. The Importance of Medical Files Penalty Coefficient. 

File Type Penalty Coefficient 𝜆௙ 

Images 1 

Text/word 2 

Video/Audio,  
Video/Audio with DVS 

3 
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c). Transmission delay of medical records 

        Transmission delay of medical records is one of the important quality factors 

in proposed system. The ideal solution for minimizing access delay to patients’ 

records is to retain the entire EMR in all local femtocachings. However, considering 

the capacity storage limitations and the increasing medical records of patient, the 

full EMR cannot be stored in all local caches. Therefore, an EMR allocation 

algorithm is required to achieve the minimum access delay, given the file priority 

and storage capacity constraints. The more medical records are cached in 

femtocaching, the less possibility that physicians require more medical files from 

the registered hospital, the higher priority to cache more medical files. The main 

purpose of this factor is to encourage patients to cache their EMR as much as 

possible in each femtocaching. The updated optimisation model in Equation (3.2) 

after the inclusion of the penalty parameters of the transmission delay of medical 

records (𝛽௙) and limited storage constraint is shown below: 

 

Minimize: 

𝑃௡ = ෍ 𝛼௙

௙∈ெ

𝑥௙ + ෍ 𝜆௙

௙∈ெ

𝑦௙ + ෍ 𝛽௙𝑧௙

௙∈ெ

 

Subject to: 

෍ 𝜑௙௡𝑦௙௡

௙∈ெ

< 𝑆௡ 

                                    𝑥௙ , 𝑦௙ , 𝑧௙ =0 or 1                                             (3.3) 

where: 

𝛽௙: The penalty parameters of the transmission delay. 

𝑧௙: The decision variable of caching File 𝑓 in femtocaching or not. 

𝜑௙௡: The size of the medical files that cache in Femtocaching 𝑛. 

𝑆௡: The storage limit of each femtocaching. 
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        As mentioned in the previous section, the patient’s EMR is defined into 

text/word, images, and video/audio. Therefore, there are 7 combinations including 

text/word, images, text/word and images, video/audio, video/audio and text/word, 

video/audio and images, the whole EMR (text/word, images and video/audio). 

Caching more EMR files in local femtocaching means less transmission time and a 

lower penalty. Higher priority is equivalent to lower penalty. The penalty 

coefficient 𝛽௙ can be presented as in Table 3.3. Due to the decreased size of medical 

video by applying DVS camera, the order of the combinations is different than the 

previous one. The penalty coefficient by applying DVS camera is shown in Table 

3.4. 

        According to the capacity of each femtocaching, and the proposed three 

penalty coefficients, the optimization model based on knapsack model with penalty 

minimization in Equation (3.3) is implemented by using LpSolve. The optimized 

results with femtocaching only and applying DVS camera are shown in Table 3.5 

and Table 3.6 respectively.  

 

Table 3.3. Penalty Parameters of Transmission Delay. 

Caching Combinations Penalty Coefficient 𝛽௙ 

Text/word, images, video/audio (290G) 1 

Images, video/audio (287G) 2 

Text/word, video/audio (203G) 3 

Video/audio (200G) 4 

Text/word, images (90G) 5 

Images (87G) 6 

Text/word (3G) 7 
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Table 3.4. Penalty Coefficient of Medical Records by Adding DVS Camera. 

Allocation Combinations Penalty Coefficient 𝛽௙ 

Text/word, images, video/audio with DVS 
(106.66G) 

1 

Images, video/audio with DVS (103.66G) 2 

Text/word, images (90G) 3 

Images (87G) 4 

Text/word, video/audio with DVS 
(19.66G) 

5 

Video/audio with DVS (16.66G) 6 

Text/word (3G) 7 

 
 

Table 3.5: The Optimised Medical Files Allocation. 

Femtocaching Medical files allocation 

Femtocaching A Images, Text/words (90G) 

Femtocaching B Text/word, Images, Video/Audio (290G) 

Femtocaching C Images, Text/words (90G) 

Femtocaching D Text/words (3G) 

Femtocaching E Text/words (3G) 

 



3.3 Analytical Model with Femtocaching and DVS 

 

46 

 

Table 3.6: The Optimised Medical Files Allocation with DVS. 

Femtocaching Medical files allocation 

Femtocaching A Images, Text/words (90G) 

Femtocaching B Text/word, Images, Video/Audio with DVS (106.6G) 

Femtocaching C Images, Text/words (90G) 

Femtocaching D Text/words, Video/Audio with DVS (19.6G) 

Femtocaching E Text/words (3G) 

 

3.3.2 Simulation of Transmission Delay 

        The medical record transmission delay [89] in the proposed system can be 

presented as follows when patient is in home area: 

𝐷் =
𝑁ଵ

𝑅ଵ
+

𝑁ଶ

𝑅ଶ
 

(3.4) 
where 

𝐷்: The transmission delay. 

𝑁ଵ: The medical records which are cached in femtocaching in bits. 

𝑁ଶ: The rest of medical records in bits. 

𝑅ଵ: The rate of transmission of femtocaching (bits per second). 

𝑅ଶ: The rate of transmission of macro cellular network (bits per seconds). 

        Therefore, the average transmission delay of medical records with home area, 

workplace, visit relative, visit friends, and other places in the proposed system can 

be presented as (3.5): 
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𝐷 = 𝑃ு𝐷்ு + 𝑃ௐ𝐷்ௐ + 𝑃ிெ𝐷்ிெ + 𝑃ி஽𝐷்ி஽ + 𝑃ை𝐷்ை                           

 

= 𝑃ு ൬
𝑁ுଵ

𝑅ଵ
+

𝑁ுଶ

𝑅ଶ
൰ + 𝑃ௐ ൬

𝑁ௐଵ

𝑅ଵ
+

𝑁ௐଶ

𝑅ଶ
൰ + 𝑃ிெ ൬

𝑁ிெଵ

𝑅ଵ
+

𝑁ிெଶ

𝑅ଶ
൰ + +𝑃ி஽(

𝑁ி஽ଵ

𝑅ଵ
 

         +
𝑁ி஽ଶ

𝑅ଶ
) + 𝑃ை(

𝑁ைଵ

𝑅ଵ
+

𝑁ைଶ

𝑅ଶ
) 

                                                                                                                             (3.5) 

where 

𝑃ு , 𝑃ௐ , 𝑃ிெ , 𝑃ி஽ , 𝑃ை : The possibility that patients stay in their home area, 

workplace, visit relative, visit friends, and other places respectively. 

𝐷்ு , 𝐷்ௐ , 𝐷்ிெ , 𝐷்ி஽ ,𝐷ை : The transmission delay of home area, workplace, 

visiting family, visiting friends and other places. 

𝑁ுଵ , 𝑁ௐଵ , 𝑁ிெଵ , 𝑁ி஽ଵ , 𝑁ைଵ : The size of medical records which are cached in 

Femtocaching A, B, C, D, and E in bits.  

𝑁ுଶ, 𝑁ௐଶ, 𝑁ிெଶ, 𝑁ி஽ଶ, 𝑁ைଶ: The size of the rest of medical records in bits. 

        We used Poisson Distribution [90] to simulate the possibility of patient’s 

routine activities. We calculated the delay for the case where number of occurrences 

increases to 1000. Therefore, the average transmission delay of medical records can 

be presented as: 

 

𝐷 =
∑

𝑒ିఒಹ𝜆ு
௄భ

𝐾ଵ!௄

𝐾
൬

𝑁ுଵ

𝑅ଵ

+
𝑁ுଶ

𝑅ଶ
൰ +

∑
𝑒ିఒೈ𝜆ௐ

௄మ

𝐾ଶ!௄

𝐾
൬

𝑁ௐଵ

𝑅ଵ

+
𝑁ௐଶ

𝑅ଶ
൰ +

∑
𝑒ିఒಷಾ𝜆ிெ

௄య

𝐾ଷ!௄

𝐾
 

       (
𝑁ிெଵ

𝑅ଵ

+
𝑁ிெଶ

𝑅ଶ

) +
∑

𝑒ିఒಷವ𝜆ி஽
௄ర

𝐾ସ!௄

𝐾
(
𝑁ி஽ଵ

𝑅ଵ

+
𝑁ி஽ଶ

𝑅ଶ

) +
∑

𝑒ିఒೀ𝜆ை
௄ఱ

𝐾ହ!௄

𝐾
(
𝑁ைଵ

𝑅ଵ

+
𝑁ைଶ

𝑅ଶ

) 

 

Subject to: 

𝐾ଵ, 𝐾ଶ, 𝐾ଷ, 𝐾ସ, 𝐾ହ{0, 1, 2, . . . . . . , 22, 23, 24} 
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                                     𝐾ଵ + 𝐾ଶ + 𝐾ଷ + 𝐾ସ + 𝐾ହ = 24                                   (3.6) 

where  

𝜆ு: The average possibility that patients stay in their home area. 

𝐾ଵ, 𝐾ଶ, 𝐾ଷ, 𝐾ସ, 𝐾ହ: The staying time of patient in home are, workplace, family’s 

home, friend’s home, and other places respectively. 

𝐾: The number of occurrences. 

𝜆ௐ: The average possibility that patients stay in workplace. 

𝜆ிெ: The average possibility that patients visit family. 

𝜆ி஽: The average possibility that patients visit friends. 

𝜆ை: The average possibility that patients visit other places. 

        The other simulation parameters and conditions of the system are shown as 

follows. The simulation results are analysed by MATLAB and presented in the 

following section. 

 The EMR allocation scenario is covered by a single 3GPP LTE R8 cell. The 

femtocaching uses a simplified 802.11n protocol. 

 The femtocaching is set up near hospital within 100 meters. 

 The values of 𝜆ு, 𝜆ௐ, 𝜆ிெ, 𝜆ி஽, and 𝜆ை are 0.4167, 0.3333, 0.125, 0.0833, 

and 0.0417 respectively. 

 The value of 𝑁ுଵ , 𝑁ௐଵ , 𝑁ிெଵ , 𝑁ி஽ଵ , and 𝑁ைଵ  is shown in Table 3.5 and 

Table 3.6. For the scenario of femtocaching only, the value is 90G, 290G, 

90G, 3G, and 3G respectively. After adding DVS, the value is 90G, 106.6G, 

90G, 19.6G, and 3G respectively. 

 The value of 𝑁ுଶ, 𝑁ௐଶ, 𝑁ிெଶ, 𝑁ி஽ଶ, and 𝑁ைଶ is the rest of EMR. For the 

scenario of femtocaching only, the value is 200G, 0G, 200G, 287G, and 287G 
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respectively. After adding DVS, the value is 16.6G, 0G, 16.6G, 87G, and 

103.6G respectively. 

 

3.4 Performance Evaluation 

        The results are studied in two different situations. The first, namely the best 

situation, corresponds to the case where the physicians have enough medical files 

from femtocaching to provide effective medical records and no need to access the 

rest of EMR at the registered hospital. In the proposed system, poisson distribution 

is implemented. We compared with the three simulation results including the 

scenario with femtocaching and DVS camera, femtocaching only, and without 

applying proposed technologies. The transmission delay of each femtocaching is 

shown in Figure 3.4. The transmission delay of Femtocaching A, B, C, D, and E 

without applying proposed system is 76.8, 247.47, 76.8, 2.56, and 2.56 minutes 

respectively. However, the transmission delay with femtocaching only is 10.24, 33, 

10.24, 0.34, and 0.34 minutes respectively. The improvement of transmission delay 

is distinct in each femtocaching. The transmission delay is even improved more by 

adding DVS camera, which is 10.24, 12.13, 10.24, 2.34, and 0.34 minutes 

respectively.  

The average transmission delay for the best situation is shown in Figure 3.5. 

The average transmission delay without proposed system is 124.4 minutes. 

However, the average transmission delay of femtocaching only is 16.59 minutes. 

For the scenario of adding DVS, the delay is 9.79 minutes. The proposed system 

with femtocaching only can drop the EMR transmission delay by 86.66%. However, 

after applying DVS, transmission delay can be decreased 41% more comparing 

with the scenario with femtocaching only. Therefore, the proposed system with 

femtocaching and DVS the can drop the EMR transmission delay by 92.13% in the 

best situation. 
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Figure 3.4. The Transmission Delay of Each Femtocaching for the Best Situation 

When the Number of Occurrences is 1000. 

 

 

 
Figure 3.5: The Average Transmission Delay for the Best Situation. 
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        The second one is the worst situation, corresponding to the case where the 

medical files cached in femtocaching cannot meet the requirement, and the 

physicians need to access the rest of EMR from the registered hospital. The 

transmission delay would increase when asking for the medical files  through macro 

base stations. The transmission of each femtocaching is shown in Figure 3.6. The 

transmission delay of each femtocaching without proposed system is 247.47 minute. 

However, the transmission delay with femtocaching only is 180.9, 33, 180.9, 

245.25, and 240.25 minutes respectively. The transmission delay is improved 

significantly by applying DVS, which is 24.46, 12.13, 24.46, 76.48, and 88.8 

minutes respectively.  

 

 

 

Figure 3.6: The Transmission Delay of Each Femtocaching for the Worst Situation 

When the Number of Occurrences is 1000. 
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        The average transmission delay for the worst situation is shown in Figure 3.7. 

The average transmission delay without proposed system is 247.47 minutes. 

However, the average transmission delay of femtocaching only is 139.65 minutes. 

For the scenario of adding DVS, the delay is 27.37 minutes. The proposed system 

with femtocaching only can drop the EMR transmission delay by 43.57%. However, 

after applying DVS, transmission delay can be decreased 80.4% more comparing 

with the scenario with femtocaching only. Therefore, the proposed system with 

femtocaching and DVS the can drop the EMR transmission delay by 88.94% in the 

worst situation. Even though the transmission delay is not improved as much as in 

the best situation, the delay in is still less than the system without using our 

proposed scheme.   

 

 

 

Figure 3.7: The Average Transmission Delay for the Worst Situation. 
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traditional transmission method. The proposed scheme with femtocaching and DVS 

can decrease transmission delay by 88.94%-92.13%. 

 

3.5 Summary and Conclusions 

        In this Chapter, location-aware femtocaching has been proposed to allocate 

and cache patient medical records. We present a system that provides timely 

medical services for patients based on their location (Home area, work place, 

family’s home, friends’ home, and other places). A new method is proposed to 

represent and structure patients’ EMR according to the type and the size of medical 

records. We also propose an EMR allocation algorithm to allocate the most suitable 

medical files in femtocaching according to the patient’s staying time in one location, 

the importance of the medical records in terms of the disease of the patient, and the 

size of the EMR files. The simulation results show that proposed scheme can drop 

the average transmission delay of EMR by 43.57% to 86.66% compared with the 

scenario without using location-aware femtocaching. In other words, the physicians 

could save up to 86.66% time to access to patient’s medical records and provide 

effective health care services. In the proposed new system, a new medical video 

capture method is proposed to reduce the size of visual medical files by applying 

DVS camera technology. A new scenario has been proposed to transmit, allocate 

and cache patients’ EMR (including visual data) by applying femtocaching. The 

transmission delay in the proposed system can be decreased significantly when 

transferring or sharing the medical files among the hospitals. The clinical 

professionals and patients can access the EMR within a short time. The simulation 

results show that the proposed scheme by adding DVS camera technology can 

decrease the transmission delay by 41% to 80.4% more comparing with our 

previous work (applying femtocaching only), which means the transmission delay 

can be improved by 88.94% to 92.13%. 
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Chapter 4 

Auction-based and Non-cooperative 

Game Theory with Edge Computing 

for Sharing and Caching EMR 

among Patients 

 

4.1 Introduction 

        By implementing EMR, patients’ medical data can be tracked over an 

extended period of time by multiple healthcare providers [70]. On the other side, 

EMR is universal, meaning that instead of having different charts at different 

healthcare facilities [11], a patient will have one electronic chart that can be 

accessed from any healthcare facility by using EMR software [3].  

        In the previous chapter, we proposed a new method to represent and structure 

patient’s EMR. In order to provide timely medical care, femtocaching technology 

has been used to cache and allocate EMR for patients. The simulation result shows 

that the proposed system can decrease the transmission delay of EMR by 43.57% 

to 86.66%. Dynamic vision sensor has been used to reduce the size of medical or 

monitoring video. The results show that transmission delay can be improved by 

88.94% to 92.13%. We assumed that patient spends 10 hours at home, 8 hours in 

workplace, 3 hours for visiting relatives, 2 hours for visiting friends, and 1 hour at 

other locations. However, due to the changing location of patients, it is very difficult 
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to allocate and cache medical records to the nearest hospital timely. Once an 

emergency occurs in the location where the medical files haven’t been cached, the 

physician cannot access medical records at efficient time. Therefore, in this chapter, 

edge computing is proposed to process and cache EMR, which is an advanced 

telecommunication technology that users can process their data on the edge before 

sending to the public cloud regardless of the limitation of changing location. The 

edge devices can be a mobile phone, Wi-Fi, and home gateway. The data will be 

processed or partly processed on the edge device before being sent to the cloud.  

Comparing with traditional cloud computing, edge computing could off load 

partly or whole data processing from cloud and provide more efficient and safer 

services. Patients can control their own medical data, made by wearable sensors, on 

the edge. We used edge computing to allocate patient’s EMR on the edge instead 

of the cloud. By applying edge computing, not only the privacy of medical data can 

be protected, but also can lighten greatly network loads and decrease delay for cloud 

services. On the other hand, in the last chapter, patients only can use their own 

femtocaching to cache and allocate medical records. However, a new scenario has 

been proposed for patients to share their edge caching to others. A new medical 

records allocation algorithm has been applied by using action-based non-

cooperative game theory. 

        We considered the scenario that patients share their storage capacity on the 

edge device to others and other patients could get effective and efficient medical 

care by caching their medical files to the adjacent edge devices. In the proposed 

system, four medical factors including the severity of illness, the size of the medical 

records that patient wants to cache, the queueing time that patients have waited, and 

the rewards that patients got by sharing edge caching with other patients, have been 

combined with telecommunication channel capacity for the patients to compete the 

allocation and caching priority. In the proposed non-cooperative game, Nash 

Equilibrium has been presented as a desirable outcome. We analysed the scenarios 

with 6, 60, 600, 6000 and 60,000 patients. The simulation results show that the 
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proposed system can decrease the transmission delay by 56.87% to 93.69% in the 

best situation (the cached medical records are enough for medical support) 

comparing the system without sharing edge device, which means the proposed 

system saves more than half time for clinical professors to provide efficient medical 

services. In the worst scenario (the cached medical records are not enough for 

medical support and whole EMR is required), the simulation results show that the 

proposed system can decrease the transmission delay by 25.94% to 57.75%. The 

results show that the more shared edge devices, the higher channel capacity patients 

can get as well, which means the proposed system encourages more patients to share 

their storage capacity of edge devices to others. 

 

4.1.1 Overview of Cloud Computing 

With the rapid development of processing and storage technologies and the 

success of the internet, computing resources have become cheaper, more powerful 

and more ubiquitously available than ever before. This technological trend has 

enabled the realization of a new computing model called cloud computing [91]. 

Cloud computing has recently emerged as a new paradigm for hosting and 

delivering services over the internet [23]. Cloud computing is attractive to business 

owners as it eliminates the requirement for users to plan ahead for provisioning and 

allow enterprises to start small and increase resources only when there is a rise in 

service demand. 

Cloud computing is one of the important technologies in the healthcare sector. 

In [23], cloud computing is proposed to collect patients’ data. The purpose of the 

proposed design is to reduce the possibility of typing mistakes in the process of 

medical data collection and to provide always-on, real-time data collection as 

opposed to the manual handling of patient information. In [24], cloud computing is 

proposed to share patient medical records. The aim in [24] is to provide flexible 

access for patients and different medical professionals. 
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        Cloud computing has been widely applied in various areas and has proven to 

be an effective method to collect and process all the data in the cloud. For the 

terminal users (i.e. mobile users, computer users etc.), different types of terminal 

devices can access the cloud easily and share data via the cloud [92]. By applying 

cloud computing in healthcare area, it’s a great convenience for patents, family and 

medical care workers who want to access EMR immediately. For the service 

provider (i.e. medical care provider), the cloud is highly scalable. Larger scale 

services can be expanded easily if more service is demanded [91]. Cloud computing 

can be easily implemented as well.  

        The paradigm of cloud computing applied in healthcare is shown in Figure 4.1. 

The medical data from various sensors (i.e. heartbeat sensor, blood pressure sensor, 

fall detector sensor, and blood sugar sensor, etc.) is collected by medical care 

gateway (i.e. smart phone or other mobile devices). Medical care gateway transfers 

all the raw medical data to the cloud. Medical data is processed and analysed in the 

cloud. After medical care providers and families received requirements from the 

cloud, instructions, suggestions and configurations would be sent back to the patients. 

Cloud computing could connect medical service providers, patients and family 

together and provide effective health care services. 

        However, there’s an increase in the amount of data correlating with the rapidly 

increasing number of IoT (internet of things) devices. The speed of data 

transportation is becoming the bottleneck for the cloud-based computing paradigm 

[25]. For example, wearable sensors and monitoring cameras produce huge amounts 

of image or video data every second and add a heavy traffic burden to the current 

networks. Cloud computing, especially, is not efficient enough for those health 

devices that require very short response times, thus it could cause intolerable 

network latency. On the other hand, the data which is produced by wearable sensors 

or other health devices, is usually private and confidential. Transferring and 

processing patient information through public cloud would pose a breach of patient 

confidentiality. 
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Figure 4.1: The Paradigm of Cloud Computing 

 

4.1.2 Edge Computing in Health Care  

Here we proposed edge computing to cache and share medical records. Edge 

computing enables mobile subscribers to access IT and cloud computing services 

at a close proximity within the range of radio access network (RAN) [53]. In the 

traditional cloud computing, all the information and data are transferred to the cloud 

network, then users would receive the data through the corresponding base station. 
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Comparing with the traditional cloud computing, edge computing has three main 

advantages: 

 Edge computing could cache and process computing task at the edge of the 

network without transferring to the cloud network. Edge computing can 

offload part or all of network traffic from the cloud network to the edge, 

which would drop the network latency and decrease the bandwidth 

consumption [93].  

 For the issue of privacy, caching patients’ health data at the edge is safer than 

cloud. Patients can have their own medical information at a close proximity 

and control to decide if the health data should be transferred to cloud and 

service providers.  

 Edge computing saves expense and does not need more network 

infrastructure. For a patient, mobile phone is the edge between body sensors 

and the cloud. For a smart home, gateway or Wi-Fi is the edge between home 

sensors and the cloud [25]. 

        The paradigm of edge computing is shown in Figure 4.2. We consider the 

scenario where edge computing offloads all the network from cloud firstly. Raw 

medical data from various sensors is sent to edge devices. Before being sent to cloud, 

medical data is cached and processed at the edge. Medical care providers and family 

would send instructions, suggestions and configurations back after received 

requirements from cloud. In this scenario, cloud is used to transfer processed data 

only.  

        For the scenario that edge computing offloads part of the network from cloud, 

part of raw medical data is processed at the edge. The rest is sent to the cloud. 

Medical care providers and family send responses back after receiving requirements 

from the cloud. In this scenario, cloud is used to transfer processed data and process 

raw medical data both. Edge computing can increase the edge responsibility and 

allows computation and services to be hosted at the edge [54]. 
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Figure 4.2: The Paradigm of Edge Computing 

 

Until today, edge computing networks have not been deployed in cellular 

networks; thus, edge computing concept has been discussed only from a theoretical 

perspective so far. However, there are some related approaches that are similar to 

this concept. In [55], cloudlet-based offloading is proposed where mobile devices 

offload computational to the less resourceful server near the user proximity 

accessible using Wi-Fi access point. In [59], authors proposed FemtoClouds [25] 

system that provides a dynamic and self-configuring multiple devices cloud system 

to scale the computation of cloudlet by coordinating multiple mobile devices. In [94], 
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authors proposed REPLISOM, an edge cloud architecture to reduce cloud 

responsiveness when multiple IoT devices replicate memory objects to the edge 

cloud through LTE environment.  

 

4.1.3 Overview of Game Theory 

Game theory provides useful mathematical tools to solve optimization 

problems with different competing players [11]. Game theory is a tool for analysing 

the interaction of decision makers with conflicting objectives. Economists have 

long used it as a tool for examining the actions of economic agents such as firms in 

a market [95]. Game theory has now become an important mathematical tool, which 

is used in situations that involves several entities whose decisions are influenced by 

the decisions of other entities playing with them. 

Recently, game theory has been adopted in the telecommunication 

environment, especially in the wireless sensor networks, cognitive radio networks, 

and ad-hoc networks. Game theory is used as a tool for studying, modeling, and 

analyzing the interactions between individuals strategically [96]. In the wireless 

environment, game theory has been used in order to solve distributed power control, 

resource management and allocation, and dynamic pricing related problems [61]. It 

is concerned with finding the best actions for individual decision makers in these 

situations and recognizing stable outcomes. 

Any game, when played, consists of the participants called players or agents 

of the game, each having his own preference or goal [97]. Each player of the game 

has an associated amount of benefit or gain which he receives at the end of the game, 

called payoff or utility, which measures the degree of satisfaction an individual 

player derives from the conflicting situation. For each player of the game, the 

choices available to them are called strategies. The solution of a game is referred to 

as Nash Equilibrium or Strategic Equilibrium, where each player cannot get a better 

payoff than the existing one by individually changing to another strategy. The utility 
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function is a mapping of a player’s choices into a real number. To understand the 

concepts presented so for, refer to Table 4.1, where two players P1 and P2 come in 

a strategic interaction to play this game. For ease, the game is represented by a 

matrix, called payoff matrix, which shows the choices available to players and the 

outcome for each choice he makes against the others. As shown in the payoff matrix 

of the game between P1 and P2, each has to decide either to choose X or Y. The 

setup is strategic, so the choice of individual player’s payoff depends on the choice 

made by other player as a response to his strategy. If player P1 chooses X, then his 

payoff depends upon which choice the player P2 makes. If P1 chooses X and P2 

also chooses X, P1 payoff will be 2, otherwise 10. Similarly, if P1 chooses the Y, 

then depending upon the choice of P2 he will either receive 10 or 3. The same 

choices and outcomes will happen for player P2 as well. Here in this game, the 

players are P1 and P2, the strategies for each are X and Y and the benefits or 

outcome of the game are represented in the form of matrix where each entry shows 

the payoffs in the form (payoff of P1, payoff of P2) duple. The numerical outcome 

for each player depends on the utility function used by each in the situation in which 

this game is played. 

 

Table 4.1. Strategic Form of Game Theory. 

           P2 

P1         
    X     Y 

       X (2,8) (10,5) 

       Y (5,10) (3,3) 

 

        The object of study in game theory is the game, defined to be any situation in 

which:  

 There are at least two players. A player may be an individual, a company, a 



4.1 Introduction 

 

63 

 

nation, a wireless node, or even a biological species.  

 Each player has a number of possible strategies, courses of action he or she 

may choose to follow. 

 The strategies chosen by each player determine the outcome of the game. 

 Associated with each possible outcome of the game is a collection of 

numerical payoffs, one to each player.  

According to the type of game, game theory can generally be categorized as 

non-cooperative and cooperative games. 

 

a). Non-cooperative Game Theory  

        Non-cooperative game theory is concerned with the analysis of strategic 

choices and explicitly models the process of players’ making choices out of their 

own interests [98]. Non-cooperative games can be classified into a few categories 

according to several criteria.  

        According to whether the players’ moves are simultaneous or not, non-

cooperative games can be divided into two categories: static and dynamic games. 

In a static game, players make their choices of strategies simultaneously, without 

the knowledge of what the other players are choosing. Static games are most often 

represented diagrammatically using a game table that is called the normal form or 

strategic form of the game. In the dynamic game, players involve strategic 

situations in which there is a strict order of play. Players take turns to make their 

moves, and they know what players who have gone before them have done. 

Dynamic games are most easily illustrated using game trees, which are generally 

referred to as the extensive form of a game. The trees illustrate all of the possible 

actions that can be taken by all of the players and also indicate all of the possible 

outcomes from the game.  

        According to whether the players have full information of all payoff-relevant 

characteristics about the opponents or not, the non-cooperative game can be 
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classified into two types: complete information and incomplete information games. 

In the former each player has all the knowledge about others’ characteristics, 

strategy spaces, payoff functions, and so on, but this is not so for the latter. 

 

b). Cooperative Game Theory  

A cooperative game (also called coalitional) is a game in which the players 

can make binding commitments, as is not the case in the non-cooperative game. 

Analysis in cooperative game theory is centered on coalition formation and 

distribution of wealth gained through cooperation. Within these two areas, finding 

procedures leading to outcomes that are most likely to occur under reasonable 

rationality assumptions in various game situations, and devising solution concepts 

showing attractive stability features are primary concerns in most research 

endeavors.  

Cooperative game theory is most naturally applied to situations arising in 

political science or international relations, where concepts like power are most 

important. The definition draws the usual distinction between the two theories of 

games, but the real difference lies in the modeling approach. While in non-

cooperative game theory the notion of the Nash Equilibrium is pervasive in 

capturing most aspects of stability, in cooperative game theory there is no solution 

concept dominating the field in such a way. Instead, there is a multiplicity of 

solutions, which is not due to the weakness of the theory, but rather to the inherent 

diversity of conflict situations into which it attempts to provide insight. Moreover, 

the main focus of the non-cooperative game is individual rationality and individual 

optimal strategy, but the cooperative game emphasizes collective rationality, 

fairness, effectiveness, etc., which means different things to different people [99].     

The prisoner’s dilemma is a standard example of a game analyzed in game 

theory that shows why two completely rational individuals might not cooperate, 

even if it appears that it is in their best interests to do so. The game is presenting as 

follows: 
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Two members of a criminal gang are arrested and imprisoned. Each prisoner 

is in solitary confinement with no means of communicating with the other. The 

prosecutors lack sufficient evidence to convict the pair on the principal charge, but 

they have enough to convict both on a lesser charge. Simultaneously, the 

prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity 

either to betray the other by testifying that the other committed the crime, or to 

cooperate with the other by remaining silent. The offer is: 

 If A and B each betray the other, each of them serves two years in prison. 

 If A betrays B but B remains silent, A will be set free and B will serve three 

years in prison (and vice versa). 

 If A and B both remain silent, both of them will only serve one year in prison 

(on the lesser charge). 

 

Table 4.2: The Prisoner's Dilemma Based on Game Theory. 

                       
 Prisoner B  

Prisoner A 

Prisoner B stays silent 
(cooperates) 

Prisoner B betrays 
(defects) 

Prisoner A stays silent 
(cooperates) 

Each serves 1 year 
Prisoner A: 3 years 

Prisoner B: goes free 

Prisoner A betrays 
(defects) 

Prisoner A: goes free 
Prisoner B: 3 years 

Each serves 2 years 

 

          It is assumed that both prisoners understand the nature of the game, have no 

loyalty to each other, and will have no opportunity for retribution or reward outside 

the game. Regardless of what the other decides, each prisoner gets a higher reward 

by betraying the other ("defecting"). The reasoning involves an argument by 

dilemma: B will either cooperate or defect. If B cooperates, A should defect, because 
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going free is better than serving 1 year. If B defects, A should also defect, because 

serving 2 years is better than serving 3 years. Hence either way, A should defect. 

Parallel reasoning will show that B should defect. Because defection always results 

in a better payoff than cooperation regardless of the other player’s choice. Mutual 

defection is the only strong Nash Equilibrium in the game (i.e. the only outcome 

from which each player could only do worse by unilaterally changing strategy). The 

dilemma, then, is that mutual cooperation yields a better outcome than mutual 

defection but is not the rational outcome because the choice to cooperate, from a 

self-interested perspective, is irrational. 

 

4.1.4 Overview of VCG Auction 

The auction theory has recently been introduced to several types of resource 

allocation problems (e.g., time slot allocation, power allocation, and cooperative 

communication), especially spectrum sharing in telecommunication networks [100] 

[101] [102] [103]. Several types of auctions have been proposed and utilized in 

order to provide goods with users [101]. Among such auction mechanisms, it is well 

known that Vickrey-Clarke-Groves (VCG) auction mechanism satisfies incentive 

compatibility where the weakly dominant strategy for bidders is to bid truthfully 

[104]. In VCG auction mechanism, the auctioneer selects winners among all bidders 

so that social surplus can be maximized. VCG auction mechanism is extended to 

generalized VCG auction mechanism in order to consider multiple divisible units 

of goods.  

       A VCG auction is a type of sealed-bid auction of multiple items [105]. Bidders 

submit bids that report their valuations for the items, without knowing the bids of 

the other bidders. The auction system assigns the items in a socially optimal manner: 

it charges each individual the harm they cause to other bidders [106]. It gives 

bidders an incentive to bid their true valuations, by ensuring that the optimal 

strategy for each bidder is to bid their true valuations of the items. It is a 
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generalization of a Vickrey auction for multiple items. The auction scheme we used 

is the VCG auction, which requires gathering global information from the system 

and performing centralized computations. The VCG can achieve a socially optimal 

allocation [104]. 

 

4.1.5 Contributions and Structure of Chapter 

A more detailed sharing system has been proposed for the patients to share 

their edge devices to others nearby. Resolving the competition for finite storage 

capacity among other patients, we model the patients’ actions as a game, which 

requests the constrained storage capacity from the edge devices. To achieve the 

optimal results, we formulated the storage request strategies as auction-based 

strategies and developed the corresponding non-cooperate game mechanism. We 

assume that patients who request storage are self-interest, and each patient 

rationally behaves to maximize its own benefit. Patients use weights as a bid for 

storage capacity and each edge device may assign the extra storage among the 

patients by itself according to the amount of medical points and channel condition. 

The patients calculate their bid with proposed game mechanism and send to edge 

devices. After several round competition, the edge devices choose the winner and 

cache the medical files by order. In this non-cooperative game, we present Nash 

Equilibrium as a desirable outcome.  

Our analysis concentrates on scenarios with 6, 60, 600, 6000 and 60,000 

patients. The results show that the new proposed system can decrease the average 

transmission delay by 56.87% to 93.69% in the best scenario, which saves more 

than half time for patients to get medical services. The simulation results also show 

that the proposed system can decrease the transmission delay by 25.94% to 57.75% 

even in the worst scenario. In this research: 

 A new system for the patients to share their medical records to adjacent edge 

devices is proposed. Patients can get more efficient health care by caching 
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EMR on the edge. 

 Edge computing is proposed to process and cache EMR. Comparing with 

traditional cloud computing, edge computing could provide more efficient 

and safer services. Patient can control their own medical data, made by 

wearable sensors, on the edge. 

 An auction-based and non-cooperative game theory mechanisms is 

proposed to allocate and cache storage capacity of edge devices. Patients 

compete the storage resources by considering the four medical factors and 

communication channel condition. 

 We analyzed the performance of proposed system with transmission delay 

of medical records. The clinical professors can save more than half time to 

access patients’ medical records and provide medical services. 

 

The rest of the chapters are organized as follows. In Section 4.2, we provide 

the system model with game theory for multiple patients compete edge storage 

capacity. Section 4.3 focuses on the medical records allocation algorithm and 

performance analysis. This is followed by the four medical parameters and 

communication channel situation. In Section 4.4, the system performance 

evaluation and simulation results have been conducted. Finally, Section 4.5 

concludes the chapter. 

 

4.2 System Scenario and Modeling 

        To explain the system clearly, a case with one “Host Patient” (Patient A) and 

one “Guest Patient” (Patient 1) has been considered firstly. We consider the patients 

who share their edge storage as “Host Patient” and the patients who want to compete 

the storage resources as “Guest Patient”. We assume that the registered hospital 

keeps the whole EMR for each patient. The system is shown in Figure 4.3. 

        Edge Device A and Mobile Device 1 are the edge device of “Host Patient” 
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(Patient A) and “Guest Patient” (Patient 1) respectively. Two separate edge devices 

receive real-time medical data from wearable sensors of Patient A and Patient 1 

respectively, then send it to the nearest hospital after edge processing. Once the 

real-time data from sensors shows that patient’s health condition is not in a normal 

status. An alert message would be sent by each edge device. The doctors from the 

nearest hospital would give a timely response and check the patient’s health 

condition. Medical services would be provided if necessary. Edge Device A and 

Mobile Device 1 would cache the medical records that Patient A and Patient 1 

needed and update the medical data to registered hospital at off-peak time 

respectively to avoid network congestion, for example at night.  

We assume that Patient A would like to share his extra capacity storage of edge 

device with other patients. At the same time, Mobile Device 1 does not have enough 

storage space for Patient 1 to cache medical records. Mobile Device 1 would send 

request to Edge Device A. Edge Device A would response the request and allocate 

storage capacity to Patient 1. The Edge Device A would update the cached medical 

data to registered hospital of Patient 1 at off-peak time. In this system, there is no 

other patients to compete the storage capacity of Edge Caching A with Patient 1. As 

long as the storage size that Patient 1 requested is smaller than Edge Device A 

provided. 

However, there are more patients and edge caches in real life. A system with 

multiple edge caches and patients has been considered and shown in Figure 4.4. In 

proposed system, we assume there are there are three “Host Patients” (Patient A, 

Patient B, and Patient C) would like to share their edge storage and six clusters of 

“Guest Patients” (Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5, and Cluster 

6) who need extra capacity to cache their medical records. We randomly allocate 

the position of these six “Guest Patients”. The number of each cluster of patients is 

considered as 6, 60, 600, 6000 and 60,000. However, considering the limited 

capacity storage of each edge device, competitive relation would be formed by 

multiple patients in the same game. 
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Figure 4.3: The New System with One “Host Patient” (Patient A) and One “Guest 

Patient” (Patient 1). 
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Figure 4.4:  Proposed System with Multiple Edge Devices and Patients. 

 

        In the proposed system, there are three competitive games in this system. The 

first auction-based non-cooperative game is to achieve the storage capacity of Edge 

Caching Device A. The candidates of this game are Cluster 1, Cluster 2, and Cluster 

3. The second game is to achieve the storage capacity of Edge Caching Device B. 

The candidates of this game are Cluster 3 and Cluster 6. The third game is to achieve 

the storage capacity of Edge Caching Device C. The candidates of this game are 

Cluster 2, Cluster 3, Cluster 4, and Cluster 5. According to the proposed game 

theory mechanism, patients would know if they are in a high priority position and 

then select one edge device which provides less waiting time to cache. 
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        The auction-based and non-cooperative game mechanism is explained in next 

section. The four medical factors and signal channel condition have been 

considered to compete the winner of each game. 

 

4.3 Mathematical and Analytical Model of Auction-

Based Non-Cooperative Game Mechanisms  

    In this new game mechanism, two parts are considered to compete the edge 

storage capacity. The first one is the medical parameters of each patient. The second 

one is channel condition between patients and edge devices. The combination 

results/weights will be the bid of each patient. 

 

4.3.1 The Medical Factors in Allocation Mechanism 

For the medical parameters, four parameters are considered in proposed 

system.  

 The severity of illness (SOI). 

 The size of the medical records that patient wants to cache. 

 The queueing time that patient has been waited. 

 The rewards that patient got by sharing edge caching to other users. 

The weights of each medical parameters are showed in following part. The 

patient who has higher weights has higher priority to cache their medical records in 

the same edge devices.  

a). The severity of illness 

        The severity of illness (SOI) class [107] is meant to provide a basis for 

evaluating hospital resource use or to establish patient care guidelines. Patients are 

assigned their SOI based on their specific diagnoses and procedures performed 

during their medical encounter. Patients with higher SOI (e.g. major or extreme) 
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are more likely to consume greater healthcare resources than patients with lower 

SOI in the same diagnosis-related group [108]. The severity of illness has been 

defined into four levels in the following chart. To compare the priority of patients, 

we consider the highest level that patient had recently. The patient who had higher 

level of severity of illness has higher priority to cache their medical records. The 

weights of SOI (𝛼௡) is presented as in Table 4.3. 

 
Table 4.3: The Weights of Severity of Illness. 

 

b). The size of the medical records that patients want to cache in edge devices 

The size of the medical records that patients want to cache is one of the 

important factors. From the point of sharing storage capacity, the situation that more 

patients can share the storage capacity on the edge is expected. The patients who 

want to cache fewer medical records have higher priority. We consider three type 

of medical records including files/worlds, images, and video. Therefore, there are 

7 different combined size need to be considered. The type and weights (𝜆௡) of the 

size of medical records are presented in Table 4.4. 

c). The queueing time that patients have been waited 

The queueing time is considered in the proposed system. After one round of 

competition, patient could still wait for the same edge device that storage capacity 

has been allocated to the current winner or change to other edge devices that the 

patient has higher priority and shorter caching or waiting time. For all the patients 

LEVEL Severity Weights (𝛼௡) 

Level 1 Minor 1 

Level 2 Moderate 2 

Level 3 Major 3 

Level 4 Severe 4 
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in the same game, the one who has waited for a longer time has larger value of 

weights and higher priority to cache medical files. The weights of the queueing time 

(𝛽௡) is presented in next table. 

 

Table 4.4: The Type and Size of Medical Records. 

 

Table 4.5: The Weights of Queueing Time. 

 

 

 

 

 

 

 

 

 

The type of medical 
records 

Size of medical records Weights (𝜆௡) 

Files/words 0G~5G 7 

Images 5G~10G 6 

Files/words, images 10G~15G 5 

Video 15G~20G 4 

Files/words, video 20G~25G 3 

Images, video 25G~30G 2 

Files/words, images, video 30G~35G 1 

 

The number of patients Queueing time Weights (𝛽௡) 

One patient 0~34.13s 1 

One patient to two patients 34.13~68.26s 2 

One to three patients 68.26~102.39s 3 

One to four patients 102.39~136.52s 4 

One to five patients 136.52~170.65s 5 

One to six patients 170.65~204.78s 6 

One to seven patients 204.78~238.91s 7 

Other situations >238.91s 8 
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d). The rewards that patients got by sharing edge caching to other patients 

        In the proposed system, patients are encouraged to share their edge storage 

capacity to other adjacent patients. Edge devices can be shared among other patients 

to save transmission delay of medical files and improve resources utilization. On 

the other hand, sharing edge devices means sacrificing devices’ battery life and 

having to deal with a longer processing time. A clear reward algorithm is provided. 

The patients who share their edge caching to others could get rewards. In this case, 

the patients who share more to other patients have higher priority to cache in the 

game. The patient could get one point of reward when sharing their edge to one 

patient. The weights of the rewards (φ୬) is shown in following table. 

 

Table 4.6: The Rewards System and Weights. 

 

The equation for the total weights of four medical factors is shown by (4.1): 

 

 𝑊௡ = 𝛼௡ + 𝜆௡ + 𝛽௡ + 𝜑௡ (4.1)

 
where 

𝑊௡: The total weights of four medical factors. 

𝛼௡: The weights of severity of illness. 

𝜆௡: The weights of the size of medical records that patients want to cache. 

The rewards patient got Weights (𝜑௡) 

0~20 1 

21~40 2 

41~60 3 

61~80 4 

81~100 5 

>100 6 
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𝛽௡: The weights of queueing time. 

𝜑௡: The weights of the rewards that patients got by sharing edge caching to other 

patients. 

 

4.3.2 The Channel Capacity between Patients and Edge Devices 

        For the second part of game theory mechanism, the channel condition between 

the patients and edge devices has been considered in the system. For the patient 

who has poor channel condition, it would take too long for transferring their data. 

Other patients with lower medical weights have to wait for a long time. Therefore, 

we consider the medical weights selection method with channel condition both. The 

patients who have higher points in medical weights and better channel condition 

have higher priority to share the capacity storage of edge devices. 

        According to the description from the last section, three edge devices have 

their own communications ranges r, individually, which means each edge device is 

connecting to the patients who are in the corresponding range only as Figure 4.5 

shows. 

Assuming all patients are clustered into Cluster 1 to 6, and the number of 

patients is growing from 6 to 60000, whose positions are initially fixed as an 

equilateral triangle, therefore, the angle of the equilateral triangle θ = 60°; 

furthermore, the distance between each two edge devices is R and the overlapping 

distance between the communications ranges of each two edge devices is 𝑅଴ . 

Notably, the value of 𝑅଴ is shown as below. 

 𝑅଴ = 𝑟 + 𝑟 − 𝑅 = 2 ∙ 𝑟 − 𝑅 (4.2) 

Where in this case, 𝑅଴>0, a parameter η is introduced to describe the ratio 

between overlapped distance and the communications range, as (4.3) shows, 

 𝜂 =
𝑅଴

𝑟
 (4.3) 
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Figure 4.5: Geographical Environment Information for Edge Devices. 

 

Where the value of 𝜂 is determined by the allocations of mobile patients and 

the deployment of edge caching devices. Here the value is temporally assumed as 

0.75 as Table 4.8 shows, Combing (4.2) and (4.3), the overlapping distance can be 

yielded as below. 

 𝑅଴ = 2 ∙ 𝑟 − 𝑅 = 2 ∙
𝑅଴

𝜂
− 𝑅 = 𝑅଴ ∙ (

2

𝜂
− 1) (4.4) 

        Where the value of R and 𝑅଴ are also determined by the allocations of mobile 

patients and the deployment of edge caching devices. Here the values are 

temporally assumed according to Table 4.8. 

        The simulation of the positions of Patient 1, Patient 2, Patient 3, Patient 4, 

Patient 5, and Patient 6 are following Poisson distribution process in their 

corresponding ranges. 
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        Therefore, the channel capacity [109] from Patient n to Edge Caching Device 

q and signal to noise ratio from n to q are R0 dependent functions. As (4.5) shows, 

 𝐶௡௤(𝑅଴) = 𝐵௡௤ ∙ 𝑙𝑜𝑔ଶ(1 + SNR௡௤(𝑅଴)) (4.5) 

Here, 𝐶௡௤(𝑅଴) and 𝑆𝑁𝑅௡௤(𝑅଴) are the channel capacity and signal to noise 

ratio from Patient n to Edge Caching Device q respectively. Accordingly, we have 

(4.6) as follows, 

                                   SNR௡௤(𝑅଴) =
𝑃ோ೙೜

𝑃ே೙೜

=
𝑃

೙்೜
∙ 𝑔௡௤ ∙ 𝑑௡௤(𝑅଴)ିఌ

𝑃ே೙೜

 (4.6) 

Where 𝑃
೙்೜

 is the transmit power; 𝑔௡௤ is the transmitter gain; 𝑑௡௤(𝑅଴) is the 

vector distance; 𝜀 is the path loss index; 𝑅ே೙೜
 is the Gaussian white noise [110]. 

Table 4.8 is the table for simulation parameters. The capacity of communications 

channel between each patient and its corresponding edge caching device can be 

simulated. 

 

4.3.3 The Maximum Weights of Patients 

The equation by adding the channel condition is updated: 

 
Max൫𝑅௡௤൯ = 𝑊௡𝐶௡௤ 

𝑆௡ ≤ 𝐸௤ 

 

(4.7) 

Where 

𝑅௡௤: The maximum value with medical factors and channel condition. 

𝑆௡: The size of medical files for patient n. 

𝐸௤: The storage capacity of edge device q.   

 
In (4.6), 

 𝑑௡௤ = ටቚ𝑥
೙்

− 𝑥ோ೜
ቚ

ଶ

+ ቚ𝑦
೙்

− 𝑦ோ೜
ቚ

ଶ

 (4.8) 

Where 𝑥
೙்
, 𝑥ோ೜

, 𝑦
೙்
, 𝑦ோ೜

 is the location of Patient n and Edge Caching Device q.  
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Therefore, the maximum value can be represented as (4.9):  

Max൫𝑅௡௤൯𝑀 = (𝛼௡ + 𝜆௡ + 𝛽௡ + 𝜑௡) ∙ 𝐵௡௤ 𝑙𝑜𝑔ଶ(1 

+
𝑃

೙்೜
∙ 𝑔௡௤ ∙ (ටቚ𝑥

೙்
(𝑅଴) − 𝑥ோ೜

(𝑅଴)ቚ
ଶ

+ ቚ𝑦
೙்

(𝑅଴) − 𝑦ோ೜
(𝑅଴)ቚ

ଶ

)ିఌ

𝑃ே೙೜

) 

                                          𝑆௡ ≤ 𝐸௤                                                             (4.9) 

where 

𝐵௡௤: The bandwidth between Patient n and Edge Caching Device q. 

𝑔௡௤ : The random variable number accounts for multipath fading follows an 

exponential distribution with mean 1 𝜇⁄ . 

𝑃ே೙೜
: The Gaussian white noise. 

        The caching time has been considered after all the patient got the value with 

medical parameters and channel capacity. Especially for the patient who is covered 

by multiple edge devices. The patient who has the highest combination value of 

medical parameters and channel capacity in one game doesn’t mean the patient has 

to cache the medical files in corresponding edge devices. Other edge devices could 

provide better signal connection and faster caching time even though the patient 

doesn’t have the highest value of 𝑅௡௤ in this game. Patient has to choose the edge 

devices with the minimum caching time. Therefore the minimum equation of 

caching time can be represented as： 

Min൫𝑇௡௤൯ =
𝑀௡௤

𝐶௡௤
+ ෍

𝑀௠

𝐶௠௤
 

                                                                                                                           (4.10) 
where 

𝑇௡௤: The minimum caching time of Patient n in Edge Caching Device q. 

𝑀௡௤: The size of medical files that Patient n wants to cache. 
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𝐶௡௤: The channel capacity between Patient n and Edge Caching Device q. 

𝑀௠: The medical files size of other patients/competitors.  

𝐶௠௤: The channel capacity between other Patients m and Edge Device q. 

 

4.3.4 The Flow Chart of System Model Based on Game Theory 

        From last three sections, we now understand to add auction-based and non-

cooperative game theory to the system model, then comparing and sorting out the 

priority of diagnostic patients. The algorithm is explained in the Figure 4.6. 

        Followed by applying (4.9), for the patient who has the highest value and is 

only covered by one edge device would be cached by corresponding edge device. 

For the patient who has the highest value and is covered by multiple edge devices, 

the caching time of the patient in each edge device would be considered. By 

applying (4.10), the patient would be cached by the edge device which can save the 

most of time instead of the edge device which has the highest value of 𝑅௡௤. For 

example, Patient 2 is covered by Edge Device A and C. In Game 1, 𝑅ଶ஺ is higher 

than 𝑅ଵ஺ , Patient 2 has the highest priority to cache. In Game 3, 𝑅ସ஼ > 𝑅ଶ஼ >

𝑅ହ஼ > 𝑅ଷ஼ , Patient 2 has the second highest priority to cache. Patient 2 has to 

compare the caching time by using (4.10), and choose edge devices with the lowest 

delay to cache. There is a possibility that the caching time of Patient 2 in Game 3 is 

shorter than Game 1 even though Patient 4 has higher priority than Patient 2. 

        The patient who has the highest priority and the shortest caching time would 

be cached in corresponding edge device. The system would send a request to all the 

edge devices and ask if more patients need to cache their medical files. If yes, the 

new game would start again by applying (4.9) and (4.10). If no, the edge device 

would get the final order for all the covered patients. 

According to the flow chart, the medical records transmission delay in the 

proposed system can be represent in (4.11). In other words, the time that patient can 

be saved by using proposed system. 



4.3 Mathematical and Analytical Model 

 

81 

 

𝑇(𝑛) =
𝑀௡௤

𝐶௡௤
+

𝑀 − 𝑀௡௤

𝑅
 

                                             (4.11) 
where 

𝑇(𝑛): The transmission delay of patient n. 

𝑀: The maximum size of patient. In proposed System, M is 35G. 

𝑅: The transmission rate of macro base station (Bits per seconds). 

 

 

 

Figure 4.6: Flow Chart of Auction-based Non-Cooperate Game Mechanism. 
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Table 4.7: The Edge Caching Algorithm. 
 

Algorithm 1: Edge Caching Algorithm 
Input: 

 Patients density in the Study Area λN, N=6, 60, 600, 6000, 60000; 

 Patient q, q∈N+ (6≤N≤60000); 

 Edge Caching Device n , n∈(A, B, C); 

 Overlapping distance, 𝑅଴; 

 Link capacity function, 𝐶௡௤(𝑅଴). 

 Total weights, 𝑊௡ = 𝛼௡ + 𝜆௡ + 𝛽௡ + 𝜑௡ 

Output: 

1: Initial simulation of patients’ locations, 

2: Define patients clusters, 

3: if q drops in Cluster 1 then 

4: q associates to Edge Device A, 𝐶஺௤(𝑅଴), 

6: else 

7: if q drops in Cluster 4 or 5 then 

8: q associates to Edge Device C,𝐶஼௤(𝑅଴), 

9: else if 

10: q drops in Cluster 6 then 

11: q links to Edge Device B, 𝐶஻௤(𝑅଴), 

12: else 

13: Patient q drops in Cluster 2 then 

14: Patient q associates to Edge Device A and C, 𝑊௡𝐶௡௤(𝑅଴) where n= A 

and C 

15: else 
16: q drops in Cluster 3 then 
17: Patient q links to Edge Device A, B and C, 𝑊௡𝐶௡௤(𝑅଴) where n= A, B 

and C 

 end 
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4.3.5 The Other Simulation Parameters of the Studied Scenario 

       Considering the three scenarios, firstly, the parameter 𝜂 which describes the 

ratio between overlapped distance and the communications range is fixed; secondly, 

the parameter 𝜂  which describes the ratio between overlapped distance and the 

communications range is a variable. Thirdly, by applying an auction-based and non-

cooperate algorithm, the diagnostic order of all patients will be sorted on bias of 

weighted value 𝑅௡௤. 

 

Table 4.8: Simulation Parameters for Edge Caching. 

Para. Description Value 

𝜀 Path loss index 4 

Images 5G~10G 6 

𝜂 Overlapping ratio 𝑅଴ 𝑟⁄  0.75 

θ Directional angle between edge devices 60° 

𝐵௡௤(𝑅଴) Effective bandwidth between n and q 200MHz 

𝐶௡௤(𝑅଴) Link capacity between n and q ~ 

𝑔௡௤ Transmitter gain 2dB 

n Edge caching devices A,B,C 

𝑅ே೙೜
 The Gaussian white noise 𝑔௡௤~𝑁(0, 𝑁)

𝑅
೙்೜

 Transmit power from n to q 100mW 

q Mobile patients 1,2,3,4,5,6 

R Distance between each two edge devices 300m 

r Communications range 200m 

𝑅଴ Overlapping distance 2 ∙ 𝑟 − 𝑅 

𝜂 Overlapping ratio, 𝑅଴ 𝑟⁄  0.75 
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4.4 Performance Evaluation 

        In this section, firstly, the channel capacity between patients and edge devices 

has been addressed. Then we combined the medical parameters to calculate the 

priority of each patient. The simulation results show that the proposed system saves 

more than half time for clinical professors to provide efficient medical services. The 

results show that more shared edge devices, higher channel capacity the patients 

can get, which means the proposed system encourages more patients to share their 

storage capacity of edge devices to others.  

 

4.4.1 Simulation Results of Channel Capacity  

In the proposed system, we considered parameter 𝜂 is fixed as 0.75. In Game 

1, three clusters of competitors are covered by Edge Device A. According to 

Equation (4.5), the maximum channel capacity between covered clusters and each 

edge device shows in Figure 4.7, Figure 4.8, and Figure 4.9. 

 

Figure 4.7:  Channel Capacity in Game 1 Where All Patients are Covered by Edge 
Device A. 
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Figure 4.8: Channel Capacity in Game 2 Where All Patients are Connecting to 
Edge Device B. 

 

 

Figure 4.9: Channel Capacity in Game 3 Where All Patients are Connecting to 
Edge Device C. 
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4.4.2 Maximum value of medical factors and channel condition 𝑅௡௤ 

        In the proposed system, the medical parameters of each cluster of patient are 

chosen randomly from Table 4.3, 4.4, 4.5, and 4.6. The values of medical weights 

are showed in Table 4.9. 

Followed by using the auction-based and non-cooperative game theory and 

several round of competitions, the caching order of each game can be simulated and 

summarized in Table 4.10. 

 Table 4.9: Medical Weights for All Patients (Unit). 

 

 
 
 
 
 
 
 
 
 
 

 

  

 

Table 4.10: The Allocation of Patients. 

 

 

 

 

 

 

 

 

Cluster 
of 

Patient 

Weighted Values, Max (Rnq) 

6 60 600 6000 60,000 

1 15 17 14 22 20 

2 7 11 13 7 17 

3 17 22 10 15 11 

4 10 21 18 16 14 

5 15 17 14 11 22 

6 11 14 18 10 21 

 

Game/Edge Cluster of Patients  

1/A Cluster 1 Cluster 3 N/A N/A 

2/B Cluster 6 N/A N/A N/A 

3/C Cluster 2 Cluster 4 Cluster 5  N/A 
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        As we can find from Table 4.10, the medical files of Clusters 1 and 3 are 

cached by Edge Device A. The medical files of Cluster 6 are cached by Edge Device 

B. The medical files of Cluster 4, Cluster 5, and Cluster 2 are cached by Edge 

Device C in order. 

 

4.4.3 The Simulation Results of Transmission Delay   

        The simulation results of transmission delay are compared with the scenario 

without the proposed system. Two scenarios have been considered: the best 

situation and the worst situation. The best situation corresponds to the case that the 

edge devices have enough medical files for the patients. The doctor can provide 

effective medical services with the cached EMR and does not need to access to 

whole of EMR which cached in the registered hospital. For the worst situation, it 

corresponds to the case that the cached EMR in edge devices is not enough for 

doctor to provide effective and efficient medical care. The doctor need more 

medical files from registered hospital. 

        The transmission delay results with the proposed system and without the 

proposed system in the best situation are shown in Figure 4.10 and Figure 4.11 

respectively. As we can find from the figures, the transmission delay has been 

decreased significantly by applying the proposed system. Especially, for the 

scenario with 60,000 patients, the transmission delay of Cluster 1, Cluster 2, Cluster 

3, Cluster 4, and Cluster 5 without the proposed system is 512s, 1024s, 512s, 512s, 

170.67s, and 170.67s respectively. However, the transmission delay with the 

proposed system is 13.97s, 60.06s, 108.7s, 13.51s, 4.13s, and 4.74s respectively, 

which is 97.22% improvement.  

For the scenario with 6, 60, 600 and 6000 patients, the system improvement of 

average transmission delay is 56.87%, 79.85%, 91.19%, and 92.82% respectively. 

In other words, it can save more than half time to provide medical service for 

patients. 



4.4 Performance Evaluation 

 

88 

 

 

Figure 4.10: The Transmission Delay for All the Patients in the Best Situation. 

 

Figure 4.11: The Transmission Delay Without the Proposed System in the Best 

Situation. 
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The transmission delay results of the worst situation with the proposed system 

are shown in Figure 4.12. The transmission delay without the proposed system is 

1194.67s for all the patients, which means the whole medical records are required 

from the registered hospital. The simulation results show that the improvement of 

transmission delay with proposed system for the scenario with 6, 60, 600, 6000 and 

60,000 is 37.85%, 25.94%, 57.75%, 54.82%, 66.71% and 82.9% respectively. 

 

Figure 4.12: The Transmission Delay for All the Patients in the Worst Situation. 

 

4.4.4 The Channel Capacity of Patient When 𝜂 is changing 

        In the proposed system with 60000 patients, we assume the overlapping 

distance is fixed, the data rates each cluster are very close, this is because they are 

not located in the overlapping areas and singular communications with its 

corresponding edge caching device is established. However, for Cluster 2 and 

Cluster 3, who are seating in the overlapping areas, their connections are usually 

coordinating with the nearest edge caching device and the data rate of their signal
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channel are relatively lower. However, when parameter 𝜂 is not fixed but changing 

from 0.5 to 1.15, the data rate of each patient is accordantly changed as Figure 4.13 

shows. 

 

 

 

Figure 4.13: Channel Capacity of Each Mobile Patient When 𝜂 is Changing. 

 

From the Figure 4.13, when the parameter 𝜂 is increasing, average channel 

capacity of Cluster 1, Cluster 4, Cluster 5, and Cluster 6 is decreasing; meanwhile, 

the channel capacity of patients in overlapped are growing significantly, especially 

for Cluster 3, which means the more patients share their edge devices, the more 

communications areas are overlapped, that leads to more choices the patients can 

have, and the higher channel capacity as a result of utilizing edge caching device.  

 

4.5 Summary and Conclusions 

A new system is proposed to share patients’ EMR by using edge computing 

and auction-based non-cooperative game theory mechanisms. We considered the 
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scenario that patients share their storage capacity on the edge device to others and 

other patients could get effective and efficient medical care by caching their 

medical files to the adjacent edge devices. In the proposed system, four medical 

factors including the severity of illness, the size of the medical records that patient 

wants to cache, the queueing time that patients have been waited, and the rewards 

that patients got by sharing edge caching with other patients, have been combined 

with telecommunication channel capacity for patients to compete the allocation and 

caching priority at the edge. In the proposed non-cooperative game, Nash 

Equilibrium has been presented as a desirable outcome.  

The results show that the proposed system can decrease the transmission delay 

by 56.87% to 93.69% in the best situation and by 25.94% to 57.75% in the worst 

situation comparing with the system without sharing edge device. The results show 

that more shared edge devices, higher channel capacity patients can get, which 

means the proposed system encourages more patients to share their storage capacity 

of edge devices to others.  

This chapter can give a reference for medical providers to provide more 

effective and efficient services. They could access patient’s medical files in a short 

time to check patients’ current condition with real-time medical data on the edge 

devices once the emergency happened. They could check the past diagnosis history 

to give further instructions with the medical files (words, images, and videos) 

cached at the edge.  
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Chapter 5 

Deep Q-Learning with Preemptive 

Priority for Sharing EMR 

 

5.1 Introduction 

        In order to provide efficient and accurate medical care, an important trend in 

the medical informatics is the use of electronic medical record systems to access to 

clinical information, provide timely treatment for patients, and prevent the loss or 

misplacement of medical information [11]. By implementing EMR, multiple 

healthcare providers can track patient’s health condition over a long time [47]. 

        In the last chapter, an auction-based and non-cooperative game theory 

mechanisms is proposed to allocate and cache storage capacity of edge devices. 

Patients compete the storage resources by considering the medical parameters and 

communication channel condition. We analysis the performance of proposed 

system with transmission delay of medical records. The results show that the 

proposed system can decrease the transmission delay by 56.87% to 93.69% in the 

best situation and by 25.94% to 57.75% in the worst situation comparing the system 

without sharing edge devices. It saves more than half time to access patients’ 

medical files and provide medical services in the best situation. However, in the last 

system, we considered that all the medical factors including the severity of illness, 

the size of the medical records that patients want to cache, the queueing time that 

patients have been waiting, and the rewards that patients got by sharing edge 

caching with others, have same weights. The priority of allocation is based on a 

combination value. It is possible that for the patient who has higher illness servility
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but cannot get timely and effective health care services. On the other hand, in the 

last system, the medical files of patients can only be cached in a single edge device 

which could provide the fastest services. However, in our new system, medical 

records can be cached in multiple edge caching devices dispersedly at same time. 

The processing time including queueing time and caching time would be decreased 

significantly. Therefore, we proposed a new sharing system based on deep Q-

learning algorithm to allocate and cache the medical records of multiple patients. 

The learning procedure of the system is to find the optimal Q value for each patient. 

Q-learning is proposed for patients to find the best routine to cache their medical 

records among the edge devices. The new system provides more fair and humanized 

medical care services comparing with the last one. The patients with higher level of 

illness severity have higher priority and lower waiting time to be served. 

 

5.1.1 Overview of Deep Q-Learning  

        Deep Q-learning is one of the important algorithms of reinforcement learning. 

Reinforcement learning is a monitor machine similar to that of the human brain. 

There is no idea in the head at the beginning. Machine would learn from mistakes 

through continuous experimentations and find the law and principle and finally 

achieve the goal [111]. The reinforcement learning agents have achieved some 

successes in a variety of domains, their applicability has previously been limited to 

domains in which useful features can be handcrafted, or to domains with fully 

observed, low-dimensional state spaces. A novel artificial agent, termed a deep Q-

learning [29] is developed by using recent advances in training deep neural 

networks, which can learn successful policies directly from high-dimensional 

sensory inputs using end-to-end reinforcement learning. Deep Q-learning was 

proposed in [112] primitively. Deep Q network is a method that combines Q-

Learning and neural network. Before we study deep Q network, the introduction of 

Q-learning and neural network are studied in the following part. 
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a) What is Q-Learning? 

We all have our own code of conduct when we start doing something. For 

example, when we were young, parents said to us that you cannot watch TV without 

finishing homework. Hence in the state of writing homework, the good behavior is 

to continue writing homework until we finished. After finishing it, we can get 

rewards. The bad behavior is to watch TV without writing homework. As a result, 

patients would give seriously criticism if they found out. It became our indelible 

memory because it happens too many times. This is also the code of conduct of Q-

learning that we want. Q-learning is a decision-making process. 

For example, we are in the state of writing homework and we have never tried 

to watch TV while writing homework. Therefore, we have two choices under this 

state. The first one is to continue writing homework. The second one is to watch 

TV. Because I have not been punished before, I choose to watch TV, and now the 

state has been changed to watch TV. Then I choose to continue watching TV. 

Finally, parents went home and found out that I went to watch TV without finish 

homework. They punished me, and I also deeply recorded this experience, which 

changed the behavior of “watching TV without finishing homework” into negative 

or bad behavior in my mind.  

Assume that we have learned code of conduct. Now we are in state of writing 

homework (s1). I have two behaviors or actions including watching TV (a1) and 

writing homework (a2). According to the experience, under the state of s1, the 

potential rewards of a2 are higher than a1. Then the potential rewards can be 

replaced by a Q table with states and actions. In the Q table, the reward of Q (s1, 

a1) is less than Q (s1, a2), therefore a2 is chosen as the next behavior. Now the 

state is updated to s2. Under the state of s2, we still have two identical choices and 

repeat the above process. According to the code of conduct in Q table, we compare 

the rewards of Q (s2, a1) and Q (s2, a2) and choose the larger one. Then we will 

reach to state s3 according to a2 and repeat the above decision process. This is the 

algorithm that how Q-learning makes decisions. 
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Table 5.1. Q Table with States and Actions. 

Q Table a1 a2 

s1 -2 1 

s2 -4 2 

 

We go back to the previous process, according to the estimation of the Q table, 

the value of a2 is larger in a1. By applying the previous decision-making method, 

we took a2 in s1 and reached s2, then we start to update Q table for decision-making. 

For s2, we did not take any action in practice, but we imagine that we take an action 

from a1 and a2, and find out which action has larger Q value. If the value of Q (s2, 

a2) is larger than Q (s2, a1), then we multiply Q (s2, a2) by an attenuation value 

gamma (for example, 0.9) and plus the reward R that we obtained when it reaches 

s2, which is considered as the value of Q (s1, a2) in practice. However, we used 

estimated value of Q (s1, a2) according to the Q table. We can now update Q (s1, 

a2) based on the difference between the value of reality and estimation. We multiply 

the gap by a learning efficiency parameter alpha and plus the previous value of Q 

(s1, a2), then becomes a new and updated value. This is the optimization process 

that how Q-learning algorithm updates Q table and makes decisions. 

 

b) What is Neural Network? 

Neural network is a computational model that is inspired by the way that 

biological neural networks in the human brain process information. Neural 

networks are a set of algorithms that are designed to recognize patterns. They 

interpret sensory data through a kind of machine perception, labelling or clustering 

raw input. The patterns they recognize are numerical, contained in vectors, into 

which all real-world data, be it images, sound, text or time series, must be translated. 

For example, in image recognition, they might learn how to identify images that 
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contain cats by analysing example images that have been manually labeled as "cat" 

or "no cat" and using the results to identify cats in other images. They do this 

without any prior knowledge about cats, for example, that they have fur, tails, 

whiskers and cat-like faces. Instead, they automatically generate identifying 

characteristics from the learning material that they process. Artificial neural 

networks have generated a lot of excitement in machine learning research and 

industry, thanks to many breakthrough results in speech recognition, computer 

vision and text processing. The neural network can be systematically divided into 

CNN (Convolutional Neural Network) with spatially distributed data and RNN 

(Recurrent Neural Network) with time-distributed data. 

CNN is a class of deep neural networks, most commonly applied to analysing 

visual imagery. A CNN consists of an input and an output layer, as well as multiple 

hidden layers. The hidden layers of a CNN typically consist of a series of 

convolutional layers that convolve with a multiplication or other Iot products. For 

example, the process of face recognition by applying CNN. Based on the CNN 

training of the first layer, partial and independent modules of image can be 

recognized, such as a square, a circle, or an eye. A large amount of image data is 

inputted at this layer, the neurons of this layer have the capability to distinguish the 

boundaries of graphics. The following layers would recognize a higher level of 

image mode (for example, the combination mode with a few small square and circle) 

based on the information obtained in the previous layer. Then a face can be 

recognized by a quick manner. 

RNN is a class of artificial neural networks where connections between nodes 

form a directed graph along a temporal sequence. This allows it to exhibit temporal 

dynamic behaviour. Unlike feedforward neural networks, RNNs can use their 

internal state (memory) to process sequences of inputs. This makes them applicable 

to the tasks such as unsegmented, connected handwriting recognition, natural 

language processing, or speech recognition. Language is time-distributed data, 

which means that the meaning of the next sentence is related to the previous 
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sentence. The important characteristic of the RNN is to remember previous 

information. For example, the following conversation: 

“How much data does the 10 pounds package include?” 

“2GB internet data is included.” 

“What about 20 pounds?” 

This conversation is easy to understand for us. The last question is obviously 

asking “How much data does the 20 pounds package include?”. However, if we 

want machine to understand this conversation, the previous package information is 

needed, which requires a loop design that allows the neural network to have a depth 

in time. 

 

c) Deep Q-Learning 

As we mentioned, deep Q-learning is a combination algorithm of Q-learning 

and neural network. In Q-learning we use tables to store each state, however there 

are millions of states in practice. If we use tables to store, the computer or machine 

has not enough storage capacity. It costs huge efforts and time to search for the 

corresponding states every time in such a large table. However, in machine learning, 

neural network is good at dealing with complex states. States and actions are used 

as input to the neural network, and then we can get Q value of the action through 

analysis of neural network. By applying neural network, we do not need to record 

the Q value in the table, instead generating the Q value directly. We can imagine 

that the neural network accepts the external information, which is equivalent to 

collect information from our eyes and ears, and then process in brain and output the 

value of each action, and finally select one of the actions with better Q value by 

reinforcement learning. 

Deep Q-learning is considered tasks in which the agent interacts with an 

environment through a sequence of states, actions and rewards [30]. The goal of the 
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agent is to select actions in a fashion that maximizes the cumulative future rewards. 

More formally, we use a deep Q-learning to approximate the optimal action-value 

function (Q values). 

 

 

Figure 5.1: Deep Learning with Q Function. 

 

        The action value function (or “Q-function”) takes two inputs: “state” and 

“action”. It returns the expected future reward of that action at that state. The 

equation for Q value is shown as following [113]. 

                            𝑄గ(𝑠௧, 𝑎௧) = Max 𝐸 [𝑅௧ାଵ + 𝛾𝑅t+2 + 𝛾ଶ𝑅௧ାଷ+. . . |𝑠௧, 𝑎௧]       (5.1) 

Where  

𝑄: The maximum sum of rewards with given state and action. 

𝜋: The behavior policy. 

𝑠௧: The given state or current state. 

𝑎௧: The given state or current action. 

𝐸: The estimated discounted cumulative rewards with future rewards.  

𝑅௧ାଵ, 𝑅௧ାଶ, 𝑅௧ାଷ: The future rewards.  

𝛾: The attenuation parameters of future rewards. 

 

From the equation, the Q value is the sum of all future rewards, but these 

rewards are attenuating. When 𝛾 is 1, the Q value is a reward without attenuation 
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in the future, which means the full value of all the steps. When 𝛾 is 0, the Q value 

is a reward which is concerned with current reward. If the value of 𝛾 changes from 

0 to 1, which means the rewards are not only related to current interest, but also the 

interests for the future. 

The Q-learning algorithm process is shown in the Figure 5.2. The initial Q 

table chooses and executes an action. The Q function would measure the Q values 

based on the action. The learning system would stop updating the Q value if the 

optimised Q table is found. 

 

 

 

 

 

 

 

 

 

 

 

 

         At the End of the Training 

 

 

Figure 5.2: The Q-Learning Algorithm Process. 

 

5.1.2 Queueing Model with Preemptive Priority 

        Much of queueing theory is devoted to analysis priority queues, where 

customers are labelled and served in accordance with a priority scheme, high-

Initial Q Table 

Choose an action A 

Perform action 

Measure reward 

Update Q 

Optimised Q Table 
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priority customers are served with less waiting time and low-priority customers in 

the queue. Compared with the general queuing model, many practical queuing 

systems are more adaptive with the queuing theory model with priority, such as the 

healthcare area. The patients with higher priority should be served firstly comparing 

with other patients. Therefore, the queuing theory model with priority has more 

practical significance. Queueing model can be divided into non-preemptive priority 

and preemptive priority [114]. 

        For the non-preemptive priority, which indicates that even if a high-priority 

user arrives, the system cannot stop a low-priority user who is receiving service to 

return to the queue. In other words, once the user is served at moment, the service 

cannot be interrupted until this user finished. 

        For the preemptive priority, which means that once a high-priority user arrives, 

the system immediately interrupts the service to the low-priority customer (return 

to the queue) and immediately starts to serve high-priority users. 

 

5.1.3 Contributions and Structure of Chapter 

        More formally, we use a deep Q network to approximate the optimal action-

value function (Q values). In this chapter, we consider four states in the allocation 

algorithm including the illness servility of patients, the storage capacity of edge 

devices, the processing time of medical files and the channel condition between the 

patients and edge devices. The action of this learning algorithm is the caching 

decision (1/0 or yes/no) of edge devices for each patient. The learning procedure of 

the system is to find the optimal Q value for each patient. Q-learning is proposed 

for patients to find the best routine to cache their medical records among the edge 

devices. The results show the transmission delay could at least decrease the average 

transmission delay by 16.78% and 71.14% comparing the scenario with the 

previous system and without applying the proposed system. The total transmission 

time is analysed as well, the results show that new allocation algorithm could save 
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at least 20.57% and 60.08% time for the whole of system comparing with the 

previous system and the scenario without proposed algorithm. Therefore, in this 

chapter: 

 The illness servility of patient has been considered at the first place, the patient 

who has higher illness servility has higher priority to cache. 

 The medical files of patients can be cached in multiple edge caching devices 

dispersedly instead of one edge caching. The processing time including 

queueing time and caching time would be decreased significantly. 

 A new reward algorithm has been proposed to decide priority of patients. 

 The queueing time model based on preemptive priorities (M/M/1) has been 

proposed to calculate the processing time. 

 Deep Q-learning has been proposed in edge devices to find the best caching 

routine for patients.  

The rest of the chapter is organized as follows. In Section 5.2, we provide the 

system model with deep Q-learning based on four states. Section 5.3 focuses on the 

medical records’ allocation method and performance analysis. The simulation 

results have been conducted. Finally, Section 5.4 concludes the chapter. 

 

5.2 System Scenario and Modeling 

        Three parts are considered in this section. The first one shows the four states 

of learning system. The second part is proposed to find the best Q value and allocate 

medical records to the edge devices. The model of transmission delay is proposed 

in the third part.  

For the deep Q-learning algorithm, four parameters are considered in proposed 

system, which include the severity of illness (SOI), the storage capacity of edge 

devices, the processing time of medical files and the channel condition between 

patients and edge devices. The system model of each state is showed in following 
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part. The patient who has higher Q value has higher priority to cache their medical 

records. 

 

5.2.1 The Four states in Deep Q-Learning  

1) The illness servility 

The severity of illness (SOI) class is meant to provide a basis for evaluating 

hospital resource use or to establish patient care guidelines. Patients are assigned 

their SOI based on their specific diagnoses and procedures performed during their 

medical encounter. Patients with higher SOI (e.g. major or severe) are more likely 

to consume greater healthcare resources than patients with lower SOI in the same 

diagnosis-related group.  

 

Table 5.2: The Weights of Severity of Illness. 

 

The severity of illness has been defined into four levels. For the level 1, it 

means that the patients need non-invasive diagnostic or minor therapeutic. For the 

moderate and major level, which mean that patients need therapeutic and invasive 

diagnostic, and non-emergency life support respectively. The highest level, severe, 

which means the patients need emergency life support immediately. To compare 

the caching priority of patients, we consider the highest level that patient had 

recently. The patient who had high level of severity of illness, for example, major 

or severe, are more likely to have the same or higher level again. Therefore, they 

LEVEL Severity Rewards 𝑅ூ(𝑛) 

Level 1 Minor 𝑒ଵ 

Level 2 Moderate 𝑒ଶ 

Level 3 Major 𝑒ଷ 

Level 4 Severe 𝑒ସ 
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have higher priority to cache their medical records firstly. The rewards of illness 

servility (𝑅ூ(𝑛)) is proposed to apply Exponential Function. The weights of SOI 

(𝛼௡) is presented as in Table 5.2. 

 

2) The storage capacity of edge devices 

Different with the last research, in this proposed system, the patients can cache 

their medical files to different edge devices instead of caching all in one edge device. 

The caching algorithm is based on queueing time and channel condition of each 

edge device. An example with two patients and two edge devices is explained, 

which is shown in Figure 5.3.  

 

Figure 5.3: A Scenario for Two Patients and Two Edge Devices. 

 

        Patient A could request storage capacity from Edge Devices A and B. Patient 

B requests storage capacity from Edge Device A. We assume that Patient 2 has 

higher illness severity than Patient 1. The channel capacity between Patient 1 to 

Edge Device A is better than Edge Device B. In this system, Patient 2 has the highest 

priority in Edge Device A and starts to cache. At the same time, Patient A starts to 

cache medical files in Edge Device B. Once Patient 2 cached medical files in Edge 

Device A, three questions would be asked: 
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“Dose Patient 2/Higher illness servility patients finish their caching?” 

“Do I (Edge Device A) still have enough space to share?” 

“Is Patient 1 still caching or processing his/her medical files?” 

If all the answer is yes for all three questions. The Patients 1 would change to 

Edge Devices A to cache the rest of medical files, which not only decreasing the 

processing delay, but also saving more time for other patients who want to cache. 

 

3) The processing time of medical files 

        In proposed system, the processing time includes the queueing time and 

caching time. For the queuing model, we proposed the model with priority, the 

order in which members of the team are served is based on the priority they are 

given. We applied M/M/1 queueing model with preemptive priority for processing 

time. In the system, preemptive priority follows two rules: The first one is that once 

a high priority patient arrives, the edge device immediately interrupts the services 

to the low priority patient (This patient would return to the queue or choose other 

edge devices) and starts to serve the high priority patient immediately. After the 

caching of medical files is finished, the edge device would follow the caching 

algorithm and choose the next patient to be served. The second is that for the 

patients with same priority, the system follows the algorithm of “First come, first 

serve”. Patients would not be served until the services of other patients with same 

priority are done. Therefore, the equation of the processing time is shown by (5.2): 

𝑇௡௤(𝑘) =
1/𝜇௤

ቆ1 −
∑ 𝜆௜ିଵ

௞
௜ୀଵ
𝐺௡𝜇௤

ቇ ቆ1 −
∑ 𝜆௜

௞
௜ୀଵ

𝐺௡𝜇௤
ቇ

 

For  𝑘 = 1, 2, 3, . . . , 𝐾                                              (5.2) 

 
According to the little equation, the equation of queueing time can be 

presented by (5.3): 
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𝑊௡௤(𝑘) = 𝑇௡௤(𝑘) − 1/𝜇௤ 

                                                        (5.3) 

where  

𝑇௡(𝑘): The processing time for patient n with priority k. 

𝜇௠: The mean service rate per edge device. 

𝜆௜: The mean number of patients who want to cache for priority i. 

𝐺௡: The number of edge devices that can serve Patent n. 

𝑊௡(𝑘): The queueing time for Patient n with priority k. 

 

4) The channel capacity  

        The channel capacity is considered as one of the states. For the edge devices 

that patient has same queueing time, patients would choose the edge devices with 

higher channel capacity to save more caching delay. Thus, the channel with higher 

capacity should have higher Q values.  The channel capacity from Patient n to Edge 

Caching Device q and signal to noise ratio from n to q as (5.4) shows, 

 𝐶௡௤(𝑑) = 𝐵௡௤ ∙ 𝑙𝑜𝑔ଶ(1 + SNR௡௤(𝑑))    (5.4) 

        Here, 𝐶௡௤(𝑑) and 𝑆𝑁𝑅௡௤(𝑑) are the channel capacity and signal to noise ratio 

from Patient n to Edge Caching Device q respectively. Accordingly, we have (5.5) 

as follows, 

                         SNR௡௤(𝑑) =
𝑃ோ೙೜

𝑃ே೙೜

=
𝑃

೙்೜
∙ 𝑔௡௤ ∙ 𝐷௡௤(d)ିఌ

𝑃ே೙೜

   (5.5) 

       Where 𝑃
೙்೜

 is the transmit power, 𝑔௡௤  is the transmitter gain, 𝐷௡௤(d) is the 

vector distance, 𝑑 is the distance between the patient and edge devices, 𝜀 is the path 

loss index, 𝑅ே೙೜
 is the Gaussian white noise. The capacity of communications 

channel between each patient and its corresponding edge caching device can be 

simulated. 
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5.2.2 Allocate and Cache Medical Records with the Best Q values 

        From the last three sections, we now understand to add deep Q-learning to the 

system model. The system would compare and sort out the priority of diagnostic 

patients according to the Q values. The allocation algorithm is explained in a flow 

chart, which is shown in Figure 5.4.  

        We assume Patient 1 wants to cache medical files in Edge Device A. Before 

caching medical files, Patient 1 would send a request to Edge Device A and check 

if any other patients are caching now. If yes, then Patient A has to compare the 

priority with other patients. The edge device would stop processing current patient 

and serve Patient 1 only when Patient 1 has higher priority than others. Then Patient 

1 would ask if there is enough storage capacity in Edge Device A. If no, Patient 1 

changes to other edge devices. If yes, Patient 1 has to compare the illness severity 

level with other patients who want to cache their medical files in Edge Device A as 

well. If Patient 1 has the highest illness severity and the shortest processing time, 

then the medical files would be cached in Edge Devices A. During the caching, if 

other edge caches could offer a less processing time, then Patient 1 would change 

to other caches until all the medical files have been allocated. So according to the 

flow chart, the maximum rewards (Q values) can be presented by (5.6). 

Max ቌ෍ 𝑅௡௤

௤

ቍ = 𝑒௡
ఈ ⋅

1

൭∑
𝑆௡௤

∑ 𝐶௡௤
௠
௤ୀଵ

௠
௤ୀଵ + 𝑊௡௤(𝑘)൱

⋅ 𝐶௡௤(𝑑) − (
∑ 𝑇௡௤(𝑘)௠

௤ୀଵ

𝑚
− 𝑇௡ொ(𝑘)) 

 
𝑆𝐸௤ > 0                                                                 (5.6) 

where 

𝑇௡ொ(𝑘): The minimum processing time of Patient n.  

The ideal situation is that the practical processing time equals to the minimum 

processing time. 
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Figure 5.4: The Flow Chart of Allocation Algorithm Based on Deep Q-Learning. 
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5.2.3 The Transmission Delay with Proposed System 

        The caching time has been considered after all the patient got the value with 

medical parameters and channel capacity. Especially for the patient who is covered 

by multiple edge devices. Patients choose the edge devices with the minimum 

queueing time. Therefore, the equation of caching time can be represented as： 

𝐷௡ = ෍
𝑆௡௤

∑ 𝐶௡௤
௠
௤ୀଵ

௠

௤ୀଵ

+
𝑆௝ଵ

𝐶௝ଵ
 

                                                            (5.7) 
Where 𝑆௝ଵ/𝐶௝ଵ is the queueing time for the first edge caching device. 

 

5.3 Performance Evaluation 

        We applied new allocation system based on deep Q-learning in our last 

scenario. In the last system, we assume that there are three “Host Patients” (Patient 

A, Patient B, and Patient C) would like to share their edge storage to six clusters of 

“Guest Patients” (Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5, and Cluster 

6) who need extra capacity to cache their medical records, which shows in Figure 

5.5 We randomly allocate the position of these six clusters of “Guest Patients”. 

However, considering the limited capacity storage of each edge device, competitive 

relation would be formed by multiple patients in the same game.  

        In proposed system, there are three competitive games in this system. The first 

auction-based non-cooperative game is to achieve the storage capacity of Edge 

Caching Device A. The candidates of this game are Cluster 1, Cluster 2 and Cluster 

3. The second game is to achieve the storage capacity of Edge Caching Device B. 

The candidates of this game are Cluster 3 and Cluster 6. The third game is to achieve 

the storage capacity of Edge Caching Device C. The candidates of this game are 

Cluster 2, Cluster 3, Cluster 4 and Cluster 5. According to the proposed game theory 

mechanisms, patients would know if they are in a high priority position and then 

select one edge device which provide less waiting time to cache.  
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Figure 5.5：A Scenario with “Host Patients” and “Guest Patients”. 

 

Table 5.3:  Patients Allocation and Caching Order. 

 

Game Caching order 

1 
Cluster 1 
(100%) 

N/A N/A N/A 

2 
Cluster 6 
(100%) 

Cluster 3 
(100%) N/A N/A 

3 
Cluster 4 
(100%) 

Cluster 5 
(100%) 

Cluster 2 
(100%) 

N/A 
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As we can find from Table 5.3, the medical files of Cluster 1 are cached by 

Edge Device A. The medical files of Cluster 3 and Cluster 6 are cached by Edge 

Device B. Cluster 3 has the highest channel capacity with Edge Device A comparing 

with Edge Device B and C. However, in Edge Device B, Cluster 3 costs less caching 

time due to Cluster 6 has a high channel capacity. The medical files of Cluster 4, 

Cluster 5, and Cluster 2 are cached by Edge Device C in order. In proposed deep 

Q-learning system, each patient has to find the edge device with the best Q value 

and other edge devices that are available to cache. According to the flow chart and 

Equation (5.6), the new allocation results are shown in Table 5.4. 

 

Table 5.4: Patients Allocation and Caching Order in Proposed System. 

 

        Different with last research, in proposed new system, the medical files of 

Cluster 1 and 23.1% medical files of Cluster 2 are cached in Edge Device A. The 

left medical files of Cluster 2 are cached in Edge Device C. For the Cluster 3, 50.02% 

and 49.98% medical files are cached in Edge Device B and C respectively. The 

medical files of Cluster 4 and 5 are cached in Edge Device C. For the Cluster 6, the 

medical files are cached in Edge Device B. The caching order of scenario shows in 

Figure 5.6.  

        According to the Equation (5.6), the transmission delay results of proposed 

system based on deep Q-learning are shown in Figures 5.7, 5.8, and 5.9. 

Edge Caching order 

A 
Cluster 1

（100%） 

Cluster 2

（23.1%） 
N/A N/A 

B 
Cluster 3

（50.02%） 

Cluster 6

（100%） 
N/A N/A 

C 
Cluster 3

（49.98%） 

Cluster 4

（100%） 

Cluster 2

（76.9%） 

Cluster 5

（100%） 
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For Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5, and Cluster 6, the 

transmission delay with proposed system is 230.32s, 386.91s, 35.05s, 96.02s, 

478.97s and 151.77s respectively. However, by applying previous system, the 

transmission delay is 230.32s, 508.45s, 70.1s, 60.97s, 600.51s, and 186.82s 

respectively. The transmission delay without proposed system is 1194.67s, 

1194.67s, 170.61s, 1024s, 512s, and 682s respectively, which is an 80.72%, 

75.65%%, 82.39%, 90.62%, 25.19%, and 77.75% improvement respectively.  
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Figure 5.7: The Transmission Delay Results of the Proposed System Based on Deep 

Q- Learning. 

 

As we can find from the table, it costs 476.97s for all patients finished their 

caching process in proposed system. However, in our last system, it costs 600.51s 

for all the patients finish their caching, which saves 20.57% time for other patients 

who want to cache in these three edge devices. The total transmission time without 

the proposed system is 1194.67s, which is a 60.08% improvement with new 

proposed system.  

        The system improvement of average transmission delay is 71.14% comparing 

with the scenario without using deep learning proposed system. However, by 

applying the previous system, the improvement of average transmission delay is 

65.32%, which is more than 16.78% improvement.  
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Figure 5.8: The Total Transmission Time for All the Patients. 

 

 

 

Figure 5.9: The Average Transmission Delay of Three Scenarios. 
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5.4 Summary and Conclusions 

        In this research, we introduced a new allocation algorithm based on deep Q-

learning algorithm for patients to cache their medical files to adjacent edge devices. 

In the proposed system, the medical records can be cached in multiple edge caching 

devices dispersedly at same time instead of one edge caching only. The processing 

time including queueing time and caching time is decreased significantly. The 

learning procedure of the system is to find the optimal Q value for each patient. Q-

learning is proposed for patients to find the best routine to cache their medical 

records among the edge devices. The new system provides more fair and humanized 

medical care services comparing with previous system based on game theory. The 

patients with higher level of illness severity have higher priority and lower waiting 

time to be served. According to the simulation results, patients could get more 

efficient medical care by applying the proposed system and save at least 71.14% 

average transmission time comparing the situation of traditional method. We 

compared total transmission time as well, the results show that new allocation 

algorithm saves 20.57% and 60.08% time for the whole of system comparing with 

the previous system and the scenario without proposed algorithm, which means 

other patients who want to cache in these three edge devices could get medical care 

in a quicker manner in our new system.  
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Chapter 6 

Conclusions and Future Work 

 

6.1  Conclusions 

        In this research, novel and advanced telecommunication technologies have 

been proposed to access medical records with low transmission delay and save more 

time for clinical professions and patients. The contributions of this thesis cover the 

simulation and performance analysis of three different scenarios, including the first 

system with location-aware femtocaching and DVS camera, the second system with 

edge computing and auction-based non-cooperated game theory, and the third 

system with deep Q-learning. The main conclusions of this thesis are summarized 

as follows. 

In the first system, we allocate patient’s medical records to the nearest hospitals 

of home area, work place, family home, friends’ home and other places according to 

the patient’s social life. Location-aware femtocaching has been used to cache 

patients’ EMR and set up close to all the hospitals. It is the first time that 

femtocaching technology is proposed in healthcare area. We divided electronic 

medical records into three levels according to the type and the size of medical files 

(word/text, image, and video/audio). The EMR is allocated in femtocaches 

efficiently and effectively according to our proposed medical records allocation 

algorithm by applying knapsack model with penalty minimization. Due to the 

limited storage capacity of caches, not all the caches have enough space for medical 

files, especially for the medical images and videos. The proposed medical records 

allocation algorithm would choose the most suitable files to cache based on three 

important penalty parameters including the staying time of patients in one location, 
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the importance of medical files to patient’s current health condition, and the 

transmission delay of medical files. The purpose is to provide medical files in a 

timely manner and reduce delay when medical files are being shared and allocated 

among the hospitals. The simulation results show that the proposed scheme can drop 

the transmission delay of EMR by 43.57% to 86.66% compared with the scenario 

without using location-aware femtocaching technology. In the proposed system, the 

medical video accounts for a big part of the EMR (around 70%), which causes a 

huge delay when physicians access to patient’s medical records. Medical video is a 

significant part of health care area. Video was selected not only because it provides 

important reference to physicians, but also providing an additional option for close 

supervision and offered increased privacy and as a result, decreasing stress for the 

patients. A new medical video capture method is proposed to reduce the size of 

visual medical files by applying DVS camera technology. The DVS camera only 

takes video when patient is moving. DVS camera could improve the bandwidth 

utilization and save more resources, such as battery life of devices and storage 

capacity of camera to current monitoring system, especially for the monitoring of 

patients. The transmission delay in proposed system can be decreased significantly 

when transferring or sharing the medical files among the hospitals. In particular, for 

the first time, exploiting the recently developed DVS technology is investigated here 

to achieve smaller medical visual data files in our proposed tele-health system. The 

simulation results show that the proposed scheme by adding DVS camera 

technology can decrease the transmission delay by 41% to 80.4% more comparing 

with femtocaching only, which means the transmission delay can be improved by 

88.94% to 92.13%. 

        In the previous sections, the femtocaching is located to the nearest hospital 

where patients stay. Due to the changing location of patients, it is difficult to allocate 

and cache medical records to all the nearest hospital. Once emergency happens in 

other places, the physician cannot access medical records of patients and provide 

timely healthcare services. Edge computing is proposed to process and cache EMR, 
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which is an advanced telecommunication technology that users can process their 

data on the edge before sending to the public cloud. Comparing with traditional 

cloud computing, Edge computing could off load partly or whole data processing 

from cloud and provide more efficient and safer services. Patient can control their 

own medical data, made by wearable sensors, on the edge. On the other hand, in the 

last chapter, patients only can use their own femtocaching to cache and allocate EMR. 

However, in the proposed system, patients can share their edge caching with others. 

A new medical files allocation algorithm has been applied by using action-based and 

non-cooperative game theory. Four medical factors including the severity of illness, 

the size of the medical records that patient wants to cache, the queueing time that 

patients have waited, and the rewards that patients got by sharing edge caching with 

other patients, have been combined with telecommunication channel capacity for the 

patients to compete the allocation and caching priority. Resolving the competition 

for finite storage capacity among other patients, we model the patient’s action as a 

game, which requests the constrained storage capacity from the edge devices. To 

achieve the optimal results, we formulated the storage request strategies as auction-

based strategies and developed the corresponding non-cooperate game mechanisms. 

We assume that patients who request storage are selfish, and each patient rationally 

behaves to maximize its own benefit. Patients use weights as a bid for storage 

capacity and each edge device may assign the extra storage among the patients by 

itself according to the amount of medical points and channel condition. The patients 

calculate their bid with proposed game mechanism and send to edge devices. After 

several rounds’ competition, the edge devices would choose the winner and cache 

the medical files by order. We analyzed the scenarios with 6, 60, 600, 6000 and 

60,000 patients. The simulation results show that the proposed system can decrease 

the transmission delay by 56.87% to 93.69% in the best situation (the cached medical 

records are enough for medical support) comparing the system without sharing edge 

device, which means the proposed system saves more than half time for clinical 

professors to provide efficient medical services. In the worst situation (the cached 
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medical records are not enough for medical support and whole EMR is required), 

the simulation results show that the proposed system can decrease the transmission 

delay by 25.94% to 57.75%. The results also show that the more shared edge devices, 

the higher channel capacity patients can get, which means the proposed system 

encourages more patients to share their storage capacity of edge devices to others. 

        In our last system, we considered that all the medical factors have same weight. 

However, the priority is based on a combination value. It is possible that for the 

patients who has higher illness servility but cannot get timely and effective health 

care services. On the other hand, in the last system, the medical files of patients can 

only be cached in a single edge device which could provide the fast services. 

However, in our new system, medical records can be cached in multiple edge 

caching devices dispersedly at same time. The processing time including queueing 

time and caching time would be decrease significantly. A new sharing algorithm 

based on deep Q-learning is proposed to allocate and cache the medical records of 

multiple patients. Four states are considered in the allocation algorithm including 

the illness servility of patients, the storage capacity of edge devices, the processing 

time of medical files and the channel condition between patients and edge devices. 

The action of this learning algorithm is the caching decision (1/0 or yes/no) of edge 

devices for each patient. The learning procedure of the system is to find the optimal 

Q value for each patient. Deep Q-learning is proposed for patients to find the best 

routine to cache their medical records among the edge devices. M/M/1 queueing 

model with preemptive priority is proposed for queueing time of patients. The new 

system provides more fair and humanized medical care services comparing with the 

last one. The patients with higher level of illness severity have higher priority and 

lower waiting time to be served. According to the simulation results, patients could 

get more efficient medical care by applying the proposed system and save at least 

16.78% and 71.14% average transmission time comparing the last system and the 

traditional method. We compared total transmission time as well, the results show 

that new allocation algorithm could save 20.57% and 60.08% time for the whole of 
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system comparing with the previous system and the scenario without proposed 

algorithm, which means other patients who want to cache could get medical care in 

a quicker manner in our new system.  

 

6.2 Future Works 

        The thesis covers femtocaching, edge computing, DVS camera, auction-based 

non-cooperated game theory and deep Q-learning in health care networks and 

provides reference for future research. Several challenges that need to be addressed 

remain in this research. The first one is the security of medical files that cached on 

other patients’ edge devices. A strict privacy mechanism is needed. Secondly, for 

the part of channel condition, the scenario we considered is with an ideal 

environment (white noise only). However, when more patients share their edge 

devices, the channel interference among the patients should be considered. Thirdly, 

a fairness mechanism is needed for patient to ensure every patient get efficient and 

effective medical services. 
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