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Abstract

Temporal planning has become an increasingly popular area of research in recent years. Much

of this is because the modelling of many real world problems requires the consideration of

time and how actions interact and depend on one another. A key phenomenon that modelling

with time allows us to accommodate when planning is the notion of concurrency, where

actions occur simultaneously. Required Concurrency is where certain actions must occur

in parallel due to one or more dependencies between actions. Dealing with concurrency in

temporal planning requires careful reasoning when making choices about which actions to

use during search. Inference can be used to assist in problem solving when there is required

concurrency because certain actions must occur at the same time. The research presented in

this thesis explores how problems of required concurrency can be solved using more inference

and less search. Specifically, the work focuses on pair-wise cases of required concurrency.

Novel techniques are presented for detecting required concurrency. In addition, new infer and

search algorithms capable of exploiting inference from these detections and reducing search

are developed. The algorithms for pattern detection, the combined infer and search strategies,

along with the inference engine that powers them are implemented as an extension of POPF.

We present an evaluation of the practical benefit from this new planner that we call POPI.

Additionally, we present a formal analysis provably showing which unique types of required

concurrency exist between pairs of durative actions.
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Chapter 1

Introduction

As a part of Artificial Intelligence (AI), research in Automated Planning has been a growing

area of interest, both in terms of theoretical work and the development of planning systems

for practical application. Research in temporal planning has become highly motivated; real

world problems can be modelled more accurately when considering the durations of actions.

The complex and challenging feature to deal with in temporal planning is concurrency where

multiple tasks occur at the same time. Required Concurrency is where two or more actions

must occur during the same time period in all solutions to a problem (Cushing et al. [2007a]).

Where there is required concurrency, existing temporal planners mostly still use search to

add an action that must be in any valid solution, given the existence of some other action

in the plan. This results in unnecessary search and sometimes exploring paths in the search

space that cannot yield a solution. In this thesis we investigate problem domains containing

durative actions defined in PDDL 2.1 (Fox and Long [2003]), specifically focussing on situ-

ations in which those actions must occur concurrently, at least in part. We then examine

patterns that arise when there are pairs of durative actions that execute concurrently in a

plan. We provide an analysis of these pair-wise required concurrency situations and propose a

pattern recognition based method for detecting required concurrency between pairs of actions

in the domain, prior to the planning phase. Some of the patterns of required concurrency

presented in this thesis are inspired by those presented in (Cushing et al. [2007a]). A system

to use this detection is proposed and described as a driving force for performing temporal

inference during planning to reduce search and unnecessary exploration of the state space.

We will implement a new planner that can identify these patterns and do the inferences that

are possible from the planner being informed of the temporal structure of the patterns and

which pairs of actions they apply to.

14
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1.1 Research Goals

In this thesis we set out the following four research goals:

1. To identify all of the patterns of action pairs that have required concurrency between

them and show what information can be deduced from each one. This specifically refers

to all of the pair-wise patterns of actions which are meaningfully different in terms of

the combinations of concurrent orderings possible within the structure of each pattern.

In Chapter 3, diagrams are presented showing at least one of the configurations in which

each distinct pattern can arise.

2. To prove that the catalogue of patterns presented is complete for pair-wise cases, ac-

cording to the unique set of concurrent orderings that represent each pattern.

3. To define and measure the information content and resulting strength of each pattern

in terms of the extra information that can be inferred by a planner from the pattern

structure.

4. To develop and demonstrate practical techniques for detecting each of the patterns

of required concurrency in domains containing durative actions and also developing

algorithms for exploiting the inferences during search in a planning system.

1.2 Contributions

In this thesis we make the following contributions.

• A theoretical analysis of pair-wise cases of required concurrency, showing how knowledge

of the pattern structure can enable a planner to perform inference. We also show how

chains of patterns can enable larger and more powerful inferences to take place.

• Theorems stating a set of pattern sequence combinations that are complete and ex-

haustive. We show each of the pair-wise patterns presented, correspond to each of these

generalised sets of pattern sequences.

• A method for determining the strength of each pattern according to how it is triggered

for inference.

• A theoretical method for compiling a pair of actions in a pattern into a single action.

• Using the principles of information theory to propose a method for calculating the

gain in bits of information that a planner acquires using knowledge of the patterns

structures. This method is used to calculate the information gain for each trigger case

of each pattern.
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• A method for doing pattern detection for each of the 15 patterns types handled.

• Development of two modified versions of EHC capable of using the inferences of each

pattern type when detected.

• Extending POPF to use the pattern detection and inferences methods developed, pro-

ducing the planner POPI.

• Results and evaluation using domains that include the actions in the patterns identified,

showing that there is a sub-class of problems where there are results with fewer state

evaluations and better significantly better scaling, with more problems solved.

Some of the material presented in this thesis has been presented in the ICAPS Doctoral

Consortium 2016 (Talukdar [2016]) and PlanSIG 2016 (Talukdar et al. [2017]).

1.3 Organisation of thesis

The remaining chapters of this thesis are arranged in the following manner. Chapter 2 pro-

vides background on relevant literature that we use as the basis for the work in this thesis.

The chapter starts with an introduction into Automated Planning and provides some key

definitions. We provide details of temporal planning, focussing on required concurrency and

describe the modelling of domains using durative actions in PDDL 2.1. We then move onto

giving detailed descriptions of temporal planners that are capable of dealing with problems

of required concurrency, we use the most relevant of these planners in our experiments for

the comparative testing and evaluation of our planning system POPI, detailed in Chapter 7.

In Chapter 3 we move onto the theoretical basis for our work, defining the scope of our

work and the assumptions we make. We then present and describe the pattern structures

that we handle and illustrate the relationship between the pair of actions for each pattern

and the temporal constraints that exist. We explain how a planner knowing the structure

of these pattern types gives it the ability to do temporal inference, exactly what those infer-

ences are, and at what time they can occur during plan construction. We also describe how

pairs of actions in individual patterns can be linked together in a chain, allowing much larger

inferences to be made in certain situations. We illustrate and explain with examples the way

in which such chains can exist.

In Chapter 4 we introduce a formal basis for showing that our approach covers a complete

set of pair-wise patterns. We provide theorems to prove that the sets of patterns we handle

are all of the uniquely different combinations of sequences. We explain how these sets of

sequences correspond to the patterns presented in Chapter 3. We provide a method for de-

termining the strength of each pattern trigger case in terms of inference power and show how
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the inference power of each trigger case differs the others. Finally, we present a method for

showing how pairs of actions of particular pattern types may be compiled into single actions.

We provide the criteria for when it is safe to compile a patterns of actions and when it is not

and include examples of both.

In Chapter 5, we use an perform an information theoretic analysis of our patterns de-

scribed in Chapters 3 and 4 and propose a method for calculating the information gained by

using POPI’s approach for each pattern case, compared to using other strategies. We explain

our method for performing this analysis and the other strategies that we compare our strategy

against. We show the number of states explored by each strategy and the path in the search

tree that is navigated for each of the patterns.

In Chapter 6 we provide detailed descriptions of the methods developed to extend POPF

into POPI. We describe the domain analysis used to collect the data needed to formulate

the candidates potential pattern detections. We explain how the various parts of pattern

detection process occur and how detected patterns are created in and stored in custom data

structures. We explain how POPI infers new actions and then present in detail the two novel

algorithms, that are modified versions of EHC which have been developed to execute our in-

ferences. We show how these inferences are interleaved with search during the planning phase

and present the algorithms for both of these strategies. The first modified verison of EHC is

an aggressive strategy for pursuing inference referred to as EHC-AI and the second version is

a passive strategy referred to as EHC-PI. We explain what happens in each scenario for both

strategies. POPI using either the EHC-AI or EHC-PI strategy results in two variants of the

planner that we refer to as POPI-AI and POPI-PI respectively. We conclude this chapter

by showing how POPI maintains the properties of completeness and soundness to the same

extent that POPF does.

In Chapter 7 we present an empirical analysis of our work, using POPI which implements

our techniques. We report on experimental results using domains that incorporate each of

the individual pattern types that we handle, and also domains containing chains of patterns.

We use problems of increasing difficultly to see how well our planner scales, and compare

the performance with other temporal planners described in Chapter 2. We also compare the

planners on temporal benchmark domains to also assess competitiveness in problems which

do not contain required concurrency.

Finally, in Chapter 8 we conclude the thesis by providing a summary of the work performed

and also suggest directions for future research.



Chapter 2

Background

This chapter provides a review of planning, concentrating on temporal propositional planning

as this is the area of context for the work in this thesis. We provide a description of the Search,

Infer and Relax framework proposed in (Hooker [2005]), and how planning may be viewed

within this framework. We discuss some planners that use inference to varying degrees since

extending the use of inference in temporal planning is the main research focus for this thesis.

We also describe other relevant temporal planners that we use for comparing our approach

in the empirical analysis in Chapter 7.

2.1 Planning

Automated Planning is a model based approach to automate problem solving in Artificial

Intelligence. Typically, research is focussed on domain-independent planning, where a planner

can solve a problem regardless of the context being modelled in the domain. A planning

problem consists of a domain, problem and a plan. Let us start by discussing the basics of

what happens in the planning process followed by a discussion of the extensions that have

made planning increasingly more expressive and better suited for real-world applications.

The domain defines a set of action schemas, which describe the preconditions and effects

of each action and their object types. Predicates are statements that describe the relationship

between objects of a specified type and are instantiated as propositions with a boolean value.

These are the statements which are used to state what the preconditions and effects of each

action are. Typically in planning the closed world assumption is employed, meaning that

propositions that are not assigned a value are treated as being false.

A problem describes an initial state and a goal state in the context of some domain using

grounded propositional literals. The act of planning is finding a valid sequence of actions that

takes us from the initial state to the goal state specified in the problem. A plan is a sequence

of actions that takes the planner from the initial state to a state containing the goal for some

problem instance. A state is the description of the world at one point in the planning process,

18
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described using a set of propositional statements. Many planners use a state-based approach

to record change and solve the planning problem. In such state-based planners, the actions

correspond to a series of state transitions that transform the initial state to a goal state.

Classical Planning involves a fully observable and deterministic state space, where the

exact state of the world is always known after applying every action. Each action has one set

of preconditions over a set of propositional variables that must be satisfied when it is applied

and whose effects are instantaneous and subsequently updated in the successor state. Actions

whose effects are immediate are known as instantaneous actions.

A classical planning problem only uses instantaneous actions which contain no temporal

information or understanding about the duration of actions. Temporal Planning adds a

significant aspect to the planning problem, whereby actions are assigned a duration and have

start, overall and end preconditions, as well as start and end effects. This means that where

the preconditions of one action is achieved by another, there can be a need to interleave the

application of the starts and ends of different actions. This creates additional constraints that

must be enforced in order to solve the problem.

2.1.1 Planning Concepts and Terms

In this section we provide some definitions of the key terms used in classical planning and

then explain how they are modified and extended for the temporal case.

Definition 2.1 (Action). An action is an instance of an operator defined in the domain.

An action a is a tuple of the form 〈operator(a), pre(a), eff (a)〉. operator(a) describes which

operator the action is an instance of, pre(a) specifies the preconditions that must be satisfied

for the action to execute and eff (a) tells the planner how to update the state after that

action has finished and which propositions are now true and which are now false as a result

of applying the action.

Definition 2.2 (State). A state s is an allocation of values to a set of propositional variables

F . The propositions that are true and false are stated as such and propositional statements

not asserted are deemed to be false.

Definition 2.3 (State transition). A state transition is an operation that changes a state s

into s′. Typically an action a takes the role of this operation and transition is achieved by

using the effects of a to update the values of the state variables in s′, on the condition that

the preconditions of a are satisfied in s.

Definition 2.4 (State Space). The state space of a problem is the set of all the states

that can reached for a given planning problem. The state space can be viewed as a graph,

where the nodes are states that have directed edges between them that represent the actions

transforming one state into another.
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Definition 2.5 (Planning Problem). A planning problem P is made of an initial state, a set

of propositions, some goal states, and a set of actions. The goal states are all the states that

contain the goal conditions.

Definition 2.6 (Plan). A plan is a sequence of actions 〈a1, ...., an〉 which are applied to

generate a series of state transitions that transform the initial state into the goal state. A

path between the initial and goal states in the state space is a plan.

2.2 Temporal Planning

In temporal planning, the key component added to the problem is duration information. Each

action description is extended with a duration specified in its action schema in the domain.

The duration of each action is given either as a fixed number of time units or described as

set of duration inequalities, where minimum and/or maximum duration bounds are specified.

In the latter case, the planner can decide the duration of the action as long as the duration

constraints are respected. These temporally descriptive actions are called durative actions

(Fox and Long [2003]) and are described in the next section.

2.2.1 Durative Actions

A durative action includes the description of start and end preconditions as well as invariant

conditions. The start and end preconditions must be satisfied at the start and end of the

action respectively and the invariant conditions must hold for the duration of the action. The

start and end effects are also specified separately and describe the change in the propositional

and numeric variables that take place at the start and end of the action respectively. Since

durative actions can describe change in numeric variables at the start and end and the action

duration is known, it is possible to model linear continuous change for each numeric variable.

The increase or decrease can be calculated at each time point during an action’s execution,

by taking the end time of the action, subtracting its start time and then dividing this value

by the action duration. This gives the amount of change in the value of a numeric variable

per time unit, and the value of the numeric variables can be calculated for all the time points

in the action’s time interval.

2.2.2 Snap Actions

In order to model start preconditions and effects along with end preconditions and effects,

some temporal planners split each action into two corresponding start and end actions. These

are referred to as snap actions. The preconditions for the start actions represent the facts

needed to be true to start the action. The start effects represent those effects occurring

instantly after the start snap action has been applied. The same principle applies for the end
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snap actions. The end preconditions must be true for the action end to be applied; its effects

are also updated in the state variables of the resulting state. Snap actions describe discrete

change to state variables and are also referred to as happenings. Invariant constraints are

specified as over all conditions that need to remain true in all intermediary states generated

between the application of the start and end of an action. Any external action that negates

any of these over all conditions cannot be used in the time interval between the start and end

of the action with the invariant constraints.

2.3 Concurrency

2.3.1 Required Concurrency

Temporal planning problems can be classified as one of two categories, those that are tempo-

rally simple and those which are temporally expressive, as described by Cushing et al. [2007a].

The latter of the two being problems that have required concurrency.

Required concurrency is where two or more actions must occur simultaneously at least in

part. This is due to causal links between the starts and ends of actions that form precedence

constraints between the endpoints of different actions. It is this type of required concurrency

that this thesis investigates. Where one of these actions is added to the plan, the required

concurrency indicates a type of inference is possible. This is because each action in the pair

can only occur together with the other, therefore the second action’s inclusion can be inferred

after adding the first action. The work of this thesis shows how such inference can be made

in these types of situations and can be exploited in a useful way.

An example of required concurrency is in the matchCellar domain presented by Coles

et al. [2009c], where light is generated by lighting a match and is only available for a fi-

nite period of time, in which a fuse can be repaired; this domain is in turn derived from

(Long and Fox [2003]). In this domain there is required concurrency between the mend fuse

and light match actions. The goal of the problem is to fix a fuse in a cellar. Light is needed

to fix the fuse, and the only way to see in the dark and mend the fuse is to light a match.

The start of the light match action causes the ‘light’ fact to be true and is deleted at its

end. The mend fuse action has ‘light’ as an invariant condition and therefore it must start

after light match and end before it, for the two actions to occur successfully and satisfy the

goal. The required concurrency between these two actions is illustrated in Figure 2.1.

2.3.2 Temporal Coordination

It is possible for two actions to execute simultaneously in all the solutions to a problem,

without there being causal links between the actions involved. This can be in cases where

there are other causes for the temporal interaction between actions to become more complex,
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light match

light ¬light

mend fuse

light

fuse fixed

Figure 2.1: Required Concurrency in matchCellar domain (Coles et al. [2009c]).

due to temporal coordination being needed, for example in the case of short action durations.

One instance of this situation is where other preceding actions must be coordinated carefully,

such that the timing of the concurrent actions can actually occur and complete successfully.

For example, in the marsRover domain shown in Appendix A, a rover must work with a drone

to perform an inspection of rock samples at a particular location, w3. The rover requires light

to be shone on w3 by the drone so it can do its inspection and achieve the goal. There is

required concurrency between the drone’s shine light and the rover’s inspect actions. The

inspect action must occur entirely within the envelope of shine light. An envelope is a

time limited window of opportunity created by an event or action. In this example, the

opportunity is the resource ‘light’ being made available by the shine light action for the

duration of its execution. The rover is at w1 and the drone at w2 in the initial state. The

rover must use the navigate action to go from w1 to w3 and the drone must use the fly

action to go from w2 to w3. Let us assume that all locations are of equal distance to each

other and that the drone flies faster than the drone drives between locations. In order for both

the drone and rover to arrive at w3 at times close enough together to solve the problem, the

drone should be coordinated to leave after the rover starts its journey but before it arrives.

Temporal coordination is needed because the drone can only hover over w3 for a limited

amount of time due to battery consumption, so it needs the rover to be there soon after it

arrives. There needs to be enough flight time left for the drone to continue hovering over and

inspect w3 when the rover shines the light on w3.

2.3.3 Optional Concurrency

One type of optional concurrency is where there is a solution to a problem containing a pair

of actions that must occur concurrently, however there is also an alternative sequential plan

to reach the goal as well. This means that the planner can take either the path with the

forced concurrency between actions or the sequential path to solve the problem depending on

how it works. Another type of optional concurrency is where two or more actions which could

appear sequentially in time are scheduled to occur in the same time interval, at least in part.

In this case, it would have to be that the two actions were independent in achieving their

preconditions without either one deleting the other’s preconditions before it is to be applied.
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A planner may use this type of optional concurrency to shorten the plan makespan, which is

the overall duration of the plan.

2.4 Modelling in PDDL

In planning, the language that has become the standard for modelling domains and problems

across the field is the Planning Domain Definition Language (PDDL), originally introduced

by (McDermott et al. [1998]). This version of PDDL which was used in the first International

Planning Competition (IPC) (McDermott [2000]), allows modelling of classical planning prob-

lems where instantaneous actions are used and all actions in a plan take place sequentially.

The action in Figure 2.2 shows an instantaneous action defined in PDDL. The action specifies

the operator name, the boolean variables and their types for the predicates contained in the

preconditions and effects of the action. The preconditions of the action must be satisfied

before the action can be applied and all effects are updated in the state variables of the sub-

sequent successor state. Actions defined in this format are often referred to as STRIPS (Fikes

and Nilsson [1971]) actions.

(:action pickup

:parameters (?t1 - tool)

:precondition (and (handempty) (ontable ?t1) )

:effect (and (not (handempty)) (not (ontable ?t1)) (holding ?t1))

)

Figure 2.2: Pickup action for tools on a table.

As previously discussed durative actions describe how actions can be embedded in time.

An example of a durative action named Act A from the patternsD domain presented in Ap-

pendix B is shown in Figure 2.3. For temporal propositional planning, a durative action

differs from an instantaneous action in that preconditions are renamed as conditions in order

to be able to split them into at start, over all and at end conditions. The effects are also

split into at start and at end effects. The purpose of these changes is to allow for durative

actions to be able to specify at what point during an action’s execution in time, the different

conditions need to be true and when effects take place. Additionally, a crucial component

added to durative action definitions is its duration. These temporal actions can be defined

with fixed durations, as shown in Figure 2.3 using the = symbol. Alternatively, durative ac-

tions can have flexible durations described using a set of constraints, which define the lower

and upper bounds for the duration. These duration inequalities are described using the <=

and >= symbols.

In the example shown in Figure 2.3 we see that the action is defined with a fixed duration

of three time units. This action takes two parameters, ?a and ?b, both of typeA. Two objects
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of typeA from the problem instance are used to ground this action for use during planning.

We see that the action has three start preconditions which are (active), (next ?a ?b) and

(ready ?a). These start preconditions must be true in order for Act A to become applicable

and before it can start its execution. There are two end preconditions which again includes

(ready ?a) and also includes (q ?a). The end preconditions must both be true before the

time at which the action ends. In the action effects we see that (active) fact is deleted as a

start effect, as well as (p ?a) and (ready ?b) being made true. These effects are instanta-

neous and take place immediately when the start of the action is applied. The same applies

for the end effect which makes (active) true again; this fact becomes true instantaneously

when the end of Act A is applied.

(:durative-action Act_A

:parameters(?a ?b - typeA)

:duration(= ?duration 3)

:condition(and (at start (active)) (at end (q ?a)) (at start(next ?a ?b))

(at start (ready ?a)) (at end(ready ?a)))

:effect(and (at start(p ?a)) (at start(not(active))) (at start(ready ?b))

(at end (active)))

)

Figure 2.3: Example of durative action defined in PDDL 2.1.

The set of PDDL languages has grown considerably since its use in the first IPC, with

various extensions to allow modelling of problems using different features. Some of these

include PDDL 2.2 (Edelkamp and Hoffmann [2004]) used in the 4th IPC (Hoffmann and

Edelkamp [2005]), PDDL+ (Fox and Long [2006]), and PDDL 3.0 (Gerevini et al. [2009]).

2.5 Plan Construction

2.5.1 Total Ordering

Total ordering exists where the execution order of actions in a plan, is the same as the order

in which the actions were added to the plan during plan construction. For temporal planners

using total ordering, the timestamp of each new action appended to the plan during its

construction, is later than the timestamps of all the previous actions added to the plan up

until that point. COLIN (Coles et al. [2012]) is an example of a temporal planner which uses

total ordering, as does its predecessor, CRIKEY3 (Coles et al. [2008]).

2.5.2 Partial Ordering

Partial ordering is based on the idea of least commitment, where the planner will not commit

to the ordering of actions in its plan until it becomes necessary. POPF (Coles et al. [2010])
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is a planner which uses this technique and implements a partial ordering mechanism. POPF

orders actions such that an operator which fulfils the precondition of another is ordered first.

This results in the causal links between actions being satisfied. In cases where an action has

an effect on the value of a numeric variable or is dependant on one, the planner must enforce

the ordering of this action and the time it occurs. This is an example of where action ordering

must enforced to ensure plan consistency and that constraints are not violated. The partial

ordering mechanism of POPF therefore allows reordering of actions between which there is

no causal link. However, the planner still requires that some action orderings be fixed in

the plan, to preserve the specified constraints. For the implementation of its partial order

machinery, POPF adds actions to the plan in the order it selected them, and reorders the

execution order as necessary. The execution order of actions is changed by altering their start

times.

2.6 Search-Infer-Relax Paradigm

The Search-Infer-Relax (S-I-R) framework (Hooker [2005]) shows how solutions to combi-

natorial optimisation problems, including planning problems, can be solved using different

combinations of search, inference and relaxation. Planning often uses a combination of these

techniques as part of the various strategies it employs for solving these problems. In fact,

a typical combination of these techniques in a planning strategy often involves some level

of each of these three components. Search is the process of iteratively applying applicable

actions to produce potential successor states. Relaxation is the process of solving an easier

version of the problem to help choose actions for state generation, helping to avoid the need to

perform a complete search of the state space and hence allowing larger problem instances to

be solved. Inference is a logical deduction that adds a new fact about the world, given some

previous statement. In state-based planning, inference is constantly being used to update the

values of the state variables using the effects of the action used to reach each state. Inference

provides with certainty, information about what must happen when actions and events occur

and assists the search process by informing the solver about what options there are for it to

explore next, given the new state of the world.

We can see an example of how search, inference and relaxation are used in combination to

solve a problem in a state-based planning approach. A common approach is that a planner

uses some strategy, like Enforced-Hill Climbing (described in Section 2.6.1), to iteratively

apply actions and build successor states. Relaxation is used to solve an easier version of the

problem to help decide which actions to use, to lead the planner closer to the goal. Finally,

inference is used at the point where the action chosen is applied, by using its effects to update

the affected state variables in the successor state.
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2.6.1 Search

Given a combinatorial optimisation problem, search is the process of iterating through each

possible operation from a state to produce the next reachable state. Each operation adds

constraints to the problem, in order to reach a version of the problem that is potentially

easier to solve (Hooker [2005]). For search to occur in a state space represented as a tree, as

is the case for planning, all of the different options (eg. actions) that can be explored from

one state in order to reach the next state need to be represented.

There are many search algorithms that have been developed to allow exploration of a

search space. In planning, search is often guided using heuristics to allow an informed and

goal directed search process to occur. However, as well as an informed search, there is also

uninformed search, where the state space is expanded through brute force application of all

possible actions with no guidance until a state satisfying the goal is reached. This type of

search is really just an ordered expansion of the state space, but has the benefit of being

complete. A search strategy is complete if it can find a plan to solve the problem, whenever a

solution to the problem exists. Depending on the state representation and implementation of

the solver, breadth-first search can expand a vast number of states, since there is no heuristic

used to choose which action to apply next. Two of the most well known algorithms that do

this are breadth-first and depth-first search. Breadth-first search uses all applicable actions

to generate all the successors at the next level of the search tree, then progresses to the first

of those successors and does the same again for that state and all other states on that level

from left to right. The same is then repeated on all subsequent levels of the search tree, one

at a time until the goal is reached. Depth-first search is similar, but the difference being

that from each state, the tree is expanded as far down as possible before coming back up to

build the other successor states. Breadth-first builds across the states space first, then moves

down, whereas a depth-first approach moves all the way down before moving across the search

tree. Depth-first search is not usually complete in its search, unless it has a mechanism for

termination on branches for repeated states. Breadth-first search is complete on problems

with a bounded width; in planning this corresponds to branching on action choices for a finite

set of grounded actions.

Heuristic based search algorithms build the search spaces using guidance provided by the

heuristic about which action is best to apply at each state in order to get closer to the goal.

This way the search space can be explored more efficiently and concisely, allowing a more

intelligent and strategic approach that can be utilised in larger problems, where searching

entire state spaces is simply not possible with limited time and memory resources. There are

various search algorithms that make use of heuristics; the following section explains Enforced-

Hill Climbing.
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Enforced-Hill Climbing

Enforced-Hill Climbing (EHC) (Hoffmann and Nebel [2001]) is a search strategy which we

modify for the work in thesis, and we now describe how this strategy currently works. EHC

is a greedy version of the Hill-Climbing strategy, where at a state s, an action is applied to

generate a successor state s′. The state s′ is evaluated to estimate its distance to the goal.

Only if the heuristic value (distance to the goal) of s′ is strictly lower than s, is s′ progressed

to. If this is the case, then the other successor states from s are not constructed, even if

there is a better heuristic successor. The search queue for s is cleared and state s′ becomes

the new current state and the same process continues until a goal state is reached. If at any

point during this process no successor is generated that has a better heuristic value than the

current state, the planner temporarily resorts to a local search called best-first search to find

a lower heuristic state. Best-first search is a variation of Breadth-first search. Algorithm 1

presents the Enforced-Hill Climbing strategy as it is described by Coles and Smith [2007].

The pseudo code for Algorithm 1 is reproduced from (Coles and Smith [2007]) and is included

here for convenience.

Algorithm 1: Enforced-Hill Climbing

1 open list = [initial state];
2 best heuristic = heuristic value of initial state;
3 while open list not empty do
4 current state = pop state from head of open list;
5 successors = the list of states visible from current state;
6 while successors is not empty do
7 next state = remove a state from successors;
8 h = heuristic value of next state;
9 if next state is a goal state then

10 return next state;

11 if h better than best heuristic then
12 clear successors;
13 clear open list;
14 best heuristic = h;

15 place next state at back of open list;

2.6.2 Inference

Inference is the process of taking a set of propositions and using defined rules, to be able to add

with certainty, further propositions to that set. If we have a proposition p and the following

inference rule: p → q, then if p becomes true, we infer that q is also true. This inference that

q is inferred from p may be written in the form p ` q. This inference follows from an inference

rule known as modus ponens. Constraint Programming uses inference as a mechanism to

solve problems, as does planning. Although typically it seems like planners mainly use search

along with heuristics to solve problems, in fact planners constantly are performing inference,
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the most basic of which is during state progression. State-based planning systems apply an

action to generate the next state. The act of updating the values of state variables during

state generation using the effects of the action used to transition to the that state is inference.

Another form of inference is always applying the start snap actions before their respective

ends and always applying the ends of actions that have started, even if the goal has been

satisfied. These tasks may seem trivial and obvious, however they represent important logical

rules that must always be followed. Given a state s and an action a, this can be written as an

inference rule s(a) → s′, where s′ is the state generated by applying a at state s. Inference is

a powerful mechanism utilised in various bodies of work including that of Coles et al. [2009b],

which proposes the use of more inference in a forward search framework. Planning approaches

utilise inference in various ways. The work by Allen in planning as temporal reasoning (Allen

[1991]) describes how planning systems can be converted into an inference process.

2.6.3 Relaxation

Relaxation involves solving a simplified version of a problem in order to estimate the dis-

tance to the goal in the actual search space. A heuristic is an estimated distance of how far

a state is from a goal state, in terms of the number of actions that need to be applied to

reach the goal. In state-based planning, the addition of an action to the plan is attained by

performing a state transition. Heuristics are developed from solving the relaxed problem at a

state, and are used to inform the decision making process of the planning system as to what

action choice is best to make next and likely to take it closer to a goal state. In planning,

the delete relaxation is commonly used to produce an easier version of the problem being

solved (Hoffmann and Nebel [2001]), as a means of estimating the distance to reaching the

solution of the original problem. The Heuristic Search Planner (HSP) (Bonet and Geffner

[1999]) is an example of a planning system which uses this relaxation. The problem is relaxed

by ignoring all of the delete effects of the actions. The relaxed plan is the sequence of actions

in the solution to the relaxed version of the problem. The heuristic distance of a state s to

the goal g in the actual search space, is the number of actions in the relaxed plan constructed

at s. This heuristic estimate is useful because if a problem m is relaxed into a problem m′

and there is no solution found when solving m′, then we immediately know that the original

and harder problem m cannot be solved. In addition, if there is a solution to m′, then this

can provide direction on which search option to use to solve m. A heuristic is described as

being admissible if it never overestimates the distance/cost to reaching the goal of the problem.

There has been a lot of work conducted in the development of heuristics in recent years.

Relaxations used to construct heuristics in planning include the Relaxed Planning Graph

(RPG) (Hoffmann and Nebel [2001]) for classical planning problems where domains are purely

propositional. Planners that use the RPG for heuristic guidance, such as the Fast Forward
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(FF) (Hoffmann and Nebel [2001]) planner, construct an RPG at each state in the search

space. The RPG is made up of alternating fact and action layers which record the facts

which are true and the actions that are applicable at each stage. When the relaxed version

of the problem is being solved, the delete effects of actions are ignored meaning that when a

fact is made true, it remains true. This also means that when an action in the RPG becomes

applicable in an action layer because its preconditions are satisfied, it remains applicable in

all future action layers. Ignoring delete effects in this manner means the problem is easier

and quicker to solve than the original problem. The length of the relaxed plan in terms of the

number of actions it contains, is used as the estimated distance from the actual state, where

the RPG was built, to the goal. The Metric Relaxed Planning Graph (MRPG) (Hoffmann

[2003]) is extended from the RPG for problems with numeric state variables, but behaves the

same as the RPG for propostional variables when ignoring delete effects.

The Temporal Relaxed Planning Graph (TRPG) (Coles et al. [2008]), is also an extension

of the RPG and behaves like the RPG for ignoring propositional delete effects. However, the

TRPG introduces the use of timestamps in the layers of the graph, and records the earliest

times that actions become applicable and facts become true. This is because durative actions

are used in the TRPG, where each action has a duration assigned to it. Planning with durative

actions means that they are each divided into start and end snap actions. The length of the

relaxed plan is again used as the estimated distance to the goal. Another relaxation used

in temporal planning is an extended TRPG for temporal problems that require the use of

envelope actions in the plan (Coles and Coles [2017]). Examples of other heuristics developed

based on relaxation in planning, include the Causal Graph (CG) heuristic (Helmert [2004])

which uses hierarchical problem decomposition, and a cost based RPG (Sroka and Long

[2014]) for metric sensitivity.

2.7 Simple Temporal Networks

Planning systems that are capable of solving temporal planning problems need to find a

sequence of actions to solve the problem as well as a time schedule that makes them temporally

viable, according to the temporal constraints of the problem. Some state-based temporal

planners use a temporal network of some kind to record the temporal constraints that have

accumulated from the actions applied so far up to the current state. In order to check that

a state is temporally consistent, a Simple Temporal Network (STN) (Dechter et al. [1991])

can be used to record the temporal constraints between time points. A copy of the updated

STN is maintained at each state with the constraints added for the most recent action used to

transition the planner into the current state. The constraints that exist are of the form x < y,

where x and y are two snap actions and there exists a precedence constraint of x before y.
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The STNs contain duration information and record the minimum and maximum durations for

each action, which are equal in the case of fixed duration actions. The STN is used to check

that the state is temporally consistent after each state generation. If there exists a negative

cycle between any pair of actions where the minimum duration is greater than the maximum

duration, then the state is temporally inconsistent and is pruned from the search space.

Negative cycles in an STN can be found in polynomial time, allowing for efficient detection of

a temporally inconsistent state. The polynomial time complexity of this task is what allows

STNs to be integrated into the search process. STNs are used by many planners including

CRIKEY (Halsey et al. [2004]), CRIKEY3 (Coles et al. [2008]), COLIN (Coles et al. [2012])

and POPF (Coles et al. [2010]).

2.8 Temporal Planners

2.8.1 Temporal GraphPlan

The Temporal Graphplan (TGP) (Smith and Weld [1999]) algorithm is a temporal extension

to GraphPlan (Blum and Furst [1995]). GraphPlan is a partial order planner capable of

constructing shortest distance plans. TGP uses an extended version of the STRIPS action

definition, by first letting each action have a start time and a duration assigned to it. All

of an action’s preconditions must be satisfied at the beginning before its application; there

is no individual separation of start and end preconditions. These preconditions must remain

satisfied for the action’s entire duration unless it modifies them and all effects take place

only at the end. The temporal actions TPG utilise prevent actions occurring concurrently if

one of them deletes any of the preconditions or effects of the other. This method essentially

locks the resources it needs and produces for its duration, not allowing interfering actions to

happen at the same time. This type of modelling pre-dates the emergence of durative actions

defined in PDDL 2.1 (Fox and Long [2003]). This extension of TGP allows it to do a similar

mutual exclusion reasoning that GraphPlan could do but with actions embedded in time and

assigned with differing durations. This allows TGP to solve temporally expressive problems.

Other temporal planners that effectively convert durative actions into an extended STRIPS

action similarly to TPG include SGPlan (Chen et al. [2006]), SAPA (Do and Kambhampati

[2001]) and LPG-td (Gerevini et al. [2006]).

Although TGP can deal with concurrency, it imposes restrictions; the planner is limited

in that it treats predicates whose values it changes at the end of an action, as having an

unassigned value and is neither truth or false. This means other actions that may want to use

that propositional fact as a precondition cannot while the first action is happening, meaning

no concurrency between these two actions can happen. An example of this is the matchCellar

domain problem shown in Figure 2.1, where lighting a match in a dark cellar provides light
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for a limited time, in which the mend fuse action must take place is order to achieve the goal

of fixing the fuse. The matchCellar domain problem is an instance of required concurrency

that we refer to as pattern type A for the work in this thesis. This pattern is illustrated later

in Chapter 3.

2.8.2 CPT and eCPT

Constraint Programming (CP) can be used to solve combinatorial search optimisation prob-

lems by representing the problem domain as a Constraint Satisfaction Problem (CSP) and

using a method of constraint propagation to prune the search space so that it can be efficiently

searched. CPlan (van Beek and Chen [1999]) is a constraint programming planner that uses

this approach. Constraint Programming is an area of research that has made substantial use

of inference. Other more recent CP based planners are CPT (Vidal and Geffner [2004]) and

eCPT (Vidal and Geffner [2005]). CPT translates a PDDL planning problem into a CSP,

where the problem is represented as a set of constraints over a set of variables. These planners

work by first setting a bound k on the length of the plan and assuming from the initial state

that the plan cannot have more than k steps. The planner attempts to solve the problem us-

ing a maximum of k actions and if it cannot, must backtrack and can increase k. This bound

is needed because the planners convert the problems in constraint programs which have a

fixed number of variables. CPT uses canonical plans, where each grounded action is used no

more than once. eCPT is an extension of CPT that lifts this restriction such that grounded

actions can occur more than once. eCPT implements extra domain-independent inference

machinery and is capable of solving simple problems with pure inference and no search and in

most cases backtrack free. These include problems from the benchmarks which are: Blocks,

Depots, Driverlog, Ferry, Gripper, Logistics, Miconic, Rovers, Satellite and Zeno domains as

mentioned in (Vidal and Geffner [2005]). eCPT finds optimal plans by using an iteratively

deepening search, meaning that it does repeated search using different bounds. The k bound

is increased if a plan with the existing bound cannot be found, meaning that when a plan

is found it corresponds to the minimum number of actions possible for the planner to find a

solution. Both CPT and eCPT do inference through consistency checking, making sure that

all constraints are satisfied while solving the problem. eCPT is also a planner that is capable

of solving problems with required concurrency.

The model on which CP-based planners base the representation of the action structures

for the construction of the plan, is using sequences of discrete time intervals. In CPT and

eCPT, its constraint model is based on these time intervals. The planner calculates the largest

common time interval that can be used to divide all of the actions durations in the problem.

This is the Greatest Common Divisor (GCD) of all of the actions durations, which are all fixed

durations, since CPT and eCPT do not handle duration inequalities. The GCD is then used
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to establish the length of each time interval in which the plan is constructed. Each action is

assigned the number of time intervals needed to match the length of its duration, which is why

all actions durations in the problem must be divisible by the interval unit length. For example,

if a problem has 3 actions with durations of 2, 4 and 6, then the GCD for the time intervals

is 2, since this is the largest integer to divide all 3 action duration values. We note that this

representation of time is used by CPT and eCPT, however alternative representations are

possible in other constraint-based planners. A key difference of CPT and eCPT compared to

state-based planners, is that for example in POPF (described in Section 2.8.11), a state is an

assignment of values to variables at a particular time (each state has a timestamp assigned

to it). The work of Verfaillie et al. [2010b], reviews the Constraint Network on Timelines

(CNT) framework (Verfaillie et al. [2010a]) and illustrates its usefulness and how it supports

modelling of problems in planning, scheduling and constraint programming based approaches.

2.8.3 Temporal Fast Downward

Fast Downward (FD) (Helmert [2006]) is a planner that does heuristic search for solving clas-

sical planning problems. The Temporal Fast Downward (TFD) (Eyerich et al. [2009]) planner

is an extension of this system for solving temporal planning problems. TFD is a planner that

uses total ordering during plan construction and is limited to handling fixed duration actions.

This means that TFD cannot handle duration inequalities, which is where some actions in

the domain have flexible durations, the values for which are decided by the planner. For its

temporal structure, TFD is similar to how SAPA operates. TFD works by exploring a search

space where it either applies an action if its start preconditions are satisfied, or it advances

time to the next end action. When TFD applies a start action, it is constrained to apply the

action at epsilon(ε)1 time after the current time. This stops it from delaying the application

of a start action to a later time point. This means that if there are two actions A and B

that must occur together, if B must start at a time point relative to the start time of A and

the gap is more than epsilon time, then TFD cannot solve this problem. TFD maintains a

priority queue for the ends of actions which have been started but not yet completed. These

action ends are placed in time order, given the duration of the actions. This means that when

TFD chooses to apply an end action, it must be the end action that is earliest in the priority

queue. Furthermore, TFD ignores the preconditions of end actions, and as such cannot cor-

rectly solve required concurrency problems, where end preconditions are part of the temporal

structure creating the required concurrency relationship.

In order to understand exactly what kind of required concurrency TFD is capable of

handling, let us consider the following example. Figure 2.4 shows two actions A and B.

1Epsilon time is is defined as being the smallest time gap possible, that is used to separate two actions,
where one action makes a fact true and the other action requires it as a precondition.
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Action A is 10 time units in duration and B is 5 time units. A provides resource p at its

start and deletes is at the end. B requires p as an invariant condition and so p must persist

for the duration of B ’s execution. With the goal of achieving g, actions A and B are needed.

TFD is able to solve this problem by first applying the start of A and then the start of B,

which can only occur epsilon time after A start. Given that the start of A takes place at time

0, the end of A in the priority queue has a timestamp of 10. The start of B is at time ε,

and so the timestamp of the end of B is time 5 + ε. Following the application of both the

starts of A and B, there are no other actions to start for TFD, so it can only advance time to

the end action with the earliest timestamp in the priority queue, which is the end of B. This

followed with the application of the end of A which is the next and only remaining action in

the priority queue.

[10]

A

p ¬p
p[5]

B

g

Figure 2.4: Action pair with required concurrency relationship that TFD can handle.

For the type of required concurrency seen in Figure 2.5, to achieve the goal g, TFD uses

the same approach. Action B start is applied at time 0 and A start at time ε, this means

that in the priority queue action B end will have a timestamp of 10 and A end a timestamp

of 5 + ε. This means that A end must be first from the actions in the priority queue, since

its timestamp is earlier than that of B end. Since B end provides q which is the precondition

for the end of A, TFD is not able to apply the ends of actions A and B in the correct order.

Figure 2.5 is example of a type of required concurrency problem that cannot be solved by

TFD.

A

p

q[5]

B

p

q, g

[10]

Figure 2.5: Action pair with required concurrency relationship that TFD cannot correctly
handle.
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2.8.4 TPSHE

TPSHE (Jiménez et al. [2015]) is a temporal planner that compiles a temporal problem fully

into a classical planning respresentation. TPSHE can solve problems of required concurrency,

but is specifically limited to dealing with single hard envelopes (SHE) (Coles et al. [2009c])

problems. A single hard envelope exists when an action makes a resource available for the

duration of its execution, by making true a fact at its start and deleting it at the end.

This action is referred to as an envelope action. If another action needs this resource as a

precondition, it can occur concurrently with the envelope action, and is referred to as a content

action. Where there is a problem of this type, TPSHE can construct a plan provided that

one envelope action, has the effects to satisfy every invariant condition of the encapsulated

content action. This means that the content action cannot have a set of invariants satisfied by

different envelope actions. In TPSHE, the definition of a single hard envelope is modified to

not only include an action that achieves an effect at its start and deletes it at its end, but also

a second action that needs that effect as an invariant. This means in TPSHE a single hard

envelope exists if both the envelope and content actions exist and not just the envelope action.

The content action must have a shorter duration than the envelope in order for both actions to

be able to occur concurrently. This type of required concurrency corresponds to the pattern

type A which will be presented in Chapter 3 of this thesis. Figure 2.1 shown earlier in Section

2.3.2 illustrates an example of a single hard envelope from the matchCellar domain. TPSHE

does not handle other types of required concurrency and all durative actions in the domain

must have fixed durations, as the planner does not handle duration inequalities. TPSHE has

been implemented via alterations to the Fast Downward planner.

2.8.5 TP(K)

TP(K) (Jiménez et al. [2015]) implements an adjusted version of the TEMPO algorithm

(Cushing et al. [2007a]) that partly compiles temporal planning problems into classical ones.

The planner compiles each durative action into two classical actions, one that represents its

start component and one for its end component. The TEMPO algorithm which TP(K) mod-

ifies is based on the idea of lifted temporal states. Each of these lifted states record the values

of variables, a set of currently executing actions that have started but have not finished, a

time variable and the temporal constraints on the time variables. The time variable records

the time of the most recent action which is either a start or end action. During the planning

phase TEMPO progresses search by using two rules which the authors refer to as Fattening

and Advancing Time. Fattening is for the application of a start action, which is added to the

set of currently executing actions. This can only occur if the start preconditions and invariant

conditions of the action are true in the current state and its start effects do not delete the

invariants of other executing actions. Advancing time is for ending an action, at which point

the action is removed from the set of currently executing actions. The end time of the action
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is calculated by adding the duration of the action to its start time.

TP(K) uses the two classical actions compiled from each durative action, to practically

implement the Fattening and Advancing Time rules in TEMPO, for the application of action

starts and ends. The TP(K) planner is implemented as a modified version of Fast Downward.

In Fast Downward each node of the state space records the state along with what is referred

to as bookkeeping information, however Fast Downward is a classical planner. For this rea-

son TP(K)’s modifications include altering the node representation, so that its bookkeeping

information also records currently executing actions, and temporal constraints through the

addition of an STN. The K value of the planner is a parameter which is set at run time and

passed to the planner along with the domain and problem files. This value is the bound given

to specify the maximum number of currently executing actions there can be. The K bound

means that in practice this implemented version of the planner is not complete.

2.8.6 STP(K)

STP(K) (Furelos-Blanco et al. [2018]) is a temporal planner that also compiles temporal plan-

ning problems into classical ones. The planner builds a plan using the classical representation

of the problem and at the same time ensures that an associated set of temporal constraints are

maintained. STP(K) is an extension of TP(K) to deal with required concurrency problems

that have simultaneous events. The key feature introduced by STP(K) is its ability to pro-

duce plans for temporal problems that must have simultaneous events. This means that the

planner can schedule durative actions such that more than one effect from different actions

can occur at the same time. In order to achieve this, STP(K) splits every event into three

parts. The first part is for action ends to occur, the second part is where simultaneous effects

occur and the last part is where actions are started. These three parts are referred to by the

authors as the End Phase, Event Phase and Start Phase respectively. The end phase takes

place just before an event happens and is the part where currently executing actions end.

The event phase is the part where the simultaneous occurrence of the actual event happens.

In order to make sure the simultaneous event is valid, the preconditions of the event are

checked and effects of the event are also applied at this stage. The start phase occurs just

after the event phase and is the point where the planner verifies that the invariants hold for

the currently executing actions, which have started in this phase.

Like the TP(K) planner, STP(K) is also implemented using modifications to Fast Down-

ward. There are various features that STP(K) and TP(K) both use including the addition

of an STN to the bookkeeping information of the search nodes, in order to record temporal

constraints. STP(K) also records the set of currently executing actions at each node. The

K value is again a parameter that is passed to the planner at run time and is the maximum
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number of currently executing actions there can be. This means that if there is a problem that

requires more than K actions to occur concurrently, STP will not be able to find the solution

and hence is also a planner that is not complete. Both the TP(K) and STP(K) planners only

handle problems with fixed durations and do not handle duration dependent effects.

2.8.7 TFLAP

TFLAP (Sapena et al. [2018]) is a temporal forward search planner that uses partial ordering.

It is based on another forward partial order planner called FLAP2 (Sapena et al. [2016]). The

idea of partial ordering actions in forward search planning was used earlier in POPF (described

in Section 2.8.11), which also use this idea. TFLAP is built such that its parser is capable of

handling all features of PDDL 3.1 (Helmert [2008]), however the actual planning part of the

system can only handle PDDL 2.1 along with TILs (Time Initial Literals), which is a feature

defined in PDDL 2.2. The planner uses A* search (Hart et al. [1968]) to navigate the state

space. TFLAP makes use of classical planning heuristics to evaluate each state, and does not

utlise information about action durations to decide which node to visit next. As a result, a

limitation that TFLAP suffers from in domains that contain dead-ends, is that it can cause

the planner to enter plateaus. A plateau is entered when the planner reaches a state in the

search space, where all of the successor states appear to be no better than the current state,

according to the heuristic. As a partial order planner TFLAP is able to avoid ordering actions

unless it becomes necessary due precedence constraints between actions. An example of this

is where one action achieves the precondition of another. TFLAP is also a planner able to

deal with problems of required concurrency.

2.8.8 ITSAT

The Implicit Time SAT (ITSAT) (Rankooh et al. [2012], Rankooh [2013]) planner is a sys-

tem developed to solve temporal planning problems by translating them into SAT encoded

problems. This SAT representation of the problem uses variables and clauses in its encoding.

Among these, one variable is used to represent the start of an action and a second variable to

represent its end. A third variable is used to record an action which is currently executing.

A standard SAT solving system is used to attain what the authors refer to as an abstract

plan from the SAT representation of the problem. This version of the plan is abstract since

it does not include the action durations. This abstract plan is in turn relaxed, to which the

actions durations are then inserted. The temporal validity of this plan is checked against the

corresponding STN. If the STN is found to contain a negative cycle, then this information is

added to the SAT representation of the problem. The updated SAT encoding of the problem

can then be used by the SAT solver to solve the problem again using the same approach. The

idea is that the information about the negative cycle from the STN of the last plan produced,

can be used by the solver to stop it from outputting plans with STNs, that have negative
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cycles which are the same or similar. ITSAT iteratively applies this approach until it finds a

temporally consistent plan. The ITSAT planner has also been modified to incorporate other

encodings described in (Rankooh and Ghassem-Sani [2013]).

2.8.9 CRIKEY

CRIKEY (Halsey et al. [2004]) is a planner that decouples the planning component of the

problem from temporal scheduling task when solving a temporal planning problem. A mod-

ified version of Metric-FF (Hoffmann [2003]) is used to solve the planning problem and the

STN is used to schedule those actions to make a temporally valid plan for the original prob-

lem. Where possible, CRIKEY solves temporal problems in this fashion, avoiding in many

cases the need to solve the entire temporal problem as a single task. Where there are prob-

lems with temporal envelopes, where one action must occur concurrently within the duration

of another, as is the case in the matchCellar domain, is not possible to decouple the plan-

ning and scheduling components of the problem in the same way. The altered approach is

described further by (Halsey et al. [2004]). CRIKEY has also been extended into CRIKEY3

(Coles et al. [2008]) which is a planner with the ability to handle all language features of

PDDL 2.1, level 3 (Fox and Long [2003]) and is able to solve temporal propositional and

numeric problems. CRIKEY3 is the predecessor of COLIN (Coles et al. [2012]) (described in

Section 2.8.10). Another successor to CRIKEY is CRIKEYSHE (Coles et al. [2009c]) which

is capable of detecting actions that are single hard envelopes. The matchCellar domain

is again an example of where a single hard envelope exists, as shown in Figure 2.1. In this

example, the light match action is the envelope action and mend fuse is the content action.

2.8.10 COLIN

COLIN (Coles et al. [2009a, 2012]) is a temporal numeric planner and a successor to CRIKEY3.

COLIN is capable of dealing with continuous linear processes, designed to solve planning prob-

lems with numbers embedded in time. In particular, COLIN is able to reason with continuous

numeric effects and linear change. The planner uses linear programming (LP) to measure the

rate of change for numeric variables between states, given the amount of time passed. It also

uses LP to check that temporal constraints are satisfied when numeric change has occured.

Furthermore, the planner uses an STN to check that duration constraints are satisfied at

each state. COLIN is a total order planner, which means every action added to the plan is

appended to the tail of the plan constructed so far. If the planner needs to change the order

of any actions in the plan, it must backtrack out of the states in which those actions have

been applied. The actions must then be applied again in the desired order. This applies even

when changing the order of actions between which there is no precedence constraint.
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2.8.11 POPF

POPF (Coles et al. [2010]) is a forward search partial order planner capable of solving tempo-

ral planning problems according to the full language specifications of PDDL 2.1 (Fox and Long

[2003]). POPF is the successor to COLIN and can therefore also solve temporal numeric

planning problems but the difference is that COLIN employs a total ordering during plan

construction and suffers from the problems of early commitment to action ordering choices.

POPF employs the principles of least commitment and only orders actions in the plan when it

is necessary due to some temporal precedence constraint. Actions added in a particular order

during plan construction that do not interact with one another can be rescheduled to be in

a different order for the final plan. This is on the condition that all the temporal constraints

are respected. POPF is a temporal planner and like COLIN it solves problems with durative

actions. The planner divides each durative action into two snap actions, one for its start and

the second for its end component as does COLIN and CRIKEY. This means that the number

of states generated is doubled compared with if snap actions were not used. This is done in

order to allow concurrent problems and those requiring temporal coordination to be modelled

and solved.

The planner uses a partial order (described in Section 2.5.2), to record precedence con-

straints, and also uses an STN at each state to record duration constraints of actions and

to check the temporal constistency of the state. If a state is found to be temporally incon-

sistent, then the plan constructed so far at that state (partial plan) is invalid. A state with

an invalid partial plan is detected if there is a negative cycle in the STN and these states

are pruned from the search space. If the problem contains numeric change, then an LP is

used to check plan validity as is done in COLIN. The primary search strategy used by POPF

is Enforced-Hill Climbing (described in Section 2.6.1). If EHC fails to find a solution, the

planner uses best-first search as its secondary strategy, in the case of POPF this is actually

A* search. POPF uses the TRPG as its heuristic function to guide the search process. A

helpful action is an action in the first action layer of the TRPG, which either achieves a goal

fact or a precondition of an action achieving a goal fact. POPF extracts the list of helpful

actions from the TRPG constructed at each state in the search space. The list of helpful ac-

tions are ordered arbitrarily, and the first one in the list is used to generate the successor state.

POPF can perform a more efficient search using compression-safety (Coles et al. [2009b]).

An action is compression-safe if the following criteria are satisfied: the action has no end pre-

conditions that are not a subset of the invariants, it has no negative end effects and no start

effects that depend on the duration of the action. When a durative action is compression-safe,

POPF can apply the start action as a state transition producing a successor state and only

schedule the end of the action as required, to satisfy the action’s duration constraints and
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any other temporal constraints. The key point is that only one state is generated explicitly

in the search space for a compression-safe action.

In contrast to CPT, in POPF grounded actions can be applied multiple times in a plan.

However, generally this is not common in practice in the temporal propositional case, which

is the scope of this thesis. This is because after a grounded action’s effects are updated on

the propositional state variables that it modifies the first time, applying the same grounded

action again would be redundant as it causes no additional change to occur on those state

variables. This is unless a different action is applied in between the two applications of the

first action, where the second action changes the value of one or more of the propositional

state variables updated by the first action.

In order to ensure that the invariants of an action are true following the application of

the action’s start component, POPF uses regression of invariants, meaning that all invariant

conditions of an action are regressed and treated as start preconditions as well as being in-

variant conditions. The reason for this is that the planner makes sure that the invariant of

an action, which must hold true for its duration, have been made true by some other action.

The only exception to this rule is when an invariant of an action is also a start effect of that

same action. For example if an action A makes a fact p true, and p is also an invariant of A,

then this is a special case where p does not need to be regressed, since action A itself makes it

true before it needs it as a condition. The process described is for regressing invariants in the

temproal propositional case. This process becomes more complex when regressing invariant

conditions that must hold over numeric variables, however we do not describe this here as

this thesis does not investigate numeric planning.

Following the development of POPF, there have been various extensions to POPF, each of

which have capitalised on POPF’s comprehensive set of functionalities. Some recent extensions

include OPTIC (Benton et al. [2012]) for temporal planning with preferences, POPF-TIF

(Piacentini et al. [2015]) for planning with timed initial numeric fluents and POPCORN

(Savas et al. [2016]) for planning with control parameters.

2.8.12 Other Temporal Planning Systems

The planning algorithm TEMPO (Cushing et al. [2007a]) describes a planning system for

problems of required concurrency. An adaptation of this algorithm was implemented in the

TP(K) planner described in Section 2.8.5. The development of TEMPO was soon followed by

an evaluation of temporal domains (Cushing et al. [2007b]) in order to show that the temporal

benchmarks at the time were all without required concurrency and hence could all be solved

with sequential solutions. UPMurphi (Della Penna et al. [2009]) is another temporal planner
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which uses A* search (Hart et al. [1968]) and is capable of dealing with continuous processes.

Other temporal systems that exist are the YAHSP set of planners which include YAHSP2

(Vidal [2011]), DAE-YAHSP (Khouadjia et al. [2012]) and YAHSP3 and YAHSP3-MT [Vidal,

2014].

2.9 Summary

In this chapter we have reviewed the basics of Planning, specifically focussing on temporal

planning. We have discussed the notion of required concurrency and problems of temporal

coordination. We have described the Search-Infer Relax framework, its components, which

includes the role that inference plays, and how planning can be viewed within the context of

this framework. We have reviewed some key planners, including eCPT which uses a constraint

programming based approach for doing inference, and also POPF, which this thesis builds

on. In Chapter 3, we discuss the types of pattern structures that are handled in this thesis

and the inferences that they enable.



Chapter 3

Patterns and Temporal Inference

We now move on to explaining the first part of the theory for the research in this thesis.

We start by discussing the types of required concurrency that we propose dealing with and

explaining what can be inferred from each type and when. Each type of required concurrency

is referred to interchangeably as a pattern or pattern type, which we define as being a pair of

durative actions in the domain, whose schemas describe either a one way or two way set of

dependencies between the actions. These causal links can be recorded using simple temporal

networks constraints. This definition is subject to the restrictions described in Section 3.1.

A pattern instance always refers to the lifted non-grounded pair of operators in the domain

detected as having a required concurrency relationship between them. No grounded actions

are recorded as pattern instances, as these are detected in the domain before action ground-

ing. In addition, we define a trigger action to be a grounded instance of an operator from a

pattern instance that is added to the plan and is detected as being part of a pattern instance;

during search this detection allows the planner to do inference.

As mentioned in Chapter 1, the goals of the research include finding actions in pattern

structures, which when triggered during search enable inference to occur, reducing the amount

of search needed. We describe each of the pattern types and the inferences they enable. Each

pattern type along with its associated STN are explained and depicted diagrammatically,

showing what actions and constraints must be found via search and which ones can be inferred.

This will provide us with a better understanding of what each pattern means relative to one

another, along with why and how the temporal orderings enforced by each pattern type’s

structure are different, given that they all exist within the context of pair-wise required

concurrency. It also further motivates and shows us why pair-wise cases are a very interesting

set of scenarios to deal with and that it does indeed warrant deeper investigation.

41
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3.1 Scope

We focus on pair-wise cases of required concurrency, however we acknowledge that this feature

can exist amongst larger groups of actions. The reason for concentrating on pair-wise cases

is because we are interested in understanding the minimal cases in which required concur-

rency can occur in single instances, in its different variations and how this can be exploited

for reducing search and to what extent. The aim is to be able to exploit cases of required

concurrency with minimal cost, while attempting to maximise the inferential gain. We will

see later that for some pattern types, there is some choice about how actions may be applied

in accordance with how the pattern is triggered for inference. We observe that there is a

trade-off between the amount of computational resources put into performing pattern detec-

tion, with only the potential that there will be some benefit from inference during planning.

Therefore, when considering more than two actions in a pattern of required concurrency, it

stands to reason that the initial outlay in computational expense generally increases for its

pattern detection. Even if patterns with three or more operators are detected in the do-

main, there is no increased chance that they will be triggered for inference during planning,

compared with the smaller pair-wise patterns. This strengthens our motivation for restrict-

ing ourselves to the two action pattern types. Additionally, there are numerous scenarios

that require concurrency between two actions. In temporal planning, well known examples

include the ‘matchCellar’ domain, where a ‘mend fuse’ action must occur concurrently with

a ‘light match’ action in order to fix the fuse. Furthermore, although we restrict to pair-

wise cases, this is only for single instances, we will see later how chains of linked pair-wise

pattern instances can lead to arbitrarily large collections of actions with required concurrency.

The work of this thesis is in temporal planning, hence we use PDDL 2.1 which is a standard

version of PDDL for modelling temporal planning problems and for expressing our patterns

of actions with required concurrency. It is important that we first set out the scope of our

work and the conditions under which we detect patterns of required concurrency. We limit

the modelling of patterns to using a subset of the features provided in PDDL 2.1. This is

because given the expressivity of the language, the types of required concurrency that we

handle are already intricate in the combinations of predicates needed to construct their pat-

tern structures as we will see in section 3.2. Restricting the features of PDDL used according

to the assumptions below, allows us to state with certainty what patterns are possible, while

still being able to construct a comprehensive set of patterns. Furthermore, the pattern types

that we will present will be implemented in the planner that we develop in this thesis, POPI,

which will be explained in detail in Chapter 6. POPI is developed as an extension of POPF

and subject to the same restrictions in the languages features that it handles. POPF does

not handle negative or disjunctive preconditions, or conditional effects, therefore neither does

POPI.
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We make the following assumptions:

1. All instances of each pattern type contain exactly two durative actions according to the

language specifications of PDDL 2.1 (Fox and Long [2003]).

2. The actions on which we do our pattern detection do not have negative or disjunctive

preconditions.

3. The actions that we do pattern detection on do not have conditional effects. In addition

to not being handled by POPF, required concurrency cannot always be detected with

certainty at the domain analysis stage using our approach. This is because if a predicate

that is part of the pattern structure is a conditional effect of one of the actions in a

potential pattern, we cannot guarantee that there will be required concurrency during

planning, if the action with the conditional effect is applied.

4. All predicates that make up the pattern structure of each pattern type shown in Sec-

tion 3.2.2 must be achieved by in the format of the diagrams shown, by only the two

actions in the pattern. If this is not the case, then it is discarded as a pattern in order

to prevent detections in the domain which have concurrency but might not be cases of

required concurrency.

5. Each action in an instance of any pattern type must be a grounding of a different

operator, unless it is an instance of a reflexive pattern type, in which case both actions

must be different instances of the same operator.

6. During planning, if a pattern is triggered, the inference can only take place if the planner

determines that there is only one applicable grounded instance of the inferred operator

from the pattern, that can be applied. If not, then there is a choice between two or

more actions, meaning inference cannot occur.

7. Each set of actions in a single pattern instance, or set of pattern instances chained

together, are either all applied or none at all.

3.2 Pattern Structures and Temporal Constraints

This section discusses the patterns of required concurrency to be dealt with, that will be

identified by recording lifted pattern structures from the domain file, which is the PDDL file

that stores the domain and taken as input by a planner. STN diagrams are used to represent

temporal constraints between pattern action pairs, that must exist after their application is

complete. The constraints in the STNs of each pattern type are presented to show which

actions and constraints need to first be added via search, in order for POPI to infer the other
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action and/or constraints that must be added. Some patterns can trigger inference in two

different ways; where this is the case and the set of constraints added via search and inference

are different between cases, we present an STN diagram for each case. Each pattern type

is identified in the left sub-figure, and its corresponding STN(s) in the right sub-figure(s).

For the pattern diagrams each rectangle represents an action. The letters above the rectangle

denote preconditions, with the start preconditions above on the top left, the invariant (overall)

conditions above in the centre and end preconditions above on the top right. The effects of an

action are labelled underneath the rectangle, with the start effects of the action on the bottom

left and the end preconditions on the bottom right. we can see the format for positioning the

preconditions and effects of an action in Figure 3.1.

A

startpre overallcond endpre

starteff endeff

Figure 3.1: Notation of conditions and effects.

Diagrams illustrating the patterns of required concurrency in Figures 3.3 to 3.18 do not

display action durations. The proposed pattern detection relies on matching predicates in

the conditions and effects lists of the operators. The operators may have fixed or duration

inequalities specified. The pattern detection does not consider the duration of the operators

as the predicate(s) structure that forms the required concurrency relationship is independent

of the duration. It is possible that a pattern with an envelope is detected, where one action

must occur entirely within the duration of other and the envelope action is shorter in duration

than the inner action. For such a pair of operators to be defined in the domain in this manner

would be a modelling error, however our detection does not consider action durations when

detecting pattern instances. In this situation, if the actions from this pattern are applied, the

STN will detect a temporally inconsistent state during application of actions via inference,

the same as would be detected via application of the actions using search.

It is important to note that each of the pattern diagrams presented in this section are

each one specific example of each different required concurrency relationship that can exist

between two durative actions. In addition, each pattern of actions diagram is presented in

its subset minimal form, meaning that removing any of the predicates in its example would

break the required concurrency relationship being modelled.
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3.2.1 STN Diagrams and Constraint Interpretations

The STN diagrams for the patterns are each made up of four nodes, two for each action,

which are connected with arrows in various formats depending on the constraints between

the different endpoints of the actions. The two nodes labelled A` and Aa represent the start

and end components of action A respectively, the same applies for the nodes labelled B` and

Ba for action B. We now describe the three types of ordering relations that will be used in

our STN diagrams to illustrate the different types of constraints. The block arrows in the

STN diagrams shown in Figure 3.2a, represent the constraint that any start action, denoted

A`, must be followed by its corresponding end action, denoted Aa. This is the relationship

between start and end snap actions as presented in Coles et al. [2008]. This Start-End rela-

tionship is already maintained in the STN by POPF. The single solid line arrows with block

heads illustrated in Figure 3.2b represent the contingent constraint between a concurrent pair

of actions, showing that both those snap actions must be in the partial plan constructed so

far, with the action being pointed to, occurring after the action being pointed from. We refer

to this partial plan as the plan head, which is the partial plan from the initial state to the

current state. Actions connected by a contingent constraint must be in the plan head in the

order shown, for the inference to take place. The broken line arrows with a hollow head,

shown in Figure 3.2c depict the constraints which are inferred from knowing the start-end

and contingent constraints, using their respective arrow types.

(a) Start-End Constraint. (b) Contingent Constraint.

(c) Inferred Constraint.

Figure 3.2: Types of constraints between actions in STNs. First appeared in (Talukdar
[2016]).

3.2.2 Pattern Descriptions

We now move onto describing each of the pattern types that we handle. We will discuss the

required concurrency relationship that exists within each pattern and the inferences that can

be made, given its detection.

Pattern A in Figure 3.3a displays the situation where one action, A, provides a resource

for its duration only. Any action, B, which requires this resource must occur within the

temporal window created by action A. In this case action B requires resource P, provided by

A for its entire duration, therefore B must occur entirely within the execution of A. As soon

as the plan head contains A` and B`, with A` before B`, and there are no other providers of

P, it can be inferred that Ba<Aa.
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A

p ¬p

B

p

(a) Concurrency Pattern A. (b) STN Constraints - trigger is A`, B`.

Figure 3.3: Pattern A. First appeared in (Talukdar [2016]).

Pattern B in Figure 3.4a shows the same temporal window created by A for resource P,

however in this case, B only needs the effect of A as a start precondition, therefore B` must

occur after A` and before Aa, but Ba can come after Aa. As soon as A` and B` appear in the

plan head, it can be inferred that B`<Aa.

A

p ¬p

B

p

(a) Concurrency Pattern B. (b) STN Constraints - trigger is A`, B`.

Figure 3.4: Pattern B. First appeared in (Talukdar [2016]).

Pattern C in Figure 3.5a has a similar situation again, except that action B needs action

A because action B requires p as an end precondition. However, pattern C is different in that

it can be trigger by either A` followed by B`, or by B` alone. If the pattern is triggered by

B` alone, the planner can do more inference compared to the patterns A and B cases. This

is since as soon as B` is in the plan, we can infer that A`<Ba and Ba<Aa. If A` and B`

trigger the pattern’s inference, then more can still be inferred than for pattern B, since it is

known that Ba must come before Aa; it is effectively the same inference from pattern A that

is achieved. We observe that pattern types A and B are more constrained than pattern C, in

terms of the power of the inference. This is since patterns A and B require the start of both

actions A and B to be in the plan head to trigger inference, compared with pattern C which

can trigger when B` alone is applied, as well as how patterns A and B are triggered.

Pattern D in Figure 3.6a represents another scenario where one action must occur entirely

within the execution of another action, similar to the situation of concurrency pattern A in

Figure 3.3a. However, in this case the reasoning is different, since action A does not create

a temporal window for the availability of a resource. Instead action B requires the effect of

A`, which persists following Aa. Therefore B` must come after A`. However, Ba has an effect

which is the end precondition for Aa, thus Ba must also come before Aa. Each action produces
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A

p ¬p

B

p

(a) Concurrency Pattern C. (b) STN Constraints - trigger is A`, B`.

(c) STN Constraints - trigger is B`.

Figure 3.5: Pattern C. Adapted from (Talukdar [2016]).

an effect which the other action needs as a precondition. In the case of pattern D, the effect

of each action is needed as a precondition of the other action at the same end point. Pattern

D is recognised as soon as A` appears in the plan head. This inference is very informative, as

we are able to immediately infer A`<B` and Ba<Aa as the only order of action application

for the rest of the pattern.

A

p

q

B

p

q

(a) Concurrency Pattern D. (b) STN Constraints - trigger is A`.

Figure 3.6: Pattern D. First appeared in (Talukdar [2016]).

Pattern E in Figure 3.7a displays a similar situation to pattern D, except the effect that

B provides, needed by Aa, is now provided by B`, instead of Ba. This in effect produces the

same type of required concurrency as pattern B, however there is again a different reason

for it. B` must occur after A` and before Aa, but Ba can occur after Aa. This is because

the precondition of Aa is this time produced by B` instead of Ba. Again, there is a powerful

inference available since the appearance of A` in the plan head would allow the planner to

infer A`<B` and B`<Aa.

Pattern F in Figure 3.8a presents a similar situation as pattern C, except that fact p is

needed by B as an end precondition and provides q as its end effect, which action A needs as

its end precondition. The temporal constraints in the STN of pattern F in Figure 3.8b can

be deduced after the addition of either A` or B` to the plan. As soon as A` or B` appears in

the plan head, the inferences of A`<Ba and Ba<Aa are made.
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(a) Concurrency Pattern E. (b) STN Constraints - trigger is A`.

Figure 3.7: Pattern E. First appeared in (Talukdar [2016]).
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(a) Concurrency Pattern F. (b) STN Constraints - trigger is A` or B`.

Figure 3.8: Pattern F. First appeared in (Talukdar [2016]).

Pattern G presents the case where an end precondition of each action in the pair is provided

by the start effect of the other. For this reason, the minimal amount of required concurrency

between a pair of actions of this pattern, is where only one end point of both actions, must

occur during the execution of the other. The most optimal form of concurrency, in regards to

plan makespan, being where one action is executed entirely during the execution of the other.

As soon as A` or B` appears in the plan head, A`<Ba and B`<Aa are inferred. A key point

to note about this pattern is that its predicate structure means that, even though there is

required concurrency, all four possible orderings of action starts and ends in this pattern can

be used when applying them during planning.

A

p

q

B

q

p

(a) Concurrency Pattern G. (b) STN Constraints - trigger is A` or B`.

Figure 3.9: Pattern G. First appeared in (Talukdar [2016]).

Pattern GReflexive has the same temporal constraints as pattern G, and as seen in Figure 3.10b,
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the pattern structure is the same. The difference is that the concurrency is between two in-

stances of the same operator. The symmetric nature of the pattern G structure shown in

Figure 3.9a is evident; this is due to the location of the preconditions and effects which means

that one instance of a single operator can satisfy the preconditions of a second instance of

the same operator. Since pattern facts are assumed to be uniquely achieved by the actions in

the pattern structure, only another grounding of the operator can satisfy the end condition

of the other one.

(A ?x ?y - type1)

(p ?x)

(p ?y)

(a) Concurrency Pattern GReflexive.

(A1 a b - container)

(empty a)

(empty b)

(A2 b a - container)

(empty b)

(empty a)

(b) Example of Pattern GReflexive.

(c) STN Constraints - trigger is A1 ` or A2 `.

Figure 3.10: Pattern GReflexive. Adapted from (Talukdar [2016]).

Pattern H is a more restricted version of pattern G, the choices left to the planner are

fewer after the pattern has been triggered. Either A` or B` can trigger the inference. If A` is

used, the rest of the pattern must be applied as B`, Ba, Aa. If B` is used, then the pattern is

applied as A`, Aa, Ba. Depending on which pattern action is used to trigger inference, there

is only one order in which the remaining actions can be applied, whereas in pattern G there

is still a choice of which order to apply the actions ends in, for each trigger case.

Pattern I presents a situation where there is only one possible ordering of the snap actions,

where both the starts of actions A and B must both be added via search before required con-

currency becomes known and temporal inference can occur. This pattern type triggers in the

exact same way as patterns A and B. Pattern I is similar to pattern B, the difference being

that Ba must come after Aa, instead of this being a choice. This means that pattern I has a

tighter set of constraints and hence the inference that a planner can do using this pattern is

slightly stronger than the inference of patten B.

Pattern J presents the situation where A` in the planner implies that action B must also

be in the plan. A` being added to the plan via search presents the opportunity for a planner
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B
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(a) Concurrency Pattern H. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`.

Figure 3.11: Pattern H

A

p ¬p, q

B

p q

(a) Concurrency Pattern I. (b) STN Constraints - trigger is A`.

Figure 3.12: Pattern I

to add the remaining actions in the only valid remaining order. The order in which the actions

must be applied for both pattern types I and J is the same. However, the difference between

the patterns is that for pattern I, action A can be applied on its own without action B and

therefore a planner cannot trigger inference without applying the start of both actions via

search first. This difference means that pattern J is stronger than pattern I because it the

structure of pattern J that implies the addition of a new action is needed.

A

q

p r

B

p r

q

(a) Concurrency Pattern J. (b) STN Constraints - trigger is A`.

Figure 3.13: Pattern J

Pattern K is similar to pattern H; it is again a more restricted version of pattern G and

provides the planner with a stronger inference. Either A` or B` in the plan means that a
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planner can trigger the inference. Following the application of one of these action starts, there

is only one sequence in which the remaining pattern actions can be applied. The two possible

application sequences see the endpoints of one action interleaved with the other; pattern H

is different in that the two sequences see the endpoints points of one action envelope the

endpoints of the other.

A

p

¬p, q q

B

q

p,¬q p

(a) Concurrency Pattern K. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`.

Figure 3.14: Pattern K

Pattern L is triggered by either A` or B` and A`. Both trigger cases enable the inference

of a single sequence of application for the remaining actions. However the first case with A`

enables inferring that a second action B needs to be included and is therefore more significant.

A

p

¬p

B

p

(a) Concurrency Pattern L. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`, A`.

Figure 3.15: Pattern L

Patterns M, N and O all have two trigger cases, the first of which is the same, A`. If A` is

added to the plan, then the planner can infer that B` must be applied next, but no ordering
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is enforced on how the action endings need to be applied. For patterns M and N, inference

can also be triggered using B`. For M one remaining order of action application is inferred

which is as follows: A`, Aa, Ba. For N there is also one single sequence for the remaining

actions which is A`, Ba, Aa. For pattern O for its second trigger case, it needs B` followed

by A` to enable inference, at which point the ends must be applied as Ba followed by Aa.

A

q

p,¬r r

B

p, r

q, r

(a) Concurrency Pattern M. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`.

Figure 3.16: Pattern M

A

p

¬p, q

B

q

p p

(a) Concurrency Pattern N. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`.

Figure 3.17: Pattern N
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A

p

¬p

B

p p

(a) Concurrency Pattern O. (b) STN Constraints - trigger is A`.

(c) STN Constraints - trigger is B`, A`.

Figure 3.18: Pattern O

3.3 Inferences from Patterns

In this section we see the inferences made on the basis of each pattern’s structure, when it

is triggered during planning. Table 3.1 details this information, which is divided into four

columns. Column 1 labels which pattern type the tuple is for and in subscript tells us which

start action(s) need to be added to the plan and in what order, for the pattern instance to

be triggered. For example, the first tuple contains AAB which means that it is referring to

pattern type A, where the pattern is triggered by actions A` and B`. Column 2 then tells us

explicitly that A` must be followed by B` as the trigger actions. The trigger action(s) and

the order they must be applied (if there are two trigger actions), is referred to as the trigger

component of the pattern. Column 3 shows the STN constraints that can be inferred. Some of

these constraints are inferred through transitivity, given the inferred constraints above them

and are shown brackets. Column 4 tells us which, if any, new actions are added to the plan

via the inference. If no new action is added because the starts for both actions in the pattern

instance are needed to trigger it and the rest of the pattern consists of only enforcing ordering

between the action ends or simply detecting that required concurrency exists, then ‘None’

appears in that column.

For patterns with only one trigger case, this means that in the forward search framework

that we operate in, that this is the only viable trigger case. For some pattern types, there

are two trigger cases that enable different inferences. Pattern C is an example of this and is

separated into two trigger cases denoted as CAB and CB informing us of which start action(s)

need to be added via search and in what order to enable inference, using the same notation as

described for pattern A. CAB is for the case where A` followed by B` appears in the plan head

before inference can occur and CB is for the second case where only B` appears in the plan,

but can trigger the pattern for inference on its own. We can see that the amount of gain and
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the significance of the inference between these two cases varies, and so does the inferential

power. We will see in later discussions how the inference power of each pattern case can be

measured and compared.

Pattern Case Trigger Action(s) Constraints Inferred New Actions Added

AAB A`<B` Ba<Aa

(B`<Aa) None

BAB A`<B` B`<Aa None

CAB A`<B` Ba<Aa

(B`<Aa) None

CB B` A`<Ba

Ba<Aa

B`<Aa A`, Aa

DA A` A`<B`

Ba<Aa

(B`<Aa) B`, Ba

EA A` A`<B`

B`<Aa B`, Ba

FA A` A`<Ba

Ba<Aa

(B`<Aa) B`, Ba

FB B` A`<Ba

Ba<Aa

(B`<Aa) A`, Aa

GA A` A`<Ba

B`<Aa B`, Ba

GB B` A`<Ba

B`<Aa A`, Aa

GReflexiveA1 A1 ` A1 `<A2 a

A2 `<A1 a A2 `, A2 a

GReflexiveA2 A2 ` A2 `<A1 a

A1 `<A2 a A1 `, A1 a

HA A` A`<B`

Ba<Aa

(B`<Aa) B`, Ba

HB B` B`<A`

Aa<Ba

Continued on next page
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Table 3.1 – continued from previous page

Pattern Case Trigger Action(s) Constraints Inferred New Actions Added

(A`<Ba) A`, Aa

IAB A`<B` B`<Aa

Aa<Ba None

JA A` A`<B`

Aa<Ba

(B`<Aa) B`, Ba

KA A` A`<B`

Ba<Aa

(B`<Aa) B`, Ba

KB B` B`<A`

Aa<Ba

(A`<Ba) A`, Aa

LA A` A`<Ba

Ba<Aa B`, Ba

LBA B`<A` Ba<Aa None

MA A` A`<B`

B`<Aa B`, Ba

MB B` B`<A`

Aa<Ba

(A`<Ba) A`, Aa

NA A` A`<B`

B`<Aa B`, Ba

NB B` B`<A`

Ba<Aa

(A`<Ba) A`, Aa

OA A` A`<B`

B`<Aa B`, Ba

OBA B`<A` Ba<Aa

(A`<Ba) None

Table 3.1: Pattern triggers and Inferences. Adapted from (Talukdar [2016])
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3.3.1 Chains of Patterns

In addition to the inferences possible from triggering of a single pattern instance during plan-

ning, it is also possible for multiple patterns to chain together enabling all of their inferences

to occur. A chain of patterns exists, where two patterns are linked together by a common

action that is the inferred action for one pattern and then subsequently the trigger action

for another pattern. Let us consider the smallest chain of 2 patterns, an example of which

is shown in Figure 3.19. Here, we can see that A triggers the addition of B, which in turn

triggers the addition of C. The actions A and B form a pattern of type D instance and

action B and C form a pattern type E instance. A chain of patterns can be made up of the

different pattern types as shown in the example in Figure 3.19, or of the same pattern type

but constructed in the same way. An example of a large chain of patterns is presented in

Figure 3.20, where we see the same situation but there is now a larger set of inferences that

are cascaded through, since adding action 1 to the plan via search, causes the other four

actions to be added via inference. The larger the chain, the larger the search to inference

ratio becomes. We will discuss chains of patterns and their resulting inferences further in the

following chapters.

Figure 3.19: Chain of two patterns of different types.

Figure 3.20: Chain of four patterns of different types. First appeared in (Talukdar [2016])
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3.4 Summary

In this chapter we have provided a catalogue of the pair-wise patterns of required concurrency

that we handle. We have presented a set of pattern types that are uniquely different, for

pair-wise required concurrency, that are based on the constraints created from the predicate

structure of the two actions in each pattern. Additionally, we also have a reflexive pattern

type for pattern G, which we have illustrated separately from G, since it is a pattern created

from two instances of the same operator. GReflexive is unique in that the predicate structure

is symmetric for both actions, making it possible to have a reflexive version of the pattern.

In total this gives us 16 pattern types, of which 15 (counting G and GReflexive together) have

different combinations of flexibility in how the patterns can be triggered and what can be

inferred. Chapter 4 will show how the 15 pattern types are uniquely different in structure

and exhaustive for all types of pair-wise required concurrency according to the sequences

of pattern application.1 Each of the pattern diagrams illustrated in Section 3.2.2 show one

possible way in which the required concurrency relationship it depicts and the inference it

enables can exist. However, there are other configurations of predicate structure that can

form the same required concurrency relationships enabling the same inferences. In POPI, the

pattern types in Section 3.2.2 are the predicate structures that are detected. The predicate

names are arbitrary, but the matching of the same predicate configurations as illustrated in

each pattern type’s diagram is required to detect an instance of that pattern type.

1Pattern application is the order the snap actions in the pattern are applied, and after which action required
concurrency becomes known to the planner, enabling inference.



Chapter 4

Patterns Structures as Sets

4.1 Overview

Following the presentation of patterns structures in Chapter 3, for required concurrency be-

tween pairs of actions, we now present a formal analysis showing that these patterns and the

inferences they enable are complete and exhaustive. In order to achieve this, we consider

all the ways in which two actions can occur concurrently and enable opportunities for doing

inference.

In this chapter we present a formal analysis of required concurrency between action pairs.

The analysis presents patterns of required concurrency as sets of sequences, where each se-

quence in a set represents a viable order in which the snap actions can be applied during

state progression, without violating the constraints of the required concurrency. The trigger

point of a pattern sequence is the point at which required concurrency becomes known to

the planner, enabling it to make inferences. This examination of pattern structures sees the

actions and the trigger point being coupled together and analyses the combinations of the

possible concurrent orderings, considering the trigger point as a crucial component of the

pattern. This is to determine exactly what unique pattern structures exist, where each type

of structure is distinguished and represented by a unique set of pattern sequences. Each

individual sequence is a valid pattern structure on its own, meaning that the set for it only

contains that one sequence of application. When considering structures where an action pair

must be concurrent, but less restricted in the ordering of the snap actions, this corresponds

to sets containing multiple sequences.

This perspective gives us a broader and more comprehensive method of recognising re-

quired concurrency and a basis for provably determining that we cover a complete set of

pattern types for pairs of durative actions. The terms pattern ordering and pattern sequence

are used interchangeably from here onwards and both refer to the order in which the snap

58
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actions can be applied, and the point at which inference can occur. Each ‘Pattern type’ refers

to a unique set of these pattern sequences, representing the overall relationship between two

concurrent actions, where there exists one or more pattern sequences.

4.2 Pattern Sequences

This section introduces all of the individual concurrent pattern orderings possible for a pair of

durative actions A and B. The trigger point at which required concurrency becomes known

to the planner is considered key information, since it determines when the planner can do

inference. The location of the trigger point in the sequence also tells the planner exactly

which actions can be inferred and need to be applied, given the action choices made so far.

The asterisk ‘*’ symbol is used to represent the trigger point in a pattern sequence. The snap

action(s) before the trigger point will be referred to as the sequence head. The sequence head

contains important information, in that it tells us whether an action A that starts first in

a sequence can appear in a plan on its own; meaning there is no dependency on the second

action B in the pattern. The remaining snap actions that come after the trigger point in a

sequence are referred to as the sequence tail.

To fully illustrate what the difference between these two scenarios are, let us distinguish

the two cases. The pattern sequence A`, B`, * , Ba, Aa allows for the execution of both ac-

tions A and B as follows, [A`, B`, Ba, Aa], but it also allows for just A to execute on its own

without B as follows [A`, Aa]. This is because there is only a one way resource production

and consumption relationship between A and B, where B depends on A but not vice versa.

Conversely, now when we consider the same sequence of actions, but with the trigger point

moved to be after A`, as follows, A`, * , B` , Ba, Aa, there is now a two way dependency

between A and B, where A cannot occur on its own as in the first case. Only the concurrent

sequence [A`, B`, Ba, Aa] can be applied, which means required concurrency is known to exist

immediately after applying only A`, without needing to see B` as well, as is the situation in

the first case. This information, along with the details of the specific constraints between the

actions, that form the required concurrency relationship, determines which type of pattern it

is. Each unique set of pattern sequences makes up a different pattern structure, the strictest

cases of which are the sets containing a single sequence.

When considering patterns of durative action pairs, this translates to four snap action end

points (happenings). A pattern triggers and enables temporal inference, after either the first

or second snap action has been applied from the sequence. The sub-sequence of actions that

trigger inference correspond to the actions in the trigger component of a pattern, defined in

Section 3.3 of Chapter 3. A different trigger component means a different pattern sequence



CHAPTER 4. PATTERNS STRUCTURES AS SETS 60

for a pattern structure, since the number and order of the actions in the trigger component

matters and also constitutes an entirely different pattern sequence. Conversely, two sequences

with the same trigger component does not necessarily mean that they are part of same pattern

sequence, since the ordering of the sequence tail (end snap actions) may be different.

There are four snap actions in a single pattern sequence; the trigger point is after either

the start of action A or after the start of A and B. This means that there are four different

patterns sequences starting with A. Since A and B are symmetric, there are another four

starting with B, with trigger points in the same places. Therefore there are eight sequence

to consider in total. When looking at each pattern sequence individually, each sequence that

starts with an action A has a symmetric counterpart starting with an action B. In general, a

pattern structure cannot have in its set of sequences, a pair of symmetric sequences. However,

there is an exception to this generalisation which will be explained later in the chapter, but

is a case ruled out in this analysis, which we will discuss.

Table 4.1 presents the eight sequences, showing all the combinations in which a pair of

durative actions may be applied in forward search and the different points at which required

concurrency becomes known and inference can occur. It is important to note that the column

showing the constraints inferred, refer specifically to those sets containing these single se-

quences. The constraints that are in brackets are those that are inferred through transitivity,

having inferred the other non-bracketed constraints. In addition, sequences 1, 2, 3 and 4 are

symmetric to sequences 5, 6, 7 and 8 respectively. This being the case, it is still important

to enumerate all 8 of them, since we consider the cross space combination of all 8 sequences

for the purpose of considering pattern sets where there are multiple sequences. Although not

all of these sets are valid pattern sets, as will be described in Section 4.3, some are, and all

combinations must be considered in order for this analysis to be complete.
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Sequence No. Pattern Sequence Constraints Inferred New Actions added to Plan

1. A`, B`, * , Ba, Aa Ba< Aa

(B`<Aa) None

2. A`, * , B`, Ba, Aa A`<B`

Ba<Aa

(B`<Aa)
(A`<Ba) B

3. A`, B`, * , Aa, Ba Aa<Ba

(A`<Ba) None

4. A`, * , B`, Aa, Ba A`<B`

Aa<Ba

(B`<Aa)
(A`<Ba) B

5. B`, A`, * , Aa, Ba Aa<Ba

(A`<Ba) None

6. B`, * , A`, Aa, Ba B`<A`

Aa<Ba

(A`<Ba)
(B`<Aa) A

7. B`, A`, * , Ba, Aa Ba<Aa

(B`<Aa) None

8. B`, * , A`, Ba, Aa B`<A`

Ba<Aa

(A`<Ba)
(B`<Aa) A

Table 4.1: Patterns of Actions with Required Concurrency. Asterisk ‘*’ symbol comes after
the subset of snap actions required to be in plan before required is known to exist by the
planner. Constraints in brackets are inferred through transitivity, having inferred the other
constraints.

4.3 Sets of Pattern Sequences

It is possible for actions in a pattern structure to be applied in one of multiple different

sequences, if the trigger component is different or if the trigger component is the same but

there is no constraint for order in which the ends of the actions are applied. We have observed

in Section 4.2 that all of the eight individual sequences are possible as pattern structures in

their own right, and each sequence has a symmetric counterpart. We now look at how to

view the pattern structures, for sets containing multiple sequences. We provide theorems and

subsequent proofs to show which sets of sequences constitute valid pattern structures with

required concurrency. In order to calculate the number of valid sets of pattern sequences,

we first must calculate all of the possible combinations of pattern sequences. As there is no

ordering or repetition of the sequences in a set, having eight elemental sequences means that
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there are 255 distinct set combinations, excluding the empty set. For a pattern structure,

where its set contains multiple sequences, it must be that any of the sequences in the set can

be applied. The pattern sets which exist will be determined with the following assumptions

in place:

1. All actions are durative actions using PDDL 2.1 (Fox and Long [2003]).

2. No conditional effects are used.

3. The existence of a pattern structure cannot depend on the ability of the planner to

schedule simultaneous happenings.

4. Disjunctive preconditions are not used.

5. Negative preconditions are not used.

6. None of the ‘pattern structure facts’ are true in the trigger state (state where the

trigger action becomes applicable). These are the facts that maintain the specific type

of required concurrency relationship between two actions, A and B, of a distinct pattern

type (corresponding to a unique pattern set).

7. The pattern facts, can only be achieved by the two actions in the pattern structure.

Initially it may seem counter intuitive to combine the individual pattern sequences in

Table 4.1 together into a pattern structure. However, it is possible for patterns of required

concurrency to exist with varying levels of constraints. The goal of combining multiple se-

quences is to determine all of the pair-wise patterns that exist, that have varying levels of

constraints.

An important step in looking at how patterns of required concurrency can be constructed

by the combining different individual sequences, is to first define exactly what it means when

there is more than one sequence in a set. When there are multiple sequences in a set, it must

be possible for the planner, under some circumstance, to be able to apply each of the actions in

the pattern and trigger inference in the order defined in each sequence. The pattern structure

must still enforce required concurrency with no sequential application of the actions possible.

Effectively, the group of pattern structures created from combining multiple sequences within

a set, is a cross breed of pattern sets, where some are stronger and more informative than the

individual sequence sets, and some are weaker, depending on the comparison being made.

To illustrate the concept with an example, we can see trivially that in the case where an

action B only needs at its start, a temporarily available resource provided by an action A,

that required concurrency still exists regardless of the order in which the end of A and B are

applied. This is a combination of sequence 1 and 3, where it must be possible to apply both
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of them. This is exactly the situation seen in pattern B, shown in Figure 3.4 in Chapter 3.

In this type of situation, this means that the start of A and B must be seen before required

concurrency becomes known to the planner and inference can occur, however there is also

now still some choice about which order to apply the ends of the two actions. This is unlike

the set where there is only sequence 1 or only sequence 3, where we have a disjunction of

these sequences and the planner knows a particular order must be enforced. In the combined

case of 1 and 3, there is a conjunction of sequences with the same sequence head and different

sequence tails. The planner can only infer that there is in fact required concurrency that

exists and must be maintained, but cannot infer the order of applying the end actions. It is

because of this, that when there is a conjunction of two sequences with the same sequence

head, but different sequence tails in the same set, we view the combination of these sequences

as effectively being one sequence, but with choice about which sequence tail to apply. The

pairs of sequence that this applies to, in addition to 1-3 produced from set {1, 3}, are {2, 4}
to produce 2-4, {5, 7} to produce 5-7 and {6, 8} to produce 6-8. The sequences 1-3 and 5-7

are symmetric, as are sequences 2-4 and 6-8. On the surface, viewing these particular pairs

of pattern sequences in this manner does not seem to add any value, however the usefulness

of this will become clear in the proof for Theorem 4.3. It is important to note that Table

4.2 is made up of the same individual pattern sequences in Table 4.1, but also includes a dif-

ferent representation of pairs of sequences which have the same sequence heads but different

sequence tails for the sets in which these sequences appear together.

In general, when there is more than one sequence in a set, the number of constraints on

the order of action application is reduced, as there may be some choice about the order of

application, depending on the number of sequences in the set and if there is a pair of sequences

with the same trigger component. This will become clearer in Section 4.4 which discusses

pattern strength and the inferential power of each pattern structure according to its trigger

component.

Definition 4.1 (Pattern Set). A subset of the 8 pattern sequences presented in Table 4.2.

Definition 4.2 (Sequence Symmetry). Exists between two different sequences when the

positions of the two start snap actions and the two end snaps actions are in the same positions

of their sequences, the trigger point is in the same location, but the actions in those positions

between the sequences are different.

Definition 4.3 (Set Symmetry). Exists between two sets when each set contains the sym-

metric sequences of the other set.

Definition 4.4 (Contradiction). Exists in a pattern set, if for any pair of its sequences, a pair

of actions A and B cannot be constructed with required concurrency, such that the planner

can execute either of its sequences.
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Sequence No. Pattern Sequence Combined Meaning

1. A`, B`, * , Ba, Aa N/A

2. A`, * , B`, Ba, Aa N/A

3. A`, B`, * , Aa, Ba N/A

4. A`, * , B`, Aa, Ba N/A

5. B`, A`, * , Aa, Ba N/A

6. B`, * , A`, Aa, Ba N/A

7. B`, A`, * , Ba, Aa N/A

8. B`, * , A`, Ba, Aa N/A

1-3. A`, B`, * , [Ba, Aa]
[Aa, Ba] No Inference Possible

2-4. A`, * , B`, [Ba, Aa]
[Aa, Ba] Infer addition of B, but not ordering of Aa and Ba

5-7. B`, A`, * , Aa, Ba

[Ba, Aa] No Inference Possible

6-8. B`, * , A`, [Aa, Ba]
[Ba, Aa] Infer addition of A, but not ordering of Aa and Ba

Table 4.2: Pattern Action Sequences, displaying the representation sequence pairs that have
the same sequence head, but different sequence tails, when they appear together in a pattern
set.

Definition 4.5 (Sequence Specific). The property of a Pattern Set, if the sequences specified

are the only orderings in which the pattern actions and their associated inferences can occur

and no others.

Definition 4.6 (Invalid Pattern Set). A pattern set that contains one or more contradictions.

Theorem 4.1. All sets that contain a sequence starting with {A`, B`, * ... } and another

sequence starting with {A`, * , B` ... } contain a contradiction and are not valid pattern sets.

These are the sets containing the sets {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1,4}, {2, 3}, {5, 8},
{6, 7} as subsets.

Proof. First, consider the set {1, 2}. Assume that the set {1, 2} is a valid pattern; this

corresponds to A`, B`, * , Ba, Aa and A`, * , B` , Ba, Aa for sequences 1 and 2 respectively.

Let us analyse what each of these pattern sequences mean in turn. For sequence 1, the

sequence representation shows us that action A can occur on its own and exist in the plan

without any dependency on action B. This is indicated by the fact that the trigger point

‘*’, when required concurrency becomes known and the time when inference can occur, is

after the start of both actions A and B. In contrast, action B cannot exist without action

A and must exist within the envelope of A` and Aa. For sequence 2, we now see that the

trigger point is immediately after the start of action A and the rest of the pattern sequence

is the same as sequence 1. This means that the point at which required concurrency becomes
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known, is after A` alone and simultaneously after both A` followed by B`, have been applied.

This is a contradiction, since the earliest time point at which the required concurrency of A

and B becomes known is always the same, when the start of the two actions is in the same

order for two different pattern sequences. It is not logical that only A` and simultaneously A`

followed by B`, are both possible as being the earliest time at which the required concurrency

for the action pair becomes known, when the order of the snap actions are the same. It is

clear that it is the two start actions and their ordering that is important. Therefore the same

reasoning applies for why sets containing {3, 4} cannot be valid patterns, since the set {1, 2}
is the same as {3, 4}, except that for sequence 3 and 4, the end of action A comes before the

end of action B.

Again, the same reasoning is true for sets containing {5, 6}, {7, 8} as subsets, which we

can see by switching around the labels of actions A and B for these sets. This is since {1, 2}
and {5, 6} are symmetric to each other, as are the sets {3, 4} and {7, 8}.

We have seen that the reason for the contradiction in sets containing {1, 2}, {3, 4},
{5, 6}, {7, 8} as subsets, is that the two sequences in each of these sets, order the two start

actions the same, but trigger the inference at two different locations, which has been shown

as not possible. This is a general rule which is also applicable for the sets containing {1, 4},
{2, 3}, {5, 8}, {6, 7} as subsets. These pairs of sequences consist of the contradictory starting

components {A`, B`, * , ... } and {A`, * , B` , ... } which cannot exist together for a pair of

actions A and B in a pattern of required concurrency.

Theorem 4.2. Sets containing sequences that have both {A`, B` * ... } and {B`, A` * ... }
as the trigger component are not valid pattern sets. Therefore the following pattern sets are

not valid: {1, 5}, {1, 7}, {3, 5}, {3, 7}.

Proof. Any set which contains sequences starting with both {A`, B` * ... } and {B`, A` * ... }
as sub-components results in a pattern where actions A and B can be sequential, hence the

concurrency is not required. This is since if A` and B` are needed in both orders to trigger

inference, this means that neither action can trigger inference on its own, because it must

be that neither action needs the other to occur concurrently in order to execute successfully.

This must mean that actions A and B can each appear in the plan without the addition of

the other or the actions can appear sequentially. However, it is prudent to acknowledge that

pattern structures for the sets containing these sequences may still exist, but that the con-

currency of the actions is optional and not required and is therefore ruled out. An example of

such a situation can be seen with set {1, 5}. Figure 4.1 shows an instantiation of the structure

where only sequences {1, 5} are possible for the concurrent occurrence of the actions, where

this is a non-required concurrent pair of actions. Without being able to schedule simultaneous

happenings without epsilon time gaps, this pattern cannot exist with required concurrency.
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A

r

r,¬q q

B

q

q,¬r r

Figure 4.1: Non-required Concurrency for set {1, 5}.

Theorem 4.3. The following sets are not valid pattern sets:

{1, 6}, {1-3, 6}, {1, 6-8}, {1-3, 6-8}, {3, 8}, {1-3, 8},

{2, 5}, {2, 5-7}, {2-4, 5}, {2-4, 5-7}, {4, 7}, {4, 5-7}.

Proof. To start with, let us consider the sets: {1, 6}, {1-3, 6}, {1, 6-8}, {1-3, 6-8}, {3, 8},
{1-3, 8}, where for each set there exists the trigger components {A`, B`, * ... } and {B`, * ... }.
In this situation, action A can exist on its own, but action B cannot. Both actions are able

to start independently of one another. This means that for required concurrency to exist, it

must be that it is Ba specifically that has a precondition achieved as an effect of A, since we

know A can exist on its own and therefore cannot have any conditions that depend on B.

Under these circumstances, there are four possibilities in which a fact p needed by Ba can be

achieved and deleted and still be true in time for Ba to be applied. We refer to these four pos-

sibilities as resolution cases, labelled w, x, y, z, shown in Table 4.3. For any of these pattern

sets to be possible, there must be a common resolution case among all of the sequences in

the set, in order to satisfy the precondition of Ba. Table 4.4 shows which pattern resolution

case(s) are available for each component sequence in the sets being considered. For each of

the sets: {1, 6}, {1-3, 6}, {1, 6-8}, {1-3, 6-8}, {3, 8}, {1-3, 8}, none of the sequences in the

set have a common resolution case, showing that they are not viable sets.

Now, let us consider the sets: {2, 5}, {2, 5-7}, {2-4, 5}, {2-4, 5-7}, {4, 7}, {4, 5-7}. As

these sets are symmetric to the first six sets asserted as not being viable, the same reasoning

follows for why they are not possible, when we consider that the same criteria must be satisfied

for sets containing the symmetric trigger components {B`, A`, * ... } and {A`, * ... }. There

must be a common resolution case for satisfying the precondition p of Aa provided by B.
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Resolution Case. Pre(Ba) Achiever(s) Pre(Ba) Deleter(s)

w A` Aa

x A` B`

y Aa B`

z A`, Aa B`

Table 4.3: This table shows the 4 resolutions cases, that each of the sequences that are
members of the pattern sets in Theorem 4.3 must have in common, in order to be a valid
pattern set.

Sequence No. Pattern Structure Pattern Resolution Case(s)

1. A`, B`, * , Ba, Aa w

3. A`, B`, * , Aa, Ba y, z

6. B`, * , A`, Aa, Ba x, y

8. B`, * , A`, Ba, Aa w, x

1-3. A`, B`, * , [Ba, Aa]
[Aa, Ba] No Resolution Case

6-8. B`, * , A`, [Aa, Ba]
[Ba, Aa] x, z

Table 4.4: This table shows the 4 resolutions cases, that each sequence which is a member of
one of the pattern sets in Theorem 4.3 must have in common, in order to be a valid pattern
set with required concurrency.

Lemma 4.1. The following pairs of pattern sets are symmetric: ({1},{5}), ({2},{6}), ({3},{7}),

({4},{8}), ({1-3},{5-7}), ({1, 8},{4, 5}), ({2-4},{6-8}), ({2, 8},{4, 6}), ({2-4, 6-8}, {2-4, 6-8}),

({2, 6},{2, 6}), ({4, 8},{4, 8}), ({2, 7},{3, 6}), ({2-4, 6},{2, 6-8}), ({2-4, 8},{4, 6-8}),

({2-4, 7},{3, 6-8}).

Proof. Section 4.2 mentioned that the individual sequences 1, 2, 3 and 4 are symmetric with

sequences 5, 6, 7 and 8 and respectively. In addition, this Section 4.3 mentions that 1-3 is

symmetric with 5-7, as are 2-4 and 6-8. This is because by switching the locations of actions

A and B we attain a group of sequences beginning with B, that have the same interleaved

interactions and are symmetric in structure to the sequences starting with A. The pairs of

symmetric sets are identified by using Algorithm 2. This algorithm takes one set from each

pair of sets mentioned and performs a function which maps each sequence in the set to its

symmetric sequence, for all of its sequences and then outputs the set which is symmetric to

the one given as input; the symmetric sets being the other component of the pair, that the

input set was chosen from. Let us consider the first pair of sets, where there is one sequence

in each set. If we input as S the set {1} into Algorithm 2, we see that x = 1 and since 1

is less than 5, x is increased by 4, giving it a value of 5. This is then added to set S′; since

there are no more sequences in S, S′ is returned containing only the sequence 5. The set {5}
is exactly the set which is symmetric to {1}. If we input {5}, this translates back to {1},
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since 5 - 4 = 1. Let us now consider the pair ({1-3},{5-7}). Even though when 1 and 3 are

together in the same set, we view them as one conjunctive sequence 1-3, as we also do for 2

and 4, 5 and 7, 6 and 8, we still apply the function of Algorithm 2, for each of its constituent

sequences, in this case 1 and 3, separately. We then join the two symmetric sequences into one

conjunctive sequence again. Therefore, when we input {1-3} into Algorithm 2, we perform

the operations: 1 + 4 = 5 and 3 + 4 = 7, join these two resultant sequences together and

get the set {5, 7}. We see that {5-7} is exactly the set listed as being symmetric to {1-3}.
Inputting {5-7} translates back to {1-3}, since 5 - 4 = 1 and 7 - 4 = 3.

This same process applies to all of the pairs of sets mentioned, where inputting one of

its sets produces its symmetric counterpart set. We can verify that the mappings of these

pattern sequence numbers are correct by referring back to Table 4.2 that shows all of the

pattern sequence structures. The first eight tuples show the individual sequences and we can

see that for each sequence, its symmetric counterpart is 4 tuples away, hence the reason for the

function in Algorithm 2 being the way it is. We should also note that the sets {2, 6}, {4, 8}
and {2, 4, 6, 8} are self symmetric, since when input each of these three sets into Algorithm

2, we get the same sets as the output.

Algorithm 2: identifySymmetricSets
Input : patternSet S
Output : patternSet S′

1 foreach sequenceNumber x in S do
2 if x < 5 then
3 x = x + 4;
4 S′.add(x);

5 else
6 x = x - 4;
7 S′.add(x);

8 return S′

f(x) =

x+ 4, if x < 5

x− 4, otherwise
(4.1)

Definition 4.7. S = S′ if and only if S′ = { f(x) : x ∈ S }

Theorem 4.4. The following pattern sets constitute the only valid pattern sets, when exclud-

ing symmetries: {1}, {2}, {3}, {4}, {1-3}, {1, 8}, {2-4}, {2, 8}, {2-4, 6-8}, {2, 6}, {4, 8},
{2, 7}, {2-4, 6}, {2-4, 8}, {2-4, 7}

Proof. Having proved Theorems 4.1, 4.2, 4.3 and Lemma 4.1, we see that only these sets

constitute the unique pattern structures. This is reflected in Table 4.5, which shows by
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pattern label one tuple per unique pattern set. Reflexive patterns are not included in this,

hence GReflexive is not included in Table 4.5.

Pattern Label. Set Symmetric Set

A {1} {5}
B {1-3} {5-7}
C {1, 8} {4, 5}
D {2} {6}
E {2-4} {6-8}
F {2, 8} {4, 6}
G {2-4, 6-8} {2-4, 6-8}
H {2, 6} {2, 6}
I {3} {7}
J {4} {8}
K {4, 8} {4, 8}
L {2, 7} {3, 6}
M {2-4, 6} {2, 6-8}
N {2-4, 8} {4, 6-8}
O {2-4, 7} {3, 6-8}

Table 4.5: Valid Pattern Sequence Sets containing required concurrency.

Symmetric sequences can both appear in the same set of sequences as a valid pattern

structure, if both sequences can be achieved without a contradiction. This is the case for sets

{2, 6}, {4, 8} and {2-4, 6-8}. Sets {2, 6}, {4, 8} and {2-4, 6-8} being self symmetric relies on

Lemma 4.1 and justifies Equation 4.1 and Algorithm 2. Equation 4.1 is the function encoded

in Algorithm 2. Therefore, Algorithm 2 is one representation of the result of Equation 4.1.

Using Algorithm 2 as an operator for identifying symmetric sets, we can see that inputting

the sets {2, 6}, {4, 8} and {2-4, 6-8} into the algorithm produces the same sets of sequences

as the output.

Given the unique pattern structures that have been identified, we can put the patterns

into categories, according to the combination of sequences in each pattern’s associated set.

We identify three categories of patterns. One category is for patterns where each sequence in

its set has two trigger actions. Another category is for patterns where each sequence in its

associated set has one trigger action. The last category is for patterns where there is both a

one trigger action sequence and a two trigger action sequence in its set. All odd numbered

sequences have a two action trigger component and all even numbered sequences have a one

action trigger component. Given this criteria for categorising the patterns, in the two trigger

action category we have patterns A, B and I. In the single trigger action category, we have
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patterns D, E, F, G, H, J, K, M and N. In the mixed category with one and two trigger

actions sequences contained in their sets, we have patterns C, L and O.

4.4 Pattern Strength

We now discuss how to determine the strength of each pattern set shown in Table 4.5, ac-

cording to each of its distinct trigger component of actions displayed in Table 4.6. The key

features in determining the inferential power of each pattern type, given each of its distinct

trigger action sets are:

1. The size of the trigger component either being 1 or 2 snap actions.

2. The number of different trigger action components.

3. The number of different orders in which the remaining 2 or 3 snap actions can be applied,

according to the required concurrency constraints, given the trigger action(s) already

applied.

4. The location of the trigger point in each pattern sequence.

In Table 4.6, where there is more than one set of trigger actions for a pattern type, we

distinguish these in separate tuples, such that it is clear how many endpoints orderings the

planner can choose from as the result of using each trigger component for each pattern type.

Patterns C, F, G, H, K, L, M, N and O are pattern types where this is the case. For these

pattern types, each of its trigger components are included in subscript in the pattern name,

so that they can be referred to individually.

We determine the inference power of each of the cases in Table 4.6, according to the num-

ber of choices left in the ordering of the remaining snap actions (endpoints), given the specific

trigger component applied for that case. The calculation for this inference power is based

on the size of the trigger component and the number of ordering choices left after applying

that set of trigger actions. Table 4.7 presents the 4 possible cases. Pattern cases where the

trigger component size is 2, meaning both actions are needed in the plan before inferring

anything, with 2 orderings of the action ends possible, have the lowest inferential power of

1. The same situation with only 1 possible ordering after applying the trigger component,

is measured with a power of 2. The two cases where only 1 start action is needed have the

highest powers. If 2 orderings of the remaining 3 snap actions are possible after applying the

trigger component, this has a power of 3. The most inferential power comes from cases with

only 1 possible ordering for all 3 remaining actions after applying a set of 1 trigger action,

resulting in a power value of 4.
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Pattern Trigger Case Trigger Action(s) Trigger size no. Choices Power

AAB A`, B` 2 1 2

BAB A`, B` 2 2 1

CAB A`, B` 2 1 2

CB B` 1 1 4

DA A` 1 1 4

EA A` 1 2 3

FA A` 1 1 4

FB B` 1 1 4

GA A` 1 2 3

GB B` 1 2 3

GReflexiveA1 A1` 1 2 3

GReflexiveA2 A2` 1 2 3

HA A` 1 1 4

HB B` 1 1 4

IAB A`, B` 2 1 2

JA A` 1 1 4

KA A` 1 1 4

KB B` 1 1 4

LA A` 1 1 4

LBA B`, A` 2 1 2

MA A` 1 2 3

MB B` 1 1 4

NA A` 1 2 3

NB B` 1 1 4

OA A` 1 2 3

OBA B`, A` 2 1 2

Table 4.6: Displays the trigger case for each pattern type, including the trigger component
actions, the number of ordering choices left after triggering the pattern, and the resulting
inference power.

Trigger Component Size No. Remaining Choices Inference Power

2 2 1

2 1 2

1 2 3

1 1 4

Table 4.7: Determining Power of each pattern, given each distinct trigger Component, and
the remaining number of snap action ordering choices.

Figure 4.2 shows how each trigger case for each pattern type, is ranked in relation to each

other. This analysis shows us that there are four levels of inferential power. The key attribute

values, ‘Trigger Component size’ and ‘no. Endpoint Orderings’, that contribute towards this

ranking are mapped against each of the pattern trigger cases for each pattern individually in
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Table 4.6.

Figure 4.2: Increase in Power of Inference for each distinct trigger case of each pattern type,
according to information in Table 4.6.
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4.5 Pattern Abstraction Safety

In certain circumstances it is possible to compile a pair of actions in a pattern into one

action, where the compiled action can still execute concurrently with other external actions

where needed. In this section we propose the notion of Pattern Abstraction Safety (PAS),

and specify when it is safe to compile a pair of durative actions in a pattern structure into a

single durative action. The reason for this is so that the pattern of actions can be applied in

fewer state transitions, resulting in fewer state generations. The fact that there is required

concurrency between the action pair, means that it is guaranteed when one action is selected,

that the other is need in the plan as well. Using compilation, the preconditions and effects of

the two actions can be combined, the idea being that all of the preconditions become start

preconditions and all of the effects become end effects. There are two main benefits that a

compilation approach provides which are:

1. The planner does not need to produce individual states for both of the actions in the

pattern structure, hence reducing the number of states generated.

2. The planner does not need to perform search in order to determine how the actions in

the pattern should be interleaved to be correctly added to the plan because the compiled

action is pattern abstract safe.

The second point is a benefit that is achieved with POPI using our infer and search ap-

proach. Using compilation, it is a benefit gained by other approaches that do not do the

temporal inference that POPI does.

Even though it is possible for some patterns to be compiled so there is only one action,

this cannot be done for all pattern types. Some of the pattern types include an actions where

effects are deleted and then re-achieved. In this type of situation any action external to the

pattern that needs as a precondition a fact which is achieved and then deleted within the

pattern, can no longer be applied concurrently with the new compiled action that takes the

place of the pair of actions in the pattern. It may also be that the external action may never

be applicable even sequentially. For this reason we must define the condition for a pattern to

be Pattern Abstraction Safe and determine which pattern types meet this criteria and which

do not.

The condition for classifying a pattern as PAS is that there must be no action outside of

the pattern being compiled, that needs as a precondition, a fact deleted by an action inside

the pattern. This condition for classifying a pattern type as PAS means that all the pattern

types described in Chapter 3 that have delete effects are not PAS.
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Definition 4.8 (Pattern Abstraction Safe). Suppose that a and b are two durative actions

that are in a pattern of required concurrency and suppose that the intermediate states visited

during the execution of these actions through one of the valid paths is s1, s2, s3, s4. Then the

pair of actions is considered Pattern Abstract Safe if there is no action c whose preconditions

are in one of the states s1, s2, s3, but not satisfied in the state s4.

Algorithm 3: compilePatternActions
Data: ActionPair (a, b), lists abPreconditions, abEffects
Result: Action ab

1 foreach action act in ActionPair do
2 foreach precondition x in act do
3 abPreconditions.add(x)

4 foreach effect y in act do
5 if y is negative effect then
6 return (a, b) notPatternAbstractSafe

7 else
8 abEffects.add(y)

9 action ab
10 ab.startPreconditions = abPreconditions
11 ab.endEffects = abEffects
12 return ab

4.5.1 Compiling Patterns

Having defined the conditions for a pattern of actions to be PAS, we now go through the

pattern types dealt with in this thesis, illustrated in Chapter 3, and show which patterns

are PAS and which are not according to those conditions. The condition we propose for a

pattern to be Pattern Abstract Safe is simple but robust, where the predicate structure of a

pattern type has negative effects, it is deemed to not be safe to compile. We do not deal with

negative preconditions in the scope of our work and so this is not a consideration during the

PAS analysis. Algorithm 3 shows the process for checking if a pattern of actions is PAS and

adding the preconditions and effects of both actions to a new compiled action if it PAS. The

pattern types that do not have negative effects and so are PAS include: D, E, F, G, GReflexive,

J. The pattern types that have negative effects and are not PAS are: A, B, C, H, I, K, L,

M, N, and O. We should note that a pair of actions in a pattern of required concurrency

can have other preconditions and effects, that are not part of the predicate structure of the

pattern. Therefore it is possible that actions of the pattern types listed above as PAS, can

still be unsafe to compile if they have other negative effects that are not part of the pattern

structure. The pattern types listed as not being PAS, all have one or more negative effects

making up the predicate structure of the pattern itself, meaning actions of these patterns

types are never Pattern Abstract Safe, in any instantiation.
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4.5.2 PAS Example

In order to illustrate how our propose method for Pattern Abstraction works, let us consider

pattern D as an example. We can see in Figure 4.3 that Pattern D contains no negative effects

in either of its actions. If we input the pattern D action pair into Algorithm 3, we get the

compiled action AB as output presented in Figure 4.4.

A

p

q

B

p

q

Figure 4.3: Actions in Pattern D structure.

AB

p, q

Figure 4.4: Actions in Pattern D structure compiled into one action.

Figure 4.5 shows the state space for applying A and B in their original action format.

The letters in superscript are facts needed as preconditions for those actions they are next to

and the letters in subscript are the facts achieved as effects by those actions.

Figure 4.6 shows compiled action AB being applied, Any actions other than A and B that

require facts p or q as a precondition can use AB to satisfy these preconditions and can be

applied at s2.
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s0

s1

s2

s3

s4

A`p

pB`

Baq

qAa

Figure 4.5: Path in search space for applying a pair of actions A and B of pattern type D.

s0

s1

s2

AB`

ABap,q

Figure 4.6: Path in search space navigated using compiled action ab in pattern D structure.
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4.5.3 Non-PAS Example

Pattern A is an example of a pattern structure that cannot be compiled according to the

criteria specified for doing Pattern Abstraction. For convenience, we again illustrate pattern A

in Figure 4.7. We see that this structure cannot be compiled since the end of A has a negative

effect and deletes fact p. If we were to attempt to compile this structure, we would effectively

end up with an action AB with no preconditions or effects, since the only fact achieved is

also deleted and p as an invariant of B would be hidden as a result of the compilation and

would not be visible in the single compiled version of the action.

A

p ¬p

B

p

Figure 4.7: Example of Pattern A structure which is not Pattern Abstract Safe.

4.6 Summary

In this chapter we have provided a set of theorems that show all the forms of pair-wise required

concurrency that are possible in a general form, according to sets of concurrent application

sequences for the temporal propositional case. We have shown how the pattern types in Chap-

ter 3 are each an instantiation of the generalised pattern sets presented in Section 4.3 and how

they correspond. Furthermore, we have provided a method to classify the inferential power

of each of the patterns according to each specific trigger case. Finally, we have presented a

method for compiling certain pattern type structures which can prove beneficial during state

space exploration and also shown which pattern types cannot be compiled, strengthening the

motivation and usefulness of our approach in applying the actions in those pattern types

structures using our inference techniques. In Chapter 5 we will provide a method for mea-

suring the benefit of the inferences from each pattern type using information theory. This

measurement will be of the information gain of using the approach of POPI over its baseline

planner POPF and Breadth-First Search.



Chapter 5

Information Gain from Patterns

In this chapter, we present an information theoretic analysis of each pattern type described

in Chapter 3. We will discuss the information content of each pattern type, per trigger case

and the information gained using inference versus not using inference and using search in-

stead. In Chapter 4 we saw how the inferential power of each pattern, according to each of its

trigger cases varies and presented a system to categorise the inferential power of each pattern

case on one of four levels. This analysis will provide a perspective of the gain that may be

achieved from the patterns in the reduction of choices that must be made during planning

and generation of the state space.

We use Shannon’s theory of communication (Shannon [1948]) and his formula for calcu-

lating entropy to measure the information gained by POPI when adding a pair of actions in

a pattern using its combined search and infer process, instead of using an alternative state

exploration strategy. The reason for using information theory is because we are interested in

analysing what information POPI gains and knows it can exploit after triggering a pattern,

enabling the use of inference, compared with other approaches. Our approach for this analysis

is to measure the information gain of POPI over our baseline planner POPF, in order to de-

termine the theoretical increase in the amount of extra inference POPI can do when pattern

trigger actions become applicable in a state during planning. We will explain the context

of our problem scenario, the goal of which will be to add the two actions for each pattern

trigger case to a plan, and compare the choices that need to be made by each strategy being

compared. The difference in information content being measured is between when search is

used to generate a state, and when inference is used to generate a state, when it is pattern

actions being applied. We will discuss the planner POPI in its theoretical context and the

amount of gain it attains in information about how the rest of the actions in a pattern must

unfold. We also measure POPI’s information gain over Breadth-first search (BFS) which

blindly explores the state space without heuristic information. The reason for this is that we

also to provide a view of the maximum benefit that POPI brings as well as its improvements

78
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over the baseline planner POPF.

5.1 Measuring Information Gain

Required concurrency is known to exist following the commitment to the trigger action com-

ponent of the pattern, which is either the start of A or B or both. Inference is certainty

in knowing how actions must be applied having discovered that required concurrency exists.

We propose which state transition choice points can in principle be avoided by POPI. The

information gain in each pattern trigger case is calculated by counting the number of state

transitions that POPI must make to apply the actions in the pattern structure, as opposed

to the search strategy being compared with. As some patterns have two trigger cases for how

inference is enabled, we calculate the information gain of POPI against the other strategies

for each pattern trigger case individually, as they can vary.

The reason for counting state transitions is because we want to consider BFS for com-

parison, where state evaluation is irrelevant. We also want to consider our baseline planner

POPF, which evaluates some states but not necessarily all states, depending on whether it

has proven a state inconsistency via temporal reasoning or through detecting a violation of

active invariants. The counting of state transitions allows us to abstract away from the state

operation, which is the generation of the state and perhaps its evaluation, depending on the

strategy being used. This gives us a common method for comparison and allows us to focus

on measuring the gain by eliminating choice in the selection of the actions used to perform the

state transitions. POPI can in principle short circuit the generation and evaluation of some

states by being able to apply the combined effects of actions inside a pattern in a single state

transition. All of the effects of each pattern of actions, according to one of it valid application

sequence(s) can in theory be applied in one operation and generating a single successor state.

Practically in its implementation, POPI still generates and evaluates intermediary states

for book-keeping purposes, but does not use the heuristic evaluations of intermediary pattern

states. However, these are implementation details of how state operations occur and are not

important when assessing the theoretical reduction in the number of state transitions that

need to be chosen, using the combined inference and search strategy of POPI compared with

other search strategies. When required concurrency is detected by POPI following the selec-

tion of the trigger action(s), the sequence of state transitions in the path to the completion

of the pattern are inferred. Certainty in knowing a valid sequence of action applications that

must happen as the next state transitions, following the application of the trigger action(s),

is the gain in information being measured.
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To calculate the information gain, we must define which state transitions are counted.

For BFS and POPF all state transitions are counted, since a choice must be made at each

state about which action to generate the next state with. For POPI only the state transitions

from the application of the trigger component action(s) are counted. This is because the

state transitions resulting from the remaining actions in the pattern are generated from the

inferred sequence of actions that constitute the reduction in search choices, achieved by POPI

triggering a pattern. POPI does not need to make a search choice at the intermediary pattern

states generated via the inferred sequence of actions. All of the inferred actions are treated

as an extension of the initial choice to select the trigger action(s).

5.1.1 Problem Context

In order to perform a consistent calculation of the information gain of POPI in each pattern

case, we need a consistent problem situation in which to depict and compare the state space

expansion processes for the problem solving systems that are being compared; these being

Breadth-first search, POPF and POPI. For this reason the problem scenario within which

the pair of actions in each pattern structure will be added to the plan is set up as follows.

The only actions that exist are A and B, each of which needs to be applied to reach the goal

and nothing else. This is because we want to focus the analysis of the information gain with

regards to the state space expanded using the actions in the pattern for the pure atomic case

of the problem. Allowing other actions in the state space in addition to the pattern actions

does not help us to calculate the information gain produced by the patterns and complicates

the calculations and analysis unnecessarily. Actions A and B are also both one-shot actions

and no other groundings of the action exist.

Although this problem scenario is simple and highly restrictive, this is so that we can

determine the information gain achieved without interference from other external factors.

This will allow us to attain a precise set of measurements that can be compared based on a

common set of ground rules. We decided to make the problem such that both A and B both

achieve a goal fact, ga and gb respectively meaning both need to be applied. This is because

in the case of some patterns, either A or B can be applied on its own and we are interested

in what happens when required concurrency exists; these patterns require the starts of A and

B to be applied to enable inference. As there are two trigger cases for some patterns, where

this is the case, the paths navigated by POPF and POPI in both trigger cases of a pattern

will be included in the state space diagrams for that pattern. As for BFS, the strategy itself

means that it expands states using all applicable actions at each level of the state space from

left to right, before progressing to the next level. Therefore we do not display a second goal

state on the right side of the state space for BFS, if one is already found on the left since it

would be part of the same path navigated from the start. The POPF and POPI state spaces
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are illustrated to display an ‘either or’ situation; the two paths to the goal represent mutually

exclusive paths according to how the pattern triggers.

The rules for our state space expansions and information gain analysis are as follows:

1. The facts that exist as preconditions and effects for the actions in each pattern are those

in its example pattern structure, as illustrated in Chapter 3. The only other facts that

exist are those making the pattern actions one shot and each action so it achieves one

of the two goal facts, da and db. These additional facts are displayed in Figure 5.1.

2. One instance of each action in the pattern may be used to achieve the goal (one shot

actions).

3. In all strategies, we assume regression of invariants through action states rule is used,

meaning that invariants on actions are also treated as start preconditions. We utilise

this rule for our analysis in the same way that the POPF planner does as described in

subsection 2.8.11 in Chapter 2.

4. Both actions must be applied, each action achieves one of two goal facts (goal is for

pattern to be completed).

5. Compression safety is not utilised during state expansion.

6. Assume action durations may be of whatever length required to support any valid

sequence of action application, given the preconditions of action endpoints.

7. Only state transitions are counted, abstracting away from whether this results in only

state generations or state evaluations as well.

8. We look at the worst case and assume that where the wrong choice may be made by

a strategy, that this happens. In the case of POPF and POPI which use heuristic

guidance, where there is an arbitrary choice and the wrong action can be selected, it is.

9. We assume state memoization is used during state expansion by all strategies, such

that we do not consider state spaces where the same two actions are repeatedly applied,

producing the same states an arbitrary number of times.

The gain in information content using POPI’s approach over Breadth-first search (BFS)

and POPF is calculated as:

Information Gain = −log2(Pi) ,

where Pi is the number of state transitions generated via search by POPI divided by the
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A

da

¬da ga

B

db

¬db gb

Figure 5.1: One shot action pair, each achieving one goal condition.

number of state transitions used by the search strategy being compared with (BFS or POPF),

in order to successfully apply a pair of actions A and B in pattern of required concurrency

via a valid sequence of application.

5.2 Measuring Information Gain from Pattern Cases

In this section we will look at the number of bits of information gained via the inference of

each pattern trigger case and discuss each of them in turn. The search space diagrams for

each of the three strategies are presented as sub-figures for each pattern, displayed in Figures

5.3– 5.18 for pattern types A, B, C, D, E, F, G, GReflexive, H, I, J, K, L, M, N, O respectively.

Figure 5.2 shows the full state space for all the combinations in which a single instance of

actions A and B may be applied, not taking into account any particular pattern. The state

space expanded by each strategy is a subset of this state space, for all pattern types.

5.2.1 State Space Diagrams

For the Breadth-First Search and POPF sub-figures, all state transitions are always selected

as a choice via search. This includes end actions held in the event queue by POPF, which

although it knows must be applied, it still makes a choice to use as the transitions from

particular states. In order to understand the state space diagrams, we colour code the all the

state space diagrams as follows. The initial state will be highlighted in yellow; this is where

at least one of the start actions in a pattern becomes applicable. White filled nodes represent

states where a choice is made to select an action. States highlighted in red mean that those

states have been generated and evaluated but found to be dead-ends.

For the sub-figures displaying POPI’s state space, in addition to the colour coding men-

tioned so far, orange is also used for states which were generated from a search chosen action

the same as for BFS and POPF, but all make up a trigger component for a pattern. Finally,

for POPI, the green represents the states produced from inferred action state transitions. The

path from the orange state, or the second orange state if there are two, to the last green state
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is the inferred sequence of actions and states and these transitions are not counted for POPI.

A key point to understand is that once a pattern has been triggered, the remaining sequence

is a consequence of selecting the trigger action transition(s) for that pattern. The inferred

sequence is viewed as an extension of adding the trigger action(s) to the plan.

We now present the state space navigated by each strategy for each pattern type. Along

with the illustrations of these state spaces we will discuss the different strategies with regards

to their navigation of the state space. We can observe from the outset that all the states gen-

erated by POPF and POPI are the same, which is logical since there are only two one-shot

actions in the problem context for each of these state space examples. The difference is that

POPF makes a choice at each state when going to apply an action, whereas POPI applies the

inferred actions without considering alternative applicable actions.

In the interest of conciseness, for the patterns where there are two trigger cases, we have

included the paths navigated for the two trigger cases into single diagrams, but still one per

pattern type. This only applies for POPF and POPI, since the traversal of the search tree by

BFS is the same regardless of the trigger case. When viewing these diagrams and there are

two paths to the goal state, one starting with action A` and the other with B`, the calculation

for the information gain in each case is performed using only the number of state transitions

in the path for the trigger case being described.

s0

s1 s2

s3 s4 s5 s6

s7 s8 s9 s10 s11 s12

s13 s14 s15 s16 s17 s18

A` B`

Aa B` A` Ba

B` Ba Aa Aa Ba A`

Ba Aa Ba Ba Aa Aa

Figure 5.2: Possible State Space for a pair of actions in a pattern structure.
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In Figure 5.3a we observe that BFS generates state s3 using the end of action A because

it was applicable, but is a dead-end, given rules 2 and 4. We can also see that BFS generates

state s9, since the end of action A is applicable. However, this is a dead-end state since it

violates the invariant of action B meaning the goal can no longer be achieved. POPF using

its heuristic can determine that B is needed to achieve the goal as does POPI, causing them

both apply the start of B after the start of A. Figure 5.3b shows that POPF knows that

both of the actions started must also be finished and there are no other actions needed to

achieve the goal. POPF’s heuristic guides it to apply the start of A followed by the start of

B rather than simply applying the end of A immediately, which would result in a dead-end.

The pattern A structure informs POPI of the same application ordering given the ordering

constraints of pattern A, and POPI will not make any search choices at states s4 and s8. The

diagram for POPI’s application of the actions in pattern A is shown in Figure 5.3c. The lay-

out of the sub-figures for the remaining state space diagrams is the same, with Breadth-first

search, POPF and POPI as sub-figures (a), (b) and (c) respectively.

s0

s1

s3 s4

s8 s9

s14

A`

Aa B`

Ba Aa

Aa

(a) Breadth-First Search.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(b) POPF.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(c) POPI.

Figure 5.3: States expanded to apply actions in a pattern A structure.
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Figure 5.4 presents the state spaces navigated using a pair of actions in a pattern B struc-

ture. Although the states generated by BFS are the same as those for its situation in pattern

A. The difference here is that state s9 is not a dead-end. The reason that the search is com-

pleted with Aa after Ba, is because BFS expands each level from left to right, and assuming

the same arbitrary ordering of actions, s14 is again reached as the goal. State s15 could exist

from applying Ba after Aa produces s9 is alternative goal state, but s14 is reached first and so

BFS terminates. POPF and POPI expand the state space in the same manner as for pattern

A, however Ba and Aa could be applied in either order and the constraints of the action pair

allow for this.

s0

s1

s3 s4

s8 s9

s14

A`

Aa B`

Ba Aa

Aa

(a) Breadth-First Search.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(b) POPF.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(c) POPI.

Figure 5.4: States expanded to apply actions in a pattern B structure.
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The state space for pattern C shown in Figure 5.5 has two trigger cases. For BFS we

see that using its uninformed search it reaches a dead-end on three occasions in states s7, s9

and s10. The first goal state reached is s14, after 11 state transitions have been used. The

information gain of POPI over BFS here is therefore higher than in the case of patterns A

and B. The information gain of POPI over POPF is higher for trigger case CB than it is for

the CAB trigger case, since there is only one trigger action for the CB case and the rest of

actions are inferred as shown in Figure 5.5c.

s0

s1 s2

s3 s4 s5

s7 s8 s9 s10 s11

s14

A` B`

Aa B` A`

B` Ba Aa Aa Ba

Aa

(a) Breadth-First Search.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(b) POPF.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(c) POPI.

Figure 5.5: States expanded to apply actions in a pattern C structure.
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The state expansions for pattern D shown in Figure 5.6 presents the first time where the

navigation by all the strategies is the same. The reason for this is that pattern D has only

one order in which its snap actions can be applied, which is A`, B`, Ba, Aa. This is because

of the precedence constraints between actions A and B. Even though BFS does a blind state

space exploration, since there are only four snap actions and one order in which they become

applicable, its navigation of the state space is the same as POPF and POPI. However, POPI

benefits significantly in information gain from knowing that required concurrency exists be-

tween A and B and infers the addition of B to the plan and applies actions B`, Ba, Aa via

inference instead of search.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(a) Breadth-First Search.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(b) POPF.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(c) POPI.

Figure 5.6: States expanded to apply actions in a pattern D structure.
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The situation for pattern E shown in Figure 5.7 is similar to that of pattern D, the differ-

ence is that for BFS, state s9 is explored before the goal is reached in state s14. Pattern E is

less restrictive and allows Aa and Ba to be applied in either order. Since Aa is applicable at

state s4, BFS generates state s9 before it generates s14 reaching the goal, as seen in Sub-figure

5.7a. This means that the number of state transitions used by BFS for pattern E is one more

than in pattern D, hence the information gain of POPI over BFS will be higher than for

pattern D case, but is the same for POPI over POPF.

s0

s1

s4

s8 s9

s14

A`

B`

Ba Aa

Aa

(a) Breadth-First Search.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(b) POPF.

s0

s1

s4

s8

s14

A`

B`

Ba

Aa

(c) POPI.

Figure 5.7: States expanded to apply actions in a pattern E structure.
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For pattern F shown in Figure 5.8, there are two trigger cases. BFS does not reach a

dead-end and arrives at the goal state s14. In both trigger cases, POPI triggers for inference

after only one start action is added to the plan and the other three remaining actions are

inferred. Its gain in information over POPF is the same in both trigger cases, FA and FB.

s0

s1 s2

s4 s5

s8 s11

s14

A` B`

B` A`

Ba Ba

Aa

(a) Breadth-First Search.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(b) POPF.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(c) POPI.

Figure 5.8: States expanded to apply actions in a pattern F structure.

Pattern G is a situation where BFS, shown in Sub-figure 5.9a, explores many states before

reaching a goal state. This is since the constraints of the actions allow for more flexibility in

terms of the concurrent orderings compared to the other pattern types. We can see that BFS

generates nine states to reach the goal. This is the same regardless of the trigger case, whereas

the number of states generated can vary between trigger cases for POPI, between the two

trigger cases of a pattern type, as is the case for pattern type C presented in Sub-figure 5.5c.
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Although there are four concurrent orderings in which actions in a pattern G structure can be

applied, POPI knows that all of these are valid, and orders the snap actions in the pattern,

into a valid sequence of application that requires the least amount of reordering. This is why

we do not see more states in the state space for POPI in Sub-figure 5.9c. POPF sees the

same states generated shown in Sub-figure 5.9b, however following the initial state all of these

states are still generated via EHC, where the actions were chosen to generate its states.

s0

s1 s2

s4 s5

s8 s9 s10 s11

s14

A` B`

B` A`

Ba Aa Aa Ba

Aa

(a) Breadth-First Search.

s0

s1 s2

s4 s5

s8 s10

s14 s16

A` B`

B` A`

Ba Aa

Aa Ba

(b) POPF.

s0

s1 s2

s4 s5

s8 s10

s14 s16

A` B`

B` A`

Ba Aa

Aa Ba

(c) POPI.

Figure 5.9: States expanded to apply actions in a pattern G structure.
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Pattern GReflexive shown in Figure 5.10 is the same as pattern G, except the required

concurrency is between two instances of the same operator; the same analysis of the pattern

G state spaces applies.

s0

s1 s2

s4 s5

s8 s9 s10 s11

s14

A1` A2`

A2` A1`

A2a A1a A1a A2a

A1a

(a) Breadth-First Search.

s0

s1 s2

s4 s5

s8 s10

s14 s16

A1` A2`

A2` A1`

A2a A1a

A1a A2a

(b) POPF.

s0

s1 s2

s4 s5

s8 s10

s14 s16

A1` A2`

A2` A1`

A2a A1a

A1a A2a

(c) POPI.

Figure 5.10: States expanded to apply actions in a pattern GReflexive structure.
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In the pattern H scenario shown in Figure 5.11, we see that BFS reaches a dead-end twice

before getting to a goal state. In this pattern structure, there are two valid action application

sequences, one per trigger case. POPI has a high information gain over BFS in both trigger

cases, because in both cases BFS iterates through nine state transitions to reach the goal and

POPI applies four, but only the trigger action is applied via search. The triggering of the

pattern informs POPI with certainty in both of the trigger cases, that the remaining three

actions can be applied in a particular order, according to the precedence constraints enforced

by the pattern. The path navigated by POPF is the same as POPI, but again a search choice

is made at each state in selecting the action for the state transition.

s0

s1 s2

s4 s5

s8 s9 s10 s11

s14

A` B`

B` A`

Ba Aa Aa Ba

Aa

(a) Breadth-First Search.
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A` B`

B` A`

Ba Aa

Aa Ba

(b) POPF.

s0

s1 s2

s4 s5

s8 s10

s14 s16

A` B`

B` A`

Ba Aa

Aa Ba

(c) POPI.

Figure 5.11: States expanded to apply actions in a pattern H structure.



CHAPTER 5. INFORMATION GAIN FROM PATTERNS 93

The navigation of the state space with a pattern I structure for BFS in Figure 5.12a,

shows that one dead-end is reached before navigating down the path to the solution. Pattern

I portrays a one way consumer and producer relationship between a pair of actions A and

B. This means that there are two trigger actions and two states generated via search after

the initial state. This added to the fact that BFS only explores one other state in its state

space (the dead-end) compared to POPI, means that the information gain of POPI over BFS

is lower than in other more powerful patterns such as pattern H seen above. The information

gain of POPI over POPF is even smaller, since again POPI only applies the state transitions

resulting in states s9 and s15 via inference.
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s3 s4

s9

s15
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Aa B`
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(a) Breadth-First Search.

s0
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(b) POPF.

s0

s1

s4

s9

s15

A`

B`

Aa

Ba

(c) POPI.

Figure 5.12: States expanded to apply actions in a pattern I structure.
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In the pattern J state spaces in Figure 5.13, we see the exact same situations as in pattern

D, except that the order of the snap actions is different. The number of states generated via

search and inference is the same amongst all of the strategies as it is for pattern D and so is

amount of information gain of POPI over BFS and POPF. Since actions Ba and Aa are applied

the other way round than in pattern D, the paths navigated in the search space compared

to pattern D are different. After state s4, states s9 and s15 are generated, instead of states

s8 and s14 as is the case for pattern D. However, this has no effect on the information gain

calculations and is simply state labelling to distinguish clearly the different action application

orderings.

s0

s1

s4

s9

s15

A`

B`

Aa

Ba

(a) Breadth-First Search.

s0

s1
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s9

s15
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B`

Aa

Ba

(b) POPF.

s0

s1

s4

s9

s15

A`

B`

Aa

Ba

(c) POPI.

Figure 5.13: States expanded to apply actions in a pattern J structure.

Figure 5.14 presents the state spaces for pattern K. The information gain of POPI over

BFS is the same for both of its trigger cases, KA and KB. This is also true for POPI over

POPF. The amount of information gain is also identical to pattern F which can be seen

in Table 5.1. The states generated and the set of paths taken to the solution for POPF

and POPI are different, since the valid sequences of action application are different; this is

what distinguishes them as different patterns. We can observe that between pattern F and

K, one sequence of action application is the same which is B`, A`, Ba, Aa and the other is

different. As we observed in the comparison of pattern D and J above, this has no effect on

the information gain. The reason for the information gain being the same for POPI over BFS

and POPI over POPF between pattern F and K, is because the number of state transitions is

the same for each strategy in both of these patterns and so are the number of actions searched

for by POPI.
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(a) Breadth-First Search.
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(b) POPF.
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(c) POPI.

Figure 5.14: States expanded to apply actions in a pattern K structure.
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The state spaces for pattern L shown in Figure 5.15 display a situation where the infor-

mation gain is high for trigger case LA for POPI over BFS, this is due to their being nine

states generated by BFS in order to reach the goal including one dead-end state generated

immediately before the goal state is reached. The amount of information gained over BFS in

the second trigger case LBA is lower since POPI needs to apply two actions via search before

inference is enabled. For POPI over POPF, the situation is the same where case LA allows

more information gain than case LBA.
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(a) Breadth-First Search.
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(c) POPI.

Figure 5.15: States expanded to apply actions in a pattern L structure.
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The pattern M states spaces in Figure 5.16 show that POPI triggers for inference after

one action added via search in both trigger cases. We see in Sub-figure 5.16a that BFS does

not generate any dead-end states in the search space for this pattern. BFS reaches the goal

at state s14 since it is the first goal state it generates. State s15 that ends the plan with

action Ba transitioning from s9 is also a viable alternative for both POPF and POPI. In the

case of POPF this would be an arbitrary ordering and for POPI, actions are re-ordered only

to satisfy the precedence constraints in the pattern. This would not affect the amount of

information gained by POPI over POPF, which is the same in both trigger cases. The full

combinatorial state space, for which the search spaces shown in Figures 5.3 to 5.18 are a

subset, is presented in Figure 5.2.

s0

s1 s2

s4 s5

s8 s9 s10

s14

A` B`

B` A`

Ba Aa Aa

Aa

(a) Breadth-First Search.
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s1 s2

s4 s5

s8 s10

s14 s16

A` B`

B` A`

Ba Aa

Aa Ba

(b) POPF.
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s1 s2

s4 s5

s8 s10

s14 s16

A` B`

B` A`

Ba Aa

Aa Ba

(c) POPI.

Figure 5.16: States expanded to apply actions in a pattern M structure.
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The pattern N state spaces in Figure 5.17 present a set of situations that are the same as

their counterparts for the pattern M state spaces, in terms of the number of state transitions

used and states generated. This is an observation that we have already seen between other

patterns. The exact combination of state transitions used are different resulting in a set

of state generations. Since the amount of information gain achieved by POPI over BFS and

POPF, depends on the number of state transitions used via search compared with the number

used via search by the others to reach the first state achieving the goal, the amount of infor-

mation gain is the same is all cases for pattern N as it was for pattern M in both trigger cases.

s0

s1 s2

s4 s5

s8 s9 s11

s14

A` B`

B` A`

Ba Aa Ba

Aa

(a) Breadth-First Search.
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s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(b) POPF.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(c) POPI.

Figure 5.17: States expanded to apply actions in a pattern N structure.
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Figure 5.18 displays the state spaces for the pattern O pair of actions. In Figure 5.18a

BFS reaches a dead-end at state s12 after having applied three actions because Aa is not

applicable and the goal cannot be achieved. The information gain for POPI over the other

two solving systems is different between the two trigger cases. The information gain achieved

in the pattern O state space is the highest for POPI over BFS in trigger case OA, and is the

lowest with POPI over POPF in trigger case OBA.

s0

s1 s2

s4 s5 s6

s8 s9 s11 s12

s14

A` B`

B` A` Ba

Ba Aa Ba A`

Aa

(a) Breadth-First Search.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(b) POPF.

s0

s1 s2

s4 s5

s8 s11

s14 s17

A` B`

B` A`

Ba Ba

Aa Aa

(c) POPI.

Figure 5.18: States expanded to apply actions in a pattern O structure.

Table 5.1 displays the information gain of POPI over Breadth-first search and POPF, our

baseline planner. The reason for comparing against these two solving systems was, in the

case of BFS to give us an idea of POPI’s maximum level of inferential power in the best case

(worse case performance for BFS), and then a moderate view of POPI’s benefit measuring



CHAPTER 5. INFORMATION GAIN FROM PATTERNS 100

the extra gain it brings in addition to the heuristic search and inference that POPF already

does. We provide the information gain of POPI per trigger case, since as we have already

seen from the state space diagrams of some patterns with two trigger cases, that the inference

which POPI can do in each trigger case can be different in its significance. Particularly for

patterns types like pattern C where trigger case CB enables the addition of a new action to

the plan That is a more powerful inference than trigger case CAB which only allows inferring

the ordering constraints between actions A and B, which have already been added to the plan

via search. It should be noted that all information gain measurements for POPI over another

planning strategy (BFS or POPF) refer to the aggressive strategy’s gain (POPI-AI) over that

strategy. The last row in Table 5.1 shows the amount of information gained by POPI over

BFS and POPF when averaged over all of the trigger cases for all pattern types.

Pattern Trigger Case POPI/BFS POPI/POPF

AAB 1.585 1

BAB 1.585 1

CAB 2.459 1

CB 3.459 2

DA 2 2

EA 2.322 2

FA 2.807 2

FB 2.807 2

GA 3.167 2

GB 3.167 2

GReflexiveA1 3.167 2

GReflexiveA2 3.167 2

HA 3.167 2

HB 3.167 2

IAB 1.322 1

JA 2 2

KA 2.807 2

KB 2.807 2

LA 3.167 2

LBA 2.167 1

MA 3 2

MB 3 2

NA 3 2

NB 3 2

OA 3.322 2

OBA 2.322 1

Average 2.69 1.769

Table 5.1: Information Gain from pattern based inferences by POPI over Breadth-first Search
and POPF.
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5.3 Summary

In this chapter we have provided an information theoretic perspective of the pattern types

that we consider in this thesis. We provide a method of measuring the inferential power, in

each pattern trigger case in bits of information gained, where each bit of information gained

by POPI over another solving strategy, equates to some proportion of search choice(s) that

POPI did not have to make to reach the goal. Information gain allows us to measure how

much more POPI knows about which actions need to be applied and in what order, compared

with the other two state exploration strategies. We have seen that generally the amount of

information gained by POPI over BFS is greater than POPI over POPF. This is logical since

BFS explores the state space blindly without heuristic guidance. Furthermore, POPI is an

extension of POPF and its search component and method for choosing actions via search is

the same as POPF, at states where no pattern structures exist.



Chapter 6

POPI

6.1 Overview

In this chapter we describe the details of the planner POPI, which implements the pattern

detection and inferences discussed in Chapter 3. We describe the pattern detection algo-

rithms that have been designed to perform a pre-search analysis of the domain structure, for

domains containing durative actions written according to the specifications of PDDL 2.1 (Fox

and Long [2003]).

The method for detecting required concurrency works in two core parts. The first part

works by analysing the domain structure and extracting relevant information from the condi-

tion and effects lists of the action schemas and storing possible candidates in map structures.

The second part works by comparing the lists of candidate actions attached to each candidate

predicate and matching operator pairs that have the predicate structure of the pattern type.

The patterns accommodated by the pattern detection in POPI’s implementation are the ones

with two distinct operators recorded, therefore GReflexive is not included.

6.2 Implementing POPI

The planner POPI has been built as a modification and extension to POPF. It implements

a pattern matching approach for detecting the patterns described in Chapter 3, which are

instantiations of the generalised pattern sequence sets they are associated with described

in Chapter 4. Each pattern type can be achieved by a variety of predicate structures each

with a different combination of preconditions and effects. This means that there is more than

one version of each pattern type, where each one has a different predicate structure with a

different set of preconditions and effects, but the pattern type as determined by the set of

concurrent sequences possible, is the same. POPI focusses on detecting each pattern type’s

predicate structure during the planner’s preprocessing phase. The versions of the pattern

102
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types that POPI detects are the ones that are catalogued and described in Chapter 3. At

face value, it may seem that POPI only being able to detect one version of each pair-wise con-

figuration is limited. However, these structures illustrated in Chapter 3 that POPI looks for

in the domain are subset minimal, meaning that for each pattern, every predicate displayed

is needed to maintain that unique pattern type’s structure.

An interesting consequence of this is that, given the version of each pattern type that is

detected and handled by POPI, it is possible for a pair of actions to be detected as being of

more than one pattern type. This is because the predicate structure of some pattern types are

subsumed by the predicate structures of other pattern types. Pattern E and J are an example

of this, since pattern J contains all of the pattern facts of pattern E, facts p and q, but also

has predicate r as an additional pattern fact that makes it more restrictive than pattern E.

When there is an action pair detected as being of more than one pattern type, the planner

needs to use the inference associated with the pattern type, that has the most predicates

in its structure, in order to execute the correct inference for that pair of actions. This may

seem counter-intuitive, as it seems that it should always be the detected pattern type with

strongest inference that is fired. However, this could only be done if there is a guarantee that

all pattern types subsuming the structure of another always have an associated set of pattern

sequences with a stricter set of ordering constraints with less flexibility. However, this is not

guaranteed and it must be that the pattern type detected with the most pattern predicates,

is the one for which the inference is fired. The pattern structure with more predicates takes

precedence. This is used as a method for resolving pattern conflicts.

6.3 Domain Analysis

In this section we describe our approach for analysing domains to look for patterns of required

concurrency. In temporal domains there are various segments of information that need to be

extracted and appropriately stored such that the subsequent pattern detection process can

occur. First, the domain analysis only occurs if it is a temporal domain containing durative

actions. The implementation of POPI in its current version has been designed to terminate

if the domain being analysed is a temporal domain with durative actions but also contains

instantaneous actions as well. The reason for this is that we want to focus on performing

the analysis on problems where all actions are embedded in time and all operators can be

analysed for required concurrency.
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6.4 Pattern Detection and Storage

6.4.1 Pattern Matching

Following the extraction of the relevant information from the domain structure needed to

identify the patterns of required concurrency presented in section 3.2, pattern detection can

occur. The purpose of the pattern detection is to create the pattern instances that store

the pairs of operators with required concurrency between them, the parameter indexes that

need to match for the grounded actions, the pattern type, and a unique pattern ID. Each

occurrence of required concurrency being detected between a pair of operators has this set of

information stored in a pattern environment data structure. Each of these pattern environ-

ments are then recorded in a globally accessible map the key for which is the trigger operator.

This allows for fast indexing into the map of pattern environments, when a grounded trigger

action that is an instance of the trigger operator is applicable in a state. POPI can go through

applicable actions and determine which, if any, of the actions can be used to trigger a pattern

enabling the use of inference.

There are 15 pattern types for which POPI does pattern detection. We describe how this

occurs for the first pattern type; the detection for the other pattern types are variations of

this algorithm, which differ depending on the number of predicates they have and the number

of comparisons that need to be performed. Algorithm 4 shows the procedure used to detect

when a pair of actions satisfies the prerequisites of required concurrency pattern A, shown

in Figure 3.3. The other patterns in Figures 3.4 to 3.18 follow the same type of logic for

the detection of their respective concurrency patterns. The difference between them is the

comparison made between different sets of candidate predicates and the actions linked to

them. We note that in principle it is possible to develop an alternative algorithm which is

able to compare all of the relevant lists of candidate predicates and operators for all pattern

types, such that the implementation of this algorithm can detect any of the pattern types that

we handle. However, in the current version of POPI described in this thesis, we implement

variations of Algorithm 4 for the detection of each pattern type individually.

6.4.2 Parameter Index Matching

Required concurrency is matched between pairs of operators during a domain analysis that

takes place before operators are instantiated using objects from the problem instance into

grounded actions. Patterns are matched using a set of predicate(s) for each pattern type.

Some parameters of one or both actions in the pattern may be for non-pattern fact predicate(s)

which are also part of the preconditions and effects of the actions. This means that there

could potentially be many grounded actions that could be used as the action to satisfy the

constraints of the required concurrency relationship, if the grounded trigger action is added to
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Algorithm 4: matchPatternA
Data: domainAnalysisMapStructures
Result: PatternEnvironment

1 foreach proposition p1 in candidateStartAddEffects do
2 if p1.numOfOccurences != 3 then
3 continue;

4 foreach proposition p2 in candidateEndDeleteEffects do
5 if p1.predicate == p2.predicate && p1.args == p2.args then
6 foreach proposition p3 in candidateOverallConditions do
7 if (p1.predicate == p3.predicate) then
8 foreach action a1 in candidateStartAddEffects[p1] do
9 foreach action a2 in candidateEndDeleteEffects[p2] do

10 if a1 == a2 then
11 temporalEnvelopeExists;
12 foreach action a3 in candidateOverallConditions[p3] do
13 if a2 ! = a3 then
14 return patternEnvironment (a2, a3, typeA);

the plan. If out of the available grounded actions that are instances of the inferred operator,

only one of them is applicable, then this is chosen as the inferred action to apply. If more than

one action is applicable, this means there is a choice about what action to use and inference

cannot go ahead, therefore application of the pattern is not pursued.

6.4.3 Predicate Counting

Since the inference of POPI is based on the patterns detected during the pre-processing stage,

it is important that only action pairs that are exact matches to the predicate structure of the

pattern type being detected are recorded as instances of those pattern types. In addition,

to make sure that those actions in the domain are actually required to be concurrent, we

impose the strict rule that all the predicates that make up the pattern structure can only be

achieved by the two actions that are candidates for the pattern. This is to ensure that there

is required concurrency between the two actions. Furthermore, we also check that none of the

predicates that are part of the two action schemas in the pattern have an instantiated literal

true in the initial state. Although there could be required concurrency without these two

restrictions, we enforce these as checks to provide certainty that there cannot be a sequential

solution, if the planner chooses to use an action in a pattern. Therefore if the number of

occurrences each predicate that is a part of the pattern structure and the initial state of the

problem instance, is not equal to the number of occurrences in the pattern type as shown in

the pattern diagrams in Figures 3.3 to 3.18 in section 3.2.2 of Chapter 3, then it is discarded

as a candidate pattern instance. The check that the number of predicate occurrences is as

specified for each pattern type occurs in its pattern matching method. An example of this
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is shown in Algorithm 4, on lines one and two, which show that there can only be three

occurrences of the predicate making up the required concurrency structure for pattern A. If

this condition is not satisfied then the next candidate predicate is considered.

6.4.4 Recording IDs In Pattern Environments

We now discuss how POPI records only the list of action IDs that are candidates for being

the inferred action of each pattern environment. In order to perform the inference faster

when a pattern is triggered during search, the IDs for all the grounded actions, that are

instantiations of the inferred operator, are stored in the pattern environment created for each

successful pattern detection. Storing these IDs occurs just after all the actions have been

grounded, which is the standard process of our baseline planner POPF. Algorithm 5 shows

our method for collecting and storing the action IDs for the inferred operator component of

each pattern environment created during the pattern matching phase.

Algorithm 5: storeInferableActIDs
Data: groundedActions, globalPatternsMap
Result: storedIDs

1 foreach action in groundedActions do
2 groundedAct ← getGroundedActionID[action]
3 foreach patternMapsList in globalPatternsMap do
4 trigOp ← patternMapsList.key
5 foreach pattern in globalPatternsMap[triggerOp] do
6 inferredOp ← pattern.getInferredOp(trigOp)
7 if action.getOp() == inferredOp then
8 pattern.inferredActIDs.insert(action.ID)

6.5 Multiple Detections

It is possible for pairs of actions to be detected as being of more than one pattern type from

the cases that we handle. Currently, the way this is handled for this situation is that a pattern

environment instance is created for the detection of each pattern type. However, POPI has

been designed so that for the pattern types, whose predicate structure subsumes another,

it is that pattern type whose detection is matched first. The first mapped pattern instance

is the one that is triggered during planning, so the correct pattern type is triggered in this

situation. For example, when a pattern H is detected, the action pair will also be detected

as being of Pattern M. The predicate structure of pattern H subsumes that of type M, and

type H cases are matched first when the planner looks for pattern matches after the domain

analysis. Therefore, any triggering of an action pair a and b in this scenario is correctly

triggered using pattern type H. Alternatively, if a and b are detected as being of multiple

pattern types, where the pattern types are disconnected and the predicate structure of one
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does not subsume that of the others, the pattern type of the first detection is the one used

to trigger the inference. It is important to note that in this situation the detection of the

required concurrency according to all the pattern types detected are correct, and that the

other and or additional predicate(s) making up the structure of another pattern type are

effectively external predicates from the structure of the pattern type being used for triggering

inference. If one of those predicates or any other predicate external to the pattern type causes

a pattern action to not be applicable at a state, then the application of the pattern of actions

as a whole is abandoned. Neither of these situations are an issue where a pair of operators is

only detected as being of one pattern type.

6.6 Inference Engine

This section describes and explains the process that POPI goes through to perform inference

and to infer a new action when a pattern environment is triggered. We will explain how POPI

adds the ordering constraints between the snap action components. The process of doing

inference is the same for both the aggressive and passive strategies which are referred to as

EHC-AI and EHC-PI respectively. There are two versions of POPI, the difference between

them is that POPI-AI uses the EHC-AI strategy for pursuing the use of inference aggressively,

while POPI-PI is the passive version that uses EHC-PI. The inference strategies are described

later in the chapter. The inference engine is implemented in the “CheckForInference” method.

It is a recursive algorithm and allows chains of pattern actions to be inferred by checking if an

action inferred by triggering one pattern environment, also triggers another different pattern

environment, allowing another action to be inferred in a chain. The length of the chain

depends on how many actions in different pattern environments are linked together.

6.6.1 Used Patterns

In order to prevent one pattern environment from being fired again, while one instance of

it is currently being executed, POPI records the pattern environments which are currently

being used for inference. This is because POPI does not allow multiple instances of the

same pattern environment to execute at the same time. Each time a pattern environment

is triggered for inference, it is temporarily recorded as a “used pattern” environment. The

inference is performed for that pattern environment and when all of the inferred actions for

it have been applied, the combined infer and search algorithm of POPI, using either the

aggressive or passive approach, that calls the inference engine, deletes the record for that

pattern environment in the used patterns list. At this point the pattern environment can be

triggered and used for inference again.
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6.6.2 Inferring New Actions

If a pattern environment is triggered, there are some steps that must occur to ensure that the

action being added to the plan is the only viable one for use, and that no other action can be

applied to satisfy the preconditions of the trigger action. If not, this would provide a choice

point about which specific action to use concurrently with the trigger action and we could no

longer do inference. POPI determines whether there is one possible action that can be inferred

as required in the plan, given the use of the trigger action. It does this by going through

the action IDs that were stored in the pattern environment for the inferred operator, and

checking if the arguments for the required parameter indexes match for grounded action pair.

If there is only one viable grounded action that has the required parameter index matchings

for the grounded trigger action, then this is the inferred action.

6.6.3 Adding Constraints to Inferred List

POPI records the constraints for each pattern type, which is then used to order the snap

actions in the pattern. The inference engine is encoded with all the ordering constraints for

each of the 15 pattern types that it handles. When a pattern environment is triggered, its

pattern type is first determined, as is it the specific grounded action that is to be added to

the plan via inference that needs to be ordered relative to the trigger action. The trigger

action, which is one component of the pattern, and the inferred action are both added to a

stack structure. This stack is then reordered according to the constraints of the pattern type

for the pattern environment that has been triggered.

6.7 Inference Strategies

This section presents two approaches designed to integrate temporal inference with the search

performed in Enforced-Hill Climbing (EHC). Two variants of a combined infer and search pro-

cess are presented, one for an “aggressive” based inference approach and another for a “pas-

sive” based approach. Both strategies trigger patterns in the same way; the difference between

the two strategies is how each determines when inference should be pursued over search. Both

algorithms are modified versions of Enforced-Hill Climbing as it exists in POPF. The normal

search strategy of EHC is used, until a trigger action for a pattern instance becomes appli-

cable, at which point depending on the strategy, inference is employed. In addition the main

module developed to perform the inference itself, used by both strategies, is explained.

Both strategies enforce action ordering amongst the set of applicable actions. Applica-

ble actions that are triggers for pattern inference are prioritised, these are chosen from the

helpful actions first. However if there is an applicable action that triggers inference that

is non-helpful, because there is no action that is helpful that triggers a pattern, then the
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non-helpful pattern trigger will be chosen. An important point about the inference based

approaches, is that in certain cases it is able to bypass local search through a plateau. If

a plateau is reached by the search machinery, it may be possible there exists a sequence of

inferred actions that can navigate the planner out of that part of the state space.

As can be seen in Table 3.1 in Section 3.3 of Chapter 3, not all pattern cases result in

the planner inferring the addition of a new action to the plan when triggered. Pattern cases

which only allow the planner to become informed that required concurrency exists or only

being able to infer additional temporal constraints, are limited in the inference they provide

compared with what POPF already does. This is since POPF infers that any action that

is started must also be ended. For the pattern trigger cases where both start actions are

needed to enable the inference, POPF knows that both of the corresponding ends must also

be applied. However, POPF does not know explicitly that this is due to there being required

concurrency between actions. POPI knows there is required concurrency and in most of these

cases also infers additional temporal constraints. Although since POPI is implemented as an

extension of POPF, to check that both start actions are in the plan and then add the inferred

temporal constraints is a cost without a significant gain. This is especially since POPF will

implicitly learn of these inferred temporal constraints when checking when and in what order

it can apply the ends of the actions. Most pattern types and their associated trigger cases

have one trigger action and can infer the addition of a new previously unknown action. For

this reason, the focus of the implementation of POPI is on the pattern types and trigger cases,

where the corresponding temporal inference results in newly inferred actions. The inferences

of patterns A, B and I are only utilised in a chain of patterns where action B is added as part

of another pattern, and action A can be inferred in a backward chaining inference. Pattern

trigger cases LBA and OBA do not infer any new actions to the plan and therefore are not

accommodated by this implementation of POPI.

We will now go through the main techniques employed in the infer and search approach

that is common to both the aggressive and passive variants. First, only one instantiation of

each pattern instance is allowed to exist and be applied via inference at a time.

There are two key benefits that combined infer and search strategies bring:

1. Less search required when the planner is at a state where a pattern trigger action is

applicable, allowing temporal inference to be used and therefore avoiding search over

other action choices and pruning the search space.

2. The intermediary states constructed along the path generated by a pattern of actions

can be explored with certainty based on search only having chosen to apply the trigger

action.
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6.7.1 Aggressive Inference Approach

This section describes a modified version of the Enforced-Hill Climbing algorithm, originally

presented by Hoffmann and Nebel [2001], for the aggressive approach to temporal inference,

which we refer to as Enforced-Hill Climbing with Aggressive Inference (EHC-AI). The logic

for this modified version of EHC is presented in Algorithm 6. In this approach when the

planner is in a state S, if an applicable action A` is a part of a pattern instance and trig-

gers inference, then all of the actions in pattern P , which A` is a part of, are successively

applied to reach the state at the end of the inference path, S′. At this moment, none of

these pattern actions and the states produced from applying them are committed to. The

planner has speculatively applied the actions in the pattern instance, that has resulted in a

series of state generations. If the heuristic of S′ at the end of the inference, is lower than

that of S, where the pattern instance was triggered, then the planner commits to the pat-

tern actions and progresses to S′ as the new current state. If the heuristic of S′ is the same

or worse than that of S, then the planner does not commit to the pattern actions and in-

stead generates alternative successor states using an alternative pattern of actions, if it exists,

otherwise a helpful action is selected using the standard approach of EHC as is done in POPF.

A key benefit of this algorithm is that commitment to the pattern of actions is held off,

until the state S′ is reached and is evaluated to be better than the heuristic of state S where

the pattern instance was triggered. This is of significant benefit where S′ is a dead-end state.

If this happens, the planner has recorded the state S as the current state, and therefore will

continue state progression from S and not S′. The planner will navigate down a different

path in the search space from S, still in EHC-AI mode. This allows POPI to recover from

inference generated dead-end states, when using the EHC-AI strategy.

The idea behind the approach for pursuing inference aggressively, is that doing the infer-

ence allows the planner to avoid performing search over a set of action choices. The planner

generates the states from the actions in the pattern or chain of pattern instances and only

compares the heuristics of the state before the inference and after it.

Aggressive Inference Resulting in Better End Successor

In Figure 6.1 we see that at state s0, a trigger action in a pattern instance, A`, has become

applicable. The planner does inference and finds that is must also add actions B`, Ba and

Aa, if it is to add A` to the plan. All four pattern actions are successively applied to generate

states s1, s2, s3 and s4, which is the resulting state at the end of the inference. State s4

is evaluated and has a better heuristic than s0, which is where the pattern instance was

triggered. The planner commits to the pattern actions and progresses to s4, and carries on

with search from here.
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Algorithm 6: EHC-Aggressive-Inference (EHC-AI)

Inout : States I, S, S′, helpfulActions, applicableActions
1 evaluate I;
2 S ← I;
3 if S is dead-end then
4 return problem unsolvable;

5 if S is goal then
6 return plan solution;

7 else
8 open list.push back(S);

9 while !(open list.empty()) do
10 S ← open list.pop front();
11 reorderHelpfulFirst(applicableActions, helpfulActions);
12 foreach a in applicableActions do
13 if a.patternTrigger() then
14 checkForInference(a, S);
15 if !(inferredActionsList.isEmpty()) then
16 foreach pa in inferredActionsList do
17 apply(pa, S) → S′;

18 evaluate S′;
19 if S′.heuristic == 0 then
20 return planSolution

21 else if S′.heuristic < S.heuristic then
22 open list.clear();
23 open list.push back(S′);
24 break;

25 else if S′.heuristic >= S.heuristic then
26 discard S′;
27 break;

28 else
29 apply standard EHC in Algorithm 1

Aggressive Inference Resulting in No Better End Successor

Figure 6.2 illustrates a situation where the pattern actions are applied, generating states s1 to

s4, however when the value of s4 is assessed by state evaluation, it is worse than the heuristic

of s0. The planner has so far only committed to state s0 in the state progression, therefore

it does not commit to the pattern actions and does not progress down this part of the search

space. Instead it uses search from s0, generating another child state out of s0, using a helpful

action, K` and progressing to state s5.

Aggressive Inference Resulting in Dead-end

Figure 6.3 illustrates a situation where the pattern actions are applied, generating states s1

to s4, however this time s4 is evaluated as being a dead-end. As none of the pattern actions

have been committed to, the planner remains at s0 and assigns a value of -1 as the heuristic
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Figure 6.1: Aggressive Inference leads to a lower heuristic state.

of s1, since it is now known that the inference from this state results in a dead-end. As in the

case of a worse heuristic situation shown in Figure 6.2, the planner again chooses a standard

helpful action to continue down an alternative path in the search space. We see that action

K` is chosen to progress to state s5 which is closer to the goal.

6.7.2 Passive Inference Approach

In this section the passive based inference approach is presented. The algorithm for the

modified version of EHC, implementing the passive inference approach (EHC-PI) is presented

in Algorithm 7. A key difference is that instead applying all of the pattern actions in the

inferredActionsList without evaluating any of the intermediary states produced, the passive

approach evaluates the first state generated by the trigger action, which is part of the pattern.

Only if this is better than the heuristic of the state where the trigger action was selected,

does POPI apply the rest of the pattern actions without evaluating any of the remaining

intermediary states. The other key difference is that if the heuristic of the state produced

by the last action in the pattern is worse that the state from where the trigger action was

applied, instead of going back to that starting state like aggressive strategy, EHC-PI fails and

POPI goes into Best-first search. The difference between the aggressive and passive approach

is in how the planner chooses whether or not to pursue the inference and when the actions

in the pattern instance are committed to being in the plan. The time of commitment to an

action is a key decision point, since a fundamental principle of EHC is that it always moves
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Figure 6.2: Aggressive pursuit of Inference leads to a state that is no better.

s0H=10
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s2

s3

s4H=-1

s5H=9
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Do Not Commit

K`

Figure 6.3: Aggressive pursuit of Inference leads to a state that is a dead-end. State s1 is
assigned a heuristic of -1.

forward, and does not backtrack out of decisions it has committed to, which is a property

maintained by both EHC-AI and EHC-PI. Suppose the planner is at a current state S, where

a trigger action, A`, is applicable. This action is used to expand the child state, S′, which

is not yet committed to. If S′ has a lower heuristic than S as evaluated by the pre-existing

TRPG state evaluation mechanism, then S′ is progressed to, and action A` is committed to.

Following the commitment to the trigger action, which is the first part of the pattern, the
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rest of the pattern actions are applied. If all of the actions in the pattern are applicable as

state progression occurs and are applied successfully, then the resulting state S′′ produced at

the end of the inference is evaluated. If the heuristic value of S′′ is lower than that of state

S′, then the planner progresses to S′′. If state S′′ is evaluated as having either the same or a

higher heuristic than S′, then EHC-PI fails. POPI then resorts to best-first search, starting

at the initial state as POPF does if EHC fails. The same will happen if POPI reaches S′′ and

it is evaluated as being a dead-end after committing to using the trigger action. The reason is

that in both of these cases, POPI has already committed to part of the pattern being applied,

and does not backtrack out of that decision. In this situation because POPI has committed

to a state with a better heuristic, if it then applies the rest of the pattern and it finds a

dead-end after applying any of the remaining pattern actions, it knows that there is no way

to recover and no point attempting to apply other applicable actions between the state where

the trigger action was applied and before the state where the pattern action resulting in the

dead-end was reached. Search across a plateau as POPF would do in EHC would not help

and this is the reason EHC-PI fails over to best-first search, to avoid unnecessary search.

Passive Inference Resulting in Better End Successor

The example shown in Figure 6.4 displays a situation where the action A` is applicable at

state s0, which is then applied resulting in state s1. The state s1 is evaluated with having

a heuristic of 9, which is better than s0’s heuristic of 10. The planner commits to A` and

progresses to s1. The actions B`, Ba and Aa are inferred and applied resulting in states s2,

s3 and s4. The heuristic of s4 is better than s1, therefore the inference has been beneficial

and search may continue. The difference with this example compared with the example using

EHC-AI shown in Figure 6.1, is that the heuristic of s4 in the passive approach must be better

than the heuristic of s1 and not s0, as is the case in the aggressive approach. This is because

in the EHC-AI example in Figure 6.1, s1 is not committed to until the full overall value of

the pattern application has been determined by evaluating the resultant state at the end of

the inference, s4.

Passive Inference Leads to Same or Worse End Successor

Figure 6.5 presents the case where, the planner is at state s3 as the current state. Here, an

applicable trigger action A` is applied resulting in state s4, which is then evaluated. State s4

has a lower heuristic, so the planner now progresses to s4 and commits to it as the new current

state. Following this, the rest of the pattern actions, for which A` is a part of, are applied

via inference in order to satisfy the required concurrency temporal constraints. The state s7

produced at the end of the inference has a higher heuristic than s4, which is still the current

state. Therefore EHC-PI fails and POPI resorts to best-first search. The benefit of EHC-PI

over standard EHC, is that the planner knows that since a set of actions in a pattern are
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Algorithm 7: EHC-Passive-Inference (EHC-PI)

Inout : States I, S, S′, helpfulActions, applicableActions
1 evaluate I;
2 S ← I;
3 if S is dead-end then
4 return problem unsolvable;

5 if S is goal then
6 return plan solution;

7 else
8 open list.push back(S);

9 while !(open list.empty()) do
10 S ← open list.pop front();
11 reorderHelpfulFirst(applicableActions, helpfulActions);
12 foreach a in applicableActions do
13 if a.patternTrigger() then
14 checkForInference(a, S);
15 if !(inferredActionsList.isEmpty()) then
16 apply (inferredActionsList.front() S) → S′;
17 inferredActionsList.pop front();
18 if S′.heuristic < S then
19 foreach pa in inferredActionsList do
20 apply(pa, S) → S′;

21 else
22 break;

23 evaluate S′;
24 if S′.heuristic == 0 then
25 return planSolution

26 else if S′.heuristic < S.heuristic then
27 open list.clear();
28 open list.push back(S′);
29 break;

30 else if S′.heuristic >= S.heuristic then
31 discard S′;
32 terminate;

33 else
34 apply standard EHC in Algorithm 1

active, there are no alternative actions that can be applied instead of the remaining pattern

actions, at states s6, s5 or s4. This is because once A` has been committed and the planner

has progressed to s4, any alternative local search from states s6, s5 or s4 is futile, as selecting

alternative actions would not satisfy the required concurrency temporal constraints that exist

within the pattern structure. The search for alternative actions from states s6, s5 and s4 that

would be performed by POPF using standard EHC are avoided.
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Figure 6.4: Passive Inference results in a lower heuristic state.

Passive Inference Resulting in Dead-end

In the example shown in Figure 6.6, POPI is again currently at state s3, and commits to

the pattern trigger action A` and the resulting state s4, because s4 is evaluated as being

better than s3. The required concurrency constraints necessitate that B`, Ba and Aa be in

the plan resulting in the state s7, however state s7 is evaluated as being a dead-end. The

forward moving principle of EHC, and their extensions EHC-AI and EHC-PI, mean that

there is no back-tracking out of actions and states that have be committed to. For this

reason, the commitment to A` in s4 proves to have been a bad decision, hence at this point

POPI terminates EHC-PI and resorts to performing best-first search from the initial state.

Passive Inference where Pattern is Not Applied

The benefit of EHC-PI over EHC-AI, is that in cases where the first action (pattern trigger)

applied from a pattern instance results in a state that is further from the goal, POPI will

not commit to the application of the pattern and the sequence of states generated from it.

Instead the planner will consider triggering alternative pattern instances if they exist, and

if not then will use a non-pattern helpful action to progress through the search space, using

standard EHC search mechanism. Using EHC-PI the planner only commits to the application

of the pattern actions if the first successor has an immediate improvement in its distance to

the goal.
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Figure 6.5: Passive approach to Inference results in state that is no better than or worse than
current state.

We can see that the planner benefits from this approach in the example in Figure 6.7.

Here, the planner is currently at s0 and the action A` which is part of a pattern is applied

and s1 is generated. s1 is estimated to be further from the goal state than s0. Therefore

POPI does not commit to A` and the other remaining actions in the pattern instance. In this

example there is no alternative pattern that is applicable at s0, therefore the planner uses a

standard non-pattern helpful action to progress search as standard EHC would do, the action

Y`. It is true that if a better heuristic state exists at the end of the pattern application, then

an opportunity to avoid some search and quicker state progression is then missed. However,

this is the reason for the EHC-AI strategy, which has been developed to apply actions in a

pattern more optimistically, and pursue the opportunity to use inference more aggressively.

The passive approach is more cautious about applying patterns of actions.

6.7.3 Pattern Action Not Applicable

If a pattern action is not applicable, then for both the aggressive and passive strategies,

POPI comes out of the application of the pattern and takes an alternative path from the

state where the trigger was applied. The reason we do this for the passive approach as well

as the aggressive, is because actions in a pattern are a single unit, if one is not applicable,

then they are all treated as if they were not applicable. It is also to prevent an unnecessary
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Figure 6.6: Passive pursuit of Inference leads to a state that is a dead-end.

s0 H=10
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A` X` Y `

Figure 6.7: Passive approach - trigger action results in worse heuristic or dead-end, pattern
not applied and commited to.

search, attempting to apply other non-pattern actions that might satisfy the non-pattern fact

preconditions of the action that couldn’t be applied.

6.8 Example Planner Output

In this section, example plans and the associated search space diagrams are presented for each

of the aggressive and passive strategy situations that POPI can handle. We have designed

a domain called mybuilding to illustrate the theory of the aggressive and passive inference

strategies presented in sections 6.7.1 and 6.7.2 respectively. The myBuilding domain is in

appendix D. It should be noted that in order show what the behaviour of each strategy is in

the various scenarios, we modify the preconditions and effects of the actions in the pattern



CHAPTER 6. POPI 119

structure, to trigger the mechanism in place for each of these scenarios to showcase the differ-

ences in behaviour. The myBuilding domain describes a building environment with a series

of rooms. Rooms are connected with doors which must be open in order to go directly from

one room to the other. Alternatively an action that makes a hole in the wall between two

rooms can be performed allowing for travel between the two rooms, however this causes the

building to no longer exist at the end of it. The initial state consists of being at the starting

location and the goal is to be at the destination with the building still to be stable at the

end.

In addition to displaying example POPI output for the different scenarios, according to the

strategy being used, the examples in this section also show what happens when the predicate

counting mechanism in the pattern detection is disabled. The method for counting predicates

described in section 6.4.3 ensures that the number of times each predicate part of the pattern

structure for each pattern type is exactly the number specified for that pattern type. The

counting also checks the initial state and includes it in its total. If the count is not equal to

the number specified for a pattern type, that pair of actions is discounted as being a pattern

since required concurrency between them of that pattern type can not be guaranteed. This

thesis focuses on inference, driven by certainty in knowing the pattern type of a pair of actions

and that the required concurrency that it describes does indeed exist. However, the cost paid

for this, is that where our inference approach could have been used, given the existence of a

pattern, it is discarded due to the rules for counting predicates.

In the search space diagrams generated for the plans generated by POPI, the label ‘O’ in

the nodes represent the order of node expansion and ‘H’ represents the heuristic of the state.

In the cases where there is more than one number for ‘O’, each number represents the order

number in which another branch out of that node is explored. If ‘O’ is -1, this means that no

child nodes are expanded from it.

6.8.1 Aggressive Cases

Aggressive Inference Leads Closer to Goal

We see in Figure 6.8 the situation where after having applied two actions via the normal search

machinery, POPI detects a pattern trigger, (make-hole room1 dest) (start), that triggers the

use for inference. All of the pattern actions are applied successively, ignoring the heuristic

values of each state generated during the application of the pattern actions up until the last

one. This example shows that the heuristic of the last state in the search space is 0, meaning

it is also the goal state. All actions that are started must also be finished, except in the case

of compression-safe actions, where a separate state generation for action ends is not necessary.

The search space diagrams show the application of an action’s start, but not its end as it is
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compression safe.

O: 0 
H: 3

O: 1 
H: 2

(open room1 dest) (start)

O: 2 
H: 1

(go-direct sloc room1) (start)

O: 3 
H: 2

(make-hole room1 dest) (start)

O: 4 
H: 1

(go-through room1 dest) (start)

O: -1 
H: 0

(make-hole room1 dest) (end)

Figure 6.8: POPI using aggressive inference strategy, where the pattern of actions successfully
lead to a lower heuristic state - the goal.

Aggressive Inference Leads to No Better Heuristic state

Figure 6.9 shows the use of inference and applying the pattern of actions leads to a state

that is not estimated to be closer to the goal than the state where the pattern trigger action

became applicable. Therefore this path of pattern actions is not committed to and the planner

expands a second branch out of the trigger state using a standard helpful action, which in

this case is the action (go-direct room1 dest) (start) that results in the goal being achieved.

Aggressive Inference Leads to Dead-end

Figure 6.10 shows the situation where the planner again takes an aggressive approach to

inference, ignoring the heuristic of state labelled o = 3 and the planner again chooses not to

commit to the pattern of actions, but this time because the state reached after inference is

a dead-end. It should be noted that in the case of dead-end states, unlike worse heuristic

states, if a dead-end is detected after applying any pattern action, the pattern is immediately

abandoned as there is no chance of there being a better heuristic state after applying all of
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O: 0 
H: 3

O: 1 
H: 2

(open room1 dest) (start)

O: 2 5 
H: 1

(go-direct sloc room1) (start)

O: 3 
H: 3

(make-hole room1 room2) (start)

O: -1 
H: 0

(go-direct room1 dest) (start)

O: 4 
H: 4

(go-through room1 room2) (start)

O: -1 
H: 3

(make-hole room1 room2) (end)

Figure 6.9: POPI using aggressive inference strategy, where inference leads to a no better
heuristic state that is not committed to.

the pattern actions.
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O: 0 
H: 3

O: 1 
H: 2

(open room1 dest) (start)

O: 2 5 
H: 1

(go-direct sloc room1) (start)

O: 3 
H: 2

(make-hole room1 dest) (start)

O: -1 
H: 0

(go-direct room1 dest) (start)

O: 4 
H: 1

(go-through room1 dest) (start)

O: -1 
H: -1

(make-hole room1 dest) (end)

Figure 6.10: POPI using aggressive inference strategy, where inference leads to dead-end,
that is recovered from.

6.8.2 Passive Cases

Passive Inference Leads Closer to Goal

In Figure 6.11 we see that the first state generated from the first pattern action produces a

lower heuristic state, therefore this state is committed to for state progression, as it would be

in standard EHC. Following this the inference takes place and the state produced after the

pattern application has a lower heuristic and in this case has led to the goal itself.

Passive - Pattern Actions Not Applied

The case shown in Figure 6.12 shows a situation where according to the passive infer and

search algorithm, EHC-PI, the first applicable action in the pattern instance is applied. The

heuristics of the successor and the current states are compared. The remaining pattern actions

are only applied if the heuristic of this first successor is lower than the current(trigger) state.

Since the heuristic of the successor is higher, the planner does not commit to applying the

trigger action and progressing to the successor. Therefore, none of the pattern actions are

applied and the planner instead chooses an alternative helpful action, which in this case

achieves the goal. The same happens if the first pattern action results in a dead-end state,
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O: 0 
H: 4

O: 1 
H: 3

(go-direct sloc room1) (start)

O: 2 
H: 2

(make-hole room1 dest) (start)

O: 3 
H: 1

(go-through room1 dest) (start)

O: -1 
H: 0

(make-hole room1 dest) (end)

Figure 6.11: POPI using passive approach, where the pattern application and inference leads
to a state closer to the goal.

since the the planner has not yet committed to using the pattern. An example of this is

shown in Figure 6.13.

O: 0 
H: 3

O: 1 
H: 2

(open room1 dest) (start)

O: 2 3 
H: 1

(go-direct sloc room1) (start)

O: -1 
H: 2

(make-hole room1 dest) (start)

O: -1 
H: 0

(go-direct room1 dest) (start)

Figure 6.12: POPI using passive inference strategy, where pattern of actions are not applied
because the trigger action results in a worse heuristic state.
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O: 0 
H: 3

O: 1 
H: 2

(open room1 dest) (start)

O: 2 3 
H: 1

(go-direct sloc room1) (start)

O: -1 
H: -1

(make-hole room1 dest) (start)

O: -1 
H: 0

(go-direct room1 dest) (start)

Figure 6.13: POPI using passive inference strategy, where pattern of actions are not applied
because the the trigger action results in a dead-end state.

Passive Inference Leads to No Better Heuristic state

After applying all of the pattern actions, if the heuristic of the state reached is the same

or worse than the state where the trigger action became applicable, then EHC-PI fails and

the planner resorts to best-first search. The pattern of actions has been committed to and

EHC-PI does not attempt to search through a plateau like EHC in POPF does, in order to

find a better state, given that the planner may have to resort to best-first search anyway.

Passive Inference Leads to Dead-end

If the application of any of the remaining actions in the pattern after the trigger action result

in a dead-end state, EHC-PI fails and POPI resorts to best-first search. This is because POPI

knows that given it has committed to the trigger action of the pattern, all of the actions in the

pattern must be applied or none of them at all due to the required concurrency relationship.

EHC-PI does not to apply actions via search mid way through the application of pattern

actions, in order to recover from the dead-end.

6.9 Completeness and Soundness

In this section we will discuss the aggressive and passive infer and search algorithms with

respect to maintaining the properties of being sound and complete. The general approach

for performing temporal inference is to leverage information that the planner acquires before

search begins, during the state expansion phase. The planner POPI, which is extended from

POPF, still resorts to best-first search if it fails to find a solution using its primary infer and
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search strategy. As an extension of POPF, POPI can be considered complete if POPF is

complete. This is because the plans that can be reached in EHC by POPF, and in EHC-AI

and EHC-PI by POPI are a subset of the solutions that can be reached by using best-first

search, which both planners resort to if the primary strategy fails to find a plan. soundness

is where a planning strategy only produces plans which are valid. POPI maintains soundness

in its solutions, since the triggering of a pattern and its resulting inference only adds actions

which need to occur together, in the correct order for the detected pattern type. If an action

in the pattern is not applicable, then the use of pattern is abandoned.

If the problem being solved contains required concurrency, where there is no sequential

solution due to temporal constraints, the inference will only add actions that need to be

concurrent given a detected pattern; this is with the predicate counting mechanism in place

which is the default setting used. These actions are the same ones that the search mechanism

would also need to add in order to achieve the goal. If the problem is one with optional

concurrency, where there is a pattern of actions, POPI will attempt to apply them. However,

if the inference leads to a worse heuristic state at the end of the inference or after applying the

trigger action(s), for the aggressive and passive approaches respectively, the planner discards

the use of these inference generated partial paths, and remains at the state before the trigger

action was applied, so that an alternate route can be used. Again, POPI still maintains the

use of best-first search, if EHC-AI or EHC-PI fail.

6.10 Summary

Although the method of checking and doing inference is the same, we can see from POPI’s

example output cases that the aggressive and passive variants of the infer and search process

behave differently when it comes to choosing when to pursue the use of inference and when

not to. The aggressive approach is more speculative and applies the actions in a pattern and

assesses the value of the heuristic only at the end of the inference, whereas the passive approach

will compare the heuristic value of the state produced from applying the first snap action in the

pattern. Only if this first successor state produced from this is better than the current state,

will it apply the rest of the pattern actions. These two algorithms utilise the core inference

engine that tells the infer and search algorithm how to apply the pattern actions given the

pattern type. Chapter 7 presents empirical results and evaluation of POPI using both the

aggressive and passive inference strategies on domains containing both required concurrency

and optional concurrency, where certain actions need to occur together for particular solutions

to the problem, but where there are also sequential solutions.
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Empirical Analysis

In this chapter we discuss and analyse the empirical results produced by running POPI

using both the aggressive and passive variants of its combined infer and search approach on

domains with required concurrency and optional concurrency. In both cases, there will be

pairs of actions that are in a pattern, but for optional concurrency problems there is more

than one plan to reach the goal, at least one of which does not need to include the action

pair in the pattern, since there is a sequential solution. The main purpose of the empirical

analysis is to meet the following evaluation objectives:

1. To show that POPI-AI solves problems of required concurrency containing patterns

faster than POPF and is able to scale better.

2. To show that other temporal planners are limited in their ability to solve required

concurrency problems containing the patterns presented in this thesis.

3. To show that the overhead cost of both POPI variants on non-concurrent temporal

problems does not prevent them from solving problems that POPF can solve.

4. To show that in general, the baseline planner POPF is able to compete with other

temporal planners in solving temporal problems.

7.1 Planners for Experiments

The results for our experiments on POPI will be compared against the base planner POPF.

The performance of POPI is also compared with POPF when run with a total ordering en-

forced, effectively giving us COLIN, the predecessor to POPF. Although inference is used in

various forms in planning systems, we are interested in assessing the performance of POPI in

its mechanisms to implement the use of more inference and less search. It is for this reason

that we compare both variants of POPI against its predecessor, POPF. We will also run POPI

with the partial ordering machinery disabled, where only total ordering is used during plan

126
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construction. We refer to this version of the planner as COLIN-I, since POPF without partial

ordering is COLIN. Partial ordering disabled in POPI means we effectively have our inference

approach as an extension of COLIN rather than POPF. We will also analyse the benefits of

POPI using the theory of pattern information content presented in Chapter 5.

In addition, as we are assessing the benefits of using inference, eCPT is also an interesting

planner for comparison, since it uses constraint programming techniques for doing inference.

However, we will see that not all temporal domains used for experiments in this chapter can

be successfully handled by eCPT. Furthermore, we also use other temporal planners to com-

pare against the performance of POPI. To that end, we perform experiments on temporal

planners which took part in the temporal satisficing track of the most recent International

Planning Competition (IPC) in 2018. There were five submissions in this track. From these

planners two of them are systems which were extended from POPF, which are POPCORN

and OPTIC. These planners introduce no additional capabilities for solving the types of re-

quired concurrency problems which this thesis investigates, hence we do not use them as

planners for comparison in our experiments. For the purpose of solving our patterns, the

behaviour of POPCORN and OPTIC is the same as the behaviour of POPF. TFLAP was

another submission made to this track and is a temporal planner that does forward partial

order planning; we test this system in our comparative analysis. The remaining two partici-

pating systems were CP4TP (Furelos-Blanco and Jonsson [2018]) and TemPorAl (Cenamor

et al. [2018]). These are portfolio planners, meaning that they are each a combination of

various planning systems, where each planner in the portfoilo attempts to solve a planning

problem using only a segment of the allocated time. If one planner fails to solve the problem,

it is passed on to the next planner in the portfolio. We are interested in comparing individual

planning systems and therefore do not use these portfolios as comparators, but we do use

some of their component planners which can handle required concurrency.

We will see though in our initial testing that these planners are limited in the types of

required concurrency that they can handle. The component planners we test from CP4TP

are TPSHE, TP(K ), for K ∈ {2, 3, 4} and STP(K ), for K ∈ {2, 3, 4}. We also test the

ITSAT and TFD planners from the TemPorAl portfolio. We present the results for TFD

seperately to the other IPC planners for the tests on the patterns domains. This is because

we will see that due to how the planner works in certain situations, it is not a planner that

can be usefully and reliably be compared for all of our domains containing the various types

of required concurrency. The remaining planners, YAHSP2 and YAHSP3 are also component

planners from the TemPorAl portfolio, however due to compliation errors we were not able

to run these planners.



CHAPTER 7. EMPIRICAL ANALYSIS 128

7.2 Domains for Experiments

We focus the testing and experiments for our planning system on domains where actions

are defined with duration inequalities as we are interested in the behaviour of our system

compared with other planners where required concurrency of the pattern types presented in

Chapter 3 exist. Some of these pattern types allow choice in the specific concurrent ordering

of the action endpoints and fixed durations for some patterns would restrict the application

of the pattern endpoints for some of those orderings.

Although there are existing domains that incorporate required concurrency amongst the

benchmark domains, we have found that these domains contain concurrency of pattern types

A and B which are not the most interesting in our analysis in terms of enabling powerful

inferences. As illustrated in Chapter 3, patterns A, B and I, do not enable the addition of

a new action to the plan via inference in the single pattern trigger cases. Historically, the

common temporal domains that have required concurrency are those where there are tempo-

ral windows, as is the case in the matchCellar domain, which is an instance of pattern type

A. Patterns A, B and I are among the weakest pattern types in terms of inferential power,

because all three of these patterns have only one trigger case, where both the start of action

A and action B must be in the plan to trigger inference. Without being part of a chain of

patterns, none of these patterns enable the addition of a new action to the plan using our

inference approach.

The purpose of POPI is to exploit the use of inference with speed to add actions and

constraints, when it detects temporal structures that it can understand. Our approach is to

also maintain the existing behaviour of POPF’s previous problem solving strategies, when

the required concurrency structures we handle, either do not exist in the domain or the

pattern types detected cannot be exploited. Therefore, the fact that many available temporal

domains do not contain required concurrency is beneficial to testing that POPI’s behaviour

is the same as POPF in these circumstances. To that end, we perform experiments using the

temporal domains from the most recent International Planning Competition, IPC 2018, in

order to test this aspect of POPI. The purpose of these experiments will be to confirm that

the behaviour of POPF and both variations of POPI are the same in domains without our

patterns of required concurrency. Experiments were ran on a machine using an Intel Core

i7 Processor with a limit of 4GB of memory and 30 minutes of CPU time per problem. All

graphs showing the results for time taken to solve problems are measured in seconds.
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7.3 Required Concurrency Domains with Patterns

The set of patterns domains are an “artificial” set of domains that have been created specifi-

cally to test the capabilities of POPI and its performance when required to repeatedly apply a

pattern of actions. These domains have also been constructed to allow us to see the behaviour

of POPI in domains containing each pattern type that is handled, and to assess the scaling

behaviour of POPI, comparing it against the theoretical information gain measurements seen

in Chapter 5. Specifically, these domains showcase how POPI benefits from prioritising the

use of pattern trigger actions to pursue inference over the standard helpful actions that are

selected arbitrarily to generate successors. Since the patterns domains are used to demon-

strate the inferential power of POPI, these domains are set up to present situations where the

TRPG heuristic causes POPF, our baseline planner, to repeatedly apply an action that looks

helpful, but is actually a bad decision. It presents a scenario where the heuristic guidance is

misleading the planner about what action it should apply next and where POPI’s approach

can be more helpful.

The patterns domains have been defined using duration inequalities to provide bounded

constraints on the minimum and maximum duration of each action rather than fixed dura-

tions. The reason for this is that it is possible in the case of certain pattern types such as

pattern H, for one action to encapsulate the other and vice versa. For this reason we use

duration inequalities to allow both orderings, and let the planners decide the durations and

choose the order of applying the actions. This is because our comparison focusses on infer-

ence enabled by knowing the temporal structure of actions, not duration. By allowing the

flexibility for planners to choose action durations, this provides the opportunity for all the

possible orderings of the snap actions to be viable for all planners. This allows a comparison

of the benefit from each pattern case’s inference for all of the patterns with the other plan-

ners, which also have the same flexibility to choose action durations. As an example of the

general structure of a patterns domain, the patterns domain containing the pattern type

D structure is included in Appendix B. The other patterns domains are variations of this

one. The PDDL for the action pair that makes up the pattern D structure in this domain is

shown in Figure 7.1.
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(:durative-action Act_A

:parameters(?a ?b - typeA )

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at start (active)) (at end (q ?a))

(at start(next ?a ?b)) (at start (ready ?a)) (at end(ready ?a)) )

:effect (and (at start(p ?a)) (at start(not(active))) (at start(ready ?b))

(at end (active)) (at end(not(ready ?a)))

)

)

(:durative-action Act_B

:parameters(?a - typeA)

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at start(p ?a)) (at start (ready ?a)))

:effect (and (at end (q ?a)) )

)

Figure 7.1: Actions from PatternsD domain where Act A and Act B are in a pattern type D
relationship.

7.3.1 POPI, POPF, COLIN and COLIN-I Experiments

In this section we perform an ablation study to test the performance of POPI against the

baseline POPF and also against COLIN, the predecessor to POPF the core difference being

that COLIN uses a total order during plan construction. We also the two variants of POPI

using total ordering to gain an idea of how useful the partial ordering in POPI for problems

in the patterns domains.

Results

This section describes and evaluates the results produced from running a set of experiments

using the patterns domains. An individual version of the patterns domain modified to con-

tain each pattern type structure has been run on both the aggressive and passive versions of

POPI and POPF. In addition, all three of these planners have also been run using total order-

ing, effectively giving us COLIN with aggressive inference and COLIN with passive inference.

However, we focus our analysis on POPI-AI (Aggressive strategy) versus POPF as our main

comparison as we are interested is observing the scaling behaviour of POPI, which the aggres-

sive strategy has been primarily been designed for, and we are interested in its performance

over the base planner that POPI is built on, POPF. Although POPI practically evaluates all

of the states it generates, it does not use the heuristic evaluations of the intermediary states

generated via inference. Therefore, in the graphs presenting results for the states evaluated,

the first 6 keys are for each of the planners as labelled but represent all the state evaluations

performed. The last 4 keys are for the same POPI and COLIN-I planners, but the keys are

appended with “SU” which stands for “States Used”, and this is the figure which we are
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interested in using for comparison. This is because it does not include the state evaluations

which are ignored by the POPI or COLIN-I planners. Where the “States Used” value for our

planners is on the upper most line, which represent the problem being unsolved by a planner,

the planner can still be shown to have solved the problem according to its planner key for

just state evaluations, without “SU”. In this situation, it means that this planner solved the

problem using best-first search, and did not solve it using its inference-based approach, either

EHC-AI or EHC-PI.

For each of the Patterns domains, the first 10 problem instances go up in intervals of 10

objects in each subsequent problem instance, ranging from 10 to 100 objects. The subsequent

9 problems go up in intervals of 100 objects ranging from 200 to 1000 objects. We also run

four larger problems with 1250, 1500, 1750 and 2000 objects, in order to determine the largest

problem which any of the planners could solve across all of the Patterns domains. All of these

domains contain required concurrency, where there is no sequential solution for any problem

instance and only one plan to reach the goal. The only feature changed between each of the

domains is the predicate structure of the action pair so that it conforms to the structure of

each pattern type. We use the same set of problem instances for each of these domains. It is

important to note that the patterns domains used in this set of experiments were specifically

designed to showcase the situations in which POPI provides significant power in exploiting

the structure of the pattern that exists in each domain.

For patterns A and B shown in Figures 7.2 and 7.3 respectively, we can see that POPI-AI

and POPF perform the same, this is because patterns A and B do not enable the addition of

a newly inferred action, meaning that although the patterns are detected by POPI, it defaults

to the behaviour of standard POPF and solves these problems with the same number of state

evaluations. This is also the case for the pattern I, shown in Figure 7.10. However, we can

see that the number of problem instances solved for the pattern I domain is smaller. This

could suggest that the ordering required for a pair of actions in a pattern I structure is more

difficult to schedule and perhaps requires more memory, preventing larger problems from be-

ing solved. We can expect that there to be some gap between the theoretical information

gain measurements for each pattern trigger case and the practical gain they each provide in

practice compared to POPF. There is only one trigger case for patterns A, B and I, and a

measurement of 1 bit of information gain of POPI over POPF assigned to each of them. This

is because only one ordering constraint can be inferred over what POPF already knows about

how the actions should appear in the plan when these actions occur together. In practical

application, POPI does not explicitly add this inferred constraint, and so seeing that the

number of problems solved by POPF and POPI-AI is the same, using the same number of

state evaluations, is not a surprising result.
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For the domain containing the pattern C structure shown in Figure 7.4, we see that POPI-

AI scales well, solving problems with up to 1000 objects, requiring 499 repeated applications

of the pattern. POPI performs the same in domains with pattern types D and E, solving the

same number of problems instances, however the solution time of POPI-AI in the patterns C

domain is much lower compared to its solution time for the pattern D and E domains. Once

again POPF struggles to scale to the larger size problems as it attempts to repeatedly apply

actions outside of the pattern, which the heuristic estimates is the best choice, but is in fact

not going to take it closer to the goal. All of the other domains with single patterns, we see

that a similar number of problems are solved by POPI-AI, where the solution time varies a

relatively small amount. POPF consistently struggles to solve problems using these domains,

the reason being is that its choices are being guided by its heuristic, which is consistently

giving it the wrong action to apply.

Apart from Patterns A, B and I, each of the other 12 patterns has at least one trigger

case where it enables the addition of a new action to the plan. For these cases, the calculated

information gain of POPI-AI over POPF is 2 bits. All of the patterns domains for these pat-

tern types were set up to trigger for these cases, such that we could compare the performance

gain from the empirical results to the theoretical information gains. It is quite apparent that

POPI’s information gain over POPF, in the current scaling behaviour across the different

domains, is not as high as we would have expected, given the theoretical calculation for each

pattern application. With the scaling behaviour that has been observed, we could have ex-

pected a linear growth in the information gain, given the number of pattern applied for each

problem instance. However, this is not the case because POPF does not explore the states

generated from the pattern actions in a naive, compound manner, but it is not fully inde-

pendent either. Although we would expect to see a gain of 2 bits in information per pattern

in the scaling case, we see that the information gain grows slower than n x 2 bits for n patterns.

For the chained pattern domains presented in Figures 7.17-7.22, we can see that even

POPI-AI has difficulty in solving some of the larger problems that it could solve in the single

pattern domains. For these domains, both for the problems it could and could not solve, we

see that the time taken curves have a shallow time growth, meaning that it consumed the

memory very quickly. This applies to the time taken curves for all of the planners across all

of these domains, where such curves exist. If the time taken curve is steep, this means that

it takes the planner a long time to consume all of the memory available to it.
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Summary

Despite the gains that POPI-AI has in solving larger scale problems, we can see that in all

of these domains, none of the planners are able to solve the very largest problems containing

1500, 1750 and 2000 objects. This shows us that no matter which strategy is being used, all

of these planners are limited, but to different extents. We have observed that POPI-AI does

generally performs the best across all of the domains as would be expected for domains, where

repeatedly applying these patterns of actions brings the planner closer. The results show us

that generally POPI-AI is indeed able to solve problems of required concurrency containing

patterns, faster than POPF and also scales better to solve larger problem instances. This

allows us to satisfy the first evaluation objective listed at the beginning of this chapter.
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Figure 7.17: Pattern Chain of size 2 containing types D and A
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Figure 7.18: Pattern Chain of size 2 containing types D and B
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Figure 7.19: Pattern Chain of size 2 containing types D and I
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Figure 7.20: Pattern Chain of size 3 containing types H, J and L
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Figure 7.21: Pattern Chain of size 4 containing types D, E, F, G
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Figure 7.22: Pattern Chain of size 5 containing types D, E, F, G, N
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7.3.2 eCPT Experiments

In Chapter 2 we discussed CPT and its successor eCPT, which both use inference to solve

problems. eCPT finds optimal plans by iteratively increasing the bound on the number of

actions allowed in the plan, until it reaches a bound with the minimal number of actions

needed to produce a plan. This allows eCPT to find optimal solutions. In this section we

perform experiments using eCPT on the Patterns domains, as these domains contain the

pattern structures handled within the scope of this thesis. We present the results of these

experiments separately to those of POPI and its other comparisons, since eCPT and POPI

work very differently and produce different measurements and output for their respective so-

lutions. eCPT is not a state-based planner, so we cannot compare the results with POPI in

terms of states evaluated. Therefore, the only useful comparison between POPI and eCPT is

time taken to solve the problems for each of these domains. eCPT produces plans that have

an optimal makespan, whereas the plans produced by POPI are not guaranteed to be optimal.

POPI simply looks to solve the problem. However, in both the case of eCPT and POPI, they

produce their respective plans as the first and only solution when solving a problem, which

allows us to compare the time taken to solve each problem.

The 15 Patterns domains each with a single pattern of every type have been modified

to have fixed duration actions, as eCPT does not handle duration inequalities. The smallest

problem that we used for experiments in the Pattern domains was with 10 objects, where nine

applications of the action pair in the pattern need to be applied to achieve the goal. However,

eCPT did not manage to find a plan within the 30 minutes time limit for the experiments. For

this reason we created smaller problem instances to run for eCPT, such that we could observe

its behaviour in the context of these domains with patterns of required concurrency. The

problems instances with object sizes of 2, 5, 8, 9 and 10 require 1, 4, 7, 8 and 9 applications

of the pattern to be applied respectively, in order to achieve the goal for these problems. We

do not go beyond 10 objects, since this problem is not solved by eCPT for any of the Pattern

domains.

Results

Figure 7.23 presents the time taken to solve the five problems of each of the Patterns domains.

Observing that none of the size 10 problems are solved by eCPT shows that although some

the smaller problems are solved quickly, eCPT clearly does not scale well in comparison to

POPI using its aggressive or even its passive strategy or indeed POPF. These results show

us that eCPT consistently reached the 30 minutes (1800 seconds) time limit set for all the

experiments. Although eCPT could not solve many of these problems, it has shown itself to

be memory efficient. POPI using its aggressive inference strategy solved problems on a much

larger scale, but consumed memory at a faster rate.
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Figure 7.23: Time Taken to solve problems.

Discussion

All problems that were tested with each version of the patterns domain are solved using

mostly inference and only a small amount of search with POPI’s aggressive strategy. The

reason for this is that starting at the initial state in each problem, there is an applicable

action that triggers the pattern. POPI prioritises selection of this action instead of standard

helpful actions, and treats trigger actions as being the most helpful of all. Each application of

the inferred actions in the pattern results in POPI-AI and its total ordering version, COLIN-

I-AI getting closer to the goal, at which point another applicable action of the same pattern

structure becomes applicable and is applied in the same fashion and the same process is

repeated until the goal is reached. In contrast to this, POPF becomes lost in a large search

space due to existence of a single extra action at each state, that the planner always attempts

to apply this action first, since the heuristic incorrectly informs the POPF that this action

will take it closer to the goal. The constraint based planner eCPT is able to solve small

size problems from the Patterns domains, but struggles to scale to even the smallest problem

tested with POPF and the POPI planners.

7.3.3 TFD Experiments

Temporal Fast Downward is a well known temporal planner that we ran tests on using the

Patterns domains with fixed durations, as was the case for eCPT. This is because TFD is
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also limited to handling fixed duration actions. We start the tests by running the base case

problem with 2 objects with each domain. After performing initial tests, it is clear that TFD

does not produce consistently correct plans in amongst the 15 single Patterns domains, where

each one contains a pattern structure of each type. For this reason it did not make sense to

run larger scale experiments for TFD in using these domains.

Results of Tests

The clear error in the output for the test runs using TFD in these domains, was that for

14 of the 15 patterns domains, each plan produced consisted of only one action. This was

action A and no action B component was included in the plan, even though it is needed to

successfully solve the problem. The only exception to this was for the pattern I domain test,

where A and B were both in the plan, however, the plan was temporally invalid and not

scheduled correctly. All of the produced plans were run on a Validator tool with their domain

and problem files and it confirmed that they were indeed invalid plans. The reason that TFD

fails on these domains is because action A, which is the one that achieves the goal, has an

end precondition and TFD ignores this precondition as it cannot schedule the start of action

B relative to the start of action A. Figure 7.24a shows the action pair in the pattern type F

domain used for testing. Figure 7.24b shows the plan produced by TFD and we can see that

this is incorrect. Although action A achieves the goal, it needs B to make fact q true which

is its end precondition.

In order to determine whether TFD could correctly solve a problem for a domain with a

pattern structure in any form, we used another version of the pattern A domain, which was

altered to have no end preconditions, even ones external to the pattern structure. Although

end preconditions are not part of the structure for pattern type A, there was one for the

action A in the first version of the pattern A domain, used for the POPI experiments, that

was an external precondition. Figure 7.25a shows the domain extract for a pair of actions in a

pattern type A structure, where TFD produces a valid plan. We can see that in this pattern

A structure, there is no end precondition for action A, and the end precondition of action B

being ignored does not matter in this case, since (ready ?a) is already true when the end

of B is applied. Figure 7.25b shows the plan produced for this pattern A domain problem

where the plan is valid.

Summary

Having tested TFD on the patterns domains, it is clear that it is not able to solve any

problem in most of these domains, since the planner ignores end preconditions, and many of

the pattern types have structures with end preconditions as part of them. For pattern A, we

have seen an example of a problem that it is able to solve by movingthe application of B start
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(:durative-action Act_A

:parameters(?a ?b - typeA )

:duration(= ?duration 5)

:condition(and (at start (active)) (at end (q ?a))

(at start(next ?a ?b)) (at start (ready ?a)) (at end(ready ?a)) )

:effect (and (at start(p ?a)) (at start(not(active))) (at start(ready ?b))

(at end (active)) (at end(not(ready ?a)))

)

)

(:durative-action Act_B

:parameters(?a - typeA)

:duration(= ?duration 4.5)

:condition(and (at end(p ?a)) (at start (ready ?a)))

:effect (and (at end (q ?a)) )

)

(a) Pattern F action pair.

0.00100000: (act a obj1 obj2) [5.00000000]

(b) TFD plan for Pattern F domain problem.

Figure 7.24: Actions from Pattern F domain where TFD produces an invalid plan.

(:durative-action Act_A

:parameters(?a - typeA)

:duration(= ?duration 5)

:condition(and (at start (ready ?a)))

:effect (and (at start(p ?a)) (at end(not(p ?a))))

)

(:durative-action Act_B

:parameters(?a ?b - typeA )

:duration(= ?duration 4.5)

:condition(and (at start (active)) (at start(next ?a ?b)) (over all(p ?a))

(at start (ready ?a)) (at end(ready ?a)) )

:effect (and (at start(not(active))) (at start(ready ?b)) (at end (active))

(at end(not(ready ?a)))

)

)

(a) Pattern A action pair.

0.00100000: (act a obj1 obj2) [5.00000000]

0.01100000: (act b obj1 obj2) [4.50000000]

(b) TFD plan for Pattern A domain problem.

Figure 7.25: Actions from Pattern A domain where TFD produces a correct plan.
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to immediately after A start, ignoring that fact that A deletes the invariant condition of B

at its end. Since action A ends after the end of B, the problem is correctly solved.

7.3.4 IPC Temporal Planners

In order to test the competitiveness of POPI on problems of required concurrency, we now test

other state-of-the-art temporal planning systems that competed in the temporal satisficing

track of the International Planning Competition 2018. We test these planners on the simplest

problem for each of our patterns domains to determine which patterns can be handled. TFD

which was also component planner of TemPorAl portfolio entered into IPC 2018 was tested in

Section 7.3.3. The TFD results for the Patterns domains were presented separately, since there

were solutions outputted with invalid plans for which we presented examples and analysis of

problems solved correctly and incorrectly.

Results of Tests

Table 7.1 summaries which of the additional temporal planners that we have tested are able

to solve the simplest problem for each of the Patterns domains, containing each of the pattern

types that POPI has been designed to handle. Each of the Patterns domains are defined with

duration inequalties. This is important since many of the pattern structures depend on their

being flexible durations, because otherwise the choices in the orderings of the happenings that

should exist for certain patterns, do not exist with fixed durations. Pattern G is an example

of this, where the pattern structure is such that all four of the valid application orderings

of the happenings can occur. This is only possible if the planner can decide the duration of

actions A and B, where either one can be longer than the other. As we can see in Table 7.1

none of the planners tested here are able to solve problems from our Patterns domains with

flexible duration actions. TPSHE, TP(K ), for K ∈ {2, 3, 4} and STP(K ), for K ∈ {2, 3, 4}
are able to solve problems of pattern type A when defined with fixed durations, but TFLAP

and ITSAT cannot. TPSHE is limited to handling fixed duration actions and for problems of

required concurrency, only handles problems containing single hard envelopes, so the results

it produced for these tests were as expected. TP(K) and STP(K) are also limited to handling

fixed duration actions, therefore the results of the tests for patterns A to O are not surprising

on these planners. The pattern F test problem with fixed durations was not solved using any

of the planners in Table 7.1.

Summary

It is clear that these temporal planners entered into the IPC temporal satisficing track are

not able to solve problems from the different Patterns domains that each contain a pattern

structure. In temporal planning, problems of required concurrency are more complex to solve
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TPSHE TP(2) TP(3) TP(4) STP(2) STP(3) STP(4) TFLAP ITSAT

A 7 7 7 7 7 7 7 7 7

B 7 7 7 7 7 7 7 7 7

C 7 7 7 7 7 7 7 7 7

D 7 7 7 7 7 7 7 7 7

E 7 7 7 7 7 7 7 7 7

F 7 7 7 7 7 7 7 7 7

G 7 7 7 7 7 7 7 7 7

H 7 7 7 7 7 7 7 7 7

I 7 7 7 7 7 7 7 7 7

J 7 7 7 7 7 7 7 7 7

K 7 7 7 7 7 7 7 7 7

L 7 7 7 7 7 7 7 7 7

M 7 7 7 7 7 7 7 7 7

N 7 7 7 7 7 7 7 7 7

O 7 7 7 7 7 7 7 7 7

A(F ) 3 3 3 3 3 3 3 7 7

F(F ) 7 7 7 7 7 7 7 7 7

Table 7.1: Pattern types handled by IPC temporal planners. The first column shows the
pattern type for each row. Domain for each pattern type is defined with duration inequalities,
with additional tests for fixed duration versions of pattern A and F in the final two rows
appended with (F ).

compared to problems that allow sequential solutions. Required concurrency problems can

become more complex when there are duration inequalities involved, where the planner must

decide the durations of actions as in the case of the Patterns domains. Since the planners

tested in Table 7.1 did not solve problems with our pattern structures on the smallest problems

requiring one application of the two actions in each pattern, we did not test them on any

larger problems. In the two fixed duration patterns domains, for patterns A and F, none

of the IPC planners tested solved the pattern F test problem. Most of the planners were

only able to solve the fixed duration pattern A test problem, however TFLAP and ITSAT

did not produce solutions for the pattern A test either. It is possible that these planners

could solve problems with fixed durations for some of the other pattern domains, however

we are primarily interested pattern domains with duration inequalilties. Overall, the results

and analyses presented in this section satisfy the second evaluation objective listed at the

beginning of this chapter.
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7.4 Optional Concurrency Domains with Patterns

The Patterns domains were designed to present a set of cases illustrating a type of scenario

where POPI using its aggressive inference strategy has the opportunity to showcase its capa-

bilities in performance as a result of the pattern based inference it performs. This is both in

terms of solving problems with less state evaluations and scaling better to solve larger size

problems that other planning strategies cannot manage. In this section we analyse results

from some of the Patterns domains, which have been altered, such that in this version, the

third action outside of the pattern can be used to reach a solution. The application of the

pattern actions is optional, hence these are domains with optional concurrency. We examine

the difference in performance and trends over problem size for the POPI, POPF, COLIN and

COLIN-I planners, but do not test the other planners from Section 7.3.4 since it was clear

that they were not able to solve problems in the various patterns domains with duration

inequalities.

Figure 7.26 shows the actions from the alternate version of the Patterns G domain with

the pattern type G structure that still exist between actions Act A and Act B. The difference

is that now Act C can be used to achieve the problem goal in this version of the domain

compared with the first patterns G domain experimented with in Section 7.3.

(:durative-action Act_A

:parameters(?a ?b - typeA )

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at start (active)) (at end (q ?a))

(at start(next ?a ?b)) (at start (ready ?a)) (at end(ready ?a)) )

:effect (and (at start(p ?a)) (at start(not(active))) (at start(ready ?b))

(at end (active)) (at end(not(ready ?a)))

)

)

(:durative-action Act_B

:parameters(?a - typeA)

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at end(p ?a)) (at start (ready ?a)))

:effect (and (at start (q ?a)) )

)

(:durative-action Act_C

:parameters(?a ?b - typeA)

:duration(and(<= ?duration 0.9 ) (>= ?duration 0.5))

:condition(and (at start(ready ?a)) (at start(next ?a ?b)) (over all (ready ?b)))

:effect (and (at start(not(ready ?a))) (at start(ready ?b)))

)

Figure 7.26: Actions from alternate version of Patterns G domain where Act C can be used
to achieve the goal.
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7.4.1 Results

In this set of domains we are interested in seeing how the relative performance of POPI-AI

differs to POPF. We test a subset of the patterns domains including patterns A, G and M and

two chained pattern domains, one with a chain of two patterns and the other with a chain of

three pattern instances. For these experiments, we used problem instances with a size of up

to 1250 objects as this is as larger problem as any of the planners could solve, within the time

and memory limits given. All of these domains show the performance of POPI-AI to be sim-

ilar to its performance in the counterpart domain with required concurrency presented in the

previous section. The exception to this, which was expected, is for the optional concurrency

pattern A domain results presented in Figure 7.27, where we see that POPI and POPF both

do better in solving problems in terms of states evaluated. This was expected, because the

use of the actions in the pattern are optional, and there is a third action that can be used to

achieve the goal, meaning that the problems are easier to solve. Hence, problems of a much

larger size are also solved, as well as being solved with far fewer state evaluations. We also

see that for this pattern A domain, the problems are also solved much quicker.

For the optional concurrency pattern G, presented in Figure 7.28, we see that the number

of problems solved by POPI-AI is the same as the previous version of this domain, but now

POPF is more competitive and actually solves more problems than POPI-AI. This suggests

that POPF uses the sequential solutions to solve problems, whereas POPI-AI still aggressively

pursues application of a pattern of actions where it is available. However, for the problems

that both of these planners solve, we can see in Sub-figure 7.28a that POPI-AI solves them

with fewer state evaluations used, than POPF’s states evaluated. This is again the case for the

optional concurrency version of the pattern M domain problems shown in Figure 7.29a. This

is also the same behaviour in the two optional concurrency chained pattern domains of chain

sizes 2 and 3 shown in Figures 7.30a and 7.31 respectively. In all of the optional concurrency

patterns domains, the amount of information gain decreases compared to their counterpart

domains in Section 7.3.1. We can see that the relative performance between POPI-AI and

POPF comes closer together, with POPF solving more problems in the optional concurrency

domains. This was with exception of the pattern A domain because POPI-AI does search in

the same manner as POPF, since it cannot infer any new action in the pattern A domain.

7.4.2 Summary

We can see from the results presented in this section, that when the application of actions

in a pattern structure are optional, the performance of POPF improves and comes closer to

POPI-AI, however POPI-AI still solves many problems in less state evaluations for domains

where it can infer new actions that take it closer to the goal.
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Figure 7.27: Pattern A.
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Figure 7.28: Pattern G.
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Figure 7.29: Pattern M.
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Figure 7.30: Pattern Chain of size 2 containing types D and I.
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Figure 7.31: Pattern Chain of size 3 containing types H, J and L.
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7.5 IPC Temporal Domains

In this section we perform experiments using the temporal domains submitted to the temporal

satisficing track of the latest IPC in 2018. We first run the experiments using the POPF and

POPI planners and compare the performance to measure any overhead costs incurred, from

the machinery that POPI uses in addition to POPF’s existing mechanisms. We then run

temporal planners submitted to the same track as the domains in IPC 2018, to compare

performance with POPF.

7.5.1 Comparison of POPI and POPF

In this section we provide results from running the aggressive and passive versions of POPI,

and POPF on the temporal competition domains from IPC 2018. There were nine domains

from which eight had no required concurrency between pairs of actions in them, hence no

patterns can be detected in those domains. The purpose of running POPI and POPF on

these domains is to provide data that shows that without the existence of pattern structures

in the domain, the behaviour of POPI and POPF is the same.

Results

The results show that the specific problem instances solved amongst all the domains are the

same for all three planners and that the number of states evaluated for the solved problems are

also the same across all the planners. As these domains do not contain the pattern structures

that drive POPI to do inference, this was the expected outcome and is supported by this result.

In addition to confirming this hypothesis, another reason for performing these experiments

is to determine what the other overhead costs are. The fact that the same problems are

still solved even with POPI’s additional memory usage, shows that POPI’s general ability to

solve other temporal problems without patterns of required concurrency is not diminished,

given its extra usage of memory. The time taken to reach a solution or indeed run out of

time or memory to solve a problem, is another indication of the overhead incurred by the

POPI planners. We are interested in seeing what the overhead cost is for POPI as a result

of performing the domain analysis, which POPI always performs to determine whether the

pattern structures it deals with exist or not. For this reason we plot the results for the time

taken to output solutions for the solved problems and the time taken for each of the planners

to time out on the unsolved problems. This will give us an indication of the performance cost

paid by the two versions of POPI for its pattern detection operations.

Analysis

Figures 7.32 and 7.33 show the performance time results of POPF versus the aggressive

and passive versions of POPI respectively. We can observe that for both the aggressive and
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passive versions of POPI, the overhead in solving the problems in terms of solution time is

very similar to that of POPF. There is some slight variation, and the time taken for the

planners to time out on the problems not solved have showed similar results, indicating that

for the problems where this was under the 30 minutes time limit, that all of the planners

ran out of memory to solve the problems after similar amounts of time. The results for the

Parking domain problems are somewhat anomalous for both versions of POPI, indicating that

POPI may have analysed action structures in this domain where there were more candidates

for required concurrency which did not turn out to be actual patterns instances. However,

the solution time difference compared to POPF is less than 11%, which is within the margin

of experimental error for these experiments. The results presented in this section show that

POPI solved the same 29 problems across the IPC domains with comparable peformance,

this satisfies the third evaluation objective presented at the start of this chapter.
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7.5.2 Comparison of POPF and Other Temporal Planners

In this section we perform experiments using POPF and other temporal planners, most of

which took part in the IPC 2018 temporal satisficing track. We again perform experiments

using the temporal domains from the competition. The purpose of this comparison to to

determine the competitiveness of POPF and in turn with POPI, with other recent temporal

planners. We should note that each of these planners operate differently and produce different

output. Since they are not all state-based planners, we cannot compare using number of

states generated or evaluated. The time measurements outputted by each planner also varies

in what is being measured. For example TPSHE, TP(K) and STP(K) output “Actual Search

Time” values, whereas POPF outputs a “Time Taken” measurement. In addition, some of the

planners also output multiple solutions. Since our comparison of the IPC temporal planners

are with POPF, which produces a single solution, we use the time value produced for the first

solution produced by each planner. Given these variations, the comparison of the planners

based on the time to solve problems is not entirely fair. However, the results are still useful to

map to give us an idea of the general performance of the planners across a range of temporal

domains. A select number of the problem instances from each submitted domain to the IPC

were used in the competition, which are the problems we have run our experiments on. The

solution times produced in results for TFD are almost all the same, suggesting they may be

time intervals within which a solution was found. This makes the TFD results difficult to

compare with the other planners, therefore we present them separately in Section 7.5.3.

Results

The results mapping the performance of the planners on each of the IPC temporal domains are

presented in Figures 7.34 to 7.42. A maximum value of 1800 seconds (30 minutes) is used on

the graphs to represent problems which could not be solved, since there was no planner that

solved a problem on the 30 minute deadline. The number of problems solved by each planner

in each domain is summarised in Table 7.2, with the planners labelled as P1 to P11, and the

corresponding planner names in Table 7.3. We can see from Table 7.2 that the number of

problems solved by each planner varies between domains with TP-3 solving the largest total

number of problems across the domains and STP-4 solving the least number of problems. No

planner was able to solve problems from all nine domains, however most planners were able

to solve all 10 problems in at least one domain. The cushing domain is the only domain that

appears to have required concurrency. We observe that problems from this domain are solved

by the TFLAP planner which was not able to solve problems in our pattern domain tests in

Section 7.3.4. However, the cushing domain is defined with fixed duration actions, whereas

the patterns domains use duration inequalities, indicating that this may have been the issue.

The cushing domain contains actions corrresponding to pattern type B required concurrency

as defined in this thesis. Therefore, it could also be that TFLAP can solve problems with
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particular pattern structure but not others. For POPF, we can see that it solves 29 problems

in total across the domains. Although some of the planners solve more problems than POPF,

we can see that it is still competitive in general, as POPF is able to solve more problems than

the STP planners. Interestingly, the trucks domain is one where each planner either solved

all ten problem instances or none of them. The time measurements in Figure 7.42 show that

the planners which did solve the problems, did so quickly, with the exception of TFLAP for

one problem instance, where it took relatively much longer compared to its performance on

the other problems for this domain.

Summary

The purpose of the experiments comparing POPF to other recent temporal planners, was to

show that POPF is still a relative and effective temporal planner. The results have shown

that there are planners solving temporal problems that POPF has not, but POPF is still

able to solve at least problems across most of the domains. The results illustrate the point

from the fourth evaluation objective listed at the beginning of the chapter, that the baseline

planner POPF used in this thesis, is able to compete with other temporal planners in solving

temporal problems.
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Planner P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Airport 2 3 3 3 9 7 7 9 8 9 3

Cushing 10 0 8 2 0 10 10 0 0 3 1

Floortile 5 0 0 0 0 0 0 1 10 3 0

MapAnalyser 6 10 8 7 10 10 10 10 2 8 0

Parking 2 2 2 2 9 9 9 10 3 10 7

Quantum Circuit 5 5 5 5 7 8 8 10 5 8 7

Road Traffic Accident 0 0 0 0 8 7 5 7 0 0 0

Sokoban 0 0 0 0 3 3 3 6 4 4 1

Trucks-time-strips 0 0 0 0 10 10 10 10 0 10 10

Total Solved 30 20 26 19 56 64 62 63 32 55 29

Table 7.2: Number of problems solved in each IPC domain by each planner.

P1 P2 P3 P4 P5 P6

eCPT STP-2 STP-3 STP-4 TP-2 TP-3

P7 P8 P9 P10 P11

TP-4 TPSHE ITSAT TFLAP POPF

Table 7.3: Label Key for Planners in Table 7.2
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7.5.3 TFD on IPC Temporal Domains

In this section we present and analyse the results produced by TFD on the IPC temporal

domain problems. TFD is a planner that produced mutiple solutions during experiments,

however the search time extracted for the first solution was the same for most of the problems

it solved. The results indicate that the initial search time outputted may be a bound on a

time interval within which a plan is produced and not the “actual time” to produce the first

solution to each problem.

Results

The results for each experiment run with TFD on the IPC temporal problems is presented

in Table 7.4. The planner produced solution to a total of 49 of the 90 problems From the

problems solved, 43 of them outputted 10 seconds as the search time, when the first plan

was found. The other six problems appear to produce varying times for search in order to

find solutions which seem more “realistic”. Inspection of the results showed that plans were

indeed produced for all 49 problems, however we have seen in the results produced by TFD

in Section 7.3.3 that TFD has produced an invalid plan for a patterns domain problem con-

taining required concurrency. For this reason it is difficult to the compare performance of

TFD against the other temporal planners tested on the IPC temporal domains, as we cannot

reliably assess the meanning of its results. However, if the 49 solutions are correct, then TFD

is indeed a competitive planner at least in terms of the total number of problems solved.

Problem Instance 1 2 3 4 5 6 7 8 9 10

Airports-temporal-strips 0.01 0.01 10 10 0.01 10 10 7 10 10

Cushing 2.81 7 7 7 7 7 7 7 7 7

Floortile 7 7 7 7 7 7 7 7 7 7

MapAnalyser 10 10 10 10 10 10 10 10 10 10

Parking 10 10 10 10 10 10 10 10 10 10

Quantum Circuit 0.28 3.15 10 10 10 10 10 10 7 7

Road Traffic Accident 7 7 7 7 7 7 7 7 7 7

Sokoban 10 7 7 7 7 7 7 7 7 7

Trucks-time-strips 10 10 10 10 10 10 10 10 10 10

Table 7.4: Search times (seconds) for initial solution produced by TFD.

Summary

The results produced by TFD which have been presented in this section do not allow us to

draw a concrete conclusion as to its performance. This is since we were not able to find

the type of time measurement needed from the results. This makes it difficult to compare
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with other temporal planners tested. However, the total number of problems solved indicate

that TFD can generally compete with other temporal planners and still solve many temporal

problems.
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7.6 Temporal Tea Domain

In the patterns domains, we have seen how the behaviour and performance of POPI and

POPF can differ on large scale problems. In this section we look to illustrate the subtle

differences in behaviour between the aggressive and passive inference strategies of POPI and

how it can vary from the behaviour of POPF. In order to do this, we use a simple problem

instance from the temporalTea domain that illustrates these differences. The goal of the

problem in this domain is to be at home with a cup of tea made. The possible ways of

achieving this are to go through the steps to make the tea at home, or to go to the café to

buy some tea and come back home with it. The obvious choice is to make the tea at home

but we will see how the planners deal with these options. The domain and problem instance

used to run the test on each planner is provided in Appendix E.

7.6.1 Results

The plans in Figure 7.43 are the three solutions produced by POPI-AI, POPI-PI and POPF

for a simple problem where the goal is to be at home with a cup of tea made. We can see that

POPF first tries to perform an action in order to make the tea at home and then changes its

strategy to achieve the goal by going to the café and buying the tea. This causes POPF to

have a longer plan makespan and an extra action in the plan that is not needed. POPI-AI

and POPI-PI produce the same plans, however POPI-PI used 3 state evaluations, whereas

POPI-AI used only 2 state evaluations. This means that the first state generated by POPI-PI

using the trigger action for the pattern of actions visitcafe and buytea produced a successor

with a better heuristic, so the planner pursued the inference. POPI-AI did not use this extra

state evaluation and benefited more than POPI-PI as a result.

7.6.2 Discussion

Although the example plans produced from this temporalTea domain problem are simple,

they illustrate a clear point. We can see that the aggressive and passive strategies each

perform better under different circumstances. It is clear that the two strategies can be set

up in specific problem scenarios that makes one strategy perform better than the other. This

illustrates the No Free Lunch (NFL) (Wolpert and Macready [1997]) theorem implications for

using inference in planning. If we cannot guarantee where the states are better and taking

the planner closer to the goal, applying inference from a state using the aggressive approach

will cost computation time and not reliably provide gain in performance. Therefore, we pay

a cost on some problems in exchange for gains in performance on other problems. Using the

aggressive strategy causes the planner to pay the cost of pursuing inference, before it has an

indication on whether the state generated at the end of the inference, will be better than the

current state. Conversely, the passive strategy is more cautious, and only pursues the use of
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0.000: (visitcafe greentea) [25.000]

0.001: (buytea greentea) [15.000]

(a) POPI-AI Plan

0.000: (visitcafe greentea) [25.000]

0.001: (buytea greentea) [15.000]

(b) POPI-PI Plan

0.000: (addteabag greenteabag favouritemug) [2.000]

2.000: (visitcafe greentea) [25.000]

2.001: (buytea greentea) [15.000]

(c) POPF Plan

Figure 7.43: Plans produced for temporalTea problem by each planner.

inference when the trigger action is estimated to provide a state closer to the goal, however

the state at the end of the inference can still be worse. Hence, the passive strategy gains

less in performance, but does so more reliably. The question remains in asking what is the

distribution of “realistic” problems in which it is better to apply one strategy or the other,

and this remains an open question.

7.7 Summary

In this chapter we have provided an empirical analysis of the practical benefit that the infer

and search process of POPI can bring, as well the costs, depending on the circumstances. It

is evident from the results of the patterns domains that there are huge potential benefits of

the aggressive inference approach when there is a repeated need to apply actions in either a

single or chained set of pattern instances and when the use of this pattern based inference

progressively leads the planner closer to the goal. Under these circumstances, POPI-AI is

able to scale very well and better than POPF or COLIN or indeed the passive version of

POPI (POPI-PI). This enabled us to achieve our first evaluation objective. We saw that

eCPT, which is a constraint programming based planner that utilises inference, is not able

to handle large scale problems for the Patterns domains. The experiments using TFD on

this set of domains showed that it is not a planner designed for solving problems of required

concurrency for most of the pattern types we deal with in this thesis. In addition, we used

other recent temporal planners, which competed in the IPC 2018, and found that they were
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limited in being able to handle our pattern domain problems. None of the pattern problems

defined with duration inequalities were solved. This study achieve our second evaluation

objective. The Optional concurrency domains containing patterns, showed us that when there

is optional concurrency POPF is more competitive in its strategy. These experiments further

illustrate that it very much depends of the exact circumstances of the problems being tackled,

and the strategies being used, that determines which planner has the best performance.

The temporalTea domain provides further evidence that the benefit from inference is still

subjective, and depends on the strategy being used to apply it. We have also provided

supporting evidence that where there is no pattern structure detected in the domain for the

problem being solved, POPI in both versions has the same behaviour as POPF. This was

achieved by comparing both variants of POPI against POPF on the IPC temporal domains,

which showed that the planners all solved the exact same problems. This analysis achieved

our third evaluation objective. We also performed a comparison of POPF against recent

temporal planners from the IPC 2018 on the IPC temporal domain problems, which showed

that POPF is generally able to compete with these planners in solving temporal problems.

This allowed us to satisfy our fourth and final evaluation objective. In Chapter 8 we conclude

the thesis by reviewing the work performed, its achievements and laying out areas for future

extensions of the research.



Chapter 8

Conclusions

8.1 Summary

In this thesis we have investigated the notion of required concurrency between pairs of ac-

tions, both where there are only concurrent solutions and when there is a sequential solution

with a concurrent alternative. In Chapter 3, we have catalogued a set of pattern instances

where the predicate structure has been constructed such that each instance corresponds to

one of sets of pattern sequences presented in Table 4.5 in Chapter 4. In Chapter 4 we have

presented theorems and proved that the sets of pattern sequences in Table 4.5 are complete

and exhaustive for pair-wise required concurrency. We have also proposed a novel method

for measuring inferential gain using long established principles of information theory. We

have developed a new planning system, called POPI, to explore the benefits of recognising

the patterns presented in Chapter 3 and using an inference engine to power the use of more

inference during planning.

It is clear from the results in Chapter 7 that there is a subclass of problems in temporal

planning in which the pattern detection and inference strategies used by POPI provide an

empirical gain over its baseline POPF. Depending on whether it is the aggressive or passive

strategy being utilised, POPI optimistically or cautiously pursues its use of the pattern based

inferences. It is important to remember that although POPI prioritises the use of its infer-

ence over search where possible, it is of course still a planner that uses search as well as the

pre-existing inference machinery implemented in POPF.

The extent to which our new inferences or the pre-existing search or indeed a mixture of

the two, is used in solving a problem depends on the problem being solved and its domain.

If the domain contains required concurrency where two actions are detected as being in a

pattern, then POPI is able to apply those actions using inference, once its trigger component

has been applied via search. When a trigger action is applicable in a state, POPI prioritises

183
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the trigger action over all others and treats them as the most helpful actions of all. This

is because applying two, or in the case of a chain, many actions using inference and only

evaluating the resulting state at the end, allows POPI to look ahead further into the search

space. This results in the evaluating the potential benefit at a deeper level of the search tree,

rather than the helpfulness of a single action, one state expansion at a time.

8.2 Future Directions for Research

There are various directions in which the research presented in this thesis could be extended.

A natural extension which would follow nicely would be to consider action durations in ad-

dition to the predicate structure to handle certain subtle cases, for patterns such as type H,

where the application of both endpoints of one action must applied in between the endpoints

of another action. If there was a pair of actions with fixed durations where one action is

shorter than the other and the pair are in a pattern H structure, how could the planner de-

tect that only one of the two concurrent orderings is temporally viable, before applying the

actions. Another interesting avenue to investigate would be how the patterns of required con-

currency we have explored, could be extended to sets of sequences with more than two actions.

Currently in both versions of POPI, aggressive and passive, the pattern detection ma-

chinery utilises a technique of “predicate counting” when analysing the domain structure for

candidate pattern instances. This was described in Section 6.4.3 of Chapter 6. The limitation

of this approach is that, although it does guarantee that required concurrency between pairs of

operators does exist when a pattern is detected, it is possible that even with a predicate part

of a pattern structure existing in the schema of another operator, the required concurrency

relationship may not be broken between the first two actions. This predicate counting system

takes a safe and certain approach to detecting required concurrency, but can be restrictive in

certain cases where the pattern structure does exist but because a pattern predicate exists

outside of the action pair, the pattern detection is discarded. This is an area of future work

that we would like to explore further, to look into ways of making the detection more accom-

modating, while maintaining the current safety of detecting pattern structures.

In Chapter 4 we explored the idea of being able to compile pairs of durative actions that

are in a pattern of required concurrency into a single action under certain circumstances.

Where such a case exists, that pair of grounded actions would be considered pattern abstract

safe, meaning the preconditions and effects of the two actions can be compiled into one action.

This core focus of this thesis has been on the interaction of the actions within the pattern

and the constraints that exist from their specific required concurrency relationships. It would

be fascinating to explore a technique for a planner which performs this compilation for action
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pairs that are pattern abstract safe and investigates the benefits of this approach, compared

with applying those same patterns using the inference based approach described in this thesis.

For the passive strategy, given that the first successor generated from applying the trigger

action in a pattern is evaluated, an observation to note is that in cases where that state is not

simply worse than its parent but is also a dead-end, there may be ways to prevent the use

of such pattern instances again. In the current approach of POPI for both the passive and

aggressive inference strategies, commitment to the application of the pattern of actions can

be abandoned if it is deemed to be heuristically worse or a dead-end. This pattern instance is

recorded to prevent it being triggered again from the same state and stop the planner becom-

ing stuck in repeated applications of the same action pair. However, the pattern instance can

be applied from a different state which may or may not be useful. Another interesting avenue

of further research would be to see if this technique could be extended to determine situa-

tions, in which the planner could detect when no grounded action pair making up a pattern

instance is usable to achieve the goal, after it being applied once. For example, perhaps there

is a grounded atomic propositional fact defined in the set of goal conditions that is always

deleted by all groundings of an action which is part of a pattern instance, hence applying

any grounding of that pattern would always lead to a dead-end state. During the course of

this research project, we took a preliminary step in this direction by simply preventing any

re-use of any pattern instance where one grounding of that pattern led to a dead-end state.

However, this has the potential to be over restrictive, as doing this without more information

may prevent a useful re-application of the pattern instance with different grounded actions,

for example at a different state. It is for this reason that this functionality is not currently

set as a standard feature of POPI.

Another area of extension is also modifying both the aggressive and passive versions of

POPI so that they no longer evaluate intermediary pattern states, as there heuristic values

are not used during the execution of EHC-AI and EHC-AI strategies. This could allow an

investigation into the savings from avoiding heuristic evaluation at these states.

Finally, it would also be interesting to look into how the ideas and approaches for pattern

detection and inference techniques explored in this thesis could be extended to the temporal

numeric case. Where there are temporal-numeric actions that also have concurrent temporal

constraints, it would be valuable in the pursuit of using more inference in planning, to explore

if there is a new way to infer values of numeric variables. This could work by leverage

what POPI already knows about required concurrency relationship between actions, due

to precedence constraints created by the temporal structure of the action pair, to see if

information about the numeric effects could be inferred in certain circumstances.



Appendix A

Mars Rover Domain

A.1 Domain

This domain illustrates the temporal coordination problem in which actions must be coordi-

nated to occur at certain times in order to solve the problem.

(define (domain marsRover)

(:requirements :strips :typing :fluents :equality :durative-actions)

(:types waypoint rover drone objective sensor camera fuelStation)

(:predicates

(at ?r - rover ?w - waypoint)

(lightAt ?w - waypoint)

(launched ?d - drone)

(inAir ?d - drone)

(droneAt ?d - drone ?w - waypoint)

(inspected ?w - waypoint)

)

(:durative-action navigate

:parameters(?r - rover ?w1 ?w2 - waypoint)

:duration(= ?duration 10)

:condition (at start (at ?r ?w1))

:effect(and (at start(not(at ?r ?w1)))

(at end (at ?r ?w2))

)

)

(:durative-action launch
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:parameters(?d - drone)

:duration(= ?duration 2)

:condition (and)

:effect(and (at start(inAir ?d))

(at end (not(inAir ?d)))

)

)

(:durative-action fly

:parameters(?d - drone ?w1 ?w2 - waypoint)

:duration(= ?duration 1)

:condition (and (at start (droneAt ?d ?w1))

(at start(inAir ?d))

)

:effect (and (at start(not(droneAt ?d ?w1)))

(at end (droneAt ?d ?w2))

)

)

(:durative-action shine_light

:parameters(?r - rover ?w - waypoint)

:duration(= ?duration 1)

:condition (over all (at ?r ?w))

:effect (and (at start(lightAt ?w))

(at end (not(lightAt ?w)))

)

)

(:durative-action inspect

:parameters(?d - drone ?w - waypoint)

:duration(= ?duration 0.5)

:condition (and (over all (lightAt ?w))

(over all (inAir ?d))

(over all (droneAt ?d ?w)))

:effect (and (at end (inspected ?w))

)

)

)
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A.2 Problem Instance

(define (problem marsProb)

(:domain marsRover)

(:objects turtle - rover

parrot - drone

w1 w2 w3 - waypoint

)

(:init

(at turtle w1)

(droneAt parrot w2)

)

(:goal (inspected w3))

)



Appendix B

Patterns Type D Domain

B.1 Domain

This domain is one version of the Patterns domain that contains a single instance of the

pattern D structure between actions A and B. Other versions of the domain include the same

with modifications to actions A and B to model each of the other pattern types. This domain

along with the other Patterns domains are artificial domains which have be made to illustrate

how POPI works and the benefits its approach can give.

(define (domain patternsD)

(:requirements :strips :typing :equality :durative-actions

:duration-inequalities)

(:types typeA)

(:predicates

(p ?a - typeA)

(q ?b - typeA)

(r ?d - typeA)

(next ?o1 ?o2 - typeA)

(ready ?o1 - typeA)

(active)

)

(:durative-action Act_A

:parameters(?a ?b - typeA )

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at start (active)) (at end (q ?a))

(at start(next ?a ?b)) (at start (ready ?a)) (at end(ready ?a)))

:effect (and (at start(p ?a)) (at start(not(active))) (at start(ready ?b))
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(at end (active)) (at end(not(ready ?a)))

)

)

(:durative-action Act_B

:parameters(?a - typeA)

:duration(and (<= ?duration 5) (>= ?duration 1))

:condition(and (at start(p ?a)) (at start (ready ?a)))

:effect (and (at end (q ?a)))

)

(:durative-action Act_C

:parameters(?a ?b - typeA)

:duration(and(<= ?duration 0.9 ) (>= ?duration 0.5))

:condition(and (at start(ready ?a)) (at start(next ?a ?b))

(over all (ready ?b))

)

:effect (and (at start(not(ready ?a))) (at start(ready ?b))

(at end(not(ready ?b)))

)

)

)

B.2 Problem Instance

(define (problem patternsProb10)

(:domain patternsD)

(:objects obj1 obj2 obj3 obj4 obj5 obj6 obj7 obj8 obj9 obj10 - typeA)

(:init

(ready obj1)

(next obj1 obj2)

(next obj2 obj3)

(next obj3 obj4)

(next obj4 obj5)

(next obj5 obj6)

(next obj6 obj7)
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(next obj7 obj8)

(next obj8 obj9)

(next obj9 obj10)

(active)

)

(:goal (and (ready obj10)))

)
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Patterns Type B Domain

C.1 Domain (Fixed Durations)

This domain is a version of the Patterns domain containing a pattern type B structure. This

domain has been specified with fixed durations for all the actions to accommodate testing on

the eCPT planner. Section C.2 shows the problem instance used for testing this version of

the Patterns domain.

(define (domain patternsB)

(:requirements :strips :typing :equality :durative-actions)

(:types typeA )

(:predicates

(p ?a - typeA)

(r ?d - typeA)

(next ?o1 ?o2 - typeA)

(ready ?o1 - typeA)

(active )

)

(:durative-action Act_A

:parameters(?a ?b - typeA )

:duration(= ?duration 5)

:condition(and (at start (active)) (at start(next ?a ?b))

(at start (ready ?a)) (at end(ready ?a))

(at end (r ?a)) )

:effect (and (at start(p ?a)) (at end(not(p ?a)))

(at start(not(active))) (at start(ready ?b))

(at end (active)) (at end(not(ready ?a)))
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)

)

(:durative-action Act_B

:parameters(?a - typeA)

:duration(= ?duration 4.5)

:condition(and (at start(p ?a)) (at start (ready ?a)))

:effect (and (at end (r ?a) ))

)

(:durative-action Act_C

:parameters(?a ?b - typeA)

:duration(= ?duration 1 )

:condition(and (at start(ready ?a)) (at start(next ?a ?b))

(over all (ready ?b)))

:effect (and (at start(not(ready ?a))) (at start(ready ?b))

(at end(not(ready ?b))))

)

)

C.2 Problem Instance

(define (problem patternsProb2)

(:domain patternsB)

(:objects obj1 obj2 - typeA)

(:init

(active)

(ready obj1)

(next obj1 obj2)

)

(:goal (and (ready obj2)))

)



Appendix D

MyBuilding Domain

D.1 Domain (Version 1)

This domain and problem along with modified variations of it have been used to generate

the example search space diagrams presented in section 6.8 of chapter 6. Variations of this

domain model were made in order to illustrate the behaviour of each strategy in the different

scenarios that were presented. The MyBuilding domain describes a scenario where there is a

building, you are in one room location and are attempting to go to another location. There

are two ways of travelling between the room you start in and the destination room. The first

is to move between rooms that are connected by paths. The second is to make a hole in the

wall to get to the destination room. The problem is that although that may seem like the

better plan, making a hole in the wall makes the building unstable. The goal is to be both

at the destination room and for the building to be stable.

(define (domain mybuilding)

(:requirements :strips :typing :equality :durative-actions)

(:types location)

(:predicates

(buildingStable)

(wall ?a - location ?b - location)

(at ?a - location)

(open ?a ?b - location)

(closed ?a ?b - location)

(path ?a ?b - location)

)

(:durative-action make-hole
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:parameters (?x ?y - location)

:duration (= ?duration 100)

:condition (and (at start (at ?x)) (at start (wall ?x ?y))

(at end (at ?y)))

:effect (and (at start (path ?x ?y)) (at start (not (wall ?x ?y)))

(at end (not (path ?x ?y))) (at end (not (buildingStable))))

)

(:durative-action go-through

:parameters (?x ?y - location)

:duration (= ?duration 50)

:condition (and (at start (at ?x)) (at start (path ?x ?y))

(over all (path ?x ?y)))

:effect (and (at start (not (at ?x))) (at end (at ?y)))

)

(:durative-action go-direct

:parameters (?x ?y - location)

:duration (= ?duration 10)

:condition (and (at start (at ?x)) (at start (open ?x ?y)))

:effect (and (at start (not (at ?x))) (at end (at ?y)))

)

(:durative-action open

:parameters (?x ?y - location)

:duration (= ?duration 1)

:condition (at start (closed ?x ?y))

:effect (and (at start (not (closed ?x ?y))) (at end (open ?x ?y)))

)

)

D.2 Problem Instance

(define (problem mybuildingProb1)

(:domain mybuilding)

(:objects sloc room1 dest - location)
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(:init

(at sloc)

(buildingStable)

(open sloc room1)

(closed room1 dest)

(wall room1 dest)

)

(:goal (and (at dest) (buildingStable)))

)



Appendix E

Temporal Tea Domain

E.1 Domain

This domain has been made to illustrate the difference in behaviour between the aggressive

and passive versions of POPI and against POPF, depending on the problem being solved

and the strategy being used. We also provide an example problem instance used in the

experiments for this domain.

(define (domain temporalTea)

(:requirements :strips :typing :equality :durative-actions)

(:types mug tea teaBag milk water)

(:predicates

(addedTo ?m - milk ?mu - mug)

(atBottomOf ?t - teaBag ?m - mug)

(containedIn ?w - water ?m - mug)

(drinkMade ?t - tea)

(haveDrink ?t - tea)

(handempty)

(athome)

(atcafe)

(handdirty)

(atfrontdoorhome)

(nothanddirty)

)

(:durative-action visitcafe

:parameters (?t - tea)

:duration (= ?duration 25)
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:condition (and (at start (athome)) (at end (haveDrink ?t)))

:effect (and (at start (not (athome))) (at start (atcafe))

(at end(athome)) (at end(drinkMade ?t)))

)

(:durative-action buytea

:parameters (?t - tea)

:duration (= ?duration 15)

:condition (and (at start (atcafe)))

:effect (and (at end (haveDrink ?t)))

)

(:durative-action getMilk

:parameters(?m - milk ?mu - mug)

:duration (= ?duration 2)

:condition (and (at start (handempty)) (over all(athome)))

:effect(and (at start (addedTo ?m ?mu)) (at start (not (handempty)))

(at end (handdirty)) (at end (not (nothanddirty))))

)

(:durative-action addWater

:parameters (?w - water ?m - mug)

:duration (= ?duration 2)

:condition (and (at start (handempty)) (over all(athome)))

:effect(and (at start (containedIn ?w ?m)) (at start (not (handempty)))

(at end (handdirty)) )

)

(:durative-action addTeaBag

:parameters (?t - teaBag ?m - mug)

:duration (= ?duration 2)

:condition (and (at start (handempty)) (over all(athome)))

:effect(and (at start(atBottomOf ?t ?m)) (at start (not (handempty)))

(at end (handdirty)) (at end (not (nothanddirty))))

)

(:durative-action clean

:parameters ()
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:duration (= ?duration 1)

:condition (and (at start (handdirty)) (over all(athome)))

:effect (and (at start (nothanddirty)) (at start (not (handdirty)))

(at end (handempty)))

)

(:durative-action mix

:parameters (?t - teaBag ?w - water ?m - milk ?mu - mug ?te -tea)

:duration (= ?duration 3)

:condition (and (at start (handempty))(at start(addedTo ?m ?mu))

(at start(atBottomOf ?t ?mu)) (at start(containedIn ?w ?mu))

(over all(athome)))

:effect (and (at end(drinkMade ?te)) (at start (not (handempty)))

(at end (handempty)))

)

)

E.2 Problem Instance

(define (problem tempTeaProb)

(:domain temporalTea)

(:objects

greenTeaBag - teaBag

greenTea - tea

someWater1 - water

favouriteMug - mug

soyaMilk - milk

)

(:init

(handempty)

(athome)

)

(:goal (and (athome) (drinkMade greenTea)))

)
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