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SUMMARY 
 
Long non-coding RNAs (lncRNAs) are critical for regulating HOX genes, aberration of which is a 

dominant mechanism for leukemic transformation. How HOX genes-associated lncRNAs regulate 

hematopoietic stem cell (HSC) function and contribute to leukemogenesis remains elusive.  We 

found that HOTTIP is aberrantly activated in acute myeloid leukemia (AML) to alter HOXA-driven 

topologically associated domain (TAD) and gene expression. HOTTIP loss attenuates 

leukemogenesis of transplanted mice, while reactivation of HOTTIP restores leukemic TADs, 

transcription, and leukemogenesis in the CTCF-boundary-attenuated AML cells. Hottip aberration 

in mice abnormally promotes HSC self-renewal leading to AML-like disease by altering 

homeotic/hematopoietic gene-associated chromatin signature and transcription program. Thus, 

Hottip aberration acts as an oncogenic event to perturb HSC function by reprograming leukemic-

associated chromatin and gene transcription. 
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SIGNIFICANCE 
 
The initiation and progression of AML have so far been studied mainly within the realm of 

mutations and/or dysregulation of key protein-coding genes. Whether and how lncRNA 

misregulation can lead to oncogeneisis remains to be explored in AML. Dysregulation of HOXA 

genes (e.g. HOXA9) is a dominant mechanism for hematopoietic deregulation and 

leukemogenesis. Our study demonstrates that HOTTIP lncRNA coordinates TAD organization of 

AML genome including the posterior HOXA genes and various key hematopoietic regulators loci.  

Expression of HOTTIP is required for AML-driven by MLL fusions/NPM1 mutation and is sufficient 

to initiate leukemic transformation of HSC. These findings provide a framework for developing 

targeted therapeutics for AML.   
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INTRODUCTION 

HOX genes, especially HOXA and HOXB families, are critical for hematopoietic lineage 

development (Deng et al., 2013; Deng et al., 2016; Dou et al., 2016). Activation of HOX genes is 

a dominant mechanism of leukemic transformation, perhaps by altering self-renewal and 

differentiation properties of hematopoietic stem and progenitor cells (HS/PCs) (Andreeff et al., 

2008; Drabkin et al., 2002). Although overexpression of HOX genes in acute myeloid leukemia 

(AML) has been attributed to specific chromosomal rearrangements involved in the mixed lineage 

leukemia (MLL) gene (KMT2A) or abnormalities such as mutations in NPM1 (Meyer et al., 2009; 

Rice and Licht, 2007), the molecular mechanisms that drive HOX genes activation are not fully 

understood. 

HOX genes are critical for embryonic development and their expression patterns are 

temporally and spatially restricted (Deng et al., 2016; Deschamps and van Nes, 2005; Forlani et 

al., 2003). The lineage-restricted expression pattern of HOX genes during hematopoiesis 

resembles their expression in early development. Generally, anterior HOX genes are highly 

activated in most primitive HSCs and downregulated upon lineage commitment, while posterior 

HOX genes are expressed in committed lineages (Sauvageau et al., 1994; Spencer et al., 2015). 

The different HOX genes clusters also exhibit specific patterns of lineage-specific expression. For 

example, HOXA genes are expressed in immature myeloid cells that are believed to play an 

important role in myeloid progenitor proliferation (Crooks et al., 1999; Fuller et al., 1999; So et al., 

2004; Thorsteinsdottir et al., 2002).  

Furthermore, the overexpression of certain HOX genes, such as HOXA9, is a strong 

marker of poor prognosis in leukemia patients (Collins and Hess, 2016; Golub et al., 1999), while 

lower expression of HOXA9 and HOXB4 are favorable predictors for AML patient outcome 

(Andreeff et al., 2008; Zangenberg et al., 2009), suggesting that targeting posterior HOXA genes 

may provide insight into AML therapy. Recently, we identified a CTCF boundary located between 

HOXA7 and HOXA9 (CBS7/9) that plays a critical role in maintaining posterior HOXA genes 
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topologically associated domain (TAD) allowing for the aberrant HOXA genes expression (Luo et 

al., 2018).  However, the molecular mechanism by which CBS7/9 initiates the aberrant TAD and 

transcription of posterior HOXA genes remain elusive. 

Several HOX genes loci associated long noncoding RNAs (lncRNAs) regulate 

transcription of HOX genes through their influence on the epigenetic landscape (Deng et al., 2016; 

Wang et al., 2011). In particular, the HOXA locus associated lncRNA HOTTIP acts as an 

epigenetic regulator that recruits WDR5/MLL complex to coordinate active chromatin 

modifications and HOXA gene expression (Wang et al., 2011). Although during limb development, 

expression of HOTTIP was suggested to act in cis and positively correlates with the formation of 

posterior HOXA genes TAD, whether HOTTIP directly binds to and regulates its chromatin targets 

including the HOXA locus remains unknown. It has shown that knockout (KO) of HOTTIP strongly 

inhibits the 5’ tip of HOXA genes (e.g. HOXA13 and HOXA11), but the inhibitory effect is gradually 

diminished when genes move towards the anterior end (e. g. HOXA10-HOXA7) (Wang et al., 

2011). Interestingly, HOX genes, especially posterior HOXA9 and HOXA10, are frequently 

activated in AML, which predicts poor prognosis and treatment responses. However, the role of 

HOTTIP in HSC function and myeloid malignancies and the mechanism by which HOTTIP 

regulates its chromatin targets in leukemogenesis remains completely unknown.  

 

RESULTS 

HOTTIP loss results in inhibition of genes critical for hematopoiesis and AML 

leukemogenesis 

 To unbiasedly uncover non-coding sequences involved in HOX gene regulation in AML, 

we screened all CTCF sites and lncRNAs important for HOXA9 expression within four HOX gene 

loci in MLL-AF9 rearranged MOLM13 AML cells using a CRISPR-Cas9 lentivirus screening 

library. Besides the CBS7/9 boundary, HOTTIP lncRNA was also identified as critical for aberrant 
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HOXA9 expression (Luo et al., 2018). HOTTIP is downregulated in the CBS7/9-disrupted 

(CBS7/9+/-) MOLM13 cells (Figure 1A), suggesting that HOTTIP acts downstream of the CBS7/9 

boundary to regulate posterior HOXA genes. To test this, HOTTIP was specifically deleted 

(HOTTIP-/-) by CRISPR-Cas9 in MOLM13 cells (Figure S1A). We compared transcriptomes 

between WT and HOTTIP-/- MOLM13 cells by performing RNA-seq analysis. A total of 706 genes 

exhibited greater than 2-fold decreases whereas 513 genes had increased expression upon 

HOTTIP-/- (Figure 1B). HOTTIP-/- impaired the transcription of not only HOXA13-HOXA9 genes 

but also many genes important for hematopoiesis and leukemogenesis (Figures 1B,1C) 

suggesting that HOTTIP may directly regulate hematopoietic genes in AML besides the posterior 

HOXA genes. Gene ontology (GO) analysis revealed that many pathways were affected by both 

CBS7/9+/- and HOTTIP-/- (Figure 1D), including cell cycle, apoptosis, myeloid/leukocyte cell 

differentiation, JAK-STAT signaling, and regulation of cell development. In addition, pathways 

regulating hematopoietic cell lineage and myeloid differentiation were specifically affected by 

HOTTIP-/- (Figure 1D). Furthermore, when we subjected the RNA-seq data to Gene Set 

Enrichment Analysis (GSEA), the top ranked pathways affected by the HOTTIP-/- are those 

involved in JAK-STAT, NOTCH, cell adhesion, and progression of AML (Figures 1E, S1B).   

 Further comparison of the expression profiles between CBS7/9+/- and HOTTIP-/- MOLM13 

cells revealed that 33% of differentially regulated genes were co-regulated by both CBS7/9 

boundary and HOTTIP (Figure S1C, Top). Among them, 33% of genes downregulated and 24% 

of genes upregulated overlapped between HOTTIP-/- and CBS7/9+/- (Figure S1C, Bottom). The 

significant overlapping of co-regulated genes by the HOTTIP-/- and CBS7/9+/- in MOLM13 cells 

indicated that HOTTIP may act downstream of CBS7/9 boundary to coordinate active chromatin 

domain and gene transcription in AML cells. The critically downregulated genes were validated 

by RT-qPCR (Figure S1D).  



7 
 

 To test the role of HOTTIP in AML genome organization, we then carried out Hi-C analysis 

to assess if HOTTIP is required to organize the HOXA locus TAD in the AML genome by 

comparing WT and HOTTIP-/- MOLM13 cells (Figure 1F). KO of HOTTIP disrupted the posterior 

HOXA locus TAD, but did not affect anterior HOXA locus TAD that are demacrated by the CBS7/9 

boundary (Figure 1F). Thus, the data revealed that HOTTIP is involved in organization of TAD in 

the AML genome to drive aberrant posterior HOXA genes expression. 

HOTTIP lncRNA is aberrantly expressed in a subset of AML patients and cells 

We then analyzed TCGA-LAML and TARGET-AML RNA-seq datasets to examine 

HOTTIP expression patterns. Compared to the NPM1 WT (NPM1C-) and MLL WT (MLLr-) cases 

(n=245), NPM1-mutated (NPM1C+) or MLL-rearranged (MLLr+) AML cases (n=76) exhibited 

elevated levels of HOTTIP expression (Figure 2A). Overall survival was significantly longer in 

patients having AML with low HOTTIP expression (bottom 30th percentile) than those having AML 

with higher HOTTIP expression (top 30 percentile, Figure 2B). Given that HOTTIP is aberrantly 

expressed in the MLLr+ and NPM1C+ AML (Figures S2A-S2B), we further analyzed RNA-seq data 

obtained from the TCGA-LAML and TARGET-AML datasets for the correlations between 

expression levels of HOTTIP and of posterior HOXA genes and leukemogenic genes. HOTTIP 

expression positively correlated with expression of posterior HOXA genes, TWIST1, and 

oncogenes MEIS1 and PBX3 in AML (Figure 2C). Thus, HOTTIP plays an important role in the 

pathogenesis and prognosis of AML patients. 

HOTTIP establishes aberrant chromatin signature to drive AML specific transcription 

profile  

To further investigate how HOTTIP regulates aberrant posterior HOXA locus TAD and 

gene expression in AML, we carried out ChIRP-seq to examine global HOTTIP binding in the 

MLLr+ AML genome of WT and HOTTIP-/- MOLM13 cells. HOTTIP lncRNA bound to HOXA9-

HOXA13 in cis, but not to the anterior HOXA genes or the HOXB locus (Figures 3A, S3A-S3C). 
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HOTTIP-/- greatly reduced the binding of HOTTIP to the posterior HOXA genes (Figures 3A, S3B) 

supporting that HOTTIP is a regulator of posterior HOXA genes. The global binding site 

distribution of HOTTIP in AML genome revealed that HOTTIP mainly binds to noncoding regions 

(Figure 3B). Although HOTTIP bound to 3,767 genomic sites, it only directly bound to the 

promoters of 259 annotated genes that are mainly involved in hematopoiesis, myeloid cell 

differentiation, cell cycle progression, JAK-STAT, and WNT signaling pathways (Figure 3C), 

concomitant with GO enriched pathways obtained from the changed transcriptomic profiles upon 

HOTTIP-/- (Figure 1D). In addition, the GO analysis of HOTTIP bound intergenic regions also 

revealed that HOTTIP targets are consistently involved in chromatin organization, myeloid cell 

differentiation, and hematopoiesis (Figure S3D). Interestingly, HOTTIP also bound in trans in 

PBX3, MYC, KIT, CD33, MEIS2, and RUNX1 promoters (Figures 3D, S3E). To examine if 

HOTTIP is indeed regulating hematopoietic transcription program, we performed de novo motif 

analysis of the HOTTIP binding sites from ChIRP-seq (Figure 3E, Table S1). Consistently, the top 

transcription factor (TF) motifs bound by HOTTIP are those involved in HS/PC function, such as 

RUNX1, MYC, E-box, and STAT5 motifs (Figure 3E, Top), suggesting that these factors may 

interact with HOTTIP to mediate its function in hematopoiesis. To confirm this notion, we carried 

out RNA-immunoprecipitation (RIP) and showed that HOTTIP physically interacts with 

phosphorylated STAT5A, MYC, RUNX1, DOT1L, and MLL1 complex, but not HDAC1 and 

IKAROS controls (Figures 3F, S3F). Thus, HOTTIP regulates hematopoietic chromatin landscape 

and transcription program by interacting with hematopoietic specific TFs and epigenetic 

regulators. 

To test whether HOTTIP controls chromatin signature of its targets, we performed ChIP-

seq and ATAC-seq assays in WT and HOTTIP-/- MOLM13 cells. Consistent with transcriptional 

changes of the posterior HOXA genes, HOTTIP-/- resulted in marked decreases in H3K4me3 and 

H3K79me2, while expanded and elevated H3K27me3 levels in the posterior HOXA genes domain 
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(Figure 3G). In contrast, HOTTIP-/- affected neither the anterior HOXA genes domain nor the 

HOXB genes locus (Figures 3G, S3G). In HOTTIP-/- cells, significantly gained or lost chromatin 

accessibility in subset of genomic regulatory regions was observed (Figure 3H). HOTTIP-/- led to 

a significant decrease in chromatin accessibility only in the posterior HOXA genes domain, but 

not anterior HOXA genes or HOXB genes clusters (Figures 3I, S3H, and Table S2). In addition, 

the MLL1 recruitment and chromatin modification/accessibility of a subset of non-HOXA genes 

were impaired upon loss of HOTTIP binding, consistent with the binding of HOTTIP to these genes 

(Figures 3D, S3E, and Table S2). The de novo motif analysis of ATAC-seq altered peaks 

confirmed that the top HOTTIP bound motifs also exhibits significant chromatin accessibility 

alteration (Figure 3E, Bottom; Table S1). Thus, HOTTIP establishes aberrant HOXA genes 

associated chromatin signature to drive ectopic transcription profile in the MLLr+ AML. 

HOTTIP loss perturbs AML cell proliferation and prolongs survival of the transplanted AML 

mouse models 

We next assessed the effects of HOTTIP-/- on leukemic cell growth and viability. Compared 

to WT MOLM13 cells, HOTTIP-/- showed consistent inhibitions of the posterior HOXA genes 

(Figure 4A) and cell proliferation (Figure 4B). Cell cycle analysis revealed that HOTTIP-/- blocked 

MOLM13 cells in the G1 phase and significantly reduced the G2/M phases (Figure 4C), suggesting 

that HOTTIP controls AML cell proliferation by regulating cell cycle progression consistent with 

RNA-seq analysis (Figure 1D). To exclude any effect of possible regulatory elements presented 

in the genomic HOTTIP region, we created CRISPR-dCas9-KRAB mediated HOTTIP epigenetic 

silenced clones using the KRAB repressive domain that recruits H3K9 methyltransferase 

Suv39H1 (Gilbert et al., 2013) to specifically target the promoter region of HOTTIP gene in MLLr+ 

MOLM13 and NPM1C+ OCI-AML3 cells. dCas9-KRAB targeted at the HOTTIP promoter elevated 

H3K9me2 levels, while inhibited H3K4me3 levels across HOXA9-A13 genes (Figures S4A-S4B). 

Inhibition of HOTTIP significantly reduced HOTTIP binding to posterior HOXA and non-HOXA 
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genes in both cell lines (Figures S4C-S4E). As a result, HOTTIP target gene expression, cell 

proliferation, and cell cycle progression were specifically inhibited by HOTTIP inhibition (Figures 

S4E-S4K), consistent to the phenotypes of HOTTIP-/-.  

 To test whether HOTTIP loss affects AML leukemogenesis in vivo, we transplanted 5x105 

WT or HOTTIP-/- MOLM13 cells into irradiated NSG mice. All mice transplanted with WT MOLM13 

cells died around 40 days after transplantation, while mice receiving HOTTIP-/- cells survived more 

than 70 days (Figure 4D). Indeed, FACS analysis of recipients at 35 days after transplantation 

revealed that the human CD45+ (hCD45+) cell chimerism was significantly reduced in mice 

receiving HOTTIP-/- MOLM13 cells (Figure 4E). Consistently, immunostaining of femur sections 

showed that mice transplanted with HOTTIP-/- cells had decreased infiltration of hCD45+ AML 

blasts in bone marrow (BM, Figure 4F). Thus, deletion of HOTTIP reduces AML leukemic burden 

in vivo.   

Furthermore, HOTTIP was deleted in primary AML cells with MLLr+ (#LPP4), 

NPM1C+;FLT3-ITD+ (#974) or FLT3-ITD+ (#886) obtained from patients by the CRISPR-Cas9 

editing. Both #LPP4 and #974 exhibited elevated expression of HOTTIP and posterior HOXA9-

A13 genes, while #886 had low HOTTIP and posterior HOXA genes expression (Figure S4L). We 

then transplanted 2×105 control or HOTTIP-/- primary AML cells into NSG mice.  Interestingly, 

mice receiving control MLLr+ (#LPP4) or NPM1C+/FLT3-ITD+ (#974) AML cells all died around 31 

days after transplantation, while mice transplanted with corresponding HOTTIP-/- AML cells 

survived up to 45 days (Figure 4G). FACS analysis revealed that HOTTIP-/- dramatically 

decreased the hCD45+ cell chimerism in BM, spleen and peripheral blood (PB) of recipients 

(Figure 4H). In contrast, HOTTIP-/- neither prolonged the survival nor decreased hCD45+ cell 

chimerism in mice transplanted with FLT3-ITD+ (#886) (Figures 4G, 4H). Thus, loss of HOTTIP 

decreases tumor burden and attenuates leukemic progression in vivo specific for HOTTIP 

activated AML patients carrying MLLr+ or NPM1C+ mutations. 
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HOTTIP activation rescues AML-associated chromatin signature and transcription profile 

in the CBS7/9+/- AML cells 

 Since CBS7/9+/- strongly suppressed HOTTIP expression (Figure 1A), we next sought to 

test if HOTTIP acts downstream of CBS7/9 to organize the AML-associated TAD and transcription 

profile using the dCAS9-VP160 mediated promoter activation of the endogenous HOTTIP gene 

in the CBS7/9+/- MOLM13 cells. Reactivation of HOTTIP in the CBS7/9+/- MOLM13 cells largely 

restored the expression of the posterior HOXA9-HOXA13 genes (Figure 5A). HOTTIP reactivation 

partially rescued the defective cellular proliferation in the CBS7/9+/- MOLM13 cells by escaping 

G1 phase blockage and restoring G2/M phase (Figures 5B-5C).  

 Next, we carried out RNA-seq, ATAC-seq, ChIP-seq, and Hi-C analysis using WT, 

CBS7/9+/- and the HOTTIP-activated CBS7/9+/- MOLM13 cells. CBS7/9+/- downregulated 865 

genes involved in myeloid differentiation and cell cycle controls (Luo et al., 2018). HOTTIP 

activation largely reversed the transcription profiles of the gene sets affected by the CBS7/9+/-, 

making them closely resembling WT MOLM13 cells (Figure 5D). These genes are involved in 

hematopoiesis, myeloid differentiation, and cell cycle controls (Figures 5D-5E). GSEA revealed 

that the pathways involved in HOXA9 regulation, AML progression, JAK-STAT signaling, and 

NOTCH signaling were enriched in HOTTIP-activated cells as compared to CBS7/9+/- MOLM13 

cells (Figures 5F, S5A). In addition, chromatin accessibility and MLL1 recruitment was largely 

rescued in the posterior HOXA genes domain (Figures 5G-5H, Table S2) and the promoters of 

RUNX1, TWIST1, STAT5A and MYC (Figures S5B-S5C and Table S2), but not HOXB genes 

(Figure S5D). Consistently, the posterior HOXA locus TAD that was largely disrupted by the 

CBS7/9+/- was rescued by HOTTIP reactivation (Figure 5I). Thus, HOTTIP plays a critical role in 

establishing and maintaining leukemic specific HOXA locus TAD and gene expression profiles.  

 To evaluate whether of HOTTIP reactivation functionally rescues the CBS7/9+/- mediated 

anti-leukemia effect, we again transplanted 2x105 WT, CBS7/9+/-, or HOTTIP activated CBS7/9+/- 
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MOLM13 cells into irradiated NSG mice. All mice transplanted with CBS7/9+/- cells died between 

29-39 days after transplantation, while the mice receiving WT or HOTTIP activated CBS7/9+/- 

MOLM13 cells survived only 14-25 days (Figure 5J). FACS analysis of recipients at 14 days after 

transplantation revealed that the hCD45+ cell chimerism in the mice receiving HOTTIP-reactivated 

CBS7/9+/- MOLM13 cells was restored to compatible levels of mice transplanted with WT cells 

(Figure 5K). Thus, reactivation of HOTTIP in the CBS7/9+/- MOLM13 cells rescues leukemic 

HOXA locus TAD, chromatin signature and transcription profile to reverse the CBS7/9+/- mediated 

anti-leukemic effects. 

Hottip transgenic expression in the hematopoietic compartment perturbs HSC pools and 

leads to AML-like disease in mice 

 Hottip expression is high in HSCs and early progenitors but decreases upon terminal 

differentiation (Figure S6A). Since HOTTIP is aberrantly expressed in the MLLr+ and NPM1C+ 

AMLs (Figure 2A) resulting in dysregulation of HOX genes-associated chromatin domain and 

gene expression (Figures 1B, 1F), enforced expression of HOTTIP in HS/PC may perturb HSC 

function in vivo. We then generated transgenic mice that express Hottip lncRNA under the control 

of the hematopoietic specific Vav1 enhancer and promoter (Figure S6B). The transgene was 

integrated in chromosome 10qE4 (Chro10:60117191) (Figure S6C). Two transgenic mouse lines 

were obtained, which exhibited ~5- and ~11 fold increase in Hottip expression as compared to 

the endogenous Hottip levels in BM cells, respectively (Figure S6D). The Hoxa9-a13 genes were 

also aberrantly elevated upon Hottip transgenic expression (Figure S6E). When a cohort of WT 

and Hottip-Tg mice from both lines (6-18 month of age) were analyzed, the Hottip-Tg mice 

exhibited increased white blood cells (WBC) and neutrophil counts (Figure 6A) and most of them 

developed splenomegaly (Figure S6F), indicating that enforced expression of Hottip led to 

perturbation of hematopoiesis. FACS analysis of BM cells revealed that the c-Kit+ cell population 

was significantly increased in Hottip-Tg mice (Figure 6B). Importantly, ~32% of Hottip-Tg mice 
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died by 18 months of age (Figure 6C). May-Giemsa staining of PB smears and BM cytospins 

revealed increases in immature myeloid cells in these Hottip-Tg mice (Figure 6D). Further 

histological analysis identified myeloid cell infiltration in the liver of these mice (Figure 6D). 

However, whole exome sequencing (WES) of bulk tumor (BM) and non-tumor (skin) cells from 

five diseased Hottip-Tg mice did not reveal any recurrent mutation in genes implicated in HSC 

regulation or leukemogenesis in the BM of Hottip-Tg mice (Table S3). The only recurrently 

mutated genes in Hottip-Tg BM cells is Mroh2a, which has unknown cellular function. Thus, Hottip 

overexpression plays an intrinsic oncogenic role in the pathogenesis of myeloid malignancies in 

vivo. 

 FACS analyses of the BM HSCs of young WT and Hottip-Tg mice (8-16 weeks old) 

revealed that overexpression of Hottip increased the frequencies and pools of lineage-Sca-1+c-

Kit+ (LSK) cell population in mice (Figures 6E, 6F). Furthermore, both the frequencies and total 

numbers of long-term (LT) and short-term (ST) HSCs were dramatically increased in Hottip-Tg 

mice (Figure 6F). Of note, alteration of proportions of common myeloid progenitor (CMP), 

megakaryocyte-erythroid progenitor (MEP), granulocyte-macrophage progenitor (GMP) and 

mature lineage cell populations in the BM were not evident in young Hottip-Tg mice (Figures S6G-

S6H), but these abnormalities developed as mice aging. 

To determine the impact of the Hottip transgene levels on the hematological phenotypes, 

the homozygous Hottip-Tg (HottipHomo-Tg) mice were generated with one fold increase in the 

levels of Hottip expression as compared to the Hottip-Tg mice (Figure S6I, Left) and had a shorter 

disease latency than Hottip-Tg mice. Half of the HottipHomo-Tg mice (5 of 10) developed AML-like 

disease within 8 months of age. These mice exhibited severe anemia, splenomegaly, >20% of 

blast in PB or BM, and increased CD117+CD11b+ immature myeloid populations in their BM 

(Figures S6I-S6L). When young HottipHomo-Tg were analyzed for composition of hematopoietic 

populations, the HottipHomo-Tg mice had higher frequencies and pools of LSK and lineage-Sca-1-
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c-Kit+ (LK) cell populations than Hottip-Tg mice (Figure S6M). Consistently, the frequencies and 

total numbers of LT- and ST-HSCs, and multipotent progenitor cells (MPPs) were significantly 

higher in the BM of HottipHomo-Tg mice than those of WT or Hottip-Tg mice (Figure S6N). In 

addition, the frequencies of GMP were increased, and MEP frequencies were decreased in the 

BM of HottipHomo-Tg mice as compared to WT or Hottip-Tg mice that did not exhibit such 

alterations at such young age (Figure S6O). These data suggest that the Hottip overexpression 

alters HSC pool and homeostasis in vivo in a gene dosage dependent manner. 

Hottip regulates the balance of self-renewal and differentiation of HSCs 

 Next, we sought to investigate the role of Hottip in HSC function by assessing the 

frequencies of colony-forming unit cells (CFU-C) in the BM and spleen of WT and Hottip-Tg mice 

(Figure 7A). The frequencies of each type of CFU-C including CFU-GM (Granulocyte/monocyte), 

burst forming unit-erythrocyte (BFU-E) and CFU-GEMM 

(Granulocyte/erythrocyte/monocyte/megakaryocyte) were significantly higher in both BM and 

spleen of Hottip-Tg mice (Figure 7A). When replating assays were performed on WT and Hottip-

Tg LSK cells purified from the BM of mice, a higher replating potential was observed in Hottip-Tg 

LSK cells (Figure 7B).  

Both symmetric and asymmetric cell divisions are required for the preservation of normal 

HSC pool and continuous production of blood cells. To test if Hottip aberration alters cell fates of 

HS/PCs, we performed paired-daughter cell assays to assess the proportions of symmetric self-

renewal, symmetric differentiation and asymmetric divisions using primitive CD34- LSK cells 

isolated from WT and Hottip-Tg BM. Overexpression of Hottip increased in proportion of CD34- 

LSK cells with symmetric self-renewal capacity (Figure 7C). In contrast, the proportion of cells 

that underwent symmetric differentiation were decreased, while the asymmetric division of CD34- 

LSK cells was not affected (Figure 7C). The abnormal behavior of CD34- LSK caused by Hottip-
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Tg is similar to ASXL2-/- or AML-ETO expression, which enhances HSC self-renewal and blocks 

myeloid differentiation.  

To further interrogate the effects of the ectopic Hottip expression on HS/PC proliferation and 

differentiation, liquid cultures were performed and the frequencies and total numbers of c-Kit+ cells 

and CFU-Cs in the progenies were analyzed weekly. FACS analysis and colony assays revealed 

that Hottip-Tg LK cells gave rise to a greater number of c-Kit+ progenies and a higher number of 

CFU-Cs than WT LK cells each time point assayed (Figures S7A-S7C). Thus, the ectopic 

expression of Hottip in HS/PCs leads to an increased expansion of c-Kit+ cells and is likely 

accompanied by increased proliferation and impaired differentiation, two hallmarks of 

leukemogenesis. 

 

Cell-autonomous effect of Hottip overexpression on HS/PC functions 

 Next, we carried out competitive transplantation assays to examine the repopulating 

capacity of Hottip-Tg and WT BM cells as compared to WT competitor BM cells in recipient mice. 

When the donor cell chimerism was analyzed kinetically in the PB of recipient mice for 6 months, 

the CD45.2 (Donor) cell population remained ~50% in mice receiving WT BM cells, whereas the 

CD45.2 chimerism in mice receiving Hottip-Tg BM cells steadily increased, reaching ~80% 6 

months after transplantation (Figure 7D, Top). Strikingly, Hottip-Tg BM cells generated higher 

proportions and numbers of LSKs in recipient animals as compared to WT BM and competior BM 

cells (Figure S7D).  The proportions of each mature lineage population produced by Hottip-Tg BM 

cells were comparable to that produced by WT and competitor BM cells up to 6 months after 

trasplantation (Figure S7D). However, when we transplanted HottipHomo-Tg BM cells into 

recipients (Figure S7E), 40% of the HottipHomo-Tg recipients developed AML-like disease within 6 

months post-transplantation (Figure S7F). The HottipHomo-Tg BM cells exhibited a significantly 

enhanced repopulation capacity and generated higher proportions and numbers of LSK, LK, LT-

HSC, CMP and immature myeloid cells (CD117+CD11b+ and CD117+Gr1+) cells as compared to 
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WT and competior BM cells (Figures S7G), indicating that Hottip transgene perturbs HSC function 

and hematopoiesis in a gene dosage dependent manner.   

 To enforce long-term HSC self-renewal and disease development, secondary 

transplantation was carried out by transplanting WT or Hottip-Tg BM cells from primary recipients 

(1 X 106 cells) into 2nd recipients. In this context, 80% of the Hottip-Tg 2nd transplanted recipients 

developed AML-like diseases as evident by splenomegaly, significant increases of immature 

myeloid cells in the PB or BM (Figures 7E-7G). The donor cell chimerism in the PB of the 2nd 

recipients transplanted with Hottip-Tg BM cells continuously increased, from 80% reaching 93% 

6 months after 2nd transplantation (Figure 7D, Bottom). Hottip-Tg BM cells generated much higher 

proportions and numbers of LSKs and immature myeloid cells in 2nd recipient mice when 

compared to WT BM cells and competior BM cells (Figure 7G). Thus, ectopic expression of Hottip 

in hematopoiesis increases the repopulating capacity of HS/PCs and promotes HSC self-renewal 

leading to AML-like disease. 

 

Transgenic expression of Hottip remodels chromatin accessibility and alters 

hematopoietic transcription programs 

 It is conceivable that transgenic expression of Hottip remodels the HOX genes-associated 

chromatin domain and drives hematopoietic transcription program to perturb HS/PC function. To 

examine this, we performed ATAC-seq and RNA-seq using BM LT- and ST-HSCs purified from 

WT and Hottip-Tg mice. RNA-seq revealed that a total of 535 genes exhibited >2 fold increases, 

whereas 275 genes had decreased expression in LT-HSCs upon Hottip transgenic expression 

(Figure 8A). Among upregulated genes included Hoxa9-a13, Nanog, Sox2, Myc, Meis1, Runx1, 

Kit, Slamf1, Gata2, and Pbx3 (Figure 8B), many of which directly bound by Hottip (Figure S8A) 

suggesting that Hottip regulates posterior Hoxa genes and hematopoietic transcription networks. 

Furthermore, GO analysis revealed that Hottip-Tg altered transcription program is involved in 

pathways associated with the pluripotency of stem cells, cell fate commitment, long-term 
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potentials, HSC proliferation, myeloid progenitor differentiation, NOTCH, JAK-STAT and WNT 

signaling (Figure 8C). Similar hematopoietic pathways and genes were also altered in ST-HSCs 

upon Hottip transgenic expression (Figures S8B-S8C). Concomitantly, ATAC-seq revealed that 

Hottip aberration enhanced chromatin accessibility in the endogenous posterior Hoxa gene 

cluster and non-Hoxa gene targets (Figures 8D, S8D-S8F, Table S2). As a control, Hottip 

expression did not alter chromatin accessibility in anterior Hoxb genes domain (Figure S11G), 

which also plays an important role in HSC function. We further grouped ATAC-seq promoter 

gained or lost peaks and carried out GO analysis to exam the pathways associated with gain or 

loss of promoter accessibility upon Hottip aberration in BM HSCs. Gained peaks were associated 

with pathways involved in the pluripotency of stem cells, cell fate commitment, long-term 

potentials, HSC proliferation, and JAK-STAT and WNT signaling, while lost peaks were 

associated with hematopoietic cell lineage, the cellular differentiation program, and myeloid 

progenitor cell differentiation (Figures 8E, S8E). Thus, Hottip acts as an epigenetic regulator 

directing hematopoietic transcription programs.   

In both LT- and ST-HSCs, WNT signaling pathway was upregulated by Hottip transgenic 

expression (Figures 8C, 8E, S8E) suggesting that canonical WNT signaling pathway may play an 

important role in Hottip-driven leukemia. The WNT signaling is required for HSC homeostasis and 

leukemia development (Lento et al., 2013; Reya et al., 2003). To test clinical implication of Hottip-

driven leukemogenesis, we treated primary AML patient samples carrying MLLr+ and exhibiting 

elevated HOTTIP expression with DMSO (control) or 500 nM ICG-001, a canonical WNT inhibitor  

(Emami et al., 2004) (Figure S11H). As a result, long-term culture initiating cell frequency of the 

HOTTIP expressed AML samples were significantly inhibited by ICG-001 while HOTTIP 

silenced/or weakly expressed MLLr- AML samples were resistant to the ICG-001 (Figures 8F, S8I-

S8J). Furthermore, the primary MLLr+ AML patient samples MLL7 that expressed high levels of 

HOTTIP were transplanted into NSG mice and treated with vehicle (control) or ICG-001 (50 

mg/Kg). Treatment of ICG-001 significantly prolonged leukemic mice survival (Figure 8G) by 
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decreased CD45/CD33 human leukemic blast in BM and eradicated the human leukemic blast in 

spleen and liver (Figure S8K). Thus, MLLr+ AML expressing high level of HOTTIP is indeed 

sensitive to WNT inhibitor and WNT signaling pathway facilitates Hottip-driven leukemogenesis.  

 

Discussion 

 

HOTTIP is known to coordinate transcription of the 5’ tip of HOXA genes (Wang et al., 

2011). We characterized a function of HOTTIP in regulating the balance of HSC self-renewal and 

differentiation. The HOTTIP action is, in part, dependent on its ability to directly bind to and 

regulate genes and pathways that are required for HS/PC regulation. It is particularly interesting 

that the WNT pathway is required for self-renewal of leukemia stem cells (LSCs) in AML that are 

driven by MLLr+ or its targets, MEIS1 and HOXA9 (Wang et al., 2010; Yeung et al., 2010). HOTTIP 

is highly expressed in MLLr+ or NPM1C+ mutated AML patients and the HOTTIP expressed AML 

is sensitive to the WNT inhibitor. Thus, HOTTIP may be also involved in regulation of LSCs 

carrying MLLr+ or NPM1C+ mutations and represents a therapeutic opportunity for eradication of 

LSCs in part through manipulating the WNT pathway. 

MLLr+ AML is one of the most devastating subtypes of AML, being associated with poor 

prognosis and chemo-resistance. Although NPM1C+ mutation alone is generally associated with 

favorable prognosis, coexistence of FLT3-ITD and/or DNMT3A mutations predicts an increased 

risk of relapse and poorer outcome (Gale et al., 2015; Grimwade et al., 2016). HOXA9 is a strong 

predictor of poor prognosis in AML (Collins and Hess, 2016). MEIS1 and PBX3 are oncogenes 

that co-express with many HOX genes, especially HOXA9, to stimulate the proliferation of HSCs 

(Li et al., 2016; Takeda et al., 2006). They are highly expressed in AML cases carrying MLLr+ or 

NPM1C+ mutation and depended on HOTTIP lncRNA. Interestingly, AMLs harboring NPM1C+ with 

aberrant HOXA9/A10 genes and homeotic oncogenes, MEIS1 and PBX3, are synergistically 

required for the maintenance of NPM1C+ driven AML (Brunetti et al., 2018; Dovey et al., 2017; 
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Kuhn et al., 2016). The reports are consistent with that Hottip overexpression resulted in activation 

of Hoxa9, Meis1, and Pbx3 in the HSC population, promoting HSC self-renewal and 

leukemogenesis.  

Although TADs are mostly conserved across cell types and species, TADs are indeed 

structural and functional chromosomal units that constrain enhancer/promoter communication for 

specific transcription program (Valton and Dekker, 2016). Altered TAD might result in 

inappropriate promoter/enhancer interactions to alter transcription of oncogenes or tumor 

suppressors (Groschel et al., 2014; Taberlay et al., 2016). Chromatin boundaries, CTCF binding 

sites in many cases, play a critical role in defining TADs and chromatin signature within the TAD 

(Luo et al., 2018; Narendra et al., 2015). Given that expression of HOTTIP restores CBS7/9 

mediated posterior HOXA locus TAD and leukemogenesis, it is likely that stratification of CTCF 

boundary and oncogenic TAD in the HOXA locus by HOTTIP lncRNA may be exploited by MLLr+ 

or NPM1C+ AML cells to promote leukemogenesis.   

Apart from the HOXA genes, HOTTIP lncRNA also bound and regulated a subset of non-

HOX genes. RUNX1 is required for definitive hematopoiesis and could act to promote the survival 

of MLLr+ leukemia cells (Goyama et al., 2013). Intriguingly, epithelial-to-mesenchymal transition 

(EMT) genes are recently shown to control AML blast migration and invasion and to link to 

aggressiveness and poor prognostic outcomes of MLL-AF9 mediated AML (Stavropoulou et al., 

2016). The question remains as to whether HOTTIP directly regulates these non-HOXA genes or 

modulates them through an indirect mechanism. Although KO of HOTTIP decreased more than 

80% of HOTTIP transcript levels, it is interesting that there is only approximately 50% reduction 

in HOTTIP binding to its putative targets, posterior HOXA genes. In contrast, the binding of 

HOTTIP in the trans regulated non-HOXA genes was almost completely eliminated. Of note, 

transgenic expression of Hottip from the chromosome 10 is able to activate Hoxa and non-Hox 

genes. It is likely that HOTTIP mainly acts in cis to regulate the posterior HOXA genes in normal 

development due to its low expression levels. However, when HOTTIP is overexpressed, such 
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as in AML or in transgenic mice, the overexpressed HOTTIP may go to other chromatin sites 

besides the posterior HOXA genes. Thus, HOTTIP could act in cis and/or in trans in a context 

dependent manner. The mechanism of HOTTIP lncRNA in gene regulation warrants further 

investigation. 
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Figure Legends 

Figure 1. HOTTIP-/- perturbs HOXA genes-mediated oncogenic transcription program. (A) 

HOTTIP levels in WT vs. CBS7/9+/- MOLM13 cells by RNA-seq. FPKM: Fragments Per Kilobase 

of transcript per Million mapped reads. (B) Heat map of >2 folds up- and downregulated genes 

upon HOTTIP KO by RNA-seq. (C) mRNA levels of HOXA genes in WT and HOTTIP KO 

MOLM13 cells. (D) GO analysis of genes whose expression was altered by HOTTIP KO. (E) 

Enrichment of decreased genes involved in JAK-STAT (Top) and AML (Bottom) pathways upon 

HOTTIP KO by GSEA. (F) Hi-C interacting maps in part of the human chromosome 7p15 region 

containing the HOXA locus compared WT and HOTTIP KO MOLM13 cells. See also Figure S1. 

Figure 2. HOTTIP lncRNA is aberrantly expressed in a specific subset of AML. (A) The 

HOTTIP levels in NPM1C- and MLLr- AML cases and in NPM1C+ and MLLr+ AML cases obtained 

from the TCGA LAML and TARGET datasets. Violin plots show mean, interquartile and 1.5 × 

interquartile. The width shows the probability density. (B) Kaplan-Meier curve of overall survival 

probabilities of the patients having AML with high or low HOTTIP levels from the TCGA-LAML 

and TARGET-AML datasets. (C) Significant correlation between the expression of HOTTIP and 

posterior HOXA genes, MEIS1, TWIST1, PBX3 in the TCGA LAML and TARGET-AML datasets. 

Pearson correlation and corresponding p value is calculated by the cor.test of R. See also Figure 

S2. 

Figure 3. HOTTIP reprograms AML chromatin and regulates leukemic specific transcription 

networks. (A) ChIRP-seq analysis of HOTTIP binding in WT and HOTTIP KO MOLM13 cells. (B) 

Pie chart shows global HOTTIP binding distribution in the human AML genome. (C) GO analysis 

of HOTTIP regulated transcription and signal pathways. (D) Changes in HOTTIP binding (ChIRP-

seq), chromatin accessibility (ATAC-seq), MLL1 recruitment and H3K4me3 enrichment (ChIP-

seq) upon HOTTIP KO. (E) Shared top TF binding motifs enriched by the HOTTIP ChIRP-seq 

(Top) and the ATAC-seq altered peaks (Bottom) upon HOTTIP-/- by the de novo motif analysis. 
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(F) HOTTIP and protein interactions detected by RIP. (G) ChIP-seq analysis of changes in 

H3K4me3, H3K27me3, and H3K79me2 modification levels upon HOTTIP-/- in MOLM13 cells. (H) 

Altered ATAC-seq accessibility of genomic regions upon HOTTIP-/-. Box plots show horizontal line 

(zero z-score, mean), box indicating the median with upper and lower quartiles, and whiskers 

indicating the highest and lowest values. p value is calculated by Kolmagorov-Smirnov (KS) test. 

(I) ATAC-seq analysis of altered chromatin accessibility upon HOTTIP-/- in MOLM13 cells. See 

also Figure S3, Tables S1, S2. 

Figure 4. HOTTIP-/- perturbs cell proliferation and prolongs survival of the transplanted 

AML mouse models. (A) RT-qPCR analysis of HOXA genes expression in WT and HOTTIP-/- 

MOLM13 clones. (B) Proliferation curves of WT and HOTTIP-/- MOLM13 cells. (C) Cell cycle 

analysis of WT and HOTTIP-/- MOLM13 clones. (D) Kaplan-Meier curves of NSG mice 

transplanted with WT and HOTTIP-/- MOLM13 cells. (E) hCD45+ cell chimerism in BM, spleen 

(SP), and PB of NSG mice receiving WT (n=4) or HOTTIP-/- (n=4) MOLM13 cells.  (F) 

Hematoxylin and Eosin (H&E) and anti-hCD45 immuno-staining (brown) of femur sections from 

mice transplanted with WT or HOTTIP-/- MOLM13 cells for 16 days. (G) Kaplan-Meier curves of 

NSG mice transplanted with WT or HOTTIP-/- primary AML patient BM cells carrying MLLr+ 

(LPP4), NPM1C+Flt3-ITD+ (974), or NPM1C-FLT3-ITD+ (886) mutations. (H) hCD45+ cell 

chimerism in BM, SP, and PB of NSG mice receiving WT (n=4) or HOTTIP-/- (n=4) primary AML 

cells. Data (Panels A-C, E, H) is presented as mean ± SD. See also Figure S4. 

Figure 5. Activation of HOTTIP rescues the HOXA genes chromatin defects in the CBS7/9+/- 

AML cells. (A) RT-qPCR analysis of HOXA genes expression in WT, CBS7/9+/-, and the dCas9-

VP-160 mediated HOTTIP activated MOLM13 clones (B) Proliferation curves of the WT, 

CBS7/9+/-, and the dCas9-VP-160 mediated HOTTIP activated MOLM13 cells. (C) Cell cycle 

analysis of the WT, CBS7/9+/-, and the dCas9-VP-160 mediated HOTTIP activated MOLM13 

clones. (D) Heat map of RNA-seq analysis shows up- and downregulated genes of WT and the 
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dCas9-VP-160 mediated HOTTIP activated clones as compared to the CBS7/9+/- clone. (E) RT-

qPCR validation of the key altered genes identified by RNA-seq compared WT, CBS7/9+/-, and 

the dCas9-VP-160 mediated HOTTIP activated clones. (F) Enrichment of upregulated genes 

involved in HOXA9 (Top) and AML (Bottom) pathways upon HOTTIP activation in the CBS7/9+/- 

MOLM13 by GSEA. (G) ATAC-seq analysis of chromatin accessibility in WT, CBS7/9+/-, and the 

dCas9-VP-160 mediated HOTTIP activated MOLM13 cells. (H) ChIP-seq analysis of MLL1 

recruitment in WT, CBS7/9+/-, and the dCas9-VP-160 mediated HOTTIP activated MOLM13 cells. 

(I) Hi-C interacting maps in part of the human chromosome 7p15 region containing the HOXA 

locus compared WT, CBS7/9+/-, and the dCas9-VP-160 mediated HOTTIP activated MOLM13 

cells. (J) Kaplan-Meier curve of NSG mice transplanted with WT, CBS7/9+/-, or the dCas9-VP-160 

mediated HOTTIP activated MOLM13 cells. (K) FACS analysis of hCD45+ cell chimerism in BM, 

spleen (SP), and PB of NSG mice 14 days after transplantation of WT (n=4), CBS7/9+/- (n=4), or 

the dCas9-VP-160 mediated HOTTIP activated MOLM13 cells (n=4). Data (Panels A-C, E, and 

K) is presented as mean ± SD. See also Figure S5. 

Figure 6. Hottip transgenic expression in hematopoiesis perturbs HSC pools and led to 

AML-like disease. (A) Parameters of blood counts were summarized from 6-20 months old 

Hottip-Tg (n = 15) and age matched WT (n = 8) mice. WBC: white blood cells; NE: neutrophils; 

RBC: red blood cells. (B) FACS analysis and quantitation of c-Kit (CD117+) cells within total BM 

cells of 6-20 months old WT (n = 7) and Hottip-Tg (n = 15) mice. Data shows all dots as mean ± 

SD by Student’s t test. Horizontal bars represent mean. (C) Kaplan-Meier curve of WT (n=21) 

and Hottip-Tg (n=31) mice over 20 months. (D) Images of PB smears, BM cytospins and liver 

sections prepared from representative WT and Hottip-Tg mice. Bar, 20 μm. (E) FACS analysis 

of LSK and LK populations in the BM Lin- cells (Top) as well as LT-HSC, ST-HSC and MPP 

populations in the BM LSK cells (Bottom) of representative young (8-16 weeks) WT and age 

matched Hottip-Tg mice. (F) Quantitation of the total LSK, LK, LT-HSC, ST-HSC and MPP 
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populations per femur of young WT (n=7) and Hottip-Tg (n=10) mice. Quantitation data is 

presented as mean ± SD. See also Figure S6, Table S3. 

Figure 7. Hottip transgenic expression perturbs HSC function leading to AML-like 

disease. (A) Frequencies of CFU-Cs in the BM and spleen cells from WT and Hottip-Tg mice. 

GM: granulocytes/macrophages; BFU-E: burst forming unit-erythrocyte; GEMM: 

granulocytes/erythrocyte/monocyte/megakaryocyte. (B) Frequencies of colonies per 100 LSK 

cells in WT and Hottip-Tg BM cells are shown (1st). Colonies were replated every 7 days for 4 

times (2nd-5th). (C) Paired-daughter cell assays were performed on CD34- LSK cells from WT, 

Hottip-Tg mice, Asxl2-/- mice, and AML-ETO mice. (D) FACS analyses of CD45.2 (Donor) 

chimerisms in the PB of recipients (CD45.1) receiving WT or Hottip-Tg BM cells in 1st 

transplantation (Top) and 2nd transplantation (Bottom). (E)  Kaplan-Meier curve of 2nd 

transplantation receiving WT (n=5) and Hottip-Tg (n=5) BM cells (Top) and appearance of 

spleens and femur of representative WT and moribund Hottip-Tg mice receiving 2nd 

transplantation (Bottom). (F) Images of PB smears (Top) and BM cytospins (Bottom) prepared 

from representative WT and moribund Hottip-Tg mice receiving 2nd transplantation. Scale bar, 

20 μm. (G) FACS analyses showing CD45.2 vs. CD45.1 chimerism as well as their respective 

lineage distribution and LSK/LK cell populations (within Lin- cells) in the BM of representative 

WT or Hottip-Tg mice receiving 2nd transplantation. Data (Panels A, B, D) is presented as mean 

± SD. See also Figure S7. 

Figure 8. Transgenic expression of Hottip alters HSC chromatin signature and 

hematopoietic transcription programs.  (A) Scatter plot of RNA-seq analysis of >2 folds of 

differentially expressed genes upon overexpression of Hottip in BM LT-HSCs. (B) Heat map 

showing changed expression of representative genes upon Hottip overexpression. (C) GO 

analysis of the HOTTIP affected genes. (D) ATAC-seq analysis of chromatin accessibility in WT 

and Hottip-Tg BM LT-HSCs. (E) ATAC-seq promoter density map of LT-HSCs sorted from WT 
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and Hottip-Tg BM. Up- (Top) or downregulated (Bottom) ATAC-seq promoter peaks correlate 

with GO enriched pathways annotated by GREAT analysis. (F) Primary MLLr+ AML patient 

samples with elevated HOTTIP expression were treated with DMSO or ICG-001 (500 nM) and 

the LTC-IC frequency of each group were determined. The black bar represents the mean 

expression of each group. Data is presented as mean ± SD. (G) Primary MLLr+ AML patient 

samples MLL7 (2.5 million cells) were transplanted into NSG mice. The mice were treated with 

vehicle (n=4) or ICG-001 (50 mg/Kg; n=5) and sacrificed when they showed the signs of illness. 

See also Figure S8. 

 

STAR ★ METHODS 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for reagents may be directed to and will be fulfilled by the lead 

contact, Dr. Suming Huang (shuang4@pennstatehealth.psu.edu) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

AML patient samples 

The primary AML patient samples, #886, FLT3-ITD+/NPM1 WT; #974, MLLr-

/NPM1C+/FLT3-ITD+; #LPP4, MLLr+/NPM1 WT, were obtained with informed consent and studies 

were approved by the Institutional Review Board (IRB) of the University of Florida. 

AML Cell lines 

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% bovine serum (FBS). MOLM13 and OCI-AML3 cells were cultured in 

RPMI 1640 medium with 10% FBS and alpha-MEM with 15-20% FBS, respectively.   
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Generation of the Hottip transgenic (Tg) mouse model 

The complete coding region sequence of mouse Hottip was cloned into downstream of a 

Vav1 promoter (HS321/45-vav vector) followed by Vav1 enhancer to ensure transgene 

expression solely in hematopoiesis (Yang et al., 2018) (Ogilvy et al., 1999). The plasmid DNA 

was digested with SacII to remove the pBlueScript II SK backbone and was used for injection into 

pronuclei of eggs from C57BL/6 mice. Two Hottip-Tg founder mice were obtained by PCR 

screening of the tail genomic DNAs with P1 (to detect both endogenous and transgenic Hottip 

gene) and P2 primer sets (to specifically recognize the transgenic Hottip gene). Transgenic 

founder mice were crossed with WT C57BL/6 mice. Hottip negative siblings of the Hottip-Tg mice 

were used as controls throughout the study. Two Hottip-Tg lines were used for this study. The 

primer sets of P3 was used for real-time PCR to recognize both endogenous Hottip gene and 

Hottip transgenes. The levels of transgenic expression of Hottip were confirmed by RNA-seq 

analysis. All animal experiments were approved by and performed in compliance with the 

regulatory guidelines by the University of Texas Health Science Center at San Antonio. 

 

METHOD DETAILS 

CRISPR-Cas9 mediated HOTTIP lncRNA knock-out and lentivirus production 

HOTTIP knockout (KO) MOLM13 leukemia cell was generated according to the Neon 

Transfection User Guide and the Alt-R CRISPR-Cas9 System User Guide (2014) Neon® 

Transfection System for transfecting mammalian cells, including primary and stem cells, with high 

transfection efficiency (Integrated DNA Technologies, available at 

https://tools.thermofisher.com/content/sfs/manuals/neon_device_man.pdf). Briefly, CRISPR-

RNA (crRNA) and tracrRNA were mixed and annealed in 95 °C for 5 min and then cooled down 

to room temperature. The crRNA:tracrRNA duplex and S.p. Cas9 Nuclease components were 
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combined together and then mixed with 500,000 AML cells for electroporation with Neon® 

System. After 24 hr or 96 hr, 100 μL of cell suspension was used for DNA extraction using Qiagen 

quick Extract kit and the mutation was verified through Sanger sequence. HOTTIP-/--#1 targeted 

region is Chr7: 27241953-27241985; HOTTIP-/--#2 targeted region is Chr7: 27240098-27240123. 

dCas9-mediated inactivation and overexpression of HOTTIP in AML cells 

Two guide RNAs plasmid targeting the promoter regions of HOTTIP (Table S4) were 

designed using the Zhang laboratory web tool (http://crispr.mit.edu), and cloned into the 

pLKO5.sgRNA.EFS.tRFP vector (Addgene #57824). The gRNA plasmids encoding mCherry and 

puromycin resistance were co-transfected with a plasmid encoding dCas9-KRAB (pHR-SFFV-

dCas9-BFP-KRAB, addgene plasmid #46911) or dCas9-VP160 (pAC94-pmax-dCas9VP160-2A-

puro, addgene plasmid number #48226) in MOLM13 and OCI-AML3 cells. After 24 hr post-

transfection, MOLM13 or OCI-AML3 cells were selected with 2 μg/mL puromycin for another 48 

hr, and then FACS sorted for RFP+ cells. RNA was extracted from RFP+ cells, and RT-qPCR was 

performed according to the primers list (Table S4). 

Transgenic integrating location identification 

The PCR-based method-TAIL-PCR (Thermal Asymmetric Interlaced PCR) which relies on 

a series of PCR amplifications with gene specific and degenerate primers to reliably amplify the 

integration sites was performed according to previous report (Pillai et al., 2008).  In briefly, the 

primary PCR reaction was performed by mixing 50-100 ng genomic DNA, 2.5 mM dNTPs, 10 uM 

SP1 primer, 10 mM AD primer, and 1 U Taq polymerase in 20 μL 1X reaction buffer. In the 

secondary or tertiary PCR primers amplification, 1 μL first or secondary 10-20 fold diluted PCR 

products were used as templates in the reaction, respectively. Finally, the tertiary PCR products 

were verified through Sanger sequencing. 

Cell cycle analysis 
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WT and modified MOLM13 cells were harvested and washed with phosphate buffered 

saline (PBS). The washed cells were fixed by adding 70% ethanol drop wise to the pellet with 

vortexing and incubated overnight at 4 °C. After fixation, cells were washed with PBS twice. The 

PBS washed cells were treated with the staining buffer (RNase A, Triton X-100, propidium iodide) 

and then incubated at 37 °C for 30 min in the dark.  Stained samples were proceeded on the BD 

AccuriTM C6 plus flow cytometry (BD Biosciences), and cell cycle data analysis was performed 

using FlowJo program. Triplicate experiments were performed for each sample. 

Hematopoietic stem / progenitor cells (HS/PCs) sorting, analysis and colony assay 

Flow cytometric analysis of Hottip transgenic mice was performed as previously described 

(Wang et al., 2014) using a BD LSRII flow cytometer. All data were analyzed by FlowJo-V10 

software.  Briefly, LK (Lin- Kit+), LSK (Lin- Sca1+ Kit+),  Long Term (LT) and Short-Term (ST)-HSC 

cells were derived from total bone marrow (BM) cells, and Lin+ BM cells was pre-depleted by 

Miltenyi Biotec magnetic beads (130-110-470), then the leftover Lin- BM cells were stained with 

Lin, Sca-1, c-kit, CD34, CD135 and CD16/32 antibody and sorted by BD FUSION flow cytometer. 

The purity of selected cells were over 95%. 

Total white blood cells were obtained after lysis of Peripheral blood (PB) with red cell lysis 

buffer (Thermo fisher). Single-cell suspensions from bone marrow (BM), spleen and PB were 

stained with panels of fluorochrome-conjugated antibodies. Flow cytometric analysis of 

hematopoietic stem / progenitor cells (HS/PCs) was performed as previously described (Li et al., 

2011). The analyses were performed using the FACS Canto II or LSR Fortessa flow cytometer 

(BD LSRFortessa™). All data was analyzed by FlowJo.V10 software. For colony and replating 

assays, bone marrow (BM) cells from the femurs and tibias of 6-8 week-old mice stained with 

anti-murine cKit-APC, Sca1-PE antibodies and a panel of antibody-conjugated goat anti-Rat IgG 

BioMag beads (Qiagen) for lineages (Lin), then cells were sorted on FACS ARIA II (Becton 

Dickinson), thus the enriched Lin- Sca1+ Kit+ population (LSK cells) were obtained. For colony-
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forming unit (CFU) assays, BM (1x104 cells/plate) or spleen cells (5x104 cells/plate) were plated 

in triplicate in methylcellulose medium (Methocult M3231) supplemented with mIL-3 (mouse 

interleukin 3, 10 ng/mL), hIL-6 (human interleukin 6, 100 ng/mL), hEpo (human erythropoietin, 4 

U/mL) and mSCF (mouse stem cell factor, 100 ng/mL), and scored in 8-10 days. For replating 

assays, CFU assays were performed with LSK cells in methylcellulose medium supplemented 

with the same cytokine cocktails. Colonies were passaged every 7 days for 4 sequential plating. 

Competitive repopulation assay 

1 × 106 BM cells (CD45.2+) from Ctrl or Hottip-Tg mice were mixed with 1 × 106 competitor 

BM cells (CD45.1) from B6.SJL mice and then transplanted into lethally irradiated (950 centigray) 

recipients (B6.SJL) by tail vein injection. Transplanted mice were monitored daily for signs of 

disease development. 

Suspension culture assay 

The LK cells were incubated in suspension culture containing 30% FBS, 2% BSA, and a 

combination of cytokines (mouse interleukin-3, human interkeukin-6, human erythropoietin, and 

mouse stem cell factor). At weekly intervals, cultures were mixed by pipetting and half of the 

culture media were removed, which was then replaced by newly prepared medium with the same 

combinations of cytokines. Cells in the collected media were counted and used for flow cytometric 

analysis. Total CFUs generated at each time point in the suspension culture were evaluated by 

culturing a fraction of the expanded cells in the colony assay as described above. 

RNA immunoprecipitation (RIP) assay 

The RNA-IP protocol was modified from previous reported (Deng et al., 2016; Tsai et al., 

2010). The MOLM13 AML cells were collected and washed with PBS (e.g. 107 cells in 2 mL PBS), 

resuspended in freshly prepared nuclear isolation buffer (1.28 M sucrose, 40 mM Tris-HCl pH 7.5, 

20 mM MgCl2, 4% Triton X-100), and then kept on ice for 20 min (with frequent mixing). Nuclei 
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were precipitated by centrifugation at 2,500 g for 15 min, and then resuspended in freshly 

prepared lysis buffer (10 mM HEPES-KOH pH7, 150 mM KCl, 5 mM MgCl2, 5 mM EDTA, 0.5% 

IGEPAL-CA-630, 0.5 mM dithiothreitol, 0.2 mg/mL Heparin, 100 U/mL RNase OUT, 100 U/mL 

Superase IN, protease inhibitor tablet). Nuclei were sonicated with the Bioruptor™ UCD200. The 

suspension was centrifuged three times at 14,000 g at 4 °C for 10 min, and supernatant was 

collected and precipitated with antibody (2-10 μg) overnight at 4 °C with rotation. The precipitant 

was captured by the equilibrated Protein A/G magnetic beads followed by washing four times in 

ice-cold NT2 buffer buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM MgCl2, 0.05% IGEPAL-

CA-630) supplemented with 0.02 mg/mL heparin. The RNA-protein complexes were eluted twice 

with 500 mL SDS-EDTA (50 mM Tris pH 8.0, 100 mM NaCl, 10 mM EDTA, 1% SDS) for 10 min 

at 65°C. Coprecipitated HOTTIP RNA was isolated by resuspending beads in TRIzol RNA 

extraction reagent, eluted with nuclease-free water, treated with TURBO DNase, and then 

detected by RT-qPCR.  

RNA isolation, quantitative RT-PCR, as well as RNA-sequencing and data analysis 

Total RNAs from MOLM13 cells, OCI-AML3 AML cells, or primary Hottip-Tg mice long-

term (LT) and short-term (ST)-HSCs were purified with the RNeasy mini-isolation kit according to 

manufacturer's instructions (Qiagen, MD, USA). A total of 2 μg RNA was subjected to reverse-

transcription with Superscript II reverse Transcriptase (Invitrogen) and analyzed by a real-time 

polymerase chain reaction (PCR) Detection System (Bio-Rad). Primer sequences are listed in the 

supplemental Information (Table S4).  

Paired end RNA-Seq was performed by Pennsylvania State University College of 

Medicine Genome Science Facility according to standard protocols.  All of sequencing reads were 

processed and aligned to the mouse or human genome assembly (mm9 or hg19) using TopHat 

(version 2.0) and Bowtie2 (Langmead et al., 2009; Trapnell et al., 2009; Trapnell et al., 2012). To 

prevent false positives, a stringent approach was taken to identify differentially expressed genes.  
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First, FPKM (paired-end fragments per kilobase of exon model per million mapped reads) was 

calculated for each gene and further normalized (RMS-FPKM).  Second, to prevent false positives 

due to the fluctuation of detection among genes with low expression levels, only genes with 50 or 

more reads in one of the conditions (WT control or HOTTIP manipulations) were included in the 

analysis. Differential expression was determined according to abundance estimations (FPKMs) 

processed with Cufflinks v2.2.1 and Cuffdiff (Trapnell et al., 2010). Differentially expressed genes 

were identified if the ratio of RMS-FPKM in the two conditions was greater than 2.0 fold, or 

undetectable in one condition but detectable by more than 50 reads in the other.  The heatmaps 

and scatter plots were based on log2 transformation of the RMS-FPKM values.  Expression level 

increased or decreased genes were marked with red or blue, respectively. The GO mapping of 

differentially expressed genes were performed with Gorilla (Eden et al., 2009). The normalized 

expression data was uploaded to Integrated Genomic Viewer (IGV) for visulization. The sequence 

reads have been deposited in the NCBI GEO under accession number (GSE114981). 

Chromatin immunoprecipitation (ChIP) assay 

ChIP were performed as described previously (Deng et al., 2013). Briefly, Nuclei were 

sonicated with the Bioruptor™ UCD200. Chromatin samples prepared from 5×106 cells of 

MOLM13 cells were immunoprecipitated with antibodies against MLL1, H3K4me3, H3K9me2, 

H3K27me3 and H3K79me2, separately. The immunoprecipitates were subjected to a series of 

washing steps to remove non-specific binding materials. After reverse-crosslinking, the DNA 

samples were purified and then analyzed by real-time quantitative PCR. Final results represent 

percentage of input chromatin and error bars indicate standard deviations (S.D.) through triplicate 

experiments. The MLL1, H3K4me3, H3K79me2 and H3K27me3 ChIP-DNA libraries were 

prepared using Illumina’s TruSeq ChIP Sample Preparation Kit according to the manufacturer’s 

instructions (Cat #IP-202-1012). The quality of the library was checked with Agilent TapeStation. 
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Final libraries were submitted to paired-end sequencing of 100 bp length on an Illumina HiSeq 

3000. 

Chromatin Isolation by RNA Immunoprecipitation (CHIRP) assay 

The Chromatin Isolation by RNA Immunoprecipitation (CHIRP) assay was carried out 

based on the protocol described in a previous studies (Chu et al., 2011) with some modifications. 

Briefly, 20 million cells were collected and cross-linked in 20 mL of PBS buffer containing 1% 

formaldehyde at room temperature for 10 mins. Cross-linked cells were washed by chilled PBS 2 

times, lysed in 1mL per 100 mg of cell pellet in cell lysis buffer ( 50 mM Tris-Cl pH 7.0, 10 mM 

EDTA, 1% SDS, supplemented with PMSF, DTT, proteinase inhibitors (P.I.) and Superase-in in 

fresh), and sonicated using a Bioruptor™ UCD200 (Diagenode) to prepare chromatin. Chromatin 

was diluted 2 times using hybridization buffer (750 mM NaCl, 1% SDS, 50 mM Tris 7.0, 1 mM 

EDTA, 15% formamide, add DTT, PMSF, P.I, and Superase-in fresh) and hybridized with 100 

pmole of biotinylated DNA probes targeting HOTTIP or LacZ containing 100 μL of Streptavidin-

magnetic C1 beads (Invitrogen). RNA and DNA hybrids were purified, washed 5 times with 

washing buffer (2x SSC, 0.5% SDS), and subjected to analysis by RT-qPCR. RNA binding 

proteins were subjected to analysis by western blotting with antibodies. Probes and primers are 

listed in the Table S4. CHIRP libraries were prepared using Illumina’s TruSeq ChIP Sample 

Preparation Kit according to the manufacturer’s instructions (Catalog: #IP-202-1012). The quality 

of the library was checked with Agilent TapeStation. Final libraries were submitted to paired-end 

sequencing of 100 bp length on an Illumina HiSeq 2500. All genomics datasets were deposited 

in the NCBI GEO under accession number (GSE114981). 

ChIP-seq and ChIRP-seq data analysis 

The  ChIP-seq or ChIRP-seq raw data were processed through cutadapt 

(http://cutadapt.readthedocs.io, version 1.2.0) to remove adaptors and low quality reads (Martin, 

2011). Cutadapt-filtered reads aligned to human reference genome (hg19) using Bowtie2 with 

http://cutadapt.readthedocs.io/
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default parameters (Langmead et al., 2009), and the quality of these trimmed data was evaluated 

by FastQC program (Wingett and Andrews, 2018). After alignment, SAM files were converted to 

BAM files and sorted using Samtools (Li et al., 2009). Peak calling was performed using peak 

calling algorithm MACS2 (Zhang et al., 2008). The bedGraphToBigWig program was employed 

to generate the bigWig file of fragment or read coverages,  including control and experimental 

datasets (https://www.encodeproject.org/software/bedgraphtobigwig/). All sequencing tracks 

were viewed using the Integrated Genomic Viewer (Robinson et al., 2011). Peaks annotation was 

carried out with the command “annotatePeaks.pl” from HOMER package (Heinz et al., 2010). For 

ChIRP-seq motif analysis, the de novo motif analysis was performed by the “findmotifsgenome.pl” 

from the HOMER motif discovery algorithm (Heinz et al., 2010). The genes and pathways 

regulated by the HOTTIP bound promoters or intergenic regions were analyzed and annotated 

by the Gene Ontology analysis with the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) tool (https://david.ncifcrf.gov/, Version 6.8) (Huang da et al., 2009a; Huang da 

et al., 2009b). Each GO term with a p value more than 1 × 10^-3 is used for cutoff (threshold: 10^-

3). All genomics datasets were deposited in the NCBI GEO under accession number 

(GSE114981). 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

ATAC-seq was performed using the Nextera DNA library preparation kit as described 

previously (Buenrostro et al., 2015). In Brief, 5 ×104 cells in single cell suspension were used for 

library preparation. Washed cells were re-suspended in lysis buffer containing 10 mM Tris-HCL 

(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1 % NP-40. After washing with cold 1x phosphate buffered 

saline (PBS) buffer, cells were treated with Tn5 Transposes for transposition reaction at 37°C for 

30 min. DNA was purified using the MinElute Kit (QIAGEN). Library fragments were amplified 

using 1x NEB next PCR master mix and 1.25 μM indexed Nextra PCR primers (Ad1_noMX and 

Ad2.1-2.4 barcoded primers) with following PCR conditions: 72 °C for 5 min, 98 °C for 30 s, 
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followed by thermocycling at 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min. The eluted DNA 

was used in a quantitative PCR (qPCR) reaction to estimate the optimum number of amplification 

cycles. Libraries were quantified using qPCR (Kapa Library Quantification Kit for Illumina, Roche), 

and libraries were purified with AMPure beads (Beckman Coulter), and  the quality of the DNA 

library was examined by Agilent Bioanalyzer 2100 prior to sequencing with 2x100 bp paired-end 

reads on an Illumina NextSeq 500. Each sample includes two replicates for statistical analysis.  

ATAC-seq analysis 

We normally carried out two biological replicates for all of the ATAC-seq experiments (Luo 

et al., 2018). For quality control, first, each replicate should have 50 million reads for paired-end 

sequencing. Second, the alignment rate of each replicate is more than 95%. Third, we also 

removed the mitochondrial related reads from total reads after alignment and PCR duplicates 

were also removed. Finally, non-uniquely aligned reads were filtered based on MAPQ scores with 

samtools (MAPQ > 30), and plotPCA from BiocGenerics package in R package (R/3.6.1) was 

carried out to identify the variance between control and treatment groups. Moreover, fragSizeDist 

from ATACseqQC package in R package was carried out to show the fragment size distribution 

for control and treatment groups. In additional, the library complexity was analyzed including 

nucleosome free region signals (NFRs), mono-nucleosome, di-nucleosome and tri-nucleosome 

signals according to previously report (Tarbell and Liu, 2019).  

        Briefly, all of the raw fastq files were processed through cutadapt 

(http://cutadapt.readthedocs.io, version 1.2.0) to remove adaptors and low quality reads(Martin, 

2011). Cutadapt-filtered reads aligned to human or mouse genome (hg19 or mm9) using Bowtie2 

with default parameters (version Bowtie 2/2.2.6)(Langmead et al., 2009), and the quality of these 

trimmed data was evaluated by FastQC program (version 0.11.8)(Wingett and Andrews, 2018). 

After alignment, SAM files were converted to BAM files and sorted using Samtools (version 1.8.0) 

(Li et al., 2009). PCR duplicates were removed using Picard MarkDuplicates (version 2.0.1), and 

http://cutadapt.readthedocs.io/
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mitochondrial reads were removed with Samtools (Corces et al., 2017). ENCODE blacklist 

regions were filtered (https://sites.google.com/site/anshulkundaje/projects/blacklists). Peak 

calling was performed using peak calling algorithm MACS2 with parameters (“-g mm -p 1e-9 –

nolambda -f BAMPE –nomodel –shiftsize=100 --extsize 200”)(Zhang et al., 2008). 

bedGraphToBigWig program was employed to generate the bigWig file of fragment or read 

coverages,  including control and experimental datasets 

(https://www.encodeproject.org/software/bedgraphtobigwig/). All sequencing tracks were viewed 

using the Integrated Genomic Viewer (IGV/2.4.19)(Robinson et al., 2011). Peaks annotation was 

carried out with the command “annotatePeaks.pl” from HOMER package (version 4.8) (Heinz et 

al., 2010) and GREAT(McLean et al., 2010).  DEseq2 (Benjamini-Hochberg adjusted p< 0.05; 

FoldChange≥2) were also performed to find the differential binding sites between two peak files, 

including control and treatment groups with C+G normalized and “reads in peaks” normalized 

data (Ross-Innes et al., 2012). The de novo motif analysis was performed by the 

“findmotifsgenome.pl” from the HOMER package (Heinz et al., 2010). For each genomic feature 

(peaks or chromVAR annotation), we calculated the chromatin accessibility median deviation z-

score (for chromVAR features) or fragment counts (for peaks) in control and treatment groups 

with chromVAR package in R language (Rubin et al., 2019; Schep et al., 2017). Pearson’s 

correlation coefficient and Pearson’s χ2-test were carried out to calculate overall similarity 

between the replicates of ATAC-seq global open chromatin signatures. All genomics datasets 

were deposited in the NCBI GEO under accession number (GSE114981). 

Mouse exome sequencing assay 

The whole exome sequencing (WES) was carried out to identify candidate mutations in 

the exomes of genes. Genomic DNA was isolated from mice ear and BM cells including 

wildtype and the diseased Hottip-Tg mice, and genomic exome library was captured and 

constructed according to SureSelectXT Mouse All Exon kit (Agilent, Part Number:5190-4641), 
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and then 100 bp paired-end sequencing was performed using an Illumina NovaSeq S1. Raw 

sequencing reads were processed through cutadapt (http://cutadapt.readthedocs.io, version 

1.2.0) to remove adaptors and low quality reads. These clean reads were mapped to the whole 

mouse genome (mm10) using BWA with the default settings (bwa/0.7.4) (Liang et al., 2009). 

The PCR duplicates were removed with Picard with default parameters (version 1.88) 

(http://broadinstitute.github.io/picard/), recalibrated with GATK with default setting (version 3.7) 

(McKenna et al., 2010), and compared the variance between wildtype and Hottip-Tg group with 

Strelka (version 2.9.2, default setting)(Kim et al., 2018) , and then variant bases were 

annotated with SnpEff (latest version) (http://snpeff.sourceforge.net/SnpEff_manual.html) 

(Cingolani et al., 2012). All genomics datasets were deposited in the NCBI GEO under accession 

number (GSE114981). 

Xenotransplantation of human leukemic cells and Patient-Derived Xenografts (PDX)  

  All animals experiments were approved by and performed in compliance with the 

regulatory guidelines by the Institutional Animal Care and User Ethical Committees of the 

University of Texas Health Science Center at San Antonio and Pennsylvania State University 

College of Medicine. Non-obese diabetic (NOD)/LtSz-severe combined immunodeficiency (SCID) 

IL2Rγc
null (NSG) mice were housed in sterile conditions using high-efficiency particulate 

arrestance filtered micro-isolators and fed with irradiated food and acidified water. Adult mice (6-

8 weeks old) were sublethally irradiated with 280 cGy of total body irradiation before injection of 

leukemic cells. WT control, CBS7/9+/- cells, HOTTIP-/- cells, and HOTTIP-VP-CBS7/9+/- MOLM13 

cells (in 300 μL of PBS) were injected into the NSG mice by tail-vein injection at a dose of 0.5 x 

106 cells/mouse. For Patient-Derived Xenografts (PDX) assay, control or HOTTIP-/- primary AML 

patients (#886, FLT3-ITD+/NPM1C- ; # 974, NPM1C+/FLT3-ITD+; LPP4, MLLr+/NPM1C-) were 

injected into the NSG mice at 1.8 × 105 cells/mouse. Daily monitoring of mice for symptoms of 

disease (ruffled coat, hunched back, weakness and reduced motility) determined the time of killing 
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for injected animals with signs of distress. NSG mice were humanely killed at the time of moribund. 

Peripheral blood was collected by retro-orbital bleeding, bone (tibias, femurs and pelvis) and 

spleen were dissected. BM cells were isolated by flushing the bones. Spleens were mashed 

through a 70-μm mesh filter and made into single cell suspensions.  PB was prepared for flow 

cytometry by ammonium chloride treatment to remove red cells. Human CD45 chimerism in these 

hematopoietic tissues was analyzed by flow cytometry (FACS LSR II–BD Biosciences, San Jose, 

CA, USA). All data were analyzed by FlowJo7.6 software.  

For histopathology analyses, femurs were fixed in formaldehyde, decalcified, and paraffin 

embedded. Spleens were treated similarly except for the step of decalcification. Sections (4.5 µm) 

were stained with hematoxylin/eosin (H&E) or immunohistochemistry staining with anti-hCD45 

antibody (Abcam, ab10559) and detected using an HRP conjugated compact polymer system 

with DAB as the chromogen. The slides were then observed with a conventional microscope.  

Hi-C Assay 

Hi-C assay was performed to generate a genome-wide interaction as described previously 

with Arima-HiC Kit (Cat: A410030) (https://arimagenomics.com/) with minor modifications. In brief, 

5 million cells were collected and cross-linked in 10 mL of PBS buffer containing 1 % 

formaldehyde at room temperature for 10 min. The reaction was quenched by 0.125 M glycine 

solution. Cross-linked cell pellet were washed in 1x PBS buffer and collected. Cross-linked cell 

pellet was treated with lysis buffer and incubate at 4 °C for 15 min, and then conditioning solution 

was added to continue incubate at 62 °C for 10 min. Reaction was stopped by adding stop solution 

and incubating at 37 °C for 15 min. Cell pellet was digested with reaction buffer and restriction 

enzyme cocktail (Arima-HiC Kit) overnight at 37 °C with rotation. Digested DNA was purified with 

DNA purification beads (AMPure XP Beads), and the concentration of DNA was measured with 

Qubit. 750 ng of DNA per sample was sheared through sonication (Bioruptor) with default 

parameters (30 seconds ON, 30 seconds OFF pulse intervals). Fragmented DNA was then size-
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selected to have a size distribution between 200-600 bp.  250 ng of size-selected DNA was used 

to generate sequence library with KAPA Hyper Prep Kit (Catalog # KK8500, KK4824 and 

KK8502). Final libraries were submitted to paired-end sequencing of 100 bp length on an Illumina 

HiSeq 2500. 

Hi-C sequence data analysis 

Raw sequence reads were first cleaned to remove adapter and low quality reads with 

bbmap and bbduk.sh (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-

guide/). The paired-end sequencing data was trimmed from the 3′ end of enzymatic sequences 

with homerTools (homerTools trim -3 Arima -mis 0 -matchStart 20 -min 20) from Homer software 

(version 4.8). Trimmed reads were aligned to human reference genome (hg19) using Bowtie2 

with parameters (“-n 1 -m 1 -p 8”) (Langmead et al., 2009). The remainder of the analysis was 

performed using juicer (version 1.5.5) (Durand et al., 2016b) and Homer (Heinz et al., 

2010).  Paired-end sequencing was used to make a tag directory with makeTagDirectory package 

from Homer software.   A normalized interaction matrix was generated with the analyzeHiC 

program with parameters (1 Mb resolution for all chromosomes, and 100 kb resolution for specific 

chromosome), and the intra-chromatin interactions within specific loci were also generated with 

the analyzeHiC program in Homer software via parameters (-res 10,000 -superRes 20,000 -pos 

chromosome location). In depth explanations of normalization, generation of Hi-C correlation 

matrices, principal component analysis (PCA) and identifying significant interactions were 

performed as previously described (Lin et al., 2012). These interaction matrices for Hi-C heatmap 

were visualized with Juicebox (Durand et al., 2016a)  and Java Treeview (Saldanha, 2004). All 

genomics datasets were deposited in the NCBI GEO under accession number (GSE114981). 

Long term culture- Initiating cells (LTC-IC) assay 

Primary MLL rearranged or non-MLL-AML primary samples were seeded into 96 wells 

plate with MS5 stroma cells in 200 μL medium (IMEM + 10 % FBS + 20 ng/mL human IL-3, IL-6, 
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TPO, SCF and FLT3 ligand). Different cell doses were put for 10 or 20 wells per cell dose.  Cells 

were either vehicle DMSO treated or treated with 500 nM ICG001 for one week. After one week, 

all medium were replenished with fresh medium without drugs and further cultured for other two 

weeks with medium replenished every week. Cell clusters (cobberstone) were scored from each 

well and the initiating frequency were calculated using online resources-WEHI Extreme Limiting 

Dilution Analysis (http://bioinf.wehi.edu.au/software/elda/). Primary MLLr+ AML primary samples 

were either mock-treated or treated 500 nM ICG-001 for 5 days in liquid medium. Cells were then 

harvested and stained with 0.1% Nitro Blue Tetrazolium chloride (NBT) which is converted into a 

dark deposit in myeloid differentiated cells and were scored out of the total cell counted. 

In vivo and in vitro drug treatment 

For in vivo experiment, mice were distributed into their respective groups randomly. MLLr+ 

AML cells were transplanted into 6-12 weeks old sub-leathally irradiated (250 cGy) NSG mice 

(male or female) via intra-femoral route.  Two weeks after transplantation, the mice were control-

treated or treated with ICG-001 (50 mg/kg; 5 days a week for 2 weeks) in PEG300/D5W (3:1) via 

intra-peritoneal route. When animals showed signs of sickness, the mice were suffocated in the 

CO2 chamber and confirmed dead by cervical dislocation.  The leukemic mouse is defined by 

>20% human AML engraftment with CD45 and CD33 positive cells in the bone marrow.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Differences between experimental groups were determined by the Student’s t-test or 

analysis of variance (ANOVA) followed by Newman-Keuls multiple comparison tests. p value 

<0.05 is considered significant (*), p value <0.01 is considered highly significant (**), p value 

<0.001 is considered extremely significant (***). TCGA datasets were obtained from The Cancer 

Genome Atlas (TCGA) database (https://gdac.broadinstitute.org/). Pearson’s χ2-test also was 
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applied to determining significance of the enrichment of prognostic data from published TCGA 

human de novo AML datasets (Mukaka, 2012). For in vivo experiment, sample size chosen was 

based on the generalized linear model with Bonferroni multiple comparison adjustments; with the 

proposed sample size of at least five mice/ group/genotype. Animals were randomly assigned to 

each study. For all in vitro experiments, at least three independent experiments with more than 

three biological replicates for each condition/genotype were performed to ensure adequate 

statistical power. 

 

DATA AND CODE AVAILABILITY  

All genomics datasets generated in this study can be accessed at GEO database (accession code 

GSE114981 and GSE113191). 

Table S4. Primers used for quantification of mRNA and genome DNA. Related to STAR 

Methods. 

REFERENCES 
 
Andreeff, M., Ruvolo, V., Gadgil, S., Zeng, C., Coombes, K., Chen, W., Kornblau, S., Baron, A. 

E., and Drabkin, H. A. (2008). HOX expression patterns identify a common signature for favorable 

AML. Leukemia 22, 2041-2047. 

Brunetti, L., Gundry, M. C., Sorcini, D., Guzman, A. G., Huang, Y. H., Ramabadran, R., Gionfriddo, 

I., Mezzasoma, F., Milano, F., Nabet, B., et al. (2018). Mutant NPM1 Maintains the Leukemic 

State through HOX Expression. Cancer Cell 34, 499-512 e499. 

Buenrostro, J. D., Wu, B., Chang, H. Y., and Greenleaf, W. J. (2015). ATAC-seq: A Method for 

Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 21-29. 

Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., and Chang, H. Y. (2011). Genomic maps of long 

noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44, 667-

678. 

Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., and 

Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide 



41 
 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 

iso-3. Fly (Austin) 6, 80-92. 

Collins, C. T., and Hess, J. L. (2016). Role of HOXA9 in leukemia: dysregulation, cofactors and 

essential targets. Oncogene 35, 1090-1098. 

Corces, M. R., Trevino, A. E., Hamilton, E. G., Greenside, P. G., Sinnott-Armstrong, N. A., 

Vesuna, S., Satpathy, A. T., Rubin, A. J., Montine, K. S., Wu, B., et al. (2017). An improved ATAC-

seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14, 

959-962. 

Crooks, G. M., Fuller, J., Petersen, D., Izadi, P., Malik, P., Pattengale, P. K., Kohn, D. B., and 

Gasson, J. C. (1999). Constitutive HOXA5 expression inhibits erythropoiesis and increases 

myelopoiesis from human hematopoietic progenitors. Blood 94, 519-528. 

Deng, C., Li, Y., Liang, S., Cui, K., Salz, T., Yang, H., Tang, Z., Gallagher, P. G., Qiu, Y., Roeder, 

R., et al. (2013). USF1 and hSET1A mediated epigenetic modifications regulate lineage 

differentiation and HoxB4 transcription. PLoS genetics 9, e1003524. 

Deng, C., Li, Y., Zhou, L., Cho, J., Patel, B., Terada, N., Li, Y., Bungert, J., Qiu, Y., and Huang, 

S. (2016). HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression 

Patterns and Mesoderm Lineage Development. Cell Rep 14, 103-114. 

Deschamps, J., and van Nes, J. (2005). Developmental regulation of the Hox genes during axial 

morphogenesis in the mouse. Development 132, 2931-2942. 

Dou, D. R., Calvanese, V., Sierra, M. I., Nguyen, A. T., Minasian, A., Saarikoski, P., Sasidharan, 

R., Ramirez, C. M., Zack, J. A., Crooks, G. M., et al. (2016). Medial HOXA genes demarcate 

haematopoietic stem cell fate during human development. Nat Cell Biol 18, 595-606. 

Dovey, O. M., Cooper, J. L., Mupo, A., Grove, C. S., Lynn, C., Conte, N., Andrews, R. M., 

Pacharne, S., Tzelepis, K., Vijayabaskar, M. S., et al. (2017). Molecular synergy underlies the co-

occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 130, 1911-

1922. 

Drabkin, H. A., Parsy, C., Ferguson, K., Guilhot, F., Lacotte, L., Roy, L., Zeng, C., Baron, A., 

Hunger, S. P., Varella-Garcia, M., et al. (2002). Quantitative HOX expression in chromosomally 

defined subsets of acute myelogenous leukemia. Leukemia 16, 186-195. 

Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., and 

Aiden, E. L. (2016a). Juicebox Provides a Visualization System for Hi-C Contact Maps with 

Unlimited Zoom. Cell Syst 3, 99-101. 



42 
 

Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S., Huntley, M. H., Lander, E. S., and Aiden, 

E. L. (2016b). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C 

Experiments. Cell Syst 3, 95-98. 

Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery 

and visualization of enriched GO terms in ranked gene lists. BMC bioinformatics 10, 48. 

Emami, K. H., Nguyen, C., Ma, H., Kim, D. H., Jeong, K. W., Eguchi, M., Moon, R. T., Teo, J. L., 

Kim, H. Y., Moon, S. H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding 

protein transcription [corrected]. Proc Natl Acad Sci U S A 101, 12682-12687. 

Forlani, S., Lawson, K. A., and Deschamps, J. (2003). Acquisition of Hox codes during 

gastrulation and axial elongation in the mouse embryo. Development 130, 3807-3819. 

Fuller, J. F., McAdara, J., Yaron, Y., Sakaguchi, M., Fraser, J. K., and Gasson, J. C. (1999). 

Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage 

commitment and maturation. Blood 93, 3391-3400. 

Gale, R. E., Lamb, K., Allen, C., El-Sharkawi, D., Stowe, C., Jenkinson, S., Tinsley, S., Dickson, 

G., Burnett, A. K., Hills, R. K., and Linch, D. C. (2015). Simpson's Paradox and the Impact of 

Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. J Clin 

Oncol 33, 2072-2083. 

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., 

Brandman, O., Whitehead, E. H., Doudna, J. A., et al. (2013). CRISPR-mediated modular RNA-

guided regulation of transcription in eukaryotes. Cell 154, 442-451. 

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., 

Loh, M. L., Downing, J. R., Caligiuri, M. A., et al. (1999). Molecular classification of cancer: class 

discovery and class prediction by gene expression monitoring. Science 286, 531-537. 

Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., 

Olsson, A., Wunderlich, M., Link, K. A., et al. (2013). Transcription factor RUNX1 promotes 

survival of acute myeloid leukemia cells. J Clin Invest 123, 3876-3888. 

Grimwade, D., Ivey, A., and Huntly, B. J. (2016). Molecular landscape of acute myeloid leukemia 

in younger adults and its clinical relevance. Blood 127, 29-41. 

Groschel, S., Sanders, M. A., Hoogenboezem, R., de Wit, E., Bouwman, B. A. M., Erpelinck, C., 

van der Velden, V. H. J., Havermans, M., Avellino, R., van Lom, K., et al. (2014). A single 

oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in 

leukemia. Cell 157, 369-381. 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., 

Singh, H., and Glass, C. K. (2010). Simple combinations of lineage-determining transcription 



43 
 

factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 

576-589. 

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools: 

paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-

13. 

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57. 

Kim, S., Scheffler, K., Halpern, A. L., Bekritsky, M. A., Noh, E., Kallberg, M., Chen, X., Kim, Y., 

Beyter, D., Krusche, P., and Saunders, C. T. (2018). Strelka2: fast and accurate calling of 

germline and somatic variants. Nat Methods 15, 591-594. 

Kuhn, M. W., Song, E., Feng, Z., Sinha, A., Chen, C. W., Deshpande, A. J., Cusan, M., Farnoud, 

N., Mupo, A., Grove, C., et al. (2016). Targeting Chromatin Regulators Inhibits Leukemogenic 

Gene Expression in NPM1 Mutant Leukemia. Cancer Discov 6, 1166-1181. 

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biol 10, R25. 

Lento, W., Congdon, K., Voermans, C., Kritzik, M., and Reya, T. (2013). Wnt signaling in normal 

and malignant hematopoiesis. Cold Spring Harb Perspect Biol 5. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., 

Durbin, R., and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map 

format and SAMtools. Bioinformatics 25, 2078-2079. 

Li, Z., Cai, X., Cai, C. L., Wang, J., Zhang, W., Petersen, B. E., Yang, F. C., and Xu, M. (2011). 

Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent 

development of myeloid malignancies. Blood 118, 4509-4518. 

Li, Z., Chen, P., Su, R., Hu, C., Li, Y., Elkahloun, A. G., Zuo, Z., Gurbuxani, S., Arnovitz, S., Weng, 

H., et al. (2016). PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid 

Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease. Cancer Res 

76, 619-629. 

Liang, S. Y., Moghimi, B., Crusselle-Davis, V. J., Lin, I. J., Rosenberg, M. H., Li, X., Strouboulis, 

J., Huang, S., and Bungert, J. (2009). Defective erythropoiesis in transgenic mice expressing 

dominant-negative upstream stimulatory factor. Molecular and cellular biology 29, 5900-5910. 

Lin, Y. C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M., Chandra, V., Bossen, 

C., Glass, C. K., and Murre, C. (2012). Global changes in the nuclear positioning of genes and 

intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13, 1196-

1204. 



44 
 

Luo, H., Wang, F., Zha, J., Li, H., Yan, B., Du, Q., Yang, F., Sobh, A., Vulpe, C., Drusbosky, L., 

et al. (2018). CTCF boundary remodels chromatin domain and drives aberrant HOX gene 

transcription in acute myeloid leukemia. Blood 132, 837-848. 

Martin, M. (2011). Cutadapt Removes Adapter Sequences from High-Throughput Sequencing 

Reads. EMBnet Journal 17, 10-12. 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., 

Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The Genome Analysis Toolkit: a 

MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 

1297-1303. 

McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M., and 

Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat 

Biotechnol 28, 495-501. 

Meyer, C., Kowarz, E., Hofmann, J., Renneville, A., Zuna, J., Trka, J., Ben Abdelali, R., Macintyre, 

E., De Braekeleer, E., De Braekeleer, M., et al. (2009). New insights to the MLL recombinome of 

acute leukemias. Leukemia 23, 1490-1499. 

Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in 

medical research. Malawi medical journal : the journal of Medical Association of Malawi 24, 69-

71. 

Narendra, V., Rocha, P. P., An, D., Raviram, R., Skok, J. A., Mazzoni, E. O., and Reinberg, D. 

(2015). CTCF establishes discrete functional chromatin domains at the Hox clusters during 

differentiation. Science 347, 1017-1021. 

Ogilvy, S., Metcalf, D., Gibson, L., Bath, M. L., Harris, A. W., and Adams, J. M. (1999). Promoter 

elements of vav drive transgene expression in vivo throughout the hematopoietic compartment. 

Blood 94, 1855-1863. 

Pillai, M. M., Venkataraman, G. M., Kosak, S., and Torok-Storb, B. (2008). Integration site 

analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR: segregating multiple-

integrant founder lines and determining zygosity. Transgenic Res 17, 749-754. 

Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R., 

and Weissman, I. L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. 

Nature 423, 409-414. 

Rice, K. L., and Licht, J. D. (2007). HOX deregulation in acute myeloid leukemia. J Clin Invest 

117, 865-868. 

Robinson, J. T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and 

Mesirov, J. P. (2011). Integrative genomics viewer. Nat Biotechnol 29, 24-26. 



45 
 

Ross-Innes, C. S., Stark, R., Teschendorff, A. E., Holmes, K. A., Ali, H. R., Dunning, M. J., Brown, 

G. D., Gojis, O., Ellis, I. O., Green, A. R., et al. (2012). Differential oestrogen receptor binding is 

associated with clinical outcome in breast cancer. Nature 481, 389. 

Rubin, A. J., Parker, K. R., Satpathy, A. T., Qi, Y., Wu, B., Ong, A. J., Mumbach, M. R., Ji, A. L., 

Kim, D. S., Cho, S. W., et al. (2019). Coupled Single-Cell CRISPR Screening and Epigenomic 

Profiling Reveals Causal Gene Regulatory Networks. Cell 176, 361-376 e317. 

Saldanha, A. J. (2004). Java Treeview--extensible visualization of microarray data. Bioinformatics 

20, 3246-3248. 

Sauvageau, G., Lansdorp, P. M., Eaves, C. J., Hogge, D. E., Dragowska, W. H., Reid, D. S., 

Largman, C., Lawrence, H. J., and Humphries, R. K. (1994). Differential expression of homeobox 

genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad 

Sci U S A 91, 12223-12227. 

Schep, A. N., Wu, B., Buenrostro, J. D., and Greenleaf, W. J. (2017). chromVAR: inferring 

transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods 14, 

975-978. 

So, C. W., Karsunky, H., Wong, P., Weissman, I. L., and Cleary, M. L. (2004). Leukemic 

transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. 

Blood 103, 3192-3199. 

Spencer, D. H., Young, M. A., Lamprecht, T. L., Helton, N. M., Fulton, R., O'Laughlin, M., Fronick, 

C., Magrini, V., Demeter, R. T., Miller, C. A., et al. (2015). Epigenomic analysis of the HOX gene 

loci reveals mechanisms that may control canonical expression patterns in AML and normal 

hematopoietic cells. Leukemia 29, 1279-1289. 

Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M. A., Juge, S., Morettini, S., Tzankov, A., 

Iacovino, M., Lau, I. J., Milne, T. A., et al. (2016). MLL-AF9 Expression in Hematopoietic Stem 

Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. 

Cancer Cell 30, 43-58. 

Taberlay, P. C., Achinger-Kawecka, J., Lun, A. T., Buske, F. A., Sabir, K., Gould, C. M., Zotenko, 

E., Bert, S. A., Giles, K. A., Bauer, D. C., et al. (2016). Three-dimensional disorganization of the 

cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome 

Res 26, 719-731. 

Takeda, A., Goolsby, C., and Yaseen, N. R. (2006). NUP98-HOXA9 induces long-term 

proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 

66, 6628-6637. 



46 
 

Tarbell, E. D., and Liu, T. (2019). HMMRATAC: a Hidden Markov ModeleR for ATAC-seq. Nucleic 

Acids Res. 

Thorsteinsdottir, U., Mamo, A., Kroon, E., Jerome, L., Bijl, J., Lawrence, H. J., Humphries, K., and 

Sauvageau, G. (2002). Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone 

marrow cells induces stem cell expansion. Blood 99, 121-129. 

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with 

RNA-Seq. Bioinformatics 25, 1105-1111. 

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., 

Rinn, J. L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-

seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578. 

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. 

L., Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq 

reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 

28, 511-515. 

Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., Shi, Y., Segal, E., 

and Chang, H. Y. (2010). Long noncoding RNA as modular scaffold of histone modification 

complexes. Science 329, 689-693. 

Valton, A. L., and Dekker, J. (2016). TAD disruption as oncogenic driver. Curr Opin Genet Dev 

36, 34-40. 

Wang, J., Li, Z., He, Y., Pan, F., Chen, S., Rhodes, S., Nguyen, L., Yuan, J., Jiang, L., Yang, X., 

et al. (2014). Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood 123, 

541-553. 

Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B. R., 

Protacio, A., Flynn, R. A., Gupta, R. A., et al. (2011). A long noncoding RNA maintains active 

chromatin to coordinate homeotic gene expression. Nature 472, 120-124. 

Wang, Y., Krivtsov, A. V., Sinha, A. U., North, T. E., Goessling, W., Feng, Z., Zon, L. I., and 

Armstrong, S. A. (2010). The Wnt/beta-catenin pathway is required for the development of 

leukemia stem cells in AML. Science 327, 1650-1653. 

Wingett, S. W., and Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and 

quality control. F1000Res 7, 1338. 

Yang, H., Kurtenbach, S., Guo, Y., Lohse, I., Durante, M. A., Li, J., Li, Z., Al-Ali, H., Li, L., Chen, 

Z., et al. (2018). Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid 

malignancies. Blood 131, 328-341. 



47 
 

Yeung, J., Esposito, M. T., Gandillet, A., Zeisig, B. B., Griessinger, E., Bonnet, D., and So, C. W. 

(2010). beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. 

Cancer Cell 18, 606-618. 

Zangenberg, M., Grubach, L., Aggerholm, A., Silkjaer, T., Juhl-Christensen, C., Nyvold, C. G., 

Kjeldsen, E., Ommen, H. B., and Hokland, P. (2009). The combined expression of HOXA4 and 

MEIS1 is an independent prognostic factor in patients with AML. European journal of haematology 

83, 439-448. 

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., 

Myers, R. M., Brown, M., Li, W., and Liu, X. S. (2008). Model-based analysis of ChIP-Seq (MACS). 

Genome Biol 9, R137. 

 



KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-H3K4me3 antibody, rabbit monoclonal Millipore 
Cat#04-745; 
RRID:AB_1163444 

Anti-H3K27me3 antibody, rabbit polyclonal Millipore 
Cat#07-449; 
RRID:AB_310624 

Anti-H3K9me2 antibody, rabbit polyclonal Millipore 
Cat#17-681, 
RRID:AB_1977531 

Anti-H3K79me2 antibody, rabbit polyclonal Abcam 
Cat#ab3594; 
RRID:AB_303937 

Anti-CD45 antibody, rabbit polyclonal Abcam 
Cat#ab10559, 
RRID:AB_442811 

Anti-Ly-6A/E (Sca-1) antibody, mouse monoclonal BioLegend 
Cat#108111, 
RRID:AB_313348 

Anti-CD117 (c-kit) antibody, mouse monoclonal BioLegend 
Cat#135135, 
RRID:AB_2632808 

Anti-CD34 antibody, mouse monoclonal BD Biosciences 
Cat#553733, 
RRID:AB_395017 

Anti-CD135 antibody, mouse monoclonal BD Biosciences 
Cat#558995, 
RRID:AB_397174 

Anti-CD16 antibody, mouse monoclonal BD Biosciences 
Cat#555405, 
RRID:AB_395805 

Anti-KMT2A/MLL antibody, rabbit polyclonal Novus Biologicals 
Cat#NB600-248, 
RRID:AB_2145479 

Anti-WDR5 antibody, mouse monoclonal Abcam 
Cat#ab56919, 
RRID:AB_946146 

Anti-DOT1L antibody, rabbit polyclonal Novus Biologicals 
Cat# NB100-40845, 
RRID:AB_789636 

Anti-p-STAT5A, rabbit polyclonal 
Cell Signaling 
Technology 

Cat# 9351, 
RRID:AB_2315225 

Anti-STAT5A, rabbit monoclonal 
Cell Signaling 
Technology 

Cat# 94205, 
RRID:AB_2737403 

Anti-HDAC1, rabbit polyclonal Abcam 
Cat# ab7028, 
RRID:AB_305705 

Anti-RUNX1, rabbit polyclonal Abcam 
Cat# ab23980, 
RRID:AB_2184205 

Chemicals, Peptides, and Recombinant Proteins 

Lipofectamine 3000 reagent 
Thermo Fisher 
Scientific 

Cat#L3000-008 

Proteinase K 
Thermo Fisher 
Scientific 

Cat#25530049 

Alt-R® S.p. Cas9 Nuclease 3NLS 
Integrated DNA 
Technologies 

Cat#1074181 

Alt-R® CRISPR-Cas9 tracrRNA 
Integrated DNA 
Technologies 

Cat#1072532 

Alt-R® Cas9 Electroporation Enhancer 
Integrated DNA 
Technologies 

Cat#1075915 

Protease inhibitor Cocktail Abcam Cat#ab65621 

Dynabeads™ Protein G 
Thermo Fisher 
Scientific 

Cat#10003D 

Dynabeads™ Protein A 
Thermo Fisher 
Scientific 

Cat#10001D 

Key Resource Table



Dynabeads™ MyOne™ Streptavidin C1 
Thermo Fisher 
Scientific 

Cat#65001 

SUPERase• In™ RNase Inhibitor 
Thermo Fisher 
Scientific 

Cat#AM2694 

RNaseOUT™ Ribonuclease Inhibitor 
Thermo Fisher 
Scientific 

Cat#10777019 

Pierce Protease Inhibitor Tablets 
Thermo Fisher 
Scientific 

Cat#A32963 

TURBO™ DNase 
Thermo Fisher 
Scientific 

Cat#AM2238 

AMPure XP beads Beckman Coulter Cat#A63881 

Critical Commercial Assays 

RNeasy mini-isolation kit  QIAGEN Cat#74106 

Neon™ Transfection System Kit 
Thermo Fisher 
Scientific 

Cat#MPK1025 

QIAquick Gel Extract kit QIAGEN Cat#28706 

Alt-R® CRISPR-Cas9 Control Kit 
Integrated DNA 
Technologies 

Cat#1072554 

mirVana PARIS kit 
Thermo Fisher 
Scientific 

Cat#AM1556 

Superscript II reverse Transcriptase 
Thermo Fisher 
Scientific 

Cat#18064014 

QIAquick PCR purification kit QIAGEN Cat#28106 

QIAprep Spin Miniprep Kit QIAGEN Cat#27106 

QIAGEN Plasmid Plus Maxi Kit QIAGEN Cat#12965 

Nextera DNA Library Preparation Kit illumina Cat#FC-121-1030 

Arima-HiC Kit Arima Cat#A410030 

KAPA Hyper Prep Kit KAPA 
Cat # KK8500, 
KK4824 and KK8502 

SureSelectXT Mouse All Exon Agilent Cat # 5190-4641 

SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories Cat#1725095 

Deposited Data 

RNA-seq in WT vs HOTTIP-KO MOLM13  This study GEO: GSE114981 

ATAC-seq  in WT vs HOTTIP-KO MOLM13  This study GEO: GSE114981 

RNA-seq in WT vs CBS7/9-KO MOLM13  (Luo et al., 2018) GEO: GSE113191 

CHIRP-seq of WT vs HOTTIP-KO MOLM13 This study GEO: GSE114981 

ChIP-seq of WT vs HOTTIP-KO MOLM13  This study GEO: GSE114981 

LSK RNA-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

LSK ATAC-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

LT-HSC RNA-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

ST-HSC RNA-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

LT-HSC ATAC-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

ST-HSC ATAC-seq of WT vs Hottip-Tg mice This study GEO: GSE114981 

HiC-seq of WT vs HOTTIP-KO MOLM13 This study GEO: GSE114981 

HiC-seq of HOTTIP-KO MOLM13 This study GEO: GSE114981 

HiC-seq of CBS7/9-KO MOLM13 This study GEO: GSE114981 

HiC-seq of CBS7/9-KO-VP-HT MOLM13 This study GEO: GSE114981 

Mouse whole exome sequencing This study GEO: GSE114981 

Experimental Models: Cell Lines 

MOLM-13 DSMZ ACC 554 



HEK293T ATCC CRL-3216 

OCI-AML3 DSMZ ACC 582 

Experimental Models: Organisms/Strains 

Hottip-Transgenic mouse Huang/Xu labs  

Xenograft AML mouse model  Huang/Xu labs  

Oligonucleotides 

sgRNAs  This study see Table S4 

RT-qPCR primers This study see Table S4 

ChIP-PCR primers This study see Table S4 

crRNAs This study see Table S4 

ATAC primers This study see Table S4 

CHIRP Probes  This study see Table S4 

Recombinant DNA 

pL-CRISPR.EFS.GFP Addgene Plasmid #57818 

pLKO5.sgRNA.EFS.tRFP  Addgene Plasmid #57824 

lentiCRISPR v2 Addgene Plasmid # 52961 

pHR-SFFV-dCas9-BFP-KRAB Addgene Plasmid #46911 

pAC94-pmax-dCas9VP160-2A-puro Addgene Plasmid #48226 

pMD2.G Addgene Plasmid # 12259 

psPAX2 Addgene Plasmid # 12260 

pGEM®-T Easy Vector Systems  Promega Cat#A137A 

Software and Algorithms 

TopHat (Trapnell et al., 2012) 
https://ccb.jhu.edu/s
oftware/tophat/ 

Bowtie2 
(Langmead and 
Salzberg, 2012) 

http://bowtiebio.sour
ceforge.net/bowtie2/ 

R N/A 
https://www.r-
project.org/ 

Cufflinks (Trapnell et al., 2010) 
http://cole-trapnell-
lab.github.io/cufflinks
/ 

Cuffdiff  (Trapnell et al., 2010) 
http://cole-trapnell-
lab.github.io/cufflinks
/ 

Integrated Genomic Viewer  (Robinson et al., 2011) 
http://software.broadi
nstitute.org/ 

Deeptools (Ramirez et al., 2014) 
https://deeptools.gith
ub.io/ 

Gene Set Enrichment Analysis (GSEA) 
(Subramanian et al., 
2005) 

http://software.broadi
nstitute.org/gsea/ 

chromVAR  (Schep et al., 2017) 

https://bioconductor.
org/packages/releas
e/bioc/ 
html/chromVAR.html 

Homer (Heinz S et al., 2010) 
http://homer.ucsd.ed
u/homer/index.html 

Juicer 
(Neva C. Durand, 
2016) 

https://github.com/ai
denlab/juicer 

Juicebox 
(Neva C. Durand, 
2016) 

http://aidenlab.org/jui
cebox/ 

 

http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
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Supplementary Figure 1. Related to Figure 1; HOTTIP loss led to inhibition of 

posterior HOXA genes and other genes critical for hematopoiesis and 

leukemogenesis (A) PCR based genotyping and Sanger sequencing confirmation of two 

CRISPR-Cas9 mediated HOTTIP-/- clones in MOLM13 cells. (B) Enrichment of 

downregulated target genes involved in NOTCH signaling and cell adhesion/migration 

pathways in the HOTTIP-/- clones compared to WT control as shown by GSEA. (C)

Overlap between differentially expressed genes by comparing RNA-seq data obtained 

from the HOTTIP-/- and the CBS7/9 boundary attenuated MOLM13 cells. (D) RT-qPCR 

validation of the key altered hematopoietic/leukemic genes identified by RNA-seq 

analysis of the WT control and two HOTTIP-/- clones. Data is presented as mean ± SD 

from three or four independent experiments; *p<0.05; **p<0.01 by Student’s t-test. 
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Supplementary Figure 2. Related to Figure 2; HOTTIP is aberrantly expressed in AML

patients and cell lines. (A) Expression of HOTTIP in normal healthy individual, MLL

rearranged AML cell lines and patients by RT-qPCR. Data represents mean ± SD from three

independent experiments. (B) Expression of HOTTIP in MOLM13, OCI-AML3 and OCI-AML2

cells determined by RT-PCR or RT-qPCR.
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Supplementary Figure 3. Related to Figure 3; Deletion of HOTTIP in AML cells perturbs its

binding to chromatin as well as target gene chromatin structure and accessibility. (A) RT-

qPCR analysis of RNA retrieved by the complementary HOTTIP-tiling probes and lacZ probes

compared WT and HOTTIP-/- MOLM13 cells. Error bars show mean ± SD from three to four

independent experiments; *p<0.05; **p<0.01 by Student’s t-test. (B) ChIRP-qPCR analysis of

the HOTTIP RNA enrichment at the HOXA locus compared WT and HOTTIP-/- MOLM13 cells.

Error bars show mean ± SD from three to four independent experiments; *p<0.05; **p<0.01 by

Student’s t-test. (C) ChIRP-seq analysis of HOTTIP lncRNA binding in the HOXB locus

compared WT and HOTTIP-/- MOLM13 cells. (D) The genes and pathways regulated by the

HOTTIP bound intergenic regions were analyzed and annotated by the Gene Ontology analysis.

(E) Alterations in HOTTIP binding (ChIRP-seq), chromatin accessibility (ATAC-seq), MLL1

recruitment and H3K4me3 enrichment (ChIP-seq) in the HOTTIP trans regulated genes,

RUNX1, MEIS2, and TWIST1, compared WT and HOTTIP KO MOLM13 cells. P1: promoter 1 of

RUNX1; P2: promoter 2 of RUNX1. (F) RT-qPCR analysis of HOTTIP RNA retrieved by

antibodies against RUNX1, WDR5, MLL1, MYC, and p-STAT5A precipitated from the MOLM13

nuclear extract. (G) ChIP-seq analysis of changes in H3K4me3, H3K27me3, and H3K79me2

modification levels in the HOXB locus in the MOLM13 cells compared with the WT and the

HOTTIP-/-. (H) ATAC-seq analysis of changes in chromatin accessibility upon HOTTIP-/- in

MOLM13 cells. Shown are altered promoter chromatin accessibility in the HOXB locus.

HOXB



Table S1:  Transcription factor bound Motifs analyzed and annotated using ChIRP-seq and 

ATAC-seq datasets. Related to Figure 3.

ATAC associated HOTTIP-CHIRP

Motif p value Motif p value

ETS1 1.00E-465 E-box 1.00E-658

CTCF 1.00E-341 CRE 1.00E-520

E-Box 1.00E-265 RUNX1 1.00E-467

CRE 1.00E-231 HOXA13 1.00E-360

RUNX1 1.00E-215 c-Myc 1.00E-320

c-Myc 1.00E-180 MEIS1 1.00E-280

Max 1.00E-139 USF1 1.00E-259

STAT5 1.00E-122 CTCF 1.00E-220

USF1 1.00E-118 Max 1.00E-215

E2F 1.00E-98 STAT5 1.00E-142

STAT1 1.00E-87 TEAD4 1.00E-120

PU.1 1.00E-81 Smad3 1.00E-101

STAT3 1.00E-70 SOX9 1.00E-91

Nanog 1.00E-49 HLF 1.00E-78

YY1 1.00E-35 MYB 1.00E-69

ATF3 1.00E-22 CDX4 1.00E-60

FOXA1 1.00E-18 ELF4 1.00E-48

SP2 1.00E-14 USF2 1.00E-36

ATF1 1.00E-12 STAT1 1.00E-27

FLI1 1.00E-10 PU.1 1.00E-16

KLF6 1.00E-08 TCF12 1.00E-10

MYB 1.00E-08 Tbx20 1.00E-09

NFAT 1.00E-07 ERG 1.00E-08

ELF4 1.00E-06 TCF4 1.00E-07

TBX5 1.00E-05 AP1 1.00E-07

E2A 1.00E-05 LHX1 1.00E-06

TCF4 1.00E-05 ATF1 1.00E-05

FRA1 1.00E-05



Ctrl vs HOTTIP-/-

Chr start end log2FoldChange (Ctrl vs KO) Adj p value Genes

chr7 27239961 27240137 2.653 3.28E-13 HOTTIP

chr7 27200117 27201441 2.385 1.45E-08 HOXA9

chr7 27239593 27240001 1.917 1.58E-10 HOXA13

chr21 36260643 36261680 1.614 5.63E-06 RUNX1

chr17 40440299 40440741 1.445 1.72E-08 STAT5A

chr8 128747648 128748815 1.411 3.61E-06 MYC

chr7 27219354 27220019 1.395 4.17E-05 HOXA10

chr7 27224552 27225091 1.378 3.63E-05 HOXA11

chr19 51728058 51728855 1.356 4.11E-06 CD33

chr7 19156515 19157393 1.346 5.20E-08 TWIST1

chr15 37393235 37393784 1.338 5.19E-05 MEIS2

chr9 128509129 128509991 1.327 3.45E-06 PBX3

chr4 55523944 55524288 1.214 7.64E-07 KIT

HOTTIP-VP vs CBS7/9+/-

Chr start end log2FoldChange (VP vs KO) Adj p value Genes

chr7 27239612 27239999 2.882 5.56E-17 HOXA13

chr7 27239945 27240143 2.265 3.51E-16 HOTTIP

chr21 36260648 36261668 1.831 8.35E-10 RUNX1

chr15 37393239 37393779 1.776 6.44E-09 MESI2

chr7 19156523 19157390 1.482 1.08E-07 TWIST1

chr2 239756363 239757156 1.387 1.01E-06 TWIST2

chr2 66662301 66663195 1.352 1.98E-05 MEIS1

chr7 27200112 27201446 1.323 2.04E-09 HOXA9

chr17 40440313 40440733 1.302 5.33E-07 STAT5A

chr8 128747661 128748802 1.281 6.43E-07 MYC

chr2 145277521 145278173 1.256 4.11E-06 ZEB2

chr9 128509121 128510008 1.245 8.97E-05 PBX3

chr7 27219332 27220028 1.230 5.34E-06 HOXA10

chr7 27224556 27225095 1.202 7.95E-05 HOXA11

chr11 128391555 128392392 1.198 5.49E-06 ETS1

Table S2: Statistical analysis of ATAC differential peaks and p value. Related to Figures 3, 5 and 8.



Hottip-Tg vs Ctrl LT-HSC

Chr start end
log2FoldChange (HT vs 

Ctrl)
Adj p value Genes 

chr6 52212340 52213115 2.268 6.89E-21 Hottip

chr6 52172626 52173303 2.090 1.21E-20 Hoxa9

chr6 52209155 52210718 1.971 3.35E-19 Hoxa13

chr16 92826082 92826426 1.789 1.21E-16 Runx1

chr6 52189793 52191345 1.747 2.26E-18 Hoxa10

chr2 34227091 34227906 1.521 6.48E-12 Pbx3

chr11 18918453 18919407 1.342 6.48E-10 Meis1

chr15 61816553 61817375 1.267 3.26E-13 Myc

chr12 34642150 34643195 1.204 3.42E-09 Twist1

chr6 52195231 52196121 1.145 4.98E-07 Hoxa11

Hottip-Tg vs Ctrl ST-HSC

Chr start end log2FoldChange(HT vs Ctrl) Adj p value Genes

chr6 52212348 52213124 2.395 1.18E-28 Hottip

chr6 52172626 52173303 1.805 4.33E-17 Hoxa9

chr6 52209148 52210720 1.744 2.13E-11 Hoxa13

chr2 34227085 34227911 1.673 1.06E-15 Pbx3

chr16 92826076 92826431 1.512 9.67E-13 Runx1

chr6 52189788 52191356 1.486 1.20E-18 Hoxa10

chr15 61816547 61817382 1.399 9.91E-12 Myc

chr6 52195236 52196129 1.376 9.21E-08 Hoxa11

chr11 18918478 18919416 1.246 6.43E-12 Meis1

chr12 34642143 34643190 1.213 8.64E-07 Twist1

Continued
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Supplementary Figure 4. Related to Figures 4; dCas9-KRAB mediated inhibition of

HOTTIP lncRNA resulted in inhibition of active histone modifications and elevated

repressive histone modifications in the posterior HOXA domain. (A, B) ChIP analysis of

H3K9me2 (A) and H3K4me3 (B) enrichment at the HOXA locus compared WT control and

HOTTIP-dCas9-KRAB MOLM13 clones. (C) RT-qPCR analysis of RNA retrieved by the

complementary HOTTIP-tiling probes compared WT and HOTTIP-dCas9-KRAB inhibited

MOLM13 cells. (D) ChIRP-qPCR analysis of the HOTTIP RNA enrichment at the HOXA9 and

other hematopoietic/leukemia specific genes compared WT and HOTTIP-dCas9-KRAB

MOLM13 cells. (E) ChIRP-qPCR analysis of the HOTTIP RNA enrichment at the HOXA9 and

other hematopoietic/leukemia specific genes compared WT and HOTTIP-dCas9-KRAB OCI-

AML3 cells carrying NPM1C+ mutation. (F) RT-qPCR analysis of HOXA gene expression in

MLL-rearranged MOLM13 cells compared the WT control and the HOTTIP-dCas9-KRAB

clones. (G) RT-qPCR validation of the key altered hematopoietic/leukemic genes identified

by RNA-seq analysis compared among the WT control and two HOTTIP- dCas9-KRAB

clones. (H) RT-qPCR analysis of HOXA gene expression in NPM1C+ mutated OCI-AML3

cells compared the WT control and the HOTTIP-dCas9-KRAB clones. (I) RT-qPCR validation

of the key altered hematopoietic/leukemic genes identified by RNA-seq analysis compared

among the WT control and HOTTIP-KRAB OCI-AML3 clones. (J) Proliferation curves of WT

control and the HOTTIP-dCas9-KRAB MOLM13 clones were measured by cell viability count.

(K) FACS analysis of cell cycle was carried out using propidium Iodide staining of the WT

control or the HOTTIP-dCas9-KRAB MOLM13 clones. (L) RT-qPCR analysis of the

expression levels of HOTTIP and HOXA genes in primary AML patient BM cells carrying

MLLr+ (LPP4), NPM1C+/Flt3-ITD+ (974), or NPM1C-/FLT3-ITD+ (886). For statistics, data is

presented as mean ± SD from three to four independent experiments; *p<0.05; **p<0.01 by

Student’s t-test.
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Supplementary Figure 5. Related to Figure 5; Reactivation of HOTTIP lncRNA

rescues the posterior HOXA chromatin defects and gene expression in the CBS7/9

boundary-disrupted AML cells. (A) Enrichment of upregulated target genes involved in

JAK-STAT signaling and NOTCH signaling pathways in the dCas9-VP-160 mediated

HOTTIP activated CBS7/9+/- MOLM13 clones compared to the CBS7/9+/- MOLM13 cells

as shown by GSEA. (B) Snap shot of ATAC-seq analysis of RUNX1(Left), STAT5A

(Middle), and TWIST1 (Right) loci compared among WT MOLM13 control, CBS7/9+/-

MOLM13 cells, and the dCas9-VP-160 mediated HOTTIP activated CBS7/9+/- MOLM13

clones. (C) ChIP-seq analysis of MLL1 recruitment in the Non-HOX targets compared

among WT MOLM13 control, CBS7/9+/- MOLM13 cells, and the dCas9-VP-160 mediated

HOTTIP activated CBS7/9+/- MOLM13 clones. (D) ATAC-seq analysis of the alteration of

chromatin accessibility in the HOXB locus compared among WT MOLM13 control,

CBS7/9+/- MOLM13 cells, and the dCas9-VP-160 mediated HOTTIP activated CBS7/9+/-

MOLM13 clones.
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Supplementary Figure 6. Related to Figure 6; Hottip lncRNA transgenic expression in

hematopoietic compartment perturbs HSC function and results in AML-like disease.

(A) RT-qPCR analyses of Hottip RNA expression pattern of FACS-sorted different cell

populations of WT mice. (B) Diagram of the Vav1 promoter driven Hottip transgene strategy.

(C) PCR based transgenic integrating location identification (TAIL) assay maps the Vav1-

Hottip transgene integration site in the mouse chromosome 10. (D) RT-qPCR analysis of

Hottip RNA expression in BM cells of WT and 2 lines of the Hottip-Tg mice. (E) RT-qPCR

analysis of Hottip and Hoxa gene expression from purified LT-HSC and ST-HSC populations

from WT control and Hottip-Tg mice. (F) Gross appearance of spleens of representative WT

and two lines of Hottip-Tg mice (left). Showing is spleen/body weight ratio (right) for age

matched WT (n = 7) and the Hottip-Tg (n = 10) mice. (G) FACS analysis of GMP, MEP and

CMP populations within BM LK cells of representative young WT and Hottip-Tg mice (Top).

Quantitation of the percentage of GMP, MEP and CMP cell populations in the Lin-ckit+Sca1-

cells of each genotype of mice are shown (bottom). n=7-10 mice/genotype. (H) FACS

analysis and quantification of myeloid (Gr-1/Mac-1), erythroid (Ter119/CD71), B (B220/SSC)

and T (CD4/CD8) cell populations in the BM of representative young WT and Hottip-Tg mice

(8-week old). (I) The expression levels of Hottip in WT, Hottip-Tg, and Hottiphomo-Tg BM

mononuclear cells (Left) as well as gross appearance of spleens and femurs of

representative WT and moribund Hottiphomo-Tg mice (Right). (J) May-Giemsa stained PB

smears and BM cytospins prepared from representative WT and moribund HottipHomo-Tg

mice. (K) FACS analysis of Lin-, LSK/LK, GMP/CMP, MEP, as well as LT-HSC/ST-HSC/MPP

cell populations in the BM of representative young WT and HottipHomo-Tg mice. (L) FACS

analysis and quantification of myeloid (Gr-1/Mac-1), erythroid (Ter119), B (B220/SSC) and T

(CD4/CD8) cell populations in the BM of representative young WT and Hottip-Tg mice (8-

week old). (M) Quantitation of the total LSK and LK cell populations per femur of young WT

(n=7), Hottip-Tg (n=10), and HottipHomo-Tg (n=9) mice are shown. (N) Quantitation of the total

LT-HSC, ST-HSC and MPP cell numbers per femur of young WT (n=7), Hottip-Tg (n=10),

and HottipHomo-Tg (n=9) mice are shown. (O) Quantitation of the total GMP. MEP, and CMP

cell populations per femur of young WT (n=7), Hottip-Tg (n=10), and HottipHomo-Tg (n=9)

mice are shown. For statistics, data (Panels F-I, M-O) is presented as mean ± SD.



strelka method for exome-seq snp and indel analysis

sample name # indel snp indel_AA_change snp_AA_change

Hottip-Tg mice

22 39 35 1 15

39 81 50 3 14

48 47 63 4 14

51 49 76 2 27

55 37 44 3 16

WT mice
69 54 52 4 14

130 42 42 1 15

Recurrent mutation gene

Mroh2a

Table S3: Indel and snp variants analysis of whole exome sequencing of the Hottip-Tg 

AML mice. Related to Figure 6.



17 20.421.5 19.4

A

C WT Ctrl Hottip-Tg

4.52 10.8

C
o

u
n

t

CD117

C
D

4
5
.1

CD45.2

25.4

57.6

Hottip-Tg

37.2

37.9

WT Ctrl

27.6 1.78 15.9 26.731 2.31 27.3 3.44

Sca-1

C
D

1
1
7

D

CD8

C
D

4

1.49

2.47

1.08

0.82

1.75

2.65

1.42

2.39

18.4 22.818.6 16.1

B220

T
E

R
1
1
9

2.05

5.2

29.8 2.22

3.8

26.5 1.98

3.92

25.6 1.49

2.01

31.7

CD11B

G
r-

1

0 7 14 21
0.0

0.5

1.0

1.5

*

*
WT Ctrl

Hottip-Tg

*

N
o

. 
o

f 
p

ro
g

e
n
ie

s
 (

*1
0

7
) 

/1
0
,0

0
0

 L
in

- c
-k

it
+

 c
e

lls

Days after culture

0

5

10

15

20

25

7 14 21

***

***

*

WT Ctrl
Hottip-Tg

0

20

40

60

80

100

7 14 21

N
o
. 
o
f 
C

F
U

-C
s
/2

x
1
0

4
c
e
lls

*

**
***

WT Ctrl
Hottip-Tg

%
 C

D
1

1
7

+
c
e

lls
 i
n

 c
u

lt
u

re

L
in

-
g
a
te

1 2 3 4 5 6 7

0

20

40

60

80

100

%
 C

D
4

5
.2

+
c
e

lls
 i
n

 P
B

0 1 2 3 4 5 6

***
***

WT Ctrl (n=5)

Hottiphomo-Tg (n=5)

*****

Months after transplantation

Days after culture

B

E

F WT Ctrl Hottiphomo-Tg

20 μm



13.9

54.1

CD11b

G
r1

72.6 66 13.4 70.9

CD11b

C
D

1
1
7

25 23.7 11.5 45.8

B220

S
S

C

7.74 6.05 53.4 0.02

CD3

S
S

C

4.39 7.1 12.7 0.35

3.1 3.7 35.2 31.319.9 6.4 21.7 5.8

Sca-1

C
D

1
1
7

C
D

4
5
.1

(B
J
)

CD45.2 

(HottiphomoTg) 

CD34

C
D

1
6
/3

2

22.7 27.4

49.6

26.6
23.1

48.1

44.8
25.9

25.9

4.39 61.7

33.7

12.4
55.5

31.7

11.2

50.4

38.1

6.72

52.6

40.7

23.3

49.8

27.5

CD34

C
D

1
3
5

34.7

31.1

WT Ctrl Hottiphomo-Tg

GMP

MEP
CMP

LT
ST

MPP

C
D

4
5
.1

(B
J
)

CD45.2 (WT) 

L
in

-
g
a
te

L
in

-c
k
it +S

c
a
1

-g
a
te

L
in

-c
k
it +S

c
a
1

+
 g

a
te

G



Supplementary Figure 7. Related to Figures 7; Hottip regulates self-renewal and

proliferation of HSCs. (A-C) The expansion and proliferation potential of WT and Hottip-Tg

HSC/HPCs were examined by culturing BM Lin-c-Kit+ cells in the presence of SCF, TPO, IL-3,

G-CSF and EPO. No. of total cells (A), percent c-Kit+ cells and No. of CFU-Cs (B) in the

progenies of Lin-c-Kit+ cells cultured for 7, 14 and 21 days were shown; representative

histogram showed the c-Kit (CD117) expression in the cultures of WT and Hottip-Tg Lin-c-Kit+

cells for 14 days (C). (D) FACS analysis showing CD45.2 v.s. CD45.1 chimerism as well as

their respective distribution of LSK/LK cell (within Lin- cells) and lineage populations in the BM

of representative mice receiving WT or Hottip-Tg BM cells. (E) Kinetic FACS analyses of

CD45.2 (Donor) chimerisms in the PB of recipients (CD45.1) receiving WT or HottipHomo-Tg BM

cells. (F) Images of May–Grunwald–Giemsa stained cytospin preparations of BM cells from

representative mice receiving WT or HottipHomo-Tg BM cells. Scale bar, 20 μm. (G) FACS

analysis showing CD45.2 vs. CD45.1 chimerism and their respective lineage distribution of

LSK/LK, GMP/CMP/MEP, LT-HSC/ST-HSC/MPP cell populations, as well as lineage

distribution of myeloid, B and T (CD3/B220), immature myeloid in the BM of representative mice

receiving WT or HottipHomo-Tg BM cells. For statistics, data (Panels A, B, and E) is presented as

mean ± SD.
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Supplementary Figure 8. Related to Figure 8; Transgenic expression of Hottip lncRNA remodels

chromatin structure and alters hematopoietic transcription programs. (A) ChIRP-RT-qPCR

analysis of the Hottip RNA enrichment at the Hoxa7, Hoxa9 and other hematopoietic/leukemia specific

genes in the purified BM HSCs (Including LT-HSCs and ST-HSCs) compared WT and Hottip-Tg mice.

Data is presented as mean ± SD from three to four independent experiments; *p<0.05; **p<0.01 by

Student’s t-test. (B) Scatter blot of RNA-seq analysis of more than two folds of differentially expressed

genes upon overexpression of Hottip lincRNA in BM ST-HSC populations of the Hottip-Tg mice as

compared to WT control. (C) Heat map analysis for changed expression of representative genes

associated with hematopoiesis and leukemogenesis upon Hottip overexpression in BM ST-HSC

populations of the Hottip Tg mice as compared to WT control (Cutoff: Fold change ≥ 2; q value < 0.05).

(D) ATAC-seq analysis of chromatin accessibility in the Hoxa locus compared the WT control and

Hottip Tg mouse BM ST-HSCs. (E) ATAC-seq promoter density map of ST-HSCs sorted from WT and

Hottip transgenic BM. Significant upregulated ATAC-seq promoter peaks correlate with GO terms of

enriched pathways annotated by GREAT analysis compared between WT control and Hottip transgenic

ST-HSCs (Top). Significant downregulated ATAC-seq promoter peaks correlate with GO terms of

enriched pathways annotated by GREAT analysis compared between WT control and Hottip transgenic

ST-HSCs (Bottom). (F) ATAC-seq analysis of Hottip trans-regulated genes important for hematopoiesis

and leukemogenesis compared between WT control and the Hottip-Tg BM LT-HSC (Top) and ST-HSC

(Bottom) populations. (G) ATAC-seq analysis of Hoxb locus compared between WT control and the

Hottip-Tg BM LT-HSC (Top) and ST-HSC (Bottom) populations. (H) Expression of HOTTIP by RT-

qPCR. 22 MLL-AML cell lines and primary samples and 7 non-MLL-AML primary samples were

subjected to RT-qPCR, the HOTTIP expression of each sample were normalized to house-keeping

gene GAPDH. The black bar represents the mean expression of each group. p value is determined by

Students’ t-test. (I) MLL-AML samples with high expression levels of HOTTIP were either treated with

DMSO or ICG-001 (500 nM) and the cells were counted 5 days after treatment. The cell number of

each sample was normalized to DMSO control (Left) or the cells were stained with 0.1% NBT and the

differentiated cells were NBT-positive. The percentage of NBT-positive cells of each sample was

normalized to DMSO control (Right). p value is determined by Students’ t-test. (J) Primary MLL-AML

samples that exhibit high levels of HOTTIP expression and Non-MLL samples with very low or silent

HOTTIP expression levels were either treated with DMSO or ICG-001 (500 nM) and the long-term

culture initiating cells (LTC-IC) frequency of each group were determined. The data was normalized

with DMSO control which is set to 1. p value is determined by Students’ t-test. (K) The human

engraftment of bone marrow, spleen and liver of leukemic mice were determined by positive on human

CD45 and CD33 comparing vehicle (Control; red; n=4) and ICG-001 (50 mg/Kg; green; n=5).
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