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Abstract

The properties of nanoconfined water arise in direct response to the properties of

the interfaces that confine it. A great deal of research has focused on understanding

how and why the physical properties of confined water differ greatly from the bulk.

In this work, we have used all-atom molecular dynamics (MD) simulations to provide

a detailed description of the structural and dynamical properties of nanoconfined wa-

ter between two monolayers consisting of an archetypal ionic surfactant, cetrimonium

bromide (CTAB, [CH3(CH2)15N(CH3)3]
+ Br−). Small differences in the area per sur-

factant of the monolayers impart a clear effect on the intrinsic density, mobility and

ordering of the interfacial water layer confined by the monolayers. We find that as

the area per surfactant within a monolayer decreases, the mobility of the interfacial
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water molecules decreases in response. As the monolayer packing density decreases,

we find that each individual CTAB molecule has a greater effect on the ordering of

water molecules in its first hydration shell. In a denser monolayer, we observe that

the effect of individual CTAB molecules on the ordering of water molecules is hindered

by increased competition between headgroups. Therefore, when two monolayers with

different areas per surfactant are used to confine a nanoscale water layer, we observe

the emergence of non-centrosymmetry.

Introduction

The nature of confined water and the properties of the interfaces that confine it are inti-

mately linked. Confinement affects the structure and dynamics of water through interactions

between water and the interfaces of its confinement matrix.1–4 The physical properties of

confined water are strongly dependent on the thickness of the confined layer and the struc-

ture of the confining interfaces.5 The desire to understand the origins of the difference in

the physical properties of confined water as compared to its bulk properties has led to a

significant amount of research.6–19

Surfactant-covered aqueous interfaces are ubiquitous in everyday life. These interfaces

play a key role in various commercial products, where surfactants adsorb onto the surface of

bubbles or oil droplets to stabilize foams and emulsions. Examples of such foams and emul-

sions are commonly found in chemical products, pharmaceuticals, nutritional supplements,

detergents, cosmetics, and lubricants.20–31 In a majority of these applications, the ability of

surfactants to adsorb to a liquid interface and then encapsulate water in nanoscale environ-

ments play a key role. Therefore understanding the properties of water confined between

surfactant interfaces has significant relevance to these industrial products.

In this manuscript, we have used all-atom molecular dynamics (MD) simulations to inves-

tigate the structural and dynamical properties of nanoconfined water between two monolay-

ers consisting of an archetypal ionic surfactant, cetrimonium bromide ([CH3(CH2)15N(CH3)3]
+
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Br−), which we refer to here as CTAB. Previous studies have investigated the structure of

water near the interface of a CTAB monolayer through experiments32–37 and MD simula-

tions.19,34,38 However, it was only recently that Dhopatkar and co-workers studied a thin

layer of water under confinement by two CTAB monolayers using sum-frequency genera-

tion (SFG) spectroscopy.9 They commented on the intricate ordering of the confined water

layer, akin to that found in ice. Unexpectedly, their centrosymmetry-sensitive sum-frequency

generation (SFG) spectroscopic experiments indicated a breakdown in the symmetry of the

confined water layer, despite the two monolayers confining the water layer both being made

up of CTAB.

In this manuscript, we present an MD simulation study of water nanoconfined between

two CTAB monolayers with subtly different packing densities. By modeling the monolayer-

water interface using an intrinsic surface description, we determine how the structure and

dynamics of the nanoconfined water layer are affected by the structure of the monolayers

themselves. In doing so, we explore the emergence of non-centrosymmetry in the confined

water layer.

Methods

Simulation details

Four model systems have been simulated using all-atom classical molecular dynamics. Each

system consists of an approximately 3 nm thick layer of water confined between two CTAB

monolayers as depicted in Figure 1(a). Two symmetric systems have been simulated, where

both the upper and lower monolayers have the same lateral area per CTAB molecule (ACTAB):

one system with ACTAB = 52 Å2 (SYM52) and a second system with ACTAB = 49 Å2

(SYM49). Two asymmetric systems have also been simulated. The first (ASYM) has one

monolayer with ACTAB = 52 Å2 and the other monolayer has ACTAB = 49 Å2. The sec-

ond asymmetric system (ASYM2) has one monolayer with ACTAB = 55 Å2 and the other
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monolayer has ACTAB = 49 Å2. The areas per surfactant of these systems were chosen with

reference to the average values determined experimentally by Dhopatkar et al.9 Addition-

ally, a single monolayer system (MONO) with ACTAB = 49 Å2 and 21600 water molecules

(a water layer of approximately 6 nm) has been simulated for comparison with the confined

systems. Further details of the five simulated systems are summarized in Table 1.

Table 1: Details of the simulated systems. ML1 and ML2 refer to the two monolayers. nCTAB

refers to the number of CTAB molecules, nH2O the number of water molecules, and natoms

to the total number of atoms in the simulated system.

System nCTAB (ML1) nCTAB (ML2) nH2O natoms

SYM49 212 212 10400 57912
SYM52 200 200 10400 56400
ASYM 212 200 10400 57156
ASYM2 212 188 10400 56400
MONO 212 - 21600 76956

CTAB was parameterized with the CHARMM36 forcefield using CGenFF.39,40 Water was

treated with the CHARMM-modified TIP3P water model,41 which is the water model used

in the parameterization of the CHARMM36 forcefield42,43 and which has been employed

in various previous MD simulations of confined water.6,44,45 Parameters for the bromide

counter-anion were taken from Horinek et al46 however no excess salt was included in the

simulations. Initial configurations of each system were built using Packmol.47 The simula-

tion boxes (all with dimensions of 101.9× 101.9× 100 Å3) are periodic in the xy-plane but

not in the z-direction; any molecules that diffuse to the maximum extents of the simulation

box in the z-dimension are reflected back towards the monolayer system. All of the simula-

tions were performed with the LAMMPS molecular dynamics simulation engine.48 Energy

minimization by steepest descent (with energy tolerance of 10−4 kcal mol−1 and force toler-

ance of 10−6 kcal mol−1 Å−1) was first used to eliminate high-energy steric artefacts induced

when creating the systems. In order to maintain the well-defined ACTAB values, both equi-

libration and production simulations were performed in the canonical (NVT) ensemble49
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at 300 K using the Nosé-Hoover thermostat. Bonds and angles containing hydrogen were

constrained using the SHAKE algorithm50 in order to use a timestep of 2 fs. In both the

equilibration and production simulations, the van der Waals and Coulomb interaction cut-off

distances were set to 12 Å. The monolayer roughness, the width of the confined water layer,

and the orientation of CTAB molecules indicated rapid equilibration of the system within a

few nanoseconds. The production simulations were run for 200 ns; the final 150 ns of the

trajectories was used for the analyses presented in this work.

Analysis methods

Throughout the remainder of this manuscript, we present the results of the various analyses

for the SYM52 and ASYM2 systems. The results for the other systems are presented in

the Supplementary Information and discussed in the manuscript. Unless noted otherwise,

all trends that are mentioned are observed in all systems. All data analysis was performed

using Python code developed in-house, which makes use of the MDAnalysis package.51 The

visualizations were produced using VMD.52

Intrinsic surface of the monolayer-water interface

Figures 1(a) and (b) highlight the roughness and patchiness of the CTAB monolayers, as

previously observed in studies of CTAB monolayers at the air-water interface.19,34 These two

characteristics present a challenge when analyzing the structure of the confined water layer:

two water molecules at the same position in the z-dimension can experience entirely different

physical environments. One water molecule at a given z-position may be surrounded by other

water molecules in the water layer, away from the monolayer interface, while another at the

same z-dimension may have diffused past the CTAB headgroups into the hydrocarbon tail

region of the surfactants, or be at the air-water interface, given the rough and patchy nature

of the monolayers.

In order to faithfully describe the confined water at the interface with the monolayers,
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Figure 1: (a) Side projection and (b) top projection of ASYM system at equilibrium. Note
the roughness of the monolayers (a) and patchy domain structures they form (b). Carbon
atoms are colored gray, nitrogen red, bromide anions green and water is represented as the
continuous blue surface. Hydrogen atoms and terminal onium methyl groups not shown for
clarity.

discretized intrinsic surfaces were defined at the monolayer-water interfaces, using a 40× 40

grid corresponding to lateral resolution of approximately 2.6× 2.6 Å2. This grid resolution,

which is approximately the size of a single water molecule, provides a suitable description

of the monolayer-water interface. A characteristic interfacial peak in the water density is

clearly observable and the water density decays monotonically at the air-water interface (see

SI Fig. 5(c) and (d)). The lateral resolution of the surfaces is an order of magnitude less

than the area per surfactant values of the CTAB monolayers, meaning that we characterize

the surface in sufficient detail. As we show in the supplementary information (SI Fig. 1),

using a much finer 60 × 60 grid does not correctly partition the monolayer-water and air-

water interfaces, showing a physically unrealistic decay of the intrinsic water density at the

air-water interface. A significantly coarser grid, such as a 20× 20 grid, does not encapsulate

the roughness of the monolayer-water interface in sufficient detail and does not partition

monolayer-water and air-water interfacial contributions.

We chose to develop this bespoke intrinsic surface method, rather than using a method

employing specific surfactant headgroup atoms as anchor points53 or a probe-based method54,

since it allows us to naturally partition the intrinsic surface into the monolayer-water and
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air-water interfaces. Viewing either monolayer from the middle of the confined layer, the

z-position of the monolayer-water intrinsic surface is defined for each grid box as the CTAB

atom found protruding furthest into the confined water layer in that given grid box. If no

CTAB atom in the monolayer is found (in gaps between the monolayer domains), then the

average z-position of the 8 adjacent grid boxes is used instead, iterating until the whole

interface is described. The intrinsic density of the water layer is then written as

ρ̃(z) ≡ 1

AIS

〈∑
i

δ[z − (zi − ξ(x, y))]

〉
(1)

where zi is the z-position of the oxygen atom of water molecule i, ξ(x, y) is the z-position

of the intrinsic surface, and AIS is the lateral area of the intrinsic surface.

Monolayer structural properties

We define monolayer roughness MLroughness as the average standard deviation of the z-

positions of the headgroup nitrogen atoms. The average CTAB tilt angle, θCTAB
tilt , is the

angle formed by the vector connecting the onium nitrogen atom in the headgroup to the

terminal carbon in the alkyl chain with respect to the xy-plane. A value of θCTAB
tilt = 0◦ cor-

responds to a CTAB molecule lying flat along the water-monolayer interface, and θCTAB
tilt = 90◦

corresponds to a CTAB molecule oriented along the monolayer normal, with its headgroup

interacting with the confined water layer. The fraction of the intrinsic surface actually cov-

ered by CTAB molecules, MLcoverage, is found using the partitioning of the intrinsic surfaces

into air-water and monolayer-water contributions described previously.

Dynamics of the confined water molecules

We consider the van Hove self-correlation function (VHSCF) of water molecules, with a lag

time of τ = 20 ps, as a measure of the mobility of water. The intrinsic VHSCF profile,

G̃s(z, τ), of the confined water layer is calculated as
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G̃s(z, τ) ≡

〈∑
i

|ri(t+ τ)− ri(t)|δ[z − (zi − ξ(x, y, t))]

〉
. (2)

Here ri(t) is the position of a given water oxygen atom at time t. Using this description,

rather than time-averaged diffusion coefficients, provides detailed spatial resolution as a

function of z.

Hydrogen bonding in confined water

The number of hydrogen bonds that a water molecule forms is referred to as its degree of

hydrogen bonding. We calculate the intrinsic average hydrogen bonding degree profile, ñHB,

as

ñHB(z) ≡

〈∑
i

nHB,i δ[z − (zi − ξ(x, y))]

〉
, (3)

where nHB,i is the degree of hydrogen bonding of water molecule i at a given time. The

geometric criteria used to determine whether two water molecules are hydrogen-bonded are

rOH < 2.45 Å, rOO < 3.60 Å and θOHO < 120◦. Here, rOH is the distance between the

donor-hydrogen and acceptor-oxygen, rOO is the distance between the acceptor-oxygen and

donor-oxygen, and θOHO is the angle between the vectors connecting the donor-hydrogen

and acceptor-oxygen, and the donor-oxygen and acceptor-oxygen. These cutoff distances

correspond to the position of the first minimum in the respective pair distribution functions

(SI Fig. 2(e) and (f)).

Intrinsic orientational distribution of water molecules

The orientation of the water molecules is described by the angle between the z unit vector

(ẑ, normal to the monolayer planes) and the normalized vector that bisects the water bond

angle r̂i = (rOH1 + rOH2)/(|rOH1 + rOH2|) (see SI Fig. 3), as used in previous studies.8,55 The

intrinsic density-weighted orientational distribution is then calculated as
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Γ̃(1)(z) ≡ 1

AIS

〈∑
i

ẑ · r̂i δ[z − (zi − ξ(x, y))]

〉
, (4)

while the second moment, which describes whether water molecules on average lie in the

xy-plane (Γ̃(2) < 0) or orthogonal to it (Γ̃(2) > 0), is given as

Γ̃(2)(z) ≡ 1

AIS

〈∑
i

3(ẑ · r̂i)2 − 1

2
δ[z − (zi − ξ(x, y))]

〉
. (5)

Monolayer environment effects on the confined water molecules

We quantify the effects of local environment on the orientation of confined water molecules

by using the coordination numbers of different atoms. The pair distribution function of two

atomic species, a and b, is defined as

g(r)a,b =
ρ(r)a,b
〈ρb〉

, (6)

where ρ(r)a,b is the density of atom species b at a distance r from atom species a, and

〈ρb〉 is the average density of type b atoms. The coordination number of b around a is then

usually defined as n(rmin)a,b = 4π
∫ rmin

0
dr r2g(r)a,b, where rmin is the distance at which the

first minimum occurs in the pair distribution function. In the case of the onium-onium pair

distribution function, g(r)N+,N+ , the inherent disorder of the monolayers is reflected in its

complex features, with a point of inflection at r = 7.5 Å and a large value of rmin = 12.6 Å

(see SI Fig. 2(a)). Therefore, to ensure that the coordination number describes only the

local environment of CTAB headgroups, we define the inter-headgroup coordination number

n(rmax)N+,N+ = 4π
∫ rmax

0
dr r2g(r)a,b, where rmax = 8.3 Å is the distance at which the global

maximum occurs in the pair distribution function (most probable inter-headgroup distance).

The positions of the first minimum and global maximum of each pair distribution function

are the same over the ACTAB range considered in this work. We use the rmax value of the

onium-onium pair distribution function to calculate the probability distribution of the inter-
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headgroup coordination number p(nN+,N+). This is found by evaluating the number of other

headgroup onium atoms within the distance rmax from each headgroup onium atom in turn.

Results and discussion

Equilibrium properties of the CTAB monolayers

The physical characteristics of the CTAB monolayers in the different systems are detailed in

Table 2. The average tilt angle of the CTAB molecules increases (i.e. CTAB molecules are

more vertically orientated with respect to the water layer) with decreasing ACTAB (increased

packing density). The range of θCTAB
tilt values determined here are lower than those determined

experimentally.9 This finding is consistent with the work of Yazhgur and co-workers: they

have shown that CTAB monolayers are disordered, with a significant portion lying in the

plane of the monolayer-water interface even at higher packing densities than those considered

in this work.34 The monolayer roughness also increases with decreasing ACTAB (increased

packing density). There are clear differences between the roughness of the monolayers in the

two asymmetric systems, most notably in ASYM2, in which the difference in ACTAB of the

two monolayers is greater. In the symmetric systems, the roughness of the two monolayers is

approximately the same. The fraction of the water surface area identified as being covered by

each CTAB monolayer increases from 0.88 to 0.90 with increasing monolayer density. There

are no freely solvated CTAB molecules at equilibrium and CTAB molecules do not diffuse

between the monolayers during the simulations. The average thickness of the confined water

layer is approximately the same for all four confined systems (between 2.97 and 3.00 nm).

This was calculated by evaluating the average volume encompassed between the two intrinsic

surfaces over the course of the simulation and dividing by the (fixed) lateral surface area.

SI Figure 4 shows the probability distribution of inter-headgroup onium-onium coordina-

tion number in SYM52 and ASYM2. As packing density decreases (ACTAB increases), lower

values of the inter-headgroup coordination number (nN+,N+) increase in probability while
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Table 2: Equilibrium physical properties of the CTAB monolayers: the average angle of
CTAB molecules with respect to the monolayer plane (θCTAB

tilt ), the roughness of monolayers
(MLroughness) and the fraction of the total water-monolayer interface covered by the monolayer
domains (MLcoverage). The uncertainty in the mean values of θCTAB

tilt reported here is described
by their standard errors, which is 0.02 ◦ in all cases. The range of MLroughness and MLcoverage

values are described by their standard deviations, which are 0.3 Å and 0.01 respectively for
all values reported. The ACTAB values are included for reference.

System ACTAB [Å2] θCTAB
tilt [o] MLroughness [Å] MLcoverage

ML1 ML2 ML1 ML2 ML1 ML2 ML1 ML2
SYM49 49 49 46.5 46.5 5.1 5.1 0.90 0.90
SYM52 52 52 45.4 45.3 4.7 4.8 0.89 0.89
ASYM 52 49 45.5 46.2 4.7 5.1 0.89 0.90
ASYM2 55 49 44.1 46.2 4.4 5.1 0.88 0.90

higher values of nN+,N+ decrease. Even for small differences in ACTAB, there are quantifiable

differences in the structure of the monolayers.

Intrinsic density of the confined water

The interfacial density of water in the SYM52 and ASYM2 systems, as found using the

intrinsic surface approach previously described, is shown in Figure 2. In this section, and

elsewhere, profiles with respect to both monolayers in the SYM52 system are both shown

overlaid. The instantaneous monolayer-water interface is defined at z = 0. Values of z > 0

correspond to the space taken up by the confined water layer between the two monolayers,

and values of z < 0 refer to the region of space ‘above’ the interface, where the alkyl

tails of the surfactants are found. We use this definition for both interfaces, such that the

distributions can be overlaid to allow straightforward comparison.
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(a) SYM52
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(b) ASYM2
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Figure 2: Intrinsic density of water in (a) SYM52 and (b) ASYM2. The results for the other
confined systems can be found in SI Fig. 5(a) and (b). Note that in (a), results with respect
to both monolayers are shown, which almost perfectly overlap.

We see that both systems in Figure 2 show broadly similar intrinsic density profiles, as

expected, given the small differences in the area per surfactant (ACTAB) between the studied

monolayers. In all systems, we observe a peak in the intrinsic density close to the mono-

layer interface at z = 2.85 Å. This indicates that water molecules are highly ordered close

to the interface due to attractive electrostatic interactions between the cationic monolayer

headgroups and the polar water oxygen atoms. Numerous studies of hydrophilic sodium

dodecyl sulphate (SDS) surfactant monolayers at the air/water interface have revealed mul-

tiple peaks in the intrinsic density of water.55–57 Bekele and Tsige have recently shown that

there are also multiple peaks in the density of water close to a polystyrene surface.58 While

CTAB’s quaternary headgroup is cationic, its electrostatic interaction efficacy with water is

somewhat negated by the presence of its three methyl groups, which sterically hinder the

close association between water and the center of the polar headgroup.

The intrinsic density of water plateaus in the middle of the confined water layer (z > 10

Å). At the monolayer-water interface, the intrinsic water density does not continue to decay

monotonically. There is a local minimum in the intrinsic density at z ≈ 0 due to the large

volume of space excluded by the headgroups. We then observe multiple local maxima in
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the region z < 0 (the larger of those at z ≈ −4 Å, with another at z ≈ −6 Å). This shows

that water molecules are able to permeate past the monolayer headgroups, as has been

previously observed for SDS monolayers.55–57,59 This behavior is not seen at the air-water

interface, where the water intrinsic density decays monotonically,2 as shown in SI Figure 5(c)

and (d) here. A hard confinement matrix, such as graphite4 or kaolinite,8 does not allow

permeation of water through the interface to yield the secondary peak. The permeation

of water past the monolayer headgroups is probably aided by the bulky CTAB headgroups,

whose mutually repulsive Coulombic interactions require mediation by water and counterions

to form a stable monolayer. This means that some water molecules come into contact with

the hydrophobic tails of the CTAB monolayers. The surface tension of water is sufficient

to prevent water molecules from moving significantly past the headgroups at the air-water

interface, which suggests that water molecules are unlikely to interact strongly with a neutral

substrate, as in the experiments of Dhopatkar and co-workers.9

We note that in a symmetric system, shown in Figure 2(a), the two intrinsic densities are

identical. There are clear differences between the two intrinsic density profiles calculated for

the asymmetric system shown in Figure 2(b). While there is a very modest difference in the

main peaks at z = 2.85 Å, there are clearer differences at the local minimum at z = 0, where

the more densely packed monolayer (ACTAB = 49 Å2, orange curve) excludes more water

molecules due to the greater volume taken up by the larger number of CTAB headgroups

present at the monolayer-water interface. By partitioning the air-water and monolayer-

water interfaces (SI Fig. 5(c) and (d)), we see that more water molecules are found in the

hydrophobic region ‘above’ the denser monolayer. This suggests that the denser monolayer

more effectively traps water molecules ‘above’ the monolayer-water interface. The cause of

this observation is now probed by examining the intrinsic densities of N+ atoms in the CTAB

headgroups (Fig. 3) and the bromide counterions (Fig. 4).

The large, sharp peak in the intrinsic surfactant onium (N+) density profiles shown in

Figure 3 confirms that most of the headgroups are found at the water-monolayer interface.
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The extreme sharpness of the peak is a consequence of our definition of the intrinsic surface.

As expected, we see that the sizes of the main peak and secondary maximum increase with

the number of CTAB molecules in the monolayer. Since we do not use the headgroup atoms

as predefined anchor points when building the intrinsic surface, we observe a small secondary

maximum in the intrinsic onium density at z ≈ −8 Å (a more negative value of z than the

secondary maxima of the water density profiles), which is highlighted in the inset figures in

Figure 3. This means that a small percentage of CTAB headgroups are stacked away from

the monolayer-water interface at the same lateral position as other CTAB headgroups. This

observation can be quantified by integrating the secondary peak. The results confirm that

a higher percentage of the headgroups are found stacked away from the monolayer-water

interface in denser monolayers. The percentage of headgroups that make the secondary peak

in each monolayer are as follows: 9.0% (ML1) and 9.1% (ML2) in SYM49, 7.2% (ML1) and

7.3% (ML2) in SYM52, 7.3% (ML1) and 9.0% (ML2) in ASYM, and 5.6% (ML1) and 9.1%

(ML2) in ASYM2.

(a) SYM52
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(b) ASYM2
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Figure 3: Intrinsic onium (N+) density in (a) SYM52 and (b) ASYM2. Results for the other
systems can be found in SI Fig. 6. The inset figures highlight the small, secondary peak in
the intrinsic density centered at z ≈ −8 Å.

The strong peak at z ≈ 4 Å in intrinsic bromide densities shown in Figure 4 indicates

that a large proportion of bromide anions form direct ion pairs with the CTAB headgroups.
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There is also significant bromide density at z < 0, as for the case of water. The bromide

intrinsic densities are identical with respect to the two monolayers in SYM52. However, in

ASYM2, a stronger main peak is observed in the case of the more densely packed monolayer

(orange curve). More cationic headgroups are available to interact with bromide anions in

the denser monolayers. The difference in the bromide intrinsic densities is more apparent

than for water, which suggests that bromide out-competes water for interactions with the

monolayer headgroups. There is also greater onium density in the range z < 0 for the denser

monolayer (orange curve). This suggests that denser monolayers trap more water molecules

and bromide ions in the z < 0 range to mediate the greater repulsion between more densely

packed surfactant headgroups. While a majority of the bromide counterions are bound to

the cationic headgroups, a significant proportion are not bound (17.0% in SYM49, 17.6% in

SYM52, and 18.2% in ASYM2 and SYM52). This partial ion-pair dissociation is observable

in the bromide intrinsic density, which remains above zero in the middle of the confined

water layer.

(a) SYM52

15 10 5 0 5 10 15
z [Å]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

(z
)[

Å
3 ]

ACTAB = 52 Å2

(b) ASYM2
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Figure 4: Intrinsic bromide density in (a) SYM52 and (b) ASYM2. Results for the other
systems can be found in SI Fig. 7.
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Dynamics of the confined water

The CTAB monolayers greatly affect the dynamics of the confined water. Figure 5 shows the

intrinsic van Hove self-correlation function (VHSCF) profiles for the SYM52 and ASYM2

systems. The largest VHSCF values, corresponding to the freest motion, are found in the

center of the confined water layers, where water molecules move unhindered by the monolay-

ers. The VHSCF values decrease moving towards the interface with the monolayers, where

both steric clashes and attractive intermolecular interactions between water molecules and

the surfactant headgroups restrict the movement of water. The VHSCF minimum occurs at

z ≈ −4 Å, behind the monolayer-water interface. SI Figure 5(c) and (d) show that at z = 0,

a higher proportion of water is found at the air-water interface than at the monolayer-water

interface. The water at the air-water interface is able to move freely, unencumbered by the

surfactant headgroups. The VHSCF continues to decrease moving towards its global mini-

mum at z ≈ −4 Å, where more water is found ‘above’ the monolayer-water interface than

at the air-water interface. As well as steric clashes with the monolayers and attractive in-

teractions with the surfactant headgroups, the secondary maximum in the bromide intrinsic

densities (z ≈ −4 Å) suggests hydration complexes formed around bromide ions contribute

to the continued decrease in water mobility past the monolayer-water interface. The water

molecules in this secondary region are therefore, to a degree, trapped ‘above’ the monolayer-

water interface. The VHSCF plateaus in the middle of the confined water layer (z ≈ 15 Å),

while in MONO, the VHSCF continues to increase until z ≈ 20 Å (see SI Fig. 8(c)). The

motion of the water molecules close to the interface is the same in the MONO system as in

the confined systems with the same area per surfactant. However, the motion of the water

molecules in the center of the confined water layer is hindered compared to that observed at

similar distances from the interface in the unconfined system, which demonstrates that the

effects of confinement extend away from the interfaces into the middle of the confined water

layer.
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Figure 5: Intrinsic van Hove self-correlation function distributions for water in (a) SYM52
and (b) ASYM2. The results for the other systems can be found in SI Fig. 8.

The symmetric systems show identical VHSCF profiles with respect to both monolayers

but a clear difference is seen in the asymmetric systems. The motion of the water molecules

is more hindered by the denser monolayer (orange curve in Fig. 5(b)). This difference is not

just observed close to the monolayer interface but also extends into the middle of the confined

water layer, with the largest difference observed in the water molecules found ‘above’ the

CTAB headgroups.

To link the mobility of the confined water to its underlying structure, we have determined

the intrinsic average degree of hydrogen bonding (ñHB) throughout the confined water (see

SI Fig. 9). The hydrogen bonding structure of water observed in the middle of the confined

water layer (ñHB ≈ 3.6) is disrupted by the monolayers. ñHB falls steeply to a value of ñHB ≈

2.7 moving from the middle of the confined layer towards the position of the primary peak

in the intrinsic density of water (z = 2.25 Å), before remaining approximately constant until

z = 0, where it again begins to decrease. At z = −5 Å, ñHB ≈ 2.3, retaining approximately

60% of the magnitude of ñHB in the middle of the confined layer. Similar observations have

been made for the hydrogen bonding of water at the interface with amorphous silica60 and

polystyrene,58 whereas water at a hard interface, such as crystalline silica60 and graphene,61
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exhibits a single, much sharper drop in the degree of hydrogen bonding. The disruption

of water-water hydrogen bonding corresponds to the reduction in water mobility at the

monolayer-water interface. A more densely packed monolayer imparts a greater loss of

water-water hydrogen bonding (and with it, a greater associated drop in water mobility).

As such, non-centrosymmetry clearly emerges in ñHB in the asymmetric systems.

ñHB does not reach its maximum value until the middle of the confined layer and in the

unconfined system, ñHB does not recover to its maximum value (ñHB ≈ 3.6, as for the confined

systems) until a distance ≈ 20 Å from the monolayer-water interface. The distance taken for

ñHB to recover to its maximum value is significantly greater than has been previously observed

for a range of different interfaces, such as α-quartz, β-cristobalite and amorphous silica60 (in

all three systems, ñHB of bulk water is reached at ≈ 4 Å from the interface), polystyrene58

(≈ 6 Å), and graphene61 (≈ 10 Å). We expect that the roughness and patchiness of the CTAB

monolayers, coupled with the high charge density at the interface, leads to the long-ranged

effects on ñHB in the confined water layer seen here.

Orientation of the confined water layer

The CTAB monolayers impart a large effect on the orientation of water. Figure 6 shows

the intrinsic orientational profiles of SYM52 and ASYM2. The order parameters describing

the angle between the water bond angle bisection vector and the z-axis, Γ̃(1)(z), and its

second moment, Γ̃(2)(z), are both shown. There is a peak at z = 2.25 Å in Γ̃(1)(z) in

all systems, which corresponds to a small local maximum in the VHSCF distributions. In

Figure 6(b), a slightly stronger peak in Γ̃(2)(z) is observed for the more densely packed

monolayer (ACTAB = 49 Å2). This observation is explored further in the next section. Γ̃(1)(z)

decays to zero more quickly than in the unconfined single monolayer system (see SI Fig.

10(c)), showing once more that effects of confinement act throughout the water layer. This

observation, in tandem with the reduced VHSCF values for water molecules in the confined

layer compared to those at an analogous distance from the MONO surfactant interface with
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the same area per surfactant, implies that the forced reordering of water molecules in the

middle of the confined system hinders their motion. The Γ̃(2)(z) profiles shown in Figure 6

show that the orientation of water molecules with respect to the interfacial plane is only

weakly influenced by interactions with the monolayers.
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Figure 6: Intrinsic orientational profiles of the confined water in SYM52 (a) and ASYM2 (b).
First moment (Γ̃(1)(z), solid lines) and second moment (Γ̃(2)(z), dashed lines). The results
for the other systems can be found in SI Fig. 10.

Effect of local CTAB environment on interfacial water layer

We previously observed that at intrinsic distances corresponding to the main peaks in the

density of the confined water layer, the more densely packed monolayer imparts stronger

orientational effects (Fig. 6). SI Figure 11 shows the average orientation of water molecules

that make up the first hydration shell of CTAB molecules, as a function of the CTAB tilt

angle (these angles are depicted in SI Fig. 3); the average orientation of the water molecules

in the first hydration layer has a clear dependence on the tilt angle of CTAB molecules

with which they interact. Water molecules are still ordered by CTAB molecules that lie

parallel to the monolayer-water interface (θCTAB
tilt = 0◦) to about two-thirds of the extent

of those interacting with vertically aligned CTAB molecules (θCTAB
tilt = 90◦). The large
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size of the cationic CTAB headgroup means it can still efficiently order water molecules

even when it is not well-ordered. In contrast to the overall orientational ordering observed

previously in Figure 6, we now see that on a per-headgroup basis, the less densely packed

monolayer imparts a stronger average ordering effect on water molecules in its first hydration

shell. This implies that water molecules in the first hydration layer interact with multiple

surfactant headgroups simultaneously, with the greater competition for water molecules in

the more densely packed monolayers mitigating their overall ordering efficacy. So, although

the overall orientational profiles of the ASYM2 system appear quite similar for monolayers

of different packing density (see Fig. 6(b)), the contribution per surfactant headgroup on

the ordering of water molecules is markedly different between such monolayers. The greater

ordering efficacy of the headgroups in the less dense monolayer is counteracted by the greater

proportion of the water layer exposed to air at its interface.

To further probe the origins of this observation, we consider the effects of the inter-

headgroup coordination number of the CTAB molecules (nN+,N+) on the average CTAB

tilt angle and the average water dipole tilt angle in Figure 7(a) and (b). nN+,N+ acts as

a measure of the local CTAB headgroup environment, with lower coordination numbers

corresponding to CTAB molecules found at the edge of the patchy domain structures that

make up the monolayers, while CTAB molecules with greater coordination lie in the mid-

dle of the domains, surrounded by other CTAB molecules. A clear trend is revealed: a

more highly coordinated headgroup on average gives rise to a more vertically aligned CTAB

molecule. An analogous trend exists in turn for the water molecules: a more highly coordi-

nated CTAB molecule imparts greater orientational ordering on its solvating water molecules.

From this we infer that the local ordering imparted on CTAB molecules from neighboring

CTAB molecules is in turn transferred to the solvating water molecules. Interestingly, we see

that although the average CTAB tilt angle is greater for a more densely packed monolayer,

the average water angle is greater at the less densely packed monolayer. We also note that

water ordering effects appear to saturate when nN+,N+ = 5. These two observations imply
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that competition for given water molecules between headgroups outweighs the effects of in-

dividual CTAB ordering in highly coordinated CTAB environments. Contributions from a

single CTAB molecule on the water ordering are greater in a less densely packed monolayer

but the greater total number of CTAB molecules in the denser monolayer results in a slightly

greater overall ordering of water molecules at the interface (Fig. 6).
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Figure 7: Average water tilt angle (θwatertilt , dashed lines) and average CTAB tilt angle (θCTAB
tilt ,

solid lines) as a function of inter-headgroup coordination number in SYM52 (a) and ASYM2
(b). Average headgroup-water coordination number (dashed lines) and average headgroup-
bromide coordination number (solid lines) in SYM52 (c) and ASYM2 (d).

Additionally, the coordination numbers of bromide ions and water molecules around
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the onium headgroup were calculated as a function of nN+,N+ (Figs. 7(c) and (d)). Bro-

mide coordination numbers are greater than 1 in all cases and increase with the headgroup-

headgroup coordination number. Respectively, this indicates that bromide ions are shared

between headgroups and play a key role in bridging between headgroups to maintain the

patchy monolayer structures (by counteracting Coulombic repulsion between the cationic

headgroups). We see higher water and lower bromide coordination numbers for the lower

density monolayer (purple lines in Fig. 7(d)) for all headgroup-headgroup coordination val-

ues. More water molecules can surround each CTAB headgroup in a less dense monolayer

as there is less competition for space at the interface (fewer counterions and headgroups

are present). This presents a quite different picture of water orientation at monolayers of

slightly different surface packing density. Since these water molecules face less competition

for interactions between different headgroups and counterions in a less dense monolayer, they

are more strongly oriented towards each individual headgroup even though there are more

water molecules in the first solvation sphere.

Conclusions

In this work, we have quantified in detail the structure and dynamics of water layers nanocon-

fined between CTAB monolayers. We have shown that small changes in the packing density

of the monolayers lead to significant changes in the properties of water, not only at the

interface with the monolayers, but also throughout the entire confined water layer. We

have characterized a clear emergence of non-centrosymmetry in water layers confined by

two monolayers of subtly different packing densities. Our bespoke intrinsic surface method

has resolved the properties of the confined water, fully accounting for the roughness and

patchiness of the monolayers themselves. The intrinsic density of water, calculated using the

aforementioned intrinsic surface, shows that a greater amount of water is trapped ‘above’ the

CTAB headgroups of a more densely packed monolayer. This population of water ‘above’ the
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interface has recently been indicated experimentally by SFG spectroscopy.37 Additionally,

our intrinsic surface method identified that a significant proportion of CTAB headgroups sit

≈ 8 Å ‘above’ the main monolayer-water interface.

We have shown that water trapped ‘above’ the monolayer-water interface is less mobile

than water at the monolayer-water interface itself. We rationalized this observation by parti-

tioning the overall intrinsic water density into monolayer-water and air-water contributions.

The effects of the CTAB monolayers on the mobility and hydrogen bonding structure of

water extend throughout the entire confined layer. When comparing the confined system to

an unconfined analogue, firstly, we see that the mobility of the confined water layer never

reaches the mobility of bulk water and secondly, that the water reorientation length scale

within the layer is enforced by its confinement. In the unconfined system, the distance from

the monolayer-water interface at which no net orientation of water is observed occurs 5 Å

further from the monolayer-water interface than in the confined systems.

Even for the small differences in ACTAB studied in this work, we have observed clear

effects on the structure and dynamics of the confined water layer. There is a clear emer-

gence of non-centrosymmetry throughout the entire confined water layer with regard to its

structure (especially regarding the amount of water trapped ‘above’ the headgroups, its in-

trinsic orientation, and average degree of hydrogen bonding) and dynamics (VHSCF profile)

in systems where the water layer is confined by monolayers of subtly different areas per sur-

factant. We then moved our focus to look at the effects of the CTAB monolayers on water

on a per-headgroup basis. This revealed that the less densely packed monolayers both have

more water molecules in their first hydration shell but also impart a greater net orientational

effect upon them, due to decreased competition effects between headgroups for interactions

with the individual water molecules, as indicated by SFG experiments performed by Nguyen

et al.32 This is despite the CTAB molecules themselves being less ordered in a less dense

monolayer. So while the overall orientational profiles for the asymmetric systems (Fig. 6(b))

look reasonably similar with respect to the two monolayers, they are the product of water
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molecules experiencing a different range of physical environments at the two different mono-

layers. Considering the surfactant packing density dependence of water mobility, hydrogen

bonding, and orientation throughout the whole confined water layer provides atomistic in-

sight into the interesting SFG spectroscopy results recently reported by Dhopatkar et al.9
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(54) Pártay, L. B.; Hantal, G.; Jedlovszky, P.; Vincze, Á.; Horvai, G. A New Method for
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