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Transfer Learning from Simulations on a Reference
Anatomy for ECGI in Personalised Cardiac

Resynchronization Therapy
Sophie Giffard-Roisin*, Hervé Delingette, Thomas Jackson, Jessica Webb, Lauren Fovargue, Jack Lee,

Christopher A. Rinaldi, Reza Razavi, Nicholas Ayache, Maxime Sermesant*

Abstract—Goal: Non-invasive cardiac electrophysiology (EP)
model personalisation has raised interest for instance in the
scope of predicting EP cardiac resynchronization therapy (CRT)
response. However, the restricted clinical applicability of current
methods is due in particular to the limitation to simple situations
and the important computational cost. Methods: We propose in
this manuscript an approach to tackle these two issues. First,
we analyse more complex propagation patterns (multiple onsets
and scar tissue) using relevance vector regression and shape
dimensionality reduction on a large simulated database. Second,
this learning is performed offline on a reference anatomy and
transferred onto patient-specific anatomies in order to achieve
fast personalised predictions online. Results: We evaluated our
method on a dataset composed of 20 dyssynchrony patients with
a total of 120 different cardiac cycles. The comparison with
a commercially available electrocardiographic imaging (ECGI)
method shows a good identification of the cardiac activation
pattern. From the cardiac parameters estimated in sinus rhythm,
we predicted 5 different paced patterns for each patient. The
comparison with the body surface potential mappings (BSPM)
measured during pacing and the ECGI method indicates a good
predictive power. Conclusion: We showed that learning offline
from a large simulated database on a reference anatomy was able
to capture the main cardiac EP characteristics from non-invasive
measurements for fast patient-specific predictions. Significance:
The fast CRT pacing predictions are a step forward to a non-
invasive CRT patient selection and therapy optimisation, to help
clinicians in these difficult tasks.

Index Terms—Cardiac Electrophysiology, ECG Imaging, In-
verse Problem of ECG, Personalisation.

I. INTRODUCTION

HEART failure is a major health issue in Europe affecting
6 million patients and growing substantially because

of the ageing population and improving survival following
myocardial infarction. The poor short to medium term prog-
nosis of these patients means that treatments such as cardiac
resynchronisation therapy (CRT) can have substantial impact
[1], [2]. However, these therapies are ineffective in 30% of
the treated patients and involve significant morbidity and
substantial cost. To this end, the precise understanding of the
patient-specific cardiac function can help predict the response
to therapy and therefore select the potential candidates and
optimise the therapy.

S. Giffard-Roisin (sophiegif.github.io), H. Delingette, N. Ayache and M.
Sermesant (maxime.sermesant@inria.fr) are with Asclepios Research Group,
Université Côte d'Azur, Inria, France.

T. Jackson, L. Fovargue, J. Lee, J. Webb, C. Rinaldi and R. Razavi are with
Division of Imaging Sciences and Biomedical Engineering, King's College
London, London, UK.

Estimating accurately electrophysiological (EP) patient-
specific model parameters is then crucial, and it often involves
invasive measurements [3]. In order to replace these invasive
measurements -at risk for the patient-, some studies proposed
to personalise the cardiac EP model from body surface po-
tential mappings (BSPM) [4]–[6]. In one of them [5], the
onset activation location and the global conduction velocity
were estimated in different pacing locations for several patients
using a patient-specific simulated training set. However, per-
sonalisation may often be needed in more complex situations,
such as multiple activation onsets or heterogeneous myocardial
tissue (scar). Besides, such patient-specific methods are time
consuming because a large number of model simulations are
needed: the total computational time of one model personali-
sation [5] was more than 5 hours on our cluster using parallel
computing.

The aim of this article is to develop a reference anatomy
model allowing us to perform a common and offline learning.
While reducing considerably the computational time of online
inference, it also allows to multiply the pathological configura-
tions in the simulated training set as it is built only once. We
have thus extended the cardiac EP model personalisation to
infarct situations and applied it to a 20 patient database where
the BSPM were recorded using the CardioInsight1 jacket now
commercially available. The personalised model was then used
to predict the activation under different pacing configurations
typically used for CRT.

A. EP Model-based Inverse Problem of Electrocardiography

BSPM data has been widely used in the last decades to
directly compute the cardiac action potentials by solving an
ill-posed inverse problem: finding the transfer matrix linking
the torso potentials to the cardiac sources in terms of action
potentials or impressed currents [7]. For example, the 3DCEI
approach minimizes the use of physiological constraints and
was thus applied to various clinical conditions [8]–[11]. Some
electrocardiographic imaging (ECGI) methods are integrating
physiological and model-based priors in a Bayesian framework
[12], [13]. The work by Li and He [4] solves the inverse
problem by means of heart-model parameters (onset activation
location) and was validated with in vivo studies [14]. It was
further developed for localizing PVC origins from convolu-
tional neural networks [15]. With a known onset activation

1ECVUE, CardioInsight Technologies Inc., Cleveland, Ohio
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location, the estimation of heterogeneous myocardial conduc-
tion using a Bayesian framework has been recently studied
by Dhamala et al. [6]. The use of non-invasive personalised
cardiac parameters for the prediction of new situations (such
as pacing procedures) has been tackled on a few cases only
and with a global conduction velocity parameter [5].

B. Reference Anatomy in ECGI

These personalisations of EP cardiac model parameters from
BSPM data rely on time-consuming patient-specific compu-
tations. Because of the natural similarity of the anatomical
structures between patients, a reference anatomy can be used.

One study showed the importance of the interindividual
variability (averaged standard deviation) of electrocardiograms
(ECG) on 25 healthy subjects [16]. A large part of this
variability is due to the heart position and orientation relative
to electrodes. In terms of geometry, the larger variations
are found for the heart long axis angle. Swenson et al.
[17] also revealed the importance of cardiac angulation in
the ECG forward problem. Another study showed that ECG
imaging is sensitive to global anatomical parameters such as
the heart orientation and location with regard to the lead
positions [18]. The use of a reference anatomy model, able
to represent every patient, is thus a difficult task. Hoekema
et al. [16] showed that by only moving the electrodes in
a frontal plane to a common reference, the interindividual
variability is not reduced because the heart orientation is not
preserved. Another study created a patient-specific adapted
torso model by stretching and squeezing a standard torso
model according to the measures [19]. They concluded that
it was crucial to adapt both the outer shape of the torso model
and the position of electrodes according to reality. Yet, it has
been also shown that some adapted ventricle-torso standard
model were able to get good ECGI results while excluding
local geometrical details [20], [21]. Lastly, a recent study
uses a generic ventricle-torso model in order to build an EP
model training set [15], however the training phase had to be
patient-specific as the generic geometry was first registered
to every patient geometry. To the best of our knowledge, the
goals of these geometrical models were only to simplify the
anatomical modelling process. However, a study has recently
tackled the interindividual variability by separating the factors
of variation throughout a deep network using a denoising
autoencoder on a large ECG dataset [22] for learning the
ventricular tachycardia origin. Inter-subject variations coming
from cardiac EP differences and geometry differences are
however not separable, so a personalised EP model could not
be estimated with this approach.

C. Contributions

The different contributions of this manuscript are:
• A novel reference anatomy approach able to easily rep-

resent every patient with preserved heart orientation and
position with respect to the lead positions. It reduces con-
siderably the computational cost of the personalisation.

• A simulated common database composed of 5 000 heart-
torso EP simulations having random parameter values in

terms of onsets, global conduction velocity value and scar
localisation.

• An EP model-based ECGI technique able to personalise
an EP cardiac model from a sinus rhythm BSPM se-
quence. It is based on a dimensionality reduction of the
myocardial shape and a sparse relevance vector regres-
sion.

• An evaluation on an important database of clinical data
composed of 20 patients with a CRT device, and with a
comparison to a commercially available ECGI method.

• The simulated predictions of 100 different QRS under
pacing compared with the measured BSPM (unseen data)
and the commercially available ECGI mapping.

D. Outline of the Manuscript

In the following section II we will present our prediction
framework (Figure 1): the clinical data, our reference anatomy
model, the simulated EP database and the personalisation of
the sinus rhythm sequence. Section III is dedicated to the
results and the pacing predictions. Finally, section IV discusses
the different aspects of the method.

II. MATERIALS AND METHODS

A. Clinical Data

Our 20 patients dataset is composed of BSPM signals,
ventricular myocardial geometry, torso leads and pacing leads
locations. All patients have dyssynchrony (either left or right
bundle branch block) and were implanted with a biventricular
pacemaker (see Table I). The BSPM potentials (from a Car-
dioInsight jacket) were acquired at a sampling rate of 1kHz
during one QRS complex by 200 to 250 torso sensors. The
protocol of this study was approved by the local research ethics
committee. The approximated myocardial surface, the location
of the torso sensors and the pacing leads were extracted from
the 3D CT scanner image. In the stimulation optimisation
procedure, cardiologists performed several recordings corre-
sponding to different pacing combinations and delays between
a right ventricular (RV) endocardial and a left ventricular (LV)
epicardial pacing leads. For almost all patients, a LV pacing
alone and a RV pacing alone were performed, together with
the 3 following biventricular pacings: simultaneous, LV 40ms
(LV lead ahead by 40ms) and RV 40ms (RV lead ahead by
40ms). An atrial pacing was active 200ms to 100ms before
the ventricular pacings. A sinus rhythm sequence was also
recorded on patients that do not have complete heart blocks.
In total, 120 different settings were studied.

B. BSPM Reference Anatomy

1) Transformation to the Reference Anatomy: In this work,
every patient p has a geometry data composed of the 3D
biventricular cardiac geometry noted cp and sp = {sjp}j=1:N

the locations of the N torso sensors. We define a cardiac
and BSPM reference anatomy template {cT ; sT } with sT =
{siT }i=1:M onto which every patient data will be transformed.

The current dipole approach formulated in the volume
conductor theory [23] has proven its efficiency in BSPM
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Fig. 1. Fast model-based prediction pipeline: the database composed of 5000 EP simulations and the activation map regression training are common for the
20 patients.

TABLE I
CRT PATIENTS. BASELINE INFORMATION OF THE 20 PATIENTS TREATED.

Id Age Gen. Block type Etiology SR

1 67 M LBBB ICM X
2 72 M LBBB HCM

2 6M* 72 M LBBB HCM X
3 82 M LBBB NA X
4 49 F LBBB NICM X
5 79 M RBBB ICM X
6 87 M LBBB NICM
7 62 M LBBB ICM X
8 87 M LBBB ICM X
9 77 M LBBB NA X
10 69 F LBBB NICM
11 49 M LBBB NICM X
12 62 F LBBB NA X
13 59 M LBBB ICM X
14 82 F LBBB NA
15 76 M RBBB NICM X
16 55 M LBBB NA X
18 49 M LBBB NA X
19 78 M LBBB NA X
20 73 M LBBB NA X
22 71 M LBBB NA X

NA = information not available; SR = sinus rhythm se-
quence available; LBBB/RBBB = Left/Right bundle branch
block; ICM/NICM/HCM = ischemic/non-ischemic/hypertrophic
cardiomyopathy; *: patient #2 was acquired 2 times with a 6-
months follow-up.

calculation [5]. The electric potential Ψv(sjp) generated by the
volume element v and measured at the torso electrode sjp is
driven by the scalar product (jveq, vs

j
p) between the equivalent

current density jveq of every cardiac volume element v and
the vector directed from v to the torso electrode sjp (further
divided by the cubic norm of the distance). Consequently, the
shape of the jth BSPM signal Ψv(sjp) is closely linked to the
direction of vsjp. This result is echoing the conclusions of the
ECGI sensitivity studies (see section I-B) showing how the

ECG signal is sensitive to the heart orientation and location
with respect to the lead positions [18].

(a) Schematic simple minimal distance matching

(b) Proposed matching by best preserving the directional potential

Fig. 2. Reference anatomy: matching between one template torso electrode
siT and the patient electrodes sP . (a) By using a minimal distance between
electrodes, the matched electrode would be s3P . (b) With the proposed method,
the minimal distance to the ray HsiT indicates a matching to the electrode
s1P . The directional potential is thus best preserved.

First, we propose to rigidly register the cardiac geometry
cp to the template cT (it is done interactively, as cp is only
a coarse epicardial surface and cT a complete biventricular
tetrahedral mesh), and we apply the same transformation to
the electrodes sP . We define H as the center of mass of
the template cardiac geometry, and HsiT as the ray from
H towards the template torso sensor siT . We propose the
following matching between the template electrodes and the
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electrodes of a new patient p:

∀i ≤M, Ψ(siT ) = Ψ(sjp)

with j = arg min
k

(
dist

(
skp, Hs

i
T

))
This matching between electrodes is not bijective. Neverthe-
less, the advantages of this approach are that measured BSPM
signals are not modified and the directional potential is best
approximated by identifying the sensor that is the closest to
the direction wanted (see Figure 2). This projection, allowing
the use of a reference simulated database, can also be seen as
a transfer learning method between the reference domain and
the patient-specific domain. The final distance dist(skp, Hs

i
T )

of the matched electrode to the ray can be a measure of
uncertainty: the larger the distance, the larger the uncertainty
that may be introduced. The mean distance among the 20
patients was less than 2 cm.

2) Choice of the template: The choice of the template
reference anatomy {cT ; sT } is important as cT has to represent
the general shape of the myocardium, and the torso sensors
sT should be located in relevant positions so that every patient
would not be too far from it. In this study, we used a healthy
cardiac mesh of 4K vertices and the 251 torso sensors sT from
one of our patients having standard torso width and rotation
(patient #22, selected manually). One could estimate a mean
shape, but for simplicity and consistency reasons we used real
geometries. In Figure 3 is shown an example of the matching
between an original BSPM signal and its translation to the
torso geometry.

C. Offline Simulated Common Database

1) Simulated Database: As we do not have ground-truth
intra-cardiac measurements on the 20 patients, it is difficult
to learn inter-patient information in order to personalise the
EP cardiac model. In order to generate a common large
database with detailed cardiac data, we used EP simulations
on the reference anatomy to generate 5 000 virtual cases with
different parameter values. One simulation runs in approxi-
mately 2 minutes on our cluster (CPU core Xeon 2.6GHz).
This offline database was used as the training set for all the
personalisations of the cardiac EP model, reducing its online
computational cost.

2) Forward Electrophysiological Model: On the reference
myocardial mesh, the cardiac fiber orientations were estimated
with a rule-based method (elevation angle between −70◦ to
70◦). We simulated the anisotropic electrical activation of the
heart using the monodomain version of the Mitchell-Schaeffer
EP model [24]. One of the main parameter of the model
is the local myocardial conduction velocity c (linked to the
diffusion d by cf ∝

√
d. Our forward method is based on

a simplified framework composed of sources and sensors in
an infinite and homogeneous domain. We modelled every
myocardium volume element (tetrahedron) as a spatially fixed
but time varying current dipole. We computed simultaneously
the cardiac electrical sources and body surface potentials. As
shown a related study [5], the modelled BSPM signals are
similar to the result of a standard boundary elements method,

(a) BSPM on Patient #1

(b) Projection of the BSPM on the template torso

Fig. 3. Example of measured BSPM signal matching between the torso of
patient #1 and the template, the color represents the voltage at one time point
from blue (minimal) to red (maximal). (a) original BSPM signal on the torso
of patient #1. (b) projected signal using the proposed matching method on
the template, in wireframe are the original torso contours.

so the unbounded conductor is a valid approximation in this
case.

3) Variety of Simulations and Parameter Ranges: In order
to simulate a large variability of activation maps and their
related BSPM signals, 3 groups of cardiac EP parameters were
randomly modified. First, the activation onset location was
randomly selected among the endo- and epi- surface vertices
of the cardiac mesh. In order to simulate some more complex
and realistic situations, an additional second onset location
was selected for every simulation [25]. Secondly, the global
myocardial conduction velocity c was randomly picked in a
clinically acceptable range [0.3, 0.7]m/s. Third, in order to
capture the conductivity heterogeneity we modelled scar tissue
as having no reaction term in the Mitchell-Schaeffer model and
a diffusivity reduction of 80%. A varying scar location on the
LV with a random and realistic shape [26] was added in 50%
of the simulations.

D. Relevance Vector Regression for Sinus Rhythm Personali-
sation

1) Sinus Rhythm Activation Map Estimation: Using the
reference simulated database, we wanted to personalise each
patient’s EP behaviour from the cardiac at-rest recordings, i.e.
the sinus rhythm sequence. For the patients where the sinus
rhythm was not available because of complete heart blocks
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(see Table I), we used the RV pacing sequence. The different
parameters (activation onset locations, conductivity, presence
of scar tissue) are linked together and their contributions in
the resulting BSPM signals are hardly separable. We there-
fore estimated them at the same time. Because of the large
variety of parameters, we chose to regress the whole cardiac
activation map (the myocardial depolarisation times) from the
BSPM signals. We first described the BSPM signals as a
feature vector and we used a dimensionality reduction of the
representation of the spatial domain given by the myocardial
shape. A relevance vector regression was performed between
the BSPM features and the reduced activation maps. The first
part of the regression (the training, taking 6 hours to compute
on average on our cluster) is common to every patient and
was performed offline, while only the second step is patient-
specific (the testing, taking 2 minutes to compute on average).

2) BSPM Feature Description: For every patient, the torso
sensors were matched with the transformation described in
Section II-B1 to the 251 leads of the template torso. Because
the reference electrode was not localized, the mean BSPM
signal was first subtracted to each signal. Then each signal
was normalized and smoothed with a local Gaussian filter.
We defined specific features from the QRS sequence of every
torso leads. Specifically, 7 features were extracted from each
of the 251 QRS signals (figure 4). One BSPM sequence was
then represented as the feature vector xi of size L=7x251.

ms0 100 200

mV

1

2 3 4

5

67

Extracted features:
(1: red arrow) position of the global extremum,
(2: red bar) abs. potential of the global extremum, 
(3: red sign) sign of the global extremum, 
(4: blue lines)number of zero crossings, 
(5: green dots) number of local extrema, 
(6: blue) algebraic area, 
(7: green sign) sign of the first extremum. 

Fig. 4. Example of BSPM for one torso sensor with the extracted features.

3) Dimensionality Reduction of the Myocardial Shape:
The myocardial tetrahedral mesh can have a large number of
elements or vertices. At the same time, the signal to be recon-
structed, the activation map, is strongly correlated spatially
due to the propagation of the electric potential throughout
the myocardium. Therefore, it is meaningful to reduce the
dimension of the regression variable, the activation times. A
simple way would be to use a coarser mesh but this would be
at the expense of reducing the accuracy of the onset locations.
Instead, we proposed to use a hierarchical decomposition of
the mesh, naturally provided by the eigenmodes of a structural
matrix. To this end we chose the eigen-decomposition of the
stiffness matrix associated with the Laplacian operator of the
tetrahedral shape.

This decomposition has been widely used in various spectral
shape analysis [27], [28] and is closely related to the modes
of vibration of the myocardium. The extracted eigenvectors
are naturally sorted by ascending order of spatial frequency.
By selecting the first eigenmodes, we only kept the modes
with the lowest frequencies corresponding to the largest spatial
variations. If we call t the vector of N activation times at each

vertex of the myocardial mesh, we get the following reduction
and reconstruction formulas:

tred = VMt ; trec = VM
T tred

with tred the coordinates of t in the reduced space, VM the
N × M matrix of the first M eigenvectors of the stiffness
matrix, and trec the reconstructed activation times. The matrix
VM is independent of t and is thus computed only once. An
example of reconstructed activation map (on 4K vertices) using
M = 400 modes is shown in Figure 5c. From Figure 5a, we
can see that the mean reconstruction error was less than 1.5
ms (max: 8 ms) for 400 modes.

(a) Reconstruction error

(b) Original (c) Reconstruction

Fig. 5. Example of reconstruction of an activation map (on 4312 vertices)
from the eigenvectors of the stiffness matrix: (a) Reconstruction error wrt. the
number of modes (b) original activation map (c) reconstructed activation map
from 400 modes.

4) Relevance Vector Regression: In order to regress the
myocardial activation times from the BSPM features, we
used the relevance vector regression (RVR) method [29]. This
approach will perform a non-linear combination of the training
set in order to give a personalised EP estimation. The sparse
kernel regression is based on a sparsity inducing prior on the
weight parameters within a Bayesian framework. Unlike the
commonly used Elastic-Net or Lasso approaches (based on L1
Norm a.k.a Laplacian prior), the RVR method does not require
to set any regularization parameters through cross-validation.
Instead, it automatically estimates the noise level in the input
data and performs a trade-off between the number of basis
(complexity of the representation) and the ability to represent
the signal. Furthermore, unlike SVM regression or Elastic-Net,
it provides a posterior probability of the estimated quantity
which is reasonably meaningful if that quantity lies inside the
training set cloud of solutions.

The RVR estimates the weights w so that we can predict
y ∈ RM (here an activation map in the reduced space) from
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an input x ∈ RL (here a BSPM feature vector) with a non-
linear relationship between x and y as y = wT Φ(x) where Φ
is the non-linear mapping. We consider our dataset of input-
target pairs {xi, ti}Ki=1 where we assume that each target ti
represents the true model yi with an addition of a Gaussian
noise εi = N (0, σ2):

ti = wT Φ(xi) + εi (1)

The complexity of the learned relationship between x and y
is constrained by limiting the growth of the weights w. This
is done by imposing a zero-mean Gaussian prior on wi:

P (wi) = N (0, α−1
i ) (2)

where the αi are hyperparameters modifying the strength
of each weight’s prior. α = {αi}Ki=1 and σ are estimated
from a marginal likelihood maximisation [30] via an efficient
sequential addition and deletion of candidate basis functions
(or relevant vectors). Because the optimal values of many αi

are infinite, the RVR only selects the BSPM input set that
can best explain the activation map in the training set, thus
limiting the risk of overfitting.

0 1000 2000 3000 4000 5000 6000
0.0

0.5

1.0

1.5

2.0

Log-likelihood

(a) Log-likelihood evolution
0 1000 2000 3000 4000 5000 6000

0

100

200

300

400

500

Number of relevant vectors

(b) Nb of relevant vectors evolution

Fig. 6. Iterations of the relevance vector regression training on the first mode.

RVR is a multivariate but single-valued approach and there-
fore the regression was directly performed on the reduced
space of section II-D3: only 400 regressions are needed to
perform an estimation of more than 4K activation times.
In our setting, a training input-target pair corresponds to
a BSPM feature vector xi and its related activation map
projected on one mode of the reduced space tmred,i. We used
Gaussian kernels for the non-linear mapping Φ with a kernel
bandwidth of 1e4. The algorithm2 evolution on the first shape
mode (Figure 6) shows a rapid convergence even if small
changes in the number of relevant vectors are still visible
after 3000 iterations. The mean number of retained relevant
vectors during the training phase was 178 (over 5000 training
vectors). The testing phase was then performed independently
on every patient: from the measured BSPM feature vector x
we regressed the activation map estimation t.

5) Local Conduction Velocity Parameter Estimation: the
estimated cardiac activation maps obtained from the sinus
rhythm sequence were used to retrieve patient-specific con-
duction velocity (CV) parameters. Because the regression was
performed on simulated activation maps, the resulting solution

2we used a python implementation available at
https://github.com/AmazaspShumik/sklearn-bayes

is smooth and physiologically relevant. If we consider that a
normal heart QRS is less than 120ms, we make the following
hypothesis : regions that are late activated during sinus rhythm
correspond to regions of slow conduction velocity. This was
motivated by the fact that cardiologists are looking at very
late activated zones during sinus rhythm for locating scar from
CardioInsight inverse solutions. Specifically, we threshold the
estimated activation times ta and defined 3 zones: healthy
tissue (ta < 120ms, CV = 0.5m/s), damaged tissue (120 <
ta < 170ms, CV = 0.3m/s), and scar tissue (170 < ta, no
reaction term and diffusion reduced by 80%). We used a single
value for the healthy tissue based on a previous study where
the personalised global CV were all found close to 0.5m/s
[5].

6) Pacing Prediction and AV node Activation: We will now
predict the activation maps under pacing ’as if’ the patient
was not implanted yet, using the measured pacing locations
from CT imaging and our personalised CV parameters - before
comparing with the measured pacing signals. For every patient,
the measured ventricular pacing locations were segmented
from the CT scanner image, however the image artifacts due
to the device only allow an approximate lead location. The
personalised parameters from sinus rhythm BSPMs were used
to predict the activation maps of different pacing situations. On
some patients we found on the CardioInsight inverse solution
that the RV was activated without ventricular pacing, probably
from the atrial pacing (100 to 200ms before) via the AV node.
For these patients (#1, #2 6M, #4, #7, #9, #12, #13) we had to
include in our model an AV node activation to the ventricular
pacings. For that, we triggered the earliest activated zones
estimated in the sinus rhythm result. Because no recording of
atrial stimulation and AV delay were available, the triggering
time was arbitrarily set to 40ms.

E. Reference Anatomy Evaluation

Fig. 7. Patient #3: Localization error between the previous RVR method and
the presented method using the reference anatomy.

We aim at evaluating the regression using a reference
anatomy by comparing it with the regression using simulations
on the patient-specific torso anatomy, that already showed its
efficiency [25]. The goal of this previous study was localizing
two onset activation locations at the same time from a simu-
lateous pacing using a 1000 patient-specific training set. We
show (Figure 7) the lead localization errors of patient #3 from
the previous method [25] and from the current method (using
the reference anatomy, enabling also more training samples:
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Fig. 8. RVR results on the reduced shape space from measured BSPM sequences of the 20 patients. Grey dots: projection of the 5000 simulated activation
maps used for training.

5000). The new method shows slightly better results. The
uncertainty introduced by the reference anatomy may have
been alleviated by the larger database.

III. PERSONALISATION RESULTS AND PACING
PREDICTIONS

(a) (b)

0.2 0.3 0.5

(c) (d)

Fig. 9. Sinus rhythm of patient #9 (a) estimated activation map from RVR
method. up: flattening view of the epicardial surface. (b) CardioInsight epicar-
dial inverse solution. (c) Personalised conduction velocity from thresholding
the estimated activation map. (d) estimated standard deviation.

A. Projections on the Reduced Shape Space

In Figure 8 we showed the RVR results of each measured
BSPM sequence on the reduced shape space. Because the
modes of this space are related to modes of vibration, the
results projected on the larger modes allow us to easily
compare the BSPM sequences. Each grey point represents
one simulated activation map used for training. The measured
BSPMs sequences of the 20 patients are shown with colours
representing the type of sequence. All the results from the
measured BSPM data lie inside the training set point cloud,
which is important for the RVR to perform well. We can
also see that the 3 different pacing sequences are separated
in clusters, with the simultaneous between the RV pacing and
the LV pacing. The sinus rhythm results in green are almost
all situated near the RV pacing cluster, which is to be expected
for LBBB patients. Interestingly, we can notice that the two
sinus rhythm exceptions that are closer to the LV pacing group
in blue correspond to the two RBBB patients of the cohort
(patients #5 and #15).

B. Estimated Sinus Rhythm Activation Maps

The RVR results of the sinus rhythm sequences in terms
of activation map were used to estimate the local conduction
velocity parameter of each patient. In Figure 9 is represented
the mean solution as a transmural activation map (9a) that was
compared with the CardioInsight epicardial inverse solution
[31] (9b). The CardioInsight solution is interesting for com-
parison even if it is only an epicardial surface reconstruction.
On top are flat representations of the epicardial surface [32].
The wave shape are similar, with a large late activated zone
on the lateral LV wall with probable scar tissue. In Figure 9c
are shown the retained zones for healthy, diseased and scar
tissues from thresholding of Figure 9a. Finally, because the
RVR regression provided the result as a Gaussian probability
distribution in the reduced shape space, the estimated standard
deviation across each mode were projected on the myocardial
mesh. The zones with a high estimated standard deviation
were found near the valves where the mesh is thin, and the
median standard deviation was 37ms (see Figure 9d). The
personalisation results of two other patients (#11 and #15)
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(a) p #11 from RVR (b) p #11 CardioInsight

(c) p #15 from RVR (d) p #15 CardioInsight

Fig. 10. Sinus rhythm of two other patients: #11 (a)(b) and #15 (c)(d).
Flattening view of the epicardial surface. Left: Estimated activation map from
RVR method. Right: CardioInsight epicardial inverse solution.

are compared with the CardioInsight solution in Figure 10,
showing similar activation maps even for the RBBB pattern
(patient #15).

C. Pacing Predictions Results

1) Predicted Activation Maps: From the CV parameters
estimated using the RVR solution of the sinus rhythm BSPMs,
we ran again our cardiac Mitchell-Schaeffer model by using
the measured pacing locations provided by imaging under
different conditions (RV only, LV only, simultaneous, LV
40ms, RV 40ms). We compared its output to the measured
pacing BSPM recordings and to the CardioInsight solution.
This comparison will demonstrate the proximity between a
standard inverse method and a predictive method that could
be performed without any pacemaker on the patient. In Figure
11 is represented the predicted LV 40ms activation map for
patient #9 (Figure 11a), the prediction if we used a model
with a homogeneous myocardial CV (Figure 11a) and the
CardioInsight solution (Figure 11b). The flat representation
allows for a better comparison even if the projection of the
epicardium may differ between two cardiac geometries. We
can see that the homogeneous CV prediction missed the
scar while with the personalised CV the wave shape and
timings globally correspond to CardioInsight. The area with
0.2m/s conduction velocity on the LV lateral wall indicates an
infarction zone, as also visible on the CardioInsight map.

The prediction of LV only pacing of patient 9 is shown on
Figure 12a. The predicted propagation was completely blocked
by the scar zone, while an RV activation is visible on the
CardioInsight solution Figure 12c. With the AV activation
model (see section II-D6), the resulting activation map (Figure
12b) is closer to the CardioInsight solution. In Figure 8,
we could see some LV only projections (red) inside the RV
only point cloud: they correspond to patients 1, 9 and 12 all
showing a separate RV activation and also an important LV
late activated near the LV pacing lead.

(a) homogeneous CV (b) estimated CV (c) CardioInsight

Fig. 11. LV 40ms pacing prediction of patient #9, long-axis and flattening
epicardial representations of the activation maps (a) pacing prediction using
homogeneous conduction velocity ;(b) using the personalised parameters from
sinus rhythm; (c) CardioInsight inverse solution of the actual pacing.

(a) estimated CV (b) AV node active (c) CardioInsight

Fig. 12. LV only pacing prediction of patient #9, long-axis and flattening
epicardial representations. (a) using the personalised parameters from sinus
rhythm; (b) adding the modelled activation of the AV node after 40ms; (c)
CardioInsight inverse solution from actual recordings of the pacing.

(a) RV only (b) RV 40ms (c) simultaneous

Fig. 13. Other pacing predictions of patient #9, long-axis and flattening
epicardial representations. (a) RV only (b) RV 40ms; (c) simultaneous.

As a quantitative comparison, Figure 14 shows the activation
times differences on the flat epicardium, between our predic-
tions and the CardioInsight inverse solutions on 20 patients.
The total median difference is 23.8ms. It indicates some
similar activation patterns even if few points have an important
difference (higher than 50ms). A perfect match is difficult
because of the epicardial projections difference, the piece-wise
constant CardioInsight solution and the approximation in the
pacing electrodes locations. We can notice that the LV only
seems to be the more difficult to predict.



ACCEPTED IN TRANSACTIONS ON BIOMEDICAL ENGINEERING, 20 MAY 2018 9

LV only RV only LV 40ms RV 40ms s im.
0

20

40

60

80

100

120

140
A

ct
iv

a
ti

o
n

 t
im

e
 d

if
fe

re
n

ce
 (

m
s)

Fig. 14. Prediction of pacing activation maps (20 patients): activation times
differences on the flattened epicardial points, between our prediction and the
CardioInsight inverse solution. Median difference (red line): 23.8ms.
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Fig. 15. Pacing predictions of patient #3, example of BSPM signals. Gray:
Ground truth signal; blue: pacing prediction with a homogeneous myocardial
CV; red: pacing prediction with a personalised CV from sinus rhythm.

2) BSPM predictions: We also predicted the corresponding
pacing BSPM signals and compared them with the measured
signals. Some signal examples of pacing predictions from
patient #3 (Figure 15) showed a clear improvement when using
the personalised CV for the LV only, while the homogeneous
CV shows already a good agreement for the RV only. In Figure
16 we can see the averaged correlation coefficients (CC)
between measured and predicted BSPM signals. Because the
cardiac geometry was generic and the pacing locations not
accurate, we cannot expect a perfect match between BSPMs.
However, we can see that the mean CC of every pacing type
increases when the local CV was personalised from sinus
rhythm. In particular, the effects on the LV only prediction
are highest because the LV damaged tissues can have higher
impacts on the wave propagation. We can still see some
outliers having low CC values. The lowest one (from patient
#16) corresponds to the LV only outlier (red) in the projected
modes of Figure 8a, in a zone where the training simulations
are sparse. It might indicate that our training set did not cover
properly this region of the parameter space.

IV. DISCUSSION

A. Reference Anatomy

The interpatient study could be a useful tool for different
applications, as it also allows some comparison between
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Fig. 16. Prediction of pacing activation maps (20 patients): averaged correla-
tion coefficient (CC) between measured and predicted BSPM signals. In blue,
the prediction was performed with a homogeneous myocardial conduction
velocity. In red is the result with the CV personalised from sinus rhythm (and
with the AV activation in patients 1, 2 6M, 4, 7, 9, 12, 13).

patients. However, it is not universal because our template
has a large number of electrodes on both sides of the torso. A
new dataset composed of only frontal electrodes would not be
correctly projected on the back. The use of a simpler reference
with fewer electrodes could be a more general alternative.

We used a reference cardiac geometry, where the size of
the heart was fixed. We evaluated the impact of the cardiac
scaling on the simulated resulting BSPM signals. Two cardiac
scalings of ratios 0.8 and 1.7 to the original size were tested
(corresponding to extreme sizes). The center of mass of the
myocardium was taken as origin. The resulting normalized
BSPM signals showed a relative mean signal difference of
0.1% for the 0.8 scaling ratio and 0.2% for the 1.7 scaling
ratio. We can deduce that the size of the heart can be neglected
if an appropriate origin is chosen. We did not quantify the
error caused by local cardiac shape differences, as the precise
patient-specific cardiac anatomy was not available (due to
imaging artifacts caused by the pacemaker).

In our setting, the heart location and orientation was seg-
mented from CT scan images. We think that this ionising and
computational procedure could be replaced by an estimation
of the position and orientation parameters, either by statistical
prediction from easy patient characteristics [33] or by simul-
taneous EP inverse optimization [34], [35].

B. Estimating conduction velocity from activation times

In this work we personalised the local conduction velocity
parameter by assigning low values on late activated zones.
The direct estimation of local velocity from an activation map
raises many challenges (because of the mesh, the anisotropy,
the direction of the wave), even though some recent studies are
proposing new approaches [36], [37]. Their use could improve
our estimation and thus the predictions, as our translation from
activation times into conduction velocity has to be handled
with care and might be wrong in some cases.



ACCEPTED IN TRANSACTIONS ON BIOMEDICAL ENGINEERING, 20 MAY 2018 10

C. Estimating the uncertainty

The RVR standard deviation is a by-product of the regres-
sion and can be a way to interpret the regression uncertainty.
However, a proper posterior distribution would be useful for a
better accuracy and for identifying the stability of the solution.
The use of surrogate modelling into a Metropolis Hasting
sampling was recently proposed [38]. We could then also
integrate the other sources of uncertainty as the mean torso
sensor distance to the template.

D. AV node Activation

We have seen that some patients were activated also from
an atrial pacing via the AV node. We have modelled it with
an arbitrary time delay, but we think it would be possible to
integrate it with more complete data (if the atrial stimulation
was recorded). Moreover, the integration of the atria in the
ventricular model (for example as a thin layer [39]) and a
study of the whole heart beat ECG could be beneficial for a
precise and global personalisation.

V. CONCLUSION

We have developed a methodology for solving the ECG
inverse problem and estimating local cardiac conductivity
parameters using a physiological model-based regression on
a reference anatomy. The data matching to the template
anatomy allowed us to use a large offline simulated database
of EP forward models for the regression of the BSPM signals
from 20 patients with a CRT indication. We used a sparse
Bayesian kernel-based regression for the estimation of cardiac
activation maps with the use of specific BSPM descriptors and
a reduced space for the myocardial geometry. From the CV
parameters estimated with the sinus rhythm BSPM sequence,
we predicted the responses to different pacing conditions. We
compared them with the measured pacing BSPMs and with
a commercially available epicardial inverse solution (median
activation time difference: 24ms). While a validation with
intracardiac recordings is still necessary, we believe that the
small patient-specific computational time (less than 2 minutes)
can be crucial for a clinical use. We predicted the patient-
specific EP response to different pacing configurations, which
are useful for the clinician in order to identify CRT responders.
It is a first step to an identification of CRT responders from
modelling, where we would also need some mechanical output
predictions (such as the ejection fraction).
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