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A B S T R A C T

Objective: The soluble urokinase plasminogen activator receptor (suPAR) has potential as a prognosis and se-
verity biomarker in several inflammatory and infectious diseases. In a previous cross-sectional study, suPAR
levels were shown to reflect damage accrual in cases of systemic lupus erythematosus (SLE). Herein, we eval-
uated suPAR as a predictor of future organ damage in recent-onset SLE.
Methods: Included were 344 patients from the Systemic Lupus International Collaborating Clinics (SLICC)
Inception Cohort who met the 1997 American College of Rheumatology classification criteria with 5-years of
follow-up data available. Baseline sera from patients and age- and sex-matched controls were assayed for suPAR.
Organ damage was assessed annually using the SLICC/ACR damage index (SDI).
Results: The levels of suPAR were higher in patients who accrued damage, particularly those with SDI≥2 at 5
years (N = 32, 46.8% increase, p = 0.004), as compared to patients without damage. Logistic regression analysis
revealed a significant impact of suPAR on SDI outcome (SDI≥2; OR = 1.14; 95% CI 1.03–1.26), also after
adjustment for confounding factors. In an optimized logistic regression to predict damage, suPAR persisted as a
predictor, together with baseline disease activity (SLEDAI-2K), age, and non-Caucasian ethnicity (model
AUC = 0.77). Dissecting SDI into organ systems revealed higher suPAR levels in patients who developed mus-
culoskeletal damage (SDI≥1; p = 0.007).
Conclusion: Prognostic biomarkers identify patients who are at risk of acquiring early damage and therefore
need careful observation and targeted treatment strategies. Overall, suPAR constitutes an interesting biomarker
for patient stratification and for identifying SLE patients who are at risk of acquiring organ damage during the
first 5 years of disease.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease with
unpredictable disease course, diverse manifestations, and fluctuating
disease activity. A deficiency in the system for disposing of dying cells,
the production of antinuclear autoantibodies (ANA), neutrophil extra-
cellular trap (NET) formation, activation of type I interferon (IFN)
signalling, and subsequent tissue damage appear to be important in the
pathogenesis of SLE, which is often manifested as rash, arthritis, and
nephritis. In many patients, the persistent inflammation and drug-re-
lated side-effects eventually cause permanent organ damage, which is
strongly linked to mortality [1–3].

Apart from a few useful laboratory measures to assess SLE disease
activity, i.e., specific autoantibodies and complement proteins, bio-
markers that indicate the prognosis and the risk of acquiring damage
over time are sparse, possibly due to the heterogeneity of the disease.
Furthermore, it is challenging to distinguish symptoms caused by active
disease from those that arise following permanent organ damage [4]. C-
reactive protein (CRP), which is the standard biomarker of inflamma-
tion, gives limited information about SLE disease activity, possibly due
to negative regulation by IFN-α, in combination with a CRP poly-
morphism that is more frequently found in patients with SLE [5,6].
Nevertheless, an association between CRP levels and future damage
accrual in patients with SLE has been suggested [7,8]. Other biomarkers
have not, in a convincing way, been associated with prediction of organ
damage. ANAs have yielded ambiguous results [1,9] and osteopontin
was of limited value [10].

The membrane-bound urokinase plasminogen activator receptor
(uPAR; CD87) is a multi-ligand receptor that interacts with urokinase-
type plasminogen (uPA; also known as urokinase), thereby regulating
fibrinolysis and tissue remodelling [11]. Furthermore, uPAR has affinity
for integrins and vitronectin, through which it coordinates cell migra-
tion and adhesion to the extracellular matrix [12]. Of interest for the
pathogenesis of SLE, uPAR appears to regulate the phagocytosis of
apoptotic cells, i.e., efferocytosis [13–15]. Proteolytic cleavage of uPAR
generates the soluble form, suPAR [11]. Increased levels of suPAR have

been implicated in the development of renal dysfunction, possibly
through a direct effect on podocyte behaviour [16]. Studies on uPAR
expression suggest that it is present on endothelial cells, smooth muscle
cells, and various immune cells [17–20] and suPAR levels are found to
correlate with leukocyte count [8,21,22].

The potential of suPAR as a biomarker that can be used in routine
clinical practice is strengthened by: 1) its in vitro stability in serum/
plasma over time and during repeated freeze-thaw cycles [23]; 2) its
insensitivity to diurnal variations [21]; and 3) the absence of poly-
morphisms in the uPAR gene promoter that affect the baseline suPAR
levels [24]. Furthermore, suPAR is under evaluation as a marker of
decreased survival in acute medical settings [25].

Given the linkages between suPAR levels and the severity of in-
flammatory diseases [16,26–29], we previously investigated the po-
tential of suPAR as a biomarker in SLE [8,30]. We found that suPAR,
adjusted for leukocyte count, was increased in SLE and that levels re-
flected established organ damage [8]. In addition, significantly higher
levels of suPAR occurred in patients with a higher score on the Systemic
Lupus International Collaborating Clinics (SLICC)/American College of
Rheumatology (ACR) Damage Index (SDI) in the 2–5 years following
their inclusion, as compared with patients without an increase in the
SDI score [30], thereby suggesting a predictive value of suPAR.

The aim of this study was to investigate if suPAR predicts future
organ damage accrual in a longitudinal, international, inception cohort
of recent-onset SLE cases, unbiased from previous organ damage.

2. Materials and methods

2.1. The SLICC inception cohort

The Systemic Lupus International Collaborating Clinics (SLICC)
Inception Cohort (N = 1848) was recruited at 33 centres in 11 coun-
tries in North America, Europe, and Asia during the period 2000–2011,
as previously described [1,31]. All the clinical data were submitted to
the coordinating centre at the University of Toronto, and the patients
were reviewed annually. Laboratory tests for evaluating disease activity
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and the recording of organ damage parameters were performed locally.
During the first 5 years of follow-up, 3.0% of the patients were de-
ceased, 14.9% were lost to follow-up for other reasons, and 24.8% had
not yet reached 5 years of follow-up at the time of data extraction.

This study was approved by the SLICC data coordinating centre's
institutional Research Ethics Board at the University Health Network
(File#: 00-0279). At each of the 33 participating centres, Ethics Review
Boards approved the SLICC Inception Cohort study.

2.2. Patients and controls

The study population (N = 344; Table 1) consisted of a sub-
population from the SLICC Inception Cohort that had 5 years of annual
follow-up data, no organ damage at baseline, and baseline serum
sample availability (Fig. 1). All the cases were classified according to
the ACR 1997 (ACR-97) criteria [32] and enrolled within 15 months
(median, 5 months; range, 0–15 months) of SLE diagnosis. Use of cor-
ticosteroids, antimalarials and/or immunosuppressants (e.g. cyclopho-
sphamide, azathioprine, mycophenolate mofetil, methotrexate or cy-
closporine) by the time of enrolment was recorded. The Systemic Lupus
Erythematosus Disease Activity Index 2000 (SLEDAI-2K) [33] and SDI
[34] scores were assessed at each annual visit. At baseline, peripheral
venous blood was drawn from each individual. Sera were stored at
−70 °C until analysed.

Sera from population-based controls (Table 1), matched 1:1 for sex
and age, included in the Swedish Epidemiological Investigation of Rheu-
matoid Arthritis (EIRA) cohort served as controls for the suPAR analyses
[35]. All the patients and controls provided written informed consent.

2.3. Clinical and laboratory data

SLEDAI-2K calculation was performed locally at each participating
centre. A cumulative SLEDAI-2K score was calculated based on the
addition of the SLEDAI-2K score at every yearly visit from inclusion
(baseline) to year 5. The cumulative SLEDAI-2K score was therefore
based on 6 visits and was available for 337 of the patients (98%). The
level of creatinine, which was analysed at Linköping University hos-
pital, Sweden, was used to calculate the estimated glomerular filtration
rate (eGFR) according to the MDRD 4-Variable Equation [36], or the
Bedside Schwartz equation for patients younger than 18 years (N = 8)
[37]. In addition, all the baseline samples were analysed for ANA fine-
specificities using addressable laser bead immunoassay (ALBIA) and the
FIDIS™ Connective profile, Solonium software ver. 1.7.1.0 (Theradiag,
Croissy-Beaubourg, France) in Linköping [38]. Complement (C3 and
C4) levels were measured at the local centres (N = 308), or in Lin-
köping if data were missing (N = 36). The erythrocyte sedimentation
rate (ESR) and CRP measurements were performed at the local centres.
Baseline CRP was available for 258 cases and results below 5 mg/L were
given the same value (2.5 mg/L).

2.4. Baseline suPAR analysis

A clinically validated immunoassay (suPARnostic® AUTOFlex
ELISA; ViroGates, Birkerød, Denmark) was used according to manu-
facturer's instructions. The concentration of suPAR in baseline serum
was measured for all patients and controls. Serum and peroxidase-
conjugated anti-suPAR were incubated in microwells pre-coated with
anti-suPAR antibodies. After incubation, a tetramethylbenzidine sub-
strate was added and the reaction was stopped by 2 N sulfuric acid. The
optical density was detected at 450 nm (Sunrise plate reader, Magellan
ver. 7.1 software, Tecan, Männedorf, Switzerland). Mean serum suPAR
in blood donors from Linköping, Sweden (N = 100, 50% women) is
3.97 ng/mL [8]. A Danish study of 5538 individuals showed a mean
serum concentration of suPAR of 3.51 ng/mL for men and 3.90 ng/mL
for women [39].

2.5. Statistical analyses

Independent samples t-test and Pearson correlation analyses were
performed. Due to the small subgroups, the Mann-Whitney U test (exact
method) was used instead of the independent samples t-test when pa-
tients were distinguished based on damage in specific organ domains.
When the Mann-Whitney U test is applied, an approximate 95% con-
fidence interval (CI) is given (actual confidence level is stated). One-
way ANOVA (with Hochberg's post-hoc test) was used to reveal dif-
ferences in suPAR levels between ethnic groups and between patients
grouped according to SDI. Binary logistic regression (enter or forward
stepwise likelihood ratio method) was used to predict global or specific
damage accumulation. Receiver operator characteristics (ROC) curve
and calculations of the area under the curve (AUC) were based on
predicted probabilities from the respective regression model. P-va-
lues < 0.05 were considered statistically significant. The statistical
analyses were performed with the SPSS Statistics 23 (IBM, Armonk, NY,
USA) or GraphPad Prism, ver. 8.0.1 (GraphPad Software, San Diego,
CA) software packages.

3. Results

3.1. Cohort outcome

In total, 344 patients with SLE (mean age, 34.0 years; 91.6%
women) were included. The majority (58.1%) were Caucasians. Of the
344 controls (mean age, 34.4 years; 91.6% women), 95.1% were

Table 1
Clinicodemographic characteristics of the 344 patients with SLE and 344
matched population-based controls.

Mean (range) or number (%)

SLE patients Controls

Age at inclusion (years) 34.0 (12–73) 34.4 (15–73)
Female sex 315 (91.6) 315 (91.6)
Ethnicity

Caucasian 200 (58.1) 327 (95.1)
Asian 64 (18.6) 3 (0.9)
African ancestry 52 (15.1) 4 (1.1)
Other (Mixed, Native American, Hispanic) 28 (8.1) 10 (2.9)

SLEDAI-2K at baseline (score) 5.0 (0–30) N/A
eGFR at baseline (mL/min/1.73 m2) 120 (6–473) N/A

Abnormal eGFR (< 90) 79 (23.0) N/A
Antimalarials 242 (70.3) N/A
Immunosuppressants 122 (35.5) N/A
Corticosteroids 222 (64.5) N/A

Corticosteroid dose at baseline (mg/day) 13.9 (0–90) N/A
SLICC/ACR damage index (SDI≥1) at 1 year 19 (5.5) N/A
SLICC/ACR damage index (SDI≥1) at 2 years 36 (10.5) N/A
SLICC/ACR damage index (SDI≥1) at 3 years 63 (18.3) N/A
SLICC/ACR damage index (SDI≥1) at 4 years 79 (23.0) N/A
SLICC/ACR damage index (SDI≥1) at 5 years 98 (28.5) N/A
Domains of damage (SDI≥1) at 5 years

Ocular 27 (7.8) N/A
Musculoskeletal 23 (6.7) N/A
Neuropsychiatric 20 (5.8) N/A
Skin 19 (5.5) N/A
Pulmonary 7 (2.0) N/A
Renal 6 (1.7) N/A
Peripheral vascular 6 (1.7) N/A
Cardiovascular 5 (1.5) N/A
Gastrointestinal 5 (1.5) N/A
Malignancy 5 (1.5) N/A
Premature gonadal failure 4 (1.2) N/A
Diabetes 4 (1.2) N/A

SLE, Systemic lupus erythematosus; SLEDAI-2K, SLE disease activity index
2000; SLICC/ACR, Systemic Lupus International Collaborating Clinics/
American College of Rheumatology; eGFR, estimated glomerular filtration rate;
N/A, not applicable.
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Caucasians. The frequency of patients with any organ damage (SDI≥1)
3 years after inclusion was 18.3%, whereas 28.5% of the patients had
acquired damage at 5 years of follow-up. Detailed characteristics of the
patients and controls are listed in Table 1. The ANA fine-specificities are
presented in Supplementary Table 1.

3.2. suPAR concentrations and baseline variables

In baseline samples, the circulating levels of suPAR did not differ
significantly between the patients (mean, 3.52 ng/mL; 95% CI
3.24–3.79 ng/mL) and the controls (mean, 3.57 ng/mL; 95% CI
3.39–3.75 ng/mL) (Fig. 2A). Likewise, there were no significant dif-
ferences in suPAR levels regarding sex or race/ethnicity (Caucasians vs.
non-Caucasians) among the patients or controls, and there was no dif-
ference when the patients were divided into Asians vs. non-Asians or
divided into four groups (Caucasians, Asians, African ancestry, and
Others). No significant differences in suPAR were found in relation to
baseline treatment with antimalarials or immunosuppressants. Fur-
thermore, no significant differences were found when comparing pa-
tients with low C3 and/or low C4 levels and patients with normal
complement levels, and no significant differences were found based on
ACR criteria (fulfilled at diagnosis), disease manifestations (SLEDAI-2K
descriptors), autoantibody positivity (any autoantibody), anti-dsDNA
positivity or other specific autoantibody positivity with a frequency
of > 5% (Supplementary Table 1). A significant correlation was found
between age and suPAR level among the patients (p = 0.043, r = 0.11)
and among the controls (p = 0.009, r = 0.14), and there was an inverse
correlation between the eGFR and suPAR values (p < 0.001,
r = −0.20) among the patients. A significant difference in suPAR levels
was also found depending of the normality of eGFR (p = 0.001), with
higher levels of suPAR detected in patients with an eGFR < 90 mL/
min/1.73 m2 (4.50 ng/mL; 95% CI 3.81–5.18 ng/mL), as compared
with patients with normal eGFR (3.22 ng/mL; 95% CI 2.95–3.50 ng/
mL). No statistically significant correlations were found between suPAR
and cumulative SLEDAI-2K or any of the following baseline variables:
SLEDAI-2K, anti-dsDNA levels, the number of autoantibody specifi-
cities, corticosteroid dose, ESR, CRP or disease duration (months from
diagnosis to study inclusion) in the patients at baseline. Furthermore,

no significant differences in use of antimalarials, immunosuppressants,
or daily corticosteroid dose at inclusion were observed between pa-
tients with high and low suPAR levels (Supplementary Table 2).

3.3. suPAR as a predictor of damage accrual

A significant difference in serum suPAR levels was found when
patients without accrued damage were compared to patients with da-
mage (SDI≥1) at the 3-year follow-up (p = 0.019), 4-year follow-up
(p = 0.018) and 5-year follow-up (p = 0.008) (Fig. 2B). The mean
suPAR of patients with organ damage at the 5-year follow-up was
4.09 ng/mL (95% CI 3.45–4.72 ng/mL) whereas patients without organ
damage had a mean suPAR of 3.29 ng/mL (95% CI 3.01–3.57 ng/mL).
An SDI score of ≥2 at 5 years has previously been shown to be linked to
an increase in the relative risk for death among patients with SLE [40].
Consequently, the patients were also divided into three groups with
respect to damage acquirement at the 5-year follow-up (Fig. 2C). The
suPAR levels for the patients who had acquired major damage (SDI≥2)
over the 5-year period (N = 32; mean, 4.83 ng/mL; 95% CI 3.25–6.42)
were 46.8% higher than those for the patients without damage devel-
opment (N = 246; mean, 3.29 ng/mL; 95% CI 3.01–3.57 ng/mL)
(p = 0.004). Patients with SDI = 1 did not differ significantly from the
other groups (N = 66; mean, 3.73 ng/mL; 95% CI 3.16–4.29).

Logistic regression analysis (Table 2) revealed a significant impact
of suPAR on SDI outcome at 5 years when the patients were divided
into groups with no damage (SDI = 0) and with SDI≥1 (OR = 1.13,
95% CI 1.02–1.25). A higher damage cut-off (SDI≥2) also revealed a
significant impact of suPAR on damage development (OR 1.14, 95% CI
1.03–1.26). The statistical significance for suPAR remained after ad-
justments for baseline factors that are associated with suPAR (age and

Fig. 1. Flow chart of the study population originating from the SLICC inception
cohort.

Fig. 2. Baseline suPAR levels in healthy controls and patients with different
damage accrual. A) Healthy controls versus all patients. B) Baseline suPAR in
relation to organ damage status at 1, 2, 3, 4 and 5 years post inclusion. C)
Patients with different damage accrual at the 5-year follow-up. D) Patients with
damage in the musculoskeletal domain compared to patients without organ
damage development at the 5-year follow-up. Baseline suPAR was higher
among patients with organ damage at 3, 4 and 5 years (Student's t-test). One-
way ANOVA with Hochberg's post hoc test revealed higher baseline levels of
suPAR in patients with organ damage accrual (SDI≥2) at the 5-year follow-up
compared with patients who did not suffer from organ damage (SDI = 0).
suPAR levels in patients with musculoskeletal organ damage accrual at the 5-
year follow-up were significantly higher than in patients without any damage
development (Mann-Whitney U test). The bars and error bars indicate means
(Panel A, B and C) or medians (Panel D) and 95% confidence intervals, re-
spectively. *p < 0.05; **p < 0.01; ns = not significant.
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eGFR) at both SDI cut-offs (adjusted models in Table 2).
Factors previously known to influence SDI [1,7,8], which were

available in this study, were tested one by one as independent variables
in a logistic regression with damage accrual (SDI≥1 or SDI≥2) at 5
years as the outcome variable. At the low SDI cut-off, age (OR = 1.02,
95% CI 1.01–1.04), male sex (OR = 2.57, 95% CI 1.19–5.54), baseline
SLEDAI-2K (OR = 1.05, 95% CI 1.00–1.10) and cumulative SLEDAI-2K
(OR = 1.02, 95% CI 1.00–1.04) had significant impacts on damage
outcome. At the high SDI cut-off, baseline SLEDAI-2K (OR = 1.12, 95%
CI 1.05–1.19), cumulative SLEDAI-2K (OR = 1.03, 95% CI 1.01–1.05),
baseline corticosteroid dose (OR = 1.03, 95% CI 1.01–1.05), non-Cau-
casian ethnicity (OR = 2.53, 95% CI 1.19–5.35), and age (OR = 1.03,
95% CI 1.01–1.06) all had significant impacts on the damage outcome.
Neither eGFR (as continuous or binary variable) nor CRP levels
(N = 258) were associated with the damage outcome, regardless of the
SDI cut-off. Variables that were significantly associated with the SDI
outcome (when tested one by one) were then added as independent
variables in a multiple logistic regression model with the respective SDI
cut-offs (Table 2). Baseline SLEDAI-2K and corticosteroid dose were not
added to the same model owing to their close relationship and to avoid
overfitting the regression model. Cumulative SLEDAI-2K was not used
in the regression models at all due to its high correlation with baseline

SLEDAI-2K (p < 0.001, r = 0.641). In addition, cumulative SLEDAI-2K
is not a baseline variable and therefore not applicable as an early pre-
dictor of organ damage development. When the predicted probabilities
from the regression models were used to create ROC curves, the highest
AUC was found for the model with high SDI cut-off and with SLEDAI-
2K, age, ethnicity and suPAR as independent variables (AUC = 0.77;
Fig. 3A and Table 2). Autoantibody positivity (general or specific) was
not associated with damage development in our study, except for as-
sociations between anti-ribosomal P protein positivity and SDI≥1 and
between anti-La/SSB positivity and SDI≥2 (Supplementary Table 1).

Dissecting SDI into specific organ domains revealed significant dif-
ferences in suPAR levels (p = 0.015) between the patients with mus-
culoskeletal damage (N = 23; median, 3.81 ng/mL; 97% CI 3.07–4.59)
and patients without musculoskeletal damage (N = 321; median,
2.94 ng/mL; 96% CI 2.76–3.14), as well as when the group with mus-
culoskeletal damage was compared with the group without any ac-
quired damage at 5 years (N = 246; median 2.85 ng/mL; 95% CI
2.68–3.06; p = 0.007) (Fig. 2D). The most common forms of muscu-
loskeletal damage were muscle atrophy/weakness (N = 6), avascular
necrosis (N = 6), and deforming/erosive arthritis (N = 5). A binary
logistic regression analysis (Table 3) revealed a significant impact of
suPAR on SDI outcome (SDI≥1) in the musculoskeletal domain

Table 2
Binary logistic regressions for the outcome of organ damage (SDI≥1 and SDI≥2) in patients with SLE at the 5-year follow-up.

Model Cut-off AUC (95% CI) Variable (baseline) OR (95% CI) p-value

Only suPAR (SDI≥1) 0.61 (0.54–0.67) suPAR 1.13 (1.02–1.25) 0.024
Adjusted (SDI≥1) 0.61 (0.54–0.68) suPAR 1.13 (1.01–1.26) 0.027

Age 1.03 (1.01–1.05) 0.013
Abnormal eGFR N/A 0.166

Optimized (SDI≥1) 0.65 (0.59–0.71) suPAR 1.10 (1.00–1.21) 0.047
Age 1.02 (1.00–1.04) 0.023
Male sex 2.45 (1.09–5.49) 0.029
SLEDAI-2K 1.06 (1.01–1.11) 0.014

Only suPAR (SDI≥2) 0.64 (0.54–0.74) suPAR 1.14 (1.03–1.26) 0.014
Adjusted (SDI≥2) 0.68 (0.58–0.78) suPAR 1.14 (1.03–1.26) 0.014

Age 1.04 (1.01–1.07) 0.014
Abnormal eGFR N/A 0.208

Optimized A (SDI≥2) 0.74 (0.65–0.83) suPAR 1.15 (1.04–1.27) 0.006
Age 1.04 (1.02–1.07) 0.003
Non-Caucasian 2.50 (1.07–5.83) 0.035
Corticosteroid dose 1.03 (1.00–1.05) 0.019

Optimized B (SDI≥2) 0.77 (0.69–0.86) suPAR 1.13 (1.02–1.25) 0.017
Age 1.04 (1.02–1.07) 0.001
Non-Caucasian 2.50 (1.07–5.83) 0.024
SLEDAI-2K 1.03 (1.00–1.05) < 0.001

Abbreviations used: suPAR, soluble urokinase plasminogen activator receptor; eGFR, estimated glomerular filtration rate; SLEDAI-2K, systemic lupus erythematosus
disease activity index 2000; N/A, not applicable.

Fig. 3. Receiver operating characteristic (ROC)
curves showing the area under the curve (AUC) for
predicted probabilities from the optimized logistic
regression models. A) Optimized model for global
damage accrual over 5 years (SDI≥2) with baseline
suPAR, SLEDAI-2K, age and ethnicity (Caucasian vs
non-Caucasian) as independent variables. B)
Optimized model for musculoskeletal damage accrual
(SDI≥1) over 5 years. The independent variables in
this model were baseline suPAR, SLEDAI-2K, and age.
Ethnicity (Caucasian versus non-Caucasian) was in-
cluded in the model predicting global organ damage
(A), but not in the model predicting musculoskeletal
damage (B).
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(OR = 1.13; 95% CI: 1.02–1.25), also when adjusting for age and eGFR
(OR = 1.15; 95% CI 1.04–1.28). Variables that were significantly as-
sociated with musculoskeletal damage when added one by one in
binary regression analyses were subsequently added to a multiple re-
gression analysis to create an optimized model for the prediction of
damage in the musculoskeletal domain (Table 3). The predicted prob-
abilities from this regression model were used to create a ROC curve
(AUC = 0.73; Fig. 3B).

All the other groups of domain-specific organ damage, except for
the neuropsychiatric domain, had higher median values of suPAR
compared to patients without any damage (SDI = 0), although none of
the comparisons met statistical significance.

4. Discussion

suPAR has been proposed as a valuable biomarker that reflects se-
verity in cases of malignancy, as well as inflammatory diseases in-
cluding SLE [8,11,27,29,30]. For the first time, we report that suPAR
has the potential to serve as a predictor of future global organ damage in
patients with newly diagnosed SLE.

The suPAR levels at baseline were associated with global damage at
the 5-year follow-up, particularly when using SDI≥2 as the cut-off. No
correlation was found with disease activity (SLEDAI-2K) at baseline,
and no associations were found with the presence of autoantibodies
included in the ‘immunological disorder criterion’ of the ACR classifi-
cation (of which anti-dsDNA often parallel the disease activity), in-
dicating that suPAR is disconnected from disease activity. This is in line
with our previous observations of suPAR in SLE [8]. In other conditions,
suPAR has been reported to: (1) predict cardiovascular morbidity and
mortality (independent of traditional risk factors) [41]; (2) be asso-
ciated with subclinical cardiovascular damage [29]; (3) predict a de-
cline in eGFR [42]; and (4) be associated with decreased liver function
[43]. Herein, the only separate SDI domain for which suPAR exerted a
significant impact on damage outcome was the musculoskeletal do-
main, which includes muscle atrophy/weakness, deforming/erosive
arthritis, osteoporosis, avascular necrosis, osteomyelitis, and tendon
rupture [34]. Musculoskeletal damage was the second-most frequent
type of damage in the study cohort, and since breakdown of damage
into specific organ systems reduces the statistical power, an association
between suPAR and damage accrual in other specific organ systems
cannot be excluded. Studies on suPAR in patients with rheumatoid ar-
thritis (RA) have shown higher suPAR levels compared with controls, as
well as a correlation with the number of swollen joints [26,44]. In
support of this, other groups have reported on the ability of synovial
neutrophils from patients with RA to produce the chemotactically ac-
tive form of suPAR (D2D3), thereby recruiting leukocytes to the joint
[45]. Taken together, these findings suggest an important role for
suPAR in joint inflammation and subsequent damage, which may pro-
vide mechanistic support for the association between suPAR and mus-
culoskeletal damage found in the present study.

The cellular expression of uPAR in inflammatory diseases is poorly
characterised. We have previously observed an association of reduced

suPAR levels and leukocytopenia in SLE [8], although leukocyte count
data were unfortunately not available herein. Thus, the comparable
levels of suPAR in SLE and matched controls might be attributable to
the lack of adjustment for leukocyte counts. A previous large-scale
study on suPAR has showed that the circulating levels increased slightly
with age and were highest among women in a Caucasian population
[46]. The influence of ancestry is less well-studied, although higher
levels of suPAR have been observed among African compared to Cau-
casian males [47], whereas another study found no ethnicity-dependent
differences in suPAR levels [42].

The potential biologic roles of suPAR in organ damage development
have primarily been investigated in renal disease, where suPAR has
been implicated in the onset and progression of focal segmental glo-
merulosclerosis [16]. The binding of suPAR to β3 integrins on the po-
docyte membrane has been shown to affect podocyte behaviour and,
thereby, disrupt the glomerular barrier function [16].

Since the pathogenesis of SLE is characterised by impaired clearance
of dying cells, it is of interest to highlight the involvement of uPAR in
the disposal of dying cells. Both uPAR and suPAR have been shown to
regulate the phagocytosis of apoptotic cells [15,48], and uPAR defi-
ciency may lead to the accumulation of cell debris [49]. Interestingly,
exclusively one-sided expression of uPAR on murine macrophages or
neutrophils has been shown to increase the uptake of apoptotic neu-
trophils by the macrophages [48]. uPAR has also been proposed as a
mediator of cardiac neonatal lupus based on its upregulation following
the binding of anti-Ro60 antibodies to foetal cardiocytes [14,50]. In-
creased expression of uPAR has been shown to reduce directly the
uptake of apoptotic myocytes by healthy myocytes. Ro60/SSA-depen-
dent upregulation of uPA/uPAR can also facilitate plasmin-dependent
activation of transforming growth factor (TGF)-β to promote fibrosis,
which is interesting in the context of organ damage [51]. In the present
study, however, no association between anti-Ro60/SSA autoantibodies
and suPAR was found.

SLE is indeed an heterogenous disease and in the era of precision
medicine clinicians will need better tools to facilitate the risk-stratifi-
cation and enable a treat-to-target approach [52]. Based on the data
presented here, suPAR analysis may contribute to the identification of
patients in risk of developing severe disease, at least over the first 5
years. We suggest that raised suPAR levels, irrespective of SLE disease
activity, should lead to increased vigilance and monitoring. This may
not necessarily result in additional visits to the rheumatologist but
could motivate an increased frequency of blood and urine sampling,
and encourage a re-evaluation of the prescribed daily corticosteroid
dose. In addition, it could motivate the analysis of circulating hydro-
xychloroquine levels to reassure patient's compliance in order to reach
adequate blood levels and provide the best possible prerequisites to
avoid future organ damage. The latter has repeatedly been shown to
associate with both poor quality-of-life and survival [40,53,54].

The present study has several strengths. It has a prospective design
and employs a large international inception cohort of patients with SLE
with 5 years of follow-up data. This international inception cohort is
unique in terms of the number of incident SLE cases, and the study

Table 3
Binary logistic regressions for the outcome of organ damage in the musculoskeletal domain (SDI≥1; yes/no) at the 5-year follow-up.

Model AUC (95% CI) Variable (baseline) OR (95% CI) p-value

Only suPAR 0.65 (0.54–0.76) suPAR 1.13 (1.02–1.25) 0.019
Adjusted 0.65 (0.52–0.77) suPAR 1.15 (1.04–1.28) 0.022

Age N/A 0.052
Abnormal eGFR N/A 0.557

Optimized 0.73 (0.62–0.85) suPAR 1.12 (1.01–1.65) 0.032
Age 1.04 (1.01–1.08) 0.012
SLEDAI-2K 1.14 (1.06–1.23) < 0.001

Abbreviations used: suPAR, soluble urokinase plasminogen activator receptor; eGFR, estimated glomerular filtration rate; SLEDAI-2K, systemic lupus erythematosus
disease activity index 2000; N/A, not applicable.
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population is extremely well-characterised. To reduce biases linked to
previous damage, which is associated with further damage [55], only
those patients who had no damage at inclusion were included in the
present study.

The limitations of the study include the differences in ethnicity
between patients and controls. However, the suPAR levels did not differ
significantly between the various ethnicities in our study. Although
patients were recruited early in their disease course with an average
time of 5 months from diagnosis to study inclusion, a considerable
proportion had received antimalarials and/or immunosuppressants by
the time of blood sampling. Nevertheless, the impact of pharma-
cotherapy, including the effects of corticosteroids, on suPAR levels
appeared to be minor (Supplementary Table 2). While the relatively
low number of damage events over 5 years probably reflects well-
controlled patients, it also generates uncertainties regarding the pre-
diction of damage accrual. A longer follow-up of these patients might
clarify whether suPAR is associated with damage development in spe-
cific organ domains. One should also consider that the predictive value
of suPAR potentially could vary over time in established SLE. Finally,
we included only those patients who had completed follow-up over the
5 years. A minor survivor bias cannot be excluded, since the patients
who died or were lost to follow-up did not contribute to the analysis.

5. Conclusion

In conclusion, suPAR is herein shown to be a predictor of global
organ damage accrual over 5 years in cases of recent-onset SLE. Thus,
this easy-to-measure soluble receptor has strong potential as a risk-
stratifying biomarker that can identify those patients who will need
careful monitoring, irrespective of disease activity.
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