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Capsule summary: 54 

Deep-immunophenotyping of the circulatory T cell compartment using mass cytometry and 55 

unsupervised clustering analysis, identifies phenotypic and functional differences in patients with 56 

atopic dermatitis (AD) and psoriasis, highlighting the stronger systemic component associated 57 

with AD. 58 

 59 

Key Words: mass cytometry, atopic dermatitis, psoriasis, unsupervised analysis, skin 60 

inflammation. 61 

 62 

Abbreviations: 63 

ANOVA: Analysis of variance 64 

AD: Atopic dermatitis  65 

HD: Healthy donors 66 

F: Functional 67 

P: Phenotypic 68 

DMSO: dimethyl sulfoxide 69 

FOXP3: forkhead box P3 70 

CCR: C C chemokine receptor 71 
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TNF: tumor necrosis factor 72 

IFN: interferon 73 

GM-CSF: granulocyte-macrophage colony-stimulating factor 74 

MIP: macrophage inflammatory protein 75 

MR-1: MHC-related protein 1 76 

Th: T helper  77 

CYTOF: Cytometry by time of flight  78 

MAIT:  mucosal-associated invariant T  79 

tSNE:  t-Distributed Stochastic Neighbor Embedding  80 

PSO: psoriasis 81 

RA: rheumatoid arthritis 82 

TRM: Tissue resident memory T  83 

 TCM: central memory T 84 

 TEM: effector memory T 85 

TRcM:  recirculating memory T  86 

TReg: Regulatory T  87 

 88 
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To the Editor 92 

 93 

Atopic dermatitis (AD) and psoriasis are T cell-mediated, chronic inflammatory skin conditions, 94 

which are increasingly recognized as systemic rather than localized cutaneous diseases (1, 2). 95 

Hence, a deeper understanding of the phenotypic and functional features of the circulatory T-cell 96 

compartment may offer novel insights into their pathogenesis, generate opportunities for novel 97 

targeted therapies, as well as, aid in the identification of potential biomarkers.  We and others have 98 

previously performed fluorescence-based immunophenotyping of circulatory T cells in psoriasis 99 

and AD (1), and an earlier comparative study highlighted distinctive features of systemic activation 100 

in T cells of AD patients (3). Here, we exploit the increased dimensionality of mass cytometry 101 

(cytometry by time of flight, CyTOF),  which is  able to detect over 50 different heavy metal 102 

isotopes simultaneously, and the power of unsupervised analytical methods, to profile and compare 103 

phenotypic and functional features of circulating CD4+ and CD8+ T cells of  AD (n=15), psoriasis 104 

(n=19), and healthy donors (HD, n=9). 105 

PBMCs were obtained from a total of 43 age-matched subjects (Fig. E1A), recruited into an 106 

observational clinical study approved by the London Bridge Research Ethics committee. 107 

Demographics and clinical characteristics of the subjects are shown in Table E1. A description of 108 

the methods is provided in the Methods section in this article’s Online Repository at 109 

www.jacionline.org.   110 

We ran a Phenotypic (P) panel, including 42 lineage, differentiation, activation, trafficking and 111 

homing markers, and a Functional (F) panel, including 27 phenotypic surface markers and 15 112 

intracellular functional markers (e.g. cytokines, chemokines) (Table E2). Frequency of manually 113 

gated CD4+ and CD8+ T cells, as well as other major cell populations (Fig. E1B), did not 114 

significantly differ among AD, psoriasis and HD (Fig. E1C). Appling  unsupervised clustering 115 

analysis to gated CD4+ and CD8+,  we identified 144 cell clusters: 34 cell clusters in the CD4+ P 116 

http://www.jacionline.org/
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and 31 in the CD8+ P dataset, as well as 51 in the CD4+ F and 29 in the CD8+ F dataset (Fig. 117 

E1A, Fig. E2A). Each dataset was visualized by applying a dimensionality reduction method, i.e. 118 

t-Distributed Stochastic Neighbor Embedding (tSNE) and coloring the cells according to the 119 

clusters they were assigned to. Clusters were curated and assigned to standard immune subsets, 120 

based on the mean expression of subset-defining markers, such as CD161 and Vα7.2 for mucosal-121 

associated invariant T (MAIT) cells and CD103 for Recirculating memory T cells (TRcM) (Fig. 122 

E2A, Fig. E3-6). 123 

We compared the average clusters’ frequency within each of the four datasets and the means for 124 

each cytokine/chemokine in two-way comparisons applying False Discovery Rate (FDR) 125 

correction for multiple testing. Overall, we detected statistically significant differences (p-adj < 126 

0.05) in 68 two-way comparisons (Table E3). Three cell populations were of particular interest: 127 

MAIT cells, TRcM CD8+ T cells, and CD49+ CD4+ Regulatory T (TReg ) cells. 128 

Clusters CD8+P13 and CD8+ F14 displayed the hallmark features of MAIT cells, with high levels 129 

of Vα7.2 and CD161 (Fig. 1A). Frequencies of MAITs were significantly reduced in psoriasis 130 

patients versus HD and AD (Fig. 1B). This is in keeping with the reported reduction in circulating 131 

MAITs in immune-mediated and autoimmune diseases  such as RA,  where they are 132 

correspondingly enriched in the synovial fluid, possibly contributing to disease pathogenesis either 133 

directly, or through recruitment of other cells (4). Thus, MAIT cells might preferentially migrate 134 

from blood into the inflamed skin, and they have been indeed identified in lesional psoriatic skin 135 

(5), although it is not known whether they are increased in inflamed versus healthy skin.  136 

The vast majority of MAIT cells produced MIP1-β and TNF (Fig. 1C, E7A), with AD producing 137 

significantly more than psoriasis (Fig. 1D, E7B), suggesting that they are more activated in allergic 138 

disease. As MAIT cells respond to MR-1-restricted vitamin B2 derivatives, and Staphylococcus 139 

aureus is equipped with the specific biosynthetic pathway for their production, their increased 140 

activation in AD might be linked to S. aureus infection. 141 
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Three CD8+ cell clusters identified in both Phenotypic and Functional dataset, i.e. i) CD8+ 142 

P24/CD8+ F28, ii) CD8+ P15/CD8+ F18, and iii) CD8+ P27/CD8+ F29,  were characterized by 143 

the simultaneous expression of low levels of CCR7, and either skin-(CLA+, CCR4+, CCR10+) or 144 

gut- (Intb7, CD49d as well as CCR9) homing markers (Fig. 1E). Features of these clusters broadly 145 

map to effector memory T cells; both skin and gut-homing clusters expressed CD103, suggesting 146 

that they previously resided  in the tissue, as recently reported  for CD4+ CD103+ cells by Klicznik 147 

et al (6). They may be en-route back from their target organ where they had acquired CD103 148 

expression through exposure to TGF-β of epithelial origin (6). Hence, we tentatively named them 149 

TRcM. TRcM were functionally characterized by widespread production of TNF and sizable 150 

expression of IL-2, GM-CSF and IL-22 (Fig. 1F and E7C). Frequencies of all  TRcM clusters were 151 

significantly increased in AD as compared to HD and psoriasis (Fig. 1G and E7D), confirming 152 

and expanding recent studies showing increased  recirculation, frequency and activation of skin-153 

homing T cells in AD (7). This is in keeping with the sequelae of non-cutaneous atopic 154 

manifestations known as atopic march. Of particular interest is the increase in gut-homing TRcM, 155 

as AD often precedes the development of food allergy.  156 

 Skin- homing TRcM (F28) were the major IL-22 producer within CD8+T cells (Fig. 1H), with AD 157 

patients producing significantly more IL-22 than HD (Fig. 1I). Interestingly, IL22 production in 158 

Skin- homing TRcM, correlated with AD severity (Fig. 1J),  highlighting the importance of IL-22 159 

in the pathophysiology of AD, and in line with the beneficial effect of IL-22 blockade in AD 160 

clinical trials (8). 161 

Lastly, three clusters within the CD4+ Phenotypic dataset displayed hallmarks of TReg cells: 162 

CD45RA+CD45RO- FOXP3+ CD25+ CD127- naïve TReg (P10), CD45RA-, CD45RO+, CD95+, 163 

FOXP3+ CD25+ CD127- CLA+  skin-homing memory TRegs (P14),  and   CD45RA-, CD45RO+, 164 

CD95+, FOXP3+ CD25+ CD127- CD49d+ memory TReg (P22) (Fig. 2A).  165 
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Frequencies of P22 memory TReg were significantly reduced in AD versus psoriasis, with a 166 

downward trend versus HD (Fig. 2B). Earlier studies have reported increased frequency of TReg in 167 

the blood of AD patients (9), although less phenotypic markers have been used, raising the question 168 

of whether they were bona fide TRegs or a mixed population comprising activated-effector T cells 169 

and TReg. Discrepancies among studies could also be explained by their dynamic fluctuation 170 

between the blood and skin compartment potentially driving disease relapses and remissions. This 171 

notion is supported by a previous report of  Treg frequecny correlating with disease severity (3) 172 

although we did not find this relationship in our data (data not shown). To validate our findings, 173 

we combined clusters P10, P14 and P22 and performed a zoomed-in tSNE analysis (Fig. E7E). 174 

While CD45RA, CCR4 and CLA clearly separated TRegs into three clusters (Fig. E7E), the 175 

presence of additional cell subsets within cluster P14 was also evident, with dichotomous 176 

expression of CLA and CD49d in P22 and P14(Fig. E7F). Thus, we applied manual gating to 177 

further phenotype memory TReg based on their expression of CLA, CD49d and CCR6. (Fig. 2C). 178 

AD patients displayed an overall reduced frequency of non-skin homing CD49d+ TReg, irrespective 179 

of CCR6 expression, as compared to psoriasis, and with a downward trend versus HD, mirroring 180 

the observed decrease in cluster P22. Moreover, CCR6+TReg within skin-homing CLA+ cells were 181 

also significantly reduced in AD versus HD, while CCR6-TReg within skin-homing CLA+ cells 182 

were significantly increased in psoriasis versus AD and HD (Fig. 2C). In contrast, non-TReg 183 

memory CLA+CCR6+ cells were significantly increased in AD as compared to HD and psoriasis. 184 

Here, we have provided an exhaustive description of the circulatory T cell compartment, 185 

highlighting phenotypic and functional differences in patients with AD and psoriasis.  186 

Unsupervised analysis has overcome the bias of subjective gating by increasing resolution and 187 

capturing unexpected combinations of markers, e.g. identifying cell types that escape standard 188 

classification strategies, e.g. TRcM expressing CD103. 189 
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Our data highlight the stronger systemic component associated with AD, as compared to psoriasis, 190 

and provide a resource to further investigate the phenotypic and functional features of the two 191 

major inflammatory skin diseases. Future studies are needed to delineate the relationship of the 192 

specific cell populations in blood and skin, explore their pathogenic potential, and ultimately assess 193 

the utility of these findings for the identification of prognostic and/or predictive biomarkers, as 194 

well as potential novel therapeutic targets. Our study proposes MAIT cells as of potential 195 

pathogenic relevance for skin inflammation and calls for further studies aimed at assessing their 196 

functional capacity in blood and skin of patients with inflammatory skin diseases.  IL-22-197 

producing skin-homing TRcM may be an attractive candidate for future studies to identify 198 

biomarkers of response to IL-22 blockade in AD. Finally, this study highlights the utility of blood 199 

and the use of profiling T cells by trafficking receptor expression patterns for discovery in the 200 

context of tissue-specific immunological diseases.  201 

 202 

Consol Farrera, PhD 1,2; 203 

Rossella Melchiotti, PhD 2; 204 

 Nedyalko Petrov, PhD 2;  205 

Karen Wei Weng Teng, BSc 3; 206 

Michael Thomas Wong, PhD 3; 207 

Chiew Yee Loh, BSc 3;  208 

Federica Villanova PhD, 1,2; 209 

Isabella Tosi MSc 1,2; 210 

Jinmiao Chen, PhD 3; 211 

 Katarzyna Grys, MSc 1,2; 212 

Hemawtee Sreeneebus RGN, MSc 1,2; 213 

Anna Chapman MD Queen Elizabeth Hospital; 214 

Gayathri K. Perera, PhD, MD 5; 215 

Susanne Heck, PhD 2 216 



Farrera et al., 10 
 

10 
 

Filipe Gracio, PhD 2 217 

Emanuele de Rinaldis, PhD 2, + 218 

Jonathan N Barker MD, 1 219 

Catherine H. Smith MD, 1 220 

Frank O. Nestle MD, 1, + 221 

Evan W. Newell, PhD, 3,@, * 222 

Paola Di Meglio, PhD 1,* 223 

From: 1St John’s Institute of Dermatology, King’s College London, SE1 9RT London, UK. 224 

2National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ 225 

Hospital and King’s College London, London SE1 9RT, UK. 3Agency for Science Technology 226 

and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore 138648, Singapore. 227 

4Dermatology Department, Queen Elizabeth Hospital, SE18 4QH London. 5West Middlesex 228 

University Hospital, Chelsea and Westminster NHS Foundation Trust, SW10 9NH London. 229 

*These authors contributed equally to this work. 230 

Present address: + Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA; @Vaccine and 231 

Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 232 

 Corresponding authors:  Paola Di Meglio, paola.dimeglio@kcl.ac.uk 233 

         Evan W. Newell, enewell@fredhutch.org 234 

 235 

 236 

Acknowledgements: We would like to thank Laura Turner for her support, critical to the 237 

completion of this study. We also would like to thank all patients and healthy volunteers 238 

participating to the BIODIP study and the clinical teams at Guy’s and St Thomas’, Queen Elizabeth 239 

and West Middlesex Hospitals.  240 

241 

mailto:paola.dimeglio@kcl.ac.uk


Farrera et al., 11 
 

11 
 

References: 242 

1. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8). 243 
2. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109-22. 244 
3. Czarnowicki T, Malajian D, Shemer A, Fuentes-Duculan J, Gonzalez J, Suarez-Farinas M, et al. Skin-245 
homing and systemic T-cell subsets show higher activation in atopic dermatitis versus psoriasis. J Allergy Clin 246 
Immunol. 2015;136(1):208-11. 247 
4. Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ, Jung HJ, et al. Mucosal-associated invariant T cell deficiency 248 
in systemic lupus erythematosus. J Immunol. 2014;193(8):3891-901. 249 
5. Teunissen MBM, Yeremenko NG, Baeten DLP, Chielie S, Spuls PI, de Rie MA, et al. The IL-17A-250 
producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and 251 
conventional T cells. J Invest Dermatol. 2014;134(12):2898-907. 252 
6. Klicznik MM, Morawski PA, Hollbacher B, Varkhande SR, Motley SJ, Kuri-Cervantes L, et al. Human 253 
CD4(+)CD103(+) cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci 254 
Immunol. 2019;4(37). 255 
7. Czarnowicki T, Santamaria-Babi LF, Guttman-Yassky E. Circulating CLA(+) T cells in atopic dermatitis 256 
and their possible role as peripheral biomarkers. Allergy. 2017;72(3):366-72. 257 
8. Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, et al. Efficacy and safety of 258 
fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately 259 
controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 260 
2018;78(5):872-81 e6. 261 
9. Reefer AJ, Satinover SM, Solga MD, Lannigan JA, Nguyen JT, Wilson BB, et al. Analysis of 262 
CD25hiCD4+ "regulatory" T-cell subtypes in atopic dermatitis reveals a novel T(H)2-like population. J Allergy Clin 263 
Immunol. 2008;121(2):415-22 e3. 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 



Farrera et al., 12 
 

12 
 

Figure Legends 277 

Figure 1: Mucosal-invariant T-cells (MAIT) and Recirculating memory CD8+ T cells in skin 278 

disease 279 

(A) Heatmap of mucosal-invariant T (MAIT) cells, within CD8+ Phenotypic and Functional 280 

datasets. (B) Frequency of MAIT cells in atopic dermatitis (AD), healthy donor (HD) and psoriasis 281 

(PSO). (C) MIP-1β, TNF-α, IFN-γ, GM-CSF, IL-2 and IL-17A production in MAIT cells, 282 

visualized in tSNE. (D) Cytokine production in MAIT cells, in AD, HD and PSO. (E) Heatmap of 283 

recirculating memory T cells (TRcM), within the CD8+ Phenotypic and Functional datasets. (F) 284 

TNF-α, GM-CSF, IL-2 and IL-22 production in TRcM, visualized in tSNE. (G) Frequency of TRcM 285 

in AD, HD and PSO. (H) Representative dot plots of AD, HD and PSO depicting expression of 286 

IL-22 and GM-CSF in manually gated cells (red) within skin-homing TRcM (bottom) compared to 287 

total CD8+ T cells (top). (I) IL-22 and GM-CSF production in skin-homing TRcM, in AD, HD and 288 

PSO. (J) Correlation between IL-22 production in skin =homing TRcM and disease severity in AD 289 

. Relative cell frequency (B, G) or cytokine expression (D, I) are shown, with circles representing 290 

individual samples, and box and whiskers denoting minimum and maximum values.  291 

*p-adj<0.05; **p-adj<0.01 292 

 293 

Figure 2. Regulatory CD4+ T cells in skin disease. 294 

(A) Heatmap of Regulatory T cells (TRegs), within the CD4+ Phenotypic dataset. (B) Frequency 295 

of TRegs in atopic dermatitis (AD), healthy donor (HD) and psoriasis (PSO) samples. 296 

Relative cell frequency is shown, with circles representing individual samples, and box 297 

and whiskers denoting minimum and maximum values. (C) Manual gating strategy to 298 

obtain Tregs subsets. Differences in cell frequencies were assessed by one -way ANOVA 299 
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followed by Dunn test for multiple correction, ****p-adj<0.0001, ***p-adj<0.001, **p-300 

adj<0.01, *p-adj<0.05.  301 

 302 
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Supplementary Material for Online Repository 
 
T-cell phenotyping uncovers systemic features of atopic dermatitis and 
psoriasis. 
Farrera et al. 

 

Online Methods 

Study population 

Nine HD, 19 psoriasis and 15 AD patients, recruited at tertiary referral centers at Guy’s and St 

Thomas’ Hospital, Queen Elizabeth Hospital and West Middlesex University Hospital, were 

included in this study. Patients were not receiving any conventional or biological systemic therapy 

at the time of sampling. Healthy donors were nominally healthy at the time of sample collection 

and did not report any allergic or auto-immune disease. Full demographics can be found in Table 

E1. The study was conducted in accordance with the Declaration of Helsinki Principles, with 

written informed consent obtained from each volunteer and approved by the London Bridge 

Research Ethics committee (Reference 11/LO/1962). One additional healthy donor was recruited 

at SIgN, A*STAR (IRB number: NUS-IRB-09-256) as internal control to be run with each batch. 

 

PBMCs isolation and cryopreservation  

PBMCs were isolated by blood centrifugation on a density gradient (Ficoll-Plaque Plus, VWR). 

Cells were viably frozen in RPMI 1640 (Life Technologies) supplemented with 11.25% HSA 

(Gemini Bio-Products)/10% DMSO (Sigma), stored in liquid nitrogen and shipped all together to 

SIgN A*STAR in a shipper tank filled with liquid nitrogen. PBMCS from one additional healthy 

donor to be used as internal control (IC) were isolated at the SIgN, A*STAR and cells were 
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cryopreserved in 90% fetal bovine serum (FBS) (Life Technologies) plus 10% DMSO (MP 

Biomedicals).  

 

PBMCs stimulation and staining  

PBMCS were processed in 7 batches, each including the IC and samples from each BioDiP group 

(HD, AD and Pso). Cryopreserved cells were thawed, washed with pre-warmed RPMI 1640 

supplemented with 1% FBS, 1X Penicillin/Streptomycin/L-glutamine, 1% 1M HEPES and 1X β-

mercaptoethanol (all Life Technologies), and rested overnight at 37°C. Next, cells were washed 

and split into two aliquots of up to 3 x 106 cells each for staining with the Phenotypic Panel, 

including 42 surface and intracellular markers, and the Functional Panel, including 27 phenotypic 

markers and 14 cytokines (Table E2). For both panels, staining of surface markers (Surface I in 

Table E2) that are weakly expressed or are downregulated during polyclonal stimulation, was 

carried out in 96-well round bottom plates at 37°C for 30 minutes. Next, cells were either left 

untreated (Phenotypic Panel) or stimulated with 150 ng/ml phorbol-12-myristate-13-acetate 

(PMA) and 1 µM ionomycin (Sigma-Aldrich) in the presence of monensin and Brefeldin A (all 

eBioscience) for four hours for the detection of intracellular cytokines (Functional Panel). After 

incubation, cells were washed twice in cold PBS, incubated on ice with 100 µM cisplatin (Sigma-

Aldrich) for 5 minutes for Live/Dead staining, washed with staining buffer and stained with 

fluorophore-tagged antibodies for 30 minutes on ice (Surface II, Table E2). Next, cells were 

washed twice in staining buffer and stained with metal isotope-labeled surface antibodies (Surface 

II, Table E2) for 30 minutes on ice. 

Cells for the Phenotypic Panel were then washed, fixed in Foxp3 Transcription Factor 

Fixation/Permeabilization buffer (eBioscience), washed in Permeabilization buffer (Biolegend) 

and stained with metal isotope-labeled antibodies against intracellular phenotypic markers (Intra 
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Table E2, Phenotypic Panel), each step carried out on ice for 30 minutes. Next, cells were 

incubated with metal isotope-conjugated streptavidin for 10 minutes, washed and fixed in 2% 

paraformaldehyde (PFA; Electron Microscopy Sciences) at 4°C, overnight. Next day, cells were 

washed twice with 1X perm buffer, once with PBS, and incubated with cellular barcodes for 30 

minutes (Surface III, Table E2). Next, cells were washed once with 1X perm buffer, incubated in 

staining buffer for 10 minutes on ice, and DNA was labelled with 250 nm iridium intercalator 

(Fluidigm Corporation) in PBS-2% PFA at room temperature for 20 minutes. Finally, cells were 

washed twice with staining buffer, re-suspended in 90% FBS + 10% DMSO in a 96-well round 

bottom plate and stored immediately at -80°C, prior to CyTOF acquisition. 

Following Surface II staining, cells for the Functional Panel were washed twice with staining 

buffer, once in PBS and fixed in 2% PFA with at 4°C overnight. Next day, cells were washed twice 

with 1X perm buffer and stained with intracellular antibodies (Intra, Table E2, Functional Panel) 

on ice for 30 minutes. Next, cells were washed, labelled with cellular barcodes and DNA 

intercalator, cryopreserved and stored until CyTOF acquisition, as described for the Phenotypic 

Panel. 

Cytometry by-time-of-flight (CYTOF) 

Prior to CyTOF acquisition, cryopreserved stained cells from each batch were thawed, washed 

twice and re-suspended in staining buffer. Aliquots of cells from all samples within a batch were 

pooled and filtered through a 0.35 µm strainer into a 5 ml polystyrene tube. Pooled, filtered cells 

were washed twice in water before final re-suspension in water at 0.5 x 106 cells/ml. EQ Four 

Element Calibration Beads (Fluidigm Corporation) were added to a concentration of 1% prior to 

acquisition. Cells acquisition was performed on a CyTOF2 mass cytometer (Fluidigm 

Corporation).  
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Data cleaning and manual gating 

Raw data were manually cleaned and curated. Patient AD6 was excluded from the overall analysis 

for low cell viability. Samples run in batch 1 were excluded for unsupervised analysis of the 

Phenotypic Panel due to suboptimal staining (Table E1). Data were normalized with beads and 

files corresponding to the same batch were concatenated, using the Fluidigm CyTOF software. 

Obvious dead cells were removed to facilitate debarcoding. Manual debarcoding using Infinicyt 

software was performed to obtain the individual FCS files for each sample. Manual gating to 

identify CD4+ and CD8+ T populations for each sample was performed using Cytobank (Fig. 

E1B). From this step onward, each panel (Phenotypic and Functional) and each manually gated T 

cell compartment (CD4+ T, CD8+ T) was pre-processed, processed for clustering and analyzed 

independently, resulting in 4 different datasets, Functional CD4, Functional CD8, Phenotypic CD4 

and Phenotypic CD8. 

 

T cell datasets pre-processing, QC and clustering 

For each dataset, 10,000 CD4+T or CD8+T cells were randomly selected from each sample (or 

the entire sample was used if it contained less than 10,000 cells) and merged into a single FCS file. 

Marker expression for all markers except Time and Event length, was asinh-transformed using a 

cofactor of 5. In order to minimize batch differences, a normalization step was applied to both 

Panels. For the Functional Panels, CD4+ and CD8+ T-cells were normalized dividing the 

expression of each marker (except Time, Event length and DNA) by the mean of that marker in 

the intact live cells from the corresponding batch. In the Phenotypic Panel, CD4 and CD8 T-cells 

were normalized dividing the expression of each marker by the 99th percentile of that marker in 

the intact live cells from the corresponding batch. Independent clustering for each of the 4 datasets 

was performed using the clustering algorithm PhenoGraph in its python implementation (1). The 
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specific marker combinations, and values of the parameter k, the number of nearest neighbor used 

to build the similarity graph, used for each dataset are listed in Table E4. 

Quality of normalization and clustering was assessed by visualizing the frequency of each cluster 

in the IC and 9 HD. Minimal instability was observed among the IC across different batches, while 

variability among HD was much larger, as expected for true biological variation, which we 

confirmed by comparing the coefficient of variation of  IC and HD (p<0.001 for all 4 datasets) 

(Fig. E2B and data not shown). 

 

Dimensionality reduction, visualization and cluster interpretation 

Dimensionality-reduction for visualization purposes was performed using the t-Distributed 

Stochastic Neighbor Embedding algorithm (2) as implemented in the R package Rtsne. 

Representative tSNE plots for each of the 4 datasets were built by randomly selecting 60.000 cells 

from each dataset. The perplexity parameter was set to 30. The median tSNE1 and tSNE2 

coordinates of the cells belonging to each cluster are shown as black dots and labeled by their 

cluster ID. To enhance visualization, cells were colored according to the clusters they were 

assigned to. As expected, cells belonging to a specific, colour-coded cluster were found on adjacent 

coordinates in the tSNE plots (Fig E2A). Additional tSNE plots representative for specific clusters 

were created by randomly selecting 30.000 cells belonging to those clusters. The perplexity 

parameter was set to 30 and only cytokines were used to generate the tSNE plots.  

Each cluster was manually analyzed and assigned to standard immune subsets, based on the mean 

expression of subset-defining markers, such as CD161 and Vα7.2 for mucosal-associated invariant 

T (MAIT) cells and CD103 for Recirculating memory T cells (TRcM) (Fig. E3A). To confirm that 

the markers used were reliable discriminators for the indicated populations, we combined the 

profile of selected clusters with the tSNE projection and colour-graded the expression of the most 
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defining markers for each cell population on the tSNE plot (Fig E3B). As expected, maximal 

expression of the defining markers co-localized with the tSNE coordinates of the respective cluster 

shown in Fig. E2A.  Moreover, visual inspection of density dot plots further confirmed that 

identified cell cluster were real biological entities, when compared with a negative control 

population cluster CD8+ F20. 

 

IgE Measurement  

IgE were measured in the serum of AD patients using Human IgE Ready-Set-GO from Affymetrix 

according the manufacturer’s instructions.  

 

Statistical Analysis 

Frequencies per sample were computed for all clusters in each of the four datasets. Variability 

within IC and HD was evaluated by calculating coefficient of variation (CV) for each cluster within 

both groups and performing Mann-Whitney U test comparison for each dataset.  Mean normalized 

expression values for each cytokine per sample in each cluster were also computed for the 

Functional Panel dataset. Statistical significance for differences in frequencies and mean 

normalised expression across groups was computed using a linear mixed effects model based on 

the following formula (in the coding language R): 

expression/frequency ~ study_group * visit_number + age + sex + ethnicity + batch + 

(1|subject_ID) 

That is, where the subject ID represents the random effect variable, and the other variables 

(including the interaction term between study_group and visit_number) are fixed effects. 

Models were fitted using the R package lmer and contrasts of interest were extracted using the 

function glht from the R package multcomp. This method was chosen to account for the fact that 
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multiple samples were coming from the same donor and as there were missing samples for some 

of the time points (where a paired test would have required to drop out many samples). p-values 

were corrected for the number of clusters (frequency) or cluster-cytokine pairs (mean normalised 

expression) tested using the Benjamini-Hochberg procedure. For manually gated populations 

differences were assessed by one-way ANOVA followed by Tukey’s  test for multiple correction. 

Correlation between IL-22 production and disease severity in AD patients, measured by SASSAD, 

was assessed by two-tailed Pearson correlation.Tests with a corrected p-value lower than 0.05 were 

considered significant 

 

 

Supplementary References 

 

E1. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-Driven Phenotypic 
Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015;162(1):184-97. 
E2. van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008;9:2579-605. 
 
 

 

 

 

 

 

 

 

 

 



8 
 

Supplementary Figure Legends 

 

Figure E1: T cell profiling in inflammatory skin disease 

(A) Experimental workflow for the analysis of CD4+ and CD8+ T cells of atopic dermatitis (AD), 

healthy donor (HD) and psoriasis (PSO) patients by mass-cytometry. PBMCs were stained for 

phenotypic markers (Phenotypic Panel) or stimulated with PMA/Ionomycin and stained for 

cytokine production (Functional panel). Four datasets were obtained by pooling manually gated 

CD4+ or CD8+ cells from each experiment and performing unsupervised clustering analysis. 

Differential analysis of frequencies and cytokine expression levels was then performed. (B) Gating 

strategy used to manually identify major cell populations within PBMCs samples. Representative 

plots shown are from the Phenotypic panel. (C) Pie charts showing mean percentages of main 

lymphocyte populations within CD45+ cells identified in the Phenotypic panel in AD, HD and 

PSO.  

 

Figure E2: Evaluation of clusters frequency within healthy donors and internal control 

(A) tSNE plots of colour-coded T cell clusters within CD4+ and CD8+ T cells, identified in the 

Phenotypic and Functional panels. Labelled black dots represent the centroid (based on median) 

of the corresponding cluster. (B) Evaluation of cluster frequency within healthy donor and Internal 

control. Bar-plots of relative cluster frequency of 9 healthy donors (HD) and one internal control 

(IC) run each time, within CD4+ Phenotypic, CD4+ Functional, CD8+ Phenotypic, and 

CD8+Functional datasets.  
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Figure E3: Cell clusters identified in the Functional CD8 dataset 

(A) Marker analysis and attribution of the 29 clusters identified within the CD4+ Phenotypic 

dataset to standard cell populations. Normalized expression of all cells assigned to each cluster is 

represented by colors in the heatmap, and non-normalized raw values are shown as histograms. 

(B) MAIT and Recirculating Memory T cells identified within the CD8+ Functional dataset are 

visualized on tSNE plot coloured using normalized values of selected markers (left), and as dot-

plots in black (right). Cluster F20, shown in blue, is the negative control. 

 

Figure E4: Cell clusters identified in the CD4+ Functional dataset  

Marker analysis and attribution of the 51 clusters identified within the CD4+ Functional dataset to 

standard cell populations. Normalized expression of all cells assigned to each cluster is represented 

by colours in the heatmap, and non-normalized raw values are shown as histograms. 

 

Figure E5: Cell clusters identified in the CD4+ Phenotypic dataset   

Marker analysis and attribution of the 34 clusters identified within the CD4+ Phenotypic dataset 

to standard cell populations. Normalized expression of all cells assigned to each cluster is 

represented by colours in the heatmap, and non-normalized raw values are shown as histograms. 

 

Figure E6: Cell clusters identified in the CD8+ Phenotypic dataset   

Marker analysis and attribution of the 31 clusters identified within the CD8+ Phenotypic dataset 

to standard cell populations. Normalized expression of all cells assigned to each cluster is 

represented by colours in the heatmap, and non-normalized raw values are shown as histograms. 
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Figure E7. MAIT, Recirculating memory CD8+ T and T regulatory CD4+ T cells in 

inflammatory skin disease 

A) tSNE visualization of cytokine expression in Functional CD8+ cluster F14 using pooled cells 

from AD, HD and psoriasis. (B) Cytokine production in cluster F14, in AD, HD and psoriasis. (C) 

tSNE visualization of cytokine and PD-1 expression in the Functional CD8+ cluster F28 using 

pooled cells from AD, psoriasis and HD.  (D) Box plot showing frequency of TRcM clusters   F18, 

F29 and F29 in the Functional CD8+ dataset. (E) TRegs in clusters P10, P14 and P22 in the CD4+ 

Phenotypic dataset were merged and coloured by cluster, or according to the raw expression of the 

indicated markers (F). * p≤0.05. 

















Table E1 Demographics and clinical data 
Patient Ethnicity Age Sex Disease onset Disease phenotype Disease 

Severity 
Comorbidities Recurrent 

Infections 
serum IgE 

(KU/L) 
Notes 

AD1 Mixed 18 M not known Generalised;flexural 
pattern 

SASSAD 30 Asthma, Allergic 
Rhinocongintivitis 

S.aureus; HSV 
(eczema 
herpeticum) 

23207 ± 
2030 

Excluded from 
unsupervised 
analysis 
(Phenotypic 
Panel)   

AD2 Black 25 M Childhood Follicular/papular 
phenotype; extensor 
pattern 

not known Asthma, Allergic 
Rhinocongintivitis 

not known 855 ± 56 Excluded from 
unsupervised 
analysis 
(Phenotypic 
Panel)   

AD3 White 26 M Childhood Generalised;flexural 
pattern 

SASSAD 17 Asthma, Allergic 
Rhinocongintivitis 

S.aureus; HSV 
(eczema 
herpeticum) 

1664 ± 27 Excluded from 
unsupervised 
analysis 
(Phenotypic 
Panel)   

AD4 White 50 M Childhood Generalised;flexural 
pattern 

not known Asthma, Allergic 
Rhinocongintivitis, 
Food  allergies 

not known 83 ± 3   

AD5 White 32 M Childhood Generalised;flexural 
pattern 

not known None not known 2722 ± 50   

AD6 White 59 F Childhood Generalised; flexural 
prominence  

SASSAD 31 Asthma, Allergic 
Rhinocongintivitis 

not known 36292 ± 155 Excluded from 
overall analysis 
for low cell 
viability 

AD7 Black 57 F Childhood Generalised;flexural 
pattern; hand and foot 
eczema  

SASSAD19 None S.aureus 
(abscesses) 

1205 ± 15   

AD8 White 47 M Childhood Generalised;flexural 
pattern; hand and foot 
eczema  

SASSAD 24 Asthma, Allergic 
Rhinocongintivitis 

Extensive 
molluscum 
contagiosum 

5243 ± 175   

AD9 White 49 M Childhood Generalised;flexural 
pattern  

SASSAD 27 Asthma, Allergic 
Rhinocongintivitis 

S.aureus; HSV 
(eczema 
herpeticum) 

1118 ± 58   

AD10 White 35 M not known Generalised;flexural 
pattern 

not known Asthma, food allergies  HSV (eczema 
herpeticum) 

5452 ± 55   

AD11 White 60 M Adult Generalised;flexural 
pattern; hand eczema  

SASSAD17 Metals allergy not known 243 ±4   

AD12 Black 40 M Childhood Generalised;flexural 
pattern 

SASSAD 20 Asthma, Allergic 
Rhinocongintivitis 

not known 1318 ± 36   

AD13 Asian 30 M not known Generalised;flexural 
pattern; hand  eczema  

SASSAD 15  Allergic 
Rhinocongintivitis 

S.aureus 757 ± 5   

AD14 Asian 65 M not known Generalised;flexural 
pattern 

SASSAD21  Allergic 
Rhinocongintivitis 

S.aureus; HSV 
(eczema 
herpeticum) 

6516 ± 172   

AD15 Asian 36 M not known Generalised;flexural 
pattern; hand  eczema  

SASSAD 15 None S.aureus 17654 ±724   

PSO1 White 27 M Teenager Plaque-psoriasis PASI 10.5 Psoriatic arthritis not applicable not 
applicable 

Excluded from  
unsupervised 
analysis 
(Phenotypic 
Panel)   

PSO2 White 48 M Adult Plaque-psoriasis PASI 21.2 none not applicable not 
applicable 

  

PSO3 White 40 M Childhood Plaque-psoriasis PASI 10.2 none not applicable not 
applicable 

  

PSO4 White 37 F Childhood Plaque-psoriasis PASI 23.3 none not applicable not 
applicable 

  

PSO5 White 37 M Adult Plaque-psoriasis PASI 12.8 none not applicable not 
applicable 

  

PSO6 White 50 M Adult Plaque-psoriasis PASI 33.4 liver disease not applicable not 
applicable 

  

PSO7 White 53 F Teenager Plaque-psoriasis PASI 14.1 none not applicable not 
applicable 

  

PSO8 White 58 F Childhood Plaque-psoriasis PASI 9.9 none not applicable not 
applicable 

Excluded from  
unsupervised 
analysis 
(Phenotypic 
Panel)   



PSO9 White 47 M Teenager Plaque-psoriasis PASI 17.3 none not applicable not 
applicable 

  

PSO10 White 50 M Adult Plaque-psoriasis PASI 15.3 Hyperthension, 
hypercolerestemia 

not applicable not 
applicable 

  

PSO11 Asian 19 M Childhood Plaque-psoriasis PASI 22.7 none not applicable not 
applicable 

Excluded  from 
the analysis of 
Phenotypic 
markers 

PSO12 Asian 37 M Childhood Plaque-psoriasis PASI 17.9 none not applicable not 
applicable 

  

PSO13 White 48 M Adult Plaque-psoriasis PASI 12.6 none not applicable not 
applicable 

  

PSO14 White 45 M Teenager Plaque-psoriasis PASI 25 none not applicable not 
applicable 

  

PSO15 Asian 28 M Teenager Plaque-psoriasis PASI 35.5 none not applicable not 
applicable 

  

PSO16 White 36 F Adult Plaque-psoriasis PASI 17.6 
 

not applicable not 
applicable 

  

PSO17 White 61 F Adult Plaque-psoriasis PASI 13.5 asthma not applicable not 
applicable 

  

PSO18 White 33 F Adult Plaque-psoriasis PASI 13.7 asthma not applicable not 
applicable 

  

PSO19 White 35 F Adult Plaque-psoriasis PASI 26.7 none not applicable not 
applicable 

  

HD1 White 50 M not 
applicable 

not applicable not 
applicable 

not applicable not applicable not 
applicable 

Excluded from  
the unsuprvised 
analysis of 
Phenotypic 
markers   

HD2 White 53 M NA NA NA NA NA NA Excluded from  
unsupervised 
analysis 
(Phenotypic 
Panel)   

HD3 White 32 M NA NA NA NA NA NA   

HD4 White 28 F NA NA NA NA NA NA   

HD5 White 53 F NA NA NA NA NA NA   

HD6 White 48 M NA NA NA NA NA NA   

HD7 White 31 M NA NA NA NA NA NA   

HD8 White 24 M NA NA NA NA NA NA   

HD9 White 32 M NA NA NA NA NA NA   

           

 

 



Table E2 Staining panels   
         

Phenotypic Panel   Functional Panel 

Metal 
Antibody / 

Target 
Company 

(clone) Staining step   Metal 
Antibody / 

Target 
Company 

(clone) Staining step 

103 
Cellular 
Barcode 

Synthesized in 
house Surface III   103 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

104 
Cellular 
Barcode 

Synthesized in 
house Surface III   104 

Cellular 
Barcode 

Synthesized in 
house Surface III 

105 
Cellular 
Barcode 

Synthesized in 
house  Surface III   105 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

106 
Cellular 
Barcode 

Synthesized in 
house  Surface III   106 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

108 
Cellular 
Barcode 

Synthesized in 
house  Surface III   108 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

110 
Cellular 
Barcode 

Synthesized in 
house  Surface III   110 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

113 
Cellular 
Barcode 

Synthesized in 
house  Surface III   113 

Cellular 
Barcode 

Synthesized in 
house  Surface III 

89 CD45 
Fluidigm 

(HI30) Surface II   89 CD45 
Fluidigm 

(HI30) Surface II 

112/114 Qdot800-CD14 
Invitrogen 

(TuK4) Surface II   112/114 Qdot800-CD14 
Invitrogen 

(TuK4) Surface II 

115 CD57 
Biolegend 
(HCD57) Surface II   115 CD57 

Biolegend 
(HCD57) Surface II 

139 

TCRγδ PE 
(Primary) 

Invitrogen 
(5A6.E9) 

Surface II 

  
139 

TCRγδ PE 
(Primary) 

Invitrogen 
(5A6.E9) 

Surface II 
anti-PE 

(Secondary) 
Biolegend 

(PE001) 
anti-PE 

(Secondary) 
Biolegend 

(PE001) 

140 CD3 
Biolegend 
(UCHT1) Surface II   140 CD3 

Biolegend 
(UCHT1) Surface II 

141 HLA-DR 
Biolegend 

(L243) Surface II   146 CD8α 
Biolegend 

(SK1) Surface II 

142 CLA 
Biolegend 

(HECA-452) Surface II   147 CD45RA 
Biolegend 

(HI100) Surface I 

143 CD38 
Biolegend 

(HIT2) Surface II   148 CLA 
Biolegend 

(HECA-452) Surface II 

144 Granzyme B 
Abcam (CLB-

GB11) Surface II   149 CD4 
Biolegend 

(SK3) Surface I 

145 CD62L 
BD Biosciences 

(DREG-56) Surface II   150 CD103 
eBioscience (B-

Ly7) Surface I 

146 CD8α 
Biolegend 

(SK1) Surface II   152 CD25 
Biolegend (M-

A251) Surface I 

147 CD45RO 
Biolegend 
(UCHL1) Surface II   153 CD107a 

BD Biosciences 
(H4A3) Surface II 

148 Vδ2 Biolegend (B6) Surface II   154 CD40L 
eBioscience 

(24-31) Surface II 

149 CD4 
Biolegend 

(SK3) Surface II   155 CTLA-4 
BD Biosciences 

(BNI3) Surface II 

150 CD103 
eBioscience (B-

Ly7) Surface II   156 Vδ2 Biolegend (B6) Surface II 

151 CCR4 
R&D Systems 

(205410) Surface II   158 CD56 
BD Biosciences 

(NCAM16.2) Surface II 

152 Ki-67 
BD Biosciences 

(B56) Intra   159 Integrin β7 
Biolegend 
(FIB504) Surface I 

153 CD49a 
Biolegend 

(TS2/7) Surface II   161 CCR9 
Biolegend 
(L053E8) Surface I 



154 CCR10 
R&D Systems 

(314305) Surface II   163 CD161 
Biolegend (HP-

3G10) Surface I 

155 

Foxp3 Biotin 
(Primary) eBioscience 

(PCH101) 
Intra 

  164 CD19 
Biolegend 

(HIB19) Surface II 

Streptavidin 
(Secondary) Synthesized in 

house   165 Vα7.2 
Biolegend 

(3C10) Surface I 

156 CCR7 
R&D Systems 

(150503) Surface I   166 CXCR5 
BD Biosciences 

(RF8B2) Surface I 

157 CD27 
eBioscience 

(LG.7F9) Surface I   168 CCR2 
Biolegend 
(K036C2) Surface I 

158 CD56 
BD Biosciences 

(NCAM16.2) Surface II   171 CCR6 
Biolegend 
(G034E3) Surface I 

159 Integrin β7 
Biolegend 
(FIB504) Surface I   173 CCR4 

R&D Systems 
(205410) Surface I 

160 PD-1 
eBioscience 
(eBioJ105) Intra   175 CCR5 

Abcam 
(HEK/1/85a) Surface I 

161 

Vδ1 FITC 
(Primary) Miltenyi Biotec 

(REA173) 
Surface II 

  209 CD16 Fluidigm (3G8) Surface II 

anti-FITC 
(Secondary) Biolegend (FIT-

22)   141 IFN-γ 
eBioscience 

(4S.B3) Intra 

162 CD95 
Biolegend 

(DX2) Surface II   142 TNF-α 
eBioscience 

(MAb11) Intra 

163 CXCR3 
R&D Systems 

(49801) Surface II   143 IL-8 
Biolegend 

(E8N1) Intra 

164 CCR9 
Biolegend 
(L053E8) Surface I   144 Granzyme B 

Abcam (CLB-
GB11) Intra 

165 Vα7.2 
Biolegend 

(3C10) Surface I   145 IL-17F 
eBioscience 

(SHLR17) Intra 

166 CXCR5 
BD Biosciences 

(RF8B2) Surface II   151 IL-2 
eBioscience 

(MQ1-17H12) Intra 

167 CD49d 
Biolegend 

(9F10) Surface II   157 MIP-1β 
BD Biosciences 

(D21-1351) Intra 

168 CCR2 
Biolegend 
(K036C2) Surface I   160 PD-1 

eBioscience 
(eBioJ105) Intra 

169 CD25 
Biolegend (M-

A251) Surface II   162 IL-5 
Biolegend 

(JES1-39D10) Intra 

170 CD161 
Biolegend (HP-

3G10) Surface I   167 IL-9 
BD Biosciences 

(MH9A4) Intra 

171 CCR6 
Biolegend 
(G034E3) Surface II   169 IL-4 

Biolegend 
(MP4-25D2) Intra 

172 CD45RA 
Biolegend 

(HI100) Surface II   170 IL-10 
eBioscience 
(JES3-9D7) Intra 

173 CD19 
Biolegend 

(HIB19) Surface II   172 GM-CSF 
Biolegend 

(BVD2-21C11) Intra 

174 CX3CR1 
Biolegend 
(K0124E1) Surface II   174 IL-22 

Biolegend 
(Poly5161) Intra 

175 CCR5 
Abcam 

(HEK/1/85a) Surface I   176 IL-17A 
Biolegend 

(BL168) Intra 

176 CD127 
Biolegend 
(A019D5) Surface II   191/193 DNA Fluidigm DNA 

209 CD16 Fluidigm (3G8) Surface II   195 CisPlatin  Sigma-Aldrich Live/dead 

191/193 DNA Fluidigm DNA   
  195 CisPlatin  Sigma-Aldrich Live/dead   

 



Table E3 Class Comparisons 

Variable Two-way 
comparisons 

Dataset         Cluster      
(-Cytokine) 

adj p 
value 

Estimate Interpretation 

Cell 
Frequency 

AD vs HD CD8+ 
Phenotypic 

P15  0.01918 5.4545 TRcM ↑ in AD 
P27 0.04711 0.3009 TRcM ↑ in AD 
P24 0.04711 1.2636 TRcM ↑ in AD 

CD8+ 
Functional  

F18 0.03012 3.7208 TRcM ↑ in AD 
F28 0.04756 1.3014 TRcM ↑ in AD 
F29 0.04756 0.2971 TRcM ↑ in AD 

Pso vs AD CD4+ 
Phenotypic 

P22 0.02238 0.597 CD49d+ Tregs ↓ 
in AD 

CD8+ 
Phenotypic  

P15 0.00688 -4.8345 TRcM ↑ in AD 
P27 0.00688 -0.2957 TRcM ↑ in AD 
P13 0.00688 -5.3525 MAITs ↓ in Pso 
P24 0.00688 -1.2771 TRcM ↑ in AD 
P8 0.03115 3.2531   

CD8+ 
Functional  

F18 0.02473 -3.4072 TRcM ↑ in AD 
F28 0.02473 -1.3535 TRcM ↑ in AD 
F29 0.04425 -0.2861 TRcM ↑ in AD 

Pso vs HD  CD8+ 
Phenotypic  

P13 0.02057 -5.159 MAITs ↓ in Pso 
P18 0.01999 1.3257   
P3 0.02057 -11.2144   

CD8+ 
Functional 

F6 0.01198 -2.6657   
F1 0.01198 -3.0584   

Cytokine 
expression 

AD vs HD CD8+ 
Functional  

F28-IL-22 0.0346 4.6189 ↑ IL-22 Skin 
homing TRcM in 
AD 

Pso vs AD CD4+ 
Functional  

F36-IL-2 8.96E-
07 

-1.6209   

F17-IL-2 0.00076 -1.4239   
F15-IL-5 0.00076 -0.1376   
F20-IL-2 0.0016 -0.9294   
F6-IL-2 0.00189 -0.8553   
F1-IL-2 0.00189 -0.7572   
F17-IL-4 0.00331 -1.0255   
F10-IL-2 0.00413 -0.7834   
F15-GM-CSF 0.00413 -2.87   
F35-IL-2 0.00413 -0.8284   
F28-IL-2 0.00413 -2.1091   
F15-IL-2 0.00446 -1.5149   
F3-
Granzyme_B 

0.00489 -0.274   

F7-IL-2 0.00526 -0.7901   



F34-
Granzyme_B 

0.00551 -0.4253   

F26-TNFα 0.00555 -0.4811   
F17-IL-10 0.00583 -1.0828   
F3-IL-17F 0.00634 -0.3753   
F26-IL-2 0.00847 -0.9284 CD4+ T cells 

more activated 
in AD 

F26-GM-CSF 0.00859 -2.1144   
F15-IL-4 0.00905 -1.4349   
F26-
Granzyme_B 

0.00958 -0.2734   

F3-TNF 0.01183 -0.5216   
F48-GM-CSF 0.01221 -5.5909   
F11-IL-2 0.01292 -1.1134   
F19-IL-2 0.01292 -1.5154   
F34-IL-22 0.01356 -1.2253   
F40-IL-2 0.01523 -1.4544   
F28-GM-CSF 0.01745 -3.1101   
F32-IL-2 0.01745 -0.7572   
F17-TNF 0.02153 -0.4009   
F3-IL-2 0.02316 -1.4063   
F1-IL-17F 0.02316 -0.0657   
F17-GM-CSF 0.02341 -0.6456   
F26-IL-22 0.03003 -0.9507   
F21-IL-2 0.03239 -1.3264   
F36-IL-5 0.04464 -0.0782   

CD8+ 
Functional  

F14-TNFα 0.01791 -0.8907 MAITs more 
activated in AD F14-MIP1β 0.03995 -1.1912 

Pso vs HD CD4+ 
Functional  

F15-IL-4 0.01818 -1.6613 CD4+ T cells not 
over-activated 
in PSO 

F47-IFNγ 0.0293 -2.218 
F47-MIP-1β 0.0293 -0.7495 
F40-IFNγ 0.0293 -0.4006 
F28-IL-4 0.0293 -1.849 
F31-IFNγ 0.0293 -0.6983 
F44-MIP-1β 0.04397 -0.6579 
F44-GM-CSF 0.04397 -1.113 

 



Table E4 Markers used for clustering 

Clustering markers 

Functional CD4 dataset Functional CD8 dataset Phenotypic CD4 dataset Phenotypic CD8 dataset 

147 CD45RA 147 CD45RA 172 CD45RA 172 CD45RA 

148 CLA 148 CLA 142 CLA 142 CLA 

150 CD103 150 CD103 150 
CD103 (αε 
Integrin) 150 

CD103 (αε 
Integrin) 

152 CD25 155 CTLA-4 169 CD25 159 Integrinβ7 

155 CTLA-4 159 Integrinβ7 159 Integrinβ7 170 CD161 

156 Vd2 163 CD161 170 CD161 165 Va7.2 

159 Integrinβ7 165 Va7.2 165 Va7.2 166 CXCR5 

163 CD161 166 CXCR5 166 CXCR5 168 CCR2 

165 Va7.2 168 CCR2 168 CCR2 171 CCR6 

166 CXCR5 171 CCR6 171 CCR6 151 CCR4 

168 CCR2 173 CCR4 151 CCR4 175 CCR5 

171 CCR6 175 CCR5 175 CCR5 145 CD62L 

173 CCR4 154 CD40L 145 CD62L 141 HLA-DR 

175 CCR5   141 HLA-DR 147 CD45RO 

  147 CD45RO 144 Granzyme B  

K value 144 Granzyme B  152 Ki67 

K=10 K=100 152 Ki67 153 
CD49a (α1 
Integrin) 

  

153 
CD49a (α1 
Integrin) 154 CCR10 

154 CCR10 156 CCR7 

155 Foxp3  157 CD27 

156 CCR7 160 PD-1 

157 CD27 162 CD95 

160 PD-1 163 CXCR3 

162 CD95 164 CCR9 

163 CXCR3 167 
CD49d (α4 
Integrin) 

164 CCR9 174 CX3CR1 

167 
CD49d (α4 
Integrin) 176 CD127 

174 CX3CR1 

  176 CD127 

 

K value 

K=10 K=25 
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