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Abstract  
In this paper, we perform a verification study of the Coupled-Momentum Method (CMM), a 3D fluid-

structure interaction (FSI) model which uses a thin linear elastic membrane and linear kinematics to 

describe the mechanical behavior of the vessel wall. The verification of this model is done using 

Womersley’s deformable wall analytical solution for pulsatile flow in a semi-infinite cylindrical vessel. 

This solution is, under certain premises, the analytical solution of the CMM and can thus be used for 

model verification. For the numerical solution, we employ an impedance boundary condition to define a 

reflection-free outflow boundary condition and thus mimic the physics of the analytical solution, which is 

defined on a semi-infinite domain. We first provide a rigorous derivation of Womersley’s deformable wall 

theory via scale analysis. We then illustrate different characteristics of the analytical solution such as 

space-time wave periodicity and attenuation. Finally, we present the verification tests comparing the 

CMM with Womersley’s theory. 
Keywords:  Verification; Womersley Deformable Wall Solution; Coupled-Momentum Method; Impedance Boundary 

Condition; Blood Flow; Fluid-Structure Interaction.  

1 Introduction  
Blood can be represented as an incompressible fluid whose constitutive behavior is usually 

approximated, at least in the larger arteries, by a Newtonian model and the incompressible Navier-Stokes 

equations. Blood velocity, pressure, and propagation of waves within the arterial tree are greatly affected 

by the deformability of the vessel wall 1,2. Wave speed and changes in amplitude and phase are dictated 

by vessel size, viscoelastic behavior, and by blood viscosity. Wave attenuation and dispersion are also 

observed within the cardiovascular system.  

Numerous mathematical formulations have been developed to represent these complex physical 

phenomena, usually describing oscillatory flow in an idealized tube, rigid or elastic 3–8. One of such 

formulations is given by Womersley’s analytical velocity profile for oscillatory flow in rigid tubes 9. This 

was then extended to the case of compliant arteries by taking into consideration wall deformations and 

radial components of blood velocity, producing an analytical solution for pulsatile flow in a deformable, 

axisymmetric, semi-infinite vessel 9–13. Womersley’s deformable wall analytical solution represents an 

excellent framework to understand some of the governing principles of wave propagation phenomena in 

the cardiovascular system. It is also a good tool for performing verification studies of mathematical models 

of blood flow in compliant arteries. 

Beyond analytical solutions, computational 3D models have been used extensively to study fluid-

structure interactions (FSI) between blood flow and vessel wall motion. Boundary-fitted techniques based 
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on Arbitrary Lagrangian-Eulerian (ALE) formulations  14–16, non-boundary fitted techniques such as the 

Immersed Boundary Method 17,18 or the Fictitious Domain Method 19, or simplified models such as the 

Coupled-Momentum Method (CMM) 20,21 have been proposed to describe cardiovascular FSI. These are 

all complex formulations which require rigorous benchmarking to ensure error-free implementations. 

There are several studies that have used analytical solutions for pulsatile flow in compliant vessels for 

validation and verification of 3D computational FSI models 22–26. A FSI strategy involving external 

coupling of ANSYS and CFX solvers for blood flow in a straight elastic tube was compared against a 

single-frequency Womersley’s analytical solution 22. Verification and validation of a FSI numerical 

method based on OpenFOAM was described in the work of Kanyanta et al. 23, comparing numerical results 

with analytical expressions for pressure wave speed and axial stress perturbations 27,28, as well as with 

data from polyurethane mock artery experiments. In the paper of Passerini et al. 26, validation of the open-

source LifeV framework was presented with verification against an analytical solution for wave speed. 

Ponzini and colleagues 24 presented an in vivo validation using 2D Phase Contrast Magnetic Resonance 

Imaging of a Womersley number-based formula for estimating flow rate in several arteries. In the study 

of van Geel  et al. 25, an ALE FSI numerical model with viscoelastic walls was compared against 

Womersley’s solution and experimental results, showing good agreement for straight and tapered vessels.  

The purpose of this paper is to perform a verification study of the CMM 20 against a multi-frequency 

Womersley deformable wall analytical solution. The CMM is 3D method that considers a monolithic 

approach for the FSI problem, a thin linear elastic membrane model for the arterial wall, and fixed 

conforming meshes at the vessel wall-fluid boundary interface. The dynamic coupling between blood and 

vessel wall was achieved by defining a fictitious body force driving the wall motion, similar to a key 

assumption in Womersley's deformable wall analytical solution 13.Womersley's deformable solution can 

be regarded as the analytical solution for the Coupled-Momentum Method under the following conditions: 

cylindrical and axisymmetric geometry; linear, periodic flow, and non-reflective outflow boundary 

conditions. Therefore, it is best suitable for verification.  

A key component of this work is the utilization of an impedance boundary condition for the outflow 

boundary of the computational domain 29. This approach makes it possible to use a reflection-free outflow 

boundary which can mimic the physics of the analytical solution, defined on a semi-infinite domain 30. 

Furthermore, this approach for outflow boundary condition avoids the direct specification of any of the 

main solution variables at this boundary, and thus contributes to a more rigorous set-up for the verification 

of the CMM. 

The structure of this paper is as follows. In the methods section, an overview of Womersley’s 

analytical solution for pulsatile flow in a deformable, axisymmetric, semi-infinite cylindrical vessel is 

provided first in Section 2.1 13. This is complemented by Appendix where the mathematical formulation 

is recapitulated in concise, non-dimensional form applying scale analysis 31 to summarize the theory’s 

limitations needed for verification. The CMM 3D formulation is then presented in Section 2.2. Special 

care was taken to define a non-reflective boundary condition for the numerical domain, using a coupled-

multidomain method 29. In the results section, first in Sections 3.1-3.2 a multi-frequency Womersley 

deformable solution is determined, in order to represent flow, pressure and wall motion in an idealized 

model of a human common carotid artery. Finally, in Section 3.3 numerical solutions of the CMM were 

compared against the analytical solution. Special care was taken in the definition of the problem 

parameters to ensure that solutions are both physiologically realistic and compatible with the assumptions 

of Womersley’s theory.  
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2 Methods  
In this section we carefully describe the assumptions and governing equations leading to Womersley’s 

theory and to the CMM method. We focus on the main assumptions relevant for the comparison of the 

methods. For example, Womersley’s theory is described on a semi-infinite cylindrical vessel using 2D 

axisymmetric assumptions and linear fluid-solid interactions. Conversely, the CMM is a numerical 

formulation capable of dealing with 3D geometries and nonlinear flows on finite domains. However, under 

certain assumptions the CMM can be reduced to the Womersley’s deformable wall formulation. These 

assumptions include: axisymmetric linear flow, straight elastic vessels with thin walls, a total wall surface 

traction used to define a wall body force, and no wave-reflections. The latter assumption is enforced in 

the finite numerical domain via an outflow impedance boundary condition.  

 

2.1 Womersley theory for blood flow in a deformable vessel 

The Womersley’s theory describes the axisymmetric motion of blood when subjected to a periodic 

pressure gradient in a straight elastic vessel. Under a linear assumption, the pumping action of the heart 

results in a pressure gradient 
total

k , which can be decomposed into a constant component 
s

k  producing a 

steady forward flow, and an oscillatory component k  with zero net flow over the cardiac cycle 32: 

 ( , , ) ( , , )total

total s

p
k r z t k k r z t

z


= = +


, (1) 

where 
total

p  is a total pressure field with steady and oscillatory contributions; r  and z  are the radial and 

longitudinal coordinates of the tube, respectively, and t  is a time variable. 

The total velocity field in the longitudinal and radial directions can be written as: 

Longitudinal: ( )2 2( ) ( , , ) ( , , )
4

s

total s

k
w w r w r z t r R w r z t


= + = − + ,  (2) 

Radial: ( ) ( , , ) ( , , )
total s

u u r u r z t u r z t= + = ,    (3) 

where w  and u  are the oscillatory components of the velocity field. The steady Poiseuille longitudinal 

component 
s

w  is added to w  to reconstruct the total velocity profile. In the radial direction, the steady 

component of the velocity ( )
s

u r  is identically zero. Here, R  is the vessel radius and   is the blood 

dynamic viscosity. Similarly, the total pressure field 
total

p  can be decomposed in terms of its steady, 
s

p , 

and pulsatile, p , components as: 

 
0

( ) ( , , ) ( , , )
total s s

p p z p r z t p k z p r z t= + = + + , (4) 

where 
0

p  is the mean temporal pressure at the inlet of the vessel ( 0z = ). 

The complete derivation of Womersley's governing equations for a freely-moving elastic, cylindrical 

and semi-infinite vessel 13 is presented next. The presented derivation refers only to the oscillatory 

components of the velocity and pressure field ( ,w u , and p ). A scale analysis (order of magnitude analysis) 
31 of the governing equations is used to understand the validity limits of the simplifying assumptions of 

theory. The following scaling rules were considered for blood flow and vessel wall variables:  

 
2,  ,  ,  ,   ,  ,

c t
r Rr z z t u cu w cw p c p  

 


    = = = = = =   (5) 
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 ,   ,
c c 

   
 

 = =   (6) 

where   is the angular frequency of oscillations, c  is the wave speed,   is the blood density, and , ,    

are non-dimensional scale parameters for the longitudinal velocity, radial velocity, and pressure, 

respectively.   and   represent the oscillatory radial and longitudinal displacements, respectively. In 

equations (5) and (6) all non-dimensional variables, denoted by primes, are assumed to be of the same 

order ~ 𝒪 (1).  

 

 Blood flow equations 

In a cylindrical system of coordinates and using the non-dimensional form (5), the mass balance 

equation and Navier-Stokes equations for momentum balance in the radial and longitudinal directions are 

given by: 

 0
u u w

r r z

   
+ + =

   
,  (7) 

 
2 2

2

2 2 2 2 2

1 1u u u p u u u u
u w

t r z r r rr r z


 

 

               
 + + = − + + − +  

               

,  (8) 

 

2 2
2

2 2 2

1 1w w w p w w w
u w

t r z z r rr z
  



              
 + + = − + + +  

              
,  (9) 

where the non-dimensional parameter R  =  is the Womersley number, and   =  is the blood 

kinematic viscosity.  

The Navier-Stokes equations (8), (9) can be significantly simplified under the long-wave 

approximation assumptions, namely: 1) the characteristic flow wavelength 2 c  =  is much larger 

than the vessel radius R ; 2) the wave speed c  is much larger than blood velocity components. From the 

first condition, it follows that the non-dimensional scale parameter / 1R c =  ; and from the second 

condition the velocity scale parameters introduced in eq. (5) should be small: , 1   . Moreover, from 

(7) the following relations apply to scale parameters, oscillatory velocities, and coordinates:  

 1,   1,   1.
u u r r

w w z z


  



 
=  =  = 

 
  (10) 

All non-dimensional variables in eqs. (8), (9) are 𝒪 (1) due to the scaling rule. The non-linear term 

(advective inertial forces) are 𝒪 ( ) and the viscous stress axial terms are 𝒪 (
2 ) and can thus be 

neglected. The simplified momentum balance equations become linear and therefore amenable for 

superposition of solutions in a harmonic wave form. 

Boundary conditions for the fluid problem include: no-slip at the fluid-solid interface (e.g. matching 

velocities of fluid and solid at the wall), imposed oscillatory velocities û  and ŵ  at the tube inlet, and 

finite velocity at the vessel centerline. 

 

Remark 1. When performing the verification study of the CMM, it is important to estimate the 

contribution of the non-linear advective term present in the numerical solution but absent from the 

analytical solution. The non-dimensional scale parameter   can be estimated from (5) as w c  , 



 5 

where ( , ) ( , , )
R

w z t w r z t=  is the averaged longitudinal velocity over the radius. The oscillatory flow rate 

can be written as 2( , ) ( , )q z t R w z t= . The upper bound of the non-linear advective scale parameter of the 

numerical solution num  can be estimated from the maximum oscillatory flow at the inlet 
inpq  as 

 
[0, ]

2

max inp

total st Tnum

num

q q

R c





−

= , (11) 

where ( 0, )inp inp

total s
q q q z t q− = = = , and 

numc  is the reconstructed wave speed from the numerical 

solution. 

In addition, to check satisfaction of 1u c  , one may estimate   , utilizing relation (10). 

Remark 2. Radial and longitudinal pressure gradients should not be neglected to obtain non-trivial 

velocity solutions. These terms, scaled by   and 2   in eqs. (8), (9), are preserved since they do not 

affect the linearity of the equations regardless of their order, but they do affect the solution.  

 

 Vessel wall equations 

The vessel wall equations of motion are written in the context of linear elasticity and thin-walled tube 

theories, assuming small radial deformations. Cauchy’s equation of motion is 2 2w t   = +  F T , 

where w  is the wall density, F  a body force per unit volume, T  the Cauchy stress tensor for the vessel 

wall, and , 0,
T

  =    is the oscillatory displacement vector in cylindrical coordinates. 

The thin-wall assumption states: 

 ,   ,h R R   (12) 

where h  is the vessel wall thickness. The solid domain is modeled as a membrane and thus a 2D interface 

with the lateral boundary of the fluid domain. Relations (12) imply small radial deformations and thus the 

average radial coordinate of the vessel wall is r R . Therefore, a no-slip kinematic boundary condition 

at the fluid-solid interface, r R= , is simply 
r R

u t
=
=   , 

r R
w t

=
=   . 

Further exploiting the thin-wall assumption, Womersley defined radial and longitudinal components 

of a fictitious body force F  driving the dynamics of the membrane from the pressure p  and shear stresses 

  acting on the lateral fluid boundary as: 

   ,  r R

r z

r R

p u w
F F

h h h z r

 =

=

  
= = − = − + 

  
. (13) 

The stress tensor T is defined by considering two stress states: internal pressurization with no axial 

strain, and axial force with no internal pressure. The linear superposition of these states yields the 

following circumferential and longitudinal components of the stress tensor 13: 

   ,   
zz

T B T B
R z R z

   
 

    
= + = +   

    
, (14) 

where ( )21B E = − , E  is the Young's modulus of the vessel wall, and   is its Poisson's ratio. 
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Using eqs. (5),(6),(12),(13) and neglecting smaller terms in the divergence of the stress tensor, 

( ) ( )
r r R

T r


=

   −T  and ( ) zzz
T z    T , we obtain the radial and longitudinal equations of motion 

for the vessel wall in non-dimensional form: 

 
2

2

2 21
,

w wr

R B
p

zt h c

  
   

 =

   
 = − + 

  
  (15) 

 

2 2
2

2 2 2

1

.
w w

r

u w B

z r zt h R c z

   
 

  
=

          
= − + + +             

  (16) 

The non-dimensional coefficient 2( ) 1wB c   because the velocity of shear waves in the material of 

the tube is greater than the pulse wave velocity 13. Using long-wave approximation, 2 1  , equation 

(15) can be reduced to a radial equilibrium equation. Similarly, the term u z    in eq. (16) can be 

neglected.  

Remark 3. The small deformation assumption in eq. (12) does not apply to the axial direction, in which 

the longitudinal deformations can be finite. Womersley developed an extension of the theory 11 where an 

additional longitudinal wall motion elastic constraint was introduced to reduce axial wall deformations, 

see Remark 5. 

 

 Summary of fluid-solid equations and solutions 

The resulting non-dimensional, linear system of second order differential equations for the fluid-solid 

problem is summarized in Error! Reference source not found.. The solution in harmonics waves is 

completely derived in Appendix A.1 and summarized in Error! Reference source not found.. The wave 

speed c  is defined by frequency equations as described in Appendix A.2. Initial conditions for velocity, 

pressure, and wall displacements must be provided. Lastly, velocities at the center of the vessel are 

assumed to be finite, Error! Reference source not found. (C).  

 

 

Table 1. Womersley’s deformable wall theory: governing equations, assumptions and boundary 

conditions. 
Non-dimensional system of governing equations for oscillatory , , , ,p u w        

(A): Fluid (B): Solid 

2

2 2 2 2

2

2 2

0

1 1

1 1

u u w

r r z

u p u u u

t r r rr r

w p w w

t z r rr



 




   
+ + =

   
        

= − + + − 
       

       
= − + + 

      

 21

2 2

2 2 2

1

0
w wr

w w

r

R B
p

zh c

w B

r zt h R c z

 
  
 

   


  

=

=

 
 = − + 

 
        

= − + +           

 

(C): Boundary conditions 

' 0 ' 0
ˆˆ( , ),  ( , )

z z
u u r t w w r t

= =
     = = ,                    

1 1

1 1

, 
r r

r r

u w
t t

 
 = =

 = =

     
 = =   

     
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0 0
,    

r r
u w

 = =
  +  +  

 

(D): Long-wave approximation (E): Thin-wall assumption 

1,   1,   1u c w c     ,  h R R   

(F): Scaling rule 

2

,  ,  ,  

,   ,  

r Rr z z c t t

u cu w cw p c p

 

  

  = = =

  = = =
 ,   c c        = =  

1,   1R c     = =   

(G): Parameters 

, , , ,R R     =  ( )2, , 1w h B E = −  

 

 

Table 2. Dimensional (complex) single-frequency solution for Womersley’s deformable wall theory (see 

Appendix). 
Radial oscillatory velocity Radial wall displacement 

1

2

0

2 ( )
( , , ) exp( ( ))

( )2

J r RH R r
u r z t i M i t z c

R Jc






 
 = − −
  
 

 ( )
2

( , ) 1 exp( ( ))
2

RH
z t Mg i t z c

c
 


= − −  

Axial oscillatory velocity Axial wall displacement 

( )
( )

0

0

( , , ) 1 exp( ( ))
J r RH

w r z t M i t z c
c J




 
 = − −
  
 

 ( )( , ) 1 exp( ( ))
iH

z t M i t z c
c

 
 

= − −  

Oscillatory flow and pressure 

( )
2

( , ) 1 exp( ( )),  ( , ) exp( ( ))
R H

q z t Mg i t z c p z t H i t z c
c


 


= − − = −  

Wave speed relations 

( )
( ) ( )

1 1
2 2 1 1

0 2

2
,   Re{ } ,   Im{ }

1
R I

c c c c c c
 

− −
− −= = =

−

 

solve for  :  ( ) ( ) ( )
 

   
 

  
 − − − + − + − + + =       

2 2 1
1 1 2 1 2 2 0

2

w wh h
g g g g

R R
 

Parameters 

( )
( )

3/ 2 2 1

0

0

2 2 12 ( )
, , , , , , , , , , , ,

2 ( ) 2

w
JEh

H R h E i c g M
R J g

 
     

  

+ −
 = = = =

  −
 

 

 

Remark 4. The radial displacement   is related to oscillatory flow rate q , Error! Reference source not 

found., so that the radial wall deformations R  can be shown to be of order 2 : 

 ( )
( , ) ( , )

, ,    .
2 2 2 2

q z t Rw z t w
z t

Rc c R c

 



= = =   (17) 
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Thus, the small deformation part of the thin-wall approximation (12) is linked to the parameter   which 

itself is related to the long-wave approximation. Therefore, provided that h R , the order of the 

parameter   represents a validity check for both these assumptions, and thus for the applicability of 

Womersley’s theory. 

 

Remark 5. The solutions in Error! Reference source not found. can be reduced to a more 

physiologically relevant case of longitudinally tethered vessels 11, i.e. 0 =  which yields 1M =  and wave 

speed 
2

0
(1 ) (1 )c c g = − − . The axial velocity w  in this case is the same as for the rigid wall case 9 

and is the most known Womersley’s result.  

 

In 1D theories for blood flow in elastic vessels, this Womersley’s velocity profile is often assumed and 

used to enhance a theory with a friction model thus implying longitudinally tethering of vessel walls 8,33,34. 

There radial velocity and wave speed can be also derived using a perturbation method for linearization 8. 

  

 Analytical impedance 

A key challenge in verification of CMM versus Womersley’s solution is that the analytical solution is 

defined on a semi-infinite domain, while the numerical solution is defined on a finite domain. To 

circumvent this issue, a reflection-free impedance function will be used as outflow boundary condition 

for the computational domain. This impedance function can be derived from the analytical solution for 

flow and pressure at any axial location of the vessel. Furthermore, this approach avoids the direct 

specification of any solution variables as outflow boundary conditions, thereby rendering a more rigorous 

testbed for the verification analysis.  

The impedance is a measure of the opposition to oscillatory flow 5. In the frequency domain, 

impedance is defined as the ratio of pressure to flow rate for each frequency mode:

( , ) ( , ) ( , )
n n n n n n

Z z P z Q z  = . For Womersley’s solution, since there are no wave reflections, this 

impedance becomes the characteristic impedance, a function solely of the vessel and fluid properties, and 

thus position-independent: 

 
( )2

( ) ,   0
1

n

n n

n n

c
Z n

R M g





= 

−
.  (18) 

For 0n = , the impedance is the ratio of steady pressure to steady flow 
0

 ( ) ( )
s s

Z z p z q= , a quantity that 

depends on the axial position: 4

0 0
 ( ) 8 ( )

s s
Z z p k z k R = − + . In the time domain, the impedance 

function z( , )z t , is obtained via the inverse Fourier transform of ( , )
n n

Z z   as  

 

/ 2

0
1

z( , ) ( ) 2 Re ( , ) exp( ) .
N

n n n
n

z t Z z Z z i t 
=

  
= +  

  
   (19) 

The total pressure-flow relationship in time domain can be written as a convolution integral of 

impedance and flow as follows:  

 
1 1 1

1
( , ) ( , )z( , )

t

total totalt T
p z t q z t z t t dt

T −
= − .  (20) 
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Here, pressure at a given time depends not only on the flow rate at that time instant but also on the flow 

rate and pressure at previous times. Such history-dependent behavior can be observed in the cardiovascular 

system due to blood inertia, arterial distensibility, pulse wave propagation, reflection, etc. 29. 

 

2.2 Coupled-Momentum Method Formulation 

The CMM is implemented in the open-source software CRIMSON 35. The Coupled-Momentum 

Method formulation for fluid-structure interactions 20,36 is based on a stabilized finite element formulation 

for the Navier-Stokes equations and has been used to solve large-scale cardiovascular flows in 3D subject-

specific domains 21,35. Inspired by Womersley’s deformable wall theory, the method embeds the linear 

elasto-dynamic response of the wall into a single variational form for the FSI system via a fictitious body 

force driving the motion of the membrane. The fictitious body force is defined from the total traction (e.g., 

pressure and wall shear stress) at the fluid-solid interface. This results in a monolithic method whereby 

the degrees-of-freedom of the vessel wall and the fluid boundary are identical, thus naturally satisfying 

the no-slip condition. The membrane displacements are obtained by consistent time integration of the fluid 

velocities and accelerations at the interface. Lastly, a linearized kinematics Eulerian approach is adopted 

for the coupled problem, and thus fluid-solid grids are kept fixed. The solution of the resulting systems of 

equations is done via iterative GMRES algorithms. 

 

 Strong form of fluid and solid equations 

Blood flow in the large vessels of the cardiovascular system can be approximated as the flow of an 

incompressible Newtonian fluid in a spatial (Eulerian) domain   and time (0, )T . The boundary   of 

fluid domain   can be divided into three different nonoverlapping partitions such that 

hg s
 =  =    . The fluid continuity and momentum balance equations with boundary and 

initial conditions in the strong form on ( , ) (0, )t Tx  are: 

 
,

0,   ,
t total

p   = +   = − +  v v v v    (21) 

 
h

0

0
,    ,    ( ) ,   .

g S

f f

totalt
p

 =  
= = = − + = =

n n
v g v v t n h t tI   (22) 

Here, v  represents the blood velocity vector, and   is the viscous stress tensor defined as 

( ( ) )T=  + v v . Body forces are omitted here for the sake of simplicity. The initial velocity 0
v  is 

divergent-free. 
g

  represents the Dirichlet boundary where a given velocity field g  is prescribed 

(typically the inflow face). 
S

  is the fluid-solid interface boundary with a prescribed traction f
t , and 

h
  

is a boundary on which a traction 
f

h  is imposed, typically an outflow face, with n  being the face normal.  

The vessel wall mechanics are approximated using a thin-walled structure assumption, and therefore 

the solid domain s  is topologically defined by the same surface as lateral boundary of fluid domain 
s

 . 

The edges 
g

  and 
h

  represent the parts of the boundary s  where the essential 
s

g  and natural s
h  

boundary conditions are prescribed. The elastodynamic equations with boundary and initial conditions for 

the vessel wall can be written as follows: 

 
,

,s s s

tt
 =   +u b   (23) 
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h

0 0

, ,0 0
,   ,   ,    ,

g

s s s

t t nt t = =
= = = = =u g u u u u t n h   (24) 

where u  is the total wall displacement vector, 
s  is the density of vessel wall, s

b  is a body force per unit 

volume, ( )s
u  is the vessel wall Cauchy stress tensor, and 0

u  and 0

,t
u  are the given initial displacement 

and velocity, respectively. s
h  is a traction condition prescribed on the boundary of 

h
 . 

There are two conditions on 
S

  coupling the fluid and solid problems, inspired by Womersley’s 

deformable wall theory: (i) no-slip condition 
,

S
t

=v u  and (ii) surface traction equality. The surface 

traction f
t  acting on the fluid lateral boundary due to interaction with the solid is equal and opposed to 

the surface traction s
t  acting on the vessel wall due to the fluid: f s= −t t . Using a thin-wall 

approximation, the surface traction s
t  can be used to define a fictitious body force s

b  acting on the solid 

domain. Thus, on 
S

  we have: s f h= −b t , similar to (13). 

 

 Weak form equations and impedance outflow boundary condition 

For the weak form equations solid domain s  is mapped on surface 
S

  such as: ( ) ( )
s

S

d h ds
 

= x  

and 
h h

( ) ( )
s

ds h dl
 

=  . Thus, the weak form for the FSI problem is: 

 
( ) ( ) 

 
,

,

: q

q : 0,
h S h

t total

f s s s

n t

p d

ds ds h ds h dl

 





   

 +   +  − + −  

−  + +  +  −  =



   

w v v v w v x

w h v w v w w h





I
  (25) 

where w  and q  are weighting functions for the momentum and mass balance, respectively.  

The traction f
h  is defined according to the coupled-multidomain method 29 using operators 

m
M ,

m
H  

that represent the behavior of mathematical models of flow distal to the boundary 
h

 : 

 ( )( , )
h h

f

m total m
ds M p H ds

 
   + w h w v n  . (26) 

Here, the operators 
m

M ,
m

H  are explicitly defined from the physics of pulsatile flow in elastic tube via the 

impedance function z( , )z t  as follows: 

 

( )
h h

h

1 1 1

1 1 1

1
( , ) z( , ) ( )

1
                                    z( , ) v ( ) .

h

t

m total m t T

t

nt T

M p H ds z t t q t dt ds
T

z t t t ds dt ds
T

  −

 − 

 
 +  −  − 

 
  = −  −    

  

  

w v n w n

w n

  (27) 
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Equation (27) represents an implicitly coupled boundary condition because only the impedance function 

is given at the boundary 
h

 , whilst pressure and velocity remain unknown solution variables.  

 

3 Results  
This section is divided into three parts. In the first subsection, the problem material and geometrical 

parameters are presented and discussed in terms of theory validity. In the second subsection, the analytical 

solution and its key physical properties (periodicity, attenuation) are demonstrated in a semi-infinite 

domain. Finally, the third subsection presents the verification study of the CMM numerical results versus 

Womersley’s analytical solution in a finite-size domain. 

 

3.1 Geometric and material parameters 

A cylindrical vessel with typical dimensions, material properties, and flow and pressure conditions 

corresponding to a human common carotid artery are considered here. The input blood flow is taken from 

the common carotid flow data ( )inp

total
q t  used in previous studies 29. Error! Reference source not found. 

summarizes material and hemodynamic parameters for the problem. The flow is laminar as defined by a 

relatively low Reynolds number.  
Table 3. Material and hemodynamic parameters for the analytical solution 

Material and hemodynamic parameters  

vessel radius R  0.3 cm mean flow 
s

q   6.5 cm3/s 

wall thickness h   0.03 cm max flow 
(0, )

max( )inp

totalt T
q



 13.65 cm3/s 

wall Young's modulus E 9,863,400 dyn/cm2 

mean inlet pressure 
0

p  133,333.32 dyn/cm2 

wall Poisson's ratio    0.5 steady longitudinal velocity 
s

w  22.9 cm/s 

wall density 
w  1 gr/cm3 max velocity 

(0, )
max( )inp

t T
w



 25.38 cm/s 

blood density   1 gr/cm3 Reynolds number 2
s

w R   343.5 

blood dynamic viscosity  0.04 poise steady pressure gradient 
s

k  -81.76 dyn/cm3 

time period T   1.1 s inviscid wave speed 
0

c  702.26 cm/s 

 

 

The inlet flow data, Figure 1 (left), is approximated using a 10-term Fourier reconstruction. Error! 

Reference source not found. lists the Fourier coefficients, 
inp

n
Q . The total input pressure gradient, see 

Figure 1 (right), 
total total s

p z k k k  = = +  can be calculated from the analytical solution, having 

48 ( )
s s

k q R = −  and 
9

1

( ) exp( )
N

inp

n n n
n

k t i H i t 
=

=

=  , where 
0

inp

s
q Q=  and 

inp

n
H  is a function of 

inp

n
Q , 

given by (46). 

 

Table 4. Fourier coefficients of the reconstructed input flow data, in cm3/s. 

N 0 1 2 3 4 
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inp

n
Q  6.5016 2.6735 + 1.9326i -0.1934 + 1.9469i -1.4043 + 0.414i -0.5547 - 0.5047i 

N 5 6 7 8 9 
inp

n
Q  0.3293 - 0.1272i 0.17 + 0.3785i -0.2054 + 0.1780i -0.0355 - 0.1522i 0.1761 - 0.0646i 

 

 

 
Figure 1. Total input flow (left) and pressure gradient (right), decomposed into steady and oscillatory components. 

Analytical domain is shown on the top. 

 

 Validity of linearity and long-wave approximation assumptions 

For the linearity assumptions of the analytical solution to hold, the velocity scale parameters must be 

, 1   , eq.(5). Furthermore, the long-wave approximation demands that 1  , eq.(10). These 

parameters are evaluated at the leading frequency 
1

2 T = , Error! Reference source not found.. The 

Womersley number 
1

3.585 =  is slightly below reported physiological values 4.4-5 24,37 . The real part 

of the leading frequency of the wave speed 
1

643.519
R

c =  cm/s is on the lower bound of the 6.4-10.2 m/s 

reported for human common carotid artery 38. The leading frequency spatial wavelength is 

1
707.871 =  cm, consistent with a long-wave approximation given the radius of the vessel. Using the 

wave speed 
1R

c , the scale parameters 
1
 , 

1 1 1R
R c =  and 

1 1 1
  =  are evaluated in Error! 

Reference source not found.. Here, 
1 1[0, ]

max inp

Rt T
w c


= , where 2

[0, ] [0, ]
max max ( )inp inp

total st T t T
w q R w

 
= − . All 

scale parameters are shown to be small under the set of material and hemodynamic parameters considered, 

thus the long-wave and linear approximations are justified. The thin-wall approximation is also satisfied 

due to small values of 0.1h R =  and ( , ) ( , ) 2z t R z t = , Remark 4. 

Table 5. Hemodynamic parameters estimated at 
1

2 T =  rad/s. 
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Parameters at leading frequency 

Womersley numb. 
1

  3.585 

real wave speed 
1R

c  643.519 cm/s 

wavelength 
1 1R

Tc =  707.871 cm 

1
  0.0394 

1
  0.0027 

1
  0.0001 

 

 

If we examine the behavior of the parameter ( , ) ( , )z t w z t c =  for all frequencies of the imposed 

inflow waveform, we observe that the absolute value of this parameter remains under 4% for the entire 

cycle, further indicating the validity of the linear assumption used in the derivation of the analytical 

solution.  

 

3.2 Total analytical solutions in a semi-infinite domain 

This section describes the total analytical solution to demonstrate key spatio-temporal behavior of the 

wave traveling in a semi-infinite domain [0, )z   . The vessel length is taken to be equal to a spatial 

wavelength 
1

707.871 =  cm, over which spatial periodicity and wave attenuation phenomena can be 

observed. 

In Figure 2 we examine the total and oscillatory components of the longitudinal velocity, 
total

w  and 

w , respectively. A typical Womersley velocity profile can be observed in the oscillatory component of 

the solution, especially at the vessel inlet. Periodicity in time is apparent in the solution. A periodic 

behavior is also observed in space over the wavelength 
1
 . Velocity profiles at 0z =  and 

1
z =  reveal 

the same phase, although attenuation is clear in the profiles at 
1

z = . 

Periodicity in space and attenuation are also demonstrated in the radial and longitudinal components 

of the wall velocity, shown in Figure 3(a) at different times of the cardiac cycle. Following equations (2) 

and (3), the wall velocity has only oscillatory component (the steady component is zero). The maximum 

magnitude of the wall radial velocity is approximately 0.1 cm/s, much smaller than its longitudinal 

counterpart (approximately 5 cm/s), and thus consistent with the approximation / 1    at the wall.  

Figure 3(b) and (c) show the total and oscillatory components of the pressure over the spatial 

wavelength 
1
  and time, respectively. The constant steady pressure gradient 

s
k−  can be observed in the 

longitudinal distribution of the total pressure at different times of the cardiac cycle, Figure 3(b) (left). 

Similar to the oscillatory velocity, the oscillatory pressure component gradually attenuates along the 

vessel, Figure 3(b) (right). Figure 3(c) depicts the periodic behavior of total and oscillatory pressures at 

different longitudinal coordinates.  

Figure 3(d) shows the total centerline velocity 
0total r

w
=

 and total pressure over 3 times the leading 

frequency spatial wavelength, 
1

3 . The plots reveal dissipating oscillations which are almost completely 

attenuated at the distal end of the vessel. We obtained an exponentially-decaying velocity attenuation 
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curve (grey line in Figure 3(d), left) as follows:  ( )
1

1 1[0,3 ]
ˆ(0) max Re (0, , 0) exp( ( ) )

s Iz
w w z z z c





+ − , where 

ẑ  is the coordinate of the first local maximum at 0t = . 

 

 

Figure 2. Longitudinal velocity profiles along the vessel: periodicity in time with period T; periodicity in space with period 

𝜆1 and attenuation in the oscillatory component are observed. 
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Figure 3.(a) Radial and longitudinal velocity along the vessel wall at different times 𝑚𝑇/4, 𝑚 = 0, . .3; (b) Total and 

oscillatory pressures along the vessel at different times; (c) Total and oscillatory pressure versus time at different cross 

sections of the vessel 𝑧 = 𝑚λ1/4, 𝑚 = 0, . .3; (d) Total centerline velocity and pressure at different times of the cardiac cycle 

over three spatial wavelengths 𝐿 = 3λ1. 
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3.3 Verification of numerical solutions in a finite-size vessel 

This section presents an illustrative example of the CMM application and compares numerical results 

with analytical solutions in a finite-size domain. The same material and hemodynamic parameters from 

the analytical solution (Error! Reference source not found.) are considered for the computational CMM 

solution. A finite vessel length was set to 12.6L =  cm, representing a typical value for the common 

carotid artery 39. A transformation of the analytical solution from cylindrical to Cartesian coordinates was 

adopted in this section. 

 

 Boundary conditions  

Figure 4(a) contains a schematic representation of the boundary conditions of the problem. On the 

inlet boundary 
g g g

 =    , a prescribed velocity field ( ( ), ( ), ( ))
x y z

v t v t v t=v  given by Womersley’s 

analytical solution for total velocity at 0z =  cm is set. On the outflow boundary 
h h h

 =   , two 

conditions are set: i) the impedance boundary condition (27), according to the coupled-multidomain 

method 29, is prescribed on the interior nodes of the face 
h

  (depicted in red in Figure 4(a)) where the 

impedance function is defined by eqs. (18), (19). The numerically integrated flow is filtered to 10 modes 

to keep consistency with the frequency content of the analytical solution. ii) a prescribed velocity field v  

given by Womersley’s analytical solution for total wall velocity is set at the boundary wall nodes 
h

 , 

12.6z =  cm, r R=  (depicted in blue in Figure 4(a)). Figure 5 shows the 10-term modulus and phase 

impedance function in the frequency domain 
n

Z , as well as its time domain counterpart z( )t . The vessel 

wall-fluid interface is 
S

 . Note that no boundary condition is set in the interior of this interface (e.g. 

h
\ ( )

S g
     ) since the solutions for velocity (fluid problem) and wall displacement/velocity (solid 

problem) are not known a priori and are obtained by solving the CMM formulation.  
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Figure 4. (a) Inlet and outflow boundary conditions prescribed in the numerical domain: straight cylinder with a length 

𝐿 = 12.6 cm ; (b) Cut plane through the central section of the vessel (𝑧 = 6.3 cm), showing the structured nature of the mesh 

in the interior of the vessel. 
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Figure 5. Impedance function z(𝑡) in time domain at 𝑧 = 𝐿 = 12.6 cm. Inserts depict the 10-mode reconstruction of the 

modulus and phase of the impedance function in the frequency domain 𝑍𝑛. 

 

 

 Initial conditions: steady-state initialization of the CMM 

Initial conditions must be set with the same care used for the boundary condition specification to 

minimize the impact of initial transients in the system due to lack of equilibrium at the fluid-solid interface. 

To initialize the problem, we run a steady flow analysis with deformable walls. The following boundary 

conditions were defined for the steady-state problem:  

- Outflow boundary 
h

 : we take advantage of knowing the analytical solution for velocity and 

pressure at 12.6z L= =  cm and 0t =  s to define a resistance boundary condition 
out

R : 

 
( , 0)

17,152.6
( , 0)

total

out

total

p z L t
R

q z L t

= =
= =

= =
 dyns/cm5 on 

h
 . (28) 
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 This resistance outflow boundary condition 
out

R  is imposed using a coupled-multidomain 

formulation 29, similar to that described in Section 2.2.2. 

  

- Inflow boundary 
g

 : a total longitudinal velocity boundary condition at 0z =  cm and 0t =  s is 

imposed, neglecting the radial components of the velocity, viz. 

 
0 0, 00 0

( , ) ( , ) ( , ) ( , ) ,  0 ,     ( , ) on
x totalz z gy z zz t

v v v wx y x y x y x y x y
= == = =
= = =    (29) 

- Outflow boundary wall ring 
h

 : the total longitudinal velocity, neglecting the radial component 

of the velocity, is prescribed: 

 
h, 0

( , ) ( , ) ( , ) ( , ) , ( , ) on 0 ,     
x totalz L zy z z tL Lz L

v v v wx y x y x y x y x y
= = == =

= = =    (30) 

Initial values of pressure and velocity for the steady-state initialization were set to

0
133, 333.32p =  dyn/cm2 and zero, respectively. Simulations were run for 4,000 time-steps with a time 

step size of 51.1 10t − =   s, until a converged steady-state solution with momentum residuals smaller 

than 410−  was obtained. This solution provides an optimal initial condition for the pulsatile analysis, since 

the fluid-solid system is in dynamic equilibrium, and the computed velocity and pressure fields closely 

match those of the analytical solution at time zero. 

 

 Comparison between numerical (CMM) and analytical (Womersley) solutions 

Numerical simulations were run for three cardiac cycles, using a time step size of 41.1 10t − =   s, 

and a linear tetrahedral finite element mesh consisting of 3,902,077 nodes and 22,025,114 elements (mesh 

size ~ 0.01cm). Figure 4(b) shows the mesh used in the simulation. It is unstructured in the wall boundary 

and structured in the interior. A structured mesh can better reproduce symmetric patterns, a desirable 

attribute for comparing the numerical results with the analytical solution. 

Flow and pressure waveforms: Figure 6 (a) shows a comparison between analytical and numerical 

flow and pressure profiles at the inlet and outlet boundaries of the vessel. Pressure waveforms lag flow at 

both locations, a characteristic trait of hemodynamics in large vessels. The agreement between numerical 

and analytical solutions is excellent: the relative L2-norm error for outlet flow rate and pressure are 1.06% 

and 0.2%, respectively. 
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Figure 6. (a) Numerical versus analytical solution: flow and pressure at inlet and the outlet of the vessel; (b) Oscillatory parts 

of wall longitudinal and radial displacements over time, at 𝑧 = 𝐿/2 = 6.3; (c) Comparison between the analytical (lines) and 

numerical (circles) wall pressure (left), wall longitudinal velocity (middle), and radial velocity (right) along the vessel axis at 

different times. 
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Figure 7 shows longitudinal and radial velocity profiles at the central cross-section of the vessel,

2 6.3z L= = cm, for different times of the cardiac cycle, for the numerical and analytical solutions. This 

location was chosen for being the farthest away from the boundaries, and therefore the least subject to the 

impact from the boundary conditions, which directly prescribe the velocity (inlet face) or impedance 

function (outlet face). Solutions are plotted along a line ( , )y R R − .  

Longitudinal velocities: Figure 7 (left) shows the total analytical velocity, its oscillatory component 

and the numerical solution. Velocity profiles are shown to be periodic. Wall velocity oscillates around a 

zero mean, showing negative (backwards) and positive (forward) oscillating values thorough the cycle. 

The comparison between analytical and numerical total velocity profiles shows a good agreement, with a 

relative L2-norm error smaller than 6.7%.  

Radial velocities: Figure 7 (right) shows a comparison between the analytical and numerical radial 

velocity profiles. For the fluid domain, the magnitude of the longitudinal velocities is ~ 30 cm/s and the 

radial velocities ~ 0.02 cm/s, a 1,500 ratio. For the wall velocities, this ratio is significantly smaller ~50, 

in agreement with Figure 3(a). There is a poor agreement between radial velocity profiles: relative L2-

norm error is as large as 178% for 2 / 5t T=  and 47% for t T= . 

Wall displacements: Figure 6(b) shows a comparison between analytical and numerical oscillatory 

displacements in the longitudinal (left) and radial (right) directions at 2 6.3z L= = cm. The profiles 

show a good agreement, with relative L2-norm errors in the longitudinal and radial displacements of 5.6% 

and 3.8%, respectively. 

Spatial distributions of wall pressure and velocity: Figure 6 (c) shows a comparison between analytical 

and numerical solutions for wall pressure, longitudinal and radial wall velocities along the vessel at 

different times. There is a good agreement for the wall pressure and longitudinal velocity (maximum 

relative L2-norm errors of 0.6% and 2.2%, respectively). The radial velocity displays good agreement for 

large velocity values, while for small values the discrepancy increases. This discrepancy is due to the 

small radial velocity values relative to the main longitudinal components. 
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Figure 7. Comparison between analytical and numerical solutions for longitudinal (left) and radial (right) velocity 

profiles at the central section of the vessel at different times. 

 

Pulse wave propagation: A wave propagation speed can be calculated as the ratio of vessel length and 

pulse transit time between the inlet and outlet waveforms using the foot-to-foot method 40. Using the 

numerical pressure waveforms, a wave speed of 693numc =  cm/s was obtained. This is a 4% difference 

from the wave speed obtained using the analytical waveforms 664analytc =  cm/s. By contrast, the Moens-

Korteweg formula (Remark 6 in Appendix) produces an estimate for pulse wave velocity in an inviscid 

fluid of 
0

702.26c =  cm/s. This estimate is larger than the previous values because of wave attenuation, 

present in the numerical and analytical waveforms, but absent in the Moens-Korteweg formula. 

Linear behavior and thin wall assumptions: The analytical estimate for the scale parameter   defining 

the magnitude of the contribution of the non-linear advection to the total momentum was found to be 

smaller than 4%. This bound was confirmed by the numerical solution, which produced an upper bound 

for the scale parameter 3.6%num = .  

Lastly, the maximum numerical radial wall deformation was 
max

0.0186R = , indeed small and 

close to the theoretical estimate of 2num , eq. (17). These values therefore confirm the validity of the 

linear behavior (used just by Womersley’s theory), and the thin wall assumption (used by both 

Womersley’s solution and the CMM). 
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4  Discussion and Conclusions 
The interaction between fluids and deformable structures is a key component of many multi-physics 

problems, especially in cardiovascular biomechanics. Modeling pulsatile blood flow within complex 

deformable vessels requires advanced FSI methods. To ensure credibility of these methods, it is important 

to perform verification (testing an implementation against an analytical solution) and validation (testing a 

theoretical model against experimentally acquired data) studies. Even though the CMM had been 

successfully used for numerous blood flow simulation studies for more than a decade 21,39,41, including 

validation against in vitro experimental data 42, and is a key component of the open-sourced software 

CRIMSON 35, a rigorous verification study of the method was still lacking. 

In this paper, we verified the Coupled-Momentum Method FSI method for simulating blood flow in 

compliant vessels 20 by comparing it against a Womersley’s deformable wall solution 10,13, which can be 

regarded as the analytical solution for the CMM under the assumptions of idealized axisymmetric 

geometry, linear flow and wall responses. A key novelty of this work is the multi-frequency nature of the 

analytical solution, which allows for accurate representation of cardiovascular flow and pressure 

waveforms. 

A thorough overview of Womersley’s analytical solution was first presented. This included a scale 

analysis to examine the validity of the main assumptions of the theory, namely linear flow and wall 

dynamics, long-wave and thin-wall approximations. Several non-dimensional parameters were identified: 

the parameter / 1w c =   scales the non-linear fluid inertia terms. For the long-wave approximation 

to hold, / 1R c =  .   scales the viscous stress terms, the pressure radial gradient, and the wall 

inertia component. The parameter  =  represents the ratio of a typical radial velocity to the wave 

speed. Lastly, the vessel wall is subject to the conditions: / 1R   (small radial deformations) and 

/ 1h R   (thin membrane). Our analysis revealed that   is a critical scaling parameter, larger in 

magnitude than   and   (Error! Reference source not found.), and proportional to the radial 

deformation / R  (Remark 4). Material parameters for the application examples presented here were 

chosen such that all the conditions above are valid. In particular, maximum   at peak systole ~ 4%, thus 

ensuring consistency of the verification. 

A verification study of the CMM was then presented. Since Womersley’s deformable wall solution is 

defined over a semi-infinite domain, a key component of this study was to prescribe a reflection-free 

outflow boundary condition via a characteristic impedance function. From the standpoint of solution 

verification, this outflow impedance presents a ‘softer’ condition than imposing pressure or velocity. The 

numerical solutions are therefore ‘less constrained’, thus enhancing the relevance of the verification study. 

The verification study considered an illustrative example of pulsatile blood flow in a straight 

cylindrical compliant vessel with parameters corresponding to a common carotid artery. Results 

demonstrated excellent agreement between numerical and analytical solutions for longitudinal velocities, 

wall displacements, pressure and flow waveforms, and pulse wave velocity. However, large discrepancies 

were observed between radial velocities. This can be partially explained by their small magnitudes and 

the small ratio relative to their longitudinal counterparts (a 1/1,500 ratio in fluid velocities, and 1/50 in 

wall velocities). Another factor potentially contributing to the discrepancy between radial velocity profiles 

is the lack of 2D axisymmetry of the 3D computational mesh and/or a bias from uniformly oriented 

structured mesh.  

It is well known that the longitudinal component of vessel wall motion is not as large as that predicted 

by the analytical solution 13  used here. To address this shortcoming, Womersley incorporated a correction 

to the theory whereby longitudinal wall motion was constrained via added mass representing the 
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surrounding tissue 11. Computational FSI techniques can mimic such a constraint by introducing adequate 

surface traction forces, an approach also developed for the CMM 43.  

The linear and axisymmetric assumptions of the analytical solution limit the scope of the verification 

study. Therefore, the CMM verification presented here does not take into account features such as 

advective inertial forces and complex geometries (noncircular cross-sections, tapering, curvatures, 

bifurcations, etc.). To address this limitation, in future studies we will compare the CMM against another 

3D FSI solvers. 
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Supporting Information  
We supplement our numerical results shown in Figure 6 (b), Figure 7 by movie files in the online 

version. Video 1 demonstrates a 3D profile of the total fluid velocity as it changes over the cardiac cycle. 

Video 2 shows 2D oscillations of the radial fluid velocity, revealing the lack of axisymmetry. Video 3 and 

Video 4 demonstrate pulsations of the total wall displacements and oscillatory radial wall displacements, 

respectively. 

 

Appendix 
Derivation of the deformable wall Womersley’s solution for a linear system of governing equations, 

Error! Reference source not found., is described next.  

 

A.1. Harmonic waves  

Solutions to the linear system of governing equations can be obtained via superposition of harmonic 

waves. Separation of variables is assumed for each unknown, as well as periodicity in time with 

frequency  :  

 
1 1 1
( ) exp( ( )),  ( ) exp( ( )),   ( ) exp( ( ))u u r i t z w w r i t z p p r i t z              = − = − = − , (31) 

 exp( ( )),   exp( ( ))K i t z N i t z        = − = − . (32) 

Here, ,K N  are non-dimensional constants, independent of r  , due to the fixed mean radial 

displacement assumption (eq. (12)). For convenience, the non-dimensional variable r R r =  =   

and parameter 3/ 2i  =  are introduced. Substituting 
1 1 1
, ,u w p    from eq. (31) into the fluid governing 

equations, Error! Reference source not found.(A), expressing variables in terms of   and using 
2 2i = − , we obtain: 

 
( )

( ) ( )1

1 1
0,

du i
u w

d


   




 + − =


 (33) 

 
( ) ( )

( ) ( )
( )2

1 1 12 2 2

12 2
1 ,

d u du dp
u i

d dd

  
    

  

  
+ + − =   (34) 

https://umich.box.com/s/yt1aeyj8qxvhf1j16jtsd8mnseb5oimj
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( ) ( )

( ) ( )
2

1 1

1 12
.

d w dw
w p

dd

 
    



 
 + + =  (35) 

Equations (34) and (35) are Bessel differential equations of first and zero order, respectively, and can be 

solved in closed-form for 
1

u   and 
1

w  as a function of the pressure 
1

p . The continuity equation (33) can 

then be used to obtain the pressure. Applying the finite-velocity condition at the vessel centerline 0 = , 

Error! Reference source not found.(C), the solutions to the fluid momentum equations that satisfy the 

continuity equation given in terms of Bessel functions of the first kind 
n

J  become:  

 

( ) ( )
( )

( ) ( )
( )

( )

1 1 13 2 2

1 0 03 2 2

1 0

,

,

,

G cR
u i J i H J

i

cR
w G J H J

i

p H J


   

  

 
   

  


 

 
 = −  

 −  

 
  = −  

−  

 
 =  

 

 (36) 

where ,G H   are constants and i = . These solutions can be simplified further by noting that 1  , 

and thus: 3 2 2 1 3 2 2 2( ) 1 ( ) 1i i O i    −− = +  − . In addition, properties of Bessel functions yield:

( )0
1J    , ( )1

0.5J     . Thus, 
1

p H  , 
1

2 2p H H r        −  = − , which 

implies that pressure is near constant over the cross section of the vessel (e.g., radial pressure gradient is 

small but not zero). Using these simplifications, the solutions given by equations (36) become: 

 ( ) ( )1 1
,

2

G
u r i J r i H r


    =  +


 (37) 

 ( ) ( )1 0
,w r G J r H    =  +  (38) 

 
1

.p H =  (39) 

At this point, the non-dimensional constants , , ,H G K N     must be determined. This is accomplished 

by: 1) substituting eqs. (31), (32), (38), (39) to Error! Reference source not found.(B); and 2) applying 

the kinematic boundary condition at the fluid-solid interface, Error! Reference source not found.(C), to 

produce the following algebraic system: 

 
( )

( )
( )

0

0

0

0,

2 2 0,

2 0,

0,

s

H K i N

h
gJ G K i N

R

H gJ G K

H J G iN

  


 







  − + =

 
   + + − =  

 
  +  − =

  +  − =

  (40) 

with 2Bh Rc =  and 
1 0

2 ( ) ( )g J J=    . The above is a homogeneous system depending on the 

wave speed c . Therefore a solution for c  ensuring a zero determinant must be obtained to find a non-

trivial solution for , , ,H G K N    . 
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A.2 Frequency dependent wave speed  

Enforcing the determinant of the system of equations (40) to be zero produces the following quadratic 

equation: 

 ( ) ( ) ( )
 

   
 

  
 − − − + − + − + + =       

2 2 1
1 1 2 1 2 2 0

2

w wh h
g g g g

R R
, (41) 

known as frequency equation, and whose solution provides an expression for the wave speed c  as a 

function of the material properties of the fluid and wall, as well as the Womersley number  . c  is a 

complex number and therefore is not a true speed in the physical sense. The complex wave speed can be 

decomposed into its real ( )
1

1Re{ }
R

c c
−

−=  and imaginary ( )
1

1Im{ }
I

c c
−

−=  parts, and thus the 

exponential expression for the phase variation becomes: 

 exp( ( )) exp( ) exp( ( )).
I R

i t z c z c i t z c  − = −   (42) 

The imaginary part of the wave speed 
I

c  effectively changes the amplitude of the waves, thus 

representing an attenuation effect. The real part of the wave speed 
R

c  effectively changes the phase of the 

wave, adopting different values for different frequencies, thus representing a dispersion effect. 

 

Remark 6. It is common in the clinical research community to use the Moens-Korteweg formula to 

relate pulse wave velocity of blood flow with the structural stiffness of the vessel: 2

0
2c Eh R= . 

However, this wave speed 
0

c  is for a perfect (inviscid) fluid, while blood is viscous. If viscosity is taken 

into account, the wave speed is no longer frequency-independent. Womersley showed that the variation 

in pulse velocity with frequency and viscosity can be expressed as a function of the non-dimensional 

Womersley number   10. From the definition of the parameters   and B , it follows that the wave 

speed c  can be written as a function of the inviscid wave speed 
0

c  as: 

 
2

0
2 (1 )c c  = − . (43) 

Unlike c , 
0

c  is a real quantity. Therefore, attenuation is absent in inviscid fluids since  0
Im 0c = . Also 

the complex parameter   is proportional to square of wave speeds ratio, 2 2

0
c c  , and when 

22 (1 ) = −  the wave speed is 
0R

c c c= = . 

 

A.3 Analytical solution 

Once the wave speed c  is obtained, to define the solution to the rank-three system (40), the value for 

one of the four constants ( , , ,H G K N   ) must be set. Equation (39) suggests H   as a natural choice. H   

represents the prescribed amplitude of the inlet oscillatory pressure. The remaining constants , ,G K N    

become: 

 ( ) ( )0
( ),    1 2,    1 .G MH J K H Mg N i H M       = −  = − = −  (44) 
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Here (2 (2 1)) (2 )M g   = + − −  is the ‘elasticity factor’, dependent on frequency and wave 

speed c . Then from eqs. (32), (37), (38) and (44), the radial and longitudinal components of flow velocity 

and wall displacements are obtained: 

 

( )

( )

( ) ( )
( ) ( )

1

0

0

0

2 ( )
, , exp( ( )),

2 ( )

( )
, , 1 exp( ( )),

( )

, 1 exp( ( )),
2

, 1 exp( ( )).

J ri H
u r z t r M i t z

J

J r
w r z t H M i t z

J

H
z t Mg i t z

z t i H M i t z








 

 
      = − −    

 
      = − −   


    = − −

     = − −

  (45) 

At the vessel inlet, the dimensional pressure constant is 
2H c H  = . The flow rate is computed from 

the longitudinal velocity as:  

 ( )
2

2

0
( , ) 2 ( , , ) ( , ) exp( ( )),    1

R R H
q z t rw r z t dr R w z t Q i t z c Q Mg

c


  


= = = − = −  . (46) 

Constants H  and Q  represent the imposed oscillatory pressure or flow, respectively. Applying 

eqs. (5),(6), the dimensional solutions of (45) at fixed frequency   are obtained, see Error! Reference 

source not found.. Since solutions are complex, only the real parts of velocities, pressure and 

displacements are taken.  

 

A.4 Multiple-frequency solution 

Multi-frequency forms are needed for representing physiologically realistic cardiovascular 

waveforms. Assuming periodicity, waveforms can be represented using the Discrete Fourier transform:  

 
/ 2

2

2
/ 2

1
( , ) ( , ) exp( ),    ( , ) ( , ) exp( ) ,

N
T

n n n nT
n N

f z t F z i t F z f z t i t dt
T

   
−

=−

= = −    (47) 

where ( , ) ( , ), ( , )f z t q z t p z t=  are real functions in the time domain with Fourier coefficients 

( , ) ( , ), ( , )
n n n n n

F z Q z P z  = ; 2
n

n T = , / 2,..., / 2n N N= − , and N  is the number of Fourier 

modes. The same transform can be applied to each component of velocity or wall displacement in 

Womersley’s solution.  

For each individual frequency 
n

 , the Womersley’s solution for pressure and flow is, for 0n  : 

 ( )
2

( , ) exp( ),  ( , ) 1 exp( ).n

n n n n n n n n n

n

R H
P z H i z c Q z M g i z c

c


   


= − = − −   (48) 

For 0n = , the steady-state solution (49)-(50) is used. Therefore, the total (oscillatory plus steady) pressure 

and flow solutions are: 

 

/ 2

0
1

( , ) 2 Re exp( )
N

total s n n
n

p z t p k z P i t
=

  
= + +  

  
 ,  (51) 

 

4 / 2

1

( , ) 2 Re exp( )
8

N

s

total n n
n

k R
q z t Q i t




 =

  
= − +  

  
 ,  (52) 
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where only positive modes are used given that 
total

p  and 
total

q  are real and thus ( , ) ( , )
n n n n

P z P z 
−

=  and

( , ) ( , )
n n n n

Q z Q z 
−

= .  
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