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Abstract—In recent years, unmanned aerial vehicle (UAV)
communication technology has played an important role in
both military and civilian applications. However, with the rapid
development of military equipment, the execution efficiency of
single UAVs is often limited, for which complex combat missions
cannot be completed well. Therefore, UAV swarm has become an
important research trend in the field of UAVs. In this paper, we
consider the problem of channel estimation and self-positioning
for the UAV swarm, where multiple small UAVs are displaced by
arbitrarily unknown displacements due to the dynamic moving.
To explore the physical characteristics of UAV swarm, the
parameters of the channel are decomposed into the direction
of arrival (DOA) information, the relative position information,
and the channel gain information. Utilizing the rank reduction
(RARE) estimator, DOAs of the different target users can be
estimated efficiently, regardless of the position of the UAVs. After
obtaining the DOA information, we estimate the channel gain
information using small amount of training resources, which
significantly reduces the training overhead and the feedback
cost. Moreover, the unknown displacements among UAVs can be
self-recovered from the mixed integer nonlinear programming
(MINLP). To reduce the computational complexity, we develop
both the sphere decoding (SD) and the least square (LS) based
methods. The deterministic Cramér-Rao bound (CRB) of the
self-positioning estimation is derived in closed-form. Finally,
numerical examples are provided to corroborate the proposed
studies.

Index Terms—Unmanned aerial vehicle (UAV) swarm, DOA
estimation, channel estimation, self-positioning.
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I. INTRODUCTION

Due to the cost reduction and device miniaturization, un-

manned aerial vehicles (UAVs) have found a wide range of

applications such as reconnaissance, surveillance, geodetic

survey, emergency assistance etc., and has great application

value in military and civilian fields [1], [2]. However, due

to the limitations of volume, self-provisioning, flight envi-

ronment and other factors, complex combat missions cannot

be completed well in the single UAV system [3]–[6]. In

order to meet the challenges of complex missions and harsh

environments, the UAV swarm becomes an important part of

UAV cooperation [7]–[10].

UAV swarm is consisted of a number of small UAVs ar-

ranged in certain formation to meet the requirements of various

missions and tasks, e.g., communicating to the cooperative

base stations, users, and detecting the non-cooperative enemy

aircraft [11], [12]. UAVs in swarm are small devices equipped

with less expensive and less number of antennas, which work

in a coordinated manner. Moreover, their ability of handling

tasks are also stronger [13], [14]. For example, UAV swarm

can jointly perform communications, detection, coverage and

other tasks. Moreover, the communications of UAV swarm is

robust. The formation of the UAV swarm can be changed due

to the dynamically moving, such that the damage to one UAV

does not affect the overall performance.

Compared to single UAV system, the key advantages of

UAV swarm are summarized here: 1) Only one or two head

UAVs may connect to controllers and servers, and then feed-

back to the other UAVs; 2) UAV swarm is less expensive

to acquire, maintain and operate than the single large UAV;

3) Adding more UAVs to the network can easily extend

communication umbrella provided by the UAV swarm; 4)

The UAV swarm could generally complete the missions more

quickly, efficiently and at lower cost.

The performance of the UAV communication systems criti-

cally relies on the channel state information (CSI). In general,

a large number of UAVs with small antenna array in UAV

swarm can constitute a virtual massive multiple input multiple

output (MIMO) system, and it can improve spatial resolution,

spectrum efficiency, as well as energy efficiency [15]–[18].

Different from the conventional massive MIMO systems, the

UAV swarm has the following property: Each UAV is equipped

with a fully calibrated small antenna array but the relative

position of different UAVs are dynamic, i.e., the positions are

generally imprecisely known and vary continuously. Although

we can rely on Global Positioning System (GPS) to locate
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the position of the UAV, the accuracy provided by GPS can

only reach the meter level. Since the displacement among

UAVs in the swarm is small or even less than one meter, the

accuracy of GPS cannot satisfy the requirement of UAV swarm

positioning [19], [20]. In the meantime, UAV swarm would

has other missions, such as anti-strike, transportation, search,

classification, round-up and so on. At this time, controlling the

relative position information of the UAVs is very important.

In this paper, we study the channel estimation and self-

positioning problem for UAV swarm. We formulate the chan-

nel model, where each UAV is equipped with ideal-calibrated

antenna array but the distance among different UAVs are

dynamically unknown. To explore the physical characteristics

of the channel, we decompose the parameters of each channel

into the channel gain, the position and the direction of arrival

(DOA) information. We first use a method, called rank re-

duction (RARE) [21]–[24], to obtain the DOA information of

target user blindly. Then we estimate the channel gain infor-

mation using small amount of training resources, which sig-

nificantly reduces the training overhead and the feedback cost.

Next we propose a self-positioning algorithm to estimate the

unknown distances among UAVs. The mathematical approach

is shown to fall into the category of mixed integer nonlinear

programming (MINLP) and is NP-complete. Nonetheless, we

develop two efficient algorithms, i.e., the sphere decoding (SD)

and the least square (LS) based methods that greatly reduce

the computational complexity compared to the exhaustive

searching. We then study the outlier effect, in which spurious

UAV positions are misclaimed as the true positions. Several

ways to reduce the outlier probability are suggested. Moreover,

we derive close form expression for the deterministic Cramér-

Rao bound (CRB) to reflect the theoretical lower bound of

positioning. Finally, the numerical results are provided to

corroborate the proposed studies.

This paper is organized as follows. Section II describes

the system model of the proposed UAV swarm. Section III

presents the blind DOA estimation and training based channel

estimation algorithm of the uplink transmission. Section IV

provides the self-positioning algorithm, its related discussions,

as well as the derivation of the deterministic CRB. In Section

V, we provide various simulation results to evaluate the

proposed studies. Finally, conclusions are drawn in Section

VI.

Notation: Vectors and matrices are boldface small and

capital letters; the transpose, complex conjugate, Hermitian,

inverse, and pseudo-inverse of matrix A are denoted by

AT , A∗, AH , A−1 and A†, respectively; [A]ij denotes the

(i, j)th element of A and tr(A) is the trace of A; ℜ{A}
and ℑ{A} represent the real and the imaginary part of A;

diag{a} denotes a diagonal matrix with the diagonal element

constructed from a, while diag{A} denotes a vector whose

elements are extracted from the diagonal components of A; I

is the identity matrix; E{·} denotes the statistical expectation;

|x| is the absolute value of a scalar x; ⌊x⌉ denotes the nearest

integer to x; ⌊x⌋ and ⌈x⌉ represent the largest integer that is

no bigger than x and the smallest integer that is no less than

x, respectively; ⊙ denotes the Hadamard product.
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Fig. 1. A typical UAV swarm with various users.

II. SYSTEM MODEL

Consider a UAV swarm includes K arbitrary non-

overlapping UAVs as shown in Fig. 1, and the kth UAV

contains Mk ≥ 1 antennas. Without loss of generality, we

take the first antenna of the first UAV as the reference, and

the coordinates of the mth antenna in the kth UAV can be

denoted by (xkm, ykm)1. We assume that the antennas of each

UAV are ideal calibrated but the distances between UAVs are

unknown due to the movement of each UAV. In other words,

only xkm − xkn and ykm − ykn for the same k are known a

priori. For notation simplicity, we define x′
km , xkm−xk1 and

y′km , ykm−yk1 for m = 2, · · · ,Mk, ∀k. Clearly, (x′
km, y′km)

denotes the relative position of the mth antenna in the kth

UAV to the first antenna in the same UAV. The communicating

partners (called users here) can be the cooperative ground base

station, cooperative ground user, large aircraft, air ship, and

even the non-cooperative users, i.e. enemy aircraft. Moreover,

we assume the signal transmitted by all users are narrowband

and mutually uncorrelated.

For UAV communication, UAVs are usually placed at very

high altitude such that there are few surrounding scatterers

around the UAVs. Actually, only the line of sight (LOS) path

contribute to the majority component [16], [25]. Moreover,

for UAV swarm, the UAVs are distributed very dense so the

relative distance between them is small. Thus, UAV swarm can

constitute a virtual massive MIMO system. The uplink channel

between the lth user and the UAV swarm can be expressed as

hl = ala(θl), (1)

where al ∼ CN (0, 1) is the channel gain between the lth user

and the UAV swarm, which is independent and identically

distributed (i.i.d.). The steering vector a(θl) of the whole array

has the structure, which is shown as (2), where λ is the wave

length of the transmitted signals and θl ∈ (−90◦, 90◦) is the

signal DOA information of the lth user. Then we combine the

1In order to better describe the algorithm, we tentatively assume that all
UAVs are at the same level. But the algorithm can be straightforwardly extend
to a more general case.
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a(θl) = [1, e
j2π

λ
(x12 sin θl+y12 cos θl), · · · , e

j2π

λ
(x1M1

sin θl+y1M1
cos θl),

· · · , e
j2π

λ
(xkm sin θl+ykm cos θl), · · · , e

j2π

λ
(xK1 sin θl+yK1 cos θl), · · · , e

j2π

λ
(xKMk

sin θl+yKMK
cos θl)]T , (2)

channel between all users and the UAV swarm into an M ×L
channel matrix as

H = [h1, · · · ,hL] = [a1a(θ1), · · · , aLa(θL)], (3)

where M =
∑K

k=1 Mk is the total number of antennas of

UAV swarm, and L denotes the number of users. Note that

the channel matrix H can be a very large matrix with up

to hundreds of rows depending on M . Moreover, the antenna

architecture of UAV swarm can achieve high spatial resolution

and further improve the channel estimation [26]–[28].

Though formations of the UAV swarm vary from time to

time, the rate of formations change is still less than the symbol

rate. Hence, we can assume that the formations of the UAV

swarm is constant over N symbol intervals, and the received

signal can be modeled as

x(t) = Hs(t) +w(t)

= A(θ)Ωs(t) +w(t), t = 1, 2, · · · , N, (4)

where Ω = diag{a1, a2, · · · , aL}, A(θ) =
[a(θ1), a(θ2), · · · , a(θL)] is the M × L direction matrix, s(t)
is the L × 1 vector of the signal waveforms from L target

users, and w(t) is the M × 1 vector of noise whose elements

are independent random Gaussian variables with the variances

σ2
n. We further decompose a(θl) as

a(θl) = V(θl)g(θl), (5)

where

V(θl) =








v1(θl) 0 · · · 0
0 v2(θl) · · · 0
...

...
. . .

...

0 0 · · · vK(θl)







, (6)

and

vk(θl) =[1, e
j2π

λ
(x′

k2
sin θl+y′

k2
cos θl),

· · · , e
j2π

λ
(x′

kMk
sin θl+y′

kMk
cos θl)]T (7)

is the Mk × 1 steering vector of the kth UAV [21], [22].

Moreover,

g(θl) =[1, e
j2π

λ
(x21 sin θl+y21 cos θl),

· · · , e
j2π
λ

(xK1 sin θl+yK1 cos θl)]T (8)

is the K × 1 complex vector associated with the first antenna

of each UAV, i.e. (xk1, yk1), k = 2, 3, · · · ,K . As seen from

(5), V(θl) characterizes manifold inside each UAV, whereas

g(θl) characterizes unknown positions of all UAVs. From

(3) and (5), we know that instead of directly estimating the

channel H, one could separately estimate the DOA vector

θ = [θ1, θ2, · · · , θL]
T , the vector g(θl), and the corresponding

channel gain al, l = 1, 2, · · · , L. By doing this, the number

of the parameters to be treated is greatly reduced (from

L×
∑K

k=1 Mk to 4L−2). As most array signal processing and

communication papers [29]–[33], we assume that the number

of users is known for the time being, namely, L is known.

Remark 1. We will show in the following that if the target user

is non-cooperative, the UAV swarm can detect the DOA of the

target and can self-locate the relative position among different

UAVs. On the other hand, if the target user is a cooperative

partner, the UAV swarm can perform channel estimation with

the aid of a few pilot symbols.

III. PARAMETER ESTIMATION

A. RARE Algorithm

DOA aided massive MIMO design has recently attracted

significant attention for static and fully calibrated array [26]–

[28]. In this subsection, we apply the RARE approach to

blindly find the DOA for UAV swarm.

From (4), the covariance matrix of the received signals can

be expressed as

R = E{x(t)xH(t)} = A(θ)ΩTΩHAH(θ) + σ2IM , (9)

where T = E{s(t)s(t)H} is the L × L full-rank covariance

matrix of the transmit signal2, σ2IM = E{w(t)w(t)H} is the

M × M full-rank covariance matrix of the noise, and σ2 is

the unknown noise covariance.

The eigen-decomposition of R can be expressed as

R = UsΛUH
s + σ2UnU

H
n , (10)

where the M × L matrix Us contains the L signal subspace

eigenvectors and the L × L diagonal matrix Λ contains

the corresponding eigenvalues. Similarly, the M × (M − L)
matrix Un contains the M − L noise-subspace eigenvectors.

Combining (9) and (10) results in

σ2Un = A(θ)ΩTΩHAH(θ)Un + σ2Un. (11)

Since the source covariance matrix T is generally full rank

and A(θ) is of full column rank, we can obtain

aH(θ)UnU
H
n a(θ) = 0. (12)

Inserting (5) into (12), we can rewrite this equation as

aH(θ)UnU
H
n a(θ) =gH(θ)VH (θ)UnU

H
n V(θ)g(θ)

=gH(θ)C(θ)g(θ) = 0, (13)

where the K × K matrix C(θ) = VH(θ)UnU
H
n V(θ) is

defined as the determination matrix.

2Assuming that the LTE system has a bandwidth of 20M and 10 users,
transmitting 10 symbols are actually only need 0.5 milliseconds. During this
period, the moving distance of UAV is only 4cm when the moving velocity
of the UAV is 80km/h. Therefore, the DOA can be assumed unchanged in
the far field UAV swarm.
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We can easily observe from (13) that the coordinate pa-

rameter is contained in g(θ) only, so that the matrix C(θ) is

independent of the coordinate parameter of different UAVs.

Bearing in mind that the column rank of Un is M − L, if

K ≤ M − L, which is usually the case when Mk ≥ 2 for

each UAV, then C(θ) is full rank. Therefore, (13) tells that

the matrix C(θ) drops rank at each DOA, and DOAs from

different users can be found from the following equation

det{C(θ)} = 0. (14)

Remark 2. Define bk = 0 when the antenna displacement of

the kth UAV is greater than λ/2; otherwise bk = 1. To ensure

RARE estimator works, it must satisfy
∑K

k=1 bk(Mk − 1) ≥
L, bk = 0, 1, namely, the total number of antennas in the UAV

swarm minus the number of UAV is greater than or equal to

the number of target users. If the number of target users is

large while the number of antennas in each UAV is small, i.e.

Mk ≤ L, for k = 1, 2, · · · ,K , each UAV cannot individually

detect L target users. Nevertheless, the teamwork from UAV

swarm could still detect all L target.

B. Estimating g(θ)

It is seen from (13) that g(θl) stays in the null space of

C(θ). To guarantee the uniqueness of g(θl), we need to make

sure that g(θl) has only one zero eigenvalue in the noiseless

scenario. Let us provide the following theorem:

Theorem 1. If
∑K

k=1 bk(Mk−1) ≥ L holds, then matrix C(θ)
has a unique zero eigenvalue for each θl, l = 1, 2, · · · , L.

Proof: From (13), we know that the following equations

hold only for the true DOAs θl, l = 1, 2, · · · , L:

gH(θl)C(θl)g(θl) = 0. (15)

Consequently, C(θl) drops rank and has at least one zero

eigenvalue. An equivalent expression of (15) is written as

UH
n V(θl)g(θl) = UH

n a(θl) = 0, (16)

which says that the steering vector a(θl) lies in the signal-

subspace spanned by Us.

Lemma 1. Let

ã(θ) = V(θ)γ =
K∑

i=1

γiṽi(θ) (17)

be the linear combination of K element-orthogonal vectors

ṽi(θ), where ṽi(θ) is the ith column of matrix V(θ), and γ =
[γ1, γ2, · · · , γK ]T is an arbitrary K×1 complex vector. Define

M̃ = {ã(θ) : θ ∈ Θ} as the set of all ã(θ), Θ ∈ [−π
2 ,

π
2 ].

Using the property that ṽi(θ) is element-orthogonal and that

ṽi(θ) is the steering vector of the ith UAV, one can conclude

that any
∑K

k=1 bk(Mk −1) vectors taking nonidentical values

of θ from set M̃ are linearly independent [22].

Suppose C(θ1) has more than one zero eigenvalues. Then,

there exists a vector γ that is linearly independent from h(θ1)
and satisfies

γHC(θ1)γ = 0. (18)

Equivalently, we have

UnV(θ1)γ = 0. (19)

Therefore, V(θ1)γ also stays in the signal-subspace. In addi-

tion, it is not difficult to know that V(θ1)γ and V(θ1)g(θ1)
are linearly independent.

Since the signal space is spanned exactly by the L steering

vectors V(θ1)g(θ1),V(θ1)γ could be written as the linear

combination of these L steering vectors, namely

V(θ1)γ =α1V(θ1)g(θ1) + α2V(θ2)g(θ2)+

· · ·+ αLV(θL)g(θL), (20)

for [α1, α2, · · · , αL]
T 6= 0. The above equation can be

rewritten as

V(θ1)(γ − α1g(θ1)) =α2V(θ2)g(θ2)+

· · ·+ αLV(θL)g(θL). (21)

From the independence between γ and g(θ1), we know (γ −
α1g(θ1)) 6= 0 for any α1. Therefore, (21) indicates the linear

dependence among V(θ1)(γ −α1g(θ1)) and V(θi)g(θi), i =
2, 3, · · · , L, which forms clear contradiction with Lemma 1.

As a result, we draw the conclusion that C(θ1) cannot have

more than one zero eigenvalues. Similar discussion applies to

all other C(θl) and Theorem 1 is proved.

From Theorem 1, we know that a unique null-space eigen-

vector of C(θ1), denoted as ul is co-linear with g(θ1) can be

found for each θl. Since the first element of g(θl) is always

1, we can obtain g(θl) from

ĝ(θl) = ul/ul,1, (22)

where ul,1 is the first element of ul.

Remark 3. Practically when there are only a finite number

of data samples, the covariance matrix is replaced with the

sample covariance matrix and ul is found from the eigenvector

of C(θ1) that corresponds to the smallest eigenvalue.

C. Training based Channel Gain Estimation Algorithm

For cooperative users, we can further calculate channel gain

to recover the overall channel h. We assume there are P = L
orthogonal training sequences with length L. Then each user

sends the orthogonal training sequence to obtain their channel

estimate in the uplink stage. Denote the available orthogonal

training sequences set as S = [s1, s2, · · · , sL], with sHi sj =
P ·σ2

p · δ(i− j) and σ2
p being the average training power. The

received training signals Y at the UAV swarm can be written

as

Y = HSH +N =
L∑

l=1

ala(θl)s
H
l +N

=
L∑

l=1

alV(θl)g(θl)s
H
l +N, (23)

where N is the independent additive white Gaussian noise

matrix with elements distributed as CN (0, 1). Hence, the
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estimation of the channel gain al can be expressed as

âl =
1

Pσ2
p

·
(V(θl)g(θl))

H

‖V(θl)g(θl)‖2
Ysl

=
1

Pσ2
p

·
(V(θl)g(θl))

H

‖V(θl)g(θl)‖2

(
L∑

l=1

alV(θl)g(θl)s
H
l +N

)

sl

=al +
1

Pσ2
p

·
(V(θl)g(θl))

H

‖V(θl)g(θl)‖2
Nsl

=al +
1

√

P
σ2
p

σ2
n

·
(V(θl)g(θl))

H

‖V(θl)g(θl)‖2
N, (24)

where
σ2

p

σ2
n

is defined as the uplink training signal-to-noise ratio

(SNR).

Repeating the similar operations in (24) yields the channel

gain estimates for all users. With the DOA information from

RARE algorithm (14), positioning information from (22), and

channel gain information from (24), we may obtain the uplink

channel estimation for all users as

ĥl = âlV̂(θl)ĝ(θl). (25)

IV. UAV SELF-POSITIONING

Since the array in each UAV is ideally calibrated, it suffices

to find the position of the first antenna of each UAV, i.e.,

{(xk1, yk1)}Kk=2, which are contained in the vector g(θl), l =
1, 2, · · · , L. The target now is to estimate (xk1, yk1)

K
k=2 from

the kth entry of g(θ1), l = 1, 2, · · · , L. Due to symmetry, we

only need to discuss for k = 2. The following L equations

could be obtained:

2π

λ
(x21 sin θl + y21 cos θl)− 2πnl = ∠g2(θl), (26)

where ∠g2(θl) ∈ [−π, π) is the phase of g2(θl) and 2πnl (nl

can be any integer) is the phase delay ambiguity (PDA). For

notation simplicity, we normalize (x21, y21) by λ and define

x = x21/λ, y = y21/λ, ∠g2(θl)/2π = cl. (27)

Equation (26) could be reformulated as

x sin θl + y cos θl − nl = cl, l = 1, 2, · · · , L. (28)

Since the range of cl is [−0.5, 0.5), the integer ambiguity in

PDA can be bounded in

|nl| ≤ |x sin θl + y cos θl + 0.5| ≤
√

x2 + y2 + 0.5

= ⌊
√

x2 + y2⌉. (29)

Clearly, PDA is a non-preferred phenomenon that gives wrong

estimation over antenna positions. Although PDA is inherent

for each equation in (28), with multiple equations L ≥ 1 it is

possible to eliminate the PDAs for every equation.

A. Necessary and Sufficient Condition (NASC) for No PDA

Denote d as the maximum possible radius (normalized by

λ) of the area in which the UAV resides. Define

G =








sin θ1 cos θ1
sin θ2 cos θ2

...
...

sin θL cos θL







,n =








n1

n2

...

nL







,∆n =








∆n1

∆n2

...

∆nL







.

(30)

An NASC for no PDA has been derived in [23], and is

modified here for our considered system model:

Lemma 2. The NASC for non-existence of PDA from equation

(28) can be expressed as

rank{[G,∆n]} = 3, (31)

for

∆n 6= 0, |nl +∆nl| ≤ ⌊d⌉, nl ≤ ⌊d⌉. (32)

The last two terms in (32) could be equivalently expressed as

∆nl ∈ L̃ , {−2⌊d⌉,−2⌊d⌉+ 1, · · · , 2⌊d⌉ − 1, 2⌊d⌉}.

Obviously, there is no PDA if d < 1
2 , where all nl’s have to

be 0. In this case, (x, y) could be obtained as long as L ≥ 2.

However, for more general radius where d is greater than 1
2 ,

L ≥ 3 is normally required in order to estimate (x, y) from

(28) without encountering PDA.

From matrix theory, it is equivalent to check whether

following inequality holds

det











sin θl1 cos θl1 ∆nl1

sin θl2 cos θl2 ∆nl2

sin θl3 cos θl3 ∆nl3










6= 0, (33)

for one pair of (l1, l2, l3) with li ∈ {1, 2, · · · , L}.

Theorem 2. When the DOAs are randomly drawn from

[−π
2 ,

π
2 ), the probability for (33) to hold is 1.

Proof: Instead of proving (33), we would rather prove

that the probability of

det











sin θ1 cos θ1 ∆n1

sin θ2 cos θ2 ∆n2

sin θ3 cos θ3 ∆n3










= 0 (34)

is zero for

[∆n1,∆n2,∆n3] 6= 0, and|∆nl| ∈ L̃. (35)

The following equality could be obtain from (34):

∆n1 sin(θ2 − θ3)+∆n2 sin(θ3 − θ1)

+ ∆n3 sin(θ1 − θ2) = 0. (36)

Let α = θ2 − θ3, β = θ3 − θ1 and define ϕ =
arctan ∆n3 sin β

∆n1−∆n3 cosβ . The equation (36) is converted into

sin(α− ϕ) = −
∆n2 sinβ

√

∆n2
1 − 2∆n1∆n3 cosβ +∆n2

3

. (37)

If β is fixed, the equation (37) holds for at most (4⌊d⌉+ 1)3

different α, each corresponding to a different combinations of

∆n1, ∆n2, and ∆n3. Therefore, conditioned on fixed θ3 and
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θ1, there exist no more than (4⌊d⌉+1)3 different θ2 that satisfy

(34). Let us divide [−π
2 ,

π
2 ) to m intervals with m → ∞. The

probability of (34) satisfies

P{(34)} ≤ lim
m→∞

C2
m × (4⌊d⌉+ 1)3

C3
m

= 0. (38)

The Lemma have been proved.

Since it is not convenient to work with the rank of a matrix,

an alternative NASC for no PDA is expressed as

P⊥
θ ∆n 6= 0, (39)

for

∆n 6= 0, and ∆nl ∈ L̃, (40)

where P⊥
θ = I − Pθ and Pθ denotes the projection matrix

onto the subspace spanned by G. From the Appendix, Pθ

could be simply calculated from

Pθ =
1

D
BBT , (41)

where

D =
∑

i

∑

j>i

sin2(θi − θj), (42)

[B]ij = sin(θj − θi). (43)

Remark 4. Condition (39) is easier to be checked in practice

when the received signals are corrupted by the noise. In this

case, those ∆nl’s, which make (31) full rank but satisfy

P⊥
θ ∆n ≈ 0, (44)

may still be subject to PDA.

B. Practical Algorithms for UAV Self-positioning

The goal is to find two real unknowns x, y, and L integers

{nl}Ll=1 from L equations (28). The problem is classified into

the so called mixed integer linear equations (MINLE) [38],

which describes the generalization of the linear systems [39]

and the diophantine systems [40]. However, in the noisy case

all the equalities in (28) only hold approximately. As a result,

the pure mathematical approach provided in [38] cannot be

applied directly. We then propose to estimate the variables by

minimizing the difference between the left-hand side (LHS)

and right-hand side (RHS) of (28).

Define

c = [c1, c2, · · · , cL]
T , b = c+ n, z = [x, y]T . (45)

The following constrained optimization criterion is obtained:

min
x,y,n

ǫ , ‖Gz− b‖2 (46)

s. t. x2 + y2 ≤ d2,

nl ∈ L , {−⌊d⌉,−⌊d⌉+ 1, · · · , ⌊d⌉ − 1, ⌊d⌉}.

In fact, ǫ is the least square error (LSE) that unbalances the

equalities (28). Optimization in (46) falls into the category of

the so called mixed integer nonlinear programming (MINLP)

[41] which is generally hard to solve. In this paper, we propose

two efficient algorithms to solve (46) by utilizing the special

structure of (28).

1) Constrained Sphere Decoding (SD) Approach: From

(28), the LS solution of z is expressed as

z = G†b. (47)

Substituting (47) into (46) gives the new optimization over the

integers n as

min
{nl}L

l=1

‖P⊥
θ (n+ c)‖2 (48)

s. t. ‖G†b‖2 ≤ d2,

nl ∈ L, l = 1, 2, · · · , L.

Since the values of nl are integers in L, the problem is

equivalent to finding the closest lattice point from the center

−P⊥
θ c. Instead of the naive searching, the sphere decoding

SD algorithm [29], [30] could be applied to find the solution

with expected complexity O(Lec), where ec is some constant

related with SNRs, the size of the lattice, and the number

of DOAs. The SD algorithm has been intensively discussed

in the literature [29], [30] and the references therein, while

the details will be omitted in this paper. Yet, several special

attentions that should be paid to (48) are provided here:

1) Not like [29], where the initial radius C0 could be

selected from chi-square distribution according to the

predetermined probability, the selection of C0 in (48) is

more complicated. This is mainly due to that the statistics

of the perturbation in the estimated θl and cl are difficult

to characterize. Hence, one may randomly choose a valid

n0 and set C0 = ‖P⊥
θ (nt + c)‖2. A more sophisticated

way may require some off-line efforts to numerically

obtain the statistics of ‖P⊥
θ (nt + c)‖2.

2) The matrix P⊥
θ drops rank by 2. In this case, the

generalized SD could be applied [31], where the SD is

in fact applied to n3, · · · , nN for each possible deter-

ministic pair n1, n2. The complexity is proportional to

(2⌊d⌉+ 1)2O((L − 2)ec) regardless of the SNR.

3) The valid lattice point should not only stay in an inter-

mediate radius but also satisfy the additional constraint

‖G†b‖2 ≤ d2. Since G† only needs to be calculated

once, the related complexity can be ignored. Therefore,

around (4L+1) additional flops are needed once a lattice

point is found in the intermediate radius.

2) LS Based Approach: The complexity of the SD algo-

rithm is still high if the initial radius C0 is large. We then

develop an LS estimation algorithm which requires only linear

complexity. If we specify the values of n1 and n2, we can

rewrite (28) as:









sin θ1 cos θ1 0 · · · 0
sin θ2 cos θ2 0 · · · 0
sin θ3 cos θ3 1 · · · 0

...
... 0

. . . 0
sin θL cos θL 0 · · · 1










︸ ︷︷ ︸

Λ










x
y
n3

...

nL










︸ ︷︷ ︸

ν

= c+










n1

n2

0
...

0










︸ ︷︷ ︸

η

,

(49)

where Λ,ν, and η are defined as the corresponding items.

Obviously, Λ is non-singular, so ν can be uniquely determined



7

by multiplying Λ−1 to both sides of (49). Note that Λ−1 only

needs to be calculated once, while for different choices of

(n1, n2) only Λ−1η is re-calculated. Therefore, the number

of flops for calculating each ν is approximated by 3L. Based

on the values of the last L−2 entries of ν, we would determine

whether the current pair (n1, n2) is valid or not. Specifically,

we first set a threshold τ . If there exists an l0 with 3 ≤ l0 ≤ L
such that |νl0 − ⌊νl0⌉| > τ , then the current pair (n1, n2)
should be discarded. Furthermore, if any of ⌊νl0⌉ stays outside

L, the current of (n1, n2) should be discarded. After a group

of valid integers {nl}Ll=1 is found, an LS estimate of (x, y)
can be obtained from (47) with 5L−2 flops. We need to check

whether the obtained (x, y) stays in the presumed region and

the false candidates should also be discarded, which requires

3 flops. All the candidates (x, y) and their corresponding n

are then substituted back to (46) to obtain LSE ǫ. The number

of flops for this step is around 6L − 1. Finally, the group

of {x, y,n} that gives the minimum LSE will be selected.

From all the above, the overall complexity to find the optimal

solution is upper bounded by 14L(2⌊d⌉ + 1)2 in the worst

case. Based on the discussion so far, the proposed LS-based

positioning can be summarized in Algorithm 1.

Algorithm 1 LS-based positioning algorithm

Input: Covariance matrix: R; Maximum radius: d; Threshold:

τ .

Output: Estimated DOAs {θl}Ll=1 for all users, and estimated

positioning {(xk1, yk1)}Kk=2.

Initialization: LSE ǫ = 999.

1. Obtain the noise-subspace matrix Un from the eigen-

decomposition of R.

2. Calculate the DOAs {θl}Ll=1 for all users from (14), where

C(θl) = VH(θl))UnU
H
n V(θl).

3. Calculate the non-space eigenvector ul of C(θl) and

obtain g(θl) from (22) for any l = 1, 2, · · · , L.

4. Calculate the set of integer ambiguity L = {−⌊d⌉,−⌊d⌉+
1, · · · , ⌊d⌉ − 1, ⌊d⌉}.

5. For n1 ∈ L, n2 ∈ L
6. Calculate ν = Λ−1c+Λ−1η.

7. If νl ∈ L and |νl − ⌊νl⌉| ≤ τ , for any 3 ≤ l ≤ L
8. Calculate corresponding LSE ǫ1 from (46) according

to the obtained n1, n2, and ν.

9. If ǫ1 < ǫ
10. ǫ = ǫ1, (x, y) = (⌊ν1⌉, ⌊ν2⌉).
11. End if

12. End if

13. End

Further effort to reduce the complexity is illustrated as

follows (also applicable for SD approach). From

x sin θi + y cos θi − ni = ci, (50)

x sin θj + y cos θj − nj = cj , (51)

∀i, j, we know

nj = ni + ci − cj

− 2
√

x2 + y2 sin

(
θi − θj

2

)

cos

(
θi + θj + 2φ

2

)

, (52)

where tanφ = y
x

. If no priori knowledge of φ is available, we

may simply consider
∣
∣
∣
∣
cos

(
θi + θj + 2φ

2

)∣
∣
∣
∣
≤ 1. (53)

So the candidate set for nj , once ni is specified, should be

Lij ,

{⌈

ni + ci − cj − 2d

∣
∣
∣
∣
sin

(
θi − θj

2

)∣
∣
∣
∣

⌉

≤ nj

≤

⌊

ni + ci − cj + 2d

∣
∣
∣
∣
sin

(
θi − θj

2

)∣
∣
∣
∣

⌋}

. (54)

For LS approach, we can try all n1 ∈ L while the

corresponding value of n2 needs only be picked up from

L12 ∩L. For SD approach, each of {nl}Ll=3 will have its own

searching range Kl calculated from the standard SD algorithm

[31]. However, the range of nl could be further restricted to

∩l−1
i=1Lil ∩Kl.

C. Ways to Increase the Reliability of the Algorithms

Although theoretically the PDA occurs with zero probability

when L ≥ 3, we may still encounter spurious solutions in the

noisy environment. For example, at low SNR, it is possible that

some spurious x̃, ỹ, {ñl}Ll=1 yields a smaller LSE than that of

the true solutions. We call this phenomenon as outlier. The

knowledge of the initial radius d also affects the outlier in the

way that the larger the d is, the more the candidates of n will

exist and the more possibly the outlier happens. Note that the

outlier is an inherent problem in many fields, for example, in

the DOA estimation [21], [34]–[36] and the frequency offset

estimation [32], [33] etc.

Generally speaking, the occurrence of outlier could be

reduced if:

1) the approximate boundary where the UAV lies is more

precisely known. Namely, more precise ranges of both

the radius
√

x2 + y2 and the angle φ could be known a

priori, by which means the set of valid nl is reduced.

2) the number of users is enlarged, namely, the number of

DOAs L is enlarged. The validity of this suggestion can

be seen directly from (28) , where the unknown variables

could be over-determined from more equations.

3) the SNR or the number of the samples of the incoming

signal is increased.

In fact it is less practical to implement points 2) and

3), especially when the online processing is required. Thus,

the first suggestion seems to be the most reasonable way to

improve the reliability. Practically, if the formation of the UAV

swarm does not change fast, the previous calculated UAV

relative position could act as the center of the new circular

range. Besides, the GPS may be helpful to get a rough range of

the UAVs. The accuracy of general GPS can be accurate to the

meter level. Although it does not achieve the accuracy required

for calibration, it has been able to greatly reduce the range of

positions. Moreover, in UAV swarm, the UAV’s position of

movement is based on instructions from the fusion center, so

it is possible to know the approximate position of each UAV.

One example on how the ranging affect the reliability is pro-

vided here. Consider two UAVs with three and five antennas
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Fig. 2. Detections that correspond to the smallest 10 LSEs.

in the form of uniform linear array (ULA), respectively. The

inter-antenna spacing is λ/2 for each UAV. The unknown dis-

placement of two different UAVs is (x, y) = (20λ, 26λ), and

three different planar signals are from θ1 = −2.5232◦, θ2 =
70.4338◦, and θ3 = 47.1774◦. The SNR is taken as 10 dB

and the threshold τ is set as 0.1. The positions of estimated

(x̂, ŷ) that yield the 10 smallest LSE are shown in Fig. 2.

The numerical results show that the correct estimation does

not give the minimum LSE. Nevertheless, since the positions

of estimated (x̂, ŷ) is so sparse, even a few more information

will be very helpful in removing the spurious results. In fact,

it is not hard for one to obtain the priori observation that

the second UAV stays in the first quadrant. Then, the number

of the candidates immediately reduces to 2 among which the

correct solution yields the smallest LSE.

Remark 5. Although the antennas of each UAV is less than

the number of users, the proposed algorithm can work as long

as the total number of antennas of the UAV swarm is greater

than the number of users. Meanwhile, The proposed algorithm

is particularly not affected by the randomly joining and exiting

UAVs, namely robust.

D. Cramer-Rao Bound of the Positioning

Assume the observations satisfy the following deterministic

model

x(t) ∼ N{A(θ)Ωs(t), σ2
nI}, t = 1, 2, · · · , N. (55)

The displacements of different UAVs are represented by the

2(K − 1)× 1 vector

η = [ξTx , ξ
T
y ]

T , (56)

where ξTx , [x′
21, x

′
31, · · · , x

′
K1] and ξTy ,

[y′21, y
′
31, · · · , y

′
K1] are treated as unknown parameters

along with the source DOAs θ, the deterministic source

waveforms s(t) and the noise variance σ2
n. We will only

derive the 2(K − 1) × 2(K − 1) CRB(η) of the full CRB

matrix. The following theorem presents the closed-form

expression for the deterministic CRB.

Theorem 3. CRB(η) is given by

CRB(η) =
σ2
n

2
(F−MQ−1MT )−1, (57)

where

F =

N∑

t=1

ℜ{GH(t)Π⊥
A
G(t)},

M =

N∑

t=1

ℜ{GH(t)Π⊥
A
D(t)},

Q =

N∑

t=1

ℜ{DH(t)Π⊥
AD(t)},

ΠA = A(AHA)−1AH ,

Π⊥
A = I−ΠA,

D(t) =

[
∂a1
∂θ1

s1(t),
∂a2
∂θ2

s2(t), · · · ,
∂aL
∂θL

sL(t)

]

,

G(t) = [G̃(t), Ḡ(t)],

G̃(t) = j(2π/λ)Ȳ ⊙ (AΦΩs(t)1T ),

Ḡ(t) = j(2π/λ)Ȳ ⊙ (AΨΩs(t)1T ),

Φ = diag{sin θ1, sin θ2, · · · , sin θL},

Ψ = diag{cos θ1, cos θ2, · · · , cos θL}. (58)

In addition, 1 is the (K − 1) × 1 vector of ones and the

M × (K − 1) matrix Ȳ is obtain by deleting the first column

of matrix V(θ) and replacing each non-zero entry with 1.

Proof: Let ω = [ηT , θT ]T be the (2(K − 1) + L) × 1
vector consisting all the real parameters. From [42], we know

CRB(ω) =
σ2
n

2

[
F M

MT Q

]−1

. (59)

The CRB of η is the upper-left block of CRB(ω). From

the partitioned matrix inversion formula [42], CRB(η) is

calculated as the one in (57).

TABLE I
MAIN SIMULATION PARAMETERS.

Parameter Description Value

fc Carrier frequency 2.4GHz

λ Carrier wavelength 0.125m

da Inter-element displacement 0.0625m

τ Threshold in positioning algorithm 0.2

N Number of snapshots 200

L Number of target users 4

d Maximum radius of UAV swarm 10m

V. SIMULATION RESULTS

In this section, we provide various examples to examine

the proposed studies. Three UAVs which have linear subar-

rays with inter-element displacement λ/2 are considered. We

assume the position of the first antenna in the first UAV is

(x1, y1) = (0, 0), the position of the first antenna in the

second UAV is (x2, y2) = (15λ, 50λ), and the position of

the first antenna in the third UAV is (x3, y3) = (30λ, 30λ),
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Fig. 3. The RMSE performance comparison of g(θ), with different number
of UAV antennas.

which is treated as an unknown parameters. The target users

are randomly distributed. The number of antennas in each

UAV is 12 unless specifically mentioned. The main simulation

parameters are given in Table I. The channel vector between

the UAV swarm and the target user can be produced according

to (1). In all examples, the carrier frequency is assumed as

2.4GHz. We take 200 samples to obtain the covariance matrix

unless otherwise mentioned. Since the RMSE performance of

the DOA estimation is given in [21], [22], we will not go into

details of the DOA estimation here. The figure of the merit is

the root-mean-square error (RMSE) defined as

RMSE(g(θ)) =

√
√
√
√ 1

L

L∑

l=1

E{(ĝ(θl)− g(θl))2},

RMSE(x) =
√

(E{(x̂2(i)− x2)2}+ E{(x̂3(i)− x3)2})/2,

RMSE(y) =
√

(E{(ŷ2(i)− y2)2}+ E{(ŷ3(i)− y3)2})/2,

where (x̂(i), ŷ(i)) is the estimate of (x, y) in the ith run. When

the threshold τ is chosen sufficiently large, e.g., τ = 0.2, the

LS and the SD algorithms yield the similar performance so

we will only provide the simulation results for LS algorithm.

In the first example, we consider three different type of

UAV swarms with three UAVs, and the subarray of the UAVs

of different types contains (4, 6, 8), (6, 8, 10), and (8, 10, 12)
antennas. We show the RMSE performance of g(θ) as a

function of SNR in Fig. 3 for three DOAs θ = [0◦, 30◦, 50◦],
where the RMSE is similarly defined as in (60). We see

that the RMSEs of all three g(θ) linearly decreasing as SNR

increases. In addition, increasing the number of UAV antennas

will improve the estimation accuracy of g(θ). Moreover, g(θ)
can be correctly estimated with three DOAs.

Fig. 4 shows the RMSE performance of g(θ) under different

number of the samples at SNR= 20dB for three DOAs

θ = [0◦, 30◦, 50◦]. As claimed in Section III, the RARE

estimator provides more accurate estimation of both θ when

the number of the samples increases. In turn, the performance

of g(θ) estimation is also improved. Moreover, it can be seen

that estimation accuracy of g(θ) will be improved when the

Fig. 4. The RMSE performance comparison of g(θ) versus the number of
samples, three DOAs case, with different number of UAV antennas.
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Fig. 5. The RMSE performance comparison of channel estimation, with
different number of UAV antennas.

number of UAV antennas increases.

Fig. 5 plots the RMSE performances of channel estimation

as a function of SNR for various UAV antenna sizes where

the default value of training sequence p = L = 3. We assume

that the total transmit power for each user are constrained

constantly. It is clearly seen from Fig. 5 that increasing the

number of UAV antennas improves the channel estimation

accuracy due to the improved DOA accuracy and the accuracy

of g(θ).

In Fig. 6, four signals from θ = [−10◦, 0◦, 30◦, 50◦]
impinge on the UAV swarm array. Fig. 6 shows the RMSEs of

x and y versus the SNR for d = 15λ and φ ∈ [30◦, 120◦] are

known a priori. Namely, the antenna is located in a quadrant

area. The corresponding CRBs of x and y are also displayed

In Fig. 6. For this scenario, the RMSEs of x and y match their

corresponding CRBs very well at high SNR region, and the

outlier appears until SNR is no less than 5 dB.

We then examine the proposed algorithm under dif-

ferent number of users. Fig. 7 show the RMSE perfor-

mance of the UAV positioning versus SNR for three DOAs
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Fig. 6. The RMSE and CRB performance of UAV positioning versus the
SNR for four DOAs case with d = 75λ and φ ∈ [30◦, 120◦].
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(b) Five DOAs

Fig. 7. The RMSE and CRB performance of UAV positioning versus the
SNR with d = 75λ and φ ∈ [30◦, 120◦].

from θ = [0◦, 30◦, 50◦] and five DOAs from θ =
[−10◦, 0◦, 10◦, 30◦, 50◦], respectively. We see that in terms of

positioning RMSE, five DOAs do not improve much compared
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Fig. 8. The RMSE performance of UAV positioning versus the SNR for four
DOAs case with different number of UAVs.

Fig. 9. The RMSE performance of UAV positioning versus the number of
samples at SNR = 5 dB.

to four DOAs. However, using three DOAs meets severe

outlier effect. With three DOAs, the estimation under the

proposed scenario could not avoid the outlier over low SNR

region, and it only gives reliable result after SNR is higher

than 25 dB. The reason is that three different DOAs are the

theoretical limit on the number of DOAs and may suffer from

outlier in the noisy environment.

Fig. 8 plots RMSEs of x and y versus the SNR for different

number of UAVs, where each UAV has 4 antennas. Four

signals from θ = [−10◦, 0◦, 30◦, 50◦] impinge on the UAV

swarm array. It can be seen from Fig. 8 that the outlier

disappears when SNR is no less than 5 dB, and the proposed

positioning algorithm provides more accurate estimation of

both x, y when the number of the UAVs increases.

To gain more insight on the effect of the number of

DOAs, we display RMSE performance of x and y under

different number of the samples at SNR= 5dB for three

DOAs, four DOAs, and five DOAs in Fig. 9. It is shown that

increasing DOAs will improve the performance in terms of

RMSE efficiently, especially in the small number of samples,
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Fig. 10. Outlier probability versus the SNR with three DOAs, four DOAs
and five DOAs.

Moreover, it is also seen that using five DOAs will not improve

the performances in terms of RMSEs very much than using

four DOAs.

TABLE II
DETECTION OF THE UAV POSITIONS.

SNR = 0 dB

x -8.4375 -37.7320 -40.7365 51.3175 15.4024

y 0.1170 -34.3500 30.3885 -0.3020 50.9752

ǫ 0.0245 0.0305 0.0360 0.0409 0.0436

option spurious spurious spurious spurious true

SNR = 10 dB

x 45.3776 15.0048 -40.0619 -5.6891 20.6836

y 15.9859 -49.9908 30.0235 0.5186 -25.9863

ǫ 0.0146 0.0182 0.0241 0.0273 0.0306

option spurious true spurious spurious spurious

SNR = 20 dB

x 15.0010 45.3539 -5.6894 -40.0423 50.2711

y 49.9977 20.0029 0.0769 30.0117 -40.0196

ǫ 0.0055 0.0161 0.0275 0.0310 0.0491

option true spurious spurious spurious spurious

It is then of interest to check the effect of different SNR on

spurious estimation results. Here we only consider two UAVs

where the position of the first antenna in the second UAV is

(x2, y2) = (15λ, 50λ). The radius d = 75λ is known a priori.

We record five detection results that yield five smallest LSEs

in Table II. The SNR values are taken as 0 dB, 10 dB, and

20 dB, respectively. It can be seen that the true solution ranks

5th according to LSE at SNR= 0 dB. However, when SNR

increases to 10 dB, only one spurious detection gives smaller

LSE than the true solution. In fact, this spurious detection

could be removed if the priori knowledge of the angle φ
is known. Nevertheless, when SNR goes to 20 dB, the true

solution gives the smallest LSE even when we only know the

radius d.

To gain more insight on the effect of the number of DOAs,

we display the outlier probabilities for three DOAs, four DOAs

and five DOAs in Fig. 10. We can see that when only the radius

d is known as priori, the corresponding outlier probability

of five DOAs is much less than that of the four DOA case.

Moreover, using three DOAs still has the potential to avoid
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Fig. 11. Sum rate comparison of different number of UAVs are displayed
for comparison as a function of SNR.

the outlier when SNR is sufficiently high.

Fig. 11 plots the achievable sum rate for the downlink

data transmission with different number of UAVs in the

UAV swarm, where each UAV has 4 antennas. To make the

comparison fair, the overall data power are set as the same

for all methods. It can be seen from Fig. 11 that with the

increasing of the number of UAVs, the performances become

better and are even comparable to the performance of the

prefect CSI case, in any SNR values.

VI. CONCLUSION

In this paper, we proposed a new channel estimation and

self-positioning method for the UAV swarm under the practical

consideration that each UAV has a well calibrated array and

the UAVs are displaced by arbitrarily unknown displacement

due to the dynamic moving. We adopted RARE algorithm

to obtain the DOA information of target user blindly. Then

the channel gain estimation was performed with very small

amount of training resources. Next we developed two efficient

algorithms for the positioning estimation that avoid the ex-

haustive searching over the entire lattice region. Meanwhile,

several ways to improve the detection accuracy were suggest-

ed. Moreover, the deterministic CRB of the self-positioning

estimation was derived in close-form. It was shown that our

proposed channel estimation and self-positioning method have

satisfactory performance, especially when the number of the

existing signals increases, the SNR arises, and the number of

the samples increases.

VII. APPENDIX

DERIVATION OF THE PROJECTION MATRIX

Denote the first and the second columns of G as

v1 = [sin θ1, sin θ2, · · · , sin θL]
T , (60)

v2 = [cos θ1, cos θ2, · · · , cos θL]
T , (61)
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respectively. Then (GTG)−1 can be calculated as

(GTG)−1 =

([
vT
1

vT
2

]
[
v1 v2

]
)−1

=

[ ∑

i sin
2 θi

∑

i sin θi cos θi∑

i sin θi cos θi
∑

i cos
2 θi

]−1

=
1

D

[ ∑

i cos
2 θi −

∑

i sin θi cos θi
−
∑

i sin θi cos θi
∑

i sin
2 θi

]

=
1

D

[
−vT

2

vT
1

]
[
−v2 v1

]
, (62)

where

D = det{GTG}

=
∑

i

∑

j

sin2 θi cos
2 θj −

∑

i

∑

j

sin θi cos θi sin θj cos θj

=
∑

i

∑

j 6=i

sin2 θi cos
2 θj − 2

∑

i

∑

j>i

sin θi cos θi sin θj cos θj

=
∑

i

∑

j>i

sin2(θi − θj). (63)

Then the projection matrix Pθ is given by

Pθ =G(GTG)−1GT

=
1

D

[
v1 v2

]
[

−vT
2

vT
1

]
[
−v2 v1

]
[

vT
1

uT
2

]

=
1

D
BBT , (64)

where

B = v2v
T
1 − v1u

T
2 , (65)

whose (i, j)th entry is given by

[B]ij = cos θi sin θj − sin θi cos θj = sin(θj − θi). (66)
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