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Abstract—Large matrix multiplications are central to large-
scale machine learning applications. These operations are often
carried out on a distributed computing platform with a master
server and multiple workers in the cloud operating in parallel.
For such distributed platforms, it has been recently shown that
coding over the input data matrices can reduce the computational
delay, yielding a trade-off between recovery threshold, i.e., the
number of workers required to recover the matrix product,
and communication load, i.e., the total amount of data to be
downloaded from the workers. In this paper, in addition to
exact recovery requirements, we impose security and privacy
constraints on the data matrices, and study the recovery threshold
as a function of the communication load. We first assume that
both matrices contain private information and that workers can
collude to eavesdrop on the content of these data matrices. For
this problem, we introduce a novel class of secure codes, referred
to as secure generalized PolyDot (SGPD) codes, that generalize
state-of-the-art non-secure codes for matrix multiplication. SGPD
codes allow a flexible trade-off between recovery threshold and
communication load for a fixed maximum number of colluding
workers while providing perfect secrecy for the two data matrices.
We then study a connection between secure matrix multiplication
and private information retrieval. We specifically assume that one
of the data matrices is taken from a public set known to all the
workers. In this setup, the identity of the matrix of interest should
be kept private from the workers. For this model, we present a
variant of generalized PolyDot codes that can guarantee both
secrecy of one matrix and privacy for the identity of the other
matrix for the case of no colluding servers.

Index Terms—Coded distributed computation, distributed
learning, secret sharing, information theoretic security, private
information retrieval.

I. INTRODUCTION

A. Motivation and Problem Definition

At the core of many signal processing and machine learning
applications are tensor operations, most notably large matrix
multiplications [2]. In the presence of practically sized data
sets, such operations are typically carried out using distributed
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computing platforms with a master server and multiple work-
ers that can operate in parallel over distinct parts of the data
set. The master server plays the role of the parameter server,
distributing data to the workers and periodically reconciling
their internal state [3]. Workers are commercial off-the-shelf
servers that are characterized by possible temporary failures
and delays [4].

Straggling workers can affect the computation latency by
orders of magnitude, e.g., [5], [6]. While current distributed
computing platforms conventionally handle straggling servers
by means of replication of computing tasks [7], recent work
has shown that encoding the input data can help reduce the
computation latency. More generally, coding is able to control
the trade-off between computational delay and communication
load between workers and master server [8]–[17]. Further-
more, stochastic coding can help keeping both input and output
data secure from the workers, assuming that the latter are
honest, i.e., carrying out the prescribed protocol, but curious
[18]–[25]. This paper contributes to this line of work by
investigating the trade-off between computational delay and
communication load as a function of the privacy level.

As illustrated in Figs. 1 and 2, we focus on the basic
problem of computing a matrix multiplication C = AB in
a distributed computing system of P workers that can process
each only a fraction 1/m and 1/n of matrices A and B,
respectively. In the first setup under study, illustrated in Fig. 1,
both matrices A and B are to be kept private from the workers.
Here, three performance criteria are of interest:
• the recovery threshold PR, that is, the number of workers

that need to complete their task before the master server
can recover the product C;

• the communication load CL between workers and master
server, i.e., the amount of information to be downloaded
from the workers;

• the maximum number PC of colluding servers that en-
sures perfect secrecy for both data matrices A and B.

In the second setup of interest shown in Fig. 2, only matrix A
is private, while matrix B is selected from a public data set
B. In this case, apart from the security constraint on A, we
only impose a privacy constraint on the identity of the specific
matrix B ∈ B of interest. As a motivation for this second
setup, consider a recommender system based on collaborative
filtering [26]. In this case, recommendations are based on the
product of two matrices, one describing the profile of a user,
or a group of users, and one representing features of the
items of interest, such as movies, music or TV shows. The
users’ profile matrix can be modelled by the private matrix
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A, hence ensuring the privacy of users’ data; while the items’
data matrix for each category is represented by one of the
matrices in the public data set B = {B(k)}Lk=1. This latter
assumption captures the constraint that users may want to keep
the confidential types of items they are interested in. For this
problem, the criteria of interest are still PR and PC , and we
simplify the problem by setting PC = 1. This paper focuses
on the design of coding and computing techniques for both
problems.

B. Related Work

In order to put our contribution in perspective, we briefly
review prior related work. Consider first solutions that provide
no security guarantees, i.e., PC = 0, for the problem in Fig. 1.
As a direct extension of [8], a first approach is to use product
codes that apply separately the maximum distance separable
(MDS) codes to encode the two matrices [27]. The recovery
threshold of this scheme is improved by [9], which introduces
polynomial codes. The construction in [9] is proved to be
optimal under the assumption that minimal communication is
allowed between workers and master server. In [15], MatDot
codes are introduced, resulting in a lower recovery threshold at
the expense of a larger communication load. The construction
in [13] bridges the gap between polynomial and MatDot codes
and presents PolyDot codes, yielding a trade-off between
recovery threshold and communication load. An extension of
this scheme, termed Generalized PolyDot (GPD) codes im-
proves on the recovery threshold of PolyDot codes [14], which
is independently obtained also by the construction in [28]. In
[14], GPD codes are used to design a unified coded computing
strategy for the training of deep neural networks.

Much less work has been done in the literature for the
case in which security constraints are factored in, i.e., where
PC 6= 0, for the problem of Fig. 1. In [19], Lagrange coding
is presented that achieves the minimum recovery threshold for
multilinear functions by generalizing MatDot codes. In [18],
[25], coded schemes have been used to develop multi-party
computation techniques to calculate arbitrary polynomials of
massive matrices, preserving the security of the data matrices.
In [20], [21], [23] a reduction of the communication load is
obtained by extending polynomial codes. While these works
focus on either minimizing recovery threshold or commu-
nication load, the trade-off between these two fundamental
quantities has not been addressed in the open literature to
the best of our knowledge. A new class of secure distributed
matrix multiplication and its capacity is studied in [29].

In the second part of this work, we study a connection
between secure matrix multiplication and private information
retrieval (PIR), as illustrated in Fig. 2. The PIR problem was
introduced in [30] and has been widely studied in recent years,
e.g., in [31]–[40]. In [38] and [39] the PIR setup was inves-
tigated for the problem of distributed matrix multiplication
illustrated in Fig. 2 that imposes PIR guarantees for the index
of matrix B within a public library. In [38], a coding strategy
is proposed that combines the PIR scheme for non-colluding
servers (i.e., with PC = 1) [30] with polynomial codes [9]. In
[39], the authors introduce a related approach for this problem,
and show that it outperforms the scheme proposed in [38] in

terms of upload and download cost. The code design in [39]
focuses on the minimization of the communication load, and
does not explore the trade-off between this metric and the
recovery threshold.

C. Main Contribution

In this paper we first present a novel class of secure
computation codes, referred to as secure GPD (SGPD) codes,
for the setup in Fig. 1, SGPD codes generalize GPD codes to
operate at a flexible communication load level. This yields
a new achievable trade-off between recovery threshold PR
and communication load CL as a function of a prescribed
number of colluding workers PC . In the process, we also
introduce a novel perspective on distributed computing codes
based on the signal processing concepts of convolution and z-
transform. SGPD codes were first introduced in the conference
version of this paper [1], which did not contain complete
proofs and provided only limited illustrations and examples.
Then, SGPD codes are modified to offer a solution, introduced
here for the first time, for the scenario in Fig. 2. This is
done through concatenation with the PIR code in [38], which
ensures both secrecy of the input matrix A and privacy of the
identity for the desired matrix in the library B if PC = 1.
The resulting codes are referred to as private and secure
GPD (PSGPD) codes. They generalize the approach in [39],
enabling a trade-off between (upload) communication load
and recovery threshold. We finally illustrate the benefits of
the proposed codes, which offer a flexible trade-off between
communication load and recovery threshold, by analyzing
the overall completion time due to both computation and
communication.

D. Organization

The rest of the paper is organized as follows. In Section II,
we present the system models for secure matrix multiplication
(Fig. 1 in Section II-C) and for private and secure matrix
multiplication (Fig. 2 in Section II-D), respectively. In Section
III we propose an intuitive interpretation of the GPD code
introduced in [15]. Using z-transforms, Section IV proposes
a novel extension of GPD codes by imposing a security
constraint on the data matrices and deriving the resulting trade-
off between recovery threshold PR and communication load
CL. In this section, we also study overall completion latency
encompassing both computation and communication latencies
for SGPD codes. In Section V, we address the setup in Fig. 2,
again with respect to the trade-off between PR and CL and
to the overall completion latency. The paper is concluded in
Section VI.

II. PROBLEM STATEMENT

A. Notation

Throughout the paper, we denote a matrix with upper
boldface letters (e.g., X), and lower boldface letters indicate a
vector or a sequence of matrices (e.g., x). Furthermore, a math
calligraphic font refers to a set (e.g., X ). A set F represents
the Galois field with cardinality |F|. We denote by N the set of
all non-zero positive integers, and for some a, b ∈ N, a ≤ b,
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Fig. 1: Secure matrix multiplication: the master server encodes both input matrices A and B, to be kept secure from the workers, and both random matrices
R and R′, respectively, to define the computational tasks of the slave servers or workers. The workers may fail or straggle, and they are honest but curious,
with colluding subsets of workers of size at most PC . The master server must be able to decode the product C = AB from the output of a subset of PR
servers, which defines the recovery threshold.

[a, b]
∆
= {a, a+1, . . . , b}. For any real number r, dre represents

the largest integer nearest to r. he function H(·) represents
the entropy of its argument, and I(X;Y ) denotes the mutual
information of the random variables X and Y .

B. System Model

As illustrated in Figs. 1 and 2, we consider a distributed
computing system with a master server and P slave servers or
workers. The master server is interested in computing securely
the matrix product C = AB of two data matrices A and B
with dimensions T ×S and S×D, respectively. The matrices
have i.i.d. uniformly distributed entries from a sufficient large
finite field F, with |F| > P . More precisely, we will consider
two scenarios. In the first, both matrices A and B are available
at the master server and contain confidential data that should
be kept secure from the workers (see Fig. 1). In the second,
only matrix A contains confidential information, and there are
L public matrices in the set B = {B(r)}Lr=1 from which the
master node wishes to compute the product C(κ) = AB(κ)

for some κth index κ ∈ [1, L]. The index must be kept private
against the workers (see Fig. 2). In the following, we first
describe the system model for the setup in Fig. 1, referred
to as secure matrix multiplication, followed by the setup for
the model in Fig. 2, referred to as private and secure matrix
multiplication.

C. Secure Matrix Multiplication

For the scenario in Fig. 1 workers receive information
on matrices A ∈ FT×S and B ∈ FS×D from the master
server; they process this information and they respond to the
master server, which finally recovers the product C = AB
with minimal computational effort. Due to communication and
complexity constraints, each worker can receive only TS/m
and SD/n symbols, respectively, for some integers m and n.
The workers are honest but curious. Accordingly, we impose
the secrecy constraint that, even if up to PC < P workers
collude, the workers cannot obtain any information about both
matrices A and B based on the data received from the master
server.

To keep the data secure and to leverage possible computa-
tional redundancy at the workers (namely, if P/m > 1 and/or
P/n > 1), the master server sends encoded versions of the
input matrices to the workers due to the above mentioned
communication and complexity constraints. Specifically, it
produces the encoded matrices Ap = fp(A,R), where R is
a random matrix of dimension T ′ × S′, for some integers T ′

and S′ to be defined below, via the function

fp : FT×S × FT
′×S′ → FT/t×S/s, (1)

for some integers t and s such that m = st. The resulting
TS/m entries in the output of function fp are then sent
to worker p, with p ∈ [1, P ]. Likewise, the master server
computes the encoded matrices Bp = gp(B,R

′), where R′ is
a random matrix of dimension S′ ×D′, for some integers S′

and D′ to be defined below, using the function

gp : FS×D × FS
′×D′ → FS/s×D/d, (2)

for some integers s and d such that n = sd. The resulting
SD/n entries in Bp are then sent to worker p. The random
matrices R and R′ consists of i.i.d. uniformly distributed
entries from a field F. The security constraint imposes the
condition

I(AP ,BP ;A,B) = 0, (3)

for all subsets of P ⊂ [1, P ] of PC workers, where the random
matrices R and R′ serve as random keys in order to meet the
security constraint (3) [41].

Each worker p computes the product Cp = ApBp of the
encoded sub-matrices Ap and Bp. The master server collects a
subset of PR ≤ P outputs from the workers as defined by the
subset {Cp}p∈PR with |PR| = PR. It then applies a decoding
function as h ({Cp}p∈PR),

h : FT/t×D/d × · · · × FT/t×D/d︸ ︷︷ ︸
PR times

→ FT×D. (4)

Note that correct decoding translates into the condition

H(AB|{Cp}p∈PR) = 0. (5)

A coding and decoding strategy that satisfies condition (3) and
(5) is said to be feasible.
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Fig. 2: Private and secure matrix multiplication: the master server encodes the input matrix A, to be kept secret from the workers, and generates the encoded
matrix A

(κ)
p for each worker p. It also sends a query q

(κ)
p as a function of the index κ ∈ [1, L], to be kept private from workers, of the desired product

C(κ) = AB(κ), with matrices {B(r)}Lr=1 available at all workers. The non-colluding workers may fail or straggle, and they are honest but curious. The
master server must be able to decode the product C(κ) from the output of a subset of PR servers, which defines the recovery threshold.

For given parameters m and n the performance of a coding
and decoding scheme is measured by the triple (PC , PR, CL),
where CL is defined as

CL =
∑
p∈PR

|Cp|; (6)

|Cp| is the dimension of the product matrix Cp computed
by worker p. Note that condition (5) requires the inequality
min{PR/m,PR/n} ≥ 1 or PR ≥ PR,min

∆
= max{m,n},

which is hence a lower bound for the minimum recovery
threshold. Furthermore, the communication load is lower
bounded by CL ≥ CL,min

∆
= TD, which is the size of the

product C = AB.

D. Private and Secure Matrix Multiplication

In this subsection, we discuss the private and secure matrix
multiplication problem illustrated in Fig. 2. In this setup, the
master server wishes to compute the product C(κ) = AB(κ)

of a confidential input matrix A with a matrix B(κ) from a set
of public matrices {B(1), . . . ,B(L)}, while keeping the index
κ of the matrix B(κ) of interest private from the workers.

Similar to the secure model in Fig. 1, we consider a
distributed computing system with a master server and P
honest but curious workers. The master server contains a
confidential data matrix A with dimension T×S. Each worker
has access to the library B, which consists of L distinct
matrices {B(1), . . . ,B(L)}, each with dimension S × D. As
above, all matrices contain data symbols chosen uniformly
i.i.d. from a sufficient large finite field F, with |F| > P . The
master server is interested in computing the matrix product
C(κ) = AB(κ) of the data matrix A and of a matrix B(κ) for
some index κ ∈ [1, L]. This should be done while keeping the
data matrix A secret against the workers in the same sense as
in the scenario of Fig. 1, while also ensuring that the index κ
is kept secret from the workers.

To do so, as in the PIR problem [33], [34], the master server
generates P query vectors q(κ)

1 , . . . ,q
(κ)
P ∈ FL, for some L >

1 as a function of the desired index κ and sends each worker
p ∈ [1, P ], the query vector q(κ)

p . We assume that the workers

do not collude, i.e., we set PC = 1. Extensions to any PC > 1
are possible and are left for future work. We note that, when
the input matrix A is an identity matrix, the setup reduces to
a PIR problem.

To keep the data matrix A secure against workers, the
master server sends each worker p ∈ [1, P ] an encoded version
A

(κ)
p = fp(κ,A,R) ∈ FT/t×S/s which is a function of index

κ, and through it, of the query q
(κ)
p , of the data matrix A and

of a random matrix R, for some integers t and s such that
m = ts.

Upon receiving (q
(κ)
p ,A

(κ)
p ), each worker p uses the query

q
(κ)
p to derive an S/s × D/d matrix B

(κ)
p = gp(q

(κ)
p ,B) ∈

FS/s×D/d from the library B by using an encoding function

gp : FL × FS×D × · · · × FS×D︸ ︷︷ ︸
L times

→ FS/s×D/d, (7)

for some integers s and d such that n = sd. We emphasize
that, unlike the setup considered in Fig. 1, the content of the
desired matrix B(κ) is not secure against workers, since the
library B is public. Each worker p then computes the product
C

(κ)
p = A

(κ)
p B

(κ)
p and sends it to the master server. The master

server collects a subset {C(κ)
p }p∈PR of PR ≤ P outputs from

the workers with |PR| = PR. It then applies a decoding
function h({C(κ)

p }p∈PR), as in (4), in order to retrieve the
desired product C(κ) = AB(κ).

To guarantee the secrecy of input matrix A, in a manner
similar to (3), we have the constraint

I(A(κ)
p ,B(κ)

p ,q(κ)
p ,B;A) = 0, (8)

for all p ∈ [1, P ]. Following the PIR formulation on [38], in
order to ensure the privacy of index κ, for some value of κ
the information available at each worker should be statistically
indistinguishable from that available for any other value κ′ 6=
κ. Mathematically, for all κ, κ′ ∈ [1, L] with κ′ 6= κ and for
all workers p ∈ [1, P ], we have the condition

(q(κ)
p ,A(κ)

p ,C(κ)
p ,B) ∼ (q(κ′)

p ,A(κ′)
p ,C(κ′)

p ,B), (9)

that is, the joint distribution of variables
(q

(κ′)
p ,A

(κ′)
p ,C

(κ′)
p ,B) should be the same for any pair
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Fig. 3: Construction of the time sequences a and b used to define the generalized PolyDot (GPD) code. The zero dashed lines in b indicates all-zero block
sequences. Each solid arrows in a and b shows a distinct row of A and a column of B, respectively.

of index values κ′ 6= κ. Finally, the correct decoding
requirement is defined as in (5), that is

H(AB(κ)|{C(κ)
p }p∈PR) = 0. (10)

A coding and decoding strategy that satisfies conditions (8),
(9), and (10) is said to be feasible. For given parameters m
and n the performance is measured by the pair (PR, CL), with
PC = 1, where CL is the communication load defined in (6).

III. BACKGROUND: GENERALIZED POLYDOT CODE
WITHOUT SECURITY CONSTRAINT

In this section, we consider the system model shown in
Fig. 1 and review the GPD construction first proposed in
[15] and later improved in [14], [28] for the special case
of no secrecy constrains, i.e., PC = 0. In the process, we
propose a novel intuitive interpretation of GPD encoding and
decoding based on the distributed computation of samples
from convolutions via z-transforms.

We start by recalling that the GPD coding scheme achieves
the best currently known trade-off between recovery threshold
PR and communication load CL for PC = 0, i.e., under no
security constraint. The entangled polynomial codes of [28]
have the same properties in terms of (PR, PC). The GPD codes
for PC = 0 also achieve the optimal recovery threshold among
all linear coding strategies in the cases of t = 1 or d = 1,
also they minimize the recovery threshold for the minimum
communication load CL,min [9], [28].

The GPD code splits the data matrices A and B both
horizontally and vertically as

A =

 A1,1 . . . A1,s

...
. . .

...
At,1 . . . At,s

 , B =

 B1,1 . . . B1,d

...
. . .

...
Bs,1 . . . Bs,d

 .
(11)

The parameters s, t, and d can be set arbitrarily under the
constraints m = ts and n = sd. Note that polynomial codes
set s = 1, while MatDot codes have t = d = 1 [13]. All sub-
matrices Ai,j and Bk,l have dimensions T/t×S/s and S/s×
D/d, respectively. The GPD code computes each block (i, j)
of the product C = AB, namely Ci,j =

∑s
k=1 Ai,kBk,j ,

for i ∈ [1, t] and j ∈ [1, d], in a distributed fashion. This
is done by means of polynomial encoding and polynomial
interpolation. As we review next, the computation of block
Ci,j can be interpreted as the evaluation of the middle sample
of the convolution ci,j = ai ∗bj between the block sequences
ai = [Ai,1, . . . ,Ai,s] and bj = [Bs,j , . . . ,B1,j ]. In fact,
the sth sample of the block sequence ci,j equals Ci,j , i.e.,
[ci,j ]s = Ci,j . The computation is carried out distributively
in the frequency domain by using z-transforms with different
workers being assigned distinct samples in the frequency
domain.

To elaborate, define the block sequence a obtained by
concatenating the block sequences ai as a = {a1,a2, . . . ,at}.
Pictorially, a sequence a is obtained from the matrix A by
reading the blocks in the left-to-right top-to-bottom order,
as seen in Fig. 3. We also introduce the longer time block
sequence b as

b = {b1,0,b2,0, . . . ,bd}, (12)

with 0 being a block sequence of s(t∗ − 1) all-zero block
matrices with dimensions S/s×D/d. The sequence b can be
obtained from the matrix B by following the bottom-to-top
left-to-right order shown in Fig. 3 and by adding the all-zero
block sequences between any two columns of the matrix B.

In the frequency domain, the z-transforms of sequences a
and b are obtained as

Fa(z) =

ts−1∑
r=0

[a]r+1z
r =

t∑
i=1

s∑
j=1

Ai,jz
s(i−1)+j−1, (13)

Fb(z) =

s−1+ts(d−1)∑
r=0

[b]r+1z
r =

s∑
k=1

d∑
l=1

Bk,lz
s−k+ts(l−1),

(14)

respectively. The master server evaluates the polynomials
Fa(z) and Fb(z) in P non-zero distinct points z1, . . . , zP ∈
F and sends the corresponding linearly encoded matrices
Ap = Fa(zp) and Bp = Fb(zp) to server p. The encoding
functions are hence given by the polynomial evaluations (13)
and (14), for z1, . . . , zp. Server p computes the multiplication
Fa(zp)Fb(zp) and sends it to the master server. The master
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Fig. 4: Construction of the time block sequences a∗ = [a, r] and b∗ = [b, r′] in (20) and (21) used to define the SGPD code for the case s < t. The zero
dashed lines in b and r′ indicate all-zero block sequences.

server computes the inverse z-transform for the received
products {ApBp}p∈PR = {Fa(zp)Fb(zp)}p∈PR , obtaining
the convolution a ∗ b.

From the convolution a ∗ b we can see that the master
server is able to compute all the desired blocks Ci,j by reading
the middle samples of the convolutions ci,j = ai ∗ bj from
samples of the sequence c = a ∗ b in the order [c]s−1 =
C1,1, [c]2s−1 = C2,1, . . . , [c]ts−1 = Ct,1, [c]s−1+t∗s =
C1,2, . . . , [c]ts−1+t∗s = Ct,2, . . .. Note that, in particular, the
zero block subsequences added to sequence b ensure that
no interference from the other convolutions, ci′,j′ affects the
middle (sth) sample of a convolution ci,j with i′ 6= i and
j′ 6= j.

To carry out the inverse transform, the master server needs
to collect as many values Fa(zp)Fb(zp) as there are samples
of the sequence a ∗ b, yielding the recovery threshold

PR = tsd+ s− 1. (15)

Equivalently, in terms of the underlying polynomial interpre-
tation, the master server needs to collect a number of evalu-
ations of the polynomial Fa(z)Fb(z) equal to the degree of
Fa(z)Fb(z) plus one. This computation is of complexity order
O(TDPR(log(PR))2) [13]. Furthermore, the communication
load is given as

CL = PR
TD

td
, (16)

where TD/(td) is the size of each matrix Fa(z)Fb(z).

IV. SECURE POLYDOT CODE

In this section, we propose a novel extension of the GPD
code that is able to ensure the secrecy constraint for any PC <
P . We also derive the corresponding achievable set of triples
(PC , PR, CL). As we will discuss, the projection of this set
onto the plane defined by the condition PC = 0 includes the
set of pairs (PR, CL) in (15) and (16) obtained by the GPD
code [14]. The proposed secure GPD (SGPD) code augments
matrices A and B by adding PC random block matrices to the
input matrices A and B, in a manner similar to prior works
[18]–[21], [23], yielding augmented matrices A∗ and B∗. As
we will see, a direct application of the GPD codes to these
matrices is suboptimal.

In contrast, we propose a novel way to construct sequences
a∗ and b∗ from matrices A∗ and B∗ that enables the definition
of a more efficient code by means of the z-transform approach
discussed in the previous section. To this end, we follow the
design criterion of decreasing the recovery threshold PR for
a given communication load CL. Based on the discussion in
the previous section, this goal can be realized by decreasing
the length of the sequence c∗ = a∗ ∗b∗, which can in turn be
ensured by reducing the length of the sequence b∗ for a given
length of the sequence a∗. We accomplish this objective by (i)
adaptively appending rows or columns with random elements
to matrix A, and, correspondingly columns or rows to B,
which can reduce the recovery threshold; and (ii) modifying
the zero padding procedure (see Fig. 3) for the construction
of sequence b∗. In order to account for point (i), we consider
separately the two cases s < t and s ≥ t.

A. Secure Generalized PolyDot Code: The s < t Case

As illustrated in Fig. 4, when s < t, we augment the input
matrices A and B by adding

∆PC
∆
=

⌈
PC
s

⌉
, (17)

random row and column blocks to matrices A and B, respec-
tively. Accordingly, the t∗ × s augmented block matrix A∗

with t∗ = t+ ∆PC is obtained as

A∗ =

[
A
R

]
=



A1,1 . . . A1,s

...
. . .

...
At,1 . . . At,s

R1,1 . . . R1,s

...
. . .

...
R∆PC,1

. . . R∆PC,s


, (18)

while the s × d∗ augmented matrix B∗ = [B R′] with d∗ =
d+ ∆PC is obtained as

B∗ =

 B1,1 . . . B1,d R′s,1 . . . R′s,∆PC

...
. . .

...
...

. . .
...

Bs,1 . . . Bs,d R′1,1 . . . R′1,∆PC

 . (19)
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In (18) and (19), if s divides PC , all block matrices Ri,j ∈
FT
t ×

S
s and R′i,j ∈ FS

s×
D
d are generated with i.i.d. uniform

random elements in F. Otherwise, if ∆PC − PC/s > 0, the
last s∆PC −PC matrices in (18), with right-to-left ordering in
the last row of Ri,j , and in (19) with top-to-bottom ordering
in the last column of R′i,j , are all-zero block matrices.

As illustrated in Fig. 4, in the SGPD scheme, the block
sequence a∗ is defined in the same way as in the conventional
GPD, yielding

a∗ = {a1, . . . ,at, r1, . . . , r∆PC
}, (20)

where ri is the ith row of the block matrix R, i ∈ [1,∆PC ].
We also define the time block sequence b∗ = {b, r′} as

b∗ = {b1,0,b2,0, . . . ,bd,0, r
′
1, r
′
2, . . . , r

′
∆PC
}, (21)

where 0 is block sequences of s(t∗−1) all-zero block matrices,
respectively, with dimensions S/s×D/d, while r′j is the jth
column of the random matrix R′. The key novel idea of this
construction is that no zero matrices are introduced between
the columns of matrix R′. As shown in Theorem 1 below, this
construction allows the master server to recover all the desired
submatrices Ci,j for i ∈ [1, t] and j ∈ [1, d] from the middle
samples of the convolutions ci,j = ai ∗ bj (see Fig. 5 for an
illustration).

Theorem 1. For a given security level PC < P , the proposed
SGPD code achieves the recovery threshold PRtsd + s− 1, if PC = 0,

t∗s(d + 1) + s∆PC − 1, if PC ≥ 1 and ∆PC = PC
s
,

t∗s(d + 1) − s∆PC + 2PC − 1, if PC ≥ 1 and ∆PC > PC
s
,

(22)
and the communication load (16), where t∗ = t + ∆PC and
d∗ = d + ∆PC for any integer values t, s, and d such that
s < t, m = ts, and n = sd.

Proof. The z-transform of sequences a∗ and b∗ are given
respectively as

Fa∗(z) =

t∑
i=1

s∑
j=1

A∗i,jz
s(i−1)+(j−1)

︸ ︷︷ ︸
∆
= F1(z)

+

t∗∑
i=t+1

s∑
j=1

A∗i,jz
s(i−1)+j−1

︸ ︷︷ ︸
∆
= F2(z)

, (23)

Fb∗(z) =

s∑
k=1

d∑
l=1

B∗k,lz
s−k+t∗s(l−1)

︸ ︷︷ ︸
∆
= F3(z)

+

s∑
k=1

d∗∑
l=d+1

B∗k,lz
t∗sd+s(l−d)−k

︸ ︷︷ ︸
∆
= F4(z)

. (24)

The master server evaluates Fa∗(z) and Fb∗(z) at P non-
zero distinct points z1, . . . , zP ∈ F, which define the encoding
functions, and sends both matrices Ap = Fa∗(zp) and Bp =

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Fig. 5: Outcome of the communication Ci,j = ai ∗ bj for t = 3, s =
2, d = 2, and PC = 2. Dashed blue stems with filled markers represent
the convolution c∗. Individual convolutions ci,j are shown in different colors
with square markers. Contributions from one or both random matrices are
shown as red crosses. The desired submatrices Ci,j are seen to equal the
corresponding samples from the sequence c∗, associated with the center points
of the individual convolutions.

Fb∗(zp) to worker p. Worker p performs the multiplication
Fa∗(zp)Fb∗(zp), and sends the results back to the master
server. To reconstruct all blocks Ci,j of matrix C = AB, the
master server carries out a polynomial interpolation, or equiv-
alently, it computes the inverse z-transform, upon receiving a
number of multiplication results equal to at least the length of
the sequence c∗ = a∗ ∗b∗. As we detail next, the (i, l) block
Ci,l =

∑s
r=1 Ai,rBr,l, for all i ∈ [1, t] and l ∈ [1, d], of

matrix C = AB can be seen equal to the (si−1+(l−1)t∗s)th
sample of the convolution c∗ = a∗ ∗ b∗. An illustration can
be found in Fig. 5.

To see this, we first note that, by the properties of
GPD codes, matrix Ci,l is the coefficient of the monomial
zsi−1+(l−1)t∗s in F1(z)F3(z). Note that this holds since the
polynomial F1(z) and F3(z) are defined as GPD codes. We
now need to show that no other contribution to this term arises
from the products F1(z)F4(z), F2(z)F3(z), and F2(z)F4(z).
The terms in the product F1(z)F4(z) have exponents (t∗sd+
s(i−1)+s(l−d)−1), for i ∈ [1, t] and l ∈ [d+1, d∗], which do
not include the desired values (si−1+(l−1)t∗s) for i ∈ [1, t]
and l ∈ [1, d]. A similar discussion applies to the product
F2(z)F3(z), whose exponents are (s(i + t∗l − t∗) − 1), for
i ∈ [t+1, t∗] and l ∈ [1, d], and F2(z)F4(z), whose exponents
are (t∗sd + s(i − 1) + s(l − d) − 1), for i ∈ [t + 1, t∗] and
l ∈ [d+ 1, d∗].

In order to recover the convolution c∗, the master server
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Fig. 6: Construction of the time block sequences a∗ and b∗ in (31) and (32) used to define the secure generalized PolyDot (SGPD) code for the case s ≥ t.
The solid line and the zero dashed lines in b∗ indicate columns of B and all-zero block sequences, respectively.

needs to collect a number of values of the product Fa(z)Fb(z)
equal to the length of the sequence c∗, which can be computed
as the degree deg (Fa(z)Fb(z))+1, where deg(Fa(z)Fb(z))
is {

t∗s(d+ 1) + s∆PC − 1, if ∆PC = PC
s ,

dst∗ − s∆PC + 2PC + t− 2, if ∆PC >
PC
s .

(25)

For PC ≥ 1 this implies the recovery threshold PR in (22). The
communication load CL in (16) follows from the fact that there
are TD/(td) entries in Fa∗(zp)Fb∗(zp), for all p ∈ [1, PR].

The security constraint (3) can be proved in a manner
similar to [20] by the following steps:

I(A,B;AP ,BP)

=H(AP ,BP)−H(AP ,BP |A,B)

(a)
=H(AP ,BP)−H(AP ,BP |A,B)

+H(AP ,BP |A,B,R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC )

=H(AP ,BP)− I(AP ,BP ;R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC |A,B)

=H(AP ,BP)−H(R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC |A,B)

+H(R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC |A,B,AP ,BP)

(b)
=H(AP ,BP)−H(R1, . . . ,RPC ,R

′
1, . . . ,R

′
PC )

(c)

≤H(AP) +H(BP)−
PC∑
p=1

H(Rp)−
PC∑
p=1

H(R′p)

(d)
=H(AP) +H(BP)− PC

TS

m
log |F| − PC

SD

n
log |F|

(e)

≤
PC∑
p=1

H(Ap) +

PC∑
p=1

H(Bp)− PC
TS

m
log |F| − PC

SD

n
log |F|

(f)
=PC

TS

m
log |F|+ PC

SD

n
log |F| − PC

TS

m
log |F|

− PC
SD

n
log |F|

=0, (26)

where (a) follows from the definition of encoding functions,
since AP is a deterministic function of A and Rp, and BP

is a deterministic function of B and R′p, respectively, for
all p ∈ [1, PC ]; (b) follows from (23) and (24), since from
PR polynomial evaluations AP and BP in (23) and (24)
we can recover 2PC unknowns when the coefficients Ai,j

and Bk,l are known, given that we have PR ≥ 2PC ; (c)
and (d) follows since Rp and R′p are independent uniformly
distributed entries; (e) follows by upper bounding the joint
entropy using the sum of individual entropies; and (f) follows
from an argument similar to (d). Hence, the proposed scheme
is information-theoretically secure.

Remark 1. When PC ≥ 1 a direct application of the GPD
construction in Fig. 3 would yield the larger recovery threshold

PR =

{
t∗sd∗ + s− 1, if ∆PC = PC

s ,

dst∗ + s− 1− 2(s∆PC − PC), if ∆PC >
PC
s .
(27)

B. Secure Generalized PolyDot Code: The s ≥ t Case

As illustrated in Fig. 6, when s ≥ t, we instead augment
input matrices A and B by adding

∆′PC
∆
=

⌈
PC

min {t, d}

⌉
(28)

column and row blocks to matrices A and B. This can be seen
to yield a smaller recovery threshold. Accordingly, the t× s∗
augmented block matrix A∗ = [A R] with s∗ = s+ ∆′PC is
obtained as

A∗ =

 A1,1 . . . A1,s R1,1 . . . R1,∆′PC
...

. . .
...

...
. . .

...
At,1 . . . At,s Rt,1 . . . Rt,∆′PC

 , (29)



9

while the s∗ × d augmented block matrix B∗ is defined as

B∗ =

[
R′

B

]
=



R′∆′PC,1
. . . R′∆′PC,d

...
. . .

...
R′1,1 . . . R′1,d
B1,1 . . . B1,d

...
. . .

...
Bs,1 . . . Bs,d


. (30)

As for (29) and (30), if ∆′PC − PC/min{t, d} > 0, the last
s∆′PC−PC block matrices in (29), with bottom-to-top right-to-
left ordering in R, and in (30) with right-to-left top-to-bottom
ordering in R′, are all-zero block matrices. The construction
of sequences a∗ and b∗ is analogous to the GPD in the non-
secure case. In particular, as seen in Fig. 6, the time block
sequence a∗ is

a∗ = {a1, r1,a2, r2, . . . ,at, rt}, (31)

whereas the block sequence b∗ is defined as

b∗ = {b1,0,b2, . . . ,0,bd, 0̂, r
′
∆′PC

, . . . , r′1}. (32)

Here, 0 and 0̂ are a block sequence of t and t − 1 all-zero
block matrices with dimensions S/s×D/d, respectively, while
r′i is the ith row of the random matrix R′.

Theorem 2. For a given security level PC < P , the proposed
SGPD code achieves the recovery threshold

PR = t(s∗d−∆′PC ) + ts+ 2PC − 1 (33)

and the communication load (16), where s∗ = s + ∆′PC for
any integer values t, s, and d such that s ≥ t, m = ts, and
n = sd.

Proof. We define the z-transform of sequences a∗ and b∗

respectively as

Fa∗(z) =

t∑
i=1

s∑
j=1

A∗i,jz
i−1+t(j−1)

+

t∑
i=1

s∗∑
j=s+1

A∗i,jz
i−1+t(j−1), (34)

Fb∗(z) =

s∗∑
k=1+∆′PC

d∑
l=1

B∗k,lz
(s∗−k)t+ts∗(l−1)

+

∆′PC∑
k=1

d∑
l=1

B∗k,lz
t(s∗d−∆′PC

)+d(∆′PC
−k)+l−1. (35)

The (i, l) block Ci,l =
∑s
r=1 Ai,rBr,l, for all i ∈ [1, t] and

l ∈ [1, d], of matrix C = AB can be seen equal to the (i −
1 + t(s∗l−1))th sample of the convolution c∗ = a∗ ∗b∗. The
rest of the proof follows in a manner akin to Theorem 1.

Remark 2. The computational complexity of SGPD codes for
both workers and master server can be summarized as follows.
Each worker is assigned to compute the multiplication Cp =
ApBp, requiring TSD/(tsd) multiplications. For the master
server, encoding matrices Ap and Bp at each worker amounts
to evaluating z-transforms Fa∗(z) and Fb∗(z) at a random

0 500 1000 1500 2000 2500
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Fig. 7: Communication load CL versus recovery threshold PR for both non-
secure generalized PolyDot (GPD) and secure generalized PolyDot (SGPD)
codes (m = n = 36 and P = 3000 workers).

point zp. This requires multiplying zp by (ts+PC) and (sd+
PC) submatrices, each of dimension T/t×S/s and S/s×D/d,
respectively. This requires PC(TS/(ts)+SD/(sd))+TS+SD
multiplications. Overall, the master server needs to carry out
PPC(TS/(ts) + SD/(sd)) + P (TS + SD) multiplications.
For decoding, the master server interpolates a polynomial
degree PR − 1 for each element in C. Using a polynomial
interpolation algorithm, the decoding complexity amounts to
(PR − 1)(log(PR − 1))2TD/(td) multiplications [42].

Example 1. We now provide some numerical results of the
proposed SGPD scheme. We set P = 3000 workers and
parameters m = n = 36. The trade-off between communica-
tion load CL and recovery threshold PR for both non-secure
conventional GPD codes (PC = 0) and proposed SGPD code
with colluding workers PC = 11 and PC = 29 is illustrated
in Fig. 7. The figure quantifies the loss in terms of achievable
pairs (PR, CL) that is caused by the security constraint.

C. Trading Off Computation and Communication Latencies

In this subsection, we elaborate on the importance of
enabling a flexible trade-off between communication load and
recovery threshold by analyzing the overall completion time
for the matrix multiplication task at hand. The completion
delay is the sum of latencies due to computation and com-
munication.

To this end, following a well-established model [43], [11],
we assume that computation at each worker p requires a
random time T comp

p , measured in some specified unit of time,
that is modeled as a shifted exponential distribution with
cumulative distribution function (cdf)

F comp(T comp) = 1− exp

(
−µTSD

tsd
(T comp − T comp

min )

)
, (36)
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Fig. 8: Average completion time E[T ] versus communication rate Rcomm

for secure generalized PolyDot (SGPD) codes with P = 3000, PC = 29,
T = S = D = 1008, µ = 0.5× 10−4, and T comp = 1, and m = n = 36:
(i) t = d = 36, s = 1 (SGPD code), (ii) t = s = d = 6, and (iii) t = d = 1,
s = 36 (secure MatDot code).

for T ≥ T comp
min and F comp(T ) = 0 otherwise. According to

(36), the parameter T comp
min represents the minimum processing

time, and 1/µ represents the average excess computing time,
with respect to T comp

min , per multiplication (recall Remark 2).
Assuming independent computing times, for a given recovery
threshold PR, the computation time T comp is hence given as
the PRth-order statistic, i.e., the PRth smallest variable, among
the i.i.d. variables (T comp

1 , . . . , T comp
P ). Its expectation is given

by [44]

E[T comp]=
tsd

µTSD

PR∑
i=1

1

P−PR+i
=

tsd

µTSD
(HP −HP−PR),

(37)
where HP is the generalized harmonic number defined as
HP =

∑P
i=1 1/i.

Suppose now that the workers communicate with the master
server are a link with an overall download rate Rcomm (symbols
per unit time). The communication latency is hence given as

T comm = PR
TD

tdRcomm , (38)

since the workers need to return PRTD/(td) symbols to the
master server. Overall, the average completion time is given
as

E[T ] = T comp
min +

tsd

µTSD
(HP −HP−PR)+PR

TD

tdRcomm . (39)

Example 2. Let consider P = 3000 workers and parameters
m = n = 36. We assume that PC = 29, T = S = D = 1008,
µ = 0.5×10−4, and T comm

min = 1. We compare the performance
of the following SGPD codes: (i) t = d = 36 and s = 1
(secure Polynomial code); (ii) t = s = d = 6; (iii) t = d = 1

and s = 36 (secure MatDot code). The values of CL and PR
for these codes are shown in Fig. 7. The average completion
time (39) is plotted versus the communication rate Rcomm in
Fig. 8. The figure shows that the optimal choice of the latency-
minimizing SGPD code along the curve in Fig. 7 depends on
the system’s operating point: For small communication rates,
it is preferable to reduce the communication load CL, and
hence secure Polynomial codes are the best choice; while for
large communication rate, it is optimal to choose codes with
an increasingly large value of the communication load CL.

V. SECURE AND PRIVATE GENERALIZED POLYDOT CODE

In this section, we study the setup shown in Fig. 2. We pro-
pose a variant of the private and secure GPD code introduced
in [38] that we refer to as private and secure GPD (PSGPD)
code. Note that in [38] a private coded matrix multiplication
scheme is proposed only for Polynomial codes with s = 1
in (11). We derive the corresponding achievable set of pairs
(PR, CL) as defined in Section II under the condition PC = 1,
i.e., the workers do not collude.

Theorem 3. For a given security level PC = 1, there is an
achievable PSGPD codes with the recovery threshold

PR =

{
s(t+ 1)d, if s < t,

ts(d+ 1)− t+ 1, if s ≥ t,
(40)

and the communication load (16), for any integer values t, s,
and d such that m = ts, and n = sd.

Proof. The proof is presented in Appendix A.

Remark 3. The computational complexity of PSGPD codes
for both workers and master server is summarized as fol-
lows. In PSGPD codes, each worker has two duties, namely
encoding the library B and computing the multiplication
C

(κ)
p = A

(κ)
p B

(κ)
p . Encoding the library, i.e., computing the

matrix B
(κ)
p in (44), requires to evaluate FB(r)(z), r ∈ [1, L]

at query vector q
(κ)
p . Hence, the former task requires LSD

multiplications, while the latter entails TSD/(tsd) multipli-
cations. In total, each worker carries out LSD+TSD/(tsd)

multiplications. The master server encodes matrix A
(κ)
p with

(1 + ts)TS/(ts) multiplications. In total, for all P workers,
the master server needs P (1 + ts)TS/(ts) multiplications.
The computation complexity of the decoding complexity of
the master server is the same as for SGPD codes, namely
O((PR − 1)(log(Pr − 1))2TD/(td))).

Example 3. Let us consider P = 3000 workers and parame-
ters m = n = 36. We assume that PC = 1 in order to compare
the performance of proposed SGPD and PSGPD codes. Note
that both recovery threshold and communication load of the
PSGPD code do not depend on the number of public matrices
|B| = L in the library. The trade-off between communication
load CL and recovery threshold PR is illustrated in Fig. 9 for
both codes. The figure shows that, for a fixed value of PR, the
resulting achievable value of the communication load CL is
smaller for PSGPD than for SGPD codes. This suggests that
the privacy requirement on the index κ imposed by PSGPD
is less demanding than the security constraint on matrix B
under which SGPD codes operate.
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Fig. 9: Communication load CL versus recovery threshold PR for secure
generalized PolyDot (SGPD) codes with PC = 1 and private and secure
generalized PolyDot (PSGPD) codes (m = n = 36 and P = 3000 workers).

Remark 4. As for SGPD codes, the overall average comple-
tion time of PSGPD codes can be derived following the same
steps as described in Section IV-C.

VI. CONCLUDING REMARKS

In this work, we have considered the problem of secure and
private distributed matrix multiplication on C = AB in terms
of design of computational codes for two settings. In the first
setting, the two matrices A and B contain confidential data
and must be kept secure from the workers; and in the second
setting , matrix A is confidential, while matrix B is selected
in a private manner from a library of public matrices. For both
problems, this work presents the best currently known trade-
off between communication load and recovery threshold. This
is done by presenting two code constructions that generalize
the state-of-the-art GPD codes [13]–[15], in combination with
PIR based codes [38].

Among important items for future research, we mention the
extension of the proposed PSGPD construction to PC > 1.
Here, we note that one can design an achievable PSGPD
scheme for any arbitrary privacy level by trivially concatenat-
ing a robust PIR scheme for arbitrary colluding workers and
private databases [33] and the proposed SGPD code. However,
this approach would require multiplying the data matrix A
with all L public matrices in the set B = {B(r)}Lr=1 for
each worker p ∈ [1, P ], implying a significantly increased
computation load. Future work will focus on PSGPD schemes
for any number of colluding workers that provides a smaller
computational complexity at the workers. Finally, the estab-
lishment of a converse bound and the consideration of non-
perfect communication channels between workers and master
server [45] are open problems.

APPENDIX A
PROOF OF THEOREM 3

We start by discussing the s < t case, as done in Section
IV. The polynomial encoding function for the input matrix A,
is obtained is defined as in (23) for PC = 1, that is

FA(z) =

t∑
i=1

s∑
j=1

Ai,jz
s(i−1)+(j−1) + Rzst, (41)

where we recall that R is an T/t× S/s random matrix with
i.i.d. uniform random elements in F. The encoded matrices
are given as A

(κ)
p = FA(zκ,p) for values zκ,p to be discussed

below. For the desired index κ, the master server also computes
the query vector q(κ)

p for all p ∈ [1, P ]. This is obtained as

q(κ)
p = [z1, . . . , zκ−1, zκ,p, zκ+1, . . . , zL], (42)

where all points {zi}i6=κ are selected uniformly i.i.d. from F
but are identical for all p. The points {zκ,p}Pp=1 are selected
i.i.d. as distinct elements from F (recall that we have |F| > P ).
We note that, as in the PIR scheme [38], the query vector (42)
does not leak any information on index κ in the sense defined
by condition (9). The master server evaluates FA(z) in (41) at
the distinct random point zκ,p, to produce the encoded matrices
A

(κ)
p = FA(zκ,p), and then sends A

(κ)
p along with the query

vector q(κ)
p to worker p ∈ [1, P ].

Each worker p, after receiving the query vectors q
(κ)
p ,

encodes the library B into a matrix B
(κ)
p as follows. Define the

polynomial encoding function for each matrix B(r), r ∈ [1, L],
in the library B as in (24) for PC = 0, i.e.,

FB(r)(z) =

s∑
k=1

d∑
l=1

B
(r)
k,lz

s−k+(l−1)s(t+1). (43)

Each worker p computes the encoded matrices as

B(κ)
p

∆
=
∑

r∈[1,L]

FB(r)([q(κ)
p ]r)

=FB(κ)(zκ,p) +
∑

r∈[1,L]\κ

FB(r)(zr), (44)

where [q
(κ)
p ]r denotes the rth element of the query vector q(κ)

p .
After encoding the library, each worker p computes the

matrix product C
(κ)
p = A

(κ)
p B

(κ)
p and then sends C

(κ)
p

back to the master server. We note that both polynomials
FA(z) and FB(κ)(z), assigned to the input matrix A and the
desired matrix B(κ), are evaluated at the same random points
zκ,1, . . . , zκ,P for workers 1, . . . , P , respectively. Since each
undesired matrix is evaluated at an identical random point for
all workers the second term in (44), i.e.,

∑
r∈[1,L]\κFB(r)(zr),

can be considered as a constant term.
To reconstruct all blocks C(κ)

i,l of the product matrix C(κ) =

AB(κ), the master server carries out polynomial interpolation,
upon receiving a number of multiplication results equal to at
least deg(FA(z)GB(κ)(z)) + 1, which is s(t + 1)d, for the
case s < t.

Similarly, for the s ≥ t case, the polynomial encoding
function for the input matrix A as in (34) for PC = 1, that is,

FA(z) =

t∑
i=1

s∑
j=1

Ai,jz
i−1+t(j−1) + Rzts, (45)
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and the encoding function for matrices B(r) is given as in (35)
for PC = 0, that is

FB(r)(z) =

s∑
k=1

d∑
l=1

B
(r)
k,lz

(s−k)t+ts(l−1). (46)

The encoded matrices A
(κ)
p and B

(κ)
p are defined as above,

and so are the query vectors q
(κ)
p for all p ∈ [1, P ].

The security of the data matrix A against non-colluding
workers is guaranteed by appending the random matrix R to
the input matrix A in (41) in the same way as described in
Section IV. The details for both cases s < t and s ≥ t are
given in the proofs of Theorems 1 and 2, respectively, for
the case of PC = 1. The privacy condition of (9) follows
by definition of the query vectors (42) for the desired index
κ ∈ [1, L], as proved in [38]. Finally, the recovery threshold
and the communication load follow in a manner analogous to
Theorems 1 and 2.
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