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Abstract 

Aim: To test the hypothesis that remote ischaemic preconditioning (RIPC) increases 

circulating endogenous local and systemic plasma [nitrite] during RIPC and ischaemia-

reperfusion (IR) as a potential protective mechanism against ischaemia-reperfusion injury 

(IRI).  

Methods: Six healthy male volunteers (mean age 29.5±7.6 years) were randomised in a 

cross-over study to initially receive either RIPC (4 x 5 min cycles) to the left arm, or no RIPC 

(Control), both followed by an ischaemia-reperfusion (IR) sequence (20 min cuff inflation to 

200 mmHg, 20 min reperfusion) to the right arm. The volunteers returned at least 7 days 

later for the alternate intervention.  The primary outcome was the effect of RIPC versus 

control on local and systemic plasma [nitrite].  

Results: RIPC did not significantly change plasma [nitrite] in either the left or the right arm 

during the RIPC sequence. However, compared to control, RIPC decreased plasma [nitrite] 

during the subsequent IR sequence by ~26% (from 118±9 to 87±5 nmol/L) locally in the left 

arm (P=0.008) overall, with an independent effect of -58.70 nmol/L (95% Confidence 

Intervals -116.1 to -1.33) at 15 min reperfusion, and by ~24% (from 109±9 to 83±7 nmol/L) 

systemically in the right arm (P=0.03).  

Conclusions: RIPC had no effect on plasma [nitrite] during the RIPC sequence, but instead 

decreased plasma [nitrite] by ~25% during IR. This would likely counteract the protective 

mechanisms of RIPC, and contribute to RIPC’s lack of efficacy, as observed in recent clinical 

trials. A combined approach of RIPC with nitrite administration may be required.  
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What is already known about this subject:  

 Early studies suggested that remote ischaemic preconditioning (RIPC) was effective in 

preventing ischaemia-reperfusion injury (IRI)  

 We and others had previously demonstrated that exogenously-applied inorganic nitrite 

protects against IRI 

 Whether RIPC-induced elevations in endogenous nitrite provide a mechanism for RIPC 

remains to be established 

 

What this study adds:  

 Contrary to expectation, and other recent findings, our controlled crossover study 

suggests that RIPC suppresses plasma [nitrite] by ~25% during IR  

 This may counteract other protective RIPC mechanisms, explaining RIPC’s lack of 

efficacy in recent larger clinical trials  

 Thus, combining RIPC with exogenously-applied nitrite may be required  

 

 

Introduction 

Inorganic nitrite is now recognised as a valuable reservoir of nitric oxide (NO) that is 

preferentially generated under hypoxic and ischaemic conditions [1-3]. We and others have 

demonstrated the protective effects of nitrite in ischaemia-reperfusion injury (IRI) in a variety 

of organs, including the heart, liver, kidney and brain [2, 4, 5]. In translational studies, we 

have demonstrated that beetroot juice - a rich source of dietary nitrate, which enhances 

circulating nitrite levels, exerted a protective effect against transient endothelial dysfunction 

in a forearm model of IRI [6]. And, in patients with acute myocardial infarction undergoing 

primary percutaneous coronary intervention, intra-coronary nitrite reduced infarct size and 
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major adverse cardiac events in patients with absent or only faint coronary flow [7]. 

However, no effect was seen with intravenous nitrite [8].   

Ischaemic preconditioning (IPC) exposes a given organ to controlled ischaemic 

insults, which then confers protection against a subsequent prolonged ischaemic injury [9]. 

IPC has been shown to confer benefit to a range of organs [9-13]. Organs distant to the site 

of IPC may also be afforded protection remotely, through the phenomenon of remote IPC 

(RIPC). A typical RIPC model involves the effects of a forearm IPC stimulus on a 

subsequent ischaemic injury to the heart [14].  

Elucidating the mechanisms of RIPC and anaesthetic preconditioning would have 

significant implications for a range of clinical scenarios, including cardiac anaesthesia, 

cardiac surgery, liver resection, percutaneous coronary intervention and thrombolysis for 

stroke. Thus, numerous studies have attempted to identify how RIPC confers protection to 

distant vascular beds. Evidence for a neurogenic mechanism of RIPC signal mediation 

includes the observation that autonomic antagonists such as hexamethonium and ganglion 

blockers inhibit protective effects of RIPC in animal and human models [15, 16]. The 

possibility of a humoral factor is supported by observations that serum transferred from an 

animal exposed to RIPC confers protection to an RIPC-naïve recipient [17, 18]. Postulated 

messengers include a chemokine known as stromal cell-derived factor-1 alpha [19]. It is of 

course possible that both humoral and neurogenic signalling is involved, as suggested by 

the inhibition of RIPC’s protective effects following either occlusion of the femoral vein or 

resection of the femoral and sciatic nerves [20].  

 

 

NO is one of several mediators implicated in IPC and RIPC [21, 22]. NO is produced 

by endothelial nitric oxide synthase (eNOS) in response to shear stress during IPC [23, 24]. 

NO is rapidly oxidised to nitrite, and this appears to result in a local increase in plasma 

[nitrite] [25]. Since nitrite is readily transported in the circulation as a source of NO, 
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particularly under ischaemic conditions, it was proposed to be a potential mediator of RIPC 

by Rassaf and colleagues in 2014 [25] [25-28]. We aimed to test the hypothesis that local 

and circulating plasma [nitrite] increases following RIPC in a controlled crossover forearm 

model of IRI.  

 

Methods 

Study population 

Healthy male volunteers were recruited through the use of a circular email sent to King’s 

College London staff and students. Exclusion criteria included the presence of any pre-

existing medical conditions or treatment. Subjects fasted for 12 hours prior to each study 

visit. The current study was a pilot sub-study; the main study was published by Tilling et al., 

in 2014 [29]. The sub-study was approved by the St Thomas’ Hospital Research Ethics 

Committee, REC No: 06/Q0702/148, and written informed consent was obtained from all 

participants.  

 

Study protocol 

A prospective crossover study was performed, in which subjects were randomised to initially 

receive either RIPC or control (no RIPC), both followed by IRI. They returned for the second 

study visit to receive the other intervention, at an interval of at least 7 days to avoid any 

carryover effect of preconditioning. All studies were conducted with the subject in a supine 

position in a quiet, temperature-controlled (~230C) room. A schematic representation of the 

protocol is shown in Figure 1. 

 

RIPC. Following a baseline flow mediated dilatation (FMD) study (see Supporting 

lnformation), four RIPC cycles were performed, each by inflating a blood pressure cuff 

(Hokanson) in the left arm to 200 mmHg for 5 minutes, followed by  5 minutes deflation. 

Next, IRI was simulated in the right arm by inflating a blood pressure cuff in the contralateral 
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(right) arm to 200 mmHg for 20 minutes. FMD was repeated 20 minutes post-cuff release. 

Blood samples were drawn for plasma [nitrite] in both arms at baseline, immediately after 

each RIPC cycle, at 15 min into the cuff inflation period (ischaemia), and at 1 and 15 min 

after cuff deflation (reperfusion).  

 

Control. This was similar to RIPC, except the RIPC sequence was omitted.  

 
 
Measurement of plasma nitrite 

Blood samples were drawn from the ipsilateral and contralateral forearm veins through an 18 

gauge cannula at baseline, and then immediately after each RIPC cycle from the left and 

right arms, after 15 min ischaemia, and after 1 and 15 min reperfusion (see Figure 1). They 

were transferred to pre-chilled Lithium Heparin tubes (Vacuette) and immediately centrifuged 

at 4 0C for 5 minutes at 4000 g, (Mikro 220R centrifuge, Hettich GR). The haemolysis-free 

supernatant plasma was aspirated, rapidly frozen in Eppendorf tubes using liquid nitrogen, 

and stored at -80 0C until the day of analysis. The quantitative analysis of nitrite was 

performed using a 208i Nitric Oxide Analyser (Sievers Instruments, GE analytic instruments), 

as we have described previously [30].  The mean value of each duplicate measurement was 

taken as the final result. 

 

Data and Statistical Analyses 

All data are expressed as mean ± standard error (SEM), unless otherwise stated, except 

subject characteristics, which are expressed as mean ± standard deviation (SD). Data were 

analysed using GraphPad Prism 5. Data were compared with ANOVA. Values of p<0.05 

were considered statistically significant. 

   

Drug/molecular target nomenclature conform to BJP's Concise Guide to 
PHARMACOLOGY 2015/16 [31].  
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Results 
 
Six young healthy volunteers without cardiovascular risk factors took part in the study, see 

Table 1 for demographic details. The blood pressure and clinical laboratory parameters were 

normal. Data from all six volunteers was available for FMD measurement; however, results 

of the nitrite assay were only available for 5 of the 6 volunteers, due to a technical problem. 

 
 
Plasma [nitrite] during RIPC cycles 
 
The baseline plasma [nitrite] was 94.1±2.4 nmol/L. It was expected as per the hypothesis 

that repeated brief ischaemic episodes would elevate circulating [nitrite]. Whilst there was a 

numerical increase in local plasma [nitrite] in the left arm by ~11 nmol/L to 104.8±4.6 nmol/L 

after the first RIPC cycle, there were no statistically significant changes over the RIPC 

sequence, P=0.37 (Figure 2A). Similarly, there were no significant changes in plasma 

[nitrite] in the contralateral (right) arm, P=0.45 (Figure 2B).   

 

Plasma [nitrite] during IR sequence 

RIPC lowered plasma [nitrite] locally in the left arm by ~26% (from 118±9 to 87±5 nmol/L; 

P=0.008) relative to control during the IR sequence, with an independent effect of -58.70 

nmol/L (95% Confidence Intervals -116.1 to -1.33) at 15 min reperfusion, see Figure 3. This 

analysis includes the baseline values, which were well-matched. Excluding the baseline 

values, the decrease during the IR sequence itself was ~33%. RIPC also produced a 

systemic effect, lowering plasma [nitrite] in the right arm by ~24% (from 109±9 to 83±7 

nmol/L; P=0.03). Again, this analysis includes the baseline values. Excluding the baseline 

values, the decrease during the IR sequence itself was ~31%.   

 

FMD (see Supporting Information)  
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Discussion 
 
RIPC did not increase plasma [nitrite] during the RIPC cycles, either in the left (ipsilateral) or 

right (contralateral) arm. This is in contrast to the findings of Rassaf et al. [25]. Moreover, 

RIPC significantly decreased local and systemic plasma [nitrite] relative to Control during the 

IR sequence. This suggests that the RIPC signal to decrease nitrite, which is likely to be the 

direct local consumption of nitrite, was transmitted systemically, resulting in decreased 

plasma [nitrite] in the contralateral arm. Such an effect of decreasing nitrite during IR would 

likely oppose the other protective mechanisms of RIPC and may contribute to the limited 

efficacy of RIPC in clinical trials in patients.  

 

Whilst there was an initial numerical rise in plasma [nitrite] in the left (ipsilateral) arm of ~11 

nmol/L following the first cycle of RIPC in response to the local ischaemic stimulus, this 

effect was not significant and not sustained with the repeated RIPC cycles and did not 

change systemic plasma [nitrite], as measured in the right (contralateral) arm. These results 

differ from those of Rassaf et al, who observed an increase in plasma [nitrite] of ~11 nmol/L 

(basal versus RIPC: 18±8 versus 29±5 nmol/L; P<0.05) in the contralateral arm following 4 

cycles of RIPC compared to baseline in a similar number of healthy volunteers (n=6) as our 

study. They found no change in a further 6 volunteers not exposed to RIPC; however, RIPC 

was not directly compared to control [25]. In a separate experiment, used for transfer to the 

mouse heart, Rassaf et al., found that the plasma [nitrite] increased to 162±58 nmol/L in the 

ipsilateral arm following a single cycle. The reason for the different findings between the 

studies is not clear. The RIPC protocols were similar between the studies.  However, the 

baseline plasma [nitrite] was much lower in Rassaf et al.’s study  [25], than ours (18±8 

nmol/L vs. 94.1±2.4 nmol/L, respectively), and indeed compared to most of the previous 

studies by Rassaf and colleagues, which have reported a higher range - similar to ours (e.g. 

200±2 nmol/L [32], 305± 23 nmol/L [33], 351±13 nmol/L [28], 68 ± 5 nmol/L [34], 82 ± 10 

nmol/L [35]).  In one of these studies, Rassaf et al. demonstrated that reactive hyperaemia of 
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the forearm (for 5 min) increased local plasma [nitrite] from 68 ± 5 to 126 ± 13 nmol/L (p < 

0.01) - in healthy individuals. However, in patients with endothelial dysfunction there was a 

numerical decrease (116 ± 12 to 104 ± 10 nmol/L; n.s.) [34]. Therefore, on the basis of 

Rassaf’s et al. own data, elevation of endogenous plasma nitrite would be a less likely 

mechanism for RIPC in the patients studied in the trials (described below), the majority of 

whom would be expected to exhibit marked endothelial dysfunction; this may explain the 

limited efficacy of RIPC in such patients.  

 

Analogous to endothelial dysfunction in disease, with associated decreases in plasma nitrite 

with reactive hyperaemia, we speculate that transient endothelial stunning may contribute to 

the mechanism that we have observed in our study. Following an initial non-significant 

elevation in plasma [nitrite] after the first RIPC cycle in the local arm, repeated, albeit brief 

cycles of RIPC/IRI, result in endothelial stunning with decreased NOS-derived NO 

production, and thus diminished generation of nitrite from subsequent oxidation of NO. This 

is coupled with an exaggerated consumption of nitrite via reduction to nitric oxide at the site 

of repeated short preconditioning episodes of ischaemia, constituting a local ‘sink’ for nitrite, 

that will remove circulating nitrite, resulting in a systemic deficiency. Production of reactive 

oxygen species on reperfusion will also scavenge NO, generating a range of nitrogen oxides 

with local and potentially systemic effects.  Plasma [nitrite] may initially be maintained by 

redistribution of nitrite from the vessel wall, where it is stored, to the circulation. However, 

this systemic deficiency of nitrite becomes manifest through a decrease in circulating [nitrite] 

during the subsequent IR sequence, with a restricted capacity to elevate nitrite. Other 

systemic spill-over effects from the left arm subjected to RIPC, whether through the release 

of other chemical or neurogenic mediators, may modify the systemic endothelium’s capacity 

to generate NO/nitrite, particularly in the zone (right arm) submitted to IRI.   
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Thus, the recent large-scale clinical trials of RIPC have yielded mixed results. For 

example, the REPAIR trial (REmote preconditioning for Protection Against Ischaemia-

Reperfusion in renal transplantation), by MacAllister and colleagues, 2015, showed only a 

weak, non-significant effect of RIPC on the primary outcome measure of eGFR in recipients 

of renal transplant [36]. In the context of myocardial protection, three randomised controlled 

trials found a decrease in troponin (a marker of myocardial injury) following RIPC in patients 

undergoing coronary artery bypass graft surgery [37-39], but a larger trial showed no 

difference [40]. Similar debate exists in the setting of percutaneous coronary intervention 

(PCI), with one study observing a beneficial effect [41], but another finding that RIPC actually 

aggravated myocardial release of troponin and hsCRP [42]. Whether reductions in cardiac 

biomarkers translate into improved clinical outcomes is also unclear, and has not been 

demonstrated in a meta-analysis [43]. Furthermore, two recent large-scale outcome studies, 

using a similar protocol as used here of four 5 min upper limb RIPC cycles, in patients 

undergoing heart surgery (RIPHeart and ERICCA) published jointly in 2015, did not find any 

benefit [44, 45]. 

 

To our knowledge, the only other study, besides that of Rassaf et al. [25], and our own,  that 

has investigated nitrite during RIPC is the very recently published study by Lambert et al. 

[46]. However, this parallel-group study was focussed on the effects of RIPC on ischaemia-

induced sympathetic activation versus control. It also reported that IR decreased combined 

plasma [nitrate] and [nitrite] during reperfusion from 79±10 to 71±8 μM, whilst no decrease 

occurred in volunteers who had received RIPC 62±3 vs 62±2 μM. However, it should be 

noted that these values are ~1,000-fold higher than those of Rassaf et al. and ours, as they 

largely reflect plasma [nitrate], with only a minor contribution from plasma [nitrite], and are in 

the micromolar range measured by the Griess reaction, rather than [nitrite] measured in the 

nanomolar range using high sensitivity ozone chemiluminescence. Plasma [nitrite] is a much 

more sensitive marker of changes in NO bioavailability than [nitrate] [47].  
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A major limitation of this study is that it was a pilot study with a small sample size and 

no a priori power calculation was performed. Therefore, we determined our achieved power 

in detecting our observed effect size of 2.2 (i.e. difference in plasma [nitrite] of 31 nmol/L 

with mean SD 14 nmol/L during IR), with alpha 0.05, which was 98% using ANOVA. In order 

to detect the same effect in a prospective study with alpha 0.05, and power of 80%, we 

would require a sample size of 6, with an achieved power of 99.8%. The power calculations 

were carried out using G*Power 3.1.9.2 [48]. Therefore, whilst this was an exploratory pilot 

study, a study of similar size would have adequate power to detect a similar effect. This pilot 

study was performed in 2012, and whilst initially considered to be a negative study, we now 

think our findings are relevant given the positive findings reported by Rassaf et al. in 2014 

[25], but moreover the failure of the recently published large clinical trials in 2015, such as 

REPAIR [36], RIPHeart and ERICCA [44, 45] to demonstrate a consistent protective effect of 

RIPC, we considered that it was now important to report our findings as they may help to 

explain a mechanism behind the lack of efficacy in the trials. Our crossover study 

unexpectedly demonstrated a relative nitrite deficit. We therefore suggest that an approach 

with combined RIPC and supplemented nitrite might be more effective. We had a similar 

sample size to that of Rassaf et al. [25], which reported an increase in [nitrite] with RIPC. 

However, they had a parallel group design, with n=6 for RIPC, within which the statistical 

comparison was made, though this does not appear to have been informed by an a priori 

power/sample size calculation, and their control group (n=6) was analysed separately.  

 

A further limitation is that our study was not powered to detect an effect of IRI, or its 

prevention via RIPC using FMD, as assessment of endothelial function was not a primary 

aim of this pilot study, and indeed no significant effect was demonstrated.  However, 

appropriately designed studies focussing on endothelial function have observed a protective 

effect of RIPC on forearm microvascular [14] and conduit artery [16] endothelial function in 

the contralateral arm. Whilst the study of RIPC in animal models carries the advantage of 
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quantifying tangible organ damage, the results must be interpreted with caution in human 

studies, particularly in the forearm vascular bed, which is relatively more resistant to 

ischaemia than other circulations. 

We did, however, observe that changes in FMD were closely correlated with the 

absolute change in plasma [nitrite] sampled from the same arm at corresponding time 

periods, independent of the presence of preconditioning stimuli. Previous work has also 

documented the relationship between FMD and plasma levels of nitrite/nitrate[49]. As FMD 

is a marker of eNOS activity [50], it is therefore concluded that eNOS activity and plasma 

nitrite levels are linked, and this is consistent with the observation that the main endogenous 

source of nitrite is from oxidation of eNOS-derived NO [28].  

 

Conclusion 
 

In this randomised controlled study, RIPC suppressed plasma [nitrite] compared to 

Control during an IR sequence in both the left arm receiving the RIPC stimulus, and the 

contralateral right arm. Whilst this effect remains to be substantiated, it may help to explain, 

at least in part, the lack of efficacy of RIPC in the trials and we propose that combining RIPC 

with supplemented nitrite would be a more effective approach.  
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Table 1  Baseline participant characteristics 

 

Characteristic   Mean±SD 

Age (years)    29.5±7.6 

BMI (kg/m2)    23.8±4.0 

SBP (mmHg)    133±11 

DBP (mmHg)    71.8±8.5 

MAP (mmHg)    87.2±9.0 

Hb (g/L)    146±10 

Cholesterol (mmol/L)   4.70±0.90 
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Figure 1. Schematic representation of the study protocol. 
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Figure 2. Effect of each Remote Ischaemic Preconditioning (RIPC) cycle performed in the 

left arm on plasma [nitrite] in (A) the left arm and (B) the right arm. Data expressed as 

mean±SEM. 
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Figure 3. Effect of Remote Ischaemic Preconditioning (RIPC) performed in the left arm on 

subsequent plasma [nitrite] in a) the left arm and b) the right arm during an Ischaemic 

Reperfusion Injury (IRI) sequence applied to the right arm. Data expressed as mean±SEM. 

Significance shown as: †P<0.05, ††P<0.01 on ANOVA, followed by *P<0.05, Bonferroni post 

test of RIPC vs Control. 

 


