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A threshold model of urban development∗

Alberto Vesperoni§ Paul Schweinzer[

Abstract

We propose a simple model of distribution of economic activity across cities of
endogenous size and number determined by individual incentives. The indi-
viduals populating our model are endowed with idiosyncratic entrepreneurial
creativity the realization of which requires urban agglomeration linked to a
crowding cost. As the latter is higher in cities of larger size, this leads to a
trade-off between productivity and congestion. While our focus on distributive
aspects comes at the cost of stylized behavior, we aim to provide a tractable
framework to think about the interlinkages between various measures of urban
development which increasingly attract attention through accessible datasets.
Our predictions include a U-shaped relationship between the well-known mea-
sures of urbanization and urban primacy, a hypothesis that we test empirically
using World Bank data.

Keywords: Agglomeration, Urbanization, Development.
Journal of Economic Literature Classification: C7, D71, O18, Q56.

1 Introduction

The Mesopotamian city of Uruk is often portrayed as the prototype of urban devel-
opment.1 At the peak of its influence around 2900 BCE, it featured 50,000–80,000
inhabitants in an enclosed, protected area of 6km2. Located at the intersection of
important trading routes, Uruk is seen as the first agglomeration which possessed
all hallmarks of the modern city: mass production with standardized work patterns,
division of labor, effective administration and bureaucracy, archival of and access
to written knowledge. These characteristics—equally stressed in their importance
by Marshall (1920), Fujita et al. (2001), and Glaeser (2011)—allow for the special-
ization of tasks, services, and products within the metropolis while towns and rural
villages can still coexist in the neighborhood. While the academic discourse on the

∗We would like to thank İrem Bozbay, Carlo Fiorio, Frédéric Robert-Nicoud, Miguel Portela, and
Yoichi Sugita for valuable comments. §Economics, Alpen-Adria-Universität Klagenfurt, Austria,
alberto.vesperoni@aau.at. [Ibid., paul.schweinzer@aau.at. (14-May-2019)
1 For details and references, see Crawford (2004).
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underlying agglomeration process ranges back to at least von Thünen (1826), the
theoretical literature is still struggling with the identification of precisely which ele-
ments are needed in order to explain this process. Of even greater importance than
the intellectual puzzle presented by the historical reality of urban agglomeration is
the pressing need to explain some spatial aspects of recent economic development.
Galor (2009) and Ray (2010) illustrate various mechanisms through which not only
the level, but the distribution of economic prosperity greatly matters for institu-
tional stability and the long-run growth of nations. Among the many imbalances
of the development process, Glaeser and Henderson (2017) argue that the uneven
and tumultuous urban development of China, India, Nigeria and other emerging
economies is one of the crucial challenges of our times.

In this paper we propose a theory of agglomeration which requires the potential of
individual human creativity to be realized through social interaction. In our model,
this leads to the clustering of economic activity in what may be termed cities, vil-
lages, or any other conceivable social structure which leads to specialization. Hence,
the proposed environment is rich enough to enable the study of urban agglomera-
tion, that is, a countable set of cities not fully crowding out the rural village from
both a historical and a developmental perspective. The proposed mechanism is mo-
tivated by a simple observation: in order to be productive, individuals often need the
presence of other people. While a medieval farmer may have been able to gainfully
reap the fruits of the lands without much interaction outside her family, the same is
hardly true for an automotive worker today or, indeed, a university teacher or social
media specialist. In an influential book on the future of urban development and
the environment, Glaeser (2011) celebrates the city as the archetype of civilization
and economic prosperity, but also acknowledges that it is the place where the worst
living conditions can be experienced due to various inefficiencies related to conges-
tion. Our analysis develops around this trade-off between enhanced productivity
and diminished living conditions.

The core idea of our model is that, on the one hand, an individual (or firm) locates
in a city only if a critical mass of other individuals has already done so and there
are no other cities that provide the same critical mass for better living conditions.
Among the many well-known mechanisms that incentivize to locate in close prox-
imity to other individuals by enhancing productivity (e.g., demand-supply linkages,
specialization, sharing), we choose to focus on the economics of innovation because
of their timeless role in the generation of economic prosperity for developed as well
as developing countries. On the other hand, we think of living conditions in terms
of crowding costs worsening in city size, which can materialize in the form of higher
rents, congestion of public services, pollution, etc. Note that, as we assume that the
presence of individuals in a city constitutes the very incentive for more individuals to
locate there, our framework naturally leads to the multiplicity of equilibria and the
coordination failures that are typical of the development discourse.2 In our analysis
of the trade-off between innovation economies and crowding costs, we particularly

2 For seminal contributions, see e.g., Rosenstein-Rodan (1943) and Hirschman (1958).
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focus on efficient solutions and how they should change with fundamentals such as
population growth, technological improvement, and rising inequality, or on ineffi-
cient solutions and how they may be affected by economic development in the sense
of solutions to coordination problems that incentivize agents to leave rural areas and
flow into cities.

Let us describe our framework in more detail. There is a continuum of agents
scattered on a territory constituted by a continuum of locations, where the set of
agents inhabiting a location is considered a city if it has positive mass and a village
(or a solitary settlement) otherwise. We interpret agents as entrepreneurs with
different business plans that are heterogeneous in their degree of ambition, where
we think of ambition as jointly determined by inherited wealth and aspirations.3 We
assume that the ambition of a business plan affects the potential profits positively
and implementability negatively. Roughly speaking, ambitious plans can lead to
higher profits once established, but are more difficult to launch and may require more
supportive stakeholders at early stages of implementation. We crucially assume that,
due to various frictions related to distance, these initial supporters are necessarily
local, and that larger cities are more likely to provide the critical mass to launch an
ambitious plan.4 Specifically, in our model, the ambition of an agent is summarized
by a threshold (or type) such that her business plan is operative if and only if she
inhabits a city of size larger than or equal to that type. Finally, acknowledging
that larger cities also lead to higher crowding costs, we model preferences such that
each agent prefers to locate in the smallest available city weakly larger than her
type, so that her crowding cost is minimized conditional on her business plan being
launched.

We define an urban distribution as a partition of the set of agents into cities and
villages, and we call it an equilibrium if no agent prefers to leave her city or village
to move to another existing city or village. We characterize the set of equilibria and
show that, for each equilibrium, the exact distribution of city sizes is determined by
a recursive algorithm which can be visualized in an intuitive diagram. It turns out
that the distribution of agents that maximizes utilitarian welfare is necessarily an
equilibrium, and this equilibrium must be cost-efficient in the sense that it minimizes
the aggregate crowding cost for given profits of each agent. Under fairly general con-
ditions, this implies that the number of cities is infinite and there are no cities of
equal size. So, urban concentration (i.e., the inequality of the distribution of urban
population across cities) is minimized and the welfare-efficient urban distribution
is fully characterized by our recursive algorithm plus the optimal level of urban-
ization (i.e., the fraction of agents living in cities instead of villages). Focusing on
cost-efficient equilibria, we engage in comparative statics that are relevant for urban

3 See, e.g., Genicot and Ray (2017) for a formalization of this interaction.
4 As pointed out in Carlino and Kerr (2015), among the three Schumpeterian business stages of

invention, innovation, and commercialization, the second is geographically highly concentrated
as it concerns the access to financial resources backed by specialized knowledge. For instance,
while the software that is behind an internet platform can in principle be written and sold
anywhere in the world, it is most likely to lead to an IT startup in Bengaluru.
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development in the short to long run. To distinguish between short run and long run
effects, we assume that the level of urbanization is fixed in the short run, while in the
long run it may or may not adjust to a different level depending on welfare-efficiency
and coordination. In our comparative statics, we consider population replications
that increase the mass of agents, and shifts in the distribution of ambition that lead
to first-order stochastic dominance and mean-preserving spreads. In the short run,
for any fixed level of urbanization, we determine that increases in the mass of agents
(caused by, e.g., population growth or institutional and technological developments
that increase mobility of people across regions) systematically reduce urban primacy
(i.e., the share of urban population living in the largest city), upward shifts in the
distribution of ambition (caused by, e.g., analogous shifts in the distribution of in-
herited wealth and aspirations, education, or technological improvement) have the
opposite effect, while higher inequality in the distribution of ambition always leads
to higher (lower) urban primacy if the level of urbanization is sufficiently high (low).
By contrast, we find that the long run effects depend on specific assumptions and
no general pattern can be discerned. However, although we cannot generally say
whether the welfare-efficient level of urbanization should increase or decrease in the
long run as a consequence of these shocks, we can fully pin down how a change in
the level of urbanization should affect urban primacy: under fairly general condi-
tions our model delivers a U-shaped relation between urban primacy and the level
of urbanization across cost-efficient equilibria for a given distribution of ambition.
This is the principal testable prediction of our paper which constitutes a practical
hypothesis on the dependency of urban landscapes on either: (i) shifts in the funda-
mentals that change welfare-efficient solutions or (ii) economic development in the
sense of solutions to coordination problems that change the level of urbanization for
the better, although not necessarily reaching welfare-efficiency.

To illustrate the historical relevance of this U-shaped relation in an example, con-
sider the long run effects of the industrial revolution on the level of urbanization
and urban primacy in the United Kingdom through the last two-three centuries.
Roughly speaking, before the industrial revolution a large share of non-agricultural
activity was concentrated in London and focused on services related to trade (among
other things). When the industrial revolution took off, economic activity started
diversifying across sectors and geographically spreading North towards growing in-
dustrial clusters such as Birmingham (automotive), Manchester (textile), and New-
castle (shipbuilding and steel).5 By the mid 20th century these peripheral centers
reached levels of economic prosperity never witnessed before, but their economic
growth reached an apex sometime in the mid 1970s and never came back. With
their economic decline becoming evident and urbanization still on the rise, London
reacquired its uncontested centrality in line with a general pattern of “renaissance
of the metropolis” which took place in many parts of the developed world over the
last decades (Glaeser, 2011).

5 For a thorough account of the geography of the industrial revolution in the United Kingdom,
see Dodgshon and Butlin (2013). A historical dataset on urbanization trends in the United
Kingdom is provided by Friedlander (1970).
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To further motivate our theory as empirically relevant, we provide preliminary ev-
idence in support of this U-shaped relation using openly accessible World Bank
data across all countries of the world through the last 60 years. Our findings
roughly confirm the U-shaped relation across the world’s sample using year and
continent/country fixed effects, and within a restricted sample of rich countries
where additional control variables are included to account for shifts in a country’s
distribution of ambition across time. There are related fields in the economics liter-
ature which have found similarly U-shaped correspondences between concentration
and the degree of mobilization of resources (akin to the level of development). One
group includes, among others, Imbs and Wacziarg (2003) for GDP per capita and
sectoral concentration and related papers on sectoral concentration of exports.6 An-
other cluster revolves around inequality of income (or wealth) and GDP per capita as
documented for instance by Piketty and Saez (2003) and Saez and Zucman (2016).
Our paper provides a theory for this non-linear relationship in the context of urban
development. While we do not claim one-to-one portability of our results across
fields, there is an obvious correlation between the distributions of people in space,
those of industrial sectors, and of income.

The rest of the paper develops as follows. The following subsection reviews the
literature and Section 2 defines the basic model. The core equilibrium and wel-
fare analyses are in Section 3 while Section 4 focuses on the comparative statics.
The empirical analysis is in Section 5. Section 6 concludes. All proofs are in the
Appendix.

Related literature

An overview of the classical literature on spatial economics is contained in the first
part (“Urban economics” and “Regional science”) of Fujita et al. (2001). The rest of
the same book—the standard textbook reference in this field—provides an excellent
introduction to what has been called the “New Economic Geography,” that is, the
utilization of economic theories of trade and growth for the explanation of geographic
realities through the three-way interaction between increasing returns, transporta-
tion costs, and the movement of productive factors. A recent survey of theoretical
and empirical work of research in economic geography is Redding (2013), accompa-
nied by the more specialized Duranton and Puga (2004), Behrens and Robert-Nicoud
(2015), and Duranton and Kerr (2018). Within this literature the workhorse model
for determination of the urban distribution is Henderson (1974), which consists of a
neoclassical general equilibrium setting where the optimal size of a city is determined
by fundamentals, and cities form in heterogeneous sizes because they host industries
that differ in these fundamentals. More recent versions of this line of modeling are
Behrens and Robert-Nicoud (2014) and Behrens et al. (2014), where (among other

6 See Cadot et al. (2011) and references therein.
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things) the framework is extended to allow for within-city heterogeneity.7 General
equilibrium models have on their side elegance and consistency. However, the heavy
machinery of general equilibrium can severely constrain the tractability of a model,
obstructing the analysis of the distributive aspects of urban development which are
the main focus of this paper. Specifically, the study of urbanization in emerging
economies calls for a model representing the multiple equilibria and coordination
failures that are typical of the development discourse, and the analysis of the in-
terlinkages between core measures of urban development (e.g., urbanization, urban
concentration and urban primacy) requires a framework where the sizes of cities are
highly interdependent.

Two recent contributions to urban economics that deviate from the general equilib-
rium approach to focus on general properties of urban distributions are de Palma
et al. (2019) and Albouy et al. (2019). Like us, these papers start from a basic
trade-off between agglomeration economies and congestion costs in reduced-form.
We see these papers as complementary to our approach. On the one hand, a cru-
cial difference is their focus on the introduction of geographic distances to deliver
predictions on the location of agents in space, while our model abstracts from such
spatial features seeing an urban distribution as a partition of agents into sets that
we interpret as cities if they present positive mass.8 On the other hand, their mod-
els present static predictions on the urban distribution that may emerge given the
fundamentals (i.e., the parameters that govern the trade-off between agglomeration
economies and congestion costs), while our model focuses on the dynamics of ur-
ban development providing general comparative statics on the relation between the
fundamentals, the degree of urban primacy and the level of urbanization (akin to
the level of economic development) in the short to long run. Other related contri-
butions include Eeckhout et al. (2014) and Gaubert (2018). Like ours, these models
determine the distribution of agents across cities via “assortative matching”, in the
sense that agents may (or may not) sort themselves across cities based on similarity
of types which can be interpreted as skill levels. However, the similarities remain
at this abstract level and none of these contributions focuses on the aforementioned
dynamics of urban development that constitute the core of our analysis.9

Our theoretical framework is rooted in the tradition of so called “threshold” models

7 The general equilibrium approach to modeling urban distributions is by no means restricted to
this line of modeling. For instance, the model presented in Picard and Tabuchi (2013) focuses
on backward and forward linkages between consumers and producers to study the distribution
of economic activity within a city. We refer to the aforementioned surveys for a comprehensive
overview of this vast literature.

8 A seminal contribution to the spatial analysis of the city based on an analogous trade-off is
Beckmann (1976), subsequently extended in Mossay and Picard (2011) to geographic spaces
other than a line segment.

9 We remark that our theoretical predictions are in line with the empirical observation in Eeckhout
et al. (2014) that larger cities tend to present higher skill heterogeneity. Within our model,
the equivalent of their price-theoretic measure of skills (i.e., wages adjusted by housing prices)
is the potential profits of an agent net of her crowding costs (i.e., her utility), and analogous
comparative statics can be obtained choosing a suitable potential profits function.
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of social interaction. The first appearance of an identifiable threshold model we
found in the economics literature is Simon (1954), which puts forward an election
framework where voters’ preferences depend on the share of the population that
supports a certain candidate. Other seminal applications of threshold models of
social interaction include Schelling (1969), Akerlof (1970), Granovetter (1978), and
Arthur (1989), respectively on racial segregation, quality of traded goods, rioting,
and technological standards. Roughly speaking, the common features of these mod-
els are that: (i) there is a large population of individuals and each individual must
choose from the same discrete set of alternatives; (ii) each individual’s preference
over the alternatives depends on the population share choosing each of the alter-
natives; (iii) the thresholds of population shares that determine preferences differ
across individuals and are summarized by a threshold distribution which is known.
Due to the versatility and tractability of the basic framework, threshold models have
been applied to a variety of topics in economics and other social sciences leading
to a vast literature that is still vibrant today, sometimes under the designation of
discrete choice modeling with social interactions.10 However, despite the wide popu-
larity of threshold models, as far as we know, we are the first to apply these ideas to
agglomeration and introduce crowding costs in the basic multinomial setup.

A recent example of the vast set of empirical investigations of the determinants of
the urban landscape is Henderson et al. (2018), which also provides an excellent
summary of the recent empirical literature. The number of contributions investigat-
ing the causes and consequences of urbanization in OECD countries is high but the
corresponding set of publications focusing on the developing world is comparatively
small, as remarked in Glaeser and Henderson (2017). Among the various empirical
contributions that focus on the determinants of urbanization and urban concen-
tration, the key contribution Davis and Henderson (2003) is particularly relevant.
Firstly, it shows that increasing urbanization goes hand in hand with higher income
per capita and the bulk of economic activity shifting away from the agricultural
sector towards industry and services, thus supporting the conceptual link between
our predicted U-shaped relation of urban primacy and the level of urbanization
and Imbs and Wacziarg (2003)’s evidence regarding the U-shaped relationship be-
tween sectoral concentration and GDP per capita. Secondly, our empirical exercise
is similar in spirit to part of their empirical analysis, although the results diverge at
times since there are important differences such as the different datasets and their
focus on the logarithm of absolute urban population instead of urbanization as we
define it.11 Another relevant empirical contribution is Ades and Glaeser (1995),
which demonstrates a solid positive relationship between urban primacy (measured
as the logarithm of total population in the largest city) and the autocratic nature
of government. For the time being our model abstracts from such political variables
although they are clearly relevant.

10 For contributions to a wide range of economic problems see, e.g., Glaeser et al. (1996), Lindbeck
et al. (1999), and Brock and Durlauf (2001). For a recent survey, see Watts and Dodds (2009).

11 See, e.g., Table 1 in Davis and Henderson (2003).
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From a historical perspective, the literature on urban development emphasizes that
the early stages of urban growth have often coincided with agricultural reform (see,
e.g., Childe, 1950; Diamond, 1998; Galor, 2011). One popular interpretation is that
improvements in agricultural productivity created the necessary surplus to sustain
larger urban populations that engaged in activities other than subsistence. This
led to specialization and trade, which in turn fostered innovation in a spiral of
technological improvement that reinforced the city. On the one hand, our model
can be seen as a very stylized version of this story, but it is clearly too simple
to capture all complexities of the symbiotic relation between the rural and the
urban spheres, which include context-dependent variables such as natural resources,
technology, political institutions, opportunity to trade within and across national
borders, etc. On the other hand, our context-free approach can be seen as an
advantage, providing a unified theory of urban development which abstracts from
such historical contingencies.

2 Model

Urban distributions

We consider a continuum of agents of mass a > 0 denoted by the set A. These agents
are distributed on a territory constituted by a continuum of locations. We define an
urban distribution of agents as a partition of A into a collection of sets of zero mass
(villages, each containing rural agents who share a location with countably many
dwellers) and a collection of sets of positive mass (cities, each containing urban
agents who share a location with uncountably many fellows).

We denote by D the set of all urban distributions of agents (i.e., the set of all possible
partitions of A). Note that any urban distribution in D has countably many cities,
these cities can be ranked in terms of the mass of agents they contain, and there can
be multiple cities with equal mass of agents. Let D ∈ D be any urban distribution.
For each possible rank k ∈ N of a city in terms of mass of agents, denote by nDk the
number of cities ranked k and by mD

k the mass of agents contained in each of them.
If the number of cities in D is finite we write mD

k = nDk = 0 for all ranks k larger than
the rank of the city with the smallest mass of agents. Then, the structure of an urban
distribution D ∈ D is summarized by the sequence S(D) :=

(
mD
k , n

D
k

)∞
k=1

.12

Let D ∈ D be any urban distribution. We define the level of urbanization of D as
the fraction of agents who are urban,

U(D) :=
1

a

∞∑
k=1

nDk m
D
k .

12 For example, if D has nD1 = 2 cities with mass of agents mD
1 = .3 and nD2 = 1 city with mass

of agents mD
2 = .2 we write S(D) = (.3, 2; .2, 1; 0, 0; . . .).
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We think of the degree of urban concentration as a measure of the inequality of
the distribution of the mass of the urban agents across cities. By the principle of
transfers (i.e., the defining property of an inequality measure) urban concentration
should not increase whenever a positive mass of agents is relocated from a larger
city to a smaller city (or to a village that becomes a city), as long as this transfer
is small enough so that the receiving city or village does not become larger than
the providing city. It seems also desirable that a measure of urban concentration is
scale invariant, in the sense that it remains constant whenever the mass of agents
in each city is multiplied by the same positive factor (so that the proportions of
mass of agents across cities are maintained). A measure of urban concentration that
satisfies these properties is the generalized Herfindahl-Hirschman Index,

K(D) :=
∞∑
k=1

nDk φ

(
mD
k /

∞∑
k=1

nDk m
D
k

)
,

where the function φ : R+ → R+ satisfies φ(0) = 0 and it is differentiable, increasing
and strictly convex. Finally, we define the level of urban primacy as the fraction of
urban population that inhabits one of the largest cities,

P(D) := mD
1 /

∞∑
k=1

nDk m
D
k .

Urban primacy is a crude but popular measure of urban concentration that is sensi-
tive only to transfers of urban agents that involve the largest cities. As we will see,
these three measures of urban development are intimately related to the predictions
of our model.

Preferences

We think of the agents in our model as entrepreneurs, each endowed with a differ-
ent idea or business plan. These business ideas are heterogeneous in their degree
of ambition which affects both profits and implementability. More ambitious plans
potentially lead to higher profits but require a higher critical mass of initial stake-
holders (investors, customers, etc.) to become operative. We assume that, due to
various frictions related to distance, these initial stakeholders are necessarily local
and that larger cities can provide more (varied) resources. For each agent i ∈ A,
we denote by the threshold ti ∈ R the minimum city size that allows her business
plan to realize, so that agent i makes profits if and only if she inhabits a city of
mass larger than or equal to ti. We refer to ti as the type of agent i ∈ A, which is
the critical mass required to implement her business plan and indicates her level of
ambition.13

13 Here, we implicitly assume that each entrepreneur is associated with a single skill which may or
may not realize into a business plan. The desirable generalization to the case of entrepreneurs
endowed with multiple skills is considerably more complex and left to future research, requiring
the present analysis as a prerequisite step.
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Our definition of agents’ preferences is schematic but at the same time relatively
general. We shall assume that each agent always prefers to make profits to not
making profits, and because of increasing crowding costs she will prefer to live in
the smallest available city that allows her to make profits. If she is unable to make
profits in any available city, she will prefer to live in a village. These statements
fully characterize the preferences that we will use in our general analysis, which
are lexicographic with ‘making profits’ as the primary criterion and ‘minimizing the
crowding cost’ as the secondary one.14 The basic idea is that, while an agent’s profits
may increase steeply in her degree of ambition, they should be relatively independent
of the mass of the city she inhabits (once her business plan is operative) which is a
plausible simplification if a business operates on a national or global scale.

We now define the central element of our model, the distribution of types. For each
possible city mass m ∈ [0, a], we denote by F (m) the total mass of agents whose
types are lower than or equal to m, so that they all can make profits in any city of
size m or larger. This cumulative mass function F : [0, a]→ [0, a] is non-decreasing
by construction and we shall assume it is increasing and twice differentiable on the
pre-image of [0, a), so that there is a density function f(m) := dF (m)/dm that is
positive and differentiable on such a domain. Denoting by mF the smallest m ∈ [0, a]
such that F (m) = a, we can then write f(m) > 0 if m < mF and f(m) = 0 if
m ≥ mF .

Our examples of distributions of types will primarily focus on the case of a =
1, making use of well-known distributions from probability theory. A convenient
example distribution is the Beta density

f(m) =
mα−1(1−m)β−1∫ 1

0
xα−1(1− x)β−1dx

,

whose cumulative mass function satisfies F (0) = 0 and F (1) = 1 for all parameter
configurations α, β > 0. Another convenient distribution is based on the Gumbel
density

f(m) =
1

β
e−(x−α)/β−e−(x−α)/β

,

which substantially differs from the Beta as F (0) > 0 and F (1) < 1 for all parameter
configurations α ∈ R, β ∈ R++.

Welfare

We now present the various welfare criteria that we will employ in our analysis. Let
D,D′ ∈ D be any pair of urban distributions. We say that D Pareto dominates D′ if
a positive mass of agents prefers D to D′ while no positive mass of agents prefers D′

14 Formally, agent i ∈ A prefers a city (or village) of mass m to a city (or village) of mass m′

if and only if one of the following conditions holds: (i) profits with m and no profits with m′

(m ≥ ti > m′); (ii) profits with none of them and m smaller (ti > m′ > m); (iii) profits with
both of them and m smaller (m′ > m ≥ ti).
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to D. While Pareto dominance leads to unquestionable welfare rankings, it typically
leaves many pairs of urban distributions unranked. To sharpen our predictions we
impose some more structure. Let the function π : R → R+ define the potential
profits of each agent depending on her type, and let the function c : R+ → R+

define the crowding cost of each agent depending on the mass of the city that she
inhabits. We shall assume that these functions are twice differentiable and c satisfies
c(0) = 0, is increasing and weakly convex, and that π(t) > c(t) for all t ∈ [0, a].15 We
can now represent the preferences of each agent i ∈ A by the utility function

u(ti,m
D
r(i)) = π(ti)I(ti ≤ mD

r(i))− c(mD
r(i)),

in which mD
r(i) denotes the mass of the city inhabited by agent i in the urban dis-

tribution D ∈ D and I(ti ≤ mD
r(i)) is an indicator function that takes value 1 if

ti ≤ mD
r(i) and 0 otherwise.16 Figure 1 is an illustration of these ideas.
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Figure 1: The solid lines in the left, central and right panels respectively represent the potential
profits π(t) = .2 + .8

√
t of an agent of type t ∈ [0, 1], the actual profits π(t)I(t ≤ m) of an agent of

type t = .25 in a city of size m ∈ [0, 1], and the crowding cost c(m) = .9m2 of an agent in a city of
size m ∈ [0, 1]. Note that these specifications of potential profits, actual profits and crowding cost
are consistent with our restrictions on preferences given a = 1.

We say that an urban distribution D ∈ D is cost-efficient if, for a given level of
urbanization, it is not possible to decrease the aggregate crowding costs

C(D) :=
∞∑
k=1

nDk m
D
k c(m

D
k )

without decreasing the profits of some agent. Note that the constrained minimiza-
tion of C(D) is equivalent to the minimization of urban concentration in the form of

15 Let us remark on two points regarding π and c. First, the assumption that profits strictly
dominate costs is made only for convenience, in order to rule out situations in which some
equilibria are infeasible for exogenous reasons. Second, while it seems reasonable that π is
non-decreasing and we encourage the reader to follow this interpretation (as more ambitious
plans are typically more profitable), we do not need this assumption for our results to hold.

16 The lexicographic preferences of each agent admit a utility representation because of the re-
strictions on the domain. This specific formulation of utility is chosen for tractability. In
principle, the lexicographic preferences of each agent are compatible with a utility function
where π depends on mD

r(i) as long as the derivative ∂π/∂mD
r(i) is sufficiently small.
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the generalized Herfindahl-Hirschman Index K(D).17 Finally, we say that an urban
distribution is welfare-efficient if it maximizes utilitarian welfare, which, for each
D ∈ D, is defined by the average utility

W (D) :=
1

a

∫
i∈A

u(ti,m
D
r(i))di

=
1

a

∫
i∈A

π(ti)I(ti ≤ mD
r(i))di−

1

a
C(D).

Note that cost-efficiency is a necessary condition for welfare-efficiency.

3 Equilibrium and welfare analysis

In this section we develop the core theoretical results, characterizing the subset of
urban distributions to be used in the comparative statics. Specifically, we start
by characterizing the set of equilibria and we then proceed by pinning down the
subset of equilibria that are cost-efficient arguing that the welfare-efficient urban
distribution is one of them.

We say that an urban distribution D ∈ D is an equilibrium if no agent prefers to
move from her city or village to another existing city or village. The basic idea is
that individuals are free to move from one location to another but take the existence
and size of the cities as given.

We say that an urban distribution D ∈ D is assortative if each of the following
conditions holds: (i) for each rank k ∈ N, the type of an agent inhabiting a city
of mass mD

k takes a value in
(
mD
k+1,m

D
k

]
; (ii) the type of an agent inhabiting a

village takes a value in (−∞, 0] or
(
mD

1 ,+∞
)
. So, by assortativeness agents are

segregated into cities according to their types guaranteeing that each agent inhabits
the smallest city where she can make profits, while villages are inhabited by a mix
of highly ambitious and highly unambitious agents.

We say that an urban distribution D ∈ D has nested structure if F (mD
k+1) =

F (mD
k ) − nDk m

D
k for each rank k ∈ N, which is a recurrence relation that deter-

mines the series of masses of cities
(
mD
k

)∞
k=1

given the largest city mass mD
1 and

the series of numbers of cities
(
nDk
)∞
k=1

. Intuitively, this nestedness condition is
intimately related to assortativeness.

Proposition 1 1. An urban distribution is an equilibrium if and only if it is assor-
tative. 2. Each equilibrium has nested structure.

Note that, as all equilibria have nested structure, we can represent the structure
of each of them graphically using the recurrence relation of nestedness. We now
consider two examples of distributions of types and the graphical representations of

17 This is because constant profits of each agent imply constant urbanization.
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the corresponding equilibria in Figures 2 and 3. Each of them is useful to identify
critical points to be addressed in the subsequent analysis.

Figure 2 illustrates the structures of six equilibria for the Beta distribution with
parameters (α, β) = (2, 5). Together with the equilibrium with no cities, they fully
characterize the set of all seven equilibria in this example. All shown six equilibria
Pareto dominate the equilibrium with no cities as they introduce new cities all else
equal, and many other pairs of equilibria can be Pareto ranked (although not all of
them).18
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Figure 2: Given a = 1, F (m) corresponds to the cumulative mass function of the Beta distribution
with parameters (α, β) = (2, 5). Each panel depicts the nested structure of a different equilibrium,
where the solid lines indicate the sizes of the various cities.

In the example in Figure 2, Pareto rankings are evident because the equilibria have
a very limited number of cities (at most three). In reality, we typically observe a
very high number of cities on the territory of a country and, given that we have
a continuum of agents in our model (a convenient approximation of a large finite
population), it may seem natural to expect infinitely many cities in equilibrium. This
can be achieved with opportune restrictions on the distribution of types that we will
consider shortly. Let us introduce an example that presents such features.

Figure 3 illustrates the structures of three equilibria for the Gumbel distribution with
parameters (α, β) = (0, .05). As F (0) = e−1 ≈ .37 there is a positive mass of agents

18 Specifically, each equilibrium in the bottom panels Pareto dominates the equilibrium in the top
left panel, and the equilibrium in the top central panel Pareto dominates the equilibrium in the
top left panel while it is Pareto dominated by the equilibria in the bottom central and bottom
right panels. However, there is no Pareto dominance relation between the equilibrium in the
top right panel and the equilibria in the other five panels.
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that can make profits in villages, and the nested structure of each equilibrium must
be identified using the shifted cumulative mass function F (m) − F (0), represented
by the dotted line. The maximum level of urbanization that can be achieved in
equilibrium corresponds to the case of a single city of mass m∗ ≈ .63 in the left
panel, where m∗ is determined by the equation F (m∗) − F (0) = m∗. There are
uncountably many other equilibria, at least one for each size of the largest city
m ∈ (0,m∗], each presenting infinitely many cities and an urbanization level equal to
(F (m)−F (0))/a. For instance, the central panel depicts an equilibrium with infinite
number of cities, each of different size, where the largest size is .2, while the right
panel depicts another equilibrium with infinite number of cities, each of different
size except for the two largest ones, each of size .2. Note that there is no Pareto
dominance across these three equilibria, although we may expect the equilibrium
in the right panel to lead to higher welfare than the one in the central panel as it
presents equal urbanization levels (which implies equal profits for all agents) while
having much lower urban concentration (which implies lower aggregate crowding
cost).
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Figure 3: Given a = 1, F (m) corresponds to the cumulative mass function of the Gumbel
distribution with parameters (α, β) = (0, .05), represented by the solid curve, while the dotted
curve represents F (m)− F (0). Each panel depicts the nested structure of a different equilibrium,
where the vertical lines indicate the sizes of the various cities.

As suggested by the example in Figure 3, one can show that in our model there exists
an equilibrium with infinite number of cities if and only if f(0) > 1. Note that this
implies the existence of ε > 0 such that m < F (m)− F (0) for each m ∈ (0, ε], that
is, there is an excess of agents which can make profits in a city of size smaller than
or equal to ε and cannot make profits in a village. In this spirit, we now consider
a stronger condition on the distribution of types that allows to focus on equilibria
with infinite number of cities for a broad set of urbanization levels.19

We say that a distribution of types is non-constraining if m < F (m)−F (0) for each
m ∈ (0,mF ), which means that for each m in the pre-image of (0, a) there is an
excess of agents which can make profits in a city of size m and cannot make profits
in a village.

19 The following restriction is purely for expositional convenience. It is straightforward that all
our core results extend under the weaker assumption f(0) > 1.
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This greatly simplifies the analysis, leading to the following general properties of the
equilibria in our model.

Remark 1 Given that the distribution of types is non-constraining:

1. For each m ∈ (0, a− F (0)), there exists an equilibrium with size of the largest
city equal to m, infinite number of cities, and level of urbanization equal to
(F (m)− F (0))/a if m ≤ mF and equal to (a− F (0))/a if m > mF .

2. There exist multiple equilibria exhibiting up to n ∈ N cities of same size m ∈
(0, a− F (0)) if and only if nm ≤ F (m)− F (0).

Recall that, in the example of Figure 2, certain equilibria Pareto dominate others
because they create new cities all else equal. On the other hand, while there is no
Pareto dominance across the equilibria of Figure 3, we may expect the equilibrium
in the right panel to lead to higher welfare than the one in the central panel as
it presents equal urbanization levels while having much lower urban concentration.
These two intuitions are at the core of our welfare analysis.

We say that an urban distribution D ∈ D has substantial structure if mD
1 ≥ mF :=

F−1
(
maxm∈[0,mF ][F (m)−m]

)
, a condition which rules out particularly low levels of

urbanization (e.g., no cities) because they are Pareto dominated.

We say that an urban distribution D ∈ D has hierarchical structure if nDk = 1 for
each rank k ∈ N with mD

k > 0, which means that there are no multiple cities of
same size so that the aggregate crowding cost is minimized for a given urbanization
level.

Proposition 2 Given that the distribution of types is non-constraining:

1. An equilibrium is cost-efficient if and only if it has hierarchical structure and
the size of the largest city is lower than or equal to mF .

2. An urban distribution is welfare-efficient only if it is an equilibrium (up to
misallocation of zero mass of agents) that is cost-efficient and has substantial
structure.

Besides formalizing the aforementioned intuitions on the optimality of substantial
and hierarchical structures, Proposition 2 provides novel insights on the connection
between the upper bound mF and the cost-efficient size of the largest city as well
as the relation between welfare-efficiency and equilibrium (where the former implies
the latter). The reason for the upper bound mF is best understood via the example
in Figure 4, which shows that increasing the size of the largest city above mF leaves
urbanization (and the profits of each agent) unchanged while it increases urban
concentration (therefore increasing the aggregate crowding cost). Regarding the
relation between welfare-efficiency and equilibrium, the former implies the latter
because (as the distribution of types is assumed to be non-constraining) there is
an excess of agents in the population that can make profits in a city of any size,
therefore agents can always be rearranged so that there is no need to keep anyone

15



in a city unwillingly.
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Figure 4: Given a = 1, F (m) = .2 +
√
m corresponds to the cumulative mass function of the

shifted Beta distribution with parameters (α, β) = (0, .5), represented by the solid curve, while the
dotted curve represents F (m)− F (0) where mF = .64. Each panel depicts the nested structure of
a different equilibrium, where the vertical lines indicate the sizes of the various cities.

Proposition 2 greatly simplifies the maximization of utilitarian welfare. Suppose
that the distribution of types is non-constraining. By Proposition 2, a cost-efficient
equilibrium is fully characterized by the mass of the largest city, and a welfare-
efficient urban distribution must be a cost-efficient equilibrium that is substantial.
Then, denoting by D∗(µ1) ∈ D the cost-efficient equilibrium with mass of the largest
city equal to µ1 ∈ [mF ,mF ], the maximization of utilitarian welfare can be simply
stated as

max
µ1∈[mF ,mF ]

W (D∗(µ1)) =
1

a

∫ µ1

0

π(t)dF (t)− 1

a

∞∑
k=1

µkc(µk)

s.t. µk = F−1 (F (µk−1)− µk−1) for each k ≥ 2.

It is noteworthy that, on the considered domain, choosing the size of the largest city
µ1 is equivalent to choosing the corresponding level of urbanization U(D∗(µ1)) =
(F (µ1)− F (0))/a, which by our previous considerations must take a value in

[(F (mF )− F (0))/a, (a− F (0))/a] .

Going back to our examples, one can show that each of the equilibria with hierar-
chical and substantial structure depicted in the left and central panels of Figure 3 is
welfare-efficient for some combination of cost and profit functions. This is because
the corresponding distribution of types is non-constraining. On the other hand, if
the distribution of types is constraining such as the one in Figure 2, it is possible
that no equilibrium is welfare-efficient for a given combination of cost and profit
functions.

4 Comparative statics of urban development

In this section we focus on welfare-efficient solutions and study how they should
change with shocks to the fundamentals. Assuming F to be non-constraining, we
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exclusively consider cost-efficient equilibria, as the welfare-efficient urban distribu-
tion is one of them. Specifically, the two variables of interest are the level of ur-
banization and the level of urban primacy of cost-efficient equilibria, which can be
written as

U(D∗(µ1)) = (F (µ1)− F (0)) /a and P(D∗(µ1)) = µ1/ (F (µ1)− F (0))

for each size of the largest city µ1 ∈ [0,mF ]. Note that U(D∗(µ1)) and P(D∗(µ1))
can be easily visualized graphically as the height of the function F evaluated at µ1

(shifted by F (0) and divided by a) and the fraction of this height that lies above
the 45◦ line, respectively.

In what follows, we divide our comparative static analysis in short run and long
run considerations. The short run is defined by a fixed level of urbanization, and
we assume that any shock summarized by a change in the distribution of types
from F ′ to F maps each cost-efficient equilibrium given the old distribution F ′ into
the unique cost-efficient equilibrium with same urbanization level given the new
distribution F . Within this framework, our short run analysis determines whether
urban primacy should increase of decrease depending on the specific shock.

In the long run, we assume that urbanization can adjust to the welfare-efficient level
(provided that coordination is achieved). While the analysis of the long run conse-
quences of shocks to F does not lead to sharp predictions, we can fully determine
the relationship between the level of urbanization and the level of urban primacy
across cost-efficient equilibria for a given distribution of types F . Intuitively, this
relationship is suggestive of the long run trends in the levels of urbanization and
urban primacy of the welfare-efficient solution driven by shifts in the functions π and
c, and more generally of the relation between the levels of urbanization and urban
primacy across different levels of development akin to the solution of coordination
problems.

Short run considerations

In our short run analysis, we consider three shocks to the fundamentals that change
the qualitative properties of the distribution of types.

We say that the distribution of types F is a population replication of the distribution
of types F ′ corresponding to a mass of agents equal to a if there is k > 1 such that
F (t) = kF ′(t) for all t ∈ [0, a]. Then, a population replication rescales the mass of
agents by a factor of k while leaving the distribution of types unchanged (in relative
terms).

We say that the distribution of types F is more ambitious than (first-order stochas-
tically dominates) the distribution of types F ′ on [0, a] if each of the following
conditions holds: (i) F (t) = F ′(t) if t ∈ {0, a}; (ii) F (t) < F ′(t) if t ∈ (0, a). This
means that high types are relatively more abundant in F than in F ′ (while low types
are relatively scarcer).
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We finally consider a mean-preserving spread that transfers mass from the center of
a distribution to the sides, leaving the mean unchanged. Formally, we say that the
distribution of types F is an expansion of the distribution of types F ′ on [0, a] if each
of the following conditions holds: (i) F (t) = F ′(t) if and only if t ∈

{
0,
∫ a

0
rdF (r), a

}
;

(ii)
∫ t

0
F ′(r)dr >

∫ t
0
F (r)dr for all t ∈ (0, a); (iii)

∫ a
0
rdF (r) =

∫ a
0
rdF ′(r).

Proposition 3 Restricting attention to non-constraining distributions of types:

1. If the distribution of types F is a population replication of F ′, urban primacy
is lower in the cost-efficient equilibrium with F than in the cost-efficient equi-
librium with F ′ for any given level of urbanization.

2. If the distribution of types F is more ambitious than F ′ on [0, a], urban pri-
macy is higher in the cost-efficient equilibrium with F than in the cost-efficient
equilibrium with F ′ for any given level of urbanization.

3. If the distribution of types F is an expansion of F ′ on [0, a], there is λ∗ ∈
(0, (a−F (0))/a) such that urban primacy is higher (lower) in the cost-efficient
equilibrium with F than in the cost-efficient equilibrium with F ′ for any given
level of urbanization that is higher (lower) than λ∗.

Figure 5 is an illustration of the results in Proposition 3. The left panel consid-
ers a population replication that doubles the population and compares the old
cost-efficient equilibrium with the new cost-efficient equilibrium with equal level
of urbanization. As shown by the dotted lines, the size of the largest city is left
unchanged, which implies that the level of urban primacy decreases with the popu-
lation replication (it becomes half). This illustrates Point 1 above.

The central panel of Figure 5 considers a shift in the distribution of types that leads
the new distribution to first-order stochastically dominate the old. As shown by the
dotted lines, for a fixed level of urbanization, the size of the biggest city is larger
in the cost-efficient equilibrium of the new distribution, which implies that urban
primacy is higher as predicted by Point 2 above.

Finally, the right panel of Figure 5 considers a shift in the distribution of types that
leads the new distribution to be an expansion of the old. As shown by the dotted
lines, for a fixed the level of urbanization, the size of the largest city is smaller
in the cost-efficient equilibrium of the new distribution than in the corresponding
equilibrium of the old. Moreover, it is straightforward to see that this holds true for
any old size of the largest city below .5 (the old size is .4 in the example), while the
opposite would be true if the old size of the largest city was above .5. As the level
of urbanization is proportional to the size of the largest city (see Point 1 of Remark
1), this illustrates Point 3 above.

Long run considerations

We now consider long run trends in urban development, when the level of urbaniza-
tion can adjust to the welfare-efficient level (provided that coordination is achieved).
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Figure 5: In the left panel the solid curve corresponds to the case a = 1, depicting the cumulative
mass function of the Beta distribution with parameters (α, β) = (0, .5), while the dotted curve
depicts a population replication that doubles the mass of agents. The central panel focuses on a = 1,
depicting the cumulative mass functions of the Beta distributions with parameters (α, β) = (0, .5)
(solid line) and (α, β) = (0, .7) (dotted line), where the second distribution first-order stochastically
dominates the first. The right panel also focuses on a = 1, depicting the cumulative mass functions
of the shifted Beta distributions F (m) = m+m2(1−m) (solid line) and F ′(m) = m+m(1−m)2

(dotted line), where the second is an expansion of the first. Each panel depicts the nested structures
of two different equilibria, where the vertical solid (dotted) lines indicate the sizes of the various
cities that correspond to the equilibrium with the solid (dotted) cumulative mass function.

In principle, one can always identify the optimal level of urbanization by solving the
constrained maximization problem stated at the end of Section 3. However, our at-
tempts suggest that results crucially depend on specific assumptions on the functions
F , π and c and no general pattern emerges.20

While we cannot generally predict whether urbanization increases or decreases in
the long run as a consequence of shocks to F , we can determine how a change in the
urbanization level should affect urban primacy across cost-efficient equilibria for a
given F . Intuitively, by the constrained maximization problem at the end of Section
3, this analysis is suggestive of the long run trends in the levels of urbanization and
urban primacy of the welfare-efficient solution due to rescaling of the functions π and
c, and more generally of the relation between the levels of urbanization and urban
primacy across different levels of development related to the solution of coordination
problems that limit the level of urbanization.

Proposition 4 Let F be non-constraining. For each µ1 ∈ [0,mF ), the relationship
between urban primacy and the level of urbanization of the cost-efficient equilibrium
D∗(µ1) is such that a marginal increase in the urbanization level leads to an increase
(decrease) in urban primacy if

f(µ1) < (>) (F (µ1)− F (0)) /µ1. (1)

To appreciate Proposition 4, it is fundamental to give meaning to the two vari-
ables f(µ1) and (F (µ1)− F (0)) /µ1 which govern the long run relationship between

20 The only regularity is perhaps the positive (negative) effect on the optimal urbanization level
of the scaling up by positive multiplication of function π (function c).
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the level of urbanization and urban primacy across cost-efficient equilibria. On the
one hand, f(µ1) is the marginal density of the urbanized types in the cost-efficient
equilibrium D∗(µ1), which indicates the total mass of agents that would become
urbanized if the level of urbanization was to be marginally increased. On the other
hand, (F (µ1)− F (0)) /µ1 is the average density of the urbanized types in such an
equilibrium, which indicates the relative abundance of agents that can make profits
in the largest city. Note that the average density is the reciprocal of the level of
urban primacy. By the nature of cost-efficient equilibria, an increase in urbanization
must go hand in hand with a proportional increase in the size of the largest city, and
all newly urbanized agents must be residents of the largest city. Then, the above
considerations imply that given f(µ1) < (F (µ1)− F (0)) /µ1 a marginal increase in
urbanization should lead to migration of agents from the smaller cities to the largest,
thus increasing urban primacy. Conversely, given f(µ1) > (F (µ1)− F (0)) /µ1 the
migration must go in the opposite direction, thus decreasing urban primacy. This
directly links to condition (1), which can be understood graphically as f(µ1) be-
ing the slope of the function F evaluated at the size of the largest city µ1, while
(F (µ1)− F (0)) /µ1 being the slope of the line that passes through the origin and
point (µ1, F (µ1) − F (0)). Then, the relative magnitude of these slopes determines
whether urban primacy should increase or decrease with the level of urbanization
at a specific point.

We now argue that, under fairly general conditions, the mechanism identified in
Proposition 4 predicts a U-shaped relation between urban primacy and the level of
urbanization in a cost-efficient equilibrium. While Remark 2 identifies a sufficient
condition to state this formally, Figure 6 illustrates this in an example.

We say that a distribution of types F has a density f that is single-peaked on
(0,mF ) if there is m∗ ∈ (0,mF ) such that df(m)/dm > (<)0 if m < (>)m∗ for all
m ∈ (0,mF ).

Remark 2 Let F be non-constraining and satisfying f(µ1) = (F (µ1)− F (0)) /µ1

for some µ1 ∈ (0,mF ).21 If the density f is single-peaked on (0,mF ), the relationship
between urban primacy and the level of urbanization of cost-efficient equilibria is U-
shaped.

The crucial assumption behind Remark 2 is to have a density f that is single-
peaked on (0,mF ), which we now argue to be a plausible property of a distribution
of types. Consider an extension of our model where F is endogenously determined
in a pregame interaction in which individuals choose their types by maximizing ex-
pected utility under strategic uncertainty on the formation of the urban distribution.
Although this extension is far from straightforward,22 we can immediately see that
certain predictions should hold generally and serve to justify the single-peakedness

21 Alternatively, instead of this last condition, it is sufficient to assume f(a) = 0.
22 A challenge is the formalization of the expectation with respect to the formation of the urban

distribution under strategic uncertainty, which can be conceptualized within the framework of
global games (see, e.g., Carlsson and Van Damme, 1993; Frankel et al., 2003).
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of f . Intuitively, if a distribution of types emerges from the maximization of ex-
pected utility, business plans of intermediate ambition should be the most common
as they are close to the optimal compromise in the trade-off between higher profits
and lower crowding costs. Conversely, highly or minimally ambitious plans should
be relatively scarce due to excessive crowding costs and the insufficient profits, re-
spectively. So, in this setup, we should expect f to be single-peaked in the interior,
and the peak of f should coincide with the ex-ante optimal type.
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Figure 6: Given a = 1, the dotted, dashed and solid lines respectively depict the (non-
constraining) shifted Beta distribution F (m) = m + m2(1 − m), its density function f(m) =
1 + 2m(1−m)−m2, and the level of urban primacy corresponding to the cost-efficient equilibrium
with the largest city of size µ1 = m.

As a final note, we wish to point out that the converse of Remark 2 can also hold un-
der different assumptions. Roughly speaking, if we consider a single-dipped density
f (i.e., if there is m∗ ∈ (0,mF ) such that df(m)/dm < (>)0 if m < (>)m∗ for all
m ∈ (0,mF )), a Kuznets-type inverse U-shaped relation between urban primacy and
level of urbanization is generated by the same arguments of Proposition 4. While
in the following section we concentrate on the U-shaped relationship using 20th and
21st century observations, the opposite could follow from a bi-modal distribution of
ambition ascribed to the lack of access to education of large parts of pre-20th cen-
tury populations. More generally, Kuznets-type cycles of inverse U-shaped and then
U-shaped relations between urban primacy and level of urbanization can be gener-
ated as a consequence of the introduction of new technologies and the subsequent
growth of access to education for the use of such technologies.

5 An empirical pattern

As predicted by Remark 2, the scatter plot in Figure 7 suggests a U-shaped empir-
ical relationship between the level of urbanization and urban primacy. While this
scatter plot is based on cross-country average data, the rest of this section tests this
hypothesis further using econometric analysis of a panel consisting of all 218 covered
countries of the world through the last 60 years.
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Our analysis is similar in spirit to the seminal Imbs and Wacziarg (2003) on stages of
economic development. They document a remarkably robust U-shaped relation be-
tween sectoral concentration and GDP per capita. Since industrial sectors typically
cluster in specialized cities according to increasing returns from spatial proximity,
and since higher levels of GDP per capita typically coincide with higher levels of
urbanization as joint manifestations of higher levels of economic development, we
would like to pose our model as a common theoretical foundation for the empirical
observations in Imbs and Wacziarg (2003) and ours. With some caution, one may
also link our prediction to the empirical U-shaped relation between the inequality
of income (or wealth) and GDP per capita as documented for instance by Piketty
and Saez (2003) and Saez and Zucman (2016). Intuitively, when economic resources
concentrate in fewer cities and industries, it may also be that income concentrates
in the hands of the fewer individuals who dominate these cities and industries.

Figure 7: U-shaped cross-country relationship between the average level of urban-
ization and the average urban primacy, where these averages are computed within
each country across the years 1950-2017. Source: Own calculations based on World
Bank data.

To test the predicted U-shaped relation empirically, we base our econometric analysis
on the World Bank’s dataset, topic “Urban Development,” which includes a panel
reporting the levels of urbanization and urban primacy for each country in the world,
annually from 1950 to 2017.23 Our empirical strategy consists of a linear regression
with the level of urban primacy of each country and year as dependent variable and
the level of urbanization and the level of urbanization squared in the same country
and year as the two main independent variables. We start by considering basic
econometric specifications with robust standard errors with fixed effects for year

23 This data is publicly available from https://data.worldbank.org/topic/urban-development.
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and continent/country.24 The resulting estimations are in Table 1. As shown in

Table 1: Relation between urban primacy and urbanization in the
world sample.

Urban primacy (1) (2) (3)

Urbanization -.9504*** -.6149*** -.0816**

(.0408) (.0406) (.0384)

Urbanization squared .0096*** .0073*** .0011***

(.0004) (.0003) (.0003)

Observations 8689 8689 7562

R2 0.1039 0.2127 0.9289

Notes: Columns (1) to (3), respectively, correspond to the specifications (1) without fixed
effects, (2) with year fixed effects and continent fixed effects, (3) with year fixed effects and
country fixed effects excluding the 21 countries belonging to the “continent” Middle East
and North Africa. Standard errors are heteroscedastically robust; ***, **, and * indicate
statistical significance at the levels of 1%, 5%, and 10%, respectively.

columns (1) and (2), the specifications which do not include country fixed effects
yield statistically significant estimations of the two coefficients of interest which are
negative for urbanization and positive for urbanization squared, and are thus in line
with our predictions. Most notably, the specification in column (2) with year and
continent fixed effects confirms the U-shaped relation. These estimations are robust
to marginal changes of the empirical specification such as excluding certain countries
from the sample, like e.g., the ones in the top-right corner of Figure 7. However,
when we introduce country fixed effects the evidence is somewhat weakened as the
significance of the estimations depends on the exact empirical specification. For
instance, the empirical pattern continues to hold as long as we exclude from the
sample the countries that belong to the continent-label ‘Middle East and North
Africa’, as shown in column (3), while the empirical pattern is blurred when these
countries are included. Intuitively, other dynamics than those captured by our
analysis may be at play in these countries as many of them have been systematically
plagued by political turmoil, civil war, and international conflict.

One weakness of the above estimations is that, when we consider the relation be-
tween urban primacy and urbanization within a country and across time, the distri-
bution of types is generally not constant as assumed in Remark 2. This motivates
our second empirical exercise where we introduce into a standard regression with
country and year fixed effects control variables roughly corresponding to the shocks
to the distribution considered in Proposition 3. As within the World Bank’s dataset
these controls are reported only for a relatively small subset of rich countries and
recent years, we exclusively focus on the corresponding subsamples within Europe

24 The World Bank’s dataset on Urban Development codes countries according to the continent
they belong to.
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and Central Asia and the world.25 The resulting estimations are shown in Table 2
which considers two alternative sets of three control variables as empirical proxies
for the three shocks. In these alternative specifications, ‘population replication’ is

Table 2: Relation between urban primacy and urbanization on restricted samples
with additional control variables.

Urban primacy (1) (2) (3) (4)

Urbanization -1.4579*** -.5322*** -.6450** -.6862***

(.4806) (.1581) (.2771) (.1154)

Urbanization squared .0113*** .0019 .0039* .0028***

(.0034) (.0012) (.0020) (.0010)

Population density -.0562** .0184*** - -

(.0262) (.0057) - -

Tertiary education exp. .0545 .0711* - -

(.0438) (.0381) - -

Income ineq. (Gini coeff.) .0136 .0072 - -

(.0352) (.0466) - -

Total population - - 1.71e-07*** 1.71e-08

- - (5.30e-08) (2.06e-08)

Tertiary education enroll. - - -.0351** -.0061

- - (.0164) (.0176)

Income ineq. (top 10%) - - -.0164 -.0462

- - (.0628) (.0479)

Observations 219 465 344 709

R2 .9933 .9768 .9877 .9752

Notes: Columns (1) and (3) correspond to the subsamples of available observations for Europe and Central Asia,
while columns (2) and (4) for the world. Regressions include year and country fixed effects; standard errors
are heteroscedastically robust; ***, **, and * indicate statistical significance at the levels of 1%, 5%, and 10%,
respectively.

either population density or total population, ‘more ambition’ is either tertiary edu-
cation expenditure (as % of total government expenditure on education) or tertiary
education enrollment (as % of the age group that is entitled to enrollment), and ‘ex-
pansion’ is income inequality measured either as Gini coefficient or as income share
held by the top 10%.26 As shown in Table 2, no matter which set of controls we
choose or whether we focus on ‘Europe and Central Asia’ or the world, our empirical
estimations are systematically consistent with the U-shaped hypothesis.

To conclude, the econometric exercises in Tables 1 and 2 together with the scatter
plot in Figure 7 are suggestive of an empirical pattern that is consistent with the U-
shaped hypothesis. Arguably our handful of regressions are far from a comprehensive
analysis, as many alternative empirical specifications can be chosen in terms of, e.g.,

25 Roughly speaking, by introducing these control variables we lose about 90− 95% of the obser-
vations almost exclusively focusing on years after 1990 and on a subset of countries within the
continents ‘Europe and Central Asia,’ ‘North America,’ and ‘South Asia.’

26 All these control variables are from World Bank datasets corresponding to the top-
ics Health, Education and Poverty, respectively, which are publicly available from
https://data.worldbank.org/indicator.
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subsamples and control variables. However, in combination with the much more
robust evidence in Imbs and Wacziarg (2003) on the U-shaped relation between
sectoral concentration and the level of economic development and the related findings
in Piketty and Saez (2003) and Saez and Zucman (2016), we believe this is sufficient
to motivate our model as empirically relevant.

6 Conclusions

We take a novel approach to urban development in the tradition of threshold models
of social interaction. In our model the number and the sizes of cities are endoge-
nously determined by the incentives of agents to freely move across them, where
settlers in larger cities face a trade-off between higher productivity and higher
crowding costs. In this setup, we characterize the set of equilibria, study their
welfare properties, and analyze the equilibrium relation between three key measures
of urban development: urbanization, urban concentration and urban primacy. One
appealing feature of our model is that all equilibria are defined by a simple recur-
sive algorithm that can be represented graphically with an intuitive diagram, and
welfare-efficiency corresponds to an urban distribution with infinite number of cities
of heterogeneous size. Focusing on welfare-efficient solutions (and the weaker con-
cept of cost-efficiency, which does not require the level of urbanization to be welfare-
efficient) we find that in the short run population replications tend to decrease urban
primacy, while the short run effects on urban primacy of changes in population char-
acteristics are positive if they come in the form of first-order stochastic dominance,
and positive/negative depending on the high/low level of urbanization if they come
in the form of mean-preserving spreads. Although we cannot generally pin down the
long run effects of these shocks, we can fully determine how changing the level of
urbanization should affect other variables. Assuming that the distribution of types
is single-peaked in the interior, our findings suggest a U-shaped relationship between
the level of urbanization and urban primacy. We find preliminary confirmation of
this prediction considering a panel of all countries of the world through the last 60
years. Due to its simplicity and versatility, our model of urban development has
potential for various applications and extensions. One possibility is to explore the
conflict of interest across cities. While here we have focused on welfare-efficient
solutions, in practice these may be difficult to implement because of the necessary
compensation of the ‘losers’ using part of the gains of the ‘winners’ of a welfare
improvement. As these compensatory transfers should occur across cities in our
model, they may be often infeasible and motivate an analysis of second-best solu-
tions. From an empirical viewpoint, an interesting application would be to estimate
the distribution of types of a country from the distribution of city sizes assuming
that the nestedness condition holds. This would allow for more extensive testing of
our predictions as one could monitor how the estimated distribution of types changes
across time and countries and whether these patterns are broadly in line with what
we know from other sources.
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Appendix

Proof of Proposition 1

Recall that an urban distribution D ∈ D is assortative if and only if each of the
following conditions holds: (i) for each rank k ∈ N, the type of an agent inhabiting
a city of mass mD

k takes a value in
(
mD
k+1,m

D
k

]
; (ii) the type of an agent inhabiting

a village takes a value in (−∞, 0] or
(
mD

1 ,+∞
)
. Consider any assortative urban

distribution. Note that each urban agent is located in a city of the smallest available
size that is sufficiently high for her to make profits (so that her type is lower than
or equal to such size but higher than the size of any smaller city). So, no urban
agent prefers to move to another existing city (or village) as either it is too small
for her to make profits or it is unnecessarily large, leading to the same profits but a
higher crowding cost. On the other hand, no villager prefers to move to an existing
city as either she cannot make profits in there (as her type is higher than the size
of such city) or she already makes profits in the village (therefore moving to the
city only increases the crowding cost). So, any assortative urban distribution is an
equilibrium. We now prove the converse: that any urban distribution that is not
assortative is not an equilibrium. It is easy to verify that for any urban distribution
that is not assortative one of the following statements must be true: there is an
agent in some city that does not make profits or that makes profits but can make
profits in some other existing city that is smaller (i.e., condition (i) is violated);
there is an agent in some village that does not make profits but can make profits
in some existing city (i.e., condition (ii) is violated). As each of these statements is
in contradiction with the definition of equilibrium (as there is an agent that prefers
to move), this proves that an urban distribution is an equilibrium if and only if it
is assortative. Finally, we need to show that all equilibria have nested structure.
Let D ∈ D be any equilibrium. As D is necessarily assortative, by condition (ii) of
assortativeness a mass a−(F (mD

1 )−F (0)) on agents is in villages. Of the remaining
mass F (mD

1 ) − F (0) of urban agents, a mass nDk m
D
k is in cities of rank k ∈ N by

condition (i) of assortativeness. Then, by combining these conditions we obtain the
recurrence relation of nestedness, F (mD

k+1) = F (mD
k )−nDk mD

k for each k ∈ N, which
concludes our proof. �

Proof of Proposition 2

Assume that the distribution of types is non-constraining and let the equilibrium
D′ ∈ D be cost-efficient. For a contradiction, suppose that there is an urban dis-
tribution D ∈ D among the ones with the same level of urbanization that presents
lower aggregate crowding cost than D′ and non-lower profits for each agent. As D′

is an equilibrium, all urban agents make profits and all villagers with types smaller
than or equal to 0 make profits, while the remaining villagers are the only agents
that do not make profits. Then, the profits of each agent are non-lower in D if and
only if D is another equilibrium with equal level of urbanization. This means that,
to prove that an equilibrium is cost-efficient, it is sufficient to compare it with other
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equilibria with same urbanization level.

We now show that an equilibrium D′ ∈ D is cost-efficient if and only if its structure
is hierarchical. Let the structure of D′ be hierarchical. Our strategy is to prove that
any other equilibrium with same the same level of urbanization and same profits for
each agent presents higher aggregate crowding cost than D′. For a contradiction,
suppose that there is another equilibrium D ∈ D with same urbanization level and
same profits as D′ such that

C(D) =
∞∑
h=1

nDk m
D
h c(m

D
h ) ≤ C(D′) =

∞∑
h=1

nD
′

h m
D′

h c(m
D′

h ). (2)

As F is non-constraining, the levels of urbanization take value U(D′) = (F (mD′
1 )−

F (0))/a and U(D) = (F (mD
1 )−F (0))/a. By assumption, f(m) > 0 if m ≤ mF and

f(m) = 0 if m > mF . We then divide our analysis in two cases: mD′
1 < mF and

mD′
1 ≥ mF .

Consider mD′
1 < mF . Since f(mD′

1 ) > 0, U(D′) = U(D) implies mD
1 = mD′

1 . It
follows that condition (2) can be rewritten as

(nDk − 1)mD
k c(m

D
k ) +

∞∑
h=k+1

nDhm
D
h c(m

D
h ) ≤

∞∑
h=k+1

mD′

h c(m
D′

h ). (3)

Let k′ ∈ N be the highest number such that F (mD′

k′ ) > F (mD
k+1), where the existence

of k′ is guaranteed by our assumption that F is non-constraining. As F (mD
k+1) =

F (mD
k )− nDk mD

k and F (mD′

k ) = F (mD
k ), we must have nPkm

D
k > F (mD′

k )− F (mD′

k′ ).

As assortativeness implies F (mD′

k ) − F (mD′

k′ ) =
∑k′−1

h=k m
D′

h , and mD′

k = mD
k , we

obtain (nDk − 1)mD
k >

∑k′−1
h=k+1m

D′

h . Then, there is ρ ∈ [0, 1) such that

(nDk − 1)mD
k =

k′−1∑
h=k+1

mD′

h + (1− ρ)mD′

k′ , (4)

∞∑
h=k+1

nDhm
D
h = ρmD′

k′ +
∞∑

h=k′+1

mD′

h . (5)

Note that mD
k > mD′

h for all h ∈ {k + 1, . . . , k′} and mD
k+x > mD′

k′+x for all x ≥ 1,
which by (4) and (5) respectively imply

(nDk − 1)mD
k c(m

D
k ) >

k′−1∑
h=k+1

mD′

h c(m
D′

h ) + (1− ρ)mD′

k′ c(m
D′

k′ ),

∞∑
h=k+1

ndhm
D
h c(m

D
h ) > ρmD′

k′ c(m
D′

k+1) +
∞∑

h=k′+1

mD′

h c(m
D′

h ).

Then, a necessary condition for (3) to hold is

ρmD′

k′

(
c(md′

k′)− c(mD
k+1)

)
≥ mD′

k′−1

(
c(mD

k )− c(mD′

k′−1)
)
.
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As ρmD′

k′ < mD′

k′−1, this is possible only if c(mD′

k′ ) − c(mD
k+1) ≥ c(mD

k ) − c(mD′

k′−1).

However, since mD
k + mD

k+1 ≥ mD′

k′−1 + mD′

k′ , m
D
k > mD′

k′−1 > mD′

k′ > mD
k+1 and the

function c is weakly convex, this condition is never fulfilled. So, we can conclude
that given mD′

1 < mF the equilibrium D′ is cost-efficient if and only if its structure
is hierarchical.

Consider mD′
1 ≥ mF . As D′ is an equilibrium we must have mD′

1 ≤ a − F (0), and
any equilibrium D ∈ D that has the same level of urbanization as D′ must satisfy
mD

1 ∈ [mF , a − F (0)]. We are going to show that D′ is cost-efficient if and only
if it is hierarchical and mD′

1 = mF . Suppose D satisfies such properties. Firstly,
it is straightforward by arguments similar to the above that any other equilibrium
D ∈ D with mD

1 = mF = mD′
1 and which is non-hierarchical has higher aggregate

crowding cost than D′. Secondly, suppose mD′
1 = mF and let D ∈ D be any other

equilibrium with mD
1 > mF . If D is non-hierarchical, by arguments analogous to

our previous analysis it must lead to an aggregate crowding cost C(D) that is higher
than the one of the equilibrium D′′ ∈ D that is hierarchical and has largest city of
same size as mD

1 . On the other hand, D′′ can be derived from D′ via a series of
mass transfers from larger cities to smaller ones, which implies C(D′) < C(D′′) by
the convexity of c. Then, C(D′) < C(D′′) < C(D) and condition (2) never holds.
So, combining these results with our previous analysis we can conclude that D′ is
cost-efficient if and only if its structure is hierarchical and mD′

1 ≤ mF .

We now show that an urban distribution that is welfare-efficient must be a cost-
efficient equilibrium (up to misallocation of zero mass of agents). Since welfare-
efficiency implies cost-efficiency, to do so it is sufficient to show that a welfare-
efficient urban distribution is necessarily an equilibrium. Let D ∈ D be a welfare-
efficient urban distribution. If D has nested structure it must be an equilibrium,
otherwise aggregate profits can be increased by reshuffling individuals across cities
and villages without changing the structure and therefore without affecting the
aggregate crowding cost. Suppose D has non-nested structure, which implies that
F (mD

k+1) 6= F (mD
k ) − nDk mD

k for some k ∈ N. We divide our analysis in two cases:
F (mD

k+1) < F (mD
k )−nDk mD

k and F (mD
k+1) > F (mD

k )−nDk mD
k . If F (mD

k+1) < F (mD
k )−

nDk m
D
k , welfare can be augmented by decreasing by some arbitrarily small ε > 0 the

mass of a city of size mD
k and increasing by the same amount ε the mass of a city

of size mD
k+1, while reshuffling agents across cities and villages so that aggregate

profits are unchanged while the aggregate crowding cost decreases. Note that this
reshuffling is always possible as the distribution of types is non-constraining, while
the aggregate crowding cost decreases as

(mD
k+1 + ε)c(mD

k+1 + ε) + (mD
k − ε)c(mD

k − ε) < mD
k+1c(m

D
k+1) +mD

k c(m
D
k ),

since by assumption the function c is weakly convex. On the other hand, if F (mD
k+1) >

F (mD
k ) − nDk mD

k there must be a positive mass of urban agents that do not make
profits in some city. Then, welfare can be augmented by moving an arbitrarily
small fraction of these agents to a village, which reduces the aggregate crowding
cost, while reshuffling agents across cities and villages so that aggregate profits are
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unchanged. Again, this reshuffling is always possible as the distribution of types is
non-constraining. This proves our desired result.

Finally, we are going to show that, given that an urban distribution D is welfare-
efficient, the structure of D must be substantial, that is,

F (mD
1 ) ≥ max

m∈[0,mF ]
F (m)−m.

We already know that D is an equilibrium (up to misallocation of zero mass of
agents) whose structure is hierarchical. Suppose for a contradiction that F (mD

1 ) <
maxm∈[0,mF ] F (m) −m. Since F is non-constraining, there is m′ ∈ (mD

1 ,mF ) such
that F (mD

1 ) = F (m′) −m′, which implies that there is another equilibrium which
is identical to D except that there is a new city of size m exclusively composed
of agents who are villagers in D and that can make profits in this new city. Note
that this would constitute a Pareto improvement on D, and that welfare-efficiency
implies Pareto efficiency. Then, if D is welfare-efficient, it must have substantial
structure. �

Proof of Proposition 3

For any non-constraining distribution of types F , let Dλ,F ∈ D denote the cost-
efficient equilibrium that corresponds to the level of urbanization λ ∈ (0, (a −
F (0))/a). Note that, as F is non-constraining, the size of the largest city is m

Dλ,F
1 =

F−1(λa+ F (0)) and urban primacy takes value P(Dλ,F ) = m
Dλ,F
1 /(aλ).

Consider a distribution F that is a population replication of another distribution
F ′ which rescales the mass of agents by a factor of k > 1, so that the new mass of
agents is a = ka′ and the new distribution of types is F (t) = kF ′(t) for all t ∈ [0, a].
Given that urbanization is constant,

(F (m
Dλ,F
1 )− F (0))/a = λ = (F ′(m

Dλ,F ′
1 )− F ′(0))/a′,

so that we obtain m
Dλ,F
1 = m

Dλ,F ′
1 which implies the desired result

P(Dλ,F ) =
m
Dλ,F
1

aλ
< P(Dλ,F ′) =

m
Dλ,F ′
1

a′λ
.

Consider a distribution F that first-order stochastically dominates another distri-
bution F ′ on [0, a], so that F (t) = F ′(t) if t ∈ {0, a} and F (t) < F ′(t) if t ∈ (0, a).
Given that urbanization is constant,

F (m
Dλ,F
1 ) = aλ+ F (0) = F ′(m

Dλ,F ′
1 ),

so that we obtain m
Dλ,F
1 > m

Dλ,F ′
1 which implies the desired result P(Dλ,F ) >

P(Dλ,F ′).

Consider a distribution F that is an expansion of another distribution F ′ on [0, a],
so that (i) F (t) = F ′(t) if and only if t ∈

{
0,
∫ a

0
rdF (r), a

}
; (ii)

∫ t
0
F ′(r)dr >
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∫ t
0
F (r)dr for all t ∈ (0, a); (iii)

∫ a
0
rdF (r) =

∫ a
0
rdF ′(r). Given that urbanization is

constant,

F (m
Dλ,F
1 ) = aλ+ F (0) = F ′(m

Dλ,F ′
1 ),

which implies m
Dλ,F
1 < m

Dλ,F ′
1 if and only if λ < (F (m) − F (0))/a, where m̃ :=∫ a

0
rdF (r). Then, it is straightforward that

P(Dλ,F ) < P(Dλ,F ′) if λ < (F (m̃)− F (0))/a, while

P(Dλ,F ) > P(Dλ,F ′) if λ > (F (m̃)− F (0))/a,

which proves the desired result, where λ∗ = (F (m̃)− F (0))/a. �

Proof of Proposition 4

Given that F is non-constraining, the set of cost-efficient equilibria is character-
ized by the unique equilibrium D∗(µ1) with hierarchical structure for each size of
the largest city µ1 ∈ [0,mF ]. Take any such µ1 and consider the corresponding
cost-efficient equilibrium. By the nature of cost-efficient equilibria, the level of ur-
banization is

U(D∗(µ1)) = (F (µ1)− F (0)) /a.

Note that
dU(D∗(µ1))/dµ1 = f(µ1)/a > 0,

therefore a marginal increase in urbanization goes hand in hand with a marginal
increase in the size of the largest city. Then, the level of urban primacy

P(D∗(µ1)) = µ1/ (F (µ1)− F (0))

increases (decreases) with a marginal increase in the level of urbanization if

dP(D∗(µ1))/dµ1 = 1/ (F (µ1)− F (0))− µ1f(µ1)/ (F (µ1)− F (0))2 > (<)0,

which is equivalent to f(µ1) < (>) (F (µ1)− F (0)) /µ1 and directly leads to condi-
tion (1). �
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