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Abstract

Solid tumour growth is often associated to the accumulation of mechanical stresses acting
on the surrounding host tissue. These forces alter the biomechanics of the adjacent
tissue, which can be probed with propagating shear waves and quanti�ed through MR-
Elastography. The reconstructed shear modulus in the peri-tumoural region inherits a
signature from the tumour expansion which depends on multiple factors, including the soft
tissue constitutive law, stress/strain states in the ensemble and the local wave propagation
direction. Here we have used analytical and experimental means based on a simple setup
of the tissue-tumour ensemble to investigate the shifts in shear modulus associated to a
spherical in�ation as a way to bridge to in vivo tissue.

Due to tissue nonlinearity, the shear modulus of the tumour environment will change
according to the local deformation created by the tumour forces, increasing when un-
dergoing stretch and decreasing when compressed. Shear waves can sense the apparent
sti�ness along its propagation direction, hence probing a negative change, compared to
the background modulus, at the leading edge of the in�ated object and a positive variation
along the lateral area.
In this thesis we have developed an analytical framework that associates the expected
signature pattern to the radial stretch generated by the spherical in�ation, using a thick-
shelled sphere approximation and a speci�c hyperelastic strain energy density function. A
phantom consisting of an in�atable Foley catheter inserted inside a soft tissue-mimicking
cuboid was then built to reproduce the tissue-tumour ensemble and to validate the an-
alytical �ndings. A measuring system based on a pressure sensor was used to quantify
the radial stress applied by the in�ated balloon onto the surrounding soft plastic material,
while the associated strain was instead estimated through an implemented non-rigid image
registration strategy, applied to high resolution MR images acquired at the various in�ation
states. A rheological characterisation of the chosen material con�rmed the suitability of
the constitutive equation employed in the development of the analytical formulation to
model its stress/strain relationship.
Using the developed phantom, in�ation experiment were carried out to empirically probe
the apparent variation in shear modulus, generated at di�erent balloon in�ations, through
MRE. The observed anisotropy displayed a satisfactory agreement with the predicted
patterns, especially at higher strains, where the nonlinear response of the material was
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more pronounced, and also showed a good correlation with the deformation sensed by
the probing shear waves. A preliminary replicate of this experiment ex vivo also helped to
identify the challenges expected in in vivo application.

Overall, we have demonstrated that MRE, in combination with non-linear mechanics,
is capable to predict the apparent alteration of shear modulus of soft tissue generated by
tumour expansion. These results are expected to provide a signi�cant step towards the
development of a noninvasive method to measure and monitor intra- and peri-tumoural
stresses as a biomarker for tumour progression and treatment e�cacy
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1. Introduction

1.1. The Impact of Cancer
According to estimates from the World Health Organization (WHO), in 2016 cancer

was the second most common cause of premature death below the age of 70 in the world,
accounting for 22 % of all non-communicable disease (NCD) deaths worldwide [1]. More
than 15.5 million people in the United States had a history of cancer in 2016 [2]. These
numbers increase rapidly, and 1.7 million new cases are expected in 2018, more than one
third of which is predicted to be lethal [2]. Even worse �gures are forecast in Europe, with
an incidence more than twice as high and a nearly 50 % mortality [3]. Despite containing
only less than one tenth of the world’s population, in fact, Europe presents about 25 % of
the global cancer cases [4]. Worldwide, the Global Cancer Observatory has estimated 9.6
million cancer deaths in 2018 over a total of 18.1 million new cases [5]. This incidence
is expected to grow, making cancer the most important limitation to life expectancy in
every country in the 21th century [5]. The estimates predict also a global burden of 21.6
million new cases and 13 million deaths in 2030, caused by the sole growth and ageing of
the population of the planet [2].

In addition to the impact on the quality of life of patients and their families, cancer has
also an enormous social cost, involving the loss in human potential and the economic
burden on the worldwide healthcare system, given by the treating and caring of the
constantly increasing number of patients [6]. Estimates report oncology expenditures of
more than $150 billion in 2020 [7], which are projected to increase by 70 % in the next 20
years [6].

The need for action to ensure healthy lives convinced the United Nations to de�ne
a set of targets to be achieved by 2030, including the reduction of NCD by one-third
[7]. In this sense, the development of smarter technology for an improved healthcare at
contained costs has become increasingly pressing and advancement in drug design must
be accompanied by state-of-the-art techniques to diagnose, stage and monitor tumours, to
maximise treatment e�cacy and reduce expenses.

1.1.1. Unmet Needs in Cancer
The common work-up for cancer detection and treatment consists of three main stages,

a schematic of which is presented in Fig.1.1. Awareness of speci�c cancer symptoms must
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be the �rst alarm to access primary healthcare, where accurate diagnostic tests can con�rm
or disprove the suspicions. Staging and grading cancer spread and metastatic potential
is then essential for the de�nition of an e�ective strategy for cancer treatment, which
requires a constant monitoring through the following months and years to assess therapy
e�cacy and to monitor any sign of recurrence.

Figure 1.1.: Schematics of the typical work-up for cancer detection and treatment. Image taken
from the WHO (2017) [8].

Early cancer diagnosis, combined with the access to e�ective treatments has proven to lead
to improved cancer staging and decreased mortality [9]. A report from 1999, for instance,
has associated a shortened delay in patient care to a greater survival rate from breast
cancer, with a 7 % increase in 5-year survival for patients who experienced < 3 months
delay compared to 3-6 months [10], while more than 50% reduction in breast cancer
mortality was reported in the UK in women under the age of 65 due to early diagnosis and
adequate treatment [11].

Before proceeding with staging or treatment, su�cient evidence of cancer must be
acquired, either with imaging modalities or laboratory tests. Magnetic resonance imaging
(MRI) techniques targeted to speci�c hallmarks of cancer represent a powerful tool for
the non-invasive tumour assessment; however they often present a low speci�city in
determining the tumour grade and in di�erentiating between benign and malignant
lesions.
Dynamic contrast-enhanced MRI (DCE-MRI), used in oncology to assess angiogenesis and
vascular permeability, showed a sensitivity that can reach almost 100 % for the detection of
malignant breast lesions [12, 13]. This technique is especially useful in the case of patients
with dense breast parenchyma, for which mammography and ultrasonography (US) are
less sensitive [13]. Nevertheless, the non comparable speci�city (37-97 %) represents an
ongoing challenge, causing the diagnose of false positives and leading to unnecessary
biopsies [14, 15].
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Di�usion-weighted imaging (DWI), which aims at measuring the reduced di�usion of
water molecules associated to the increased cellularity typical of cancer, has also become a
popular imaging biomarker for the detection of primary and metastatic tumours, especially
in brain. However, despite the sensitivity of this technique to tumour architecture, oedema
and necrosis within the lesion can lead to a quanti�cation of a higher apparent di�usion
coe�cient (ADC), hence limiting the speci�city of this technique [16].
MR spectroscopy imaging (MRSI) provides metabolic information through the analysis
of the chemical content of the tumour mass, which can be extremely bene�cial for the
di�erentiation between malignant and benign tumours. Nevertheless, MR spectroscopy is
most widely used as a single-voxel technique, hence limiting the spatial resolution and
allowing to evaluate only one lesion at a time [17].
Multi-parametric MRI (MPMRI) is an emerging tool which has found its main application
in the identi�cation and staging of prostate cancer. This technique combines standard
anatomical T1-weighted or T2-weighted imaging to the presented functional sequences in
order to improve the characterisation of the lesion. The integration of DCE-MRI, DWI and
MRSI into a T2-weighted imaging modality has shown a better cancer prediction, with
�gures rising from 68% to 98 % compared to the sole anatomical information [18].

The listed MR-based detection techniques are a few examples of the technical progresses
made in oncology for tumour detection; nevertheless, in the case of breast cancer, man-
ual palpation is still the technique of reference, as breast malign lesions are generally
characterised by a higher sti�ness with respect to benign ones and the normal surround-
ing tissue [19, 20]. Breast cancer accounts for the most frequently diagnosed cancer in
women, representing the second main cause of death and an early diagnosis has shown
to signi�cantly increase the survival rate [21]; hence palpation has become a globally
recommended routine for the self-detection of hard masses [22]. Nevertheless, tumour
detection through manual palpation is very dependent on the experience of the physician
and showed a sensitivity of only 54 % [22].
The association of altered mechanical properties to a pathological conditions is not only
limited to breast tissue; a �brotic liver has also been associated with a higher sti�ness, the
magnitude of increase of which directly correlates to the �brosis stage [23]. A �brotic
state is a consequence of an in�amed liver and can lead to cirrhosis, which is responsible
for a 50 % chance of death in 5 years [24]. Moreover, a cirrhotic liver can strongly lead to
the development of hepatocellular carcinoma (HCC) [25], which represents the leading
cause of mortality for patients su�ering from cirrhosis [26]. Liver biopsy is the gold
standard diagnose method to evaluate �brosis, however sampling error and invasiveness
are inherent problems of this approach [27], hence emphasising a signi�cant need for
accurate and non-invasive techniques to detect �brosis and to determine the e�cacy of
the associated therapies.
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Knowledge of the mechanical properties of brain can also help the characterisation of
pathologies, such as Alzheimer’s disease, multiple sclerosis, hydrocephalus and cancer [28,
29]. In particular, in the case of brain tumour, non-invasive sti�ness measurement can
provide further information about the neoplasm and its response to treatment.

Unfortunately, none of the standard techniques employed in the realm of medical
imaging, i.e. MRI, US, computer tomography (CT), are capable of translating into images the
mechanical properties probed through palpation, which, on the other hand, o�ers solely a
qualitative and subjective assessment and is only applicable to super�cial and easy to access
organs. Elastography imaging techniques are emerging methods to quantitatively assess
elasticity and make use of mechanical waves to probe the response of soft tissue. The ability
to provide contrast between healthy and diseased tissue, combined with the suggestion
of cell sti�ness as a biomarker of metastatic potential [30], gives these techniques the
potentiality to play a key role in the �eld of cancer research.
Magnetic resonance elastography (MRE) is an non invasive, �exible MRI-based technique
that has proven capable of characterising the biomechanical properties of practically
every organ [31, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. MRE has found its main
employment in the detection and staging of liver �brosis, due to a reasonable accuracy
and reproducibility and can represent a signi�cant alternative to biopsy [44]; nevertheless,
this technique has the potential to be used in many more applications. An explanation of
the steps involved in MRE data acquisition, together with encouraging results obtained in
the diagnosis and staging of tumours and in its di�erentiation from healthy tissue will be
presented in the next section. A �nal discussion of the limitations encountered when this
technique employed on soft tissues subjected to large strains will provide a justi�cation
for the work carried out for this thesis.

1.2. Mechanical Properties of So� Tissue Measured through

MRE

MRE is an MRI-based technique that falls into a broader group of elasticity imaging
methods, which include ultrasonography and optical imaging, developed to spatially
map and measure the material properties of soft tissues. The response of soft tissue to
mechanical excitation is very dependent on the rheology of the tissue itself, therefore an
accurate modelling of its mechanical behaviour is required. Generally soft tissue shows
anisotropic properties and is characterised by a nonlinear viscoelastic behaviour [45, 46];
however, for a simpler mathematical description, its behaviour is often modelled with an
isotropic linear elastic Hookean constitutive law [47, 48, 49, 19, 50]. These assumptions
have been found valid under the following conditions:
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• The observations of potential anisotropy is dependent on the spatial scale at which
elasticity is probed; for example, despite di�erent types of tissues being found within
the same organ, i.e. glandular, fat, normal, tumour, etc., the irregular architecture of
tumour vasculature is such that, at a small scale, the tissue can be described by an
isotropic model [51].

• While soft tissue shows both elastic and viscous response, most of the applied forces
can be attributed to the former, hence a purely elastic idealisation is often employed
[50].

• Finally, small deformations are generally not su�cient to cause a nonlinear stress/s-
train response of the tissue. Nevertheless, in the presence of endogenous or external
macro-deformations, the nonlinear character of soft tissue must be accounted for
[52].

Using these approximations, the relation between the applied mechanical stress and
the resulting deformation is given by a set of elastic constants, the value of which is
representative of the sti�ness of the material. The parameter that determines the amount
of longitudinal displacement is the Young’s modulus, E, while the shear modulus, G,
re�ects the resistance of a body to undergo shear deformation under a shear stress. Finally
the bulk modulus, K , is indicative of the compressibility of a body. Using an isotropic
linear elastic approximation, any two of these constants are su�cient to fully describe
the mechanical behaviour of soft tissue [53]. Another parameter descriptive of the elastic
properties of materials is the Poisson’s ratio, ν , which is given by the ratio of transverse
to axial strains under compression along the axial direction. An incompressible material,
i.e. water, assumes a Poisson’s ratio of exactly 0.5. As soft tissues are composed mainly
by water, with reported values ranging between 0.30 and 0.499, they are often considered
incompressible or nearly incompressible and with a density ρ near 1000 kgm−3. In this
case, the Young’s and shear modulus are related by a simple scaling factor: E = 3G [54].
Near-incompressibility also implies that the bulk modulus varies little among di�erent
tissues (less than 15 % from that of water [55]); on the other hand, the wide range of values
assumed by shear modulus throughout various tissues and among di�erent physiological
and pathological states (around 5 orders of magnitude) make it the ideal parameter to
provide su�cient contrast in the reconstructed images [54].
Imaging of shear modulus through MRE, like all other elasticity imaging methods, is based
on three subsequent steps, each of which will be treated in more details in the following
sections:
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1. application of a mechanical stress capable of deforming the biological tissue. The
stress can either be generated by an external force or by an internal mechanism, i.e.
respiratory cycle, heart motion, tumour forces.

2. Monitoring of the associated strain response through an imaging technique (MRI in
this case).

3. Local estimation of the mechanical parameter relating stress to strain through the
application an inversion algorithm.

1.2.1. Mechanical Excitation of So� Tissue
Depending on the type of applied mechanical stress, MRE can be divided into three

categories: static, quasi-static and dynamic. Static and quasi-static elastography involve
the application of either a single compression or of a cyclically repeated compressive force
at low frequency (typically around 1Hz), followed by the measurement of the resulting
deformation �eld. Static MRE presents analogous limitations to those of manual palpation,
making it generally suitable only for super�cial or easy to access tissues. Such constraints
have restricted its use to ex vivo studies [56], while quasi-static MRE has found applications
both ex vivo [57, 58] and in vivo, although only in breast [59, 60].
Dynamic MRE was �rst introduced in 1995 by Muthupillai et al. [61] and aims at imaging
the response of tissue to a continuous harmonic steady-state wave pattern. Wave prop-
agation through even deep regions of the body make it the most suitable MRE method
for in vivo applications. Shear waves, the propagation of which is governed by the shear
modulus of the material, are the method of choice to mechanically excite soft tissue and are
applied through the use of an external driver, or transducer. Thus far, several kinds of MRE
transducers have been developed to generate the needed shear waves: they all rely on the
conversion of a sinusoidal electrical signal created by a function generator into a mechani-
cal vibration of a probe, which applies a dynamic pressure against the tissue to be imaged
[62]. Among the most common approaches there is the use of a piezoelectric drive, where
an external oscillating electric �eld is used to induce the desired mechanical deformation
of a piezoelectric crystal [63]; another recurrent method found in the literature makes
use of an electromagnetic driver, which generates the required vibration thanks to the
motion imposed by the current �owing through a coil immersed in a magnetic �eld [64].
Driving systems based on everyday voice loudspeakers have also been employed, although
they must be placed away from the scanner due to their own integrated magnet [65, 23].
Recently, our group has proposed a gravitational transducer based on a rotational eccentric
mass, that can provide a cleaner vibration spectrum, limiting undesired frequencies [66].
The working frequency generally used in dynamic MRE ranges between 50 and 500Hz
and the corresponding spatial wavelength in soft tissues is in the order of millimetres to
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centimetres, granting an image resolution between half and one-�fth of that achievable
with the corresponding MRI sequence [54]. Generally, a wavelength comparable to the
size of the feature of interest, i.e. tumour, is sought. The choice of the vibration frequency,
however, is very dependent on the viscoelastic properties of the probed tissue and must be
carefully selected depending on the application. The viscoelastic nature of soft tissue has
also a non-negligible impact on wave propagation, which becomes more relevant when
higher vibration frequencies are used [67], limiting penetration and hence the applicability
of this technique only to super�cial tissue investigations.

1.2.2. Imaging the Propagating Waves
In MRE, a phase-contrast MRI technique is used to map the harmonic displacement of

the tissue generated through shear waves. This acquisition method makes use of motion-
encoding gradients (MEGs) imposed along a speci�c direction to encode the shear waves
into the phase of the MR images (Fig.1.2) [61]. Each spin inside the mechanically excited

Figure 1.2.: Example of a gradient recalled-echo (GRE) MRE acquisition sequence. Image taken
from Mariappan et al. (2010) [54].

tissue, in fact, is described by a position vector

r (t) = r 0 + ξ (r , t) (1.1)

where r 0 is the mean position and ξ (r , t) de�nes a generic motion around the mean
position. In the case of the harmonic motion generated by the shear waves, ξ is de�ned as

ξ (r , t) = ξ 0 cos(k · r − ωt + θ ) (1.2)

where ξ 0 is the displacement amplitude, k in the wave vector, ω is the angular frequency
and θ is a phase o�set. The polarity of the MEGs is adjustable and is set to switch at the
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same frequency of the oscillating motion applied through the transducer. Under these
conditions, the phase contribution to the MR image caused by the propagating shear waves
is directly proportional to the scalar product of the motion-sensitising gradient G and the
displacement vector ξ 0 and is given by [61, 68]

ϕ(r , t) = γ
NT (G · ξ 0)

2 cos(k · r + θ ) (1.3)

The amount of phase-shift accumulated is also proportional to the period of the mechanical
excitation T and the number of gradient cycles N , making this technique extremely
sensitive even to small amplitude oscillatory motion [69]. Previous investigations have
assessed the possibility to observe shear wave displacements as small as 100 nm [61];
nevertheless, MRE is only little more sensitive to non-synchronous physiologic motion
than a conventional gradient recalled-echo (GRE) sequence [70]. γ is the gyromagnetic
ratio of the nuclei, while the parameter θ in Eq.1.3 is a phase o�set between the mechanical
and magnetic oscillations and its variation permits the sampling of the waves at di�erent
time points, e�ectively allowing the acquisition of snapshots of the propagating waves.
Typically, 4-8 equally spaced samples, or wave phases, are acquired covering one period of
the wave motion. The obtained wave images represent the displacement of the spins in the
medium due to acoustic shear waves governed by the local elasticity of the tissue; regions
of the object with a higher shear modulus G are characterised by a longer wavelength λ,
given the same vibration frequency ν , and vice versa, in agreement with the following
basic relation for the propagation of shear waves in isotropic linear elastic materials [71]

λ =
1
ν

√
G

ρ
(1.4)

where ρ is density. The quantitative measurements of the displacement generated by the
propagating waves are then used to reconstruct a map of the shear modulus of the tissue
under investigation, as explained in the following section.

1.2.3. Mechanical Parameter Estimation

A linear viscoelasticity wave equation has been broadly considered as a good model
of the small wave displacement u in soft tissue [72] and can be expressed starting from a
constitutive equation that relates the stress tensor σ to the strain tensor ε and the strain
rate ∂ε/∂t through the fourth-order sti�ness and viscosity tensor, C and ν respectively

σ = Cε + ν ∂ε
∂t

(1.5)
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which can be written in Einstein’s notation as

σij = Cijklεkl + νijkl
∂εkl
∂t

(1.6)

Eq.1.5 and Eq.1.6 are none other than the generalised Hooke’s law for linear viscoelastic
materials, with the Cartesian tensor Cijkl containing 81 elastic coe�cients that can be
reduced to 36 components thanks to the symmetry of both the strain and stress tensors.
In the particular case of an isotropic material, the number of independent elements that
compose the elasticity tensor Cijkl is further narrowed down, so that only two quantities,
the Lamé parameters λ and µ, are su�cient to describe the stress/strain relations in all
possible directions. The two parameters are related to the material parameters previously
introduced through the following equations:

λ =
νE

(1 + ν )(1 − 2ν ) (1.7a)

µ =
E

2(1 + ν ) = G (1.7b)

It is to be noted that the second Lamé parameter is equivalent to the shear modulus.
An analogous process can be applied to the viscous part of Eq.1.5, hence relating stress
and strain through the two viscous parameters ζ and η, which describe the viscosity of
the compressional and shear waves, respectively. Eq.1.5 then becomes

σij = 2µεij + λδijεnn + 2η
∂εij

∂t
+ ζδij

∂εnn
∂t

(1.8)

where δij is the Kronecker delta. According to the summation convention, the subscripts
nn represent dummy indices, which take on all the possible values assumed by i and j (i.e.
11, 22 and 33 in a 3-dimensional system) and the resulting terms are summed. Using the
de�nition of the strain tensor as a function of the harmonic wave displacement in the case
of in�nitesimal strain theory

εij =
1
2

(
∂ui
∂xj
+
∂uj

∂xi

)
(1.9)

we can replace Eq.1.9 into Eq.1.8 and then into Eq.1.10 (which represents the Cauchy
momentum equation in the absence of body forces and under the assumption of local
material homogeneity and will be derived in Eq.2.28 of this dissertation)

ρ
∂2u

∂t2
− ∇ · σT = 0 (1.10)
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We then obtain the following partial di�erential equation [73]

ρ
∂2u

∂t2
= µ∇2u + (λ + µ)∇(∇ · u) + η

∂∇2u

∂t
+ (ζ + η)

∂∇(∇ · u)

∂t
(1.11)

Assuming tissue incompressibility (∇ · u = 0), the term multiplied by ζ can be neglected,
as the viscosity of the compressional wave can be safely ignored at the low frequencies
employed in MRE [73]. The same process cannot be applied to the term multiplying λ
as, under incompressibility, the Poisson’s ratio tends to 0.5 and λ tends to in�nity (see
Eq.1.7b), compensating the zero given by the divergence of the deformation u. The total
term λ∇ ·u represents the hydrostatic pressure p and is generally employed in the equation
of motion for incompressible materials [74], returning

ρ
∂2u

∂t2
= µ

[
∇2u + ∇(∇ · u)

]
+ η

[∂∇2u
∂t
+
∂∇(∇ · u)

∂t

]
+ ∇p (1.12a)

∇ · u = 0 (1.12b)

Exploiting the following equalities: ∇2u + ∇(∇ · u) = ∇ ·
(
∇u + ∇uT

)
and ∇p = ∇ · p1,

where 1 is the second-order identity tensor, and recalling the linearity of di�erentiation,
Eq.1.12 can be expressed as

ρ
∂2u

∂t2
= ∇ ·

[
µ
(
∇u + ∇uT

)
+ η
∂
(
∇u + ∇uT

)
∂t

+ p1

]
(1.13a)

∇ · u = 0 (1.13b)

Under the further assumption of harmonic micro-displacement, generated by steady state
waves characterised by an angular frequency of vibration ω, we can re-de�ne u(x , t) =
uε(x)eiωt and p(x , t) = pε(x)eiωt . The equations of motion for an incompressible isotropic
linear viscoelastic material, normally employed in MRE reconstruction, are then given by

ρω2uε + ∇ ·
[
(G′ + iG′′)

(
∇uε + ∇u

T
ε

)
+ pε1

]
= 0 (1.14a)

∇ · uε = 0 (1.14b)

In this last set of equations, the material parameters have been replaced by the complex
shear modulus G∗ = G′ + iG′′, where the real part, G′, also called storage modulus, re�ects
the elastic propagation of shear waves, and imaginary part, G′′, known as loss modulus,
describes the wave attenuation in a viscoelastic medium. While ω and the tissue density
ρ are assumed to be known quantities in Eq.1.14a, and the gradient of displacement uε
can be computed from the wave images, the shear modulus and the pressure term are
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unknown. Elastography reconstruction methods attempt to solve Eq.1.14a for p and G∗

given the measurement of uε , either directly or using iterative methods.
In this work, a state-of-the-art curl-based approach [73] was employed. While further

details will be given in Chapter 6 of this dissertation, brie�y, this reconstruction method
assumes that G∗ is locally constant and the curl operator is applied to remove the pressure
term. Given the homogeneity assumption, the local curl-based approach falls into the
group of direct local reconstruction methods, where many independent reconstructions of
smaller areas are performed, covering the entire �eld of view (FOV) of the image. Direct
global methods, despite considering spatial variability of the mechanical parameters, are
generally computationally more expensive and require regularisation. Both the alternatives
work using error minimisation and are inherently sensitive to data quality. Alternatively,
iterative reconstruction techniques are less sensitive to noise but strongly depend on correct
de�nition of the forward problem and their computational time is not suitable for clinical
time scales. A comparison between iterative and direct techniques is proposed by Honarvar
et al. (2016) [75] and an exhaustive review of the currently available reconstruction
techniques can be found in Fovargue et al. (2018) [74].

1.2.4. Macro-Deformations Introduce Bias
To date, MRE has produced promising results in the breast cancer diagnosis, proving

capable of di�erentiating malignant from benign lesions, as well as from healthy soft
tissue, based on the characterisation of their material parameters [76, 77, 78, 51, 73].
The combination of MRE with MRI has also shown signi�cant improvements in the
characterisation of the lesion and in the accuracy of the diagnosis [79, 80, 81]. Venkatesh et
al. (2007) have also reported a four-fold increase in the shear modulus, measured through
MRE, of malignant tumours with respect to that of benign ones or normal tissue in liver
[82]. Garteiser et al. (2013) have suggested the use of the loss shear modulus to distinguish
between benign and malignant liver lesions, reporting a ∼50 % increase in the latter case
[83]. MRE has emerged as a promising technique for the assessment of brain tumour, too.
The mechanical properties of meningioma, assessed by Xu et al. (2007) in six patients,
showed a perfect correlation with the neurosurgeon’s report [84]. A similar consistency
between preoperative and surgical assessment was reported by Murphy et al. (2013) [32].

All these results assume measurements of the harmonic deformation u in the absence
of external or endogenous forces, such that the linear viscoelasticity approximation made
for the shear modulus reconstruction is satis�ed. Nevertheless, an ex vivo study by Clarke
et al. (2011) has revealed that, given the nonlinear viscoelastic nature of soft tissue, a 10 %
linear compression is su�cient to generate a 47 % overestimation of the intrinsic storage
shear modulus in bovine liver [85]. Endogenous and external forces can then lead to a
biased estimation of the material properties of the investigated tissue. The implications
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can be clinically relevant, as the measurement of an increased shear modulus can lead to
erroneous diagnoses, while a decreased shear modulus caused by soft tissue deformation
can mask the increased sti�ness typical of certain tumours.
Recently, Capilnasiu et al. (2018) have investigated the loading bias generated by a pure uni-
axial compression in polyvinyl alcohol (PVA) phantoms and have developed a mathematical
framework to predict the apparent change in both G′ and G′′ given the knowledge of the
applied deformation and of the constitutive law characterising the material [86]. In the
presence of a nonlinear stress/strain response of tissue, the shear modulus will not only
change according to the applied strain, but it will also a�ect the wave displacement and its
gradient ∇u, hence the reconstructed values will depend on the direction of propagation of
the probing waves as well. As a consequence, soft tissue can appear apparently anisotropic,
with an apparent tissue softening measured when a compression is probed and an apparent
sti�ening in the case of tension.

Such work provides a new way to interpret MRE measurements, as a loading bias can be
expected in many MRE applications: for example, breast MRE often requires the breast to
be tightly �xed, which was found to lead to a loading bias [51], while respiratory motion
applies a large strain of the liver, which can be exploited to make liver pathologies more
apparent [87]. Tumour forces acting on the surrounding soft tissue can also compromise the
estimation of the reconstructed shear modulus. The quanti�cation of these forces, on the
other hand, would represent a valuable biomarker to assess therapy e�cacy. Measurement
of the apparent anisotropy in the vicinity of the tumour through MRE, combined with
modelling of tissue nonlinearity and estimation of the underlying deformation, could
enable a direct non-invasive mapping and quanti�cation of the stress exerted by the
tumour onto the surrounding soft tissue. Elevated intra- and peri-tumoural forces, in fact,
have been shown to modulate the behaviour of tumours, either when directly exerted on
cancer cells or by indirectly increasing interstitial �uid pressure within the tumour core
[88]. In the next section, the factors that lead to the accumulation of mechanical stresses
in the tumour microenvironment will be presented, with an explanation of their impact
on tumour progression. The de�nition of the two phases that characterise tumour stress,
a solid and a liquid phase, will follow, together with the current understanding of the
distribution of the two components and an overview of the techniques to quantify them.

1.3. Stress Distribution in the Tumour Environment

1.3.1. The Tumour Microenvironment
Solid tumours consist of a conglomerate of tumour and host cells, embedded in an

extracellular matrix (ECM), for which nutrition and drainage is provided by an irregular
blood and lymphatic vascular system [89]. Two of the main characteristic often found
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in tumours, especially in breast and pancreatic cancer, are desmoplasia and increased
sti�ness, conditions that make lesions detectable through manual palpation or elastography
techniques [88]. ECM composition is strongly regulated by �broblasts, which are the
main tissue cells present in the tumour microenvironment, which, in normal tissues, are
characterised by a negligible activity [90, 91] In tumours, on the other hand, �broblasts
tend to become activated and acquire a malignant phenotype, undergoing a transformation
into cancer associated �broblasts (CAFs). In this state, CAFs have been found to enhance
the production and remodelling of ECM proteins, mainly collagen I and fybronectin, hence
contributing to ECM sti�ening [90, 91]. The induced desmoplasia, combined with their
release of growth factors, proteases and chemokines, can sustain tumour growth, invasion
and angiogenesis [92, 93, 94]. Activation or over-expression of transforming growth factor-
β (TGF-β) is one of the pathways that can cause precursor cells to convert into CAFs and
trigger the associate ECM remodelling [90, 95], which in turn can further activate latent
TGF-β , hence reinforcing the process [96, 97]. TGF-β can also increase ECM sti�ening by
regulating the production of matrix metalloproteinases (MMPs) and lysyl oxidase (LOX),
enzymes responsible for the regulation of matrix protein synthesis and cross-linking and
for the inhibition of matrix proteinase activity [98, 99, 100, 101].
The increased accumulation of cancer cells, stromal cells and ECM proteins in the tumour
environment results in the development of a solid stress that applies both onto the tumour
interior and its surroundings, which can stimulate cell migration and invasion during
tumour growth [102].

Fluid stress, on the other hand, accounts for �ow along tumour blood and lymphatic
vasculature and in the tumour interstitial space. A deregulated �uid mechanics due to
abnormalities in the tumour microenvironment can a�ect pressure gradients and lead
to increased �uid stresses [103]. Hypoperfusion of many tumours is such that, with
tumour growing in size, oxygen and nutrients cannot di�use to the inner regions, which
become hypoxic. This condition leads to the formation of a necrotic core and stimulates
the sprouting of new blood vessels through the release of proangiogenic factors [104,
105]. Upregulation of vascular endothelial growth factors (VEGFs) has been found to be
fundamental for this process, as they di�use through the ECM and bind to the endothelial
cells of nearby blood vessels, stimulating the formation of new ones, which follow the
gradient of VEGFs towards the tumour’s interior [103]. Tumour vasculature, however,
is usually characterised by abnormal structure and functions: blood vessels inside the
tumour are tortuous [106] and present large openings that favour the leaking of blood
plasma into tumour interstitium [107], leading to an increased interstitial �uid pressure
(IFP) [108]. Lymphatic vessels are also often recruited in tumours to drain the excessive
accumulation of interstitial �uid [109]; however, compression due to elevated solid stress
in the intratumoural region makes them non functional [110, 111], hence contributing to
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Figure 1.3.: Schematics of the mechanical forces developed in the tumour microenvironment. Can-
cer cell proliferation and enhanced ECM protein deposition leads to the accumulation
of solid stress in the tumour interior. This stress can compress or collapse tumour
vasculature, which is normally leaky and irregular, reducing blood and lymph �ow.
Ine�cient drainage of tumour interstitium results in an homogeneous rise in IFP
throughout the tumour mass, with a quick drop at the periphery. These unbalanced
stresses force the tumour to push against the host tissue, which in turn resists this
deformation, restricting tumour expansion. Image taken from Jain et al. (2014) [88].

a further increase in IFP. An increased lymph �ow is instead observed at the periphery,
which is su�cient for lymphatic metastasis [111, 112, 113]. A schematic of the stress and
elevated IFP encountered in the tumour microenvironment is presented in Fig.1.3.

Both solid stress and IFP have been presented as hallmarks of cancer progression. Solid
stress was found to be responsible for epithelial-to-mesenchymal transition in mouse
mammary epithelial cells, which makes the cancer cells more motile and favours detach-
ment from the primary tumour [114, 115]. These results were supported by the enhanced
expression of metastasis-associated genes in glioblastoma and breast cancer cells subjected
to compressive stress [116]. Kilarski et al. (2009) have shown how mechanical forces can
mediate vascular growth, facilitating angiogenesis [117]. A recent study by Kalli et al.
(2018) has associated solid stress to pancreatic �broblast activation in vitro and has shown
a consequent promotion of pancreatic cancer cell migration [118].
On the other hand, elevated IFP has been found to promote cell proliferation in vitro in
osteosarcomas [119, 120], while a long-term lowering of IFP was found to reduce cell
proliferation in two di�erent tumours in mouse models [121]. Cell culture in a pressurised
environment has also been revealed to regulate the release of angiogenic factors in os-
teosarcomas [122]. Altered �ow conditions within the tumour can instead create biased
gradients of cytokines, which guide cell migration towards the tumour periphery, in the
direction of the functional lymph vessels [123]. These results, combined with an increased
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peripheral lymph-�ow, suggest that the lymphatic �ow might play a fundamental role
in the dissemination of carcinogenic cells. ECM density and solid stress can also lead to
collapse of tumour micro-vessels, hence presenting a limitation to drug transport to the
core of the tumour [124]

1.3.2. Measurement & Modelling of Tumour Stress Distribution

1.3.2.1. IFP

The �uid-phase stress includes IFP, micro-vascular pressure (MVP) and the shear stress
that interstitial and intravascular �ows exert on stromal and cancer cells, extracellular
matrix, and on vessel walls. Interstitial �ow is mediated by the hydrostatic and osmotic
pressure generated between the tumour interstitial space and the vasculature. As explained
earlier, the compressive forces present within the tumour mass, combined with the hyper-
permeability of tumour vasculature, are responsible for a deregulated �uid mechanics.
Blood and lymph vessel compression increases resistance to blood �ow, hence impacting
MVP and shear stress, and reduces interstitial �uid drainage, which, combined with an
erratic transcapillary �ow within the tumour interstitium, results then in an elevated IFP
[125, 124]. Solid-phase stress has been accepted as a direct cause of an elevated IFP, as
it can lead to intratumour vessel collapse, causing hypoxia and intestitial hypertension
[126]. It has been proven, in fact, that IFP, being constantly lower or comparable with
MVP, cannot be responsible for tumour blood and lymphatic vessel collapse, but is rather
a consequence of such mechanism [127]. The loss of gradient between vessel walls
and tumour interstitium caused by an increased IFP makes di�usion the main transport
mechanism for extravasation, posing a signi�cant obstacle to drug convective transport in
many treatments [128, 129].

Figure 1.4.: Spatial distribution of IFP (A) and of the radial (B) and circumferential solid stress (C)
through the tumour and in the surrounding normal tissue. The parameter θ directly
correlates with the hyper-vascularity of a tumour and the leakiness of the blood vessels.
Image A modi�ed form Stylianopoulos et al. (2013) [127], images B and C modi�ed
from Voutouri et al. (2014) [130].
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The �rst evidence of elevated IFP in tumours was reported in a study by Young et al.
(1950) on rabbit models [131], however it was only in 1988 that the �rst mathematical
model con�rmed the uniform IFP distribution throughout the bulk of the tumour [132,
133] (see Fig.1.4-A). An abrupt drop to normal levels at the margins of the tumour was also
reported. The generated steep pressure gradient causes �uid from the tumour interstitium,
containing cancer cells and growth factors, to ooze into the surrounding normal tissue,
facilitating tumour spread and metastasis [134].

In 1977, Fadnes et al. proposed for the �rst time the use of the wick-in-needle method,
based on the use of a needle connected to a measuring device, to measure IFP [135]. This
technique was employed for the �rst time in humans in situ by Boucher et al. (1991),
reporting a mean value of 14.3±12.5 kPa in super�cial metastatic melanomas [136], and
still stands as a standard method for the measurement of IFP [108]. The pressure values
can vary a lot depending on the tumour type and state, and a list of IFP measurements
in various human tumours is given by Jain et al. (2007) [134], reporting values as high as
∼12 kPa in cervical carcinomas.
Piezoelectric pressure transducer catheters were employed to estimate IFP by Provenzano
et al. (2012) in autochthonous pancreatic ductal adenocarcinomas in genetically engineered
mouse models, with measurements ranging between ∼10 and 17 kPa [137]. This piezoelec-
tric catheter was �rst proposed by Ozerdem and Hargens (2005) as a simpli�ed method
capable of providing more reliable IFP estimates [138] and was suggested by DelGiorno et
al. (2014) to isolate solid stress from IFP measurements [139]; nevertheless Chauhan et al.
(2014) have suggested that this method might not be able to e�ectively di�erentiate the
two components, indicating the wick-in-needle technique as still more reliable [140].
Encouraging results were provided by the modi�ed version of the piezoelectric pressure
transducer probe proposed by Nieskoski et al. (2017), which, by adding a retractable cover
around the catheter, proved capable to separately measure IFP and solid stress in the
same tumour location [141]. Nevertheless, given the invasive nature of the instrument, an
imaging technique able to measure the di�erent stress components is currently sought
and would potentially provide a better understanding and modelling of the mechanical
processes involved. DCE-MRI [142, 143], through the monitoring and modelling of MR-
contrast agent kinetics, and US contrast micro-bubbles [144, 145], with the sub-harmonic
amplitude of scattered signal correlated to hydrostatic pressure, have shown the potential
to be employed to non-invasively quantify IFP; nevertheless, the quest for the development
of an imaging technique capable of accurately estimating tumour pressures to replace the
standard invasive methods is still ongoing.
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1.3.2.2. Solid stress
The solid-phase stress includes all the stresses carried by non-�uid components and can

be divided into three categories characterised by di�erent sources [146]:

• the externally applied stress, generated from the interaction of the growing tumour
with the host tissue [127, 130];

• the swelling stress, developed by the electrostatic repulsive forces among closely
spaced hyaluronian chains [147, 148];

• the residual or growth-induced stress, which is accumulated into the matrix and
cells of the tumour tissue during tumour progression [149].

Externally applied stress arises from tumour growth and expansion: the higher sti�ness
compared to that of the hosting tissue is such that the tumour exerts mechanical forces
onto the surrounding tissue that allow its growth in size. In response, the host tissue will
resist such expansion, hence generating compressing forces applied on the tumour mass
[149, 127]. A sti�er hosting tissue results in a higher magnitude of the external solid stress,
hance making the mechanical properties of both the tumour and the surrounding tissue
crucial to de�ne the state of stress of the tumour [130]. In vitro studies on avascular tumour
spheroids embedded in an agarose matrix have shown how their growth is increasingly
reduced or inhibited when subjected to higher solid stress levels [150]. These results were
found consistent throughout di�erent tumour cell line and di�erentiation states. The
generated compressive external forces can suppress cancer cell proliferation and trigger
apoptosis through the mitochondrial pathway, with cancer cells growing preferentially in
the regions subjected to less stress [151]. These processes have been found to be reversible
once the stress is removed.
The high expression of the hyaluronan chains in the interstitial space of many malignant
tumours, i.e. pancreatic ductal adenocarcinoma [152], gives rise to the swelling solid stress
[153]. The negative charge of the closely spaced hyaluronic acids generates repulsive
electrostatic forces responsible for the stress. The collagen content has been found to play
a role too: while a higher hyaluronan to collagen area fraction has been associated to
an increased swelling stress, a higher collagen content correlates to an increased tissue
sti�ness that opposes swelling [148, 154]. Collagen interaction with deposited hyaluronan
also correlates to blood vessel compression and reduced vessel perfusion [155]. In vitro
experiments on breast, ovarian and prostate cells spheroids have revealed that cancer cells
can also contribute to swelling pressure [147]: when subjected to compressive stress, in
fact, intracellular tonicity is reduced through sodium e�ux to modulate osmotic pressure,
leading to tumour swelling. Nevertheless, the cell-associated contribution to swelling
stress appears negligible compared to that given by the electromagnetic repulsion among
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hyaluronan chains [148]. The identi�cation of swelling stress as a component of the solid
stress instead of the IFP, however, is still debated [137, 141].
Finally, residual stress is caused by the proliferation of cancer and stromal cells during
tumour progression, which is stored within the tumour even when it is excised. The
magnitude of the stress was shown to correlate with tumour volume and hence tumour
progression [149]. At the same time, a higher residual stress has been associated to a re-
duced tumour growth, potentially because of the increased apoptotic death and suppressed
proliferation of cancer cells [149, 151].

Given the limited amount of techniques to calculate the total solid stress and its di�erent
components in vivo, many studies have developed mathematical models of tumour growth
to quantify the stress distribution within a solid tumour [156, 157]. These models agree
on an heterogeneous distribution of residual solid stress through the tumour mass and
its surroundings: while this stress acts compressively in all directions at the centre of the
tumour (Fig.1.4-B), a smooth transition of the circumferential stress from compressive to
tensile has been modelled moving towards the periphery (Fig.1.4-C). A stress between 0 and
1.3 kPa was calculated from avascular tumour spheroid data using a linear poro-elasticity
model [156].
A technique to quantify the residual solid stress was proposed by Stylianopoulos et al.
(2012) using excised tumours that are allowed to relax by making a cut along their longest
axis: the swelling of the centre and the simultaneous retraction of the boundaries become
then visible and can be incorporated into a mathematical model relating the measured
deformation to the applied stress. Measurements of tissue relaxation following the cut of
excised tumours have reported residual stress levels in the range of 2.2 to 19.0 kPa and
0.37 to 8.0 kPa in the interior of di�erent types of human and murine tumours, respec-
tively [149]. On the basis of experimental data, using the phenomenological Gompertzian
equation [158] to model tumour growth, the residual solid stress was estimated to account
only for 30 % of the total solid stress [127]; however these numbers might be a�ected by
the residual presence of the swelling stress. In vitro experiments on di�erent cancer cell
spheroids, coupled with mathematical modelling, measured no swelling stress for isotonic
and hypertonic environments and a stress ranging between 2.1 and 10.0 kPa for hypertonic
tumour micro-envionments, showing a linear correlation with the ratio of hyaluronan to
collagen area fraction [148]. Nia et al. (2017) have also recently proposed three techniques
to map residual solid stress from the measurement of the stress-relaxing deformation
through ultrasonography and optical microscopy, both in excised tumours and in situ. In
the former case, maximum values of 0.21 kPa and 7 kPa in brain and pancreatic tumours
were reported, while, interestingly, in the case of small deformations, a maximum radial
stress of 0.1 kPa was estimated from a murine brain tumour in situ compared to 0.02 kPa
observed ex vivo. [159]. This last result highlights the importance of the tumour-host
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tissue interaction in the de�nition of the state of stress of the tumour and sets a limit in
the proposed method to isolate the various components of the solid stress.
The major component of the solid-phase stress is in fact given by the resistance of the
surrounding normal tissue to tumour expansion. In the absence of experimental validation,
by modelling both tumour and host tissue through an isotropic nonlinear elastic constitu-
tive law, Stylianopoulos et al. (2013) have estimated values of the externally applied stress
to be as high as 40 kPa, clearly the largest contribution to solid-phase stress and su�cient
to collapse intra-tumoural vasculature [127]. This value, however, is strictly dependent on
the mechanical properties of the surrounding tissue, which, as a consequence, can also
impact tumour growth in volume [130]. In vitro experiments on cancer cell spheroids have
provided evidence of the role of the tumour-host tissue mechanical interaction, reporting
stress values ranging from 3.7 to 16.0 kPa, estimated from tumour spheroids embedded in
matrices characterised by di�erent sti�ness [160, 151].

1.3.2.3. MRE to Measure Tumour Stress

Despite a clear distinction between the mechanical processes behind the generation of
the solid and the liquid stresses, to date the measurement of one component excluding
the other one is still challenging. Furthermore, both solid stress and IFP have arisen
as hallmarks of the mechanical environment of solid tumours [105], and their increased
magnitude has been associated to tumour progression [100], making their local noninvasive
estimation a biomarker for the clinical assessment of therapy e�cacy.
In this sense, a consortium of international partners has joined forces in the FORCE
(Imaging the Force of Cancer) project, sponsored by the European Union, which aims to
address a fundamental need in planning and monitoring of cancer treatment using MRE
to measure the forces active in cancer [161]. The employment of the latest developments
in MRE, combined with 3D strain imaging and a correct modelling of the viscoelastic
behaviour of soft tissue can be used to assess the sti�ness load relation of tissue, hence
giving the possibility to retrieve a map of the stress and pressure distribution within
tumours. This innovative multi-modal MR-based approach presents itself as the �rst
imaging technique capable of measuring cancer forces in vivo and to determine their
spatial distribution in a noninvasive manner. Developments of the FORCE project could
open new avenues for cancer therapy, providing a new paradigm for predicting metastatic
potential, gauging the e�cacy of drug delivery for cancer therapy, and clinically observing
therapy progression through imaging.
The work presented in this thesis falls within the objectives of this project and aims at
investigating the apparent change of the mechanical properties of the host tissue generated
by tumour-associated stresses, as measured through MRE. Details of the hypotheses at the
basis of this project and the associated objectives are reported in the next section.
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1.4. Project Rationale & Goals
In the previous sections we have explained that elevated IFP and solid stress are de�ning

characteristic of solid tumour progression and they both contribute to tumour expansion
in size, leading to the mechanical deformation of the surrounding environment. With the
generated stress and the resulting applied strain strongly dependent on the mechanical
properties of the host tissue, a correct modelling of its rheological behaviour becomes
extremely important. It has been established that soft tissue presents a nonlinear stress/s-
train response, leading to variations in its mechanical properties even when subjected to
small deformations. While the material parameters of soft tissue can be measured through
MRE, the wave equation employed in the reconstruction process normally assumes linear
viscoelasticity, making the local estimation of the shear modulus biased by the presence of
tumour-associated forces. Previous mathematical considerations have shown that tissue
compression, associated to a shortened wavelength, leads to an apparent decrease in
shear modulus, while the opposite is seen under tension. As a consequence, assuming
a radial expansion of the tumour (Fig1.5-A), an apparent radial softening is predicted,
while the circumferential tension is expected to cause a measured softening in the same
direction (Fig1.5-B). Nevertheless, we have also made clear that the directionality of the
shear waves plays a fundamental role in the material properties estimation in the case of
underlying nonlinear deformations. Under the assumption of plane waves, characterised
by a unique direction of propagation, we expect the force-associated bias to lead to an
apparent softening on the leading and trailing edges of the tumour, where a compression
is sensed, and an apparent sti�ening where circumferential tension is probed (Fig1.5-C).
While previous �ndings have shown this signature apparent anisotropic pattern in phan-
toms [162] (Fig1.5-D), a clear experimental and mathematical framework that con�rms
this theory has not been presented yet.

The main goals of this project thus comprise of

• providing an analytical formulation that describes the impact of the nonlinear prop-
erties of soft tissue on its shear modulus estimation through MRE when subjected
to a spherical deformation similar to that generated by a pressurised tumour;

• developing a phantom setup that reproduces the nonlinear behaviour of soft tissue
under compression to investigate the signature shear modulus pattern produced by
a mimicked tumour;

• implementing an in�ation experiment where MRE is used to experimentally assess
the shift in shear modulus produce by radial deformations characterised by di�erent
magnitudes;
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Figure 1.5.: A) Tumour stress generates a nonlinear tissue response. B) Radial compression results
in a reduced apparent shear modulus, while circumferential tension generates an
increased value. C) MRE probes material properties according to the direction of
propagation of the shear waves, hence reconstructing an anisotropic pattern. D)
Reconstructed shear modulus around an in�ated balloon inside a plastic cuboid.

• de�ning a method to measure the generated stress and strain distributions to set a
bridge between the mathematical framework and the experimental �ndings.

These objectives will be addressed throughout this manuscript, which follows the organi-
sation presented here. In Chapter 2, a mathematical framework to describe the e�ect of
a macro-deformation on the wave equation normally employed in MRE reconstruction
under the assumption of linear viscoelasticity will be presented. We will then focus on the
particular case of the in�ation of a thick-shelled sphere, modelled with an incompressible
isotropic hyperelastic material law, and produce an analytical formulation of the variation
in shear modulus probed in elastography using plane waves. Chapter 3 will then provide
the protocol to carry out the in�ation experiment using a phantom, focusing on its di�erent
constituents and explaining the method implemented to measure the stress generated by
the mimicked tumour onto its surroundings. Finally, the details of the setup used for the
MRE data acquisition and of the imaging sequences will be provided. The implementation
of a nonrigid image registration strategy and its in silico validation using simulated de-
formations of real images similar to those applied by a solid tumour will be introduced
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in Chapter 4. Here, the reliability of this method to estimate the strains generated in
the in�ation experiment was then investigated, and further tests on compressed murine
tumours and in �broadenomas in patients were carried out to de�ne its reliability in a
preclinical and clinical setting and to identify its limitations. Chapter 5 will focus on the
rheological characterisation of the material used to simulate the nonlinear behaviour of
soft tissue. Two nonlinear viscoelastic models were used to �t the experimental data,
providing additional insights on the required composition of the material used to build
the phantom and validating the use of the constitutive equation employed to develop the
analytical framework presented in Chapter 2. The results obtained from three replicates
of the in�ation experiment in phantom will be reported in Chapter 6. This chapter will
investigate the impact of the local shear wave propagation direction on the expected
variation in apparent shear modulus and will provide an alternative way to compare the
experimental results with the analytical predictions. Preliminary results obtained from
the attempt to extend the in�ation experiment to an ex vivo setting will follow. Finally, a
discussion of the reliability of the measurements and on the challenges associated with
the use of real tissue samples will be provided. Final conclusions will close this thesis,
revisiting the assumption at the basis of the analytical work, remarking the limitations
identi�ed from the experimental �ndings and examining the implications of the developed
framework in a clinical scenario.
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2. Analytical Modelling

In Chapter 1, the possible impact of tumour-associated forces on the mechanical properties
of the surrounding soft tissue has been discussed. Prior investigations have shown that
the nonlinear response to macro-deformations, typical of soft tissues, is not accounted
for in the wave equation employed in the state-of-the-art MRE reconstruction methods,
hence the variation in wavelength caused by tissue compression/tension is interpreted
as wave propagation through a softer/sti�er medium. This leads to the reconstruction of
an apparent anisotropic shear modulus distribution, which depends on the direction of
propagation of the shear waves relative to the applied deformation.
In this chapter, a modi�ed version of Cauchy’s equations of motion, introduced in Section
1.2, describing an incompressible nonlinear viscoelastic material and accounting for macro-
deformations will be proposed, to elucidate the connection between applied kinematics and
intrinsic material properties in MRE. Perturbation analysis was employed to simplify the
presented governing equations and to determine the impact of a large-scale deformation
on harmonic wave propagation. This theoretical derivation yelled an expression of the
apparent sti�ness and viscosity moduli, G′ and G′′, of the material, dependent on the
magnitude and direction of the applied deformation, and to clarify how the estimation
of the shear moduli, G′ and G′′, depends on the direction of propagation of the probing
waves. The particular case of the impact of the stress generated by a radially expanding
tumour onto the MRE estimation of the material properties of the host tissue will then be
examined.

In detail, Section 2.1 will provide the mathematical background to derive Cauchy’s
equations of motion in both the Eulerian and Lagrangian con�guration. Section 2.2 will
present the perturbation theory employed to simplify Cauchy’s equation of motion for a
deformed viscoelastic material a�ected by a harmonic perturbation and will reveal the
dependence of the material properties on the applied deformation gradient. Following that,
a brief overview of the hyperelastic models employed to describe soft tissue nonlinear
stress/strain behaviour will be given; the speci�c case of an hyperelastic material described
by a polynomial strain energy density function will be considered and the corresponding
analytical formulation of the stress tensors will be calculated in Section 2.3. The proposed
Cauchy stress tensor will then be used to produce a linearised version of the shear modulus
in the case of a simple shear deformation, under the assumption of small strain. In Section
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2.4, the proposed theoretical framework will be applied to an idealised peri-tumoural
tissue exposed to tumour-generated stress. Using a thick-shelled sphere approximation
and a modi�ed Mooney-Rivlin constitutive equation, the associated shift in G′ probed
through plane wave propagation will be investigated. A numerical representation of the
expected reconstructed images will also be provided. A �nal discussion over the developed
mathematical framework and the presented data is given in Section 2.5.

2.1. Preliminaries
2.1.1. Displacement and strain

In continuum mechanics, the points of a deformable body in their reference/original
con�guration, Ω0, are described by their position X at time t = 0. When an external force
is applied, it causes the body to deform, hence displacing each point to a new location
x at time t = T . Under the assumption of a unique mapping from X to x , a Lagrangian
description of the motion, made in terms of the �xed referential coordinates in the reference
domain, de�nes the new point location as a function of the initial one, x = x(X ); hence
the displacement relative to the original position is given by U (X ) = x(X ) − X . An
Eulerian con�guration, instead, focuses on the current domain Ω, expressing the generated
displacement as u(x) = x − X (x). Accordingly with this notation, in the following
discussion the subscript 0 on a variable will be used to refer to the initial con�guration.
In the reference con�guration, the particle positions before and after the deformation are
related by the deformation gradient:

F =
dx

dX
= ∇XU + 1 (2.1)

where ∇X denotes the gradient of the deformation �eld mapped in Ω0. In the case of large
deformations, the �nite strain generated by the displacement U is given by the Green
strain tensor

E =
1
2 (F

TF − 1) (2.2)

where the diagonal components refer to normal strain and the o�-diagonal elements
are related to shear strain. The product C = FTF is called the right Cauchy-Green
deformation tensor, along with the left Cauchy-Green deformation tensor (or Finger
tensor) B = FFT .The two tensors are related simply by a rotation, so they share the same
invariants:

IC = tr (C) = λ21 + λ
2
2 + λ

2
3

I IC =
1
2

[
tr (C)2 − tr (C2)

]
= λ21λ

2
2 + λ

2
2λ

2
3 + λ

2
3λ

2
1

I I IC = det(C) = J
2 = λ21λ

2
2λ

2
3

(2.3)
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Here λ1, λ2 and λ3 are the eigenvalues of F , also called principal stretches. Notably, in the
case of an isotropic material, its deformation gradient can be expressed solely in terms of
the principal stretches or of the invariants of the Cauchy-Green deformation tensors.In
the de�nition of the third invariant, J , det(F ) is the Jacobian of the deformation and
describes the change of a volume element. For incompressible bodies, a volume element
keeps is volume constant throughout the deformation, hence we have J = dV /dV0 = 1. In
the case of a slightly incompressible material it is useful to decompose the deformation
gradient into the product of:

- a volume preserving, or isochoric, component F̂

- a volume-changing, or volumetric, component J 1
3

This concept can be carried on to C and B, such that their isochoric component can be
written as:

Ĉ = J−
2
3C B̂ = J−

2
3B (2.4)

The invariants of the isochoric tensors are called unimodular invariants and are also a
volumetric scaling of the original invariants:

IĈ = J
− 2

3 IC IB̂ = J
− 2

3 IB

I IĈ = J
− 4

3 I IC I IB̂ = J
− 4

3 I IB

I I IĈ = 1 I I IB̂ = 1

(2.5)

2.1.2. Stress

When a body is subjected to an external surface force, each in�nitesimal particle of the
body will experience a stress corresponding to the amount of force exerted per unit area

T n̂ = lim
∆Γ→0

∆f

∆Γ
=
d f

dΓ

HereT n̂ is the stress vector, or traction, pointing towards the direction of the normal vector
n̂, while f is the force acting on the surface Γ. According to Cauchy’s stress theorem, the
tractionT n̂ can be expressed as a linear function of the area vector n̂ through

d f = T n̂dΓ = σT n̂dΓ or T n̂ = σT n̂ (2.6)

where the symmetric tensor σ is called the Cauchy stress tensor and is used to de�ne the
physical state of stress at a point in the current con�guration.
The corresponding stress tensor relating the areas dΓ0n̂0, de�ned in Ω0, to the forces
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applied in the current domain Ω is the �rst Piola-Kirchho� stress tensor (PK1), de�ned as

d f = T n̂dΓ = PdΓ0n̂0 or T n̂
0 = Pn̂0 (2.7)

which can be expressed in terms of the Cauchy stress tensor as

P = JσF−T (2.8)

Unlike σ , P is in general a non-symmetric tensor;∗ however, another symmetric tensor,
the second Piola-Kirchho� stress tensor (PK2), is introduced to pull back the force d f to
the reference con�guration Ω0

d f 0 = F−1d f = F−1Pn̂0dΓ0 = ST n̂0dΓ0 or F−1T n̂
0 = ST n̂0 (2.9)

which directly relates to the other tensorial quantities through

S = F−1P and S = JF−1σF−T (2.10)

Following the approach used for the deformation gradient, it is sometimes useful to
decompose the Cauchy stress tensor into a deviatoric component σ ′ and a spherical
component containing the hydrostatic pressure p = tr (σ )/3

σ = σ ′ + p1 (2.11)

where σ ′ is such that tr (σ ′) = 0. A similar decomposition can also be established for PK1
and PK2:

P = P ′ + pJF−T (2.12)

S = S′ + pJC−1 (2.13)

2.1.3. Field Equations

2.1.3.1. The Equation of Continuity

Eulerian Form

In continuum mechanics the equation of continuity is used to express the conservation of
mass during the time of the deformation. Given the mass of an entire body characterised
by volume Vt at time t

m(t) =

∫
Vt

ρ(x , t)dV (2.14)

∗Note to self from Jack: because it’s a two point tensor with a base each in reference and current con�gs
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the conservation of mass requires that Dm
Dt = 0, where D

Dt represents the material derivative
(see Appendix A), hence giving

Dm

Dt
=

D

Dt

[∫
Vt

ρ(X , t)dV

]
=

=

∫
Vt

[
∂ρ

∂t
+ ∇x · ρv

]
dV = 0

where v is the velocity vector �eld. Since the equality holds for an arbitrary volume Vt ,
we obtain the Eulerian form of the equation of continuity

∂ρ

∂t
+ ∇x · ρv = 0 (2.15)

Lagrangian Form

A collection of particles retains the same mass regardless of the chosen con�gurations,
hence we can write

m =

∫
Vt

ρ(x , t)dV

CURRENT CONFIGURATION

=

∫
Vt=0

ρ0(X , t)dV0

REFERENTIAL CONFIGURATION

(2.16)

Since x = x(X , t) and given that dV = J dV0, we can write the term in the current
con�guration in the referential form, obtaining

m =

∫
Vt=0

ρ(X , t)J dV0

CURRENT CONFIGURATION
IN REFERENTIAL FORM

=

∫
Vt=0

ρ0(X , t)dV0

REFERENTIAL CONFIGURATION

(2.17)

Collecting the terms, we get the following equality∫
Vt=0

[
ρ(X , t)J − ρ0(X , t)

]
dV0

which holds for an arbitrary Vt=0, hence

ρJ − ρ0 = 0 (2.18)

where the dependency on X and t has been omitted. Again, the conservation of mass is
expressed by Dm

Dt = 0, which gives

∂ρ0
∂t
=
∂(ρJ )

∂t
= 0 (2.19)
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For an incompressible material, de�ned by J = 1, the density must stay constant at all
times for the selected volume Vt=0, hence

ρ = ρ0 (2.20)

and the equation of continuity in the Lagrangian form is given by

J − 1 = 0 (2.21)

2.1.3.2. The Cauchy Momentum Equation

Eulerian Form

To derive the Cauchy momentum equation in the Eulerian form, it is convenient to start
from the Newton’s second law of motion: Σi f i =mdv

dt . The sum of both the surface forces,
T n̂ (N/m2), acting over the surface of the body, and the body forces, b (N/m3), acting on
its volume at a time t during the deformation can be written as

f =
∑
i

f i =

∮
Γt

T n̂ dΓ +

∫
Vt

ρb dV (2.22)

Using Eq.2.6, we can apply the Gauss theorem to convert the surface integral into a volume
integral and to group the terms together:

f =

∫
Vt

∇x · σ
T dV +

∫
Vt

ρb dV =

=

∫
Vt

[
∇x · σ

T + ρb
]
dV

(2.23)

We can re-write Newton’s second law using the material derivative:

D

Dt

[∫
Vt

ρv dV

]
=

∫
Vt

[
∇x · σ

T + ρb
]
dV (2.24)

where the integral on the left-hand side of the equality is named the linear momentum of
the body. If we now focus only on the resultant force fz in the z-direction, by the Reynolds
transport theorem (see Appendix B) we can take the time derivative of the term on the
left-hand side of the above equality inside the integral:

D

Dt

[∫
Vt

ρvz dV

]
=

∫
Vt

ρ

(
∂vz
∂t
+vx
∂vz
∂x
+vy
∂vz
∂y
+vz
∂vz
∂z

)
dV =

=

∫
Vt

ρ
Dvz
Dt

dV

(2.25)
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Substituting Eq.2.25 in the z-component of Eq.2.24 and assuming an arbitrary volume Vt
we obtain the Eulerian form of the equation of motion in the z-direction

ρ

(
∂vz
∂t
+vx
∂vz
∂x
+vy
∂vz
∂y
+vz
∂vz
∂z

)
=
∂σxz
∂x
+
∂σyz

∂y
+
∂σzz
∂z
+ ρbz

The same procedure can be applied to the x- and y-component of the resultant force,
generating the entire set of equations of motion

ρ

(
∂vx
∂t
+vx
∂vx
∂x
+vy
∂vx
∂y
+vz
∂vx
∂z

)
=
∂σxx
∂x
+
∂σyx

∂y
+
∂σzx
∂z
+ ρbx

ρ

(
∂vy

∂t
+vx
∂vy

∂x
+vy
∂vy

∂y
+vz
∂vy

∂z

)
=
∂σxy

∂x
+
∂σyy

∂y
+
∂σzy

∂z
+ ρby

ρ

(
∂vz
∂t
+vx
∂vz
∂x
+vy
∂vz
∂y
+vz
∂vz
∂z

)
=
∂σxz
∂x
+
∂σyz

∂y
+
∂σzz
∂z
+ ρbz

(2.26)

which can be concisely grouped into the vector form of the Cauchy momentum equation
in the Eulerian coordinate system

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇x · σ

T + ρb (2.27)

or, writing the Eulerian velocityv in terms of the Eulerian displacement u,

ρ

(
∂2u

∂t2
+

(
∂u

∂t
· ∇

)
∂u

∂t

)
= ∇x · σ

T + ρb (2.28)

Lagrangian Form

To derive the Cauchy momentum equation in the Lagrangian form, we can use the same
approach employed in Eq.2.22 and rewrite the resultant force acting on the body during the
deformation in the Eulerian con�guration as the correspondent resultant in the Lagrangian
XYZ-coordinate system

f 0 =

∮
Γt=0

Pn̂0 dΓ0 +

∫
Vt=0

ρ0b dV0 (2.29)

By Gauss theorem, we �nd that

f 0 =

∫
Vt=0

[
∇X · P + ρ0b

]
dV0 (2.30)

29



2. Analytical Modelling

Naming V the velocity expressed in the Lagrangian con�guration, using Newton’s second
law we can write the following equality

D

Dt

[∫
Vt=0

ρ0V dV

]
=

∫
Vt=0

[
∇X · P + ρ0b

]
dV0 (2.31)

Once again, focusing on the z-component of the linear momentum of the body, we can
use the Reynolds transport theorem (see Appendix B) to rewrite the integral on the left of
the above equation as

D

Dt

[∫
Vt=0

ρ0VZ dV0

]
=

∫
Vt=0

ρ0
DVZ
Dt

dV0 =

∫
Vt=0

ρ0
∂VZ
∂t

dV0 (2.32)

where for the last equality we have expressed the material derivative in the Lagrangian
form (see Appendix A). Newton’s law for the z-component of the resultant force hence
assumes the following version∫

Vt=0

ρ0
∂VZ
∂t

dV0 =

∫
Vt=0

(
∂PZX
∂X

+
∂PZY
∂Y
+
∂PZZ
∂Z
+ ρ0bZ

)
dV0 (2.33)

Such equality must hold for any arbitrary volumeVt=0, so that, if we extend the discussion
to the x- and y-component of the resultant force, we obtain the set of equations of motion
in the Lagrangian con�guration

ρ0
∂VX
∂t
=
∂PXX
∂X

+
∂PXY
∂Y
+
∂PXZ
∂Z
+ ρ0bX

ρ0
∂VY
∂t
=
∂PYX
∂X

+
∂PYY
∂Y
+
∂PYZ
∂Z
+ ρ0bY

ρ0
∂VZ
∂t
=
∂PZX
∂X

+
∂PZY
∂Y
+
∂PZZ
∂Z
+ ρ0bZ

(2.34)

which can be written in vector notation as

ρ0
∂V

∂t
= ∇X · P + ρ0b (2.35)

The Laplacian form of the Cauchy momentum equation is �nally given in terms of the
Laplacian displacement U by

ρ0
∂2U

∂t2
= ∇X · P + ρ0b (2.36)

30



2. Analytical Modelling

2.2. Linearised Constitutive Laws of a Largely Deformed

Viscoelastic Body Subjected to Small Perturbations

In the case of an incompressible body under non-static equilibrium, we can describe the
e�ect of a �nite deformation over the time interval [0,T ] using the Cauchy momentum
equation 2.36 and the equation of continuity 2.21 in the Lagrangian form, as derived in
Section 2.1:

ρJ (U )
∂2U

∂t2
− ∇X · P(U ) = 0 (2.37a)

J (U ) − 1 = 0 (2.37b)

where the dependency of J and P on the Lagrangian U is left explicit and body forces are
ignored.
In the �eld of MRE, we rely on the propagation of shear waves through the body to
probe its material properties. Considering periodic waves in time acting in a time domain
I ⊂ [0,T ] and under the assumption of steady state, the generated micro-deformation and
associated hydrostatic pressure are expressed as

uε(x , t) = Re{uC(x)e
iωt } and pε(x , t) = Re{pC(x)e

iωt } (2.38)

where uC(x) = ur (x) + iui(x) and pC(x) = pr (x) + ipi(x) are complex-valued function of
space. For a nonlinear viscoelastic material such as soft tissue, the presence of a macro-
deformation U will a�ect the wave propagation, leading to an apparent variation of the
mechanical properties of the material, and must be accounted for in the equations of
motion. Under the assumption that the micro-deformation produced by the low frequency
low amplitude waves normally employed in MRE is much smaller than the pre-applied
macro-deformation: uε � U , the former can be regarded as a perturbation of the latter.
As a consequence, the combination of the micro- and macro-deformation �eld and of their
associated hydrostatic pressure is given, in the time domain I , byu = U +uε and p = P +pε

Here we will use perturbation theory to analytically develop a set of equations governing
low amplitude wave propagation in a deformed nonlinear viscoelastic medium, starting
from the perturbed version of the equations of motion

ρJ (U +uε)

(
∂2U

∂t2
+
∂2uε
∂t2

)
− ∇X · P(U +uε) = 0 (2.39a)

J (U +uε) − 1 = 0 (2.39b)

31



2. Analytical Modelling

or, more compactly

ρJ (u)
∂2u

∂t2
− ∇X · P(u) = 0 (2.40a)

J (u) − 1 = 0 (2.40b)

where u and p are de�ned in the following way

u(X , t) =


U (X , t), t ∈ [0,T ]\I

U (X , t) +uε(X , t), t ∈ I
(2.41a)

p(X , t) =


P(X , t), t ∈ [0,T ]\I

P(X , t) + pε(X , t), t ∈ I
(2.41b)

A linearisation of these equations can be obtained through the use of directional derivative
[163] for a function f of U in the direction of uε :

D[f ][uε] = lim
h→0

f (U + huε) − f (U )

h
(2.42)

where h is a parameter used to scale the increment along uε .
The linearisation of the perturbed PK1, P(U +uε), and of the Jacobian of the deformation,
J (U +uε), is carried out in Appendix C and returns the following expressions:

P(U +uε) ≈ P(U ) + ∇FP(U ) : ∇Xuε + ∇ ∂F
∂t
P(U ) : ∇X

∂uε
∂t
+ pε J (U )F

−T (2.43a)

J (U +uε) ≈ J (U ) (2.43b)

which lead to a new expression of the equations of motion:

ρ (J + J∇x · uε)

(
∂2U ε

∂t2
+
∂2uε
∂t2

)
− ∇X ·

(
P + ∇FP : ∇Xuε + ∇ ∂F

∂t
P : ∇X

∂uε
∂t
+ pε JF

−T

)
= 0 (2.44a)

J∇x · uε = 0 (2.44b)

where the dependence on U is implied. After rearranging, Eq.2.44 become(
ρJ
∂2U

∂t2
− ∇X · P

)
+

(
ρJ∇x · uε

(
∂2U

∂t2
+
∂2uε
∂t2

))
+

(
ρJ
∂2uε
∂t2
− ∇X ·

(
∇FP : ∇Xuε + ∇ ∂F

∂t
P : ∇X

∂uε
∂t
+ pε JF

−T

))
= 0 (2.45a)
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J∇x · uε = 0 (2.45b)

The �rst term in parentheses in Eq.2.45a vanishes as it represents the equilibrium equation
in the unperturbed case (see Eq.2.37a), and so does the second term in parentheses, as
J∇x · uε = 0 from Eq2.45b. The �nal system of equations of motion is therefore given by

ρJ
∂2uε
∂t2
− ∇X ·

(
∇FP : ∇Xuε + ∇ ∂F

∂t
P : ∇X

∂uε
∂t
+ pε JF

−T

)
= 0 (2.46a)

J∇x · uε = 0 (2.46b)

Using the equivalences (∇XA)F−1 = ∇xA and ∇X ·
(
JAF−T

)
= ∇x · A, and the property

of the tensor contraction,A : BF = AFT : B, we can transform the derivatives calculated
in the above equation in the reference state Ω0 into derivatives in the current con�guration
Ω, obtaining the �nal linearised version of the perturbed Cauchy momentum equation
and of the equation of continuity for a viscoelastic material:

ρ
∂2uε
∂t2
− ∇x ·

(
C : ∇xuε +V : ∇x

∂uε
∂t
+ pε1

)
= 0 (2.47a)

∇x · uε = 0 (2.47b)

The fourth-order sti�ness C and viscosity ν tensor are given by

C = 1
J
∇FPF

TFT or Cijkl =
1
J

∂Pis
∂Fkn

FlnFjs (2.48)

and
V = 1

J
∇ ∂F

∂t
PFTFT or Vijkl =

1
J

∂Pis
∂(∂Fkn/∂t)

FlnFjs (2.49)

Substituting the periodic motion generated at steady state by the propagating waves
(Eq.2.38) into Eq.2.47, we obtain a new set of equations describing the propagation of
elastic waves through a macroscopically deformed viscoelastic object:

ρω2uC + ∇x · (C : ∇xuC +V : ∇x (iωuC) + pC1) =

ρω2uC + ∇x · ((C + iωV) : ∇xuC + pC1) =

ρω2uC + ∇x · ((G′ + iG′′) : ∇xuC + pC1) = 0 (2.50a)

∇x · uC = 0 (2.50b)

Here, Eq.2.50b indicates the incompressibility of the material subjected to the deformation
uC, while the wave equation 2.50a determines the dynamic behaviour of the propagating
shear waves through the real G′ = C and imaginary G′′ = ωV components of the complex
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sti�ness tensor G∗ = G′ + iG′′.
For a viscoelastic material described by a hyperelastic constitutive equation, we can
introduce a strain energy density functionW =W (F , ∂tF ,p) that will permit us to establish
the nonlinear relationship between the stress tensor P and the deformation gradient
F , hence de�ning an analytical formulation for both G′ and G′′. An overview of the
hyperelastic constitutive equations reported in the literature to model soft tissue rheology
will be provided in the next section of this chapter. Based on the choice of a speci�c strain
energy density function, an analytical expression relating the PK1 stress tensor, as well as
PK2 and the Cauchy stress tensor, to the applied deformation will be developed.

While the variation in the mechanical properties of the material associated to the macro-
deformation in contained in G′ and G′′, the micro-displacement produced by the waves
is embodied in ∇xuC; the double contraction with the gradient of the harmonic micro-
deformation provides a measurement of the apparent storage and loss shear modulus, G′

andG′′ as reconstructed through MRE, which represents the component or the combination
of components of the two fourth-order elasticity tensors probed by the propagating shear
waves. This e�ectively corresponds to solving the wave equation in a softer/sti�er medium,
depending on the direction of propagation of the shear waves with respect to that of the
deformation �eld. This topic will be treated in Section 2.4, where the apparent shift in
shear modulus caused by an axisymmetric deformation of a hyperelastic thick-walled
hollow sphere, used as an idealisation of peri-tumoural tissue, will be investigated. For
the analytical framework developed in this section, we have chosen to focus only on the
expression of the apparent changes generated by the spherical deformation on the sti�ness
modulus G′, hence assuming a purely elastic material. This assumption will be recalled
and discussed in the following chapters, which will show that, despite the fact that this
simpli�cation may not be ideal to capture the viscous properties of soft tissue, it can be
regarded as a reasonably accurate model of the viscoelastic behaviour of the material
employed to experimentally validate the developed analytical formulation.

2.3. Constitutive Relationships for So� Tissue
As mentioned previously, in Section 2.1 a de�nition of the stress and strain tensors

has been given, while Section 2.2 has highlighted, starting from the equations of motion
governing wave propagation in a nonlinear viscoelastic material, the dependence of both
components of the dynamic shear modulus on the applied macro-deformation; nevertheless
a constitutive law that relates stress with strain still needs to be de�ned. The empirical
formulation of such relationships changes with di�erent materials and must be independent
of the chosen coordinate system. The intrinsic nonlinear mechanical response of soft
tissue has often been modelled using hyperelastic constitutive laws [45], which assume
the existence of a strain density energy function that depends on the deformation gradient
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associated to the deformation:W =W (F ). To maintain it independent of any rigid rotation
in the current con�guration,W is often expressed as a function of either the right or left
Cauchy-Green tensor. For isotropic materials, the strain energy function depends only on
the �rst three invariants of C:

W =W (IC, I IC, I I IC) (2.51)

Under the further assumption of incompressibility, I I IC keeps spatially constant and equal
to 1, makingW only dependent on IC and I IC.

Under the assumption of a purely elastic material, several hyperelastic models have been
proposed in the literature to describe incompressible isotropic soft tissue, applied both in
ex vivo tests and medical imaging techniques, and a recent study by Voutouri et al. (2014)
on the modelling of the evolution of solid stress in tumours has underlined the crucial
importance of the correct description of the mechanical properties of the surrounding
soft tissue in vivo over those of the solid tumour itself [130]. The simplest hyperelastic
constitutive law is Neo-Hookean, which is a function of only the �rst strain invariant IC
and is characterised by one single material parameter which represents the shear modulus.

W = C1(IC − 3) (2.52)

Despite being the most widely used constitutive equation for modelling soft tissue, this
strain energy density function is not ideal to describe soft tissue nonlinearity, as it is
e�ectively an extension of the elastic stress/strain relation to a larger deformations.
With a mathematical formulation similar to that of the Neo-Hookean model, polynomial
constitutive laws in their incompressible form have largely been employed to approximate
soft tissue rheology [57, 164, 165, 166].

W =
N∑

i,j=0
Cij(IC − 3)i + (I IC − 3)j (2.53)

Here Cij ≥ 0 are the hyperelastic constraints determined empirically, while C00 = 0. The
�rst two terms of Eq.2.53 return the popular Mooney-Rivlin model [167, 168]:

W =
C1
2 (IC − 3) +

C2
2 (I IC − 3) (2.54)

The Yeoh model has also been used in numerical studies on breast tissue [164] and, unlike
the polynomial strain energy density functions, has the advantage of eliminating the
dependence on the second strain invariant I IC, which has been reported to produce a
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better prediction of tissue behaviour [164].

W =
3∑

i=0
Ci0(IC − 3)i (2.55)

Exponential models have been suggested as optimal to describe certain kinds of soft
tissue [169, 170, 171]. Furthermore, Krouskop et al. (1998) and Wellman et al. (1999)
have reported that cancer tissue shows a more pronounced nonlinearity than benign
tumours and healthy tissue in breast, highlighting the need for a strain energy density
function capable of modelling a steeper stress increase with the applied strain [19, 50].
The Veronda-Westmann exponential constitutive law [52] was successfully used to model
large soft tissue deformation for elastography techniques [172, 173].

W = µ

(
eγ (IC−3)−1

γ
−
I IC − 3

2

)
(2.56)

Among the reasons behind the popularity of the Veronda-Westmann law is the small
number of material parameters involved. Here, the material parameter µ denotes the
shear modulus of the material in the absence of strain, while γ determines its nonlinearity.
Fung’s exponential strain energy density function, based on the single invariant IC , was
also proposed in the literature as an accurate model to describe soft tissue subjected to
large deformations [45]. The constitutive equation is given by

W = q + c(eQ − 1) (2.57)

where q = aijklEijEkl , Q = bijklEijEkl and c are the material parameters and E is the Green-
Lagrange strain tensor. This model, developed for preconditioned incompressible soft
tissues, can be simpli�ed under isotropic assumption:

W = a(IC − 3) + c
(
eb(IC−3) − 1

)
(2.58)

where a, b and c are constants.
Alternatively, logarithmic formulations can also be found [174].
The Ogden power law [175] has also been a popular choice to �t isotropic tissues:

W (λ1, λ2, λ3) =
N∑
r=1

µr
αr

(
λαr1 + λ

αr
2 + λ

αr
3 − 3

)
(2.59)

Unlike the other presented models, in this case the strain energy density function depends
directly on the principal stretches λi instead of the invariants. N , µr and αr are the material
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parameters to be determined from the experiments. For particular values of the constant
α , the Ogden model can be reduced into Neo-Hookean and Mooney-Rivlin form.

For reasons that will become more apparent in the following sections of this chapter and
in the next chapters, in this study we have used a modi�ed version of the Mooney-Rivlin
equation of the form

W =
1
2µ1(IĈ − 3) +

1
2µ2(I IĈ − 3)

2 (2.60)

This constitutive law was successfully employed to model the rheological behaviour of PVA
phantoms [86], however we expected it to provide an accurate representation of soft tissue
rheology as well. With respect to the conventional Mooney-Rivlin strain energy density
function presented in Eq.2.54, here the quadratic dependence on the second unimodular
invariant I IĈ should help to better capture the nonlinear stress/strain response of soft tissue
subjected to the deformations generated by a pressurised tumour. Rheological tests carried
out on PVC phantoms, built to reproduce the viscoelastic properties of soft tissue, will also
show the ability of this modi�ed Mooney-Rivlin law to model the mechanical behaviour
of the employed material, as presented in Chapter 5. Finally, the use of a polynomial law,
with respect to an exponential one, can lead to a simpler mathematical formulation, which
is presented in the next section of this chapter.

2.3.1. Analytical Formulation of Stress Tensors

The use of a governing strain energy density function which is a direct function of the
deformation gradient or of its invariants allows us to introduce the following models to
calculate PK1 and PK2 directly fromW (IC, I IC):

P =
∂W

∂F
and S = 2∂W

∂C
(2.61)

Eq.2.61 can be expanded, so that the dependency on the invariants is explicitly written.
For simplicity, we can use the tensor decomposition presented in Eq.2.11-2.13 and express
the stress tensors in terms of the unimodular invariants IĈ and I IĈ contained in the
incompressible strain energy density function. PK1 can be expressed as

P =
∂W (IĈ, I IĈ)

∂F
+ pJF−T =

∂W

∂IĈ

∂IĈ
∂F
+
∂W

∂I IĈ

∂I IĈ
∂F
+ pJF−T =

= −2
[
∂W

∂IĈ

IĈ
3 +

∂W

∂I IĈ

2I IĈ
3

]
À

F−T + 2J−
2
3

[
∂W

∂IĈ
+
∂W

∂I IĈ
IĈ

]
Á

F − 2
[
∂W

∂I IĈ
J−

4
3FC

]
Â

+ pJF−T

(2.62)
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where the numbering À, Á, Â have been introduced for later use.
PK2 is instead given by

S = 2∂W
∂C
+ pJC−1 = F−1P =

= 2∂W
∂IĈ

J−
2
3

[
−
IC
3 C
−1 + 1

]
+ 2 ∂W
∂I IĈ

J−
4
3

[
−
2I IC
3 C−1 + IC1 −C

]
+ pJC−1 (2.63)

Finally, the Cauchy stress tensor is equal to

σ = J−1FSFT =

= 2∂W
∂IĈ

J−
5
3

[
−
IC
3 1 + B

]
+ 2 ∂W
∂I IĈ

J−
7
3

[
−
2I IC
3 1 + ICB − B

2
]
+ p1 (2.64)

where the last term accounts for the hydrostatic pressure.

2.3.2. Derivation of Linearised Shear Modulus

The intrinsic shear modulus of the material is usually derived from considering a simple
shear deformation and the engineering shear strain. A simple shear deformation, described
by

x1 = X1 + aX2

x2 = X2

x3 = X3

where a << 1 assuming small strain, leads to

F =


1 a 0
0 1 0
0 0 1

 B =


1 + a2 a 0
a 1 0
0 0 1

 B−1 =


1 −a 0
−a 1 + a2 0
0 0 1

 (2.65)

In the case of a hyperelastic material, we can rewrite the Cauchy stress tensor derived in
Eq.2.64 replacing B2 using the Cayley-Hamilton theorem

B3 − ICB
2 + I ICB − I I ICI = 0, or B2 = ICB − I ICI + I I ICB

−1

to produce an alternative expression in terms of B−1

σ [ = 2∂W
∂IĈ

J−
5
3

[
−
IC
3 1 + B

]
+ 2 ∂W
∂I IĈ

J−
7
3

[
I IC
3 1 − J 2B−1

]
+ p1
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It is further possible to produce an alternative de�nition by absorbing all terms multiplied
by 1 into p, which is then renamed p̃, leaving

σ \ = 2
[
∂W

∂IĈ
J−

5
3B −

∂W

∂I IĈ
J−

1
3B−1

]
+ p̃1 (2.66)

which, using Eq.??yields the shear stress component

σ12 = 2
[
J−

5
3
∂W

∂IĈ
B12 − J

− 1
3
∂W

∂I IĈ
B−112

]
=

= 2
[
∂W

∂IĈ
a +
∂W

∂I IĈ
a

]
The shear strain can be calculated from the Green strain tensor in Eq.2.2

C =


1 a 0
a a2 + 1 0
0 0 1

 E =
1
2


0 a 0
a a2 0
0 0 0

 =

γ11

γ12
2

γ13
2

γ21
2 γ22

γ23
2

γ31
2

γ32
2 γ33

 (2.67)

Therefore, the linearised shear modulus is

µ = lim
a−→0

σ12
γ12
= lim

a−→0
2
(
∂W

∂IĈ
+
∂W

∂I IĈ

)
(2.68)

2.4. Wave Propagation in Thick-Shelled Sphere

2.4.1. Thick-shelled Sphere Inflation: Kinematics
To �nd the Cauchy stress generated by an expanding tumour onto the surrounding

tissue, we consider an idealisation of a thick-walled sphere made of an incompressible
isotropic hyperelastic material [176], a cross section of which is shown below
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where

A ≤ R ≤ B 0 ≤ Θ ≤ 2π 0 ≤ Φ ≤ π

a ≤ r ≤ b 0 ≤ θ ≤ 2π 0 ≤ φ ≤ π

Here, denoting with X = X (R,Θ,Φ) and x = x(r ,θ ,φ) the location of a material particle
in the reference and current con�guration, we can describe a spherical deformation state
with

F =


dr
dR

r
R

r
R

 (2.69)

where r is a pure function of R at each point and θ = Θ and φ = Φ due to symmetry.
We further assume that the tissue is incompressible, which leads to:

R3 − r 3 = A3 − a3 = B3 − b3 (2.70)

thus yielding dr
dR =

R2

r 2 such that

F =


R2

r 2
r
R

r
R

 B = C =


R4

r 4
r 2

R2
r 2

R2

 B2 = C2 =


R8

r 8
r 4

R4
r 4

R4

 (2.71)

2.4.2. Inflation Pressure

The Cauchy stress tensor for an incompressible isotropic hyperelastic material is given
in Eq.2.64. To evaluate the radial stress component, i.e. the in�ating pressure, we apply
the Cauchy equation 2.27, at equilibrium in the spherical coordinate system,

dσrr
dr
+ 2σrr − σθθ

r
= 0 (2.72)

to Eq.2.64 and use Eq.2.71, yielding

dσrr
dr
= −

4
r J

[
J−

5
3

(
∂W

∂IĈ
+ IĈ
∂W

∂I IĈ

) (R4

r 4
−
r 2

R2

)
− J−

7
3
∂W

∂I IĈ

(
R8

r 8
−
r 4

R4

)]
(2.73)

which can be integrated between r ∈ [a,b] using the boundary conditions σrr (r = a) = pi

and σrr (r = b) = 0, where pi represents the in�ating pressure exerted by the tumour on
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the inner surface of the tissue:

pi =

∫ b

a

dσrr
dr

dr (2.74)

Evaluating this integral requires the prescription of a speci�c constitutive law. In the
following sections a modi�ed Mooney-Rivlin formulation is considered.

Modified Mooney-Rivlin Law

The constitutive law that we chose to employ is of the form

W =
1
2µ1(IĈ − 3) +

1
2µ2(I IĈ − 3)

2 (2.75)

which yields

∂W

∂IĈ
=
µ1
2 (2.76)

∂W

∂I IĈ
= µ2(I IĈ − 3) (2.77)

Applying these derivatives to Eq.2.74, we get

pi =
R

5r 4

[
−5

(
a3 −A3) (µ1 + 4µ2) + 25(µ1 + 4µ2)r 3

− 8µ2
(a3 −A3)r 6

R6 − 28µ2
r 6

R3 + 60µ2
r 2(a3 −A3 + r 3)

R2

]r=b
r=a

(2.78)

where, following Eq.2.70, R is a function of r :

R = (A3 − a3 + r 3)1/3

An example curve of the pressure-radial stretch (a/A) relation is shown in Fig. 2.1. Here
we show that, in the absence of µ2, the modi�ed Mooney-Rivlin constitutive law is reduced
to the simpler Neo-Hookean case and the parameter µ1 works as a scaler of the pressure
generated by the in�ation, but does not modify its trend. In this case, using Eq.2.68, the
linearised shear modulus is given by µNH = µ1. On the other hand, µ2 acts on the shape of
the pressure-radius curve, as well as on its behaviour at higher levels of in�ation. This
parameter however does not play a role in the de�nition of the linearised shear modulus
in the modi�ed Mooney-Rivlin case, and µMR = µ1 like in the Neo-Hookean case.
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Figure 2.1.: Example family of curves representing the in�ating pressure obtained from the linear
(left) and quadratic (centre) term of the modi�ed Mooney-Rivlin law employed. The
combined contributions generate a characteristic family of S-shaped curves (right).

Hydrostatic Pressure

In order to obtain a complete analytic expression for the Cauchy stress tensor, we must
calculate the hydrostatic pressure p. This can be derived by comparing the two expressions
for σrr given by Eq.2.64 and Eq.2.74, yielding

p =
µ1R

6(−10r 6 + 9r 4R2 + R6) + µ2(r − R)
2(r + R)2(r 2 + 2R2)(5r 6 + 9r 2R4 + 34R6)

6r 4R8 (2.79)

As an example, the hydrostatic pressure distribution away from the inner surface is shown
in Fig. 2.2.

Figure 2.2.: The magnitude of the hydrostatic pressure is directly proportional to the radial stretch
(a/A), fading to zero while moving away from the inner surface. Given a constant
µ1 = 1, the second parameter, µ2, has a relevant impact on the model at the interface
between the inclusion and the surrounding material, however it does not a�ect the
curve trend.

2.4.3. Nonlinear Wave Propagation
We have seen in Section 2.2 that the wave propagation in a nonlinear hyperelastic

material is given by Eq.2.47a, obtained superimposing small-amplitude elastic waves on
top of a macroscopic deformation. As shown in Eq.2.48, the derivation of the sti�ness
tensor, C or G′, requires the derivative ∂Pis/∂Fkn to be evaluated. Below, we evaluate
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term-by-term the derivatives of PK1 from Eq.2.62 for the modi�ed Mooney-Rivlin law:

∂W

∂IĈ
=
µ1
2 ,

∂

∂Fkn

(∂W
∂IĈ

)
= 0 (2.80)

∂Jc

∂Fkn
= c JcF−1nk (2.81)

∂IC
∂Fkn

= 2Fkn (2.82)

∂IĈ
∂Fkn

= −
2
3 IĈF

−1
nk + J

− 2
3
∂IC
∂Fkn

(2.83)

∂W

∂I IĈ
= µ2(I IĈ − 3),

∂

∂Fkn

( ∂W
∂I IĈ

)
= µ2
∂I IĈ
∂Fkn

(2.84)

∂I IĈ
∂Fkn

=
∂

∂Fkn

(
J−

4
3 I IC

)
= J−

4
3
∂I IĈ
∂Fkn

−
4
3F
−1
nk I IĈ (2.85)

∂I IC
∂Fkn

= 2ICFkn − 2FnaFanFnk (2.86)

∂(FC)is
∂Fkn

= δikFbnFbs + FinFks + δsnFiaFka (2.87)

∂Fis
∂Fkn

= δikδsn (2.88)

∂F−1si

∂Fkn
= −F−1ni F

−1
sk (2.89)

The derivatives of the three terms in brackets in Eq.2.62, i.e. À Á and Â, are given by the
following equations:

∂

∂Fkn

(
∂W

∂IĈ

IĈ
3 +

∂W

∂I IĈ

2I IĈ
3

)
= À

= −
µ1
9 IĈF

−1
nk +

µ1
3 J
− 2

3 Fkn +
2
3

(
J−

4
3
∂I IC
∂Fkn

−
4
3F
−1
nk I IĈ

) [
µ2I IĈ +

∂W

∂I IĈ

]
(2.90)

∂

∂Fkn

(
J−

2
3
(∂W
∂IĈ
+
∂W

∂I IĈ
IĈ

))
= Á

= −
2
3 J
− 2

3 F−1nk

[
∂W

∂IĈ
+
∂W

∂I IĈ
IĈ

]
+ µ2J

−2IĈ

[
∂I IC
∂Fkn

−
4
3F
−1
nk I IC

]
+ J−

4
3
∂W

∂I IĈ

[
∂IC
∂Fkn

−
2
3 ICF

−1
nk

]
(2.91)

∂

∂Fkn

(
∂W

∂I IĈ
J−

4
3FC

)
= Â

=µ2

[
J−

4
3
∂I IC
∂Fkn

−
4
3F
−1
nk I IĈ

]
J−

4
3 (FC)is −

∂W

∂I IĈ

[
4
3 J
− 4

3 F−1nk

]
(FC)is +

∂W

∂I IĈ
J−

4
3

[
∂(FC)is
∂Fkn

]
(2.92)
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Using these results, �nally the analytic expressions for G′ and the stress-like tensor
G′ : ∇xuε have been derived. Given a plane-wave travelling through the object as shown
in Fig. 2.3, we consider two sets of displacements found at the leading and peripheral
interfaces of the inner sphere, such that a θ -polarised r -propagating wave is characterised
by

A© ∇uε =


0 0 0
δu 0 0
0 0 0

 (2.93)

and an r -polarised θ -propagating wave is described by

B© ∇uε =


0 δu 0
0 0 0
0 0 0

 (2.94)

Figure 2.3.: Wave propagation through the thick-
shelled sphere. Due to the local sphe-
rical coordinate orientation, at A©,
the wave will appear as θ -polarised,
travelling in the radial direction. At
B©, the opposite is found.

The apparent shear modulus G′ measured through MRE is then obtained through the
double contraction between the sti�ness tensor and the gradient of the wave micro-
deformation, e�ectively quantifying the component of G′ sensed by the propagating
waves. The apparent variation of G′ relative to its intrinsic value, as a function of the
relative radial position at di�erent radial stretches, is plotted in Fig.2.4. As it shows, the
apparent modulus softens when a compression is present in the propagating direction
(case A©), and sti�ens when tension is sensed (case B©). The factor by which the apparent
modulus undergoes change is signi�cantly larger in the latter case than in the former.
However, the modelled curves are almost symmetrical on a logarithmic scale, especially
at low deformations. This is true only for low µ2 values, as, while the increase of this
parameter leads to steeper trends in the case of radially-propagating waves, the opposite

44



2. Analytical Modelling

happens in the case of compression, with the sti�ness variation becoming less pronounced.

Figure 2.4.: It can be seen that when the wave approaches the inner sphere head-on, in�ation
would lead to an apparent softening of the material, identi�ed by the blue region. In
contrast, along the peripheral interface of the inner sphere, a sti�ening is detected,
with the curves being constantly in the red region. Given a constant µ1 = 1, the
parameter µ2 shapes the curves di�erently in the two regions, especially in the case of
larger deformations.
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Such analytical considerations were used to numerically calculate the patterns representing
the relative shift in tangent sti�ness around the inclusion at di�erent in�ations (Fig.2.5).
Again, it is clear how the extent of the deformation impacts the magnitude of the generated

Figure 2.5.: 2D representation of the shear modulus variation patterns generated by an in�ated
inner sphere as probed by plane waves propagating from left to right.

variation in G′, which, given the simple form of the probing shear waves, generates a
symmetric pattern around the inclusion.

2.5. Discussion
A list of the main results reported in this chapter is presented in Table 2.1

In this chapter we have developed a mathematical framework to show how an incom-
pressible spherical deformation of a thick-shelled sphere, representative of that applied
by a pressurised tumour onto the surrounding nonlinear soft tissue, can generate an
apparent anisotropic shear modulus distribution around the inner sphere, with the pattern
depending on the direction of propagation of the probing shear waves. After presenting
an analytical formulation that de�nes the impact of a macro-deformation on the real and
elastic part of the complex sti�ness tensor G∗, here we have idealised soft tissue as purely
elastic, hence limiting the analysis to the real component G′. This assumption is sup-
ported by the mild viscoelastic behaviour observed in the rheological tests carried out in a
tissue-mimicking phantom material presented in Chapter 5. In addition, although studies
have proposed the loss shear modulus measured through MRE as a better di�erentiators
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Main results

For the case of an incompressible material, subjected to a macro-deformation superimposed to a
harmonic micro-deformation, an analytic expression for G′ and G′′ was derived through the
linearisation of the wave equation.

A family of curves, representing the relationship between in�ation and generated pressure, was
identi�ed using a modi�ed version of the Mooney-Rivlin hyperelastic equation. While the linear
term of the model was found to simply scale the curve, the quadratic part is responsible for its
behaviour at higher levels of in�ations, which generates a characteristic S-shape.

The di�erent local deformations sensed by the propagating probing waves lead to an anisotropic
distribution of the apparent shear modulus G ′ reconstructed in elastography. In the case of plane
waves travelling through an in�ated thick-shelled sphere, a speci�c pattern was identi�ed,
symmetric with respect to the wave propagation direction.

Table 2.1.

between malignant and benign tumour [177], the estimation ofG′ from experimental wave
data relies only on the knowledge of the associated wavelength, obtained through the
computation of the second-order derivative in space of the generated displacement, while
the evaluation of G′′ needs further information on the wave attenuation, making its MRE
reconstruction more prone to errors.

A second-order polynomial form of the employed modi�ed Mooney-Rivlin strain energy
density function was used to model the nonlinear relationship between stress and strain
of soft tissue. With this constitutive equation, we have demonstrated that, while the linear
term purely scales the in�ating pressure-radial stretch curve, without impacting its general
trend, the quadratic term controls the magnitude of the generated pressure at higher levels
of in�ation, generating a characteristic S-shape. It is also noticeable that the value of the
parameter µ2 is limited to several orders of magnitude less than the value of µ1. Other
hyperelastic laws, showing an exponential growth of stress with the applied strain, can
be found in the literature to describe the rheological behaviour of soft tissue, however,
given the challenges to analytically calculate the integral in Eq.2.74 using such forms,
we have limited our discourse to the chosen polynomial function. Instead, we have seen
that a simpler formulation, like the one provided by the use of a Neo-Hookean model,
is su�cient to produce a similar shear modulus variation pattern around the inclusion.
Nonetheless, with respect to the modi�ed Mooney-Rivlin law, the Neo-Hookean model
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does not exhibit the nonlinear increase in the pressure-radius relation at larger in�ations
which is observed in real tissue [173].

Interestingly, we showed that, despite changing by a similar order of magnitude, the
absolute variation in the apparent shear modulus is less prominent when the direction of
the propagating shear waves is along a compression, while a much greater apparent shift
is detected in the case of tension. Given the simple shear waves employed in the analytical
derivation, this yields a more pronounced pattern at the sides of the inclusion than at the
leading and trailing edge. Such condition is a direct consequence of the incompressibility
assumption and can be compared to the explicative example presented by Capilnasiu
et al. (2018) for the case of a uniaxial compression of a simple incompressible isotropic
Neo-Hookean material [86]. Brie�y, given a simple macroscopic compression de�ned in
Eq.2.95,

C =


1
λ

1
λ

λ2

 with λ < 1 and J = 1 (2.95)

plannar waves propagating along or perpendicularly to the direction of compression will
probe a decreased or increased intrinsic elastic modulus of the medium, µ⊥ = µ/λ and
µ‖ = λ

2µ respectively, where the invariants of the right Cauchy-Green stress tensor work
as scalers. While this simple example highlights how the magnitude of the shift in shear
modulus depends on the directionality of the waves with respect to the deformation �eld,
the situation becomes more complex in the case of a more intricate wave motion.
Noticeably, in addition to a di�erent magnitude, the relative shear modulus variation shows
di�erent trends with di�erent material parameters as well. While a higher µ2 correlates to
an increased material sti�ening at the surface of the inner sphere in the case of tension,
the same increased parameter value reduces the extent of the softening in the immediate
proximity of the inclusion in the case of compression. This e�ect is particularly evident
at su�ciently large deformations, nevertheless, as expected from the family of curves
presented in Fig.2.1, the impact of µ2 becomes less relevant further away from the inner
sphere, where the radial stretch is lower. Although clearly unrealistic in the context of soft
tissue rheology, we have assessed that values of µ2 comparable with µ1 intensify the trend
already found in the case of larger in�ation radii, leading to a sti�ening in the immediate
vicinity of the boundary between inner and outer sphere even in the case of compression,
followed by material softening farther away from the interface (data not shown).
It is also to be noted that a variation in the material parameters, as well as in the in�ation
level, only minimally a�ect the radial extension of the shift in apparent shear modulus,
which is limited to the very immediate proximity of the inclusion, with a quick convergence
to the background value. Although di�erent material laws could extend the impact of the
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in�ation pressure to farther regions, these results are consistent with existing models based
on measurements from excised tumours, showing a rapid decrease in both the absolute
radial and circumferential solid stress as a function of the distance from the tumour-host
tissue border [127] (see Fig.1.4). Nevertheless, such changes, given the quick convergence
to the background shear modulus, could prove to be experimentally di�cult to detect
and will depend both on the size of the inclusion and on the resolution of the imaging
technique.

Finally, the simple patterns shown here have been numerically generated under the
assumption of simple shear waves characterised by a unique direction of propagation and
a constant polarisation. The reproduction of such results in a phantom might present some
challenges as, while an approximation of the spherical in�ation could be experimentally
achieved, such simple shear waves are more complicated to generate. The consequent
deformation and the associated shear modulus variation will be strongly dependent on the
local directionality of the propagating waves. In addition, wave attenuation will play a role
in these settings, making the sti�ness estimation at the trailing edge of the inclusion less
reliable. We will look into these e�ects in a phantom experiment presented in Chapter 6,
where we will present a comparison between the analytically predicted variation in shear
modulus as measured through elastography and the experimentally estimated patterns.
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In Chapter 2 we have provided an analytical framework to describe the expected change
in the mechanical properties of a hyperelastic material when subjected to a spherical
macro-deformation, representative of the tumour-generated stress onto the host tissue,
as probed by propagating shear waves like those employed in MRE. In the context of
elastography, we have analytically predicted that the nonlinear stress/strain response of
the material, in our case modelled by the proposed modi�ed Mooney-Rivlin hyperelastic
law, will result in the detection of a anisotropic shear modulus distribution which depends
on the local direction of the k-vector associated to the probing waves. In this study we
have attempted to experimentally reproduce the mathematical results using a phantom
representation of a pressurised tumour pushing against its surrounding environment. This
requires the use of a material capable to replicate the nonlinear viscoelastic stress/strain
behaviour of soft tissue modelled in Chapter 2. An in�atable spherical inclusion must be
located inside the phantom to reproduce the strain generated by a pressurised tumour at
di�erent sizes. The measurement of the in�ating pressure can allow a comparison with
the theorised stress/strain behaviour. An inclusion with a size comparable to that of a real
tumour will also assess the ability to detect variations in sti�ness commensurable with
those obtained in real cases.
An MRE setup, consisting of an MR scanner and a mechanical transducer, will then be
employed to propagate shear waves through the phantoms and to reconstruct the generated
variation in shear modulus. At the same time, a nonrigid registration of high resolution MR
images of the inclusion at di�erent in�ation states will provide an estimate of the applied
deformation �eld. In this sense, the addition of motion trackers to the otherwise featureless
phantom material is a fundamental requirement. For reproducibility and to account for
technical di�culties, three replicates of the proposed experiment will be carried out.

This chapter will initially provide an overview of the materials described in the literature
exhibiting mechanical properties similar to those of soft tissue and used in the �eld of
elastography. Section 3.2 will focus on the identi�cation of a suitable phantom material
and of trackers capable to estimate a detailed map of the local deformation �eld without
impacting the material properties of the phantom. A protocol for the manufacturing,
based on those available in the literature, will be provided. The use of a Foley catheter to
reproduce a pressurised tumour will then be discussed. Section 3.3 will present the details
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of the employed pressure measuring system, together with its limitations. A comparison
between the experimental observations and the expected values will follow. In Section
3.4, the speci�cs of the MR image acquisitions and a description of the MRE setup used
to generate shear waves will be presented. A �nal discussion over the obstacles faced to
implement the experimental setup and observations on the similarities with a real tumour
case will conclude the chapter.

3.1. Materials Employed to Mimic Mechanical Properties of

So� Tissue in Elastography
In the �eld of medical imaging, phantoms are often employed to investigate the per-

formance of new and existing imaging techniques in a controlled and simpler setting.
Phantoms containing objects characterised by di�erent sizes and contrasts are commer-
cially available for US, X-ray and MR imaging systems, however their availability is more
limited when it comes to elastography techniques [178].

Changes in tissue sti�ness are often associated to underlying pathological conditions
[48] and many cancers correlate to a hardening of the surrounding soft tissue [19], making
elastography an attractive technique for tumour detection and staging. The characterisa-
tion of the nonlinear stress/strain behaviour of both healthy and abnormal tissue would be
extremely valuable for their mathematical modelling and under a diagnostic point of view;
however, this task can be extremely complicated to perform, either in vivo or in vitro, due
to the presence of underlying forces that can alter the mechanical properties of soft tissue,
making it di�cult to distinguish from a lesion [179]. In this sense, the development of
phantoms capable to mimic the nonlinear rheological behaviour of soft tissue has become
essential in the �eld of MR elastography, to investigate the limitations of such a technique
in a controlled environment and can provide a crucial understanding of the impact of the
above-mentioned forces.
In addition to a similar nonlinear behaviour, tissue mimicking materials should possess a
sti�ness comparable to that of tissue. Young’s modulus can present a signi�cant variability
throughout di�erent types of tissue for both normal and cancerous cases, with reported
values ranging between 18 ± 7 kPa for breast fatty tissue to 106 ± 32 kPa for invasive and
in�ltrating ductal carcinoma in breast with 5 % pre-compression, as well as values up to
230 ± 34 kPa for prostate cancer with a similar pre-compression [19]; hence, ideally the
mechanical properties of the phantom material should be controlled during the manufac-
turing process, allowing to reproduce the mechanical conditions more suitable for the
desired investigation. In MR elastography, similar nuclear magnetic resonance (NMR)
properties to those of soft tissue would permit a standard MR characterisation. Finally, for
reproducibility purposes, the material must posses long-term stability, so that its elastic
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and NMR properties do not change over time, and should remain unaltered even if one or
more inclusions are added to the matrix.

Water-based gels, also known as hydrogels, have been extensively employed to re-
produce the elastic properties of soft tissue in US studies, thanks to a well developed
manufacturing technology over years [180, 181, 182]. These gels consist of cross-linked
polymer chains in a water solution. Homogeneous gels of agar or gelatin are among the
most widely employed materials in strain imaging, as they o�er a good control over the
phantom Young’s modulus, dependent on the concentration of each of the two elements
[183]. Parker et al. (1990) [184] have presented that the Young’s modulus of agar and
gelatin mixtures lies in the range of some human and animal soft tissue, as reported by
Sarvazyan et al. (1995) [47]. While gelatin exhibits an almost linear stress/strain behaviour
for strain lower than 10 % [183], agar is well known for producing nonlinear stress/strain
curves [183, 179], making it more suitable to reproduce soft tissue properties under larger
strains, although the nonlinearity can be too pronounced at higher concentrations [183,
185]. Agar phantoms, however, are usually brittle, while the Young’s modulus of gelatin
gels has been shown to increase over time [183]. The two material have also been employed
together both in a mixture or in heterogeneous phantoms, with the agar concentration
tuned to control the material sti�ness and the gelatin providing more stable bondings with
inclusions and a better geometrical stability [186]. Despite the extensive employment in
US elastography, little attention has been given to the NMR properties of these materials
[186].
PVA-cryogel is as another tissue-mimicking material proposed for MR imaging applica-
tions [187, 188], which geli�es when immersed into an aqueous solution and is exposed to
freeze/thaw cycles [189, 190]. Depending on the cryogenic treatment, wave speed through
the phantom can be tuned to assume values within the range of soft tissue [187]; NMR
properties can be controlled in the same way [187, 188]. Studies have shown that PVA
phantoms exhibit a nonlinear stress/strain response [191], which is determined by the
number of freezing cycles, in the same way as the Young’s modulus of the material [192,
193], making the manufacturing technique more lengthy and the reproducibility more
complicated [194]. Unlike other materials, however, PVA cryogel has become particularly
appealing for the possibility to produce anisotropic phantoms, reproducing the orthotropic
mechanical behaviour typical of tendons and muscels [195].
Phantoms manufactured with a mixture of copolymer and mineral oil have proven to
cover a wide range of Young’s modulus values, from 2.2 to 150 kPa, nevertheless they
showed densities signi�cantly lower than those expected from soft tissue and a large linear
viscoelastic domain[185].
Soft polyvinyl chloride (PVC) phantoms are made from a liquid suspension of PVC par-
ticles in a plasticiser which, when brought to a temperature above 170 ◦C, interact and
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polymerise. While cooling down, the mixture assumes a gel form with increasing viscosity
until solidi�cation. The elastic modulus of this polymer gel, also known as plastisol, can
vary between a few to hundreds of kPa, according to the plasticiser concentration in
the mixture [196] and presents a long-time stability both in terms of elastic and viscous
properties [197]. The stress/strain curves measured for di�erent phantom compositions
by Hungr et al. (2012) showed a hysteresis typical of viscoelastic materials, while the
nonlinear response increased with the increase in PVC concentration [196]. A linear
behaviour could be approximated for a strain less than 10-15 %, consistently with the
behaviour expected from soft tissue.

3.2. Phantom Construction

3.2.1. Material Selection
To reproduce the viscoelastic behaviour of the compressed soft tissue, we necessitate a

material exhibiting a nonlinear stress-strain relation, i.e. hyperelastic, without undergoing
non-reversible changes in shape or yielding when subjected to the macro-deformations
generated by an in�ated inclusion used to mimic a pressurised tumour. These requirements
are needed to probe the apparent change in shear modulus under the application of
su�cient strain. Furthermore, the ideal medium will have an intrinsic shear modulus
similar to that of a typical soft tissue. PVC-based phantoms can cover a wide range of
elastic moduli and present di�erent degrees of stress/strain nonlinearity depending on
the employed mixture [196], permitting to control the material mechanical properties
to resemble those of soft tissue. Furthermore, the large elastic limit of the polymerised
material, experimentally assessed, made it an ideal choice to sustain the strain generated
by the inclusion, larger than 100 % in its immediate proximity, as presented in Section
4.3 of this thesis. For our purpose we have used a liquid plastic plastisol (Lure-solutions,
UK), sold under the commercial name Luresol, which is available in three sti�ness grades:
�rm, medium and soft, and its elastic modulus can be further tuned with the addition of a
softener (non-phthalate plasticiser).

3.2.2. Need for Scattered Particles to Track the Deformation
In order to correlate the variation in shear modulus, as measured through MRE, to

the applied strain and to model the expected tissue response, we needed to quantify the
generated macro-deformation to reproduce a tumour expansion. This could be estimated
through the nonrigid registration of anatomical images of the phantom acquired at various
expansion states of the inclusion, from the strain-free situation to the maximum extension
investigated. Nevertheless, in order to track the pixel-wise deformation of the material, the
presence of contrasting particles, or trackers, scattered within the otherwise featureless
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phantom matrix, is mandatory. These trackers must be small enough to �nely map the
deformation, but large enough to be resolved in the MR images and must exhibit di�erent
NMR properties from the PVC mixture to o�er a su�cient image contrast, hence allowing
an easy detection by the registration program. It is also important that the trackers are
su�ciently distributed in the vicinity of the inclusion, where the expected change in G′ is
expected. Finally, the trackers must interact with the PVC matrix in a way that does not
alter the shear modulus isotropic distribution and must be MR compatible.

Silica gel particles, as well as wood shavings, had the required size and granted a good T2
contrast in the light of their short transverse relaxation time compared to that of plastisol
(see Fig.3.1-A). Maps of the shear modulus distribution of three phantoms made with

Figure 3.1.: A) High resolution images of both wood shavings and silica gel uniformly distributed
throughout the phantom. Both trackers provide su�cient contrast to follow their
displacement during the phantom deformation. B) Top: reconstructed shear modulus
of the central slice of three phantoms containing di�erent concentrations of trackers.
Bottom: histograms of the G ′ distribution over the selected region (highlighted in the
white ROI).

80 % plastisol and 20 % softener and containing a 0 %, 0.25 % and 1% w/v concentration of
trackers were reconstructed from MRE data acquired using a 140Hz vibration frequency
(Fig.3.1-B). To exclude the impact of boundaries from the reconstructed storage modulus,
G′, the mean value and its standard deviation were calculated over the central region of
the 3D images. The values, reported in Table 3.1, show no signi�cant di�erence among
the three tested concentrations.

Tracker concentration 0 % w/v 0.25 % w/v 1% w/v
G′ (mean ± s.d.) 11.7 ± 0.8 kPa 11.8 ± 1.2 kPa 11.3 ± 1.1 kPa

Table 3.1.: Trackers do not impact the reconstructed G ′ of the phantom matrix.
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3.2.3. Manufacturing Protocol
The phantoms employed in our experiment were composed of 80 % of soft-grade Luresol

and 20 % of additional softener. The protocol for the making of the phantom had been
adapted from Hungr et al. (2012) [196] and Leclerc at al. (2012) [197]. 700mL of the
mixture were placed in a beaker on a magnetic stirrer at 300 ◦C. When the temperature of
the solution reached ∼170 ◦C, it was poured into a 86 × 86 × 115mm3 tin cuboidal mould
(Tinware Direct Ltd, Bedford, UK) and left to solidify at room temperature. The use of
tracking particles added an extra step in the phantom-making protocol, such that, when
the polymerisation had started but the material was still in a semi-liquid state, the trackers
were scattered into the mixture and homogeneously distributed through gentle stirring. In
the case of wood shavings, after the stirring, the mould containing the PVC solution was
placed into a vacuum chamber for 3÷5min. Stirring and vacuuming was repeated two or
three times to eliminate air bubbles that could generate artefacts in the data acquisition.
To avoid any damage to the integrity of the phantom caused by carving an access for the
inclusion, a metallic tube with the diameter of the catheter was inserted in the matrix
during the curing period and gently removed afterwards. The entire procedure takes up to
1 h 30min to make one phantom, which was left to set for a minimum of 12 h. Afterwards,
the phantom was gently removed from the mould using oil to facilitate the process. While
curing, plastisol polymerises more quickly around the walls of the mould than in the
centre, resulting in the formation of a meniscus on the open side of the mould, which was
cut o� to preserve the cuboidal geometry.

3.2.4. Foley Catheter to Mimic Tumour-Generated Stress
To reproduce the stress caused by a pressurised tumour expansion, a CH6 Foley catheter

(The Vet Store, Bradford, UK) was inserted inside the pre-made hole inside the phantom
and in�ated to di�erent levels (see Fig.3.2). This urinary catheter normally used for animal
treatments consists of a thin silicone tube with a 1.5mL compliant balloon at its extremity.
Unlike other tested balloon-tipped catheters, this one retained its elastic behaviour when
kept in�ated for the time necessary for the MR data acquisition. The in�ation with water
satis�es the assumption of incompressibility made for the analytical model, while the use
of a SOFT-JECT®Luer syringe ensured a better experimental control regarding the injected
volume. In one of the three replicates of the in�ation experiment, gadolinium (Gadovist®)
was diluted in water to a 0.3mM concentration to provide a better contrast from the
PVC phantom. With respect to larger tested balloons, the one we employed also grants a
su�ciently spherical in�ation, hence approximating the idealised deformation modelled
in Section 2.4.1. Under the assumption of a spherical in�ation, the balloon diameter and
the highest nominal injected volume was less than 20mm, more than �ve times smaller
than the phantom size to simulate the absence of boundary conditions modelled in Section
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Figure 3.2.: Cross section of high resolution images of the balloon inserted inside the plastisol
cuboid at di�erent in�ation states. The contrast between the bright plastic phantom
and the dark water allows a good identi�cation of the inclusion. The in�ation of the
employed balloon meets the sphericity requirement.

2.4 once positioned at the centre of the plastisol cuboid. In order to minimise viscous wave
attenuation, however, the pre-made channel for the catheter insertion had to be located
close enough to the side of the phantom in contact with the shear wave source used for
the MRE data acquisition.

With the developed procedure to produce the soft tissue-tumour ensemble, three repli-
cates of an in�ation experiment were carried out, consisting in the subsequent in�ation of
the balloon catheter with increasing volumes of water to probe the induced variation in
the apparent shear modulus of the material through MRE. A pressure measuring device
was also connected to the catheter to record the magnitude of the generated radial strain,
while MR images of the in�ated balloon were also acquired at each in�ation state. These
measurements were used to relate the experimental �ndings to the analytical results
obtained through the formulation developed in Chapter 2 and details on their acquisition
are given in the following sections.

3.3. Pressure Measuring System
To measure the internal pressure exerted on the phantom material surrounding the in-

clusion, an MPXV5100DP integrated silicon pressure sensor was connected to the catheter
through a series of 3-way tap stop cocks. The output is read through an Arduino®Mega
board and saved on a laptop as an ASCII �le. The measured in�ating pressure corresponds
to the average radial stress σrr , analytically calculated in Eq.2.74. A schematic of the mea-
suring setup is presented in Fig.3.3. Once inserted into the pre-made hole in the plastisol
cuboid, the balloon is in�ated in steps until reaching the maximum chosen volume. For
each in�ation, the pressure is recorded until a steady state is reached, to account for the

57



3. In�ation Experiment Using a Phantom

Figure 3.3.: A) A Foley catheter was used to mimic tumour expansion. While water was injected
inside the catheter, the generated radial stress was measured through a MPXV500DP
pressure sensor. The sensor output is then read through an Arduino®Mega board
and a connected laptop. B) Picture of the connection between the catheter and the
pressure sensor

time-dependent stress relaxation typical of viscoelastic solids. This behaviour was clearly
visible from the pressure measurements (Fig.3.4), which show a decrease of the applied
radial stress under a �xed strain until a plateau is reached. A waiting period between 5

Figure 3.4.: Two replicates of the same measurements (solid v dotted curves) show that the same
injected volume produces comparable pressure measurements. After an initial peak,
the relaxation of the viscoelastic material leads to a quick decrease in pressure, however
a waiting period between 5 and 10min is su�cient to ensure convergence.

and 10min proved su�cient to have the pressure converging to a plateau, with an average
drop of 4.1 ± 0.7 % measured after 7min relative to the 1min recording. The data acquired
over that time interval were also �tted to an exponential equation in the form p = aebt + c ,
where a, b and c are the �tting parameters, with the latter representing the equilibrium
pressure: the average extrapolated drop in pressure after 7min until convergence was by
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0.26 ± 0.07 kPa, corresponding to an average further decrease of 0.4 ± 0.1 %. Fig.3.4 also
shows the reproducibility of the pressure measurements, especially at volumes higher
than 0.1mL, where a similar uncertainty over the injected amount of water has a smaller
impact on the in�ation radius and hence on the applied radial stretch.
During the imaging process, the valve that connects the catheter to the adjacent stop cock
was closed after each measurement, the measuring sensor was disconnected to avoid the
generation of unwanted currents, and the MR data were acquired. For the entire duration
of the in�ation experiment, the time interval during which the balloon was kept in�ated at
the di�erent volumes was recorded, so that the data points could be acquired again under
the same conditions for reproducibility.

3.3.1. Linear Subtraction of Balloon Resistance fromMeasured Pressure
The pressure measured when the balloon is in�ated inside the phantom corresponds to

the combination of the pressure exerted by the balloon walls on the phantom itself, i.e. real
in�ating pressure, and of the pressure necessary to expand the compliant material that
makes the balloon, i.e. balloon resistance. The latter contribution must then be removed
from the total pressure measurement to extract the radial stress actually experienced by
the PVC cuboid. To this aim, the employed catheter was characterised and the pressure
generated at di�erent in�ation volumes was measured leaving the balloon free to expand.
Fig.3.5-A shows that, in the absence of the viscoelastic response of the phantom material,
the measured pressure converged much more quickly to an equilibrium value. Also, the
pressure-volume curve was perfectly reproducible (Fig.3.5-B), removing one source of
uncertainty from the estimation of the actual radial stress experienced by the PVC phantom
in the region of the inclusion. The initial peak in pressure at lower volumes followed by a
quick decrease and a subsequent slower pressure rise is typical of the spherical in�ation
of incompressible rubber-like balloons and can be described by several material models
present in the literature [198]. Given the simple interaction between the inclusion and
the phantom, with the balloon wall pushing against the surrounding material, we have
modelled the real in�ating pressure as the linear subtraction of the corresponding balloon
resistance from the pressure measured when the balloon is in�ated inside the phantom. An
example of a pressure-volume curve measured with the pressure sensor, the corresponding
balloon resistance obtained from the free balloon in�ation and the di�erence between the
two is given in Fig.3.5-C.

3.3.2. Inflation range
The real in�ating pressure was also a good indication of the integrity of the phantom;

the material, in fact, could only withstand a certain level of in�ation before rupturing, as
we could see when the catheter was removed and images of the holes in the phantoms at
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Figure 3.5.: A) In the absence of the material resistance, the measure pressure reaches a quicker
convergence. B) Free in�ation produces reproducible pressure measurements at di�er-
ent volumes. C) The subtraction of the balloon resistance from the pressure measured
when the balloon is in�ated inside the phantom returns the actual pressure experienced
by the surrounding material.

the position of the inclusion were acquired (Fig.3.6-A). The pressure curves analytically
calculated in Section 2.4.2, in fact, present a monotonic dependence on the in�ating volume;
therefore a drop in the stress applied by the balloon wall on the surroundings is not to be
expected and can be ascribed to a loss in the structural integrity of the soft plastic material,
as presented in Fig.3.6-B. At the selected plastisol-to-softener ratio, the maximum injection
volume to ensure the phantom integrity and still apply a su�cient strain was found to be
0.4mL.

3.3.3. Inflation Volume Estimation
The injected volume, as measured from the syringe, was found to be an imprecise

estimate of the size of the in�ated balloon; although the employed syringe provided
a 0.05mL uncertainty over the injected volume, the high resolution MR images of the
inclusion showed that the balloon did not in�ate consistently to the same volume given
the same injected amount of water throughout di�erent experiments. The intensity-
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Figure 3.6.: A) High-resolution MR image showing how large balloon in�ations lead to material
rupture. B) A drop in the real in�ating pressure indicates the loss of material integrity.
These results were obtained for a phantom made using an 80% concentration of
plastisol

based segmentation of the balloon from the anatomical MR images, carried out using
the Matlab function regionprops3 for volumetric regions, reported di�erent sizes at
the same in�ation state throughout di�erent replicates of the in�ation experiments (see
Fig.3.7-A and -B). For each instance, the volume extracted from the segmented image of

Figure 3.7.: A) Segmentation of the balloon at the di�erent in�ation states from high-resolution MR
images provides a better estimation of the volume of the inclusion. B) The segmented
volume reveals an overestimation of the injected amount of liquid, leading to a shift
of the pressure-volume curve.

the balloon in the de�ated state was subtracted from that of the other in�ation states, to
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account only for the actual in�ation ∆V . The shift of the pressure curves using this volume
measurements indicates that not all the injected water was used to in�ate the balloon.

3.3.4. Comparison with Theoretical Values
The experimentally measured radial stress applied by the in�ated balloon onto the

surrounding phantom was plotted against the relative balloon radius (a/A), calculated
as the mean of the two most similar lengths of the major axes of the segmented balloon,
idealised as an ellipsoid, to draw a characteristic stress-strain curve for the investigated
system (Fig.3.8-A). The values are displayed in Table 3.2, too. Each replica of the in�ation

Figure 3.8.: Analytical prediction of in�ation pressure curves. A) The modi�ed Mooney-Rivlin
model can �t the pressure data obtained from the three phantoms. B) Residual analysis
for the three experiments.
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experiment was repeated twice, the second time in the laboratory, outside of the MR
scanner, so that the pressure measurements are reported as the mean values and the
uncertainties re�ect the range of values covered by the two measurements. The radial
stretch, instead, was obtained from the single set of images acquired only for the �rst
repetition of each replica of the in�ation experiment. The data points obtained from three

0.1mL 0.2mL 0.3mL 0.4mL
Experiment 1 5.1 ± 1.6 kPa / 1.12 17.7 ± 0.5 kPa / 1.49 20.8 ± 0.6 kPa / 2.30 21.7 ± 0.3 kPa / 2.64
Experiment 2 8 ± 4 kPa / 1.26 18 ± 3 kPa / 1.80 20 ± 2 kPa / 2.16 22.8 ± 1.5 kPa / 2.42
Experiment 3 6.0 kPa / 1.06 9.9 ± 1.1 kPa / 1.38 19 ± 5 kPa / 1.90 24.2 ± 0.1 kPa / 2.19

Table 3.2.: In�ating pressure (kPa) / radial stretch (-) measured from the three replicas of the
in�ation experiment.

phantoms were then �tted to the proposed modi�ed Mooney-Rivlin model in order to �nd
the correlation between the analytical predictions and the experimental data. A purely
elastic version of the material law was used, as it was assumed that any residual viscoelastic
relaxation of the material had reached asymptote at the time of the measurement. A non-
constrained �t was obtained, using a nonlinear solving method based on the Generalized
Reduced Gradient algorithm (Microsoft Excel), by only imposing a physical meaning
to the parameters and forcing them to be greater than zero. The model produced a
good correlation with the data, with an r 2 of 0.96, 0.99 and 0.97 for the �rst, second and
third experiment respectively. A residual analysis revealed that the model o�ers a better
estimate of the values measured at higher in�ation states (Fig.3.8-B). The best estimate of
the material parameters, Pearson’s r 2 and squared sum of residuals (SSR) associated to the
�t are given in Table 3.3

µ1 (kPa) µ2 (kPa) r 2 SSR
Experiment 1 13.4 0 0.96 0.049
Experiment 2 11.4 0.07 0.99 0.007
Experiment 3 12.9 0.09 0.97 0.274

Table 3.3.: Data �tting of the three replicas of the in�ation experiment in phantom.

3.4. Image acquisition
MR images of the de�ated and in�ated states were acquired with a 3T Philips Achieva

Multi-Transmit scanner (Philips Healthcare, Best, Netherlands). The phantom was posi-
tioned on a supporting stage, located at the centre of the bore, and kept in position by a
back wall and top plate with adjustable height. All contact surfaces were coated with oil
to reduce the adhesiveness of the PVC. The catheter insertion direction was perpendicular
to the sagittal imaging plane. To generate the mechanical waves required for elastography
imaging we used a custom-made electromagnetic transducer described in Section 3.4.1.
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High resolution images of the phantoms were acquired in the sagittal plane using a
spin echo sequence (TR: 1394ms∗, TE: 13ms). The scan resolution was 144 × 144 voxel2

and the number of slices was arbitrarily set equal to 80 or 90. The image resolution was
0.889 × 0.889 × 0.89mm3/voxel with no gap between slices. A double SENSE Flex Large
coil was used for signal enhancement.
MR wave images, instead, were acquired using a GRE sequence [199] with motion encoding
gradients along the phase (p), frequency (m) and slice (s) encoding directions, using a
vibration frequency of 210Hz. The reconstruction method proposed by Sinkus et al. (2005)
[51, 73] and presented in Section 6.1 of this thesis, was then used to reconstruct the
corresponding 3D set of MRE data, showing the shear modulus distribution around the
inclusion. 13 sagittal slices with a 2mm isotropic resolution were acquired, each one
covering an in-plane FOV of 128 × 128mm2 centred on the inclusion. 8 time points were
sampled along the wave cycle. A number of signal averages (NSA) of 4 was used for the
acquisition to improve the signal-to-noise ratio (SNR) of the images, leading to a scan time
of ∼25min for each in�ation state.

3.4.1. MRE setup
The transducer developed for this study was based on the principle that an object

exhibiting a magnetic momentm and immersed in a magnetic �eld B experiences a torque
τ that forces the object to rotate along its axis (Eq.3.1), so that its magnetic moment aligns
to the external magnetic �eld lines

τ = m × B (3.1)

In our setup the magnetic moment was generated through an electric current running
through a solenoid and is proportional to the applied current i , the surface area of the
solenoid S as well as the ratio between the number of turns and the axial length of the coil
N /l

m =
N

l
iS (3.2)

The application of an alternating current, rather than direct current, results in the oscilla-
tion of the solenoid around the rotational axis, with amplitude and frequency dependent
on the parameters of the waveform, on the geometry of the solenoid and on the inten-
sity of the external magnetic �eld. The generated torque is transmitted to the phantom
through a connecting push-pull rod linked to a piston, the motion of which is limited to
the z-axis of the bore through Lego supports. A schematic representation of the transducer
is shown in Fig.3.9. The sinusoidal input current was generated by means of a AFG3000C
Arbitrary/Function Generator (Tektronix) through which it was possible to adjust the

∗1239ms for the third phantom experiment
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Figure 3.9.: Schematic representation of the developed mechanical transducer. Image modi�ed
from Capilnasiu et al. (2018) [86].

frequency and amplitude of the waveform. The output passed through a 600 W STA-500
power ampli�er (Stage Line) before being fed to the coil in the actuator.

3.5. Discussion
A list of the main results reported in this chapter is presented in Table 3.4

In this chapter we have provided the details of the experimental setup used for the phantom
investigation of the variation in shear modulus generated by a pressurised inclusion onto
the surrounding simulated soft tissue. Di�erent types of phantom materials used to mimic
the mechanical properties of human soft tissue for both MRE and ultrasound validations
have been described in the literature, most of them carrying limitations either to provide a
realistic option for elastography studies or because of long-term instability. For this work
we have initially attempted to use an agar-gelatin mixture following the �ndings of Pavan
et al. (2010) [200], as well as para�n wax and silicon elastomer. In both cases the produced
cuboid did not satisfy the requirements necessary for our experiments: the agar-gelatin gel
was too brittle and fractured even at moderate strains, while the para�n mixture did not
show the desired nonlinear stress/strain behaviour. Plastisol, on the other hand, proved
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Main results

A soft plastic material, capable of mimicking soft tissue nonlinear mechanics, was identi�ed.

A CH6 Foley catheter, inserted into a plastisol cuboid, was used to reproduce tumour growth.
The generated pressure was measured through a pressure sensor connected to the catheter.

The hyperelastic material model developed in Ch.2 could �t the in�ating pressure produced by
the balloon pushing again the surrounding soft plastic material.

Silica particles were added to help tracking the deformation generated by the in�ated balloon. In
a concentration of 1 % w/v, they were found not to impact the shear modulus of the material,
reconstructed from MRE data acquired in the absence of macroscopic strains.

Table 3.4.

capable of sustaining the strain generated by a spherical inclusion with a diameter .1 cm,
comparable with the size of a small primary tumour [201]. MRE tests on plastisol phantoms
presented in the literature have reported similar elastic and viscoelastic properties to that
of healthy soft tissue, both in terms of sti�ness and nonlinear strain-stress relationship
[197], making this material an ideal choice for our experiment. Furthermore, the simple
manufacturing permitted a better reproducibility of the phantom mechanical properties
through di�erent replicates of the experiment. A deeper characterisation of the material
at di�erent plastisol-to-softener ratios is reported in Ch.5. Madsen et al. (2003) underlined
a higher wave attenuation, compared to that of soft tissue, in a plastisol sample at the
frequency range employed in US elastography [202]; although less relevant, given the
lower working frequency, we experienced a similar issue at with 210Hz shear waves,
which forced us to locate the inclusion closer to the surface in contact with the transducer,
at a distance of ∼20mm. The problem could not be addressed by reducing the vibration
frequency, as the corresponding wavelength was too long to correctly resolve the inclusion
and to reconstruct the shear modulus around it.

The addition of silica gel or wood shavings to the PVC mixture, with their sub-millimetre
size and di�erent contrast from that of the phantom matrix, provided additional features to
facilitate the image registration. In addition to those, we have also attempted to use other
particles normally employed in phantoms used for US applications, such as agar-droplets,
according to the oil-in-agar/gelatin dispersion preparation procedure described by Mardsen
et al. (2003) [202] or glass beads, as employed by Li et al. (2015) [203] in soft PVC material.

66



3. In�ation Experiment Using a Phantom

Both trackers, however, were less suitable than the chosen ones: the agar-droplets due
to a more complicated manufacturing process, while the glass beads because of their
large diameter (∼0.7mm), which hindered the �ne mapping of the deformation �eld. At
the investigated concentrations, the employed scattered particles also did not appear to
a�ect the shear modulus of the matrix as measured through MRE in a strain-free situation,
granting homogeneous mechanical properties throughout the phantom. Compression
of inhomogeneous media, in fact, would produce a di�erent deformation �eld from the
expected one, creating unusual strain patterns [183]. Chapter 5, however, will show that
motion trackers do impact the nonlinearity of the stress-strain response of the phantom
matrix at higher strain.

A CH6 Foley catheter in�ated with water was used to mimic the tumour expansion and
the generated stress. The maximum in�ation volumes, provided that an access hole for the
catheter was pre-made during the phantom matrix polymerisation, was limited to 0.4mL,
to prevent the risk of material ruptures. The use of water over air was chosen to satisfy
the assumption of incompressible deformation made for the analytical modelling. To this
end, prior to the in�ation, the catheter line and all connections were pre-�lled with water,
to make sure that all the injected volume was used to in�ate the balloon. Nevertheless,
the segmented high resolution MR images revealed that the balloon size was not constant
at a �xed in�ation volume, which, in addition, was always overestimated; this could be
ascribed to factors such as the presence of residual air bubbles that get compressed during
the water injection, as well as to the slight expansion of the mildly compliant catheter line,
which reduce the actual volume used to in�ated the balloon.
Finally, the real in�ating pressures associated to the investigated in�ation volumes have
been obtained by subtracting the resistance o�ered by the balloon membrane from the
measured pressure values. The agreement with the predicted theoretical behaviour sup-
ports the validity of the assumption of the linear contribution of the two terms for the
explored strain range.

Under the assumption of a spherical in�ation, the radial stretch was calculated from the
segmentation of the balloon at di�erent in�ation states from the acquired high resolution
MR images; a more accurate estimate of the deformation �eld, however, can be obtained
through non-rigid registration of the same images. Knowledge of the local directionality
and intensity of the deformation can help correlate the compression/tension probed by
the shear waves used in elastography with the experimentally detected apparent shift
in the material parameters, as explained in Chapter 6 of this dissertation. Details of the
strategy employed to non-rigidly register the acquired images, of its in silico validation
and examples of strain estimates obtained from phantom data as well as in vivo will be
presented in the following chapter.
A viscoelastic characterisation of the tissue-mimicking plastisol material will instead be
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presented in Chapter 5 of this thesis, to assess the nonlinear stress/strain behaviour of the
employed mixture. The identi�cation of a suitable strain energy density function, capable
of capturing the rheological response of di�erent PVC samples when subjected to macro-
deformations as well as harmonic micro-deformations comparable to those generated by
the probing shear waves in MRE, will also determine the possibility to apply the analytical
framework developed in Chapter 2 to the chosen material.
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A reliable estimation of the strain in and around tumours is required for computing the
forces and pressures involved. The analytical �ndings presented Chapter 2 suggest that,
due to nonlinear tissue rheology, the strain generated by a pressurised tumour can alter the
mechanical properties of its surroundings, leading to a variation in the shear modulus as
measured through MRE. Knowledge of the deformation �eld generated by the expanding
mass allows accounting for those alterations and enables an indirect quanti�cation of
the underlying static forces. In the realm of medical imaging, such deformation can be
retrieved from the post-processing of the acquired images of the undeformed and deformed
object. Registration of the two images is normally used to de�ne the spatial transformation
that connects the two images, allowing the calculation of the corresponding displacement
and strain �elds.
In this chapter we will initially give an overview of the existing image registration methods,
focusing on non-rigid registration techniques and their applications in medical imaging.
A ground truth in silico model, consisting of a high resolution MR image of the liver
embedded into a tetrehedral mesh was developed to apply realistic deformations to real
contrast image and will be presented in Section 4.2. This model was employed to optimise
the chosen registration strategy and to test its ability to recover realistic deformations
similar to those expected in a pressurised tumour environment. The estimation of the
strain generated by an in�ated balloon inside a soft tissue-mimicking cuboid, as well as
around solid tumours subjected to external compression in murine and human cases, will
follow in Section 4.3. A �nal discussion on the limitations of the registration strategy in
the investigated cases is provided in Section 4.4.

4.1. Image Registration in Medical Imaging

4.1.1. Overview of Existing Image Registration Methods
Image registration is the process of warping of one or more images to match another

one. The goal of image registration is to determine a spatial relation between each voxel of
the deformed image, or moving image IM (X ), and the corresponding position in the �xed
image IF (x). Mathematically, the registration problem consists in �nding the displacement
U (X ) that de�nes the transformationT (X ) = X +U (X ) such that the deformed moving
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image IM (T (X )) best approximates IF (x) by some speci�ed metric.
The concept of image matching and the best registration methodology to employ are
greatly dependent upon the information needed from the registration process and the
characteristics of the input images. Depending on the application, one can seek structural
correspondence between the same anatomical structures, or functional correspondence,
where functionally equivalent areas are aligned [204]. The task is relatively simple in the
case of a rigid body undergoing a rigid displacement, however it can become extremely
complicated in the case of a non-rigid deformation of elastic and deformable objects, where
an ideal transformation that produces a perfect matching is rarely achievable. By de�nition,
a rigid transformation is a combination of a rotational and translational motion and, in a
3D space, is de�ned by 6 parameters. Historically, this transformation was successfully
employed for the registration of multi-modal images of the same patient, where a rigid
body approximation was usually su�cient to compensate for the little displacement [205,
206]. The a�ne transformation is the simplest example of a non-rigid deformation, which
adds global shear and scaling properties to the rigid object. With the exception of a few
rigid structures, however, the deformation of the anatomical parts of the human body
cannot be described by such approximations [207]; therefore, nowadays, rigid and a�ne
transformations are only used for the registration of bones [208] or as pre-registration
to obtain a better initial alignment prior to a curve registration [209, 210]. Given the low
resolution and the high level of noise, a�ne registrations are sometimes also used with
ultrasound images [211].
The majority of the registration algorithms used in medical imaging, on the other hand, are
now based on curvilinear transformations, to adapt to the non-rigid behaviour of human
soft-tissues during imaging or surgery [212]. Obviously, much work is still being done to
optimise and improve the performances of registration algorithms that rely on non-rigid
transformations, which are generally characterised by: 1) a longer computation time
compared to their rigid counterparts, due to the comparatively high number of parameters
to be estimated; 2) an asymmetric resulting transformation, which describes only the
pixel-wise warping of the moving image to match the �xed one and not the inverse; 3)
the possible existence of more than one deformation �eld that returns an equally good
alignment, especially when the registration is based on geometrical features [204].
The de�nition of the model used to describe the transformation is only one part of the
implementation of a registration algorithm; a similarity measurement, to evaluate the
quality of the alignment between the two images, and an optimisation process to itera-
tively �nd the parameters that minimise the cost function are also essential requirements.
Traditionally, similarity measurements operate in the spatial domain of the images and can
either be geometric based, where the anatomical information provided by sparse features
contained in the image is used, or match the voxel characterised by a similar intensity in
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the so-called intensity-based methodologies. Commonly, these methods are based on the
correspondence between control points that are manually or automatically selected in
the images to be matched. The deformation of the regions around the control points is
propagated by interpolation. Of course, a �ner control point grid results in a more accurate
registration, at the expense of its computing time [213, 214]. Rigid or a�ne registration
algorithms based on voxel intensity have shown robust alignment in multi-modality image
registration [215], although the same results are hard to achieve with non-rigid transfor-
mations, due to the common assumption of constant intensity between the two images
included in most algorithms based on elastic or �uid deformations [216, 217, 218, 219].
Alternative methodologies operating in the frequency domain have also been developed,
achieving optimal results with simple transformations [220].

4.1.2. Non-Rigid Image Registration
Most of the real-world applications of image registration in clinics focus on the use

of non-rigid transformations [204]. These techniques are necessary as the deformations
are normally complex and will not be able to be represented by simpler transformations,
such as rigid or a�ne. In general, image registration algorithms can be divided into two
categories according to the non-rigid transformation employed: in the case of guided
transformations, material properties are assigned to the various structures in the moving
image, so that the deformation is guided by a physical model; on the contrary, in the case
of free-form deformations (FFD), no physical constriction is enforced and any deformation
is permitted.

Among the most used transformations employed over the last two decades is the family
of splines. Spline-based algorithms have been developed in various forms, all of which
make use of spline functions to maximise the correspondence of those points away from the
control points. Thin-plate spline (TPS) [221] is a guided coordinate transformation based
on deformable solid properties [222]. In the algorithms that make use of TPS interpolation,
the similarity measurement is regularised by a bending energy term [223]. TPS-based
registrations are global, as a perturbation in the position of one of the control points has
an e�ect on the whole deformation; this is one of the issues with TPS, as it limits the
complexity and the variability of the control point grid [204]. It has also been argued that
the use of TPS models might be more appropriate in the design of metal plates rather than
for medical imaging problems [214], although an extensive use has been made in the �eld
of schizophrenia brain imaging [224, 225, 226].
Elastic models based on elastic body splines (EBS) represent an outgrowth from TPS and
are developed following a similar procedure [214]. Unlike TPS, however, the development
of which was based on the bending of a thin metal sheet, EBS technique treats the content
of the 3D image as a homogeneous, linear-elastic solid subjected to deformation forces
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obtained from the similarity measurement [227]. Linear elasticity can provide a good
description of the mechanical behaviour of many tissues in the human body [214], although
this approximation is only valid for small image di�erences and hence is not ideal for
large deformations. The propagation of the transformation in the neighbourhood of the
control points is then guided by the equations of Navier until the deformation forces
opposed to the internal elastic ones reach an equilibrium [228]. This, like for TPS, is a
consequence of the minimisation of an associated elastic energy [228, 229]. EBS is best
used for the recovery of the deformation applied to a phantom/patient and there is no
reason to use it when no deformation is involved, as in the alignment of multi-modal
images. Of course, the quality of the registration can be a�ected by the assumptions of
homogeneity and linear elasticity, which often do not apply to body tissues. EBS also
requires the speci�cation of the Poisson’s ratio for the calculation of the internal forces,
which is not needed for TPS. Lastly, given the coupling of the deformation equations in
all three directions, solving the registration problem requires increased computation and
storage capabilities compared to TPS.
Similar to EBS, other elastic registrations based on �nite element (FE) models divide the
moving image into cells and assign a description of the physical properties to each of them
[212, 230]. Although these models allow a better control of localised deformations, they
are usually di�cult to evaluate and can su�er the inter-subject variability of the elastic
parameters of tissues [213]. Nevertheless, they have been successfully applied in the �eld
of head surgery [212, 231].

Other guided non-rigid registration techniques treat the registration problem as a
di�usion problem. This is the case of the algorithms based on optical �ow [232], where
the structures in the moving image deform to match those contained in the �xed image,
leading to a minimisation of the energy in the physical model employed. A well-known
registration technique inspired by the optical �ow is the demons algorithm [216]. This
non-rigid algorithms is based on Maxwell’s demons, introduced to solve the Gibbs paradox
in thermodynamics, in the sense that the motion of the content of the moving image is
regulated by entities (demons) that act according to local characteristics of the images.
The role of polarity becomes crucial in this di�usion model, as the boundaries of the
objects in the �xed image are treated as semi-permeable membranes, and the di�usion of
the model points through them depends on their inside-outside position. Unlike elastic
models, �uid-based transformation allow larger deformations and are sometimes used
after elastic registrations [217]. Like the other optical �ow techniques, the demons method
is fast and can provide very good results, although it also shares the limitation given by the
assumption of constant intensity between the images, often broken in the use of medical
images. Moreover, the theoretical basis of this algorithm has not been totally understood
yet, making it di�cult to predict its failures and their reasons [233].
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As mentioned earlier, FFD curved transformations allow any deformation and do not
rely on the guidance of physical models. This kind of registration usually aims to deduce
the displacement of a grid of control points to produce a smooth transformation. The
deformation is locally de�ned, as each individual control point moves following an optimal
direction; hence, the scale of the registration is de�ned by the selected spacing in the grid.
The transformation of the regions around the control points is propagated by interpo-
lation: linear interpolation can be found in the literature [234], although B-splines are
probably the most popular interpolators [235]. As a consequence, the total transformation
of the image is given by the coe�cients that determine the combination of the basis
function B-splines that optimise the similarity measurement. The great advantage of the
registrations based on free-form B-splines, compared to other non-rigid algorithms that
make use of control points, like TPS or EBS, is that the deformation is locally supported,
which means that the perturbation of a control point a�ects the transformation only in
its vicinity. This property makes B-splines particularly e�cient under a computational
point of view, although it introduces the necessity for an initial alignment of the images to
correct for global misregistrations [213]. On the downside, this technique can require spe-
cial measures to prevent folding, which can become more di�cult at �ner resolutions [204].

For the in�ation experiment developed and presented in Chapter 3, we require a nonrigid
image registration technique to map and quantify the strain generated by the simulated
pressurised tumour onto its surroundings. The image registration strategy must be able to
handle the large in�ations required to probe the nonlinear behaviour of the plastic material
chosen to mimic the mechanical properties of soft tissue. A local approach is preferable,
especially to account for the more complex deformations that can be encountered in an in
vivo or clinical scenario, when additional endogenous and external forces come into play.
The chosen registration strategy, together with its optimisation and validation through
the use of a ground truth in silico model is presented in the following section.

4.2. Development of a Ground Truth in SilicoModel
In order to implement an image registration strategy capable of estimating the strain

generated by an expanding tumour, we developed a ground truth in silico model where
a high resolution image was subjected to realistic deformations. Such an image was
embedded into a mesh grid that can be deformed according to physical constraints using
numerical methods. This would provide a ground truth deformation �eld to be compared
with the one estimated from the image registration process. Furthermore, the use of an
anatomical MR image of a tumour mass allows to optimise the registration process on a
real contrast image, hence granting improved performances in clinical cases. This section
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will present the details of the implemented image registration process and its validation
using the developed ground truth model.

4.2.1. Image Embedding
To apply a realistic deformation to a high resolution anatomical image, we embedded

the selected image into a tetrahedral mesh grid using Matlab’s interpolation algorithm
griddata. The element quality as well as the number of tetrahedral elements are im-
portant characteristics of the mesh grid, as they de�ne the quality and computational
time of the interpolation process. The tetrahedral grids employed for the in silico model
were produced using the modelling software COMSOL Multiphysics®, which ensured
a good element quality, an example of which is given in Fig.4.1-A. A higher number of
elements results in a better sampling of the embedded image and in a higher resolution
of the grid (Fig.4.1-B): in our case we have used ∼2.9 node/voxel for each interpolated
image, regardless of its resolution, leading to a sub-voxel sampling. The intensity of each
node can then be re-interpolated into a voxel grid using the Gauss-Legendre quadrature.
Fig.4.1-C shows the comparison between the original image, I1, and the same image after
interpolation into a mesh grid and re-interpolation into a voxel grid, I2; the percentage
di�erence between the voxel-wise intensity of the two images, given as

Di�erence% = 100 × 1
N

N∑
vox=1

I1vox − I2vox
I1vox

(4.1)

reveals that the whole process produces an average error of ∼10 %, with higher values
in correspondence of the darkest regions and where edges are more pronounced. Image
embedding into a mesh grid allows to include the physics of the deformation into the model
and to test and optimise the image registration method onto 3D images characterised by
real contrast. An example of all the steps, involving the interpolation of the original image
into a mesh grid, its re-interpolation into the previous voxel grid after the application of a
deformation �eld and the �nal registration process is presented in Fig.4.1-D.

4.2.2. Non-Rigid Image Registration Method and Optimisation
Medical image registration technology has been around for about three decades and a

large number of open source software solutions have been proposed (see Oliveira & Tavares
(2014) for a comprehensive list [235]). Widely-used open source image registration software
packages include ITK [236] and Elastix [237, 238], both coded in C++. We explored the use
of SimpleElastix [239], a free open-source extension of the software package SimpleITK
(based on the ITK library) that includes the collection of registration algorithms contained
in Elastix. SimpleElastix provides two types of curved transformations: one based on
B-Splines and one on TPS. In light of its enhanced applicability for non-rigid registration in
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Figure 4.1.: Deformation of embedded image into mesh grid. A) COMSOL Multiphysics® ensured
a good element quality throughout the mesh. B) A higher number of elements allows
a better sampling of the image, for a more accurate preservation of the features. C)
Using a su�ciently �ne mesh, the process of embedding and re-interpolation of an
image produces an average di�erence of ∼10 % of the original one. D) The generation
of a ground truth deformation involves the embedding of the original image into a
mesh grid, which is deformed using a known deformation �eld; the warped image is
then re-interpolated from the mesh into a voxel grid and used as objective image for
the registration process.

the context of medical imaging and given the need of a transformation capable of correctly
estimating the local displacement generated around the in�ated balloon, we decided to
use the “BSplineTransform”, which is based on the B-Splines FFD algorithm presented
by Rueckert et al. (1998) [213]. This performs a non-rigid registration between two
datasets and returns a displacement �eld which relates the two images. The corresponding
Green-Lagrangian strain tensor E can then be calculated using Eq.2.2. To iteratively
�nd the optimal transformation parameters, the Adaptive-Stochastic Gradient Descent
optimisation algorithm [240] was employed, which represents a more robust version of
the standard gradient descent. The non-rigid registration algorithm was optimised on
a 3D high resolution MR dataset of a liver tumour with a 0.983 × 0.983 × 4mm3/voxel
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resolution and covering a �eld of view of 137.62 × 117.96 × 24mm3 with a 1mm slice gap.
The image was arti�cially warped applying an in-plane radial outward deformation in the
form r ′ = r +Ae(−r

2/(2σ 2)) centred roughly at the position of the centroid of the tumour.
Here r and r ′ refer to each voxel position prior to and after the deformation, while A and
σ are two parameters that scale and shape the deformation �eld.

Among the many possible components o�ered by SimpleElastix that can be tuned to
optimise the quality of the registration outcome, we have identi�ed a couple of crucial ones
to obtain good results in a reasonable computation time. The �rst one would be the choice
of the similarity measure used to iteratively guide the registration. We have investigated
the use of four di�erent metrics o�ered by elastix [237]: mean squared di�erence (MSD),
normalised correlation coe�cient (CC), mutual information (MI) and normalised mutual
information (NMI). The �rst row of Fig.4.2 presents the overlay between the objective
image and the warped moving image obtained integrating the various similarity measures
into the registration process. In the second row, the percentage di�erence between the

Figure 4.2.: The choice of the metric is an important component of the registration process. The
use of di�erent metrics leads to a better or worse matching to the objective image
(�rst row). Based on the percentage di�erence between the L2-norm calculated for the
ground truth deformation and that obtained from the estimated one, MI provides a
better agreement between the objective and the warped moving image (second row).

L2-norm of the ground truth deformation and that of the registration estimate shows the
local quality of the registration process. The use of the two intensity-based measures,
MSD and CC, yields very similar results, with higher percentage errors in the region
characterised by a poorer contrast. MI provides a better matching between the warped and
objective image, with high errors only in the immediate centre of the radial deformation
�eld and a general di�erence lower than 10 %. NMI, on the other hand, showed a very
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lengthy convergence, obliging to reduce the sampling used to iteratively calculate the
similarity measure by a factor of 10. Nevertheless, despite making the computational time
comparable with that achieved with the other metrics, the limited sampling produced
convergence issues, leading to large errors throughout most of the 3D image. Overall, the
use of MI proved to combine an accurate registration to a reasonable convergence time for
clinical applications.

The spacing of the grid of control points used in the B-Spline based non-rigid trans-
formation was found to be a second crucial component to determine the quality of the
registration. Using the chosen similarity metric, we could see how a too large voxel spacing
between the support grid nodes leads to an excessively smooth deformation �eld, while a
too close distance between the control points makes the registration process too sensitive
to noise, hence producing an over-�tting (Fig.4.3). The use of more than one resolutions

Figure 4.3.: The voxel spacing between each node of the B-Spline grid is crucial for an accurate
recovery of the true deformation �eld. A too wide spacing could not be able to correctly
capture the true deformation, while a too narrow spacing can lead to over-�tting.

with an increasing grid density helps matching subsequently smaller structures up to the
�nal precision.
Many other components need to be carefully tuned to successfully perform the non-rigid
registration and some chosen examples are presented in Table 4.1. For an explanation of
the meaning of each parameter, the Elastix manual should be consulted [237].

4.2.3. Validation on Simulated Realistic Deformations of a Real Image
To validate the implemented non-rigid image registration scheme, we have applied a

range of realistic deformations to a di�erent high resolution T2-weighted anatomical MR
image of a solid liver tumour embedded into a tetrahedral mesh. The ability to recover the
ground truth deformation will provide an insight into the potential and the limitations of
the registration process. To simplify and accelerate the testing protocol, the extent of the
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Component Choice Component Choice
Registration MultiResolutionRegistration Transform BSplineTransform

Metric AdvancedMattesMutualInformation BSplineTransformSplineOrder 3

NumberOfHistogramBins 128 FinalGridSpacingInVoxels 5

ImageSampler RandomSparseMask GridSpacingSchedule 6.0 2.5 1.0

NumberOfSpatialSamples 1000 5000 15000 Optimizer AdaptiveStochasticGradientDescent

MaximumNumberOfSamplingAttempts 8 NumberOfSamplesForExactGradient 4096

NewSamplesEveryIteration true MaximumNumberOfIterations 4000 4000 8000

Interpolator BSplineInterpolator NumberOfResolutions 3

BSplineInterpolationOrder 5 FixedImagePyramid FixedShrinkingImagePyramid

Resampler DefaultResampler MovingImagePyramid MovingShrinkingImagePyramid

ResampleInterpolator FinalBSplineInterpolator ImagePyramidSchedule 6 6 6 2 2 2 1 1 1

FinalBSplineInterpolationOrder 5

Table 4.1.: Example of the components used for the non-rigid registration.

chosen dataset in the transverse plane was limited to 3 voxels. The total FOV covered by the
image was 192 × 192 × 12.8mm3 with a resolution of 2 × 2 × 4mm3/voxel and a slice gap
of 0.4mm. Each applied deformation was limited to be in-plane and repeated at each slice.
The SimpleElastix registration software was then employed to warp the moving image to
match the objective one through a multi-resolution B-Spline approach that follows the
implementation presented in the previous section and to extract an estimate of the true
deformation �eld. A mask was applied to focus the registration on the regions of interest.
Synthetic phantoms of increasing complexity in strain �eld were constructed as follows:

1. We initially tested the registration on a 2D a�ne transformation of the image,
involving rotation and shear. This simple case was chosen to gain an understanding
of how well the registration software can deal with a global deformation.

2. We then applied a radial in�ation to the underlying mesh, centred in the mid-
position of the tumour. This deformation was thought to reproduce an ideal spherical
expansion of the core of a tumour due to internal pressures.

3. Incompressibility was then included in a �nite element method (FEM) simulation of
a uniaxial deformation of the embedded image in a tetrahedral grid using COMSOL
Multiphysics®. Zero displacement was imposed to one side of the mesh and a load
resulting in a 10 % compression to the other. Linear elasticity was assumed, with
an isotropically distributed Young’s modulus of 1 kPa, density of 1000 kgm−3 and
Poisson’s ration of 0.499. The numerical solution of the physical problem de�ned by
such conditions aimed to provide a simulation of macroscopically compressed soft
tissue.

4. Finally, we tested the registration on a more complex local deformation, where the
same �ve randomly selected points in each slice were subjected to a random in-plane
displacement between 3 and 5mm; the deformation was then propagated to the rest
of the image through TPS. Zero displacement was imposed on the four corners of
each slice. No physical constraint was applied in this case.

78



4. Strain Estimation

For each deformation, the overlay between the original and deformed images is shown in
the �rst column of Fig.4.4. The second and third columns present a comparison between the

Figure 4.4.: Four di�erent deformations were applied to the same liver tumour image to validate the
implemented registration on a real contrast image. First column) Overlay between the
original (green) and deformed (magenta) image. The red lines represent the applied
deformation �eld. Second column) L2 norm of the true deformation �eld used to
generate the objective image. Third column) Estimated deformation �eld provided
by image registration. Fourth column) Percentage di�erence between the estimated
and real deformation normalised over the latter. The location of the tumour mass is
highlighted in all images.

L2 norm calculated for the true and the estimated deformation �elds, while the percentage
di�erence with respect to the true deformation is shown in the fourth column. This
percentage di�erence represents the pixel-wise error in the estimation of the true image
deformation and is the chosen metric to indirectly assess the quality of the registration
process in this particular context. A good estimation is particularly important in the
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3-dimensional region of interest (ROI) where the tumour is located, which is highlighted
in all the images in Fig.4.4; moreover, a quanti�cation of the fraction of pixels in the ROI
with an error of less than 10 %, 15 % and 20% is provided in Table 4.2. In all four cases,

Deformation No. Voxels < error threshold
thresh = 10% thresh = 15% thresh = 20%

A�neROI 52.9 % 97.2 % 99.2 %
RadialROI 19.2 % 90.1 % 92.0 %
IncompressibleROI 1.1 % 99.9 % 100%
LocalROI 25.5 % 50.4 % 71.8 %

Table 4.2.: Quality of estimated deformation based on relative di�erence from ground truth.

the registration manages to retrieve the general trend of the deformation. From Table 4.2,
however, it is evident that the registration presents some limitations in the accuracy of
the estimation, with only a small fraction of the voxels having an error lower than 10 % in
three out of four cases. Only in the case of the a�ne transformation is the quality of the
estimation clearly better, with around half of the voxels contained in the ROI having a
deformation di�erence lower than 10 % and with 97.2 % of the voxels falling below the 15 %
threshold. The registration of the radially deformed image also presents similar �gures
for the 15 % error threshold in the tumour region and its immediate surroundings. Due
to the nature of this transformation, however, the registration software fails to produce
a correct estimate of the deformation in the few mm around the centre of the simulated
in�ation, with the estimated deformation di�ering by more than 50% from the ground
truth; nevertheless, connecting this case to the phantom experiment we developed, a
good estimation is particularly important at the interface between the balloon and the
outside plastic material. This location corresponds to the position of the tumour rim,
where the solid and liquid stress components act on the hosting soft tissue, which here lies
in proximity of the edges of the ROI. In such regions the errors are clearly lower than 15 %.
The implemented registration can also reliably handle the more realistic case provided by
the FEM simulation of an incompressible deformation, with a roughly uniform percentage
variation over the entire image and with the totality of the pixels in the ROI falling below
the 20 % error threshold. The voxel-wise calculation of the determinant of the Jacobian
matrix of the deformation �eld returns an estimation of the local preservation of the
volume: the average value in the highlighted ROI is 1.05 ± 0.03 (mean ± s.d.), con�rming
a good recovery of the incompressibility of the deformation. As regards the last case,
despite a still good correlation between the �xed and the warped moving image (CCROI =
0.9984), the registration is not quite able to recover the underlying deformation correctly.
Compared to the other deformations, in this case half of the pixels in the ROI present
a percentage error in the estimated deformation equal or greater than 15 %. This result

80



4. Strain Estimation

identi�es a limit to the capability of the implemented registration to deal with contrived
complex deformations, especially if involving local displacements in di�erent directions.

4.3. Strain Estimation in Phantom, in Vivo Preclinical Images

and Patient Data
The implemented image registration method was then used to estimate the deformation

generated by the in�ated catheter balloon during the in�ation experiment. The obtained
strain would allow a direct correlation between the applied deformation probed by the
shear waves and the variation in shear modulus experimentally measured through MRE.
Preliminary tests on in vivo preclinical and clinical images of lesions subjected to di�erent
macro-compressions were also carried out to assess the employability of this registration
scheme in more complex cases, where additional external forces come into play. A list of
these tests is reported in Table 4.3.

Phantom In vivo Patient
Foley catheter inside 80 % plastisol

cuboid
Subcutaneous tumour in murine

model Breast �broadenoma

4 levels of radial in�ation 3 levels of uniaxial compression
from one side 3 levels of external compression

Images from collaborators at LBI,
INSERM, Paris (F)

Images from collaborators at KCL,
London, (UK)

Table 4.3.: List of the test carried out to assess the quality of the image registration in di�erent
settings.

4.3.1. Balloon Inflation
For the in�ation experiment, the balloon was in�ated with four di�erent volumes of

water and MR images of each state were acquired. Non-rigid image registration was carried
out to warp the image of the de�ated balloon to match that of each in�ation state. Overlay
of the central slice of the images before and after the registration, presented in the �rst
and second columns of Fig.4.5 showed an adequate alignment in all cases. The estimated
displacement, reported in the third column, is close to zero in the �rst two in�ated states;
this can be ascribed to the uncertainty in the injected volume discussed in Section 3.3.3, as
the segmented volume was much lower than the injected one (0.02 and 0.07mL instead
of 0.1 and 0.2mL). The deformation obtained for the two other states reveals a favourite
direction of in�ation of the balloon and reports a generated displacement up to ∼4mm. A
vectorial representation of the deformation �eld is presented in the �fth column. Given
the spherical nature of the deformation, the use of polar coordinates is more appropriate
for the estimation of the generated strain. The fourth column reports the circumferential
strain induced by the growing inclusion onto the surrounding material. As expected the
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Figure 4.5.: First column) High resolution MR images of the in�ated balloon overlaid on the
corresponding image of the de�ated state. Second column) The de�ated balloon is
warped to match each in�ation state. The quality of the registration is con�rmed
by the low number of non-matching features in green and magenta. Third column)
L2 norm of the deformation �eld estimated through the registration process. Fourth
column) Circumferential strain calculated from the estimated deformation. Fifth
column) Vectorial representation of the estimated deformation �eld.

strain gets more intense with the amount of water injected inside the balloon and, in line
with the results obtained in Section 2.4, fades quickly to less than 10 % just a few mm away
from the edge of the inclusion, which can however represent a limitation for the detection
of the associated shift in shear modulus in the phantom investigation.

4.3.2. Murine Tumour Compression
The implemented image registration strategy was further tested on in vivo MR images

of subcutaneous tumours implanted in a murine model (provided by LBI, Université Paris
Diderot, Sorbonne Paris Cité, Inserm). The tumour masses were subjected to several levels
of uniaxial compression, leading to the generation of complex strain patterns due to the
heterogeneous biomechanics of the malignancy and of the surrounding soft tissue. A
reasonable strain estimation could be useful to investigate the rheology of the lesion and
of its host tissue and, in combination with MRE data, to explore the associated impact on
their biomechanical properties.
Here, two datasets were employed: the �rst mouse dataset (Mouse 1) contains 130 ×
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100 × 130 voxel3 images with a 0.2 × 0.2 × 0.197mm3/voxel resolution. The images from
the second dataset (Mouse 2) have the same resolution but a di�erent size: 130 × 100
× 150 voxel3. The anatomical images are presented in Fig.4.6. Here, c0 refers to the
uncompressed case, while c1, c2 and c3 refer to the compression generated with a 1, 2
and 3mL in�ation of the employed balloon. For both datasets, the registration produced

Figure 4.6.: Anatomical images used for the registration process to estimate the generated strain
at the various levels of compression. Here c0 refers to the undeformed state while
c1, c2 and c3 refer to the injection of 1 mL, 2 mL and 3 mL of air inside the balloon
used to apply the compression. The top row shows the images obtained from Mouse
1, while in the second row are the images from Mouse 2. Size bar = 10mm

more accurate results when attempting to register each state to the subsequent one (e.g.
c0 to c1, c1 to c2, etc.), hence estimating a smaller deformation, rather than warping the
uncompressed state to match all the others. The overlay between the image of each state
(moving image) and the subsequent one (objective image) are presented in the �rst row of
Fig.4.7-A1 and -B1 for Mouse 1 and Mouse 2 respectively, while the second row shows the
overlay obtained after the non-rigid registration. For all cases, it is immediately apparent
that the number of non-matching features dramatically diminishes with the warped images,
con�rming the quality of the registration scheme when applied to this case. The quality
of the registration was quantitatively assessed calculating CC over the tumour region:
this test has been carried out using the original images together with the objective ones
and comparing the results with those obtained using the registered images, warped using
the estimated deformation �eld, and the objective ones (Fig.4.7-A2 and -B2). While in
Mouse 1 the �rst comparison (blue bars) produces roughly the same score throughout all
3 compression cases, the amount of overlaid features decreases dramatically in the c1toc2
and c2toc3 cases of Mouse 2, where the applied deformation is larger, as visible from the
overlaid images. In the light of a smaller deformation, the registration produces a better
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Figure 4.7.: A1,B1-top row) Overlay of the moving (green) and objective image (magenta) prior
to the registration. A1,B1-bottom row): Overlay of the warped (green) and objective
image (magenta) after the registration process. The columns correspond to the registra-
tion of the compressed state c0, c1 and c2 to match the subsequent state, respectively.
A2,B2) The quality of the registration has been assessed calculating the correlation
coe�cient for both mice. The blue bars show the score obtained when comparing the
objective image with the original one prior to the registration, while the orange bars
refer to the same test applied to the objective and moving image after the registration.
For this test, only the voxels inside the mask were considered.

score (orange bars) in the Mouse 1 case, with an average CC of 0.91, than in the Mouse 2
case, where the average CC is 0.86. Nevertheless, the improvement in the image matching
is more evident in the latter, where CC improves by 20, 60 and 50 % in the c0toc1, c1toc2
and c2toc3 cases, compared with the 27, 20 and 40 % of Mouse 1.

We also assessed how accurately the registration process could handle the assumption
of incompressible soft tissue through the pixel-wise calculation of the determinant of the
Jacobian matrix associated to each estimated deformation �eld. The obtained histograms
for Mouse 1 and Mouse 2 are shown in Fig.4.8. All histograms are normally distributed
around 1 with a reasonably small standard deviation from the mean value and no outliers,
con�rming the validity of the incompressibility assumption. As expected, the distribution
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Figure 4.8.: To assess the incompressibility of the deformation �elds estimated through the image
registration, the determinant of the Jacobian matrix of the transformation was cal-
culated for each voxel of the masked tumour and plotted as a histogram for all the
registered states. A mean value of 1 and a small variance re�ect a good ful�lment of
the incompressibility hypothesis. Values are reported as mean ± s.d.

gets slightly broader in Mouse 2 in the c1toc2 and c2toc3 cases, where the deformation is
larger and hence more di�cult to be correctly estimated.

The deformation �eld extracted from the image registration of the various states is
presented in the �rst row of Fig.4.9-A for Mouse 1 and in Fig.4.9-B for Mouse 2. In the c0toc2
and c0toc3 cases, the deformation �eld has been obtained combining the deformations
estimated from the registration of the previous states. The arrows clearly con�rm the uni-
axial compression of the tumour in both datasets, directed from the left-hand side of the
images to the opposite side. It is also evident how the intensity of the estimated deformation
rises at higher compression levels. The maximum shear strain Emss = (Emax − Emin)/2
was obtained from the di�erence between the maximum and minimum eigenvalue of the
Green strain tensor E and is presented in the last row of Fig.4.9-A,B.As expected, no strain
is generated at the lowest level of compression. As for the other two compressions, in
Mouse 1 a maximum of 15 % shear strain is generated at the tumour border, especially
in the region where the deformation is more intense. On the other end, in the Mouse 2
case the shear strain is more homogeneously distributed throughout the tumour, reaching
peaks of 25 %. The implantation of the tumours in close proximity to the skin of the mice,
however, made it impossible to get a clear estimation of the strain generated on the soft
tissue surrounding the lesion.
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Figure 4.9.: A,B-top row) Estimated deformation �elds superimposed to the overlaid original
(green) and objective images (magenta). A,B-bottom row) The corresponding maxi-
mum shear strain increases with the magnitude of the compression in a heterogeneous
way throughout the tumour.

4.3.3. Breast Fibroadenoma

Finally we have tested the implemented registration scheme on patient data. In this
case, T1-weighted MR images of a breast �broadenoma in its undeformed state (c0) and
when subjected to three di�erent levels of compression (c1, c2 and c3), generated using
a speci�c setup developed in our lab, have been acquired by our collaborators using
the same 3 T MR scanner employed for the in�ation experiment. The dataset covered a
FOV of 142.3 × 97.9 × 84mm3 and had a spatial resolution of 0.644 × 0.644 × 3mm3/voxel
with no gap between slices. As suggested by Rueckert et al. (1999) [213], a global rigid

86



4. Strain Estimation

transformation was integrated in the registration process to ensure the initial alignment
and to facilitate the registration process. The mismatch between the rigidly registered
images and each subsequent state is presented in the �rst row of Fig.4.10. The deformation

Figure 4.10.: First row) estimated deformation �eld superimposed to the overlaid original (green)
and objective images (magenta). Second row) Image registration dramatically reduces
the amount of mismatching features. Third row) The voxel-wise calculation of the
determinant of the Jacobian matrix associated to the estimated deformation �eld
reveals the regions where the incompressibility assumption was not respected. Fourth
row) Maximum shear strain pattern generated on the breast tissue by the applied
compression. Each column refers to the registration of the original image and each
of the subsequent compressed states.

�eld (red arrows) obtained using the implemented non-rigid registration scheme shows the
complex patterns caused by the three compressions. The estimated deformation produced
a good overlapping between the objective image and the warped moving image in all
three cases, as shown in the second row of Fig.4.10. Once again, the incompressibility
assumption was globally ful�lled, with the voxel-wise calculated determinant of the
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Jacobian matrix associated to each transformation being narrowly distributed around 1.
Nevertheless, unlike the c0toc1 and c2toc3 case, in the c1toc2 case some of the voxel-
values in the surrounding of the �broadenoma move far away from the mean value,
indicating a possible folding of the deformation �eld. This is a known disadvantage of B-
Spline based non-rigid registration techniques [204], which can produce locally unreliable
estimates of the deformation �eld. The calculated maximum shear strain con�rms the
complex deformation pattern generated in the surrounding of the �broadenoma, with
each consecutive deformation having a smaller contribution in light of the reduced applied
compression as a consequence of tissue nonlinearity.

4.4. Discussion
A list of the main results reported in this chapter is presented in Table 4.4

Main results

A non-rigid image registration strategy was optimised to estimate the local strain generated by a
pressurised tumour into its surrounding soft tissue. The quality of the retrieved deformation �eld
was validated in silico through simulated realistic ground truth deformations of a real image of a
tumour.

The registration strategy was found to produce accurate deformation estimates in a phantom
setting, in vivo preclinical images and patient data.

Table 4.4.

In this chapter we have presented the use of a non-rigid image registration strategy to
estimate the strain generated by a pressurised solid tumour onto its surrounding soft tissue.
The registration method was initially tested and optimised in silico on real images subjected
to realistic deformations. The image registration proved capable of recovering the ground
truth deformation �eld in the case of radial and incompressible deformations, which
represent the main characteristics expected from the mimicked tumour expansion. At the
same time, the employed strategy might struggle to correctly estimate more complex tissue
displacements that can be encountered in vivo, i.e. sliding, limitations that are exacerbated
if the amount of features in the ROI is not adequate.

The optimised method was then used to estimate the strain generated by an in�ated
balloon onto the phantom material from the MR images acquired during the in�ation
experiments. An adequate alignment between the objective and the registered images at
the di�erent in�ation states suggests an appropriate recovery of the radial expansion of
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the balloon. The alignment between the objective and registered images at the di�erent
in�ation states supports the quality of the estimate of the spherical deformation caused by
the balloon. The intensity of the associated circumferential strain in the periphery of the
balloon is enough to probe a nonlinear stress/strain response of soft tissue, as well as of
the employed plastisol mixture, as expected from the literature and as empirically assessed
in Chapter 5. This is especially true when 0.3 and 0.4mL are injected in the catheter line.

Mouse and patient images were �nally used to test the registration method in real
scenarios, where more complex deformations can occur. In both cases, the soft tissue
around the tumour was compressed and the generated strain in the tumour rim was
estimated. While this was successfully achieved with the patient data, the subcutaneously
implanted tumours in the murine models left very few millimetres of tissue around the
tumour mass to assess the strain distribution. Nonetheless, both murine datasets allowed
a su�cient appraisal of the intra-tumoural strain distribution.
Unlike the phantom case, the registration failed to warp the undeformed state (c0) to
match all the other compressed cases in both the mouse and patient images; in these cases,
the magnitude of the deformation sets a limit to the reconstruction method, so that it was
required to register each state to its consecutive one and to combine the deformation �elds.
This leads to an accumulation of the errors from each estimate, which, combined with
interpolation errors arising from moving each deformation �eld into the space grid of the
image in the subsequent compression state, may a�ect the accuracy of the total strain
estimation further. Even though this uncertainty cannot be avoided, it must be taken into
consideration when large deformations are involved.
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Plastisol was identi�ed in Chapter 3 as a suitable material to replicate the mechanical
properties of soft tissue. One of the crucial requirements for the phantom employed to
validate the theory developed in Chapter 2 is to display a variation in shear modulus
when subjected to strains comparable to those generated by a real pressurised tumour.
Di�erent mixtures can in fact be made using di�erent plastisol and softener concentrations,
hence producing samples characterised by distinct rheological behaviours [196]. The
nonlinearity of the stress/strain curve was characterised empirically through a uni-axial
compression test, which helped identify the ideal plastisol concentration required to
produce a su�cient change in shear modulus for the in�ation experiments. Macro- and
micro-compressions, similar to those generated in phantoms in the MRE experiments, were
employed to characterise the mechanical behaviour of the phantom material. Since the
mathematical framework developed in Chapter 2 was based on a modi�ed version of the
Mooney-Rivlin constitutive equation, the capability of this model to predict the mechanical
behaviour of the phantom material was assessed. The use of fractional calculus may be
adequate to account for any viscous response of the phantom material when subjected to
cyclic compression, which was ignored in the analytical formulation developed in Chapter
2.

In the �rst section of this chapter we will provide an overview of the models found
in the literature to describe the general viscoelastic behaviour of soft tissue exposed to
cyclic dynamic loading. In Section 5.2, the details of the rheological experiment designed
to characterise the mechanical properties of the phantom material employed for the MRE
experiments are reported. The mathematical model used to �t the acquired data will
also be explained, together with the details of the minimisation process. Section 5.3 will
present the results obtained comparing samples containing 0 % and 1% w/v silica gel,
focusing on how the presence of the tracking particles results in an increased nonlinearity
of the sample. In Section 5.4 we will show how the modi�ed Mooney-Rivlin and Fung
exponential model can predict the viscoelastic behaviour of the material at di�erent PVC
concentrations. The best �tting parameters will be presented and a simpli�ed version of
the two models will also be proposed, to account for parameter coupling. In addition, the
estimated parameters from each model will be used to calculate the shear modulus of the
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investigated samples. Finally, the best phantom composition for the MRE experiments will
be discussed and the assumptions behind the proposed models will be re-evaluated.

5.1. Model Tissue Viscoelasticity
Biological tissue is usually modelled as a viscoelastic material [45], therefore showing

both elastic and viscous characteristics when subjected to deformation. In the case of
a homogeneous purely elastic material, the simpler constitutive equation relating one-
dimensional shear stress and strain is given by

σ12(t) = µε12(t) (5.1)

where µ represents the shear modulus of the sample. In the same way, in a Newtonian
medium characterised by a purely viscous behaviour, the stress is proportional to the
strain rate:

σ12(t) = η
dε12
dt

(5.2)

where η represents the viscosity parameter. In the particular test case of dynamic loading,
in which a viscoelastic material is subjected to a cyclic strain de�ned as a complex quantity
ε∗12 = ε0e

iωt , the corresponding complex stress will be characterised by the same angular
frequency ω, but will accumulate a phase delay δ :

σ ∗12 = σ0e
i(ωt+δ ) = G∗ε∗12 (5.3)

Here we have introduced the complex dynamic modulus G∗, de�ned as

G∗ =
σ0
ε0
eiδ =

σ0
ε0

cos(δ ) + i σ0
ε0

sin(δ ) (5.4)

The real part of G∗ is referred to as the storage modulus G′ and is a measure of the
stored energy, while the imaginary part, corresponding to the out of phase response and
accounting for energy dissipation, is called the loss modulus G′′, such that

G∗ = G′ + iG′′ (5.5)

Using a mechanical analogue, a viscoelastic material can be described using a combination
of Hookean springs (elastic component) and Newtonian dampers or dash-pots (viscous
component). The simplest models proposed are the Maxwell and the Kelvin-Voigt models.
The former consists in a connection of the two elements in series and its constitutive
equation is given by:

dε12
dt
=
σ12
η
+
1
µ

dσ12
dt

(5.6)
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Here, both storage and loss modulus display a dependence on the vibration frequency

G∗ =
µ(ωη)2

µ2 + (ωη)2
+ i

µ2ωη

µ2 + (ωη)2
with


G′ =

µ(ωη)2

µ2+(ωη)2

G′′ =
µ2ωη

µ2+(ωη)2

(5.7)

The Kelvin-Voigt model, instead, connects a spring and a dash-pot in parallel, producing
the following constitutive equation:

σ12 = µε12 + η
dε12
dt

(5.8)

In this case, the complex dynamic modulus assumes a particularly simple form, where
the storage modulus equals the material shear modulus and the loss modulus is linearly
dependent on the vibration frequency:

G∗ = µ + iωη with

G′ = µ

G′′ = ωη
(5.9)

While the Maxwell equation was found more suitable to model �uids [51, 241], the Kelvin-
Voigt model was an attractive option for di�erent soft tissue tests using elastography
[51, 79, 51, 242]. Nevertheless, several researchers have reported shortcomings of the
Kelvin-Voigt model in predicting stress relaxation [243] and the frequency dependent
complex modulus of more complex viscoelastic media, such as soft tissue [244, 245, 246,
247]. Analysis of several biological components, ranging from individual cells [248] to
excised liver tissue [249] have shown that both storage and loss shear modulus present a
frequency dependence that can be described with a power law: G′,G′′ ∝ ωα .

5.1.1. Fractional Viscoelastic Models

Fractional calculus models have been proposed as a simple and e�ective way to represent
the viscoelastic properties of complex systems like soft tissue [250]. These models rely
on the replacement of the time derivatives in the constitutive equations with fractional
order derivatives, Dα

t , where α de�nes the non-integer order of the time derivative. The
advantage of this formalism consists in the possibility to continuously interpolate the
fractional order in the intermediate range occupied by viscoelastic materials: between 0,
descriptive of purely elastic solids, and 1, typical of Newtonian �uids. The mechanical
interpretation of fractional models is given by the replacement of one or more springs or
dash-pots, that describe “classical” solid and �uids, with a network of spring-pots, de�ned
as an in�nite ladder of springs and dash-pots, providing a link connecting these empirical
models and observation to the molecular theories of polymer solids [244, 246].
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In some cases, the non-integer order derivative can lead to an unintuitive behaviour,
inherently di�erent from that expected from models containing integer times derivatives,
such as the Maxwell and the Kelvin-Voigt models. In the case of the simple spring-pot
models introduced in the previous section, by applying a constant strain from time t = 0,
de�ned by the strain step function ε0U (t), where ε0 is the strain magnitude and U (t) is a
unit step function

U (t) =


1, t > 0

0, t ≤ 0
(5.10)

it is possible to test the stress relaxation typical of a viscoelastic material. The resulting
stress function G(t) is called the relaxation modulus and is calculated as

G(t) = µe−
t
τ for Maxwell (5.11a)

G(t) = µ + ηδ (t) for Kelvin-Voigt (5.11b)

where τ = η/µ is the relaxation time and δ (t) is the Dirac delta function. While, as
explained earlier, the Kelvin-Voigt model shows limitation to capture the stress relaxation
of many viscoelastic materials, the simple exponential law provided by the Maxwell model
is usually not su�cient to describe the more complex behaviour observed in nature. A
fractional order constitutive equation can instead provide a more realistic expression for
this behaviour through the following power law [251]:

G(t) =
µ

Γ(1 − α)

( t
τ

)−α
for σ12(t) = XαD

α
t ε12(t) with


lim
α→0

Xα = µ

lim
α→1

Xα = η
(5.12)

Fractional order viscoelasticity models have shown increased accuracy in modelling
tissue mimicking materials [252, 253], ovine artery [254], canine liver [249] and have been
used to describe the wave behaviour in human MRE experiments on healthy brain and liver
[255], as well as on breast lesions [256]. The correct modelling of the elastic and viscous
properties of tissue, in fact, becomes particularly important in dynamic elastography
imaging techniques, which rely on application of cyclical mechanical forces at a normally
monochromatic frequency, and a more accurate material model can increase both the
speci�city and sensitivity of the clinical diagnosis [257].

In the following sections of this chapter, a viscoelastic model will be developed and used
to �t the rheological data acquired from di�erent material samples through the use of a
rheometer. While the elastic stress/strain relationship of the material will be described
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using a hyperelastic law, the same stress tensor, subjected to fractional derivative, will
be employed to reproduce the viscous response of the samples to the applied macro- and
micro-compressions.

5.2. Rheological Data Acquisition & Processing
In order to identify a hyperelastic model capable to characterise the viscoelastic be-

haviour of the chosen phantom material, we set up a rheological test where material
samples were subjected to a uniaxial harmonic micro-compression, similar to the condi-
tions generated by the propagating waves used in MRE, superimposed with an additional
macro-compression, to characterise the nonlinear response of the selected material when
di�erent plastisol concentrations were used.

5.2.1. Sample preparation
Given the necessity to add tracking particles to the phantom in order to estimate the

deformation applied by the in�ated balloon onto the otherwise featureless matrix, a
�rst rheometric experiment was designed to assess the impact generated by the scattered
trackers on the mechanical properties of the phantom material. For this case, three cuboidal
samples using a 70 % PVC mixture were prepared. Sample A1 was used as control, while
sample B1 contained a 1 % w/v of trackers. Sample A2 followed the same preparation
protocol as sample A1 but was obtained using a di�erent PVC batch, to account for batch
variability.

A second experiment was then carried out to investigate the stress-strain nonlinearity
under di�erent plastisol concentrations. In this case we prepared three samples using 70 %,
80 % and 90 % concentration of plastisol and 1 % w/v of trackers. The details of the samples
employed in both the experiments are listed in Table 5.1

Initial height Trackers Plastisol Batch
(±0.5mm) (% w/v) (%) (no.)

Experiment 1
Sample A1 38 0 70 1
Sample B1 39.5 1 70 1
Sample A2 39.5 0 70 2

Experiment 2
Sample A 38 1 70 3
Sample B 38 1 80 3
Sample C 37.5 1 90 3

Table 5.1.: Sample details.

5.2.2. Testing protocol
For the two experiments, each sample was positioned between the parallel plates of

a BOSE Electroforce 5500 controlled stress rheometer. The height was adjusted to bring
the top plate in contact with the top surface of the cuboid. This instrument allows to
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apply a compression in the vertical direction (σ(3,3) = σ ), keeping the other directions
stress-free (σ(1,1) = σ(2,2) = 0), and to simultaneously measure the displacement as well
as the load applied on the sample. The tested samples were in turn preconditioned by
applying an initial 6mm compression for 5min. Afterwards, each sample was repositioned
between the plates, compressed to the desired level and subjected to six cycles of 0.5mm
harmonic micro-deformations along the direction of compression at increasing frequencies
for a pre-determined period between 40 s and 1min. This procedure was repeated four
times with di�erent levels of compression while alternating the samples to let them relax
back to their original shape. At the end of the test, each sample was repositioned and six
cycles of 4mm harmonic macro-compressions were applied around a mean compression
of 6mm for the �rst experiment and a mean of 5mm for the second experiment, using
the same set of frequencies as in the micro-deformation case. Given the wide range of
frequencies investigated and the number of data points for each frequency cycle, a single
data acquisition for each sample was deemed su�cient for an accurate modelling of the
material viscoelastic behaviour. The details of the protocol are summarstised in Table 5.2,
where all compressions refer to the original sample height, while an illustration of the
experimental setup and an example of the acquired data are reported in Fig.5.1.

Experiment 1
Compression Frequency (Hz) 0.1 0.5 1 2 5 10

Micro

5 %
10 % Duration (s) 100 40 40 40 40 6015 %
20 % Sampling freq (kHz) 0.1 0.5 0.5 1 1.25 1Macro 10 %

Experiment 2
Compression Frequency (Hz) 0.1 0.5 1 2 5 10

Micro

7 %
13 % Duration (s) 100 40 40 40 40 6020 %
26 % Sampling freq (kHz) 0.1 0.5 0.5 1 1.25 1Macro 13 %

Table 5.2.: Details of the protocol used for the rheological tests.

5.2.3. Data Analysis and Modelling

To model the stress generated by the uni-axial sinusoidal compression, it is convenient
to decompose the Cauchy stress tensor into a deviatoric component and a component
containing the hydrostatic pressure p, following Eq.2.11:

σ = σ ′ + p1 (5.13)
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Figure 5.1.: Illustration of the experimental setup used for the viscoelastic characterisation of
the phantom material (left). The moving plate was used to apply a �xed vertical
compression on the sample and the load was measured through an integrated sensor.
For each compression level, the phantom was subjected to four consecutive micro-
oscillation and one macro-oscillation test (right). Each of those tests consisted in the
application of a series of oscillatory compression cycles centred around the selected
compression level at di�erent frequencies, as presented in the zoomed panel.

In order to account for the elastic and viscous behaviour of the material, following the
formulation used in Section 2.2, we have assumed a linear superposition of the small-
amplitude harmonic deformation on top of the elastic macro-deformation of the sample
generated through the rheometer. This assumption was motivated by the separation in
scale between the two deformations, with a 0.5mm amplitude of the micro-oscillations,
typically an order of magnitude smaller than the applied macro deformation (5-25 %). Using
this assumption, we postulated that σ ′ can be decomposed into the sum of a purely elastic
and a viscous component, σ ′e and σ ′v , where the �rst term captures the stress generated
by the elastic macro-compression and the second term accounts for the time-dependent
response of the material when the small-amplitude oscillations are additionally applied:

σ ′ = σ ′e + σ
′
v (5.14)
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It follows from above that the PK2 stress tensor can also be written as the sum of an elastic
component, Se and a viscous one, Sv , as:

S = S′ + pJC−1

= S′e + S
′
v + pJC

−1 (5.15)

The elastic part of S′ can be calculated from a chosen strain energy density functionWe in
terms ofC and its invariants, as presented in Eq.2.63, which is repeated here for simplicity:

S′e = 2∂We

∂IĈ
J−

2
3

[
−
IC
3 C
−1 + 1

]
+ 2 ∂We

∂I IĈ
J−

4
3

[
−
2I IC
3 C−1 + IC1 −C

]
(5.16)

Given the uni-axial compression employed and under the assumption of incompressible
isotropic material, from the displacement measurements we can calculate the stretch ratio
in the vertical direction λ3 = ∆h/h = λ, where h is the height of the sample and ∆h is its
variation under compression, as well as the ones in the in-plane directions: λ1 = λ2 = λ−1/2.
The deformation gradient and the right Cauchy-Green deformation tensor can then be
directly calculated from the measured displacement using

F =

( 1√
λ

1√
λ
λ

)
, C =

( 1
λ

1
λ
λ2

)
(5.17)

We have chosen to model the viscoelastic behaviour of the tested samples using fractional
calculus, as explained in Section 5.1. In the absence of a known model capable of better
capturing the viscous response of the employed material, we employed the same hypere-
lastic law in both the elastic and viscoelastic part of the total PK2 stress tensor, with the
latter further subjected to a fractional order time derivative:

S′e = S′e(µ) (5.18a)

S′v = S′v(δ) = Dα
t S
′
e(δ) (5.18b)

where µ and δ are the arrays of material parameters characterising the elastic and viscous
behaviour of the material, while Dα

t represents the Caputo fractional derivative of order α
[258], de�ned as

Dα
t f (t) =

1
Γ(1 − α)

∫ t

0

1
(t − τ )α

∂t f (τ )dτ (5.19)

The deviatoric part of the total PK2 can therefore be modelled as:

S′(µ,δ) = S′e(µ) + D
α
t S
′
e(δ) (5.20)
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With the developed formulation, it is now possible to model the deviatoric part of the
Cauchy stress tensor, de�ned in Eq.5.14 as the sum of an elastic and viscous component,
using the relationship σ ′(µ,δ) = J−1FS′(µ,δ)FT :

σ ′ = σ ′e(µ) + σ
′
v(δ)

= J−1FS′e(µ)F
T + J−1FS′v(δ)F

T (5.21)

To work out the total Cauchy stress tensor, σ = σ ′ + p1, measured by the rheometer, the
hydrostatic pressure p must still be evaluated. To do so, we can exploit the fact that the
only stress applied in the rheometric experiments is in the (3,3) direction, because the load
is applied along the z-direction on the z-surface. This allows to focus on the component
σ(3,3) = σ

′
(3,3) + p. If we then multiply the stress tensor by the unit vector directed along

one of the other two orthogonal directions, say nx = (1, 0, 0)T , then the result would be
zero:

σ ·nx = 0

(σ ′ + p1)·nx = 0 (5.22)

The hydrostatic pressure can then be calculated from Eq.5.22

p = −[σ ′e(1,1)(µ) + σ
′
v(1,1)(δ)] (5.23)

which can be used in combination with the isochoric part of the Cauchy stress tensor in
Eq.5.21 to obtain:

σ = σ ′e(µ) + σ
′
v(δ) + p1

= σ ′e(µ) + σ
′
v(δ) − [σ

′
e(1,1)(µ) + σ

′
v(1,1)(δ)]1 (5.24)

After some simpli�cations, the (3,3) component of the Cauchy stress tensor can be ex-
pressed as:

σ(3,3) = [σ
′
e(3,3)(µ) − σ

′
e(1,1)(µ)] + [σ

′
v(3,3)(δ) − σ

′
v(1,1)(δ)] (5.25)

which represents the traction applied on the loaded surface and where µ and δ are the
free parameters to be estimated from the rheological data �tting.

5.2.4. Parameter Fitting

Our approach to determine the free parameters expressed in Eq.5.25 involves the �tting
of the measured traction to the (3,3) component of the Cauchy stress tensor obtained from
the compression information using the selected hyperelastic model. For a more complete
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insight into the generated nonlinear viscoelastic response, the micro- and macro-oscillatory
tests carried out at di�erent compression levels were �t simultaneously. The best estimate
was obtained by minimising the objective function that accounts for the di�erence between
the experimental data and the predicted values through linear least squares regression,
carried out using the Matlab built-in function lsqlin. Given the oscillatory nature of
the data, the objective function was de�ned as the L2-norm of the di�erence between the
Fourier spectrum obtained for the modelled traction and the measured one, normalised
over the latter. In detail, for each sample we name tDij the set of traction data measured in
the direction of compression at all time points of the frequency cycle j (for the analysis
we have excluded the data points corresponding to the initial loading of the sample) and
level of compression i; more speci�cally, j ranges from 1 to 6 as we have investigated 6
vibration frequencies, while i goes from 1 to 5, as it accounts for the four compression
levels chosen for the micro-oscillation tests and the only compression level employed in the
macro-oscillation test. In the same way, we name tMij = σ ′ij(3,3)(µ̃) − σ

′
ij(1,1)(µ̃) the modelled

traction expressed in Eq.5.25, where µ̃ = [µ,δ] is the array containing the combination of
the free parameters to be estimated, such that σ ′(µ̃) = σ ′e(µ) + σ ′v(δ). The sum of squares
of the di�erence between the Fourier coe�cients F (tD) and F (tM ) of the measured and
modelled traction de�nes the objective function for the minimisation process, as well as
the �tting error, and is computed as

error% = 100 ×

√√√∑
i,j,k

|F (tDij )k − F (t
M
ij )k |

2

|F (tDij )k |
2 (5.26)

where the normalisation factor is such that the error reaches 100 %when all free parameters
are equal to zero. While this error function does not account for a phase shift between
model and data, no shift was observed when comparing the best model prediction with
the acquired measurements.

The remaining parameter α , which represents the order of the Caputo fractional deriva-
tive, was instead �xed prior to proceeding with the linear regression. The range between
α = 0 (Hooke’s Law) and α = 1 (Newton’s �uid model) was iteratively investigated,
seeking the value that produced the best �t with a ±0.005 precision.

5.3. Scattered Tracking Particles Increase Material

Nonlinearity
Composite materials can have signi�cantly di�erent properties from those of their

individual constituents; therefore, the �rst rheological test aimed at investigating the
impact of the addition of motion trackers on the PVC-based sample matrix. We have
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initially tried to �t the rheological data with the simple Neo-Hookean material law

W NH
e = µ1(IĈ − 3) (5.27)

At the same time, we have also attempted modelling the rheological behaviour of the
material using the modi�ed version of the Mooney-Rivlin hyperelastic law proposed in
Section 2.4, with a polynomial strain energy function truncated to the second order:

W MR
e = µ1(IĈ − 3) + µ2(I IĈ − 3)

2 (5.28)

In contrast to the Neo-Hookean model, a Mooney-Rivlin law can generally produce
a better �t of experimental data at the expense of adding an empirical constant. The
term containing the second unimodular invariant has been squared to better capture
the nonlinear behaviour observed in the data. In both models, plastisol was considered
isotropic and incompressible, following the assumptions of Leclerc et al. (2012) for the
same material [197].

We then used the traction data recorded during the initial loading of the samples prior
to the micro-oscillation cycles carried out at the highest compression to quantify the
associated nonlinear response of the material (Fig.5.2). Second-order polynomial curves
produced a good �t of each of the three datasets: nevertheless, while sample A1 and
sample B1 showed a similar linear coe�cient, the coe�cient scaling the quadratic term
was 2.8 times larger in the latter case, highlighting a more nonlinear stress-strain response
produced by the presence of the particles at the compression range explored. The quadratic
curve used to �t the data from sample A2, instead, showed an intermediate nonlinearity, 1.8
times higher than the corresponding sample A1, as well as a much higher slope, underlining
the variability introduced by the use of a di�erent plastisol batch.

The traction data measured from sample A1 and B1, obtained from the same PVC
batch in the presence and absence of deformation trackers, were then �tted using the
incompressible form of the Neo-Hookean model and of the modi�ed Mooney-Rivlin model,
as explained in section 5.2. In the two cases, the elastic part of PK2 in Eq.5.18 assumes the
following forms:

S′NHe = 2µ1
[
1 −

1
3 ICC

−1
]

(5.29)

S′MR
e = 2µ1

[
1 −

1
3 ICC

−1
]
+ 4µ2 (I IC − 3)

[
IC1 − C −

2
3 I ICC

−1
]

(5.30)

For the viscous terms, SNHv and SMR
v , the same equations were subjected to fractional

derivative and the parameters µ = [µ1, µ2] were replaced by the viscous ones, δ = [δ1,δ2].
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Figure 5.2.: Under the investigated level of compression, the traction data measured from sample
B1, which contains motion trackers, show a higher material nonlinearity than sample
A1 and A2. The di�erent batch used for sample A2 produced a steeper curve than for
sample A1, but a similar nonlinearity. The data are taken from the loading process
that leads roughly to a 20 % compression.

5.3.1. Parameter Optimisation
Fig.5.3 shows the error contour for the order α of the fractional derivative that min-

imised the distance between the data and the model for both the material laws employed.
All curves present a global minimum at small values of the fractional derivative order,
suggesting a mildly viscous material. The minimising parameters were α = 0.04 for the
control sample when each model was used and α = 0.12 and α = 0.05 for the sample
containing tracking particles �tted with the Neo-Hookean and the modi�ed Mooney-
Rivlin law, respectively. An example of the agreement between the data and the model
is presented in Fig.5.4. The selected case corresponds to the best �t of the data obtained
with the sample containing the tracking particles using the modi�ed Mooney-Rivlin law,
producing a 2.85 % error. Both in the micro- and in the macro-oscillation case, the model
could correctly replicate the initial o�set generated at di�erent compressions, hence cap-
turing the nonlinear response of the material; furthermore, it successfully reproduced the
oscillations generated at the various frequencies, even those where the number of data
points per cycle is scarce. In the same way, also the amplitude of the oscillations was well
recovered. Finally, the viscous part of the modi�ed Mooney-Rivlin model proved also
capable of capturing the relaxation behaviour typical of viscoelastic materials.

The search for the best value of the parameter α led to a very shallow minimum in the
�tting error, which keeps roughly constant over values of α that span over a range between
approximately 0.04 and 0.2. A closer investigation of the best free parameters estimated
at those α values was carried out separately for the two samples for both models. In the
absence of trackers, µ1 and δ1 appeared coupled in both the Neo-Hookean and the modi�ed
Mooney-Rivlin case (Fig.5.5-A1,-A2), so that when the former grows with the increase of
α , the latter decreases. The quadratic terms, instead, given the mild nonlinearity of the
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Figure 5.3.: The fractional derivative order that returned the minimised �tting error was investi-
gated for both the Neo-Hookean (black) and the modi�ed Mooney-Rivlin (red) model.
While in the absence of trackers the two curves are identical, in their presence the
latter provides a better �t of the rheological data. The minimum error in each curve is
highlighted using a �lled red symbol, however all the curves present a very shallow
minimum region that goes roughly from α = 0.04 to α = 0.2.

pure PVC-material under the considered compressions, appear unnecessary to describe its
rheological behaviour and the corresponding parameter values are negligible.
In the presence of tracking particles, instead, the quadratic terms become relevant and the
same coupling is visible for both the linear and quadratic parameters (Fig.5.5-A2,-B2).

In light of the parameter coupling, the mean values between the two linear parameters,
(µ1 + δ1)/2, and between the two quadratic ones, (µ2 + δ2)/2, were considered, rather than
the individual parameters. The average of these combined parameters, calculated over the
α range going from 0.04 to 0.2, are reported in Fig.5.6, together with the average error.
The bar graph reveals how, in the control case, both models can equally well characterise
the material in the absence of trackers, producing the same average error; the quadratic
terms appear, in fact, not to be required to �t the data and their value is very close to zero,
while the linear terms are equivalent. On the other hand, the nonlinearity introduced by
the trackers is such that the Neo-Hookean model fails to accurately reproduce the data,
with the average error rising to 8 %. The quadratic terms of the modi�ed Mooney-Rivlin
model, instead, grant a superior approximation, reducing the average �tting error to 3.0 %.
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Figure 5.4.: Each sample was compressed to di�erent levels and subjected to various sets of micro
and macro-oscillations at di�erent frequencies. Here, the data (red) obtained from
the sample containing trackers were �tted to the modi�ed Mooney-Rivlin model
(black), with the best agreement obtained for the fractional derivative order α = 0.04.
Overall the model proved able to reproduce the induced oscillations even at the highest
employed frequency. The nonlinear increase in traction was also captured, as well as
the relaxation process visible over the explored time-frame.

5.4. Mooney-Rivlin and Fung Models Can Predict the

Viscoelastic Behaviour of the Material at Di�erent PVC

Concentrations

The second experiment aimed to investigate how the stress-strain nonlinearity of the
material is a�ected by the PVC concentration in the mixture used to prepare the phantoms.
Compared to the �rst experiment, in this case the maximum compression range was
extended to reach ∼25 %, to better probe the nonlinear response of the material. The
traction data recorded during the loading of the samples to the highest compression level
were �tted to a quadratic curve (see Fig.5.7), which provided a good approximation in all
three cases. The parameter multiplying the quadratic term of the �tting curve, indicative
of the nonlinear stress/strain relationship of the material, showed a linear dependence on
the plastisol concentration (Pearson’s r 2 = 0.9913).

From the �rst experiment, we have shown that the nonlinear behaviour of the sample
containing tracking particles is better described by a higher order strain energy density
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Figure 5.5.: Parameter trend at the variation of the fractional derivative order α in the absence
(A1,A2) and presence (B1,B2) of trackers. The parameters that model the elastic and
viscoelastic part of the two models show opposite and complementary trends.

function, like the proposed quadratic version of the Mooney-Rivlin law. Here, in addition,
we have attempted to use Fung’s exponential strain energy density function in its incom-
pressible form, presented in Eq.2.58. When big strains are considered, the linear term can
be neglected, further reducing the function to

W =
µ1
µ2

(
eµ2(IĈ−3) − 1

)
(5.31)

with the set of parameters µ = [µ1, µ2] replacing c and b from Eq.2.58. Calculating ∂W /∂IĈ
and ∂W /∂I IĈ and substituting in the deviatoric part of Eq.5.16, we obtain the elastic part
of the PK2 stress tensor for the exponential Fung law:

S′FUNGe = µ1
(
eµ2(IC−3)

) [
1 −

1
3 ICC

−1
]

(5.32)

Consistent with the Neo-Hookean and modi�ed Mooney-Rivlin cases, the same stress ten-
sor, subjected to the time fractional derivative, was used to model the viscous part of PK2.
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1
N

α=0.2∑
α=0.04

µ1 + δ1
2

1
N

α=0.2∑
α=0.04

µ2 + δ2
2

1
N

α=0.2∑
α=0.04

error%

NO TRACKERS Neo-Hookean 1238 Pa - 5.8 %
Mooney-Rivlin 1238 Pa 3.5 × 10−8 Pa 5.8 %

TRACKERS Neo-Hookean 1858 Pa - 8.1 %
Mooney-Rivlin 1414 Pa 795 Pa 3.0 %

Figure 5.6.: The bar graph presents the best �tting parameters obtained from the tested samples
in the presence and absence of trackers using both the Neo-Hookean and modi�ed
Mooney-Rivlin model. Each value, reported also in the table underneath, represents
the average, over a fractional derivative order going from 0.04 to 0.2, of the mean
value between the coupled parameters. The error bars show the range of values over
the investigated α ’s. The same procedure is used to display the minimisation error.

Figure 5.7.: The nonlinearity of the stress/strain response of the material increases with the
plastisol concentration, as underlined by the increasing value of the parameter scaling
the quadratic term of the �tting curve. Again, the data are taken from the loading
process that leads to a compression slightly higher than 25 %.
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For the �tting process, the material parameters in the viscous term were namedδ = [δ1,δ2].

5.4.1. Parameter Optimisation
For both the modi�ed Mooney-Rivlin and the exponential constitutive law, the minimum

�tting error was measured for a fractional derivative order lower than 0.2, con�rming the
mild viscosity of the material at all the investigated PVC concentrations (see Fig.5.8-A,B).
Nonetheless, as in the �rst experiment, the minimisation curves were very shallow in the

Figure 5.8.: Data from di�erent PVC concentration are modelled by equally small fractional deriva-
tive orders. The best �t was obtained for a range of α values that roughly goes from
0.05 to 0.2 by both the modi�ed Mooney-Rivlin (A) and the Fung hyperelastic law (B).
The actual minimum αmin is indicated by a �lled symbol. Both models show a good
agreement with the data, with a �tting error smaller than 4% in the selected region.

region of the minimum, which roughly goes from α = 0.05 and α = 0.2.
Again, Fig.5.9-A suggests a coupling between the elastic and viscous parameters, both
for the linear and the quadratic terms of the modi�ed Mooney-Rivlin model. In the Fung
model, the parameters that scale the exponential term, µ1 and δ1, and those that control
the exponential growth, µ2 and δ2, show di�erent behaviours as a function of α (Fig.5.9-B).
Similar to the Mooney-Rivlin case, the best estimate of δ1 decreases with the increase of
the fractional derivative order, balancing µ1. However, this is not true for the best estimate
of µ2 and δ2: while the �rst parameter keeps constantly around 1 at the increase of the
fractional derivative order, hence not changing its contribution to the modelling of the
nonlinear behaviour of the material, δ2 follows a positive linear trend as a function of α ,
which gets more pronounced at higher PVC concentrations.

The best estimate of the parameters is plotted in Fig.5.10. In this case, the parameters of
the modi�ed Mooney-Rivlin model have been treated in the same way as in the previous
experiment, reporting the average, over the α range going from 0.04 to 0.2, of the mean
value between µ1 and δ1 and between µ2 and δ2. For the Fung model, instead, given the non-
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Figure 5.9.: A) Using the Mooney-Rivlin model, the elastic and viscous parameters show opposite
and complementary trends over the considered α range at di�erent plastisol concen-
trations. B) With the Fung model, while µ1 and δ1 appear coupled, µ2 and δ2 display
non-complementary trends: while the former keeps constant for all samples, the
latter increases linearly with the fractional derivative order, with a slope directly
proportional to the plastisol concentration

constant trend of µ2 and δ2 over the same α range, we have reported the values obtained
at α = αmin. Also, in the light of the coupling, the mean value between µ1 and δ1 was
considered, while µ2 and δ2 have been treated individually. Minimisation errors constantly
lower than 4% suggest that both models provided a accurate approximation of the data
for all three PVC concentrations, with the Mooney-Rivlin law slightly outperforming the
exponential law at higher PVC concentrations.

5.4.2. Model Simplification to Account for Parameter Coupling
Seeking a unique parameter estimation, to circumvent the parameter coupling we have

attempted to reduce the number of estimated constants by using one single set of two
parameters, µ = [µ1, µ2] in the Mooney-Rivlin model. The same was done for the coupled
parameters in the Fung model, using the same constant µ2 to scale both the elastic and
viscous part of the �tting function, hence reducing the number of �tting parameters to
three: µ1, µ2 and δ2. The minimisation process for both the simpli�ed versions of the
models returned a clear minimum at a unique value of α between 0.08 and 0.09 for all
samples (see Fig.5.11-A,B).
The new best estimates of the free parameters, obtained at α = αmin are reported in Fig.5.12.
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Model Plastisol
1
N

∑α=0.2
α=0.04

µ1 + δ1
2

1
N

∑α=0.2
α=0.04

µ2 + δ2
2

1
N

∑α=0.2
α=0.04 error%

Mooney-Rivlin
70 % 1953 Pa 872 Pa 3.22 %
80% 2320 Pa 1648 Pa 3.66 %
90% 3381 Pa 2358 Pa 3.31 %

(µ1 + δ 1)/2 µ2 δ2 error%

Fung
70% 2006 Pa 0.99 Pa 1.14 Pa 3.18 %
80% 2517 Pa 1.18 Pa 1.89 Pa 3.82 %
90% 3592 Pa 1.00 Pa 2.74 Pa 3.50 %

Figure 5.10.: Estimated best parameters and corresponding �tting error at the three investigated
PVC concentrations using the modi�ed Mooney-Rivlin (left) and Fung law (right). In
this case, given the non constant trend followed by the sum of the coupled parameters
in the Fung model over the fractional order going from 0.04 to 0.2, only the estimates
obtained at the fractional derivative order that minimised the error are considered.
For the Mooney-Rivlin model, instead, the average value of the parameters and
the �tting error are reported, with the error bars showing the range of values over
the investigated αs. The parameter values and errors are also reported in the table
underneath.

Figure 5.11.: Best fractional order to model the traction data measured for the 70 %, 80 % and 90 %
PVC samples using the simpli�ed version of the modi�ed Mooney-Rivlin law (A)
and the Fung law (B).

Compared to the four-parameter case, this simpli�ed form of the Mooney-Rivlin model
a�ected only marginally the quality of the �t, with a maximum increase in the �tting
error by 0.37 % in the sample made with the highest plastisol concentration. While the
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Model Plastisol µ1 µ2 error%

Mooney-Rivlin
2 parameters

70 % 2078 kPa (+6.4 %) 698 kPa (-19.9 %) 3.34 % (+0.12 %)
80 % 2648 kPa (+14.1 %) 1118 kPa (-32.2 %) 3.92 % (+0.27 %)
90 % 3883 kPa (+14.8 %) 1575 kPa (-33.2 %) 3.68 % (+0.37 %)

µ1 µ2 δ2

Fung
3 parameters

70 % 1990 (-0.8 %) 1.01 kPa (+2.3 %) 1.23 (+8.2 %) 3.19 % (+0.01 %)
80 % 2575 kPa (+2.3 %) 1.23 (+4.3 %) 1.50 (-20.6 %) 3.84 % (+0.02 %)
90 % 3823 kPa (+6.4 %) 1.13 (+13.5 %) 1.39 (-49.3 %) 3.58 % (+0.08 %)

Figure 5.12.: Estimated best parameters and corresponding �tting error for the three investigated
PVC concentrations using the simpli�ed version of the modi�ed Mooney-Rivlin (left)
and Fung law (right). The associated fractional derivative order is also reported. The
parameter values and errors are shown in the table underneath, together with their
percentage variation with respect to the estimates in Fig.5.10.

new µ1 di�ers from the mean of the corresponding elastic and viscous best parameter
estimates by at most 14.8 %, the variation between the new quadratic parameter and the
mean (µ2 + δ2)/2 from the previous version is instead more pronounced, with a decrease
of 19.9 % in the sample containing the lowest plastisol concentration and ∼33 % for the
other two. The parameter reduction in the Fung model does not produce a signi�cant
error increase in any of the samples, either. In the simpli�ed law, however, δ2 does not
appear to follow a particular trend, oscillating around 1.37 throughout the various plastisol
concentrations, unlike in the four-parameter equivalent, where δ2 showed a linear growth
with the increase of plastisol in the mixture.

5.4.3. Linearised Shear Modulus

Following the mathematical framework presented in Section 2.3.2 in the limit of small
strain, the material parameters of both the modi�ed Mooney-Rivlin and the Fung law
can be used to estimate the shear modulus µ of the material under di�erent plastisol
concentrations using Eq.2.68. Using the form of the Mooney-Rivlin constitutive law
proposed in Eq.5.28 to describe the elastic response of the material, the linearised shear
modulus is expressed as

µMR
e = lim

a→0

E12
σ12
= lim

a→0
2
(
∂W

∂IĈ
+
∂W

∂I IĈ

)
= lim

a→0
2
(
µ1 + 2µ2(I IĈ − 3)

)
= 2µ1 (5.33)
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where lim
a→0

I IĈ = 3. Assuming that the total Mooney-Rivlin strain energy density function
W , characterising both the elastic and viscoelastic behaviour of the material, is composed
of the linear combination of an elastic and viscous term

W =We(IĈ, I IĈ) +Wv(IĈ, I IĈ, ∂
α
t IĈ, ∂

α
t I IĈ) (5.34)

and given the small fractional order observed in all sample, Wv can be equalised toWe ,
however keeping the parameters δ1 and δ2. In fact, while for a non-integer fractional
derivative order a more complicated viscoelastic behaviour could be predicted, as shown
in Eq.5.12, for α close to zero S′v is expected to behave as a purely elastic term. Under these
circumstances, the same procedure presented in Eq.5.33 can be applied to the second term
of the constitutive law in Eq.5.34, producing µMR

v = 2δ1. The linearised shear modulus is
then given by the combination of µMR

e and µMR
v :

µMR = µMR
e + µMR

v = 2(µ1 + δ1) (5.35)

In the case of the simpli�ed Mooney-Rivlin equation, the same parameter µ1 was employed
to scale both the elastic and viscous term of the model. Consequently, the linearised shear
modulus is given by

µMR(2 parameters) = 2(µ1 + µ1) = 4µ1 (5.36)

The same procedure was applied to calculate the linearised shear modulus in the case of
the Fung model. Considering the constitutive law presented in Eq.5.31, we can calculate
µFUNG
e :

µFUNG
e = lim

a→0
2
(
∂W

∂IĈ
+
∂W

∂I IĈ

)
= lim

a→0
2
(
µ1e

µ2(I IĈ−3)
)
= 2µ1 (5.37)

Accounting for the viscous term, consistently to what done for the modi�ed Mooney-Rivlin
model, the linearised shear modulus is given by

µFUNG = µFUNG
e + µFUNG

v = 2(µ1 + δ1) (5.38)

In the same way, the linearised shear modulus for the simpli�ed version of the Fung model
is given by

µFUNG(3 parameters) = 2(µ1 + µ1) = 4µ1 (5.39)

The plot of the calculated shear modulus as a function of the plastisol concentration in
Fig.5.13 revealed a quadratic trend, regardless of the employed model. However, while the
di�erence between the estimated µ from each model is minimum for the sample made with
70 % of plastisol, the gap becomes wider with the increase of the plastisol concentration,
where the stress/strain nonlinearity becomes more pronounced. Nonetheless, even in
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Figure 5.13.: All the four models generate a similar estimate of the linearised shear modulus of
the three investigated samples, producing a similar quadratic dependence on the
plastisol concentration.

the 90 % PVC sample, the estimated values of µ di�er at most by less than 12 % from the
associated mean value.
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5.5. Discussion
A list of the main results reported in this chapter is presented in Table 5.3.

Main results

Tracking particles increase the nonlinearity of the plastisol samples. The quadratic term in the
modi�ed Mooney-Rivlin model can better �t the rheological data.

Consistently with the literature, a higher plastisol-to-softener ratio in the sample leads to an
increased nonlinear stress-strain response. Both the modi�ed Mooney-Rivlin law and the Fung
law produce a close prediction of the rheological data.

Due to the low viscosity of the material at the investigated frequencies, a coupling between the
parameters scaling the elastic and viscous terms of the PK2 stress tensor was observed. It was
therefore possible to reduce the number of parameters employed in the models, using the same
ones to model both the elastic and viscous components, without impacting the �tting quality.

The shear modulus of the sample was found to follow a second-order polynomial growth with
the plastisol concentration. A trade-o� between realistic sti�ness and high nonlinearity was
given by an 80% plastisol concentration.

Table 5.3.

Here we have characterised the soft plastic mixture used to build the soft tissue-mimicking
phantom cuboids by analysing the impact of the tracking particles on its material prop-
erties, as well as the e�ect of the plastisol concentration on its nonlinear stress-strain
response.
From the �rst experiment, we could see that, in the absence of motion trackers, the same
mixture made from two di�erent plastisol batches generated a linear correlation between
the applied compression and the associated measured traction. As a matter of fact, while
the batch variability can represent a relevant source of variation in the material properties,
it does not seem to have a signi�cant impact on the nonlinearity.
Despite the rheological behaviour of the pure material having been reported as nonlinear
in the literature [197], the limited strain applied in the �rst experiment was possibly not
su�cient to escape the linear region of the stress-strain curve. The interaction of the
scattered particles with the sample matrix, instead, produced a nonlinear stress response
at compression levels higher than ∼15 %. This result is ideal for the purpose of modelling
the signature sti�ness variation generated by the mimicked growing tumour, as it allows
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to generate a change in the probed shear modulus without requiring large applied strains,
that could damage the material (see Section 3.3.2).
A progressive increment in the nonlinearity of the stress-strain curve was further ob-
tained increasing the plastisol concentration used to prepare the samples in the second
rheological experiment. This result re�ects the �ndings of Hungr et al. (2012) obtained
investigating di�erent PVC mixtures [196], although the undisclosed plastisol/softener
ratio for both their and our reference premixed blend does not allow a direct comparison.
Nevertheless, since under the assumption of incompressibility the shear modulus and
Young’s modulus can be related by the scaling equation E = 3µ, the values of the linearised
shear modulus extracted from the various hyperelastic models employed to characterise
our PVC mixtures compare well with the Young’s modulus reported for their “soft” mixture.

At the same time, we have investigated the rheological response of the chosen soft
plastic material to uniaxial harmonic micro- and macro-compressions to identify a consti-
tutive law capable of describing the viscoelastic behaviour of the samples when exposed
to mechanical conditions similar to those experienced during the MRE experiments.
For the modelling of the stress experienced by the samples under the measured strain, we
have developed a mathematical framework where the PK2 tensor has been conveniently
decomposed into a term containing the hydrostatic pressure p and a deviatoric term S′;
the latter has in turn been considered as the linear combination of an elastic part, S′e ,
and a viscous one, S′v , modelled using a fractional order derivative. Using the proposed
formulation, both the selected Neo-Hookean and modi�ed Mooney-Rivlin hyperelastic
laws could equally well �t the rheological data obtained from the investigated control
sample in the absence of tracking particles. Given the scarce nonlinearity generated at a
70 % PVC concentration, in fact, the quadratic parts of the modi�ed Mooney-Rivlin model
became irrelevant, e�ectively reducing the model to the simpler Neo-Hookean form. The
quadratic components present inWMR were instead required to reproduce the nonlinear
response introduced by the trackers, which could not be captured as accurately by just a
linear function of IĈ.

The need for a more complex hyperelastic law became more urgent when the rheo-
logical data from the second experiment were modelled, as the nonlinear behaviour of
the employed samples was more pronounced. The Fung model has been suggested in
the literature to model the nonlinear stress/strain response of breast tissue subjected to
macro-deformations [50]; here it was employed as a valid alternative to the modi�ed
Mooney-Rivlin constitutive equation for the rheological characterisation of the phantom
material in the presence of tracking particles. In all the samples used for the second exper-
iment, both the Fung and the modi�ed Mooney-Rivlin model reached a minimum error for
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low values of the fractional derivative order α , ranging approximately between 0.05 and
0.2, indicating a consistently mild viscosity of the material. This was true regardless of
the plastisol concentration and the material law employed for the data �tting, suggesting
that, unlike the elastic properties of the material, its viscous response does not seem to
be a�ected by the composition of the PVC mixture. Under an experimental point of view,
this provides the advantage of a lessened dampening of the propagating shear waves
during the MRE experiments, although it may not accurately reproduce the viscoelastic
behaviour of soft tissues, which have been reported to exhibit non-negligible viscosity
[45]. Given the almost purely elastic behaviour, it is understandable that the �tting error
for both the modi�ed Mooney-Rivlin and the Fung models kept relatively small even for
fractional derivative orders closer to 1: the progressive decrease of the parameters involved
in the modelling of the viscous response of the material, as opposed to the growth of the
parameters scaling the elastic terms of the stress tensors associated to the increase of α , in
fact, makes the purely elastic part of the model increasingly dominant, which is su�cient
to still provide a good �t.

In light of the balance between the parameters over the investigated α range, the free
parameters scaling the elastic and viscous parts of the two models appear not-identi�able
and coupled, such that an equally good �t can be obtained with a di�erent fractional
derivative order at the expense of the magnitude of one or the other set of parameters. For
this reason, it was not possible to carry out an analysis of the single parameters, but it was
preferred to consider the average between µ1 and δ1 for the Neo-Hookean law, as well as
between µ2 and δ2 for the modi�ed Mooney-Rivlin model. Both average values showed a
constant trend over the selected α range, as presented in Fig.5.14 for the �rst experiment.

Figure 5.14.: All the four models generate a similar estimate of the linearised shear modulus of
the three investigated samples, producing a similar quadratic dependence on the
plastisol concentration.

A mathematical explanation for this parameter coupling can be given considering the
small α values experimentally estimated. Having used the same equation for both the
elastic and viscoelastic part of the deviatoric PK2 tensor, S′v assumes the same form as
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its elastic counterpart when the fractional derivative order is equal to zero, making the
scaling parameters µ and δ redundant:

S′ = S′e(µ) + S
′
v(δ) = S′e(µ) + D

0
t S
′
e(δ) = S′e(µ) + S

′
e(δ) (5.40)

This approximation can be be considered valid also for the low values of α that minimise
the objective function, hence permitting to halve the number of free constants in the case
of the polynomial strain energy function. The same was only possible for the scaling pa-
rameters µ1 and δ1 in the Fung model, while µ2 and δ2, which followed non-complementary
trends, have been treated separately. The acquisition of more data and the addition of a
di�erent kind of rheometric experiments could help with the practical identi�ability of a
unique set of parameters, however such an analysis falls outside the scope of this project.

In this chapter we have shown that the modi�ed Mooney-Rivlin model proved capable
of reproducing the viscoelastic properties of the PVC mixture employed to make the
phantoms, hence justifying the use of the mathematical framework to analytically calculate
the apparent shear modulus variation caused by an in�ated thick-shelled sphere presented
in Section 2.4. The Fung model displayed a similar accuracy in capturing the rheological
behaviour of the investigated samples and the intrinsic shear modulus of the material,
calculated using the various models, was found comparable at all the investigated PVC
concentrations. Despite a higher nonlinearity was observed in the sample made using
a 90 % plastisol mixture, which would result in a more pronounced variation in shear
modulus when the material is compressed, hence facilitating its experimental detection,
for the in�ation experiments it was decided to use phantoms made with an 80 % plastisol
mixture. This choice was dictated by the concomitant attempt to keep the shear modulus
as close as possible to the values of healthy soft tissue, i.e. generally much lower than
10 kPa for breast, liver and brain. An 80% plastisol concentration represented a reasonable
trade-o�.

In the next chapter, the reconstructed apparent shear modulus of the characterised
material and its variation when subjected to spherical macro-deformation will be reported
and the patterns generated around the tumour-mimicking inclusion will be compared with
those numerically calculated in Chapter 2.
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The results presented in Chapter 2 of this thesis have demonstrated a close mathematical
understanding of the impact generated by a pressurised tumour on the biomechanical
properties of the surrounding soft tissue and of the local quanti�cation of its apparent
shear modulus through shear waves. In Chapter 3 we have shown the details of the imple-
mentation and execution of an in�ation experiment in a phantom suitable to investigate
the correlation between the experimentally measured variation in G′ measured through
MRE and its analytical prediction. The proposed experiment was reproduced three times,
to assess its reproducibility and provide more convincing evidence of the theorised rela-
tionship, and the obtained results will be presented and discussed throughout this chapter.
Section 6.1 of this chapter will provide a short introduction on the mathematical back-
ground underlying the employed elastography reconstruction technique of the wave data
obtained through MRI. Afterwards, we will present the various results obtained for each
replicate of the in�ation experiment, where all outcomes are treated in parallel. Initially
we will focus on the estimation of the local k-vector direction from the wave images
and will devise a method to determine the local deformation probed by the waves, to
di�erentiate between compression and tension. Subsequently we will show the voxel-
wise local reconstruction of the apparent G′ in a ROI around the inclusion and provide
a comparison between the background G′ obtained through the three experiments and
the values analytically calculated from the �tting of the pressure data reported in Section
3.3. The experimental estimation of the generated shear modulus anisotropy around the
inclusion will then be compared with the patterns predicted using the developed analytical
framework. Finally, the details of our �rst attempt to replicate the presented experiment
using a tissue sample will be given and the preliminary results obtained will be shown.
The chapter will conclude with a discussion on the factors that produce the inequalities
between the probed deformation and the associated changes in apparent modulus, as well
as on the di�erences from the patterns expected from the analytical calculations in both
phantom and tissue experiments. Two metrics will also be proposed in an attempt to
qualitatively express the reliability of the obtained patterns.
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6.1. MRE Reconstruction Method
At each given in�ation state, wave images reporting the associated 3D micro-displacement

generated are acquired at eight consecutive time points, evenly sampling the wave cycle.
The Fourier transform is carried out for each voxel, recovering the complex harmonic dis-
placement uC, which is then used to solve Eq.2.50a introduced in Section 2.2 and reported
here:

ρω2uC + ∇x · (G∗ : ∇xuC + pC1) = 0 (6.1)

Here the complex shear modulus G∗, which accounts for both the storage and loss modulus,
i.e. G∗ = G′+iG′′, represents the unknowns of the equations, together with the hydrostatic
pressure pC. The pressure term cannot be neglected, as it would lead to errors in the shear
modulus reconstruction [259], however it can be removed by taking the curl of Eq.6.1,
limiting the inverse problem to the estimation of G∗[73].This local reconstruction method
relies on the fact that the curl of a scalar potential is zero, reducing Eq.6.1 to the following
form:

∇x ×
[
ρω2uC + ∇x · (G∗ : ∇xuC + pC1)

]
=

ρω2∇x ×uC + ∇x × ∇x · (G∗ : ∇xuC) + ∇x × pC1 =

ρω2∇x ×uC + ∇x × ∇x · (G∗ : ∇xuC) = 0 (6.2)

If we assume that both G′ and G′′ keep locally constant, by further denoting q = ∇x ×uC

and observing that ∇x × ∇2xuC = ∇
2
x (∇x ×uC), we can rewrite the set of complex wave

equations as
ρω2q +G∗ : ∇2xq = 0 (6.3)

A solution can now be obtained by solving the least squares minimisation problem

Σ =
1
2

[ (
G∗∇2xqx + ρω2qx

)2
+

(
G∗∇2xqy + ρω2qy

)2
+

(
G∗∇2xqz + ρω2qz

)2] (6.4a)
∂Σ

∂G∗ = 0 (6.4b)

This leads to the complex equation that allows a direct reconstruction of the complex shear
modulus for each voxel:

G∗ = −ρω2 ∇
2
xqxqx + ∇

2
xqyqy + ∇

2
xqzqz(

∇2xqx
)2
+

(
∇2xqy

)2
+

(
∇2xqz

)2 (6.5)

Under the assumption of isotropic material, all the components of G∗ are assumed to be
equal and the tensors G′ and G′′ can be considered as simple scaling factors replaced by
the scalars G′ and G′′, which become the unknowns of Eq.6.5. As explained in Section
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2.4, these scalars represent the component of the elastic and viscous tensors G′ and G′′

probed by the propagating shear waves.
Here, a 5 × 5 × 5 voxel reconstruction window was used for a �rst and third order poly-
nomial �tting to analytically calculate the �rst and third order derivatives for the central
voxel required to solve the wave equations. Because of the increased order of derivatives,
the employed MRE reconstruction results exhibit an enhanced sensitivity to data qual-
ity[73]. SNR from elastography data obtained from phantoms is generally higher due to a
controlled material homogeneity. Nevertheless, as presented throughout the following
sections of this chapter, wave attenuation a�ects data quality, as noise has a more relevant
impact on smaller harmonic displacements, which become more complicated to be cor-
rectly identi�ed from the MR images of the propagating waves; therefore, smoothing of
the wave images was required. In this case, a Gaussian �lter with σ =1.5 voxel and using
a 5 voxel support was applied.

6.2. Circumferential Strain Generates Apparent Anisotropy in

Phantoms
As explained in Chapter 3, for each of the three replicates of the in�ation experiment,

the phantom containing the Foley catheter was positioned onto the designated support
and into the bore of the MR scanner. The electromagnetic transducer was used to generate
the shear waves required to probe the rheological response of the material around the
balloon in�ated with water. Imaging of the wave propagation around the inclusion allows
the reconstruction of the shear modulus G′ probed locally by the propagating waves.

6.2.1. Local Wave Propagation Determines the Probed Deformation
The shear waves generated through the electromagnetic transducer are imaged using

MRE, which quanti�es the displacement generated in the x-,y- and z-direction at eight
di�erent time points. An example of this micro-deformation is presented in Fig.6.1-A.
Despite the strong wave attenuation shown in Fig.6.1-B, the wave-generated displacement
is still detectable in the chosen ROI. Given the di�culty to generate plane waves with the
developed setup, local knowledge of the direction of propagation of the wave is required
to determine the probed macro-deformation associated with the balloon in�ation. The
calculation of the gradient of the complex displacement generated by the waves allows
the voxel-wise estimation of the direction of the k-vector, which relates to the sensed
apparent shear modulus. The red arrows in Fig.6.1-C show the wave behaviour around
the inclusion. The mean k-vector however, shown as a green arrow, points roughly in
the same direction at all considered in�ations. Given the di�erent directionality of the
mean direction of propagation of the shear waves in the selected ROI throughout di�erent

119



6. Experimental Investigation

Figure 6.1.: The MR images of the wave displacement (A), the associate wave amplitude (B) as
well as the local estimation of the k-vector (red arrows in C) is presented for each
investigated in�ation state. The green arrows represent the mean k-vector direction
over the selected ROI.

replicates of the experiment, the green arrows will be used as reference to unravel the
Cartesian images and to generate a polar representation of the measured variation in G′

around the inclusion. An exhaustive explanation of this approach, employed to get a better
intra- and inter-experiment comparison, will be given in Section 6.2.2.

The voxel-wise projection of the calculated right Cauchy-Green strain tensor on the
direction of the k-vector, CK · K , returns an estimate of the local deformation probed
by the waves, an intuitive representation of which is shown in Fig.6.2-A.For each voxel,
the k-vector magnitude has been normalised to compensate for wave attenuation. Values
greater than 1 correspond to a sensed tension, while values smaller than 1 are obtained in
the case of compression, when the angle θ between the k-vector direction and the local
deformation vector is such that cosθ < cos π4 (see Fig.6.2-B). It is to be noted that, due to
normalisation over the k-vector magnitude, such measurement is solely dependent on the
magnitude of the projection of the right Cauchy-Green strain tensor on the local direction
of propagation of the shear waves and it is not in�uenced by their attenuation. Using the
deformation �elds obtained from the registration of the MR images of the inclusion in its
di�erent states, shown in Fig.6.3, it is possible to generate an in-plane representation of the
deformation sensed by the probing waves (Fig.6.4). The overlaid mean k-vector direction
is added to help the visualisation of symmetries with respect to the main direction of
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Figure 6.2.: A) Shear waves probe the material shear modulus along their direction of propagation,
identi�ed by the k-vector. This is comparable, in the case of a macro-deformation, to
the projection of the deformation �eld onto the k-vector usingCK ·K . B) For a spherical
deformation, the angle between the deformation vector and the k-vector determines
the magnitude of the probed material displacement and allows to di�erentiate between
compression and tension.

Figure 6.3.: Estimated macro-deformation using the implemented image registration strategy.
The deformation �eld (red arrows, not to scale), relating the de�ated balloon to each
in�ation state, shows a magnitude and directionality comparable with the spherical
in�ation of the inclusion.

121



6. Experimental Investigation

Figure 6.4.: In-plane Cartesian representation of the calculated CK · K . The overlaid arrows
represent the mean direction of propagation of the shear waves.

propagation of the waves. The obtained images show a clear compression probed at the
leading and trailing edge of the inclusion, and a tension on the sides in all the experiments
carried out.

6.2.2. Reconstructed Shear Modulus and Shear Modulus Variation fromMRE

Data

The shear modulus G′ was reconstructed from the shear wave images using the MRE
reconstruction strategy explained in Section 6.1. An example of the reconstructed mechan-
ical parameter for various in�ation states is presented in Fig.6.5-A, where the location of
the inclusion can be clearly identi�ed by the small values. The reconstruction focused
on a limited ROI around the inclusion, as wave attenuation made the G′ estimation away
from the wave-source less reliable. The average background shear modulus, calculated
averaging the reconstructed values from three in-plane slices sampling the centre of the
inclusion from the 3D stack and masking out the inclusion and its immediate surroundings,
is consistent throughout the phantoms used for the various replicates of the experiment
and under di�erent in�ation levels (Fig.6.5-B); furthermore, the background shear modu-
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Figure 6.5.: A) Reconstructed shear modulus at di�erent in�ations. B) Background shear modulus
reported as mean ± s.d. C) Comparison between background shear modulus recon-
structed for the de�ated cases and the analytical calculations using the best estimate
of the material parameters obtained by �tting the pressure curve associated to each
experiment. In this case, the error bars correspond to the values obtained when �tting
the highest and lowest pressures measured throughout the di�erent replicas of each
experiment, as presented in Table 3.2.

lus reconstructed from each employed phantom is comparable to the values analytically
predicted from the best �t of the in�ating pressures (Fig.6.5-C).
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The voxel-wise ratio between the reconstructed shear modulus at each in�ation state
and that of the de�ated balloon returns the relative shift in shear modulus generated by
the applied spherical deformation. Given the di�erent spatial domains where the data are
acquired, it is necessary to map the MRE image of the de�ated balloon into the deformed
con�guration. This extra step is carried out by interpolating the deformation �elds that
connect the de�ated state to the in�ated ones, obtained from the nonrigid registration of
the corresponding high resolution anatomical images (see Fig.6.3), into the voxel-grid used
for the MRE images; image warping is then performed using the built-in Matlab function
imwarp. The variation patterns obtained experimentally are presented in Fig.6.6, where
the inclusion has been masked out.

Figure 6.6.: Relative change in shear modulus between the various in�ated states and the de�ated
case. The overlaid arrows show the mean direction of the propagating waves.

Given the non-trivial wave propagation, the Cartesian representation of the variation
in shear modulus around the in�ated balloon employed so far does not o�er an easy
comparison among di�erent experiments, as well as with the corresponding analytical
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results. For this reason, we have devised a new representation of the inclusion and its
surroundings based on radial coordinates, which is presented in Fig.6.7. In the proposed

Figure 6.7.: Example of Cartesian representation of the inclusion where circular regions at di�erent
radial distances from the centre of the inclusion are showed with di�erent colours
(left). A better visualisation, independent on the mean direction of propagation of the
waves, is obtained through the “unravelling” of the image following the perimeter of
each circular region (right).

images, all voxels located at a �xed radial distance in the undeformed con�guration from
the centroid of the segmented inclusion are “unravelled” on the x-axis following the polar
angle, de�ned with respect to the direction of the mean k-vector calculated in the selected
ROI. With the new representation, the understanding of the deformation probed by the
propagating waves is simpler, with a compression expected in the regions around a 0° and
180° angle from the direction of the mean k-vector and a tension around ±90°.

Fig.6.8 shows the direct comparison between the polar representation of the probed
deformation (left),CK ·K , and the generated relativeG′ variation obtained experimentally
(middle). A further comparison with the analytically predicted patterns for the same
in�ation levels assuming a simple plane wave propagation is also proposed (right). In this
last case, the employed material parameters were obtained from the �tting of the pressure
data measured for each experiment using the modi�ed Mooney-Rivlin material law carried
out in Section 3.3.4. The experimentally generated variations in shear modulus presents
several elements in common with the probed deformation patterns (see arrows), especially
at higher in�ation levels; however, the location of the detected changes do not always
match those of the applied deformation. At lower in�ation levels, instead, despite no major
variation is expected, this is not always found in the experimental pattern. Furthermore,
overall the patterns seem to present a better agreement starting from one or two voxels
away from the interface between the inclusion and the surrounding phantom material.
On the other hand, in spite of a simpli�cation on the wave propagation, the patterns
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Figure 6.8.: Polar representation of the probed deformation (left), calculated using the local k-
vector estimated from the wave images, compared with experimental (middle) and
analytical (right) relative shear modulus variation at the four in�ation levels investi-
gated through three replicas of the in�ation experiment. The common elements in the
generated patterns are highlighted with arrows. The balloon region is blacked out.
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associated to the probed deformation displayed tension/compression at the exact locations
of the predicted shift in apparent shear modulus at all the investigated in�ations.

6.3. Preliminary Ex Vivo Experiments Using Bovine Tissue

Sample
The results obtained from the phantom experiments have shown a correlation between

the applied deformation and the viscoelastic response of the phantom; furthermore, similar
patterns have been analytically predicted, con�rming a theoretical understanding of the
observed alteration of shear modulus of soft tissue generated by pressurised tumour
expansion. Unlike the plastic material used to make the phantoms, however, real tissue
presents a more convoluted sti�ness distribution, as well as additional challenges that
could be neglected in the experiments presented so far. Aiming to bridge the developed
analytical considerations to in vivo tissue, we have reproduced the same experiment ex
vivo using a bovine tissue sample. Here we introduce the details of the implementation of
the experiment, followed by a presentation of the �rst obtained results.

6.3.1. Experiment Implementation
A suitable sample was sought to reproduce the proposed experiment ex vivo using

real tissue. The ideal sample would be able to withstand in�ations comparable to those
employed in the phantom experiment and the generated stress must increase nonlinearly
with the applied strain, hence leading to a variation in the measured apparent shear
modulus under su�cient in�ation. Furthermore, blood vessels and nerves around the
inserted balloon should provide additional features to help the image registration method
estimate the applied deformation. Three di�erent tissue samples were tested: ovine liver,
ovine leg and bovine joint, obtained from a local abattoir. Analysis of the in�ation pressure
revealed that only the latter was capable of withstanding higher in�ation levels employed;
for the other two cases, a sudden decrease in pressure was associated to the rupture of the
tissue (see Fig.6.9), as explained in Section 3.3. Given the fragility of the other samples,
the bovine tissue sample was employed for the in�ation experiment. To avoid undesired
ruptures, however, the balloon in�ation was reduced to a range going from 0.15ml to
0.35ml in steps of 0.05ml.

The protocol used to carry out the in�ation experiment was essentially the same as the
one presented in Section 3.4. Nevertheless, a few corrections needed to be applied due to
the time dependent deterioration of the tissue sample compared to stability of the PVC
mixture. Exposure to air leads to tissue dehydration, which can alter its biomechanical
properties and compromise the shear modulus measurements with respect to the de�ated
state. For this reason, immediately prior to the acquisition of the MRE and anatomical
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Figure 6.9.: Unlike the other two samples, the bovine joint proved capable of sustaining the stress
generated by the balloon in�ation without rupturing.

images, the sample was sprayed with water and loosely wrapped in a thin plastic �lm,
to help keep the sample hydrated without changing the boundary conditions. Aiming
to reduce the acquisition time, an NSA of 2, instead of 4, was used; while this e�ectively
halves the acquisition time, the SNR is reduced by a factor

√
2. Finally, gadolinium was

added to the water used to in�ate the balloon in a 0.3mM concentration, to provide a
better contrast from the tissue sample. Under these conditions, one successful experiment
was carried out, the results of which are reported in the following section.

6.3.2. Initial Results
The in�ating pressure measured at the selected in�ation volumes and the associated

radial stretch are presented in Table 6.1.

0.15mL 0.20mL 0.25mL 0.30mL 0.35mL
Pressure (kPa) 22.0 26.8 32.0 35.4 19.2

Stretch (-) 1.55 1.79 1.86 2.04 2.18

Table 6.1.: In�ating pressure (kPa) and radial stretch (-) measured from the bovine tissue sample

The modi�ed Mooney-Rivlin material law in the formW = µ1/2 (IĈ − 3) + µ2/2 (I IĈ − 3)2

was �tted to the acquired data in the way explained in Section 3.3 (see Fig.6.10). The best
estimate of the parameters and the results of the tests carried out to quantify the quality
of the �t are shown in Table 6.2.

µ1 (kPa) µ2 (kPa) r 2 SSR
18.4 0.4 0.98 0.007

Table 6.2.: Bovine tissue sample pressure data �tting

A Pearson’s correlation coe�cient of 0.98 indicates a good correlation between the observed
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Figure 6.10.: The modi�ed Mooney-Rivlin model provides a good �t of the pressure data acquired
experimentally.

and expected values. Using Eq.2.68, the linearised shear modulus of the tissue sample
could be calculated from the material parameters and was equal to 18.4 kPa.

The in-plane images presented in Fig.6.11-top show the location and size of the inclusion
at the di�erent in�ation states. Fig.6.11-middle reports the displacement ux generated by
the propagating shear waves, the amplitude of which is displayed in Fig.6.11-bottom. The
shear modulus of the tissue was estimated from the wave data using the reconstruction
method presented in Section 6.1. The reconstructed G′ for the various in�ation states
of the balloon is shown in Fig.6.12-A. With respect to the phantom experiments, a more
inhomogeneous shear modulus distribution was observed in the bovine tissue sample.
Again, the mean value of the background G′ around the inclusion was estimated for the
di�erent injected volumes (Fig.6.12-B), where the region corresponding to the location
of the inclusion and its immediate surroundings was masked out. While the mean G′

value remains roughly the same, it is to be noticed that the standard deviation of the G′

distribution is on average equal to the 30 % of the mean value and on average 2.4 times
larger than in the phantom cases. Compared to the phantom experiments, in this case
data �ltering produced an overestimation of the background shear modulus (26 ± 10 kPa),
which exceeded the value retrieved from the �tting of the in�ating pressure. When no
�ltering was applied, the background value (19 ± 5 kPa), obtained from the image of the
de�ated balloon, was in better agreement with the analytical prediction obtained from the
model (Fig.6.12-C).
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Figure 6.11.: Top) Magnitude images of the inclusion at di�erent in�ation levels. Middle) Wave
images acquired through MRE. Bottom) The wave amplitude fades quickly while
moving away from the wave source.

The voxel-wise ratio between the shear modulus reconstructed at each in�ated state
and the one obtained from the de�ated case was compared with the numerically predicted
patterns in Fig.6.13. Similarities with the probed deformation, calculated through CK · K ,
were also sought and pointed out with arrows. The analytical predictions, based on
the assumption of plane waves propagating unidirectionally through an homogeneous
medium, revealed an expected softening at the leading and rear edge of the inclusion
and a material sti�ening on the sides, corresponding to the -135° to -45° and 45° to 135°
regions. These patterns have been numerically calculated using the material parameters
estimated from the �tting of the pressure data. Compared to the analytical estimates, the
experimentally measured patterns are more convoluted and do not always correspond
to the predictions; however the G′ variation appears consistent throughout the various
in�ation states in most of the regions. The increasing reduction in shear modulus in the
-45° to 45° region is possibly the most evident feature and it well correlates with the theory.
The interpretation of the calculated CK · K appears more challenging, nonetheless a few
areas in common with the measured G′ variation are pointed out with arrows.
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Figure 6.12.: The reconstructed shear modulus shows a heterogeneous distribution around the
inclusion (A), as con�rmed by the large standard deviation measured for each case
(B). The mean value, however, remains roughly constant. A comparison between
the reconstructed background G ′ and the value analytically calculated shows a good
correlation.

6.4. Discussion
A list of the main results reported in this chapter is presented in Table 6.3.

In this chapter we have presented the results obtained from three replicates of the in-
�ation experiment performed in phantoms to demonstrate an experimental correlation
between the applied spherical macro-deformation and the resulting apparent variation
in shear modulus. As explained previously, the term “apparent” indicates the probing
of the nonlinear variation in G′ along the direction of propagation of the shear waves
when the sample is subjected to a macro-deformation, compared to the intrinsic shear
modulus of the material in the undeformed state. In the ideal case analytically investigated
in Chapter 2, we have assumed plane waves in the form u = uyêy = δy sin (kxx) êy , which
describes a wave propagating in the x-direction and polarised along the y-direction. Such
simple waves allows the detection of perfectly symmetric patterns at both sides of an
axisymmetically deformed sphere; nevertheless, this situation is more complicated to
reproduce experimentally. Material inhomogeneities can in fact re�ect or refract the waves
to di�erent directions, while the proximity between the wave source and the balloon is
such that the approximation of a planar wave front is di�cult to achieve. The use of a
wider piston, however, allows to reduce the curvature of the wave front, as shown in
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Figure 6.13.: The empiricalCK ·K (left) and G ′ variation (centre) show a very convoluted pattern,
however some matching features are pointed out with arrows. The increasing
softening in the -45°÷45° region also correlates with the analytical predictions (right).

Fig.6.1-A. The macro-deformation �eld estimated from the nonrigid registration of the
high resolution MR images of the inclusion, on the other hand, provides an adequate
approximation of a spherical in�ation used for the analytical modelling. In light of these
experimental limitations, the local calculation of the k-vector direction from the wave
complex displacement grants an understanding of the deformation probed by the waves
through the voxel-wise calculation of CK · K . This devised measurement provides an
easy di�erentiation between compression and tension, as well as a quanti�cation that can
be directly compared to the measured relative variation in shear modulus. Despite the
more complex wave propagation patterns, the probed deformation closely resembles the
expected one when phantoms were used, with a compression at the front and rear end of
the inclusion and a tension sensed on the sides.

To quantify the shift in G′ caused by the generated circumferential strain, a shear
modulus map was reconstructed for each in�ation state. To this goal, a vibration frequency
of 210Hz was employed. From Fig.6.1-A it is possible to make out the size of the inclusion,
comparable to half the resulting wavelength of the propagating waves. While a longer
mechanical excitation period would lead to a higher phase accumulation (see Eq.1.3),
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Main results

A original approach to allow a better visual comparison between the patterns produced at
di�erent in�ation states and through various experiments was conceived.

To deduce the local deformation sensed by the generated probing waves, a novel metric, CK · K ,
was devised, to account for more complex wave behaviours. The produced pattern showed a
good correlation with the model predictions at various in�ation states.

The apparent G ′ reconstruction from MRE data also showed a promising agreement with the
analytically produced patterns, however an improved reconstruction strategy is needed to better
deal with the artifacts at the interface between the balloon and the surrounding material.

A preliminary ex vivo experiments helped to identify the challenges to be expected in the
translation to an in vivo setting.

Table 6.3.

hence producing an improved wave image quality, the di�raction limit allows only to
resolve objects of commensurable size to that of the associated wavelength. Due to the
limited reconstruction window required for a local shear modulus quanti�cation, the
calculation of the local derivative estimates would also be more a�ected by noise in the
case of long wavelengths, making the use of higher frequencies preferable. However, given
the correlation between the vibration frequency and the wave amplitude attenuation as a
function of the penetrated distance, a trade-o� is required.

A similar reconstructed background shear modulus was obtained throughout the three
replicas of the experiment, con�rming the reproducibility of the phantom production, as
well as the accuracy of the analytical predictions. These measures were obtained masking
out the inclusion and its immediate surroundings from the reconstructed maps. This
exclusion was motivated by presence of water inside the balloon, which does not support
the propagation of shear waves, hence resulting in the reconstruction of meaningless values.
In the absence of displacement, in fact, the stack of images sampling the di�erent points
of the wave cycle will be dominated by noise, which is interpreted as a high frequency
oscillation during the reconstruction process, hence leading to the reconstruction of very
low values. The use of �nite di�erences with one-sided approximation, rather than the
currently employed polynomial �tting method aimed at calculating the derivatives for the
central pixel of the reconstruction window, can help tackle this problem. Furthermore, the
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assumption of local homogeneity for bothG′ andG′′ throughout the chosen reconstruction
window, required to simplify Eq.6.2 into Eq.6.3, is clearly not respected at the interface
between the balloon and the surrounding PVC phantom, leading to underestimations[260].
Susceptibility artifacts and a limited image resolution, compared to the size of the inclusion,
can exacerbate this issue. This underestimation seems to generally become more prominent
with the increase in size of the balloon, which will then re�ect into an estimated relative
softening, or reduced sti�ening, when compared to the una�ected values of the voxels
around the inclusion in the de�ated state.

Despite these limitations, the images showing the polar representation of the relative
change in shear modulus present a reasonable agreement with the probed deformation
in terms of apparent anisotropic pattern. This is true especially at higher strains, where
the nonlinear tissue response is more prominent. This agreement is also found with the
numerically calculated patterns in the simpli�ed case of a perfectly spherical in�ation
and of unidirectional plane waves. Most of the regions that do not show a comparable
response, however, can be traced back to locations in the shear modulus maps where
the reconstruction appears heavily a�ected by the presence of the inclusion, i.e. 0.3 mL
in�ation from experiment 2 and 3 or 0.2 mL in�ation from experiments 2, shown in Fig.6.5-
A and Fig.6.6. The almost perfect agreement between the numerical patterns and the
CK · K , in fact, suggests that the di�erences in the experimentally measured variations
should be ascribed to reconstruction issues rather than to the reliability of the estimate
of the deformation �eld or the estimation of the correct local k-vector direction. Despite
showing very similar patterns, the intensities of the probed deformations, CK · K , and of
the predicted variations in shear modulus do not follow a perfect one-to-one correlation;
this was expected, as the Mooney-Rivlin model does not involve a linear relationship
between the applied strain and the resulting variation in shear modulus. A more similar
intensity is seen between the experimental and predicted change in G′; nonetheless,
the employed constitutive equation does not seem capable to reproduce the patterns
empirically measured further away from the inclusion, leading to the argument that a
di�erent material law might better represent the tissue response in the presence of low
strains.

The MRE reconstruction employed in this study attempts to estimate the shear modulus
of the probed sample solving the wave equation presented in Eq.6.1, valid for wave propa-
gation in a linear viscoelastic material. This condition is accepted under the assumption
that the strain created by the waves is small enough to produce a linear stress response.
The application of a macro-deformation would then change the wave behaviour and the
associated wavelength lengthening or shortening would lead to the reconstruction of an
anisotropic shear modulus distribution. The incorporation of the correct material law in
the reconstruction process, on the other hand, would permit to account for the nonlinear
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response of the sample to an applied macro-deformation, hence allowing to reconstruct
the intrinsic shear modulus of the material independently of the probing direction. This
approach might �nd applicability in many cases where the bias introduced by a macro-
deformation might be undesired (i.e. liver and heart compression during the respiratory
and cardiac cycle or external compression during a breast exam) and a recent paper has
looked into the development of a mathematical framework to be employed in liver elastog-
raphy[86]. Additional work is still under development within our group to undo the e�ects
of a spherical deformation and reconstruct the intrinsic shear modulus of the material.
Promising results have been published in di�erent conference proceedings[261, 162], an
overview of which will be given in Chapter 7.

Quantitative Representation of Data Quality

The employed MRE reconstruction technique is very sensitive to data quality[51],
which directly depends on the quality of the acquired wave displacement. As mentioned
previously, because of the viscous dampening caused by the material, wave attenuation
plays a non negligible role in the MRE reconstruction from the experimentally acquired
MRE data. A smaller displacement, in fact, would make the local wavelength estimation
more sensitive to noise, leading to less reliable estimates. The loss in amplitude A at the
wave propagation distance ∆x can be expressed, for many soft tissues, as a power law
dependent on the vibration angular frequency ω[67]:

A(x + ∆x) = A(x)e−α(ω)∆x = A(x)e−α0ω
η∆x (6.6)

where α0 and η are tissue dependent attenuation parameters. At the chosen 210Hz fre-
quency, wave propagation experienced a signi�cant attenuation throughout the few mm
that separate the inclusion from the wave source, hence requiring the use of a considerably
high vibration amplitude. This enhanced attenuation is the result of an elevated viscosity of
the phantom, which contradicts the �ndings from the rheological material characterisation.
It has to considered, however, that the rheometric tests presented in Chapter 5 have been
carried out using a maximum vibration frequency of 10Hz, much lower than the 210Hz
employed to acquire the MRE images. At such low frequencies, the viscous response of
the material was much less pronounced, leading to an underestimation of the impact of
viscosity on the in�ation experiment.
When the relative shear modulus variation is considered, however, both the wave ampli-
tude image Aj in the in�ated state j and reference de�ated case A0 need to be taken into
account, the combination of which gives an understanding of the local trustworthiness
of the generated images. To make such quality metric comparable throughout di�erent
in�ations within a single experiment, each amplitude image has been divided by the
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maximum value measured throughout the various in�ations, max(Ai), in an ROI around
the inclusion, and the voxel-wise product of the normalised wave amplitude from the
reference and deformed image has been calculated for each in�ation, in the following way:

(combined relative wave amplitude)j =
AjA0

max(Ai)
2×100 with i = [0, 1, ...,N ], j = i\{0}

where the index i indicates the in�ation level, including the de�ated state. Values close
to 100 % signify a similar amplitude in both the de�ated and in�ated cases and little
attenuation with respect to the region in the ROI closest to the wave source.

Another source of uncertainty in the MRE reconstruction is given by the presence of
additional frequencies other than the selected vibration frequency in the wave images. The
acquisition of 8 data points for each wave cycle allows the voxel-wise detection of the real
and imaginary components of the displacement occurring at the main vibration frequency
and at the �rst couple of upper harmonics. Given a working frequency of 210Hz and in
the light of Eq.6.6, any contribution from upper harmonics can be reasonably neglected;
however, because of the use of a limited number of time samples, noise and reconstruction
artefacts, usually related to high frequency perturbations, will add up to the energy of
the Fourier coe�cients associated to upper harmonics. The percentage ratio between
such contributions and the magnitude of the Fourier coe�cients representative of the
actual vibration frequency o�ers an indicative metric of the local quality of the acquired
wave data and hence of the reconstructed G′. Unlike the wave amplitude, a value closer to
0 % suggest a higher data quality. Again, the voxel-wise product of the upper harmonic
contribution for the in�ated case j and the de�ated one, after being conveniently warped
into the current con�guration, produces a metric of the quality of the reconstructed relative
shift in shear modulus around the inclusion:

(contribution from upper harmonics)j =
(

M∑
k=1

|ck |

|c0 |
× 100

)
j

with j = [1, ...,N ]

where ck are the complex Fourier coe�cients associated to the upper harmonics, while c0
refers to the main frequency.

An exemplary representation of the two metrics calculated around the inclusion for
one of the phantom experiments is reported in Fig.6.14-A, with the corresponding polar
plots in Fig.6.14-B. Both metrics associate a higher reliability to the leading edge of the
balloon, at angles between the mean direction of propagation of the shear waves and the
radial distance from the centroid of the inclusion ranging between −45° and 45°. In such
region, given the proximity to the wave source, the combined relative amplitude is closer
to its maximum value and the higher SNR improves the detection of the main vibration
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Figure 6.14.: Cartesian (A) and polar (B) representation of the two metrics devised to determine
the local reliability of the measured variation in shear modulus at di�erent in�ation
levels. In the polar representation, the less trustworthy regions (< 10 % and > 25%
respectively) are shaded out.
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frequency, leading to a contribution from upper harmonics closer to 0 %. Interestingly,
however, at these polar angles the data quality decreases at a very close radial distance
from the inclusion, due to the presence of water in the balloon, that does not support
shear wave propagation, hence a�ecting the wave image reconstruction in its immediate
surroundings. Moving towards the ±180° angle, it is evident how both metrics show a
sudden decrease in data quality, especially in the case of the combined relative amplitude,
which drops by 1 to 2 orders of magnitude. Furthermore, given the quick wave attenuation
at the trailing edge of the balloon, such a metric quickly approaches values close to 0.1 % at
higher radial distances, in an opposite way to what was observed at the leading edge. The
same decreasing trend is seen for the contribution from upper harmonics, with values that
however rarely exceed 50 %. A similar data quality distribution is found for all the three
replicas of the experiment (data not shown), as an indication of the trustworthiness of the
relative shift in reconstructed shear modulus calculated at the di�erent voxels around the
inclusion and suggesting an overall reduced reconstruction quality when moving towards
higher absolute polar angles. Here, the two threshold de�ning the local trustworthiness
of the reconstructed shear modulus in Fig.6.14-B have been selected arbitrarily to give
a general idea of the reliability of the reconstruction; however the actual relationship
between each metric and the reconstruction quality, as well as the relevance of the impact
of wave attenuation and upper harmonic contribution and their combination into a unique
metric, should be further investigated. Nonetheless, these qualitative results clearly identify
a region of higher trustworthiness, which coincides to the leading edge of the inclusion
with respect to the propagating waves. The highest correlation between the analytical
prediction and the shift in shear modulus measured in phantoms and especially in the
tissue sample, were found nearby this region, and will be further discussed later in this
section.

As mentioned, the employed curl-reconstruction method requires a higher measurement
accuracy due to the increased order of di�erentiation of the wave displacement with respect
to other techniques. To improve the quality of the acquired data, in the phantom study we
have employed an NSA of 4, doubling the image SNR. Nevertheless, the acquisition time
was also increased four times, making this approach acceptable in the case of phantoms, but
less useful in real tissue investigations or with patients. To circumvent this problem, local
MRE reconstruction strategies based on FEM have been proposed in the literature[260],
which reduce the order of derivatives using an integration approach. Compared to the
curl method, state-of-the-art local FEM methods showed a reduced sensitivity to noise in
both phantom and anatomical data, although still presenting a strong dependence on the
local homogeneity assumption.[260]. Global heterogeneous FEM approaches[259, 262],
however, generally require regularisation of both the G′ and hydrostatic pressure and,
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although showing a comparable accuracy in phantoms, they present longer computational
times and a higher parameter dependency[260].

Insights on Ex Vivo Experiments

Finally, we have shown the �rst results obtained performing the presented experiment
on a soft tissue sample. The use of real tissue, rather than a polymer phantom, inherently
generates additional complications that must be dealt with. While certain tissue samples
proved too fragile, the bovine joint was capable to withstand the deformation generated
by the in�ated balloon. The main obstacle, however, was presented by the deterioration
of the sample once exposed to air due to tissue dehydration. Here we have tackled this
problem by spraying the sample with water and retaining the humidity with a plastic
�lm. We have seen that this method was su�cient to keep the background shear modulus,
estimated through MRE, constant over the total time required to perform the experiment.
Nonetheless, the large variation of the reconstructed G′ over the region surrounding the
inclusion represents a second major concern, as it does not fully satisfy the assumption of
local homogeneity requested by the employed MRE reconstruction method and can lead
to inaccurate reconstructed values. Finally, the employed tissue samples did not present
evident structures that could help the image registration process, which therefore relied
only on the change in size of the in�ated inclusion. The absence of additional features can
lead to an inaccurate estimation of the deformation �eld farther away from the immediate
proximity of the balloon; nevertheless, the analytical predictions have shown that, at
higher radial distances from the centre of the inclusion, the applied deformations should
be not su�cient to alter the measured apparent shear modulus from its background value.
An unreliable local estimation of the deformation �eld can re�ect on the calculation of
CK ·K , which, however, in the presented case appears to be mainly a�ected by inaccuracies
in the estimation of the k-vector from the wave images. Given the very quick wave
attenuation through the ROI around the inclusion, in fact, the wave amplitude reaches
values as low as ∼2 µm on the trailing edge and on the sides of the inclusion, much lower
than those measured in the phantom experiments. As explained previously, images of very
small displacements are more a�ected by noise, hence making it di�cult to capture the
local wavelength and hence to reconstruct the correct shear modulus. This is particularly
true for the reconstruction method employed, which relies on higher order derivative and
is more sensitive to image quality. In this sense, halving the number of averages to reduce
the acquisition time was expected to diminish the image SNR with respect to the phantom
data. All these factors, combined, led to a more accurate G′ reconstruction, and hence
calculation of its variation, on the leading edge of the inclusion with respect to the mean
k-vector direction. The experimentally measured softening, in fact, shows a good degree
of consistency with the corresponding CK · K , while, despite the simplifying assumptions
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of tissue homogeneity and plane waves, both the pattern and the intensity trend closely
match the analytical prediction in such regions. The modi�ed Mooney-Rivlin material
law employed, in fact, proved capable to capture the stress/strain response of the tissue,
providing a good �t of the pressure data.
The increase of the wave amplitude can clearly improve the quality of the MRE data without
incrementing the acquisition time, hence increasing the overall reliability of the k-vector
estimation and, consequently, of the reconstruction. This can be done either locating the
inclusion closer to the wave source or increasing the vibration amplitude of the push/pull
rod of the transducer. The latter has been attempted, however an intrinsic limit to the
vibration amplitude exists and has been identi�ed by the snapping of the moving part
of the transducer that connects the push-pull rod to the solenoid. Locating the inclusion
closer to the wave source, instead, is discouraged, as the boundary conditions would
be inherently di�erent from those used in the analytical model and a direct comparison
would become less relevant. Additionally, given the higher intrinsic shear modulus of
the tissue compared to that of the PVC phantoms, the same vibration frequency, 210Hz,
results in a longer wavelength, hence reducing the ability to clearly resolve the size of
the generated variations in G′, comparable to the size of the inclusion. While a higher
vibration frequency would solve the problem, Eq.6.6 has shown that the damping would
become even more pronounced, requiring an even higher input power that the employed
transducer could not sustain.

These results have highlighted a series of technical limitations which arise when MR-
elastography is translated to in vivo experiments and to clinical applications. Much e�ort
has been and is currently being put to have a better control over the generated waves
through the development of novel and more precise transducers for patient applications[66].
Following this direction, further work on the hardware used for the presented experiments
is required to validate the proposed theoretical framework both ex vivo and in vivo and to
further investigate the e�ects of tissue inhomogeneity on the reconstructed shear modulus.
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7.1. Summary
Throughout this thesis we have introduced a novel mathematical and experimental

framework to characterise the apparent variation in shear modulus measured around
a pressurised tumour through MRE. Under the assumption of linear elasticity, the re-
construction employed to estimate the mechanical properties of soft tissue from the MR
images of the propagating shear waves does not account for its nonlinear stress/strain
response when subjected to large deformations, leading to a biased reconstruction. In
the particular case of a spherical in�ation, an idealisation of the stress generated by a
solid tumour expansion on the isotropic host tissue, we have demonstrated analytically
and experimentally how this bias yields a signature pattern that can represent a valuable
biomarker for tumour growth and expansion.

In Chapter 2 an analytical formulation to explain the impact of an underlying macro-
deformation on the wave equation and on the quanti�cation of the elasticity tensor G′ in
elastography was developed. Using a modi�ed version of the Mooney-Rivlin constitutive
law and approximating the tumour-host tissue ensemble with a thick-shelled sphere,
it was also shown that the detected apparent variation in shear modulus is strongly
dependent on the shear waves, the direction of propagation of which allows to probe
di�erent components of G′. Using the developed mathematical results, a quanti�cation
and mapping of the theorised anisotropy as a function of the magnitude of the spherical
deformation was then presented, showing the dependence on the mechanical parameters
of the material law chosen to represent soft tissue rheology. These analytical �ndings
present the �rst evidence of the hypothesised apparent signature pattern generated by the
nonlinear response of an isotropic medium to the radial stress produced by a mimicked
pressurised tumour. The intensity of the apparent shift in shear modulus showed a direct
correlation with the in�ation of the inclusion, suggesting the potential to use the estimation
of apparent peri-tumoural anisotropy, detected through MRE, as a biomarker to assess
tumour growth and expansion. Also, the generated patterns displayed little dependence
on the strain energy density function chosen to model the elastic behaviour of soft tissue,
indicating that the same pattern could be expected in di�erent organs and di�erent types
of soft tissue, regardless of their rheological behaviour. More important is the correct
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characterisation of the material parameters of the tissue, as a wrong estimate can falsely
associate the detected anisotropy to a more or less intense underlying strain. The correct
estimation of the deformation applied by the solid tumour is in fact crucial to retrieve the
state of stress of the tumour; unlike this simpli�ed forward situation, the deformation �eld
cannot be directly assessed in a real tumour, as its unpressurised state is unknown, hence
leading to further assumptions as described in the following section of this chapter.

To reproduce these �ndings in a phantom setting, we have identi�ed a nonlinear
viscoelastic isotropic material capable of sustaining deformations comparable to those
found in a tumour environment, replicated through the use of a balloon-catheter. A
description of the protocol to build the phantom and details of the steps involved in the
designed in�ation experiment have been reported in Chapter 3; the correct quanti�cation
of the radial stretch and the development of a pressure measuring system to monitor
the radial stress generated by the in�ated balloon onto the surrounding matrix were
crucial aspects to relate the experimental �ndings to the equivalent conditions in the
analytical framework. Furthermore, the pressure trend as a function of the radial stretch
was accurately captured by the constitutive law selected in Chapter 2, hence supporting
its application to describe the rheological behaviour of the phantom material as well.

A local estimate of the magnitude and directionality of the deformation applied by the
in�ated balloon is required to get an understanding of the expected variation in shear
modulus around the inclusion. To this end, a nonrigid image registration strategy was
implemented and its validation using an in silico ground truth model has been presented
in Chapter 4. The addition of silica gel during the making of the plastisol phantom helped
guiding the registration of the MR images of the balloon-catheter in�ated to di�erent levels,
producing an accurate estimate of the generated deformation �eld. This strain estimation
method was further tested on MR images of murine and human tumours, subjected to
macro-deformations generated by external compressive forces.

Chapter 5 reported the viscoelastic characterisation of the soft plastic material selected
to mimic soft tissue through a controlled stress rheometer. The required nonlinear stress/s-
train response was initially assessed, to ensure a variation in the apparent shear modulus
measured through elastography. The addition of silica particles has been associated to
an increased nonlinearity of the plastic cuboid without impacting its background shear
modulus in the absence of forces, and, as expected from the literature, a rise in nonlinearity
was positively correlated to the plastisol concentration too, for strains lower than 25 %.
A mathematical model, based on di�erent hyperelastic material laws, which makes use
of fractional calculus to account for the viscoelastic response of the sample, was devel-
oped to �t the experimental data. While a �rst order polynomial constitutive equation
proved incapable of approximating the rheological behaviour of the employed samples
in the presence of tracking particles, both the modi�ed Mooney-Rivlin law introduced
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in Chapter 2 and the Fung-type exponential law produced a satisfactory �t of the data.
The very mild viscoelasticity observed supported the decision to focus on the analytical
investigation of the impact of a spherical macro-deformation on the apparent storage
shear modulus G′ estimated through MRE. The value of the linearised shear modulus of
the plastisol material, calculated from the parameters associated from the best �ts, was
in good agreement with the same value extracted from the �tting of the pressure data
using the modi�ed version of the Mooney-Rivlin law; both of them represented a close
approximation of the shear modulus empirically measured through MRE and presented in
Chapter 6, further con�rming the validity of the model.

Finally, in Chapter 6, experimental observations of the shear modulus anisotropy re-
constructed from MRE data around the in�ated inclusion have been shown. A qualitative
comparison between the analytically predicted shift in shear modulus and the estimate of
the local deformation probed by the waves has revealed similar patterns, the visualisation
of which was facilitated by the use of a polar representation of the regions around the
inclusion. These results represent an experimental validation of the analytical results
presented in Chapter 2, con�rming the potential employment of MRE to provide a novel
biomarker for tumour stress. In order to bridge these �ndings to an in vivo setting, the
results obtained from a �rst ex vivo experiment, carried out using a bovine tissue sam-
ple, have also been presented, which helped to identify new challenges associated to the
translation to in vivo imaging. From the experiments, wave damping has also arisen as
a major limitation for an accurate detection of the mechanical parameters of soft tissue
through MRE. A method to assess the local quality of the reconstructed patterns from the
analysis of the wave images, accounting for wave attenuation as well as for the presence
of higher harmonics, has also been proposed. Given the anisotropic change in the shear
modulus generated by a radial in�ation, the presented metrics have helped identify speci�c
regions around the inclusion where the measured shift in apparent shear modulus from
the intrinsic value is more reliable.

7.2. Clinical Impact
The analytical predictions of an apparent shear modulus anisotropy around an in�ated

object con�rmed the expected signature pattern generated by the tumour expansion
against its surroundings. The experimental results provided a validation of the analytical
�ndings under the controlled conditions o�ered by a phantom setting. These �ndings
assume a crucial importance in the context of the FORCE project, as they demonstrate
for the �rst time the need to account for the impact of tumour-associated forces in the
MRE reconstruction of the material properties of soft tissue. The relevance of these results
lies in the quantitative explanation of the observed patterns and provides evidence of
the potential to use MRE to detect changes in the shear modulus of soft tissue caused
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by tumour expansion, and therefore to indirectly estimate forces in cancer through the
analysis of the signature pattern reconstructed around a pressurised tumour.

Knowledge of peri-tumoural anisotropy permits recovery of underlying radial stretch

A novel method to estimate tumour pressure from the MRE measurement of the aniso-
tropic shear modulus distribution in the peri-tumoural region, given the assumption of an
appropriate material law that relates the applied strain to the associated stress, is currently
under development in our group, in parallel to the work carried out for this thesis. While
in Chapter 2 it was shown that knowledge of the deformation gradient F , under the choice
of a speci�c constitutive equation, can be used to predict the associated shift in shear
modulus as probed by the shear waves, in an opposite way, a known deformation �eld can
be incorporated in the inverse solution of the wave equation, hence allowing to e�ectively
“undo” the apparent anisotropy e�ect and to reconstruct the intrinsic shear modulus of the
material associated to the undeformed case. This was recently demonstrated by Capilnasiu
et al. (2018) in PVA samples subjected to di�erent levels of uni-axial compression and using
the same modi�ed version of the Mooney-Rivlin material law presented in this report[86].
Fovargue et al. (2018) have extended this work to the case of the radial stretch generated
by an expanding sphere onto its surroundings. Using a FEM simulation of a spherical
deformation of a Neo-Hookean material, we have shown the possibility to undo the
bias and to reconstruct the intrinsic shear modulus of the medium[162]. Knowing the
expected apparent variation generated by a spherical in�ation, an objective function
de�ned as the voxel variance within an annular region around the inclusion was designed,
to iteratively seek the radial stretch that minimised its value (Fig.7.1-A). Given the material
law describing the medium, the in�ating pressure could be retrieved from the estimated
radial stretch, showing an almost perfect recovery of the simulated one.

Correct modelling of tissue rheology is crucial in phantom experiments and clinical settings

While in an in silico situation the applied stretch is known, in clinical applications
there is no prior knowledge of the underlying deformation �eld generated by the tumour.
Assuming a spherical in�ation, however, it becomes possible to iteratively �nd the radial
stretch that minimises the shear modulus anisotropy in the same way as in the in silico
case, provided the use of a suitable material law. This method was applied to the phantom
data presented in this report, assuming Neo-Hookean elasticity and, as shown in Fig.7.1-B,
the in�ating pressures retrieved at the di�erent in�ation levels were comparable with
the experimental measures[162]. This was especially true for higher in�ation volumes
since, as explained throughout this thesis, practical issue leading to low image SNR can
increasingly a�ect the detection of the mild shear modulus anisotropy generated under
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Figure 7.1.: A) Assuming a radial in�ation, the iterative search for the scaling parameter α that
minimises the voxel variance around the inclusion can be used to undo the anisotropic
shear modulus pattern and retrieve the associated pressure in silico. B) The application
of this method on the MRE data acquired through the in�ation experiments allowed
the recovery of pressures similar to those measured experimentally. C) This method
can represent a non-invasive biomarker to gauge metastatic potential in breast cancer.
Images A and B adapted with permission from Fovargue et al. (2018) [162], image C
adapted with permission from Fovargue et al. (2018) [263].

low strains, leading to inaccurate in�ation, and hence pressure, estimates.
Although in Chapter 5 it was shown that a higher order polynomial or an exponential
strain energy density function could better capture the nonlinearity introduced by the use
of the silica gel at the chosen plastisol concentration, Fig.2.1 revealed that, compared to a
Neo-Hookean material law, the quadratic term introduced in the modi�ed Mooney-Rivlin
equation becomes relevant only for radial stretches larger than ∼2.5; as the maximum
radial stretch reported in the in�ation experiments was ∼2.6 (Fig.3.8), a Neo-Hookean
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model was expected to provide reasonable pressure estimates with the advantage of using
a simpler mathematical formulation.

Estimation of tumour pressure through MRE correlates with invasiveness in breast cancer

A �rst clinical application of this method was proposed in a recent study covering 15
malignant breast lesions and 1 breast �broadenoma[263]. Here, Fovargue et al. (2018) have
shown that a higher radial stretch and the corresponding elevated in�ating pressure can
di�erentiate tumours which presented lymphovascular invasion (LVI) from non-LVI breast
lesions and from control undeformed soft tissue. While various simulated tumour sizes
and shapes yielded consistent pressure curves[162], we have shown throughout this thesis
that the correct assumption on the employed strain energy density function is absolutely
crucial at higher applied strains, as it can lead to a pressure over- or underestimation, as
reported in this clinical study. In this case, a Fung material law was assumed to model the
rheological behaviour of the peri-tumoural tissue in breast, nevertheless the mathematical
formulation presented in this report provides a framework that can be adapted to di�erent
tissues, given an accurate mechanical model of the soft tissue of interest. These results
indicate that reconstruction of the total tumour stress through the analysis of the signature
apparent shear modulus anisotropy can represent a non-invasive biomarker to gauge
metastatic propensity, which can crucially help decide whether a cancer patient needs
an immediate surgery or neoadjuvant chemotherapy. The presented results based on the
framework proposed in this work, however, do not di�erentiate between solid stress and
IFP, as the stress responsible for the deformation of the surrounding soft tissue can be
ascribed to both factors. Nevertheless, since both solid stress and IFP have been directly
associated to tumour aggressiveness and poor treatment e�cacy, their combined e�ect is
believed to correlate to the same features as well.

7.3. Limitations and Future Directions
The main limitations that a�ected the presented work are here summarised and potential

solutions requiring further investigations are proposed.

• The mathematical framework developed in Chapter 2 was limited to the analysis
of the impact of a spherical deformation onto the storage modulus as measured
through MRE. While the loss modulus was not investigated, it can be expected that
the tumour-generated strain introduces a loading bias on the reconstruction of G′′

as well. Nevertheless, a low viscosity, such as the one observed for the material
employed for the in�ation experiments, can lead to an overestimation of the viscous
modulus through the chosen MRE reconstruction[260], making the quanti�cation
unreliable. This problem is expected to vanish in in vivo studies, due to a stronger
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viscosity of real soft tissue, however the sensitivity of the employed reconstruction
method to noise calls for further research in a more controlled environment. In this
report, we have not observed a correlation between the plastisol concentration in
the employed mixture and the viscous response of the material, quanti�ed by the
fractional derivative order. A phantom investigation using a di�erent and more
viscous material could then shed light on the impact on tumour-generated forces on
the measurement of the viscous properties of the surrounding soft tissue through
MRE. Analytic results will have to follow.

• In Chapter 6 the underestimated reconstruction of G′ from the in�ation experiment
in the immediate proximity of the balloon was discussed. This is a common prob-
lem of many local direct MRE reconstruction methods, due to the violation of the
homogeneity assumption in the presence of large discontinuities, which can lead
to �uctuations of both components of G∗. This artifact in the immediate vicinity of
the inclusion, where the analytically calculated patterns have highlighted the need
for a more accurate quanti�cation of G′, as the strain is larger and the apparent
anisotropy is more pronounced; the quick fading to the background value only a
few mm away from the inclusion, in fact, makes its detection more prone to errors
dependent on the quality of the acquired data. The local FEM reconstruction method
proposed by Fovargue et al. has shown the capability to better handle the presence
of discontinuities, producing an accuracy near inclusion boundaries close to that
obtained from a global method, without the need for parameter regularisation and at
a reduced computational cost[260]. Although it is plausible that such a reconstruc-
tion method could provide a more accurate comparison between the predicted and
measured shift in shear modulus, further improvements on the image acquisition
scheme could also increase the accuracy of the reconstructed values. That said,
in the imaging protocol used for the acquisition of the phantom data, SNR was
already increased to the detriment of the data collection time, while MRE resolution
is comparable to that used in clinical settings, hence making the investigation of
this path a less favoured choice. Furthermore, the discontinuity is anticipated to
have a less signi�cant impact in real tumour cases, as, unlike in the phantom, both
the tumour and the surrounding tissue support the propagation of shear waves and
the transition of biomechanical properties from one tissue to the other is expected
to be smoother.

• While the radial stretch of a thick-walled sphere can represent a reasonable approxi-
mation of tumour growth, the plane wave propagation has proven more challenging
to achieve in a phantom and can represent a serious limitation in vivo, due to the
higher material heterogeneity. In this report, in addition to the analytical predictions,
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we have presented a comparison between the experimentally measured variation in
shear modulus and a metric devised to quantify the direction and intensity of the de-
formation probed by the shear waves, CK · K . These experimental patterns account
for the complex wave direction around the inclusion and provide a better appraisal
of the cause-e�ect relationship between the regions where tension/compression is
expected and the corresponding impact on the material properties. Incorporation of
the empirical wave pattern into the analytical formulation could produce a more
accurate model of the experimental conditions, providing further insights on its
implications in more complicated in vivo cases.

• Wave attenuation has proven to be a major issue in the in�ation experiments carried
out in this project. Such problem is a direct consequence of the viscosity of the
phantom material at higher vibration frequencies, which, as shown in Eq.6.6, can
lead to a non-negligible attenuation even in the case of a mildly viscous material. The
higher chosen frequency was required to reduce the wavelength to the size of the
inclusion, given the elevated shear modulus of the employed samples, higher than the
values normally reported for healthy soft tissue. Despite being a good representation
of the conditions encountered also in the employed tissue sample, an increased
damping makes the identi�cation of the wave displacement more subjected to noise,
which can impact the MRE reconstruction, especially when the local curl method
presented previously is used. Unfortunately, the setup employed here to generate
the waves was not capable of withstanding the mechanical stress experienced when
a higher power was used for a 210Hz vibration frequency. Therefore, an improved
wave propagation would require a re-design of the setup. Promising results have
been achieved by this group in phantoms and in patients through the use of a
newly-proposed gravitational transducer capable of generating a cleaner frequency
spectrum, with no upper harmonics[66]; this transducer, however, was tested and
employed only at frequencies lower than 100Hz, therefore its performances at higher
vibration frequencies are yet to be assessed.
The use of a softer phantom material would, on the other hand, provide a better
solution, as the shear modulus of the employed plastisol mixture was higher than that
expected from soft tissue, in order to enhance its nonlinear stress/strain response.
The ranges of shear moduli encountered in vivo in breast or liver tissues are much
lower than those experimentally achieved here, and normally lower frequencies,
in the order of 50 to 100Hz, are su�cient. In this sense, plastisol was proposed as
the ideal material for the in�ation experiment presented in this study, in light of its
nonlinearity, robustness and simple production method; nevertheless, as highlighted
through this list of limitations, the identi�cation of a di�erent material characterised
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by an increased viscosity and associating a su�cient nonlinearity to a reduced shear
modulus would provide a better approximation of the mechanical properties of
soft tissue and permit a more accurate study of the apparent changes generated by
mechanical stresses.

7.4. Conclusions
To summarise, the presented work has proposed a mathematical framework to quantify

the theorised anisotropic shear modulus distribution caused by tumour-associated forces
in the surrounding host tissue, as measured through MRE. An in�ation experiment using
a soft tissue-mimicking material was then carried out to validate the analytical formula-
tion through MRE data. The results presented in this report represent a signi�cant step
towards the development of a non-invasive method to measure and monitor intra- and
peri-tumoural stresses as a biomarker for tumour progression and treatment e�cacy.
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A. The Material Derivative

In continuum mechanics, the time rate of change of a physical quantity of a material
element moving at a velocity v is given by the material derivative. For a functionψ (x , t),
its material derivative in an Eulerian coordinate system is de�ned as

D

Dt
ψ (x , t) =

∂

∂t
ψ (x , t) +

3∑
i=1

vi
∂

∂xi
ψ (x , t)

=
∂

∂t
ψ (x , t) +v(x , t) · ∇xψ (x , t) (A.1)

In a Lagrangian coordinate system, with an observer �xed at the initial reference frame,
the material derivative of the same function, expressed this time asψ (X , t), is just a time
derivative:
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∂

∂t
ψ (X , t) (A.2)

A.1. The Material Derivative of a Volume Integral
Let Φ be a volume integral of a continuous di�erential function ϕ(x ,y, z, t) de�ned in

the current domain Ωt at time t

Φ(t) =

∫
Ωt

ϕ(x ,y, z, t)dΩ (A.3)

Its material derivative, highlighting the rate of change in a moving volume as a function
of time, is given by
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where Γt de�nes the surface of the volumetric domain Ωt , v(t) =
(
dx
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)T is a unit vector normal to the surface. This equation can be
written more concisely as
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Here, the �rst integral represents the rate of change inside a �xed volume, while the second
integral describes the convective transfer through its surface. Applying Gauss theorem,
the material derivative of a volume integral can be expressed in its �nal form
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or, in a more compact way
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Importantly, in a Lagrangian system, where Ωt = Ω0 for all t , the material derivative is
simply given by
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B. The Reynolds Transport Theorem

The Reynolds transport theorem is useful to formulate the basic equations of quantum
mechanics. Using the material derivative (Eq.A.6), we can express the z-component of the
vector representing the linear momentum of a body as
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Ignoring the integral, the integrand on the right-hand side of Eq.B.1 can be expanded as
follows
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Under the assumption of continuity of mass (Eq.2.15), we �nd that the �rst term on the
right-hand side of the equality is equal to zero, hence the integrand in Eq.B.1 can be
replaced with what is left of Eq.B.2, returning
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By noticing that the terms between brackets on the right-hand side of the equality are
nothing else than the material derivative of vz , the Reynolds transport theorem can be
written as
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C. Simplification to Linearised Elastic

Wave Equations

C.1. Linearisation of Perturbed PK1 Stress Tensor

Here we simplify the set of perturbed Equations 2.40 using a perturbation theory.
Starting by explicitly writing the dependence of the PK1 tensor on the perturbed macro-
deformation u = U +uε and pressure p = P + pε

P = P

(
F (U +uε),

∂F (U +uε)

∂t
, P + pε

)
(C.1)

we can linearise the PK1 stress tensor by expanding about the current state U using the
directional derivative. A truncation of the second order terms in the Taylor expansion
leads to the following form:

Pij(U +uε) = Pij(U ) + D[Pij(F )][uε]
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Using the chain rule[163], the directional derivative in À can be expressed as

D[Pij(F )][uε] =
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: D[Fmn][uε] (C.3)

Using the de�nition given in Eq.2.42, the directional derivative on the right-hand side of
Eq.C.3 can be written as follows:
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In the same way, the chain rule applies to Á in Eq.C.2, giving
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Lastly, we can express Â as

D[Pij(P)][pε] =
∂Pij

∂P
: D[P][pε] (C.7)

where the directional derivative on the right-hand side of Eq.C.7 can be rewritten as

D[P][X ] = lim
h→0

P(X + hX ) − P(X )

h

= lim
h→0

P + hpε − P

h
≈ pε (C.8)

Substituting Eq.C.4, C.6 and C.8 in Eq.C.3, C.5 and C.7, respectively, we obtain a new
version of À, Á and Â which, once replaced in Eq.C.2, returns the linearisation of the
perturbed version of P

P(U +uε) ≈ P(U ) + ∇FP : ∇Xuε + ∇ ∂F
∂t
P : ∇X

∂uε
∂t
+
∂P

∂P
pε (C.9)

Using Eq.2.8, we can �nally substitute ∂P∂P with JF−T , hence obtaining

P(U +uε) ≈ P(U ) + ∇FP : ∇Xuε + ∇ ∂F
∂t
P : ∇X

∂uε
∂t
+ pε JF

−T (C.10)

C.2. Linearisation of Perturbed Jacobian
The same perturbation analysis can be used to linearised the Jacobian of the per-

turbed macro-deformation, J (U +uε). Again, Taylor’s expansion of J around the macro-
deformation U is written as

J (U +uε) = J (U ) + D[J ][uε] + O(h
2) (C.11)
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with a truncation of the second order terms O(h2). Using the chain rule and remembering
Eq.C.4, the directional derivative in Eq.C.11 is expressed as

D[J ][uε] = ∇F J : D[F ][uε]

= ∇F J : ∇Xuε (C.12)

Replacing Eq.C.12 in Eq.C.11 and knowing that ∇F J = JF−T , it follows that

J (U +uε) ≈ J (U ) + JF
−T : ∇Xuε

≈ J (U ) + JF−1ji
∂(uε)j

∂Xi

≈ J (U ) + J
∂Xi

∂xj

∂(uε)j

∂Xi
≈ J (U ) + J

∂(uε)j

∂xj
(C.13)

or, more compactly
J (U +uε) ≈ J (U ) (1 + ∇x · uε) (C.14)

Since the mass must be conserved at all times, both J (U +uε) − 1 = 0 and J (U ) − 1 = 0
are valid. It then follows that

J (U +uε) − 1 ≈ J (U ) + J (u)∇x ·U ε − 1

≈ (J (U ) − 1) + J (U )∇x · uε
≈ J (U )∇x · uε = 0 (C.15)

As a consequence, ∇x ·uε = 0. Replacing this in Eq.C.14, we obtain the linearisation of the
Jacobian of the perturbed macro-deformation:

J (U +uε) ≈ J (U ) (C.16)
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