
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1016/j.cpc.2019.107087

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Ovtchinnikov, E., Brown, R., Kolbitsch, C., Pasca, E., da Costa-Luis, C. O., Gillman, A., Thomas, B., Efthimiou,
N., Mayer, J., Wadhwa, P., Ehrhardt, M., Ellis, S., Jørgensen, J., Matthews, J., Prieto Vasquez, C., Reader, A.
J., Tsoumpas, C., Turner, M., Atkinson, D., & Thielemans, K. (2020). SIRF: Synergistic Image Reconstruction
Framework. COMPUTER PHYSICS COMMUNICATIONS, 249, Article 107087.
https://doi.org/10.1016/j.cpc.2019.107087

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 01. Jan. 2025

https://doi.org/10.1016/j.cpc.2019.107087
https://kclpure.kcl.ac.uk/portal/en/publications/1c93d88e-d4f7-4f95-8094-759e733f91ba
https://doi.org/10.1016/j.cpc.2019.107087


SIRF: Synergistic Image Reconstruction Framework

Evgueni Ovtchinnikova, Richard Brownb,∗, Christoph Kolbitschf,
Edoardo Pascaa, Casper da Costa-Luisd, Ashley G. Gillmank,
Benjamin A. Thomasb, Nikos Efthimioue, Johannes Mayerf,

Palak Wadhwah,j, Matthias J. Ehrhardtl, Sam Ellisd, Jakob S. Jørgenseni,
Julian Matthewsg, Claudia Prietod, Andrew J. Readerd,

Charalampos Tsoumpash,j, Martin Turneri, David Atkinsonc,
Kris Thielemansb,∗∗

aScientific Computing Department, Rutherford-Appleton Laboratory, UK Research and
Innovation, Harwell Campus, Didcot OX11 0QX, UK

bInstitute of Nuclear Medicine, University College London, 235 Euston Rd, London NW1
2BU, UK

cCentre for Medical Imaging, University College London, 43-45 Foley Street, London
W1W 7TS, UK

dSchool of Biomedical Engineering & Imaging Sciences, King’s College London, Lambeth
Wing, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK

ePET Research Centre, School of Health Sciences, University of Hull, Hull HU6 7RX,
UK

fPhysikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig D-38116
and Abbestrasse 2-12, Berlin D-10587, Germany

gDivision of Informatics, Imaging and Data Sciences, University of Manchester, 46
Grafton Street, Manchester M13 9NT, UK

hBiomedical Imaging Science Department, University of Leeds, Leeds LS2 9JT, UK
iSchool of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL,

UK
jInvicro London, Du Cane Rd, London W12 0NN, UK

kAustralian e-Health Research Centre, CSIRO, Brisbane, Queensland 4029, Australia
lInstitute for Mathematical Innovation, University of Bath, Convocation Ave, Bath BA2

7JU, UK

Abstract

The combination of positron emission tomography (PET) with magnetic reso-
nance (MR) imaging opens the way to more accurate diagnosis and improved
patient management. At present, the data acquired by PET-MR scanners

∗Joint first author
∗∗Corresponding author. E-mail address: k.thielemans@ucl.ac.uk

Preprint submitted to Computer Physics Communications November 22, 2019

Manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



are essentially processed separately, but the opportunity to improve accuracy
of the tomographic reconstruction via synergy of the two imaging techniques
is an active area of research.

In this paper, we present Release 2.1.0 of the CCP-PETMR Synergistic
Image Reconstruction Framework (SIRF) software suite, providing an open-
source software platform for efficient implementation and validation of novel
reconstruction algorithms. SIRF provides user-friendly Python and MAT-
LAB interfaces built on top of C++ libraries. SIRF uses advanced PET and
MR reconstruction software packages and tools. Currently, for PET this is
Software for Tomographic Image Reconstruction (STIR); for MR, Gadgetron
and ISMRMRD; and for image registration tools, NiftyReg. The software
aims to be capable of reconstructing images from acquired scanner data,
whilst being simple enough to be used for educational purposes.

The most recent version of the software can be downloaded from http:

//www.ccppetmr.ac.uk/downloads and https://github.com/CCPPETMR/.

Keywords: Image Reconstruction; PET-MR; Multi-modality; Medical
Imaging; Open-Source Software

PROGRAM SUMMARY
Program Title: Synergistic Image Reconstruction Framework (SIRF)
Licensing provisions (please choose one): GPL 3 and Apache-2.0
Programming languages: C++, C, Python, MATLAB
Nature of problem:
In current practice, data acquired by PET-MR scanners are processed separately.
Methods for improving the accuracy of the tomographic reconstruction using the
synergy of the two imaging techniques are actively being investigated by the PET-
MR research and development community, however, practical application is heav-
ily reliant on software. Open-source software available to the PET-MR commu-
nity – such as the PET package Software for Tomographic Image Reconstruction
(STIR) [1] and the MR package Gadgetron [2] – provide a basis for new syner-
gistic PET-MR software. However, these two software packages are independent
and have very different software architectures. They are mostly written in C++ but
many researchers in the PET-MR community are more familiar with script-style
languages, such as Python and MATLAB, which enable rapid prototyping of novel
reconstruction algorithms. In the current situation it is difficult for researchers to
exploit any synergy between PET and MR data. Furthermore, techniques from
one field cannot easily be applied in the other.
Solution method:

2

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ccppetmr.ac.uk/downloads
http://www.ccppetmr.ac.uk/downloads
https://github.com/CCPPETMR/


In SIRF, the bulk of computation is performed by available advanced open-source
reconstruction and registration software (currently STIR, Gadgetron and NiftyReg)
that can use multithreading and GPUs. The SIRF C++ code provides a thin layer
on top of these existing libraries. The SIRF layer has unified data-containers and
access mechanisms. This C++ layer provides the basis for a simple and intuitive
Python and MATLAB interface, enabling users to quickly develop and test their
reconstruction algorithms using these scripting languages only. At the same time,
advanced users proficient in C++ can directly utilise wider SIRF functionality via
the SIRF C++ libraries that we provide.

1. Introduction

Magnetic resonance (MR) images can provide high resolution anatomical
images with excellent soft tissue contrast, but provide only limited func-
tional and metabolic information. In contrast, positron emission tomogra-
phy (PET) is able to provide highly sensitive and specific functional imaging,
but at low spatial resolution (4-7 mm). The many PET tracers available can
provide information on a wide range of processes. Recognition of the comple-
mentary aspects of the two imaging modalities prompted the development
of integrated clinical PET-MR scanners. Hybrid PET-MR imaging [3, 4]
promises superior application in oncological, paediatric [5], cardiac [6] and
neurological [7, 8] imaging, both in clinical and research settings. However,
the technical hardware developments have not yet been paralleled by the
development of an integrated software platform for processing data acquired
by such scanners.

Image reconstruction is a challenging problem for each modality, albeit
for somewhat different reasons. PET image quality is limited by noise and
resolution thus it requires regularisation during image reconstruction [9]. On
the other hand, MR data are often undersampled for acquisition speed [10],
and model-based reconstruction is often needed [11, 12]. Both modalities
could benefit from additional information in the reconstruction. For PET,
this has most often been exploited by using a high quality MR image as “side-
information” [13]. Similar strategies can be used for dynamic MR data [14].
Recently, researchers have started exploring methods for joint reconstruction
of both data-sets, exploring the underlying structural similarity [15, 16, 17,
18, 19]. However, this research has been confined to single institutions using
their own internal software packages.

3

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Many open-source packages exist for single-modality image reconstruc-
tion, for instance for PET [1, 20, 21, 22, 23] or MRI [24, 2] (an extensive list of
Open Source imaging software is provided at https://www.opensourceimaging.
org/category/software, and https://www.ismrm.org/mri_unbound/sequence.

htm and http://stir.sourceforge.net/links contain numerous links to
MR and PET software). However, none of these packages allow the recon-
struction of data from both modalities, and are therefore not suitable for
joint reconstruction of PET and MR data. The Collaborative Computa-
tional Project for PET-MR (CCP-PETMR, http://www.ccppetmr.ac.uk)
is a network established in April 2015 with the aim of facilitating the in-
vestigation of novel synergistic PET-MR image reconstruction methods by
providing the PET-MR research community with a software-development
platform. The platform should be simple enough to use for research and
educational purposes and, at the same time, powerful enough to be able to
handle raw data acquired by PET, MR and PET-MR scanners within a rea-
sonable processing time. Both of the available integrated clinical PET-MR
systems, the Siemens 3T Biograph mMR (Siemens Healthineers, Erlangen,
Germany) [25] and the General Electric Signa PET/MR [26, 27], are being
targeted by this software platform, and a suitable data format exchange is
being negotiated with the manufacturers. This paper describes Release 2.1.0
of the open-source Synergistic Image Reconstruction Framework (SIRF).

2. SIRF structure

2.1. Rationale

Image reconstruction requires complex software and support for different
types of scanners. Developing software that handles two substantially differ-
ent imaging modalities is therefore a challenging task. While it would have
been possible to extend one of the many open-source software projects that
aim to support a single modality, this would inevitably have led to duplicat-
ing the effort. Instead, SIRF is designed to act as a “framework” providing
a layer on top of existing packages for medical image reconstruction, referred
to as engines in this document. This layer aims to present a consistent in-
terface for data manipulation and image reconstruction, independent of the
modality and the underlying engine. Such an architecture has the additional
advantage that it allows SIRF to benefit from the active development in each
of the underlying engines. Note that these design choices are similar to those

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.opensourceimaging.org/category/software
https://www.opensourceimaging.org/category/software
https://www.ismrm.org/mri_unbound/sequence.htm
https://www.ismrm.org/mri_unbound/sequence.htm
http://stir.sourceforge.net/links
http://www.ccppetmr.ac.uk


Figure 1: The architecture of SIRF: interfacing of underlying engines and most of the
development is in C++. Interfacing MATLAB and Python with the underlying C++ code is
done via a thin C API. CIL is a Python library described in §5.1.1.

of Operator Discretisation Library (ODL) [28] and Core Imaging Library
(CIL), see §5.1.1. However, both are Python-only and do not support MRI.

An important choice is the programming language that the users of our
platform will need to adopt for their own software development. Two lan-
guages and environments that are widely used by researchers are MATLAB
and Python, in part because of the excellent prototyping abilities of these
languages, while C++ is more commonly used for intensive computational ap-
plications, often benefiting from multi-threading via OpenMP. Most of the
existing open-source software packages consist of a core C++-library, some-
times with interfaces to MATLAB and/or Python. In SIRF, we have chosen
to do most of the development in C++, including the interfacing to the under-
lying engines, as described in Figure 1. The C++ code is then interfaced to
simple Python and MATLAB building blocks. We aim to have close similar-
ity between the C++, Python and MATLAB interfaces to SIRF, but expect
that most of the users of our platform will use Python or MATLAB, and
these interfaces are therefore currently most complete and well-documented.

SIRF uses an object-oriented approach to programming. A short descrip-
tion of this approach is presented in Appendix A and is illustrated by SIRF

5

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



usage examples.

2.2. Underlying engines

At present, we use STIR (Software for Tomographic Image Reconstruc-
tion) [1] as a PET engine, Gadgetron [2] as an MR engine and NiftyReg as
the engine for registration and resampling [29, 30]. We briefly describe these
engines here, but refer to their respective publications and web-sites for more
detail.

STIR [1] implements a library of C++ classes for performing PET recon-
struction and related tasks such as data input / output. Parameters of a
STIR reconstructor object are normally defined by the user in a text-based
parameter file, and a set of executables is provided that read the parameter
file specified in the command line and perform the required tasks, so that
the user does not need to be an expert in C++ or any other programming
language. For users familiar with Python or MATLAB, the current devel-
opment version of STIR offers an alternative usage via Python / MATLAB
scripts. This requires building Python and MATLAB interfaces to STIR by
SWIG [31]. However, these interfaces currently do not cover all functionality
of STIR. Moreover, they expose the complexity of underlying C++ library.

With Gadgetron [2], MR image reconstruction is performed by specifying
a chain of ‘gadgets’, i.e. pieces of code implementing specific tasks within
a streaming architecture. The chain of gadgets is executed on a server,
which can be launched in the background of the same computer, or it can
be another computer, or a Virtual Machine, or a cloud-based computational
infrastructure. A client can communicate with the server via TCP/IP. In
order to set up the gadget chain, the server needs to receive a text file in
the Extensible Markup Language (i.e. xml file format) describing the chain.
Then, the first gadget in the chain is activated and waits for the acquired data
to arrive from the client in chunks of a certain size. Having processed a chunk
of data, the first gadget passes the result to the second, starts processing the
next chunk and so on. The last gadget sends the reconstructed images back
to the client. As with STIR, a Gadgetron user is not required to have any
knowledge of C++. Instead, the reconstruction tasks can be configured via
parameter files in xml format.

NiftyReg [29, 30] is a C++ image registration library, restricted to images
stored in the NIfTI image format [32]. Rigid, affine and non-rigid image
registrations are possible, and these are available in both symmetric and
non-symmetric versions. From the registrations, it is possible to extract

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



transformation matrices (for rigid and affine registrations), and deformation
and displacement field images. With motion information extracted, it is then
possible to perform resampling as required.

2.3. SIRF software layers

2.3.1. C++

The C++ layer provides the basic class hierarchies, in particular data con-
tainer classes, and specific implementations where we wrap the functional-
ity provided by the engines as well as implementing any extra components
needed for the general usage of SIRF.

2.3.2. Interfacing into Python and MATLAB

At present, the SIRF user interface consists of the modules sirf.Gadgetron,
sirf.STIR and sirf.Reg wrapping the engines, together with some addi-
tional functionality in sirf.Utilities.

To avoid difficulties interfacing between the C++ code and the targeted
script languages, we include an additional layer by wrapping C++ code into
C. This extra layer simplifies interfacing and widens the scope of our targets
to practically any programming language in use.

Interfacing of C into MATLAB is facilitated by the availability of MAT-
LAB functions (loadlibrary, callib etc.) that allow direct calls of func-
tions from C libraries (with a little ‘syntactic sugar’ needed under Windows).
For Python we use SWIG [31], which can also be used for a number of other
prospective languages.

The MATLAB and Python interfaces based on this C library are not
user-friendly and not intended to be accessed directly. Instead in addition
to these, we have Object-Oriented MATLAB and Python modules mirroring
and extending the C++ class structure.

3. SIRF objects

This section briefly describes the type of objects with which SIRF users
need to operate in order to perform image reconstruction and related tasks. A
more detailed description is provided in the SIRF User’s Guide, and examples
are given in §4.

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/CCPPETMR/SIRF/blob/v2.0.0/doc/UserGuide.md


3.1. Image and acquisition data objects

In SIRF, acquired data are handled by objects of class AcquisitionData
and images by objects of class ImageData. Both are derived from an abstract
data class DataContainer that implements data algebra: the user’s code can
compute norms, dot products and linear combinations of data objects of the
same class viewed as vectors.

We created a hierarchy of image data objects that allows us to handle
representations of images employed in different reconstruction engines in a
unified way. On the top of this hierarchy, we have an abstract base class
ImageData, from which the abstract classes PETImageData and MRImageData

are derived. Further down this hierarchy, we have various classes encapsulat-
ing different representations (e.g file or array) of image data used in different
reconstruction engines, such as STIRImageData. SIRF uses a patient-based
coordinate system to encode the physical position of a given volume element.
This allows spatial context to be integrated between images from different
engines.

3.2. Acquisition models

An ‘acquisition model’ is the terminology for a mathematical model of
the scanner acquisition process, which can be represented by

A(x) = b (1)

where x represents the scanned object, typically a vector of values at points
in three-dimensional space defining a discretised image, b approximates the
actual data collected by the scanner and A is an operator (generally non-
linear) that models the acquisition process.

The computation of A(x) for a given image data representation x is re-
ferred to as the forward projection. The backprojection is the application of
the adjoint of the Fréchet derivative of A to acquisition data. For linear mod-
els, the backprojection corresponds to the Hermitian conjugate operation.

In SIRF, PET and MR acquisition models are implemented by their re-
spective AcquisitionModel classes.

3.3. Reconstructors

Reconstructor classes implement algorithms for solving equation (1). In
the current SIRF version, we expose Gadgetron MR reconstructors that im-
plement direct algorithms for Cartesian acquisitions using Fourier transforms.

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Planned future versions will also expose iterative algorithms for Cartesian
and non-Cartesian acquisitions. For PET, the SIRF Filtered Back Projec-
tion reconstructor implements a direct algorithm. Other reconstructors im-
plement iterative algorithms maximising the (optionally penalised) Poisson
log-likelihood (see §3.4), with the possibility of using ordered subsets [33].

With SIRF iterative reconstructors, the user has an option of performing
one iteration at a time in a loop, which allows them to inspect the current
state of the iterated image, apply their own filtering and so on.

3.4. Objective functions

SIRF iterative reconstructors maximise a certain objective function re-
lated to the acquisition model (1). The user is provided with facilities to
compute the value of this function and its gradient, so that they can em-
ploy their own or third-party optimisation algorithms. Penalty terms can be
added to the objective function, which opens a way to employing images pro-
duced by an MR reconstructor as anatomical priors for PET reconstruction
[34, 35, 13], see also §5.1.2.

3.5. Registration and resampling

As previously mentioned, through the wrapping of NiftyReg SIRF pro-
vides registration and resampling functionality. For rigid and affine regis-
trations, the user may use NiftyAladinSym; for non-rigid registration, the
user may use NiftyF3dSym. Lastly, resampling can be carried out with the
use of NiftyResample. Example usage of the registration and resampling
functionality can be found in §4.3.

Once registrations have been performed, it is clearly important to be able
to manipulate the motion information. Affine transformation matrices can
therefore be handled with AffineTransformation, and displacement and
deformation field images are handled with NiftiImageData3DDisplacement

and NiftiImageData3DDeformation, respectively.
It is possible to convert between these different transformation types (al-

though, naturally, it is not possible to convert from non-rigid transformations
back to transformation matrices). Moreover, SIRF provides functionality to
compose multiple transformations (of differing types if desired), as well as
averaging affine transformation matrices via their quaternions.

9

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3.6. Other functionality

In addition to the functionality described in §3.1-§3.5, Python and MAT-
LAB interfaces provide functionality for data input/output, object cloning,
inspecting data dimensions and so on.

Data-access functionality warrants a special note, as all the actual acquisi-
tion and image data are handled exclusively by the engines. For performance
reasons, the user does not have direct access to the underlying engine-specific
data structures and normally would not need to know whether it is stored
in the memory, in a file, in GPU memory, etc. Each data container has a
method as array that returns a copy of its data as a Python or MATLAB
array, and a method fill that fills the container with the data from a user’s
array. In addition, SIRF contains converters to directly go between data
structures of the different engines, if possible, albeit usually with some loss
of associated meta-data.

4. Examples of usage

4.1. PET

Although many other radiotracers are available, PET is most often used to
scan patients who have been injected with an 18F-labelled Fluorodeoxyglu-
cose (FDG) solution that provides information about glucose metabolism.
FDG is commonly used to diagnose and stage tumours in oncology, but it
also has uses in various other clinical domains such as in cardiology, which
helps to assess the myocardial viability. PET data acquisition is usually
carried out for about 30 minutes, about 60 minutes after the tracer injection.

Here, we show how an FDG-PET scan acquired on a 3T Siemens Bio-
graph mMR [25] can be reconstructed using an ordered subsets expectation
maximisation (OSEM) algorithm [33]. The following pseudo-code uses the
Python interface of SIRF but can easily be adapted for MATLAB. Only parts
of the necessary code are provided here. For a detailed line-by-line tutorial
refer to the example file reconstruct from listmode.py.

The following files are required for this example reconstruction (the vari-
ables for the filenames for the following code snippets are given in brackets):

• Normalisation file in Siemens interfile format (norm file)

• Attenuation map for the subject (usually obtained from a dedicated
MR scan) in interfile format (human attenuation file).

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



• Attenuation map for the table (and MR receive coils for head scans) in
interfile format (hardware attenuation file).

• Listmode data in Siemens PETLINK format with Siemens interfile-like
header (listmode file).

• Template for the projection data calculation in interfile format. This
has to fit to the scanner geometry. Examples for this can be found
in the sub-module data, for instance mMR template span11.hs in the
data/examples/PET/mMR/ folder.

As a first step, the listmode data are transformed to sinogram space using:

import sirf.STIR as PET

lm2sino = PET.ListmodeToSinograms()

The lm2sino object is then provided with the listmode file (listmode file),
the template file (template file) and information about the time interval
which shall be transformed to sinogram space. The calculation of sinogram
data is performed by the method process, and the calculated data are re-
turned by the method get output. After calculating the sinogram data, a
sinogram of the mean of the random events can also be estimated [36] using
the lm2sino object:

randoms = lm2sino.estimate_randoms()

The attenuation maps can be read in as ImageData objects and then
combined:

attn_image_hum = PET.ImageData(human_attenuation_file)

attn_image_hw = PET.ImageData(hardware_attenuation_file)

attn_image = attn_image_hum + attn_image_hw

Figure 2 shows an example for the combined attenuation map.
After combining the attenuation data and the information from the nor-

malisation file, a reconstruction object for OSEM is created:

recon = PET.OSMAPOSLReconstructor()

recon.set_num_subsets(21)

recon.set_num_subiterations(63)

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/CCPPETMR/SIRF_data/blob/v2.1.0/examples/PET/mMR/mMR_template_span11.hs


Figure 2: Combined attenuation map showing both attenuation coefficients for the subject
and the scanner table in three different orientations.

The OSMAPOSL reconstructor is an implementation using ordered subsets of
Green’s One Step Late algorithm for Maximum A Posteriori reconstruc-
tion [37] which reduces to OSEM if no prior is set. Although this algorithm
does not converge to the global maximum of the objective function but to an
approximate maximum, it is still widely used in practice because it substan-
tially speeds-up the calculations. See §5 for examples of other algorithms.

The objective function is defined as the logarithm of the Poisson likeli-
hood, using a default (ray-tracing) linear acquisition model, with the data
set to acq data, the output returned by lm2sino.get output():

obj_fun = PET.make_Poisson_loglikelihood(acq_data)

The objective function requires an acquisition model. Here, we explicitly
specify to use forward projection by a ray-tracing matrix multiplication:

acq_model = AcquisitionModelUsingRayTracingMatrix()

obj_fun.set_acquisition_model(acq_model)

but see the example script for details on how to include extra components in
the acquisition model, such as attenuation and randoms. Results shown here
also include Compton scatter in the acquisition model, in which the scatter
is estimated using the Single Scatter Simulation method [38] as implemented

12

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 3: Transversal, sagittal and coronal views of the reconstructed PET images with
SIRF reconstructions on the left and the reconstructions by the scanner software on the
right. The high uptake of FDG in the heart muscle can be clearly seen.

in STIR [39], although this functionality is currently still on a development
branch of SIRF and STIR.

Following the set up of the reconstruction object, the iterative reconstruc-
tion can be carried out and the reconstructed PET data can be obtained:

recon.process()

image_data = recon.get_current_estimate()

The final reconstructed PET image is shown in Figure 3. In addition, the
standard PET reconstruction from the PET-MR scanner is also shown for
comparison purposes. Post-filtering after image reconstruction was different
for the images.

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4.2. MR

Cardiac function – the contracting motion of the heart during the cardiac
cycle – is an important clinical parameter when checking for potential prob-
lems in the heart. MR is often used for cardiac functional imaging (so-called
cine imaging) due to its excellent soft tissue contrast. In order to minimise
respiratory motion artefacts, 2D cine imaging is carried out during breath-
hold. MR raw data are acquired in k-space over multiple cardiac cycles, and
data from the same cardiac phase are retrospectively combined for image re-
construction. This yields dynamic 2D images showing the heart at different
phases of the cardiac cycle. Parallel imaging techniques, such as GRAPPA
[40], undersample data to speed up the acquisition and reduce breath-hold
duration while maintaining high spatial and temporal resolution [10].

Here, we show how to reconstruct a 2D cine MR scan acquired with a 3T
mMR Biograph during a 10 s breath-hold (repetition/echo time: 3.4 / 1.5 ms,
bSSFP-sequence, flip angle: 50◦, image resolution: 1.3 mm, slice thickness:
6 mm, undersampling factor: 2) using the Python interface of SIRF.

As a first step, the filename of the MR raw data file in ISMRMRD for-
mat [41] is passed to the MR AcquisitionData class to create the corre-
sponding object:

import sirf.Gadgetron as MR

acq_data = MR.AcquisitionData(mr_file)

Preprocessing of the data, such as removal of readout oversampling and
noise decorrelation for multi-coil data, is carried out:

preproc_data = MR.preprocess_acquisition_data(acq_data)

The undersampling of the acquired k-space leads to a violation of the
Nyquist-Shannon sampling theorem and hence to “undersampling/aliasing”
artefacts in the reconstructed image. GRAPPA utilises spatial information
from the local receiver coils to minimise these artefacts [42]. A full GRAPPA
reconstruction is implemented in Gadgetron and can be called in a straight-
forward manner from the Python or Matlab interface of SIRF by creating a
CartesianGRAPPAReconstructor object:

recon = MR.CartesianGRAPPAReconstructor()

or by specifying the gadgets explicitly

14

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 4: Reconstructed time frames of a MR cine acquisition using SIRF compared to
the standard image reconstruction of the 3T Siemens mMR Biograph.

recon_gadgets = [‘AcquisitionAccumulateTriggerGadget’,

‘BucketToBufferGadget’,

‘GenericReconCartesianReferencePrepGadget’,

‘GenericReconCartesianGrappaGadget’,

‘GenericReconFieldOfViewAdjustmentGadget’,

‘GenericReconImageArrayScalingGadget’,

‘ImageArraySplitGadget’

]

recon = MR.Reconstructor(recon_gadgets)

Once the preprocessed data are passed to this object, the reconstruction
is carried out and the reconstructed image data is retrieved:

recon.set_input(preproc_data)

recon.process()

image_data = recon.get_output()

Figure 4 shows the cine data reconstructed with SIRF compared to the
standard reconstruction from the MR scanner. In contrast to the standard
image reconstruction performed on the PET-MR scanner, SIRF also pro-
vides further information, such as a g-factor map that describes the noise

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 5: G-factor maps for the cine time frames shown in Figure 4. These maps provide
a measure of the noise amplification related to the conditioning of the inverse problem, in
this case a GRAPPA reconstruction.

amplification that results from reconstructing undersampled data. The g-
factor depends upon the coil geometry, coil positioning, undersampling fac-
tor, undersampling pattern and the object. (Figure 5). An inhomogeneous
distribution of values in the g-factor map can be, for example, an indicator
that the sequence parameters were not optimised for the used receiver coil
configuration. The calculation of the g-factor map can be enabled for the
GRAPPA gadget using:

GenericReconCartesianGrappaGadget(send_out_gfactor=true)

and the g-factor maps are then retrieved using

gfactor_data = recon.get_output(‘gfactor’)

The final number of dynamic 2D cine images depends on the subject’s
heart rate. In order to make the images more easily comparable between
different subjects, the data are commonly interpolated to a predefined num-
ber of dynamic images. This can also be done using SIRF by adding the
following lines to the reconstruction gadget chain:

‘PhysioInterpolationGadget(phases=30, mode=0,

first_beat_on_trigger=true, interp_method=BSpline)’

This yields 30 dynamic cine images which can be retrieved using:

image_data = recon.get_output(‘Image PhysioInterp’)

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4.3. PET-MR

Using SIRF, it is possible to perform motion-corrected static and dynamic
PET reconstructions. This is highlighted in [43] (and briefly shown here), in
which the example of head motion is given.

In this method, motion-free time frames are supplied from an external
source (such as by using principal component analysis (PCA) on the PET
listmode data [44, 45]). Using these time frames, the listmode data are
then binned into corresponding sinograms. Non-attenuation corrected (NAC)
reconstructions are performed on a frame-by-frame basis, and the resulting
images are registered to a reference frame using rigid registration as follows:

import sirf.Reg as reg

algo = reg.NiftyAladinSym()

algo.set_parameter("SetPerformRigid","1")

algo.set_parameter("SetPerformAffine","0")

algo.set_floating_image(NAC_i)

algo.set_reference_image(NAC_ref)

algo.process()

TM = algo.get_transformation_matrix_forward()

Frame-by-frame attenuation-corrected (AC) reconstructions can then be
performed by first transforming the MRAC into the space of the individual
PET frames using the extracted transformation matrix, as such:

res = reg.NiftyResample()

res.set_floating_image(MRAC)

res.set_reference_image(NAC_i)

res.add_transformation(TM)

res.set_interpolation_type_to_linear()

res.process()

res.get_output().write("MRAC_def.nii")

Following the AC reconstruction of each of the frames, they can then be
resampled back into the reference space, and indirect parametric estimation
can be performed via STIR’s Patlak analysis [46].

Figure 6 shows the movement during the scan by comparing the reference
frame (left) to another frame earlier in the scan (middle). The earlier scan
is then registered to the reference frame to account for motion (right).

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 6: NAC reconstructions of the reference frame (left) and an earlier frame (middle),
where movement occurred between the two. Finally, the early frame registered to the
reference frame (right).

A well-known problem with the above methodology is that the registra-
tion of early NAC frames is often not reliable as these images are usually
too noisy and the activity distribution is changing rapidly over time. In such
circumstances, PET-MR is particularly useful if MR acquisitions of high tem-
poral resolution, such as arterial spin labelling (ASL), were acquired during
these early PET frames.

Figure 7 then shows the movement throughout the whole scan, as detected
by frame-by-frame registration of NAC and ASL images.

Rapid movement according to the ASL registrations (at 900 s, for exam-
ple) corresponds to gaps in the NAC data, suggesting that PCA was success-
fully used determine motion-free time frames for the PET reconstructions.

The NAC registrations appear to imply that rapid jittering motion is
present at the beginning of the scan. This is likely a demonstration of the
difficulty of registering early NAC images. This highlights the advantages of
using complimentary MR information when available for PET-MR acquisi-
tions.

Figure 8 shows indirect parametric reconstructions using Patlak analysis.
On the left, motion correction was used (with motion information from a
combination of NAC and ASL registrations), whereas no motion correction
was used on the right-hand side. The superior section of the brain is under-
estimated when motion correction is not used as motion is in the superior-
inferior direction (corresponding to the z-direction in Figure 7). This, again,
shows the benefit of using complimentary PET-MR motion information.

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 7: Motion based on frame-by-frame registrations. The top and bottom rows rep-
resent motion from registering NAC and ASL images, respectively. Further, the left-hand
column shows translations (mm), whereas the right-hand column shows rotational motion
via Euler angles (degrees). Gaps in the NAC data are present because motion-free frames
have been determined (in this example with PCA) and periods of motion have been re-
moved. Gaps in ASL data are present because ASL images were not acquired for the whole
duration of the scan. Vertical lines show the start and end of ASL acquisitions (longer
and shorter dashes for the start and end, respectively).

Figure 8: Indirect parametric reconstructions both (a) with and (b) without motion cor-
rection. Without motion correction, the top of the brain is underestimated due to motion
in the inferior-superior direction.

19

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5. Advanced usage

5.1. Implementing custom reconstruction algorithms

By using the functionality mentioned in this paper, it is possible to imple-
ment reconstruction algorithms directly in MATLAB or Python, for instance
using AcquisitionModel operations, or in terms of the objective function
and its get subset gradient method (see, for instance, the steepest ascent
example).

In addition, it is often also convenient to use parts of an existing algo-
rithm. Therefore, SIRF iterative reconstructors expose functionality such
as:

• update and update current estimate to compute one update

• get current estimate and set current estimate to modify the es-
timate, for instance with filtering.

During a recent Hackathon [47], such functionality was used to implement
new algorithms in Python:

• Total Variation regularised least squares with fast iterative shrinkage-
thresholding algorithm (FISTA) [48], and

• De Pierro’s maximum a posteriori expectation maximisation (MAP-
EM) algorithm [49].

5.1.1. Use of CCPi optimisation and regularisation algorithms

The Collaborative Computational Project in Tomographic Imaging (CCPi,
https://www.ccpi.ac.uk/), provides a collection of software modules to
tackle different aspects of the X-ray CT data analysis pipeline from pre-
processing to reconstruction to visualisation; this collection is referred to as
the Core Imaging Library (CIL), [50]. The relevant parts of CIL employed
to integrate into SIRF are the following:

• CCPi-Framework: An object-oriented optimisation framework 1

1https://github.com/vais-ral/CCPi-Framework/

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/CCPPETMR/SIRF/blob/v2.1.0/examples/Python/PET/steepest_ascent.py
https://www.ccpi.ac.uk/
https://github.com/vais-ral/CCPi-Framework/


• CCPi-Regularisation-Toolkit: A set of CPU/GPU optimised regulari-
sation modules for iterative image reconstruction and other image pro-
cessing tasks [51] 2

• CCPi-FrameworkPlugins: A set of wrappers to allow usage of CCPi-
Regularisation-Toolkit corresponding modules in the CCPi-Framework 3

The CCPi-Framework is developed in Python following an object-orientated
approach and most of the classes follow the same naming convention as in
SIRF, including DataContainer, ImageData and AcquisitionData. The
CCPi-Framework was developed on the basis of the discrete imaging model
A(x) = b, as discussed in §3.2. While in SIRF the operator A is called
‘AcquisitionModel’, in the CCPi-Framework it is called ‘Operator’ as it was
decided to use the names of the underlying mathematical objects. The CCPi-
Framework provides a range of generic implementations of optimisation algo-
rithms to address a variety of smooth and non-smooth optimisation problems
relevant for reconstruction purposes. One can seamlessly use SIRF objects in
CCPi-Framework algorithms thanks to the dynamic/duck typing of Python
and to the introduction of aliases of methods that are in CCPi-Framework
objects to methods in SIRF objects. For example, the forward method of
an AcquisitionModel is aliased as direct, and the backward method as
adjoint.

The CCPi-Regularisation-Toolkit provides a range of different regular-
isation modules including Total Variation (TV) [52] and variants thereof,
implemented in C/CUDA for accelerated computation on multi-core CPUs
and GPUs. Through the CCPi-FrameworkPlugins wrappers, these tools are
available in the CCPi-Framework and as a result can also be used from SIRF.
In the remainder of the paper we will simply refer to CIL as meaning the
collection of modules described above.

With the integration of CIL into SIRF, a whole plethora of optimisation
algorithms and regularisers are now available. To demonstrate these, the
Gradient Descent (GD) and FISTA algorithms [48] were used to solve the
least squares and a regularised least-squared problem, respectively.

FISTA can be used to minimise objective functions which are the sum of
a differentiable first term and a second term which is not necessarily differ-

2https://github.com/vais-ral/CCPi-Regularisation-Toolkit
3https://github.com/vais-ral/CCPi-FrameworkPlugins

21

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/vais-ral/CCPi-Regularisation-Toolkit
https://github.com/vais-ral/CCPi-FrameworkPlugins


entiable. The algorithm alternates between the two terms of the objective
function allowing for the use non-differentiable regularisers, such as TV, to
encourage preservation of edges in the reconstruction. The GD and FISTA
algorithms of CIL are provided by the CCPi-Framework, whereas the TV
regulariser and in particular its proximal operator is provided by the CCPi-
Regularisation-Toolkit by implementing the Fast Gradient Projection algo-
rithm [53].

Figure 9 shows the results of the reconstruction of a simulation of the
Shepp-Logan phantom using CIL algorithms. First, we used SIRF to re-
construct Shepp-Logan phantom xSL from the acquisition data generated by
the ISMRMRD utility ismrmrd generate cartesian shepp logan and then
used SIRF AcquisitionModel class to generate simulated acquisition data
b = A(xSL) (in the notation of (1)). Then, we applied the GD algorithm
to the least squares problem (minimisation of ‖A(x) − b‖22) and the FISTA
algorithm to the TV-regularised least-squares problem, with the TV term op-
erating only on the real part of the solution x. The results for Figure 9a and
9b were obtained for 100 and 50 iterations, respectively. The edge-preserving
effect of the TV-regulariser is clearly seen in Figure 9b. These examples are
provided as proof of concept of the versatile reconstruction options enabled
by the integration of CIL into SIRF. Future work will expand the set of al-
gorithms from CIL available in SIRF and test their application to real data.
The code for this example can be found in the SIRF-Contribs repository.

5.1.2. De Pierro’s MAP-EM

The goal here was to incorporate new MAP-EM algorithms that could be
used both independently and as a part of synergistic PET-MR reconstruction
algorithms and to demonstrate the prototyping potential of SIRF.

The code was implemented using SIRF’s pre-existing example Python
code for the one-step-late isotropically-weighted quadratically-penalised MAP-
EM algorithm as a starting point. The code was then tested for two cases:

1. Uniform (i.e., isotropic) weights; and

2. Bowsher weights [54], calculated using a prior class also introduced
during the Hackathon.

Figure 10 shows the use of the newly implemented algorithm. In Fig-
ure 10b a standard OSEM reconstructed image is displayed next to images re-
constructed using the uniform (Figure 10c) and Bowsher (Figure 10d) weights
of the De Pierro’s algorithm. In Figure 10a, the MPRAGE that was used

22

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/CCPPETMR/SIRF-Contribs/


Figure 9: Reconstructions of an MR simulation of the Shepp-Logan phantom using newly
implemented algorithms that are now available in SIRF thanks to the integration of CIL.
The results correspond to (a) the gradient descent (after 100 iterations) and (b) Total
Variation regularised reconstruction using FISTA (after 50 iterations).

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 10: Reconstructions using the recently-implemented De Pierro’s MAP-EM algo-
rithm. (a) The anatomical MR image (MPRAGE), (b) a standard OSEM reconstruction
for comparison, (c) a reconstruction using De Pierro’s MAP-EM with uniform weights, (d)
a reconstruction using De Pierro’s MAP-EM with Bowsher weights (using the MPRAGE).

24

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



to calculate the Bowsher weights is also shown. From these images, it can
be seen that the weight for both Figures 10b and 10c is substantially strong;
the objective of this task, however, was not to fine-tune the parameters, but
simply to demonstrate the images reconstructed by this algorithm. The code
for this implementation can be found in our SIRF-Contribs repository.

6. SIRF software management and deployment routes

6.1. Software distribution via GitHub

We use GitHub with its issue tracking, milestones and release manage-
ment facilities (visit https://github.com/CCPPETMR/SIRF). SIRF contains
a series of examples that also serve as manual tests. In addition, SIRF has
a test-suite for automatic testing using CTest. We also employ the Travis
Continuous Integration system in which every GitHub code change (commit)
is compiled and tested automatically. The build/test status is reported and
can be checked online at any time (see https://travis-ci.org/CCPPETMR).
Furthermore, we maintain a separate repository SIRF-Exercises which con-
tains Python examples using Jupyter notebooks, https://jupyter.org.
These examples have been used as the basis for hands-on training sessions.

6.2. SuperBuild installation

The functionality of SIRF relies upon a multitude of open-source software
packages. In addition to the reconstruction packages (currently STIR and
Gadgetron), SIRF requires a number of general-purpose C++ libraries such
as Boost, HDF5 etc. All these SIRF dependencies need to be built using
appropriate versions and configurations, and in turn have their own depen-
dencies. To reduce the burden on the user of providing all the associated
packages, SIRF-SuperBuild has been developed and it is the recommended
route if building SIRF from source.

The SIRF-SuperBuild is a CMake project which downloads, configures,
builds and installs all dependencies required to build SIRF. Once these pack-
ages are installed, the SuperBuild will build SIRF. This mechanism works
for Linux and macOS, with Windows support pending. By default, the lat-
est release of SIRF will be installed. The user can select whether to build
the Python and/or MATLAB bindings using CMake. For developers and ad-
vanced users, it is possible to configure the SuperBuild to reuse packages that
already exist on the system – skipping the building of particular dependencies
– and also to select development package versions.

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/CCPPETMR/SIRF-Contribs/blob/3eb7fd3e7a77631b99a939c8b230ca12aca8142c/src/Python/sirf/contrib/kcl/user_dePierroMap.py
https://github.com/CCPPETMR/SIRF
https://travis-ci.org/CCPPETMR
https://github.com/CCPPETMR/SIRF-Exercises
https://jupyter.org
https://github.com/CCPPETMR/SIRF-SuperBuild


Changes to the SuperBuild are also tested on Travis. This includes auto-
matic testing of dependencies.

6.3. Docker

Docker (available from https://docs.docker.com/install) is a container-
based low-overhead alternative to Virtual Machines (§6.4). The command
docker pull ccppetmr/sirf will download the latest ready-made SIRF
docker image. The SuperBuild repository (§6.2) contains the docker source
code and documentation. Docker images are automatically built on Travis.
Various different SIRF images (corresponding to different versions and soft-
ware) are available and listed at https://hub.docker.com/r/ccppetmr/

sirf.
The docker images can be used to run Gadgetron as a server (for in-

stance on Windows where building Gadgetron is difficult) and/or a Jupyter
notebook server such that a user can run SIRF from a web browser running
on their local machine without further configuration. It is also possible to
run Python scripts via docker without Jupyter, although in this case display
of any figures needs X forwarding or remote desktop set-up. Docker images
with GPU support are also provided for systems which support nvidia-docker
(https://github.com/NVIDIA/nvidia-docker).

6.4. Virtual machine

A binary installation of SIRF is provided by means of a VirtualBox vir-
tual machine (VM), running Ubuntu 18.04 LTS, which can be downloaded
from the project’s website http://www.ccppetmr.ac.uk. The VM contains
a (minimal) Linux system complete with developer tools, X windowing sys-
tem and Jupyter notebook server.

The CCPPETMR VM GitHub project contains configurations and scripts
to create a VM and build SIRF using the SIRF-SuperBuild project. A
new VM is created by means of the Vagrant application https://www.

vagrantup.com, which takes as the input a text file that describes the type
of machine and how to configure and provision it. A simple bash script, run
by Vagrant, configures the SuperBuild and builds SIRF on the VM.

The VM can be used as a fully-fledged Linux machine. Alternatively,
it can be used to run the Gadgetron and/or Jupyter notebook server like
the Docker image (for instance on Windows versions, where Docker needs
VirtualBox).

26

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://docs.docker.com/install
https://hub.docker.com/r/ccppetmr/sirf
https://hub.docker.com/r/ccppetmr/sirf
https://github.com/NVIDIA/nvidia-docker
http://www.ccppetmr.ac.uk
https://github.com/CCPPETMR/CCPPETMR_VM
https://www.vagrantup.com
https://www.vagrantup.com


6.5. Microsoft Azure cloud

SIRF can also be deployed on Azure cloud infrastructure. We use an
application called Terraform, see https://www.terraform.io, to create a
virtual machine running SIRF on Azure. Terraform handles the interaction
with Azure to provision a virtual machine in the cloud. SIRF is then built
using the scripting mechanism for virtual machine configuration as described
in §6.4. In addition to SIRF, the Azure virtual machine automatically runs a
Jupyter notebook server which can be accessed through any browser world-
wide. Remote Desktop, to access the machine as if it was a local desktop,
has also been enabled. Code to deploy SIRF virtual machines on cloud
infrastructure besides Azure will be published on GitHub in the future.

7. Discussion

In this paper, we presented release 2.1.0 of SIRF, open-source software
for PET-MR image reconstruction. SIRF is designed to provide a simple
and object-oriented framework to enable implementation of novel algorithms
exploring joint processing of dual-modality imaging data. Data access and
manipulation is consistent between the two modalities. SIRF has already
been used in several teaching courses as well as in hackathon events [47],
showing its potential for rapid code development that can then be used for
testing in patient data. SIRF relies on other open-source software packages
(“engines”) for many of the underlying operations. This has the benefit
of capitalising on the active development of specialist tools. On the other
hand, it inherits the capabilities and limitations of these engines. For in-
stance, while support for PET and MR data of the Siemens mMR Biograph
[25] is mostly complete, support for the GE Signa PET/MR [27] has not been
made available, yet. Recently, there has been good progress regarding the
PET data of this scanner model in STIR [55, 56], and the convertor from the
GE native MR data format to ISMRMRD is under active development [57].
The architecture of SIRF also allows adding other “engines” in the future
with initial discussions started related to CASToR [20]. To cope with ver-
sion changes in the employed engine packages, SIRF releases link to specific
versions. At the same time, we provide advanced users with the opportunity
to try the latest versions of all used software, in which case we, of course,
cannot always guarantee that everything will work.

The current release of SIRF provides the basis for the implementation of
existing and novel algorithms for exploiting the synergy in multi-modality

27

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.terraform.io


imaging data with initial work in combining high quality side information
[58, 59, 60, 61] and joint simultaneous reconstruction of PET and MRI images
[15, 19]. Making these algorithms freely available to the wider community
of researchers will be an important step towards assessing their benefits for
clinical application and translation.

In addition to PET-MR, there is active research in exploiting synergy
in other modalities, where multiple parameters of one underlying object can
be extracted from multiple acquired data-sets, such as multi-sequence MR
[62, 16, 63, 64], dual-energy/spectral CT [65, 66, 67, 68], and even CT-
MR [69, 70]. Many of the algorithms developed in PET-MR research are
transferable to those research areas and vice versa. The architecture of SIRF
would enable incorporating these modalities as well as including PET/CT,
SPECT/CT and SPECT/MR in a common framework in the future.

Another focus for the development of SIRF in the future will be around
deployment options. Ensuring SIRF is readily available and simple to use by
a non-technical researcher will allow SIRF to be used in higher-level medi-
cal research. The use of SIRF in such research potentially enables superior
quantitative accuracy in medical investigations, and the ability to demon-
strate the utility of the implemented algorithms in a clinical research context
before being demonstrated in routine clinical practice. Existing deployment
options were outlined in §6, but in the future may be augmented by deploy-
ing Gadgetron’s inline facilities, or as a hosted reconstruction service. A
production deployment of SIRF is a possibility, which is however not within
the grasp of our team, mainly because of regulatory issues. This is less of an
issue for pre-clinical systems.

8. Conclusion

The open-source Synergistic Image Reconstruction Framework (SIRF) is
a new software tool for research in image reconstruction and related manip-
ulations including motion estimation and compensation. It currently targets
joint image reconstruction of PET-MR data but with a view towards exten-
sion to other cases where synergistic reconstruction can be beneficial. SIRF
enables researchers to explore the benefits of synergistic reconstruction in a
framework that has been successfully used for educational purposes whilst
being powerful enough for processing data from state-of-the-art scanners.

28

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Acknowledgements

CCP PET-MR is funded by the EPSRC (grant EP/M022587/1) and
the associated Software Flagship project “A framework for efficient syn-
ergistic spatiotemporal reconstruction of PET-MR dynamic data” (grant
EP/P022200/1). This work made use of computational support by CoSeC,
the Computational Science Centre for Research Communities. We thank
Siemens Healthineers and General Electric Healthcare for information and
support with file formats. We also wish to thank Michael Hansen, David
Hansen and Hui Xue for help with Gadgetron, and Camila Munoz, James
Bland and Abolfazl Mehranian for helping with the coding during the hack-
athon leading to §5.1.2, and the wider CCP PET-MR community for feed-
back. We wish to acknowlege CCPi with the funding support by the EPSRC
grants (EP/P02226X/1) ’Reconstruction Toolkit for Multichannel CT’ and
the network initiative (EP/M022498/1). Lastly, we wish to thank St Thomas’
PET Centre for the use of their patient data.

Appendix A. Object-oriented paradigm

This appendix is mainly intended for readers who are not familiar with
Object-Oriented programming.

In Object-Oriented approach, instead of having data containers (arrays,
files etc.) and functions that operate on them, one employs objects, which
contain data and come along with sets of functions, called methods, which
operate on data. In object-oriented languages, an object type is referred to
as its class. Each object has a special method called constructor, which has
the same name as the object class name and must be called to create that
object. For example, to create an object of class ImageData that handles
MR image data and fill it with data stored in the HDF5 file my image.h5

one needs to call for an assignment, such as:

image = ImageData(‘my_image.h5’)

We note that an MR ImageData object contains not only the voxel values,
but also a number of parameters specified by the ISMRMRD format of MR
image data [41]. The object data is encapsulated, i.e. it is not directly
accessible from the user’s code (being handled mostly by the underpinning
C++ code) and is processed by the object methods. For example, to display
the data encapsulated by image, one needs to call its method show():

29

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



image.show()

and if anyone needs to copy the data into a MATLAB array, they would use
the method as array():

image_data_array = image.as_array()

Parameters of objects are modified/accessed via set/get methods (muta-
tors and accessors). For example, the value of an objective function handled
by the object named obj fun on an image data object is computed by its
method get value() as:

obj_fun_value = obj_fun.get_value(image)

The mutators are also responsible for basic error checking.
Some classes are derived from other classes, which means that they con-

tain all the methods of the classes they are derived from (i.e. inherited
methods). For example, the class AcquisitionModelUsingMatrix is derived
from the class AcquisitionModel, so an object of the former class inherits
all methods of the latter.

Bibliography

[1] K. Thielemans, C. Tsoumpas, S. Mustafovic, T. Beisel, P. Aguiar,
N. Dikaios, M. W. Jacobson, Physics in Medicine and Biology 57 (4)
(2012) 867–883.

[2] M. S. Hansen, T. S. Sørensen, Magnetic Resonance in Medicine 69 (6)
(2013) 1768–1776.

[3] H. F. Wehrl, A. W. Sauter, M. R. Divine, B. J. Pichler, Journal of
Nuclear Medicine 56 (2) (2015) 165–168.

[4] Z. Chen, S. D. Jamadar, S. Li, F. Sforazzini, J. Baran, N. Ferris, N. J.
Shah, G. F. Egan, Human Brain Mapping 39 (12) (2018) 5126–5144.

[5] F. Nensa, K. Beiderwellen, P. Heusch, A. Wetter, Diagnostic and Inter-
ventional Radiology (Ankara, Turkey) 20 (5) (2014) 438–447.

30

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



[6] P. M. Robson, D. Dey, D. E. Newby, D. Berman, D. Li, Z. A. Fayad,
M. R. Dweck, JACC: Cardiovascular Imaging 10 (10 Part A) (2017)
1165–1179.

[7] H. Barthel, O. Sabri, in: L. Umutlu, K. Herrmann (Eds.), PET/MR
Imaging: Current and Emerging Applications, Springer International
Publishing, Cham, 2018, pp. 99–106.

[8] X. Y. Zhang, Z. L. Yang, G. M. Lu, G. F. Yang, L. J. Zhang, Frontiers
in Molecular Neuroscience 10 (2017).

[9] J. Qi, R. M. Leahy, Physics in Medicine and Biology 51 (15) (2006)
R541–R578.

[10] K. P. Pruessmann, NMR in biomedicine 19 (3) (2006) 288–299.

[11] J. A. Fessler, IEEE Signal Processing Magazine 27 (4) (2010) 81–89.

[12] K. G. Hollingsworth, Physics in Medicine and Biology 60 (21) (2015)
R297–R322.

[13] B. Bai, Q. Li, R. M. Leahy, Seminars in Nuclear Medicine 43 (1) (2013)
30–44.

[14] A. Mehranian, E. De Vita, R. Neji, C. J. McGinnity, A. Hammers, A. J.
Reader, in: PSMR 2018, Isola de Elba, Italy, 2018, p. 3.

[15] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin,
B. F. Hutton, S. R. Arridge, Inverse Problems 31 (2015) 015001.

[16] F. Knoll, M. Holler, T. Koesters, R. Otazo, K. Bredies, D. K. Sodickson,
IEEE Transactions on Medical Imaging 36 (1) (2017) 1–16.

[17] J. Rasch, E.-M. Brinkmann, M. Burger, Inverse Problems 34 (1) (2017)
014001.

[18] A. Mehranian, M. A. Belzunce, C. Prieto, A. Hammers, A. J. Reader,
IEEE Transactions on Medical Imaging 37 (1) (2018) 20–34.

[19] A. Mehranian, M. A. Belzunce, C. J. McGinnity, A. Bustin, C. Prieto,
A. Hammers, A. J. Reader, Magnetic resonance in medicine 81 (3) (2019)
2120–2134.

31

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



[20] T. Merlin, S. Stute, D. Benoit, J. Bert, T. Carlier, C. Comtat, M. Fil-
ipovic, F. Lamare, D. Visvikis, Physics in Medicine & Biology 63 (18)
(2018) 185005.

[21] T. Kösters, K. P. Schäfers, F. Wübbeling, in: 2011 IEEE Nuclear Science
Symposium Conference Record, 2011, pp. 4365–4368.

[22] S. Pedemonte, K. Van Leemput, N. Fuin, occiput.io.
http://tomographylab.scienceontheweb.net

[23] P. J. Markiewicz, M. J. Ehrhardt, K. Erlandsson, P. J. Noonan,
A. Barnes, J. M. Schott, D. Atkinson, S. R. Arridge, B. F. Hutton,
S. Ourselin, Neuroinformatics 16 (1) (2018) 95–115.

[24] M. Uecker, J. Tamir, F. Ong, C. Holme, M. Lustig, BART: version 0.4.01
(Jun. 2017).
https://doi.org/10.5281/zenodo.817472

[25] G. Delso, S. Fürst, B. Jakoby, R. Ladebeck, C. Ganter, S. G. Nekolla,
M. Schwaiger, S. I. Ziegler, Journal of Nuclear Medicine 52 (12) (2011)
1914–1922.

[26] A. M. Grant, T. W. Deller, M. M. Khalighi, S. H. Maramraju, G. Delso,
C. S. Levin, Medical Physics 43 (5) (2016) 2334–2343.

[27] C. S. Levin, S. H. Maramraju, M. M. Khalighi, T. W. Deller, G. Delso,
F. Jansen, IEEE Transactions on Medical Imaging 35 (8) (2016) 1907–
1914.

[28] Operator Discretization Library.
https://odlgroup.github.io/odl/index.html

[29] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J.
Hawkes, N. C. Fox, S. Ourselin, Computer Methods and Programs in
Biomedicine 98 (3) (2010) 278–284.

[30] M. Modat, D. M. Cash, P. Daga, G. P. Winston, J. S. Duncan,
S. Ourselin, Journal of Medical Imaging (Bellingham, Wash.) 1 (2)
(2014) 024003.

[31] Simplified Wrapper and Interface Generator.
http://www.swig.org/index.php

32

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://tomographylab.scienceontheweb.net
http://tomographylab.scienceontheweb.net
https://doi.org/10.5281/zenodo.817472
https://doi.org/10.5281/zenodo.817472
https://odlgroup.github.io/odl/index.html
https://odlgroup.github.io/odl/index.html
http://www.swig.org/index.php
http://www.swig.org/index.php


[32] NIfTI-2 Data Format – Neuroimaging Informatics Technology Initiative.
https://nifti.nimh.nih.gov/nifti-2

[33] H. Hudson, R. Larkin, IEEE Transactions on Medical Imaging 13 (4)
(1994) 601–609.

[34] J. E. Bowsher, V. E. Johnson, T. G. Turkington, R. J. Jaszczak, C. E.
Floyd, R. E. Coleman, Medical Imaging, IEEE Transactions on 15 (5)
(1996) 673–686.

[35] M. J. Ehrhardt, P. Markiewicz, M. Liljeroth, A. Barnes,
V. Kolehmainen, J. S. Duncan, L. Pizarro, D. Atkinson, B. F.
Hutton, S. Ourselin, K. Thielemans, S. R. Arridge, IEEE Transactions
on Medical Imaging 35 (9) (2016) 2189–2199.

[36] D. Hogg, K. Thielemans, S. Mustafovic, T. J. Spinks, in: 2002 IEEE
Nuclear Science Symposium Conference Record, Vol. 3, IEEE, 2002, pp.
1519–1523, event-place: Norfolk, VA, USA.

[37] P. Green, IEEE Transactions on Medical Imaging 9 (1) (1990) 84–93.

[38] C. C. Watson, D. Newport, M. E. Casey, in: P. Grangeat, J. L. Amans
(Eds.), Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, Kluwer Academic, Amsterdam, Netherlands, 1996,
pp. 255–268.

[39] I. Polycarpou, K. Thielemans, R. Manjeshwar, P. Aguiar, P. Marsden,
C. Tsoumpas, Annals of Nuclear Medicine 25 (9) (2011) 643–649.

[40] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus,
J. Wang, B. Kiefer, A. Haase, Magn Reson Med. 47(6) (2002) 1202 –
1210.

[41] S. J. Inati, J. D. Naegele, N. R. Zwart, V. Roopchansingh, M. J. Lizak,
D. C. Hansen, C.-Y. Liu, D. Atkinson, P. Kellman, S. Kozerke, H. Xue,
A. E. Campbell-Washburn, T. S. Sørensen, M. S. Hansen, Magn. Reson.
Med. 77 (1) (2017) 411–421.

[42] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus,
J. Wang, B. Kiefer, A. Haase, Magnetic Resonance in Medicine 47 (6)
(2002) 1202–1210.

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://nifti.nimh.nih.gov/nifti-2
https://nifti.nimh.nih.gov/nifti-2


[43] R. Brown, B. A. Thomas, A. Rashidnasab, K. Erlandsson, E. Ovtchin-
nikov, E. Pasca, A. J. Reader, J. C. Matthews, C. Tsoumpas, K. Thiele-
mans, in: 2018 IEEE Nuclear Science Symposium and Medical Imaging
Conference (NSS/MIC), IEEE, Sydney, Australia, 2018.

[44] K. Thielemans, P. Schleyer, J. Dunn, P. K. Marsden, R. M. Manjesh-
war, in: 2013 IEEE Nuclear Science Symposium and Medical Imaging
Conference (2013 NSS/MIC), 2013, pp. 1–5.

[45] P. J. Schleyer, J. T. Dunn, S. Reeves, S. Brownings, P. K. Marsden,
K. Thielemans, Physics in Medicine and Biology 60 (16) (2015) 6441–
6458.

[46] C. Tsoumpas, K. Thielemans, Nuclear Medicine Communications 30 (7)
(2009) 490–493.

[47] R. Brown, S. Ellis, E. Pasca, E. Ovtchinnikov, A. Gillman, C. Munoz,
J. Bland, A. Mehranian, C. Prieto, A. J. Reader, K. Thielemans, in:
Abstracts of PSMR2019, Muenich, Germany, 2019.

[48] A. Beck, M. Teboulle, SIAM Journal on Imaging Sciences 2 (1) (2009)
183–202.

[49] A. R. De Pierro, IEEE Transactions on Medical Imaging 14 (1) (1995)
132–137.

[50] CCPi, Ccpi core imaging library (june 2019).
https://www.ccpi.ac.uk/CIL

[51] D. Kazantsev, E. Pasca, M. J. Turner, P. J. Withers, SoftwareX 9 (2019)
317 – 323.

[52] L. I. Rudin, S. Osher, E. Fatemi, Physica D: Nonlinear Phenomena
60 (1) (1992) 259 – 268.

[53] A. Beck, M. Teboulle, IEEE Transactions on Image Processing 18 (11)
(2009) 2419–2434.

[54] J. E. Bowsher, Hong Yuan, L. W. Hedlund, T. G. Turkington, G. Ak-
abani, A. Badea, W. C. Kurylo, C. T. Wheeler, G. P. Cofer, M. W.
Dewhirst, G. A. Johnson, in: IEEE Symposium Conference Record Nu-
clear Science 2004., Vol. 4, 2004, pp. 2488–2492 Vol. 4.

34

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.ccpi.ac.uk/CIL
https://www.ccpi.ac.uk/CIL


[55] N. Efthimiou, E. Emond, P. Wadhwa, C. Cawthorne, C. Tsoumpas,
K. Thielemans, Physics in Medicine and Biology 64 (3) (2019) 035004.

[56] P. Wadhwa, K. Thielemans, N. Efthimiou, K. Wangerin, D. Timoth,
G. Delso, K. Nicholas, D. Daniel, E. Emond, M. Tohme, F. Janssen,
R. N. Gunn, D. L. Buckley, W. A. Hallett, C. Tsoumpas, Methods (in-
press).

[57] V. Roopchansingh, J. A. Derbyshire, GE to ISMRMRD converter,
original-date: 2016-02-16T14:34:23Z (May 2019).
https://github.com/ismrmrd/ge_to_ismrmrd

[58] G. Wang, J. Qi, IEEE Transactions on Medical Imaging 34 (1) (2015)
61–71.

[59] J. Bland, M. A. Belzunce, S. Ellis, C. J. McGinnity, A. Hammers, A. J.
Reader, IEEE Transactions on Radiation and Plasma Medical Sciences
2 (5) (2018) 470–482.

[60] D. Deidda, N. A. Karakatsanis, P. M. Robson, Y.-J. Tsai, N. Efthimiou,
K. Thielemans, Z. A. Fayad, R. G. Aykroyd, C. Tsoumpas, Inverse
Problems 35 (4) (2019) 044001.

[61] D. Deidda, N. A. Karakatsanis, P. M. Robson, N. Efthimiou, Z. A.
Fayad, R. G. Aykroyd, C. Tsoumpas, IEEE Transactions on Radiation
and Plasma Medical Sciences 3 (4) (2019) 400–409.

[62] M. J. Ehrhardt, M. M. Betcke, SIAM Journal on Imaging Sciences 9 (3)
(2016) 1084–1106.

[63] B. Bilgic, T. H. Kim, C. Liao, M. K. Manhard, L. L. Wald, J. P. Haldar,
K. Setsompop, Magnetic resonance in medicine 80 (2) (2018) 619–632.

[64] A. Mehranian, C. Prieto, R. Neji, C. J. McGinnity, A. Hammers, A. J.
Reader, in: ISMRM 2018, Paris, France, 2018.

[65] C. H. McCollough, S. Leng, L. Yu, J. G. Fletcher, Radiology 276 (3)
(2015) 637–653.

[66] I. Danad, Z. A. Fayad, M. J. Willemink, J. K. Min, JACC: Cardiovas-
cular Imaging 8 (6) (2015) 710–723.

35

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/ismrmrd/ge_to_ismrmrd
https://github.com/ismrmrd/ge_to_ismrmrd


[67] A. C. Silva, B. G. Morse, A. K. Hara, R. G. Paden, N. Hongo,
W. Pavlicek, RadioGraphics 31 (4) (2011) 1031–1046.

[68] B. Chen, Z. Zhang, E. Y. Sidky, D. Xia, X. Pan, Physics in Medicine
and Biology 62 (22) (2017) 8763–8793.

[69] G. Wang, J. Zhang, H. Gao, V. Weir, H. Yu, W. Cong, X. Xu, H. Shen,
J. Bennett, M. Furth, Y. Wang, M. Vannier, PLoS ONE 7 (6) (2012)
e39700.

[70] Y. Xi, J. Zhao, J. R. Bennett, M. R. Stacy, A. J. Sinusas, G. Wang,
IEEE Transactions on Biomedical Engineering 63 (6) (2016) 1301–1309.

36

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


