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Random Access Analysis for Massive IoT Networks
Under a New Spatio-Temporal Model:

A Stochastic Geometry Approach
Nan Jiang , Student Member, IEEE, Yansha Deng , Member, IEEE, Xin Kang , Member, IEEE,

and Arumugam Nallanathan , Fellow, IEEE

Abstract— Massive Internet of Things (mIoT) has provided
an auspicious opportunity to build powerful and ubiquitous
connections that face a plethora of new challenges, where cellular
networks are potential solutions due to their high scalability,
reliability, and efficiency. The random access channel (RACH)
procedure is the first step of connection establishment between
IoT devices and base stations in the cellular-based mIoT network,
where modeling the interactions between static properties of
the physical layer network and dynamic properties of queue
evolving in each IoT device are challenging. To tackle this,
we provide a novel traffic-aware spatio-temporal model to analyze
RACH in cellular-based mIoT networks, where the physical layer
network is modeled and analyzed based on stochastic geometry
in the spatial domain, and the queue evolution is analyzed based
on probability theory in the time domain. For performance
evaluation, we derive the exact expressions for the preamble
transmission success probabilities of a randomly chosen IoT
device with different RACH schemes in each time slot, which
offer insights into the effectiveness of each RACH scheme. Our
derived analytical results are verified by the realistic simulations
capturing the evolution of packets in each IoT device. This
mathematical model and the analytical framework can be applied
to evaluate the performance of other types of RACH schemes in
the cellular-based networks by simply integrating its preamble
transmission principle.

Index Terms— Massive IoT, cellular network, random access,
queue interaction, stochastic geometry.

I. INTRODUCTION

MASSIVE Internet of Things (mIoT) is deemed to con-
nect billions of miscellaneous mobile devices or IoT

devices that empowers individuals and industries to achieve
their full potential. A plethora of new applications, such as
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autonomous driving, remote health care, smart-homes, smart-
grids, and etc, are being innovated via mIoT, in which ubiq-
uitous connectivities among massive IoT devices are operated
fully automatedly without human intervention. The successful
operation of these IoT applications faces various challenges,
among them providing wireless access for the tremendous
number of IoT devices has been considered to be the main
problem. This issue has been regarded as one of key dif-
ferences between mIoT and human-to-human (H2H) wireless
communication networks, such that the conventional H2H
communication architecture needs to be adjusted to support
the mIoT networks.

Previously, cellular network (e.g, Long Term Evolution
(LTE)) and short-range transmission technologies (e.g, ZigBee,
Bluetooth) were considered as potential solutions to support
mIoT networks, however none of them can achieve all wide
coverage, low power consumption and supporting massive IoT
devices at the same time [2]–[5]. To solve this, Low-Power
Wide Area Networks (LPWANs) is proposed as an alternative
solution for mIoT networks that enables the operation in
the unlicensed band (e.g, LoRa, Sigfox) and licensed band
(e.g, extended coverage GSM-IoT, enhanced machine type
communication, and narrow band IoT (NB-IoT)). According
to the Third Generation Partnership Project (3GPP), the IoT
technologies are suggested to be developed based on the exist-
ing cellular infrastructure, due to its low additional hardware
deployment cost as well as high-level of security by operating
on the licensed band [4]–[10].

In the cellular-based mIoT network, connections between
IoT device with BS are provided by incorporating these
IoT devices in existing cellular networks directly or via IoT
gateways. In this network, the number of IoT devices is
expected to raise up to more than thirty thousands per cell and
such IoT devices may request access simultaneously for their
small size data packets uplink transmission [6], [11], [12].
As such improving the access mechanisms of current cellular
systems is one of key challenges for the cellular-based mIoT
network [4]–[8], [13]. In LTE, a device performs Random
Access CHannel (RACH) procedure when it needs to
establish or re-establish a data connection with its associated
BS, and the first step of RACH is that the device transmits a
preamble via physical random access channel (PRACH) [14].
Two ways exist for accessing to the network: 1) the
contention-free RACH for delayed-constrained access requests
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(e.g, handover), where the BS distributes one of the reserved
dedicated preamble to a device, and then the device uses
its dedicated preamble to initiate a contention-free RACH;
2) the contention-based RACH for delay-tolerant access
requests (e.g, data transmission), where an IoT device
randomly chooses a preamble from non-dedicated preambles
to transmit to its associated BS [14]. Generally, the contention-
based RACH is much more sensitive to IoT traffic
[4], [5], [13], such that most works have analyzed its
scalability characteristics in supporting massive concurrent
access requests [15]–[21].

The contention-based RACH has been widely studied in
the conventional LTE networks, where the most critical point
of this issue concerns modeling and analyzing time-varying
queues and RACH schemes in MAC layer [22], [23]. Recently,
a number of studies have been launched to discuss whether
the contention-based RACH of LTE is suitable for mIoT, and
how to evolve cellular systems to provide efficient access
for mIoT networks [5], [18], [20], [21]. In [18], Lin et al.
developed a MAC-level model for the four-step RACH pro-
cedure to analyze and compare the baseline scheme and the
dynamic back-off scheme. In [20], a novel Access Class
Barring (ACB) scheme is proposed with a constant association
rate. In [21], Wali et al. devolop analytical models for the
spatial-randomization ACB scheme and the time-spatial ran-
domization, as well as compare them with the 3GPP specified
eNodeB-employed time-randomization ACB scheme. How-
ever, in [18] and [20]-[23], the collision events are considered
as the main outage condition, and the preamble transmission
failure impacted by the physical channel propagation char-
acteristics is simplified. Generally speaking, in the large-scale
cellular-based mIoT network, the physical layer characteristics
can strongly influence the performance of RACH success,
due to that the received signal-to-interference-plus-noise ratio
(SINR) at the BS can be severely degraded by the mutual inter-
ference generated from massive IoT devices. In this scenario,
the random positions of the transmitters make accurate mod-
eling and analysis of this interference even more complicated.

Stochastic geometry has been regarded as a powerful tool to
model and analyze mutual interference between transceivers
in the wireless networks, such as conventional cellular net-
works [24]–[26], wireless sensor networks [27], cognitive
radio networks [28], [29], and heterogenous cellular networks
[30]–[32]. However, there are two aspects that limit the
application of conventional stochastic geometry analysis to the
RACH analysis of the cellular-based mIoT networks: 1) con-
ventional stochastic geometry works focused on analyzing
normal uplink and downlink data transmission channel, where
the intra-cell interference is not considered, due to the ideal
assumption that each orthogonal sub-channel is not reused in
a cell, whereas massive IoT devices in a cell may randomly
choose and transmit the same preamble using the same sub-
channel; 2) these conventional stochastic geometry works only
modeled the spatial distribution of transceivers, and ignored
the interactions between static properties of physical layer
network and the dynamic properties of queue evolving in each
transmitter due to the assumptions of backlogged network with
saturated queues [33]–[35].

To model these aforementioned interactions, recent works
have studied the stability of spatially spread interacting queues
in the network based on stochastic geometry and queuing the-
ory [32]–[35]. The work in [33] is the first paper applying the
stochastic geometry and queuing theory to analyze the perfor-
mance of RACH in distributed networks, where each transmit-
ter is composed of an infinite buffer, and its location is changed
following a high mobility random walk. The work in [34]
investigated the stable packet arrival rate region of a discrete-
time slotted RACH network, where the transceivers are static
and distributed as independent Poisson point processes (PPPs).
The work in [32] analyzed the delay in the heterogeneous
cellular networks with spatio-temporal random arrival of traf-
fic, where the traffic of each device is modeled by a marked
Poisson process, and the statistics of such traffic with different
offloading policies are compared. In [35], Gharbieh et al.
have modeled the randomness in the locations of IoT devices
and BSs via PPPs, and leveraged the discrete time Markov
chain to model the queue and protocol states of each IoT
device. However, the model is limited in capturing the dynamic
preamble success probability during the time evolution, such
that it can only derive the analytical result during the steady
state, and this result is unable to be verified by simulations.

In this paper, we develop a novel spatio-temporal math-
ematical framework for cellular-based mIoT network using
stochastic geometry and probability theory, where the BSs
and IoT devices are modeled as independent PPPs in the
spatial domain. In the time domain, the new arrival packets of
each IoT device are modeled by independent Poisson arrival
processes [16], [32], [36], [37]. The packets status in each IoT
device that are jointly populated by the new Poisson arrival
packets and the accumulated packets in the previous time slots
according to its stochastic geometry analysis, determines the
aggregate interference at the received SINR in the current time
slot, which then determines the non-empty probability and
non-restrict probability of IoT device (i.e., IoT device have
back-logged packets and permission to transmit currently) in
the current time slot. The contributions of this paper can be
summarized in the following points:

• We present a novel spatio-temporal mathematical frame-
work for analyzing contention-based RACH of the mIoT
network. Assuming the independent Poisson arrival,
the packets accumulation and preamble transmission of a
typical IoT device in each time slot is accurately modeled.

• With single time slot, we derive the exact expressions for
the preamble detection probability of a randomly chosen
BS, the preamble transmission success probability of a
randomly chosen IoT device, and the number of received
packets per BS in the cellular-based mIoT networks.

• With multiple time slots, the queue statuses are firstly
analyzed based on probability theory, and then approx-
imated by their corresponding Poisson arrival distribu-
tions, which facilitates the queuing analysis. By doing
so, we derive the exact expressions for the preamble
transmission success probability of a randomly chosen
IoT device in each time slot with the baseline, the ACB,
and the back-off schemes for their performance
comparison.
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• We develop a realistic simulation framework to capture
the randomness location, preamble transmission, and the
real packets arrival, accumulation, and departure of each
IoT device in each time slot, where the queue evolution
as well as the stochastic geometry analysis are all
verified by our proposed realistic simulation framework.

• The analytical model presented in this paper can also
be applied for the performance evaluation of other types
of RACH schemes in the cellular-based networks by
substituting its preamble transmission principle.

The rest of the paper is organized as follows. Section II
presents the network model. Sections III derives preamble
detection probability of a randomly chosen BS and the pream-
ble transmission success probability of a randomly chosen
IoT device in single time slot. Section IV provides queue
evolution analysis. Section V presents analytical results for
performance metrics. Section VI provides numerical results.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider an uplink model for cellular-based mIoT net-
work consists of a single class of base stations (BSs) and
IoT devices, which are spatially distributed in R

2 following
two independent homogeneous Poisson point process (PPP),
ΦB and ΦD, with intensities λB and λD , respectively. Same
as [24], [31], and [38], we assume each IoT device associates
to its geographically closest BS, and thus forms a Voronoi
tesselation, where the BSs are uniformly distributed in the
Voronoi cell. Same as [34] and [32], the time is slotted into
discrete time slots, and the number and locations of BSs and
IoT devices are fixed all time once they are deployed.

A. Network Description

We consider a standard power-law path-loss model, where
the signal power decays at a rate r−α with the propaga-
tion distance r, and the path-loss exponent α. We consider
Rayleigh fading channel, where the channel power gains
h(x, y) between two generic locations x, y ∈ R

2 is assumed
to be exponentially distributed random variables with unit
mean. All the channel gains are independent of each other,
independent of the spatial locations, and identically distributed
(i.i.d.). For the brevity of exposition, the spatial indices (x, y)
are dropped.

Uplink power control has been an essential technique in
cellular network [24], [31], [39]. We assume that a full path-
loss inversion power control is applied at all IoT devices,
where each IoT device compensates for its own path-loss
to keep the average received signal power equal to a same
threshold ρ [35], [40]. By doing so, as a user moves closer
to the desired base station, the transmit power required to
maintain the same received signal power decreases, which
saves energy for battery-powered IoT devices. More impor-
tantly, it helps to solve the “near-far” problem, where a BS
cannot decode the signals from cell-edge due to high aggregate
interference from other nearby IoT devices. The transmit
power of ith IoT device Pi depends on the distance from its
associated BS, and the defined threshold ρ, where Pi = ρri

α.

In order to successfully transmit a signal from the IoT device,
the maximum transmit power should be high enough for its
path-loss inversion, otherwise, it does not transmit the signal
and goes into a truncation outage. Here, we assume that the
density of BSs is high enough and none of the IoT device
suffers from truncation outage (i.e., the transmit power of IoT
device is large enough for uplink path-loss inversion, while
not violating its own maximum transmit power constraint).

B. Contention-Based Random Access Procedure

In the cellular-based network, the first step to establish
an air interface connection is delivering requests to the
associated BS via RACH [14], where the contention-based
RACH is favored by mIoT network for the initial association
to the network, the transmission resources request, and the
connection re-establishment during failure [4], [5], [7], [13].
The contention-based RACH has four steps: In step 1, each
device randomly chooses a preamble (i.e., orthogonal pseudo
code, such as Zadoff-Chu sequence)1 from available preamble
pool, and send to its associated BS via PRACH. In step 2,
the IoT device sets a random access response (RAR) window
and waits for the BS to response with an uplink grant in the
RAR. In step 3, the IoT device that successfully receives its
RAR transmits a radio resource control connection request
with identity information to BS. In step 4, the BS transmits a
RRC Connection Setup message to the IoT device. Note that,
only within the step 1 preamble is transmitted via PRACH,
but within other steps signals are transmitted via normal
uplink and downlink data transmission channel. Further
details on the RACH can be found in [14].

In the step 1 of contention-based RACH, the IoT device
randomly selects a preamble from a group of non-dedicated
preambles defined by the BS. Without loss of generality,
we assume that each BS has an available preamble pool with
the same number of non-dedicated preambles ξ, known by its
associated IoT devices. Each preamble has an equal probability
(1/ξ) to be chosen by an IoT device, and the average density
of the IoT devices using the same preamble is λDp = λD/ξ,
where the λDp is measured with unit devices/preamble/km2.

In the cellular-based mIoT network, λDp is able to be a huge
number, due to that the slotted-ALOHA system allows all IoT
devices requesting for access in the first available opportunity.
Once a huge number of IoT devices transmit preambles
simultaneously, the network performance might degrade due
to that the preambles cannot be detected or decoded by the BS
[4], [5]. Therefore, the contention of preamble in the step 1
becomes one of the main challenges in RACH [6], [17], [18],
[35], [42], [43]. Same as [18], [35], [42], and [43], we assume

1In LTE, there are 64 available preambles for RACH in each BS, which are
generated on the side of IoT devices from 10 different root sequences [14].
Generally, the preambles generated from the same root are completely
orthogonal, and preambles generated from two different roots are nearly
orthogonal [14]. To mitigate the interference among preambles generated
from different root sequences, some published literature have specifically
studied such correlations, and some results shown that their proposed pream-
ble detectors can asymptotically achieve almost interference-free detection
performance (i.e., nearly orthogonal) [41]. However, this is beyond the scope
of this paper, and to focus on studying spatio-temporal model for RACH,
we assume different preambles are completely orthogonal.
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Fig. 1. RACH duration and gap duration, and recording the number of
accumulated packets Nm

Cum in each time slot.

that the step 2, 3, and 4 of RA are always successful whenever
the step 1 is successful. In other words, the RACH may
fail due to the following two reasons: 1) a preamble cannot
be recognized by the received BS, due to its low received
SINR; 2) the BS successfully received two or more same
preambles simultaneously, such that the collision occurs, and
the BS cannot decode any collided preambles. In this work,
we limit ourselves to single preamble transmission fail same
as [35] and [34], and leave the collision for our future work,
thus we assume that a RACH procedure is always successful
if the IoT device successfully transmits the preamble to its
associated BS.

C. Physical Random Access Channel and Traffic Model

We consider a time-slotted mIoT network, where the
PRACH happens at the beginning of a time slot within a small
time interval τc, and the least time of a time slot (i.e., the time
between any two PRACHs) is a gap interval duration τg for
data transmission as shown in Fig. 1. Generally, the PRACH is
reserved in the uplink channel and repeated in the system with
a certain period that specified by the BS. For instance, in the
LTE network, the uplink resource reserved for PRACH has a
bandwidth corresponding to six resource blocks (1.08 MHz),
and the PRACH is repeated with a periodicity varies between
every 1 to 20 ms [5], [14]. During the PRACH duration, each
active IoT device will transmit a preamble to its associated BS
to request uplink channel resources for packets transmission.
Here, the active IoT device represents that an IoT device is
with non-empty buffers (i.e., Nm

New+Nm
Cum > 0, where Nm

New

is the number of new arrived packets, and Nm
Cum is the number

of accumulated packets) and without access restriction, which
will be detailed in the following section.

Without loss of generality, we assume the size of buffer
in each IoT device is infinite, and none of the packets will
be dropped off. At the beginning of the PRACH in the mth
time slot, each IoT device checks its buffer status to determine
whether itself requires to attempt RACH as shown in the
Fig. 1. In detail, the buffer status (i.e., queuing packets) are
determined by the new arrived packets, and the accumulated
packets that unsuccessfully departs (i.e., unsuccessfully RACH
attempts or never been scheduled) before the last time slot.

Once a RACH succeeds, the IoT device will transmit
the corresponding data sequences with the scheduled uplink
channel resources. Here, we interchangeably use packet to
represent the data sequences. In each device, the packets are

TABLE I

PACKETS EVOLUTION IN THE TYPICAL IOT DEVICE

line a queue waiting to be transmitted, where each packet has
the same priority, and the BSs are unaware of the queue status
of their associated IoT devices. It is assumed that the BS will
only schedule uplink channel resources for the head-of-line
packet2 and each IoT deivce transmits packets via a First Come
First Serve (FCFS) packets scheduling scheme - the basic and
the most simplest packet scheduling scheme, where all packets
are treated equally by placing them at the end of the queue
once they arrive [44].

We model the new arrived packets (Nm
New) in the mth

time slot at each IoT device as independent Poisson arrival
process, Λm

New with the same intensity εm
New as [16], [36],

[37] (i.e., these new packets are actually arrived within the
(m − 1)th time slot, but they are first considered in the
mth time slot due to the slotted-Aloha behavior). Therefore,
the number of new arrival packets Nm

New in a specific time
slot (i.e., within the time duration τc + τg) is described by the
Poisson distribution with Nm

New Pois(μm
New), where μm

New =
(τc + τg)εm

New. The accumulated packets (Nm
Cum) at each IoT

device is evolved following transmission condition over time,
which is described in Table I. Specifically, a packet is removed
from the buffer once the RACH succeeds, otherwise, this
packet will be still in the first place of the queue, and the
IoT device will try to request channel resources for the packet
in the next available RACH. Note that the data transmission
after a successful RACH can be easily extended following
the analysis of preamble transmission success probability in
RACH. Due to the main focus of this paper is analyzing the
contention-based RACH in the mIoT network, we assume that
the actual intended packet transmission is always successful if
the corresponding RACH succeeds.

D. Transmission Schemes

In the cellular-based mIoT network, a huge number of IoT
devices are expected to request for access frequently, such that
network congestion may occur due to mass concurrent data
and signaling transmission [6]. This network congestion can
lead to a low preamble transmission success probability, and
thus result in a great number of packets accumulated in buffers,
which may cause unexpected delays. A possible solution is to
restrict the access attempts in each IoT device according to
some RACH control mechanisms. However, the efficiency of
these RACH control mechanisms are required to be studied,
due to that overly restricting access requests also creates
unacceptable delay as well as leads to low channel resource
utilization. In this paper, we study the following three schemes:

• Baseline scheme: each IoT device attempt RACH imme-
diately when there exists packet in the buffer. The base-
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line scheme is the simplest scheme without any control
of traffic. Due to RACH attempts are not be alleviated
at the IoT devices, the baseline scheme can contribute
to the relatively faster buffer flushing in non-overloaded
network scenarios. However, once the network is over-
loaded, high delays and service unavailability appear due
to mass simultaneous access request.

• ACB scheme: each non-empty IoT device draws a ran-
dom number q ∈ [0, 1], and attempts to RACH only when
q = PACB, here PACB is the ACB factor specified by
the BS according to the network condition [6], [14]. ACB
scheme is a basic congestion control method that reduces
RACH attempts from the side of IoT devices based on
the ACB factor. It is known that a suitable ACB factor
can keep the allowable access in a reasonable density,
and assure a relative high data transmission rate when
the network is overloaded.

• Back-off scheme: each non-empty IoT device transmits
packets same as baseline scheme, when there exists
packet in the buffer. However, when RACH fails, the IoT
device automatically defers the RACH re-attempt and
waits for tBO (i.e., the BO factor specified by the BS)
time slots until it trys again. Back-off scheme is another
basic congestion control method, where each IoT device
can automatically alleviate congestion and requires less
control message from BS than that of ACB scheme [4].

E. Signal to Noise Plus Interference Ratio

As we mentioned earlier, each IoT device transmits a
randomly chosen preamble to its associated BS to request
for channel resources, where different preambles represent
orthogonal sub-channels, and thus only IoT devices choos-
ing same preamble have correlations. Note that IoT devices
belonging to a same BS may choose same preamble, such that
the intra-cell interference is considered. A preamble can be
successfully received at the associated BS, if its SINR is above
the threshold. Based on Slivnyaks theorem [45], we formulate
the SINR of a typical BS located at the origin as

SINRm =
ρh0

Iintra + Iinter + σ2
, (1)

where ρ is the full path-loss inversion power control threshold,
h0 is the channel power gain from the typical IoT device to
its associated BS, and σ2 is the noise power. In (2), Iintra is
the aggregate intra-cell interference, and Iinter is the aggregate
inter-cell interference,2 which are represent as

Iintra =
∑

uj∈Zin

1{Nm
Newj

+Nm
Cumj

>0}1{UR}ρhj ,

Iinter =
∑

ui∈Zout

1{Nm
Newi

+Nm
Cumi

>0}1{UR}Pihi‖ui‖−α, (2)

2The PRACH root sequence planning is used to mitigate inter-cell interfer-
ence among neighboring BS (i.e., neighboring BSs should be using different
roots to generate preambles) [14]. However, as [35], [43], we focus on
providing a general analytical framework of mIoT network without using
PRACH root sequence planning, and the extension taking into account
PRACH root sequence planning can be treated in future works.

where Zin is the set of intra-cell interfering IoT devices,
Nm

Newj
is the number of new arrived packets of jth device

in the mth time slot, Nm
Cumj

is the number of accumulated
packets of jth device in the buffer in the mth time slot,
Zout is the set of inter-cell interfering IoT devices, ‖·‖ is
the Euclidean norm, hi is channel power gain from the ith
inter-cell interfering IoT device to the typical BS, ui is the
distance between the ith inter-cell IoT device and the typical
BS, and Pi is the actual transmit power of the ith inter-cell
IoT device, and Pi depends on the power control threshold ρ
and the distance between the ith inter-cell typical IoT device
and its associated BS ri with Pi = ρri

α.
In (2), 1{·} is the indicator function that takes the value 1

if the statement 1{·} is true, and zero otherwise. Whether an
IoT device generates interference depends on two conditions:
1) 1{Nm

New+Nm
Cumi

>0}, which means that an IoT devices is
able to generate interference only when its buffer is non-
empty; 2) 1{UR}, which means that an IoT devices is able
to generate interference only when the IoT devices does not
defer its access attempt due to RACH scheme. Additionally,
once the two conditions are satisfied, we call the IoT device
is active.

Mathematically, the non-empty probability of each IoT
device can be treated using the thinning process. We assume
that the non-empty probability T m and the non-restrict proba-
bility Rm of each IoT device in the mth time slot are defined
as

T m = P{Nm
New + Nm

Cum > 0}, and

Rm = P{unrestricted} (3)

where the non-restrict probability Rm depends on the RACH
schemes, which will be discussed in the following. The main
notations of this paper are summarized in Table II.

III. SINR ANALYSIS

In this section, we provide a general framework for the
performance analysis of each single time slot and each RACH
scheme. Due to that the preamble has an equal probability
to be chosen, the analysis performed on a randomly chosen
preamble can represent the whole network. The probability
that the received SINR at the BS exceeds a certain threshold
γth is written as

P

{ ρho

Iinter + Iintra + σ2
≥ γth

}

= P

{
ho ≥ γth

ρ
(Iinter + Iintra + σ2)

}

= E

[
exp
{
− γth

ρ
(Iinter + Iintra + σ2)

}]

= exp
(
− γth

ρ
σ2
)
LIintra(

γth

ρ
)LIinter(

γth

ρ
), (4)

where LI(·) denotes the Laplace Transform of the PDF of the
aggregate interference I. The Laplace Transform of aggre-
gate inter-cell interference is characterized in the following
Lemma.

Lemma 1: The Laplace Transform of aggregate inter-cell
interference received at the typical BS in the cellular-based
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TABLE II

NOTATION TABLE

mIoT network is given by

LIinter(
γth

ρ
)

= exp
(
−2(γth)

2
α
T mRmλDp

λB

∫ ∞

(γth)
−1
α

y

1 + yα
dy
)
, (5)

where T m and Rm are defined in (3). Remind that λDp is the
intensity of IoT devices using same preamble.

Proof: See Appendix A. �
We perform the analysis on a randomly chosen BS and a BS

associating with a randomly chosen IoT device in terms of the
preamble detection probability and the preamble transmission
success probability. The probability that the received SINR
at a randomly chosen BS exceeds a certain threshold γth

has been studied in many stochastic geometry works [24],
[31], [38]. Those analyses focus on the uplink transmission
channel of a cellular networks, without considering intra-cell
interference due to TDMA or FDMA assumptions, and only
considered inter-cell interference. In their models, the average
aggregate interference is the same, no matter if the tagged BS
is randomly chosen, or is determined by a randomly chosen

Fig. 2. An example of network model shows differences between the pream-
ble detection probability and the preamble transmission success probability.

device via association, thus the probability that the received
SINR exceeds a threshold γth at a randomly chosen BS is
equally same as the probability of a BS associating with a
randomly chosen uplink device.

Different from the conventional stochastic geometry works
in [24], [26], [31], and [38] with no intra-cell interference,
we take into account the intra-cell interference due to the
same preamble reuse among many IoT devices in a cell during
their uplink RACH. We will derive the preamble detection
probability from the view of a randomly chosen BS (i.e., each
BS has an equal probability to be chosen), and the preamble
transmission success probability from the view of a BS that
a randomly chosen IoT device belongs to (i.e., the probability
of a BS being chosen is determined by the number of its
associated IoT devices). An example is shown in Fig. 2 to
make a distinction between these two characteristics. For the
preamble detection probability, each BS has equal probability
to be chosen, and for the preamble transmission success
probability, the BS 1 has a probability of 5/6 to be chosen (i.e.,
BS 1 covers 5 IoT devices), but BS 2 only has a probability
of 1/6 to be chsoen. Concludely, the difference between these
two characteristics comes from the fact that a cell, that a
randomly chosen IoT device belonging to, has chance to cover
more IoT devices than a randomly chosen cell [26], [46].

A. Preamble Transmission Success Probability

We first perform analysis on a BS in which a randomly cho-
sen IoT device belongs to, where the other active IoT devices
in the same cell choosing same preamble are visualized as
interfering IoT devices. Since the interference generating by
each intra-cell IoT device is strictly equal to ρ, such that
the aggregate intra-cell interference only depends on the
number of active interfering IoT devices in the Voronoi cell.
We assume Ẑin denotes the number of active IoT device in
a specific Voronoi cell, and let ZD =

∣∣∣Ẑin

∣∣∣ − 1 denotes the
number of active interfering IoT devices in such cell, where
the Laplace Transform of aggregate intra-cell interference is
conditioned on ZD. The Probability Density Function (PDF)
of the number of active interfering IoT devices in a Voronoi
cell has been derived by the Monte Carlo method in [47],
and conditioned on a randomly chosen IoT device in its cell,
the PMF of the number of interfering intra-cell IoT devices in
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that cell ZD is expressed as [26]

P {ZD = n} =
c(c+1)Γ(n+c+1)(T

mRmλDp

λB
)
n

Γ(c + 1)Γ(n+1)(T
mRmλDp

λB
+c)

n+c+1 , (6)

where c = 3.575 is a constant related to the approximate
PMF of the PPP Voronoi cell, and Γ (·) is gamma function.
The Laplace Transform of aggregate intra-cell interference is
conditioned on the number of interfering intra-cell IoT devices
ZD, which is derived in the following Lemma.

Lemma 2: The Laplace Transform of aggregate intra-cell
interference at the BS to which a randomly chosen IoT device
belongs in the cellular-based mIoT network is given by

LIintra(
γth

ρ
) = P {ZD = 0}+

∞∑

n=1

P {ZD = n}
( 1
1 + γth

)n

=
(
1 +

T mRmλDpγth

cλB(1 + γth)
)−c−1

. (7)

Proof: See Appendix B. �
Substituting (5) and (7) into (4), we derive the preamble

transmission success probability of the 1st time slot P 1
t in the

following theorem.
Theorem 1: In the depicted cellular-based mIoT network,

the preamble transmission success probability of a randomly
chosen IoT device of the mst time slot is given by

Pm = exp
(
− γthσ2

ρ
− 2(γth)

2
α
T mRmλDp

λB

×
∫ ∞

(γth)
−1
α

y

1 + yα
dy
)(

1 +
T mRmλDpγth

cλB(1 + γth)

)−c−1

.

(8)
Proof: See Appendix A and B. �

B. Preamble Detection Probability

Next, we move to the preamble decoding probability that
is performed on a randomly chosen BS, and one of its
active associated IoT device (with a preamble being randomly
chosen) is tagged, where the other active IoT devices choosing
same preamble are visualized as interfering IoT devices.
Conditioned on a randomly chosen BS, the Probability Mass
function (PMF) of the number of IoT devices

∣∣∣Ẑin

∣∣∣ in a
randomly chosen BS has been clearly introduced in [26],
which is expressed as

P

{∣∣∣Ẑin

∣∣∣ = n
}

=
ccΓ(n + c)(T

mRmλDp

λB
)
n

Γ(c)Γ(n + 1)(T
mRmλDp

λB
+ c)

n+c . (9)

Fig. 3. The preamble detection probability P1
detection and the preamble

transmission success probability P1 versus the SINR threshold γth for the
1st single time slot. We set T 1 = 1− e0.1, ρ = −90 dBm, σ2 = −90 dBm,
λB = 10 BS/km2, α = 4, γth = −10 dB, and the baseline scheme is
considered with R1 = 1.

For the Voronoi cell with at least one active IoT device,
the PMF of the number of active interfering intra-cell IoT
devices ZB in a randomly chosen Voronoi cell (BS) is given
by (10), as shown at the bottom of this page.

The difference between (10) and (6) is clearly explained
in [46]. Briefly speaking, in (10), each Voronoi cell has an
equal probability to be chosen, whilst in (6), a Voronoi cell
with more IoT devices has a higher probability to be chosen.
Following similar approach in the proof of Lemma 2, and with
the help of (10), we derive the preamble detection probability
of the typical BS in the 1st time slot Pm

detection in the following
Lemma.

Lemma 3: The preamble detection probability of an typical
IoT device located in a randomly chosen BS in the cellular-
based mIoT network is given by (11), as shown at the bottom
of this page.

Proof: Following the proofs of Lemma 1 and
Lemma 2. �

In Lemma 3, the preamble detection probability of an IoT
device located in a randomly chosen BS is analyzed based
on the number of active interfering intra-cell IoT devices in
that randomly chosen Voronoi cell (BS) in (10), whereas in
Theorem 1, the preamble transmission success probability of
a randomly chosen IoT device is described by the number
of interfering intra-cell IoT devices in that cell, where that
randomly chosen IoT device belongs to in (6). Fig. 3 plots the
preamble detection probability Pdetection and the preamble
transmission success probability P versus the SINR threshold
γth for a single time slot using (11) and (8), respectively.

P {ZB = n} =
P

{∣∣∣Ẑin

∣∣∣ = n + 1
}

1 − P

{∣∣∣Ẑin

∣∣∣ = 0
} =

ccΓ(n + c + 1)(T
mRmλDp

λB
)
(n+1)

(1+T mRmλDp

cλB
)
c

Γ(c)Γ(n + 2)(T
mRmλDp

λB
+ c)

n+c+1
(
(1+T mRmλDp

cλB
)
c
− 1
) . (10)

Pm
detection = exp

(
−γthσ2

ρ
− 2(γth)

2
α
T mRmλDp

λB

∫ ∞

(γth)
−1
α

y

1 + yα
dy
)[(

1 +
T mRmλDpγth

cλB(1 + γth)

)−c

−
( cλB

cλB + T mRmλDp

)−c] (1 + γth) (1 + (T mRmλDp/λB))c

(1 + (T mRmλDp/λB))c − 1
. (11)
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As expected, the preamble transmission success probability
of a randomly chosen IoT device is always lower than the
preamble detection probability of a randomly chosen BS, due
to that a randomly chosen IoT device has higher chance to
associate with a BS with large number of intra-cell interfering
IoT devices as shown in (10) and (6), which leads to relatively
low average received SINR.

In the following queue evolution analysis, we will study
each packet that departs or accumulates at each IoT device
in each time slot, which is determined by whether the RACH
procedure succeeds or fails. To do so, the probability of RACH
success in each time slot is required under the condition that
each IoT device is equally treated (i.e., each IoT device has
an equal probability to be chosen as a typical device no matter
it is located in a cell with a relatively large or small number
of IoT devices). Therefore, the following derivations are all
based on the preamble transmission success probability Pm

(i.e. it is performed on a BS in which a randomly chosen IoT
device belongs to.) provided in Theorem 1.

IV. QUEUE EVOLUTION ANALYSIS

In this section, we analyze the performance of the cellular-
based mIoT network in each time slot with different schemes.
As mentioned in (8), the preamble transmission success
probability depends on the non-empty probability T m and
the non-restrict probability Rm of each IoT device, which
raises the problem how to study the queue status of each
IoT device in each time slot.

The queue status and the preamble transmission are interde-
pendent, and imposes a causality problem. More specifically,
the preamble transmission of a typical IoT device in the current
time slot depends on the aggregate interference from those
active IoT devices in that time slot, thus we need to know
the current queue status, which is decided by the previous
queue statuses, as well as the preamble transmission success
probabilities of previous time slots. Recall that the evolution of
queue status follows Table I, where the accumulated packets
come from the packets that are not successfully transmitted in
the previous time slots.

Mathematically, to derive the preamble transmission success
probability of an randomly chosen IoT device in the mth time
slot Pm, we first derive the non-empty probability T m and
the non-restrict probability Rm of the IoT device, which are
decided by Pm−1, T m−1, and Rm−1. As the number and
locations of BSs and IoT devices are fixed all time once they
are deployed, the locations of active IoT devices are slightly
correlated across time. However, this correlation only has very
little impact on the distributions of active IoT devices, and thus
we approximate the distributions of non-empty IoT devices
following independent PPPs in each time slot. In the rest of
this section, we first describe the general analytical framework
used to derive the non-empty probability T m in each time
slot, and then delve into the analysis details of the non-restrict
probability Rm in each time slot for each RACH scheme.

A. Non-Empty Probability T m

In the 1st time slot, the number of packets in an IoT device
only depends on the new packets arrival process Λ1

New, such

that the non-empty probability of each IoT device T 1 in the
1st time slot is expressed as

T 1 = P{N1
New > 0} = 1 − e−μ1

New , (12)

where μ1
New is the intensity of new arrival packets. Note

that the non-restrict probability in the 1st time slot R1 = 1
with the baseline scheme, and for other RACH schemes, R1

is determined by their transmission policies, which will be
detailed in the following subsection. Substituting (12) and
R1 into (8), we derive the preamble transmission success
probability of a randomly chosen IoT device in the 1st time
slot P1.

Next, we derive the non-empty probability and the preamble
transmission success probability of a randomly chosen IoT
device in the mth time slot in the following Theorem.

Theorem 2: The accumulated packets number of an IoT
device in any time slot should be approximately Poisson dis-
tributed. As such, we approximate the number of accumulated
packets in the mth time slot Nm

Cum as Poisson distribution
Λm

Cum with intensity μm
Cum. The intensity of accumulated

packets μm
Cum (m > 1) in the mth time slot is derived as

μm
Cum = μm−1

New + μm−1
Cum −Rm−1Pm−1

(
1 − e−μm−1

New −μm−1
Cum

)
.

(13)

The non-empty probability of each IoT device in the mth time
slot is derived as

T m = 1 − e−μm
New−μm

Cum . (14)

Substituting T m and Rm into (8), we derive the preamble
transmission success probability of a randomly chosen IoT
device in the mth time slot Pm. Note that Rm = 1 with
the baseline scheme, and for other RACH schemes, Rm

are determined by their transmission policies, which will be
detailed in the following subsection.3

Proof: We first derive the non-empty probability in each
time slot using exact probabilistic statistics. In the 2nd time
slot, the PMF of the accumulated packets N2

Cum is expressed
as

fN2
Cum

(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−μ1
New + μ1

Newe−μ1
NewR1P1, x = 0,

(μ1
New)x

e−μ1
New

x!
(1 −R1P1)

+
(μ1

New)x+1e−μ1
New

(x + 1)!
R1P1, x > 0.

(15)

The reason for (15) is that the number of accumulated packets
in the 2nd time slot equals to x occurs only when 1) the
number of accumulated packets in the 1st time slot equals to
x+1, and one packet is successfully transmitted in the 1st time
slot, and 2) the number of accumulated packets in the 1st time
slot equals to x, and no packet is successfully transmitted in
the 1st time slot.

3With minor modification, this theorem can also be leveraged to study other
traffic models, such as the time limited Uniform Distribution and the time
limited Beta distribution [6].
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Based on (15), we derive the CDF of the number of
accumulated packets in the 2nd time slot N2

Cum as

FN2
Cum

(y) =
y∑

x=0

fN2
Cum

(x)

=
(μ1

New)y+1
e−μ1

New

(y + 1)!
R1P1+

y∑

x=0

(μ1
New)x

e−μ1
New

x!
.

(16)

We are interested in the zero-accumulated packets probability
in the 2nd time slot, since it determines the density of non-
empty IoT devices (with more than one packet in the buffer)
in that time slot, and the activity probability of IoT devices.
Based on the probabilistic statistics and (15), we present the
non-empty probability of IoT devices in the 2nd time slot as

T 2
BL = 1 − e−μ2

New
(
e−μ1

New + μ1
Newe−μ1

NewR1P1
)
. (17)

Substituting (17) and R2 = 1 into (8), we derive the preamble
transmission success probability of a randomly chosen IoT
device in the 2nd time slot P2.

Similar as (15) and (16), we can derive the PMF and the
CDF of the number of accumulated packets in the 3rd time
slot N3

Cum as

fN3
Cum

(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−μ2
NewfN2

Cum
(0) + R2P2

[
μ2

Newe−μ2
NewfN2

Cum
(0)

+ e−μ2
NewfN2

Cum
(1)
]
, x = 0,

(1 −R2P2)
x∑

z=0

[(μ2
New

)z
e−μ2

New

(z)!
fN2

Cum
(x − z)

]

+R2P2

x+1∑

z=0

[(μ2
New

)z
e−μ2

New

(z)!
fN2

Cum
(x + 1 − z)

]
,

x > 0,

(18)

and

FN3
Cum

(y) = R2P2

y+1∑

z=0

[(μ2
New

)z
e−μ2

New

(z)!
fN2

Cum
(y + 1 − z)

]

+
y∑

x=0

x∑

z=0

[(μ2
New

)z
e−μ2

New

(z)!
fN2

Cum
(x − z)

]
,

(19)

respectively. In (18) and (19), fN2
Cum

(x) is given in (15).
Generally, the PMF and CDF of Nm

Cum in the mth time slot
can be derived by the iteration process.

However, as m increases, the complexity of these deriva-
tions exponentially increases, and thus they become hard to
analyze. Due to the new packets arrival at each IoT device is
modeled by independent Poisson process, the packets depar-
ture can be treated as an approximated thinning process (i.e.,
the thinning factor is a function relating to the preamble trans-
mission success probability, the non-empty probability, and the
non-restrict probability) of the arrived packets. Therefore, after
this thinning process in a specific time slot, the least packets
(i.e. the accumulated packets) number at each IoT device can

be approximated as Poisson distribution with the same mean.
As such, we approximate the number of accumulated packets
in the mth time slot Nm

Cum as Poisson distribution Λm
Cum with

intensity μm
Cum. The intensity of accumulated packets μm

Cum

(m > 1) in the mth time slot is derived as
As such, we approximate the number of accumulated pack-

ets in the mth time slot as a Poisson distribution (m > 1),
where the number of accumulated packets of an IoT device
in the mth time slot Nm

Cum is approximated as Poisson
distribution Λm

Cum with intensity μm
Cum. In the 2nd time slot,

μ2
Cum depends on the new packets arrival rate μ1

New and the
preamble transmission success probability P1 of an IoT device
in the 1st time slot, which is given by

μ2
Cum

= R1P1
( ∞∑

x=1

fN1
New

(x) · (x − 1)
)

︸ ︷︷ ︸
(a)

+ (1 −R1P1)
( ∞∑

x=1

fN1
New

(x) · x
)

︸ ︷︷ ︸
(b)

= R1P1
( ∞∑

x=1

(
μ1

New

)x
e−μ1

New(x−1)
x!

)
+(1−R1P1)μ1

New

= R1P1
( ∞∑

x=0

(
μ1

New

)x
e−μ1

Newx

x!
−

∞∑

x=1

(
μ1

New

)x
e−μ1

New

x!
)

+ (1 −R1P1)μ1
New

= μ1
New −R1P1

(
1 − e−μ1

New
)
, (20)

where μ1
New = (τc + τg)ε1

New, ε1
New is the new packets arrival

rate of each device in the 1st time slot, fN1
New

(·) is the PMF of
the number of new arrived packets N1

New, P1 is given in (8)
of Theorem 1. In (20), (a) is the density of the accumulated
packets in the 2nd time slot when a packet is successfully
transmitted in the 1st time slot, and (b) is the density of the
accumulated packets in the 2nd time slot when the congestion
alleviation or the unsuccess transmission occurs in the 1st time
slot.

According to Poisson approximation and (20), the CDF of
the number of packets in the 2nd time slot due to previous
accumulated packets N2

Cum is approximated as

FN2
Cum

(y)

≈
y∑

z=0

(
μ2

Cum

)z
e−μ2

Cum

z!

=
y∑

z=0

(
μ1

New−R1P1
(
1−e−μ1

New
))z

e−μ1
New−R

1P1
(
1−e−μ1

New
)

z!
,

(21)

and the non-empty probability of an IoT devices in the 2nd
time slot is approximated as

T 2 ≈ 1 − e−μ2
New−μ2

Cum , (22)

where μ2
Cum is given in (20).
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Fig. 4. Comparing the CDFs of the number of accumulated packets between
probabilistic statistics and Poisson approximation in the 2nd and the 3rd time
slots. We present 6 scenarios with different RACH interval durations, where
(τc + τg) = 1, 3, 5, 10, 15 and 20 ms. The simulation parameters are
λB = 10 BS/km2, λDp = 100 IoT deivces/preamble/km2 , ρ = −90 dBm,
σ2 = −90 dBm, ε1

New = ε2
New = ε3

New = 0.1 packets/ms, and the baseline
scheme with Rm = 1.

Similarly, the intensity of the number of accumulated
packets in the 3rd time slot μ3

Cum is

μ3
Cum = μ2

New + μ2
Cum −R2P2

(
1 − e−μ2

New−μ2
Cum
)
, (23)

where μ3
Cum is given in (23). Thus, we approximate the

CDF of the number of accumulated packets in the 3nd time
slot N3

Cum as

FN3
Cum

(y) ≈
y∑

z=0

(
μ3

Cum

)z
e−μ3

Cum

z!
. (24)

The intensity of the number of accumulated packets in the mth
time slot (m > 3) is derived following (20), which is already
given in (13). For simplicity, we omit this expression here.

Fig. 4 shows the CDFs of the number of accumulated
packets via simulation, as well as calculating by the prob-
abilistic statistics and the Poisson approximation. We see
the close match among the probabilistic statistics, Poisson
approximation and the simulation results, which validates our
approximation approach. More simulation results will be pro-
vided in the Section V to validate the Poisson approximation
approach. �

B. Non-Restrict Probability Rm

1) The Baseline Scheme: The baseline scheme allows each
IoT device to attempt RACH immediately when there exists
packet in the buffer, and thus the non-restrict probability is
always equal to 1 in any time slot (Rm

BL = 1).
2) The ACB Scheme: In the ACB scheme, the BS first

broadcasts the ACB factor PACB, then each non-empty IoT
device draws a random number q ∈ [0, 1], and attempts to
RACH only when q smaller than or equal to the ACB factor
PACB. Therefore, the non-restrict probability is always equal
to PACB in any time slot (Rm

ACB = PACB).
3) The Back-Off Scheme: In the back-off scheme, each

IoT device defers its access and waits for tBO time slots,
when such IoT devices failed to transmit a packet in the last
time slot. The analysis of the non-restrict probability with the

back-off scheme Rm
BO is similar to the ACB scheme, due to the

back-off procedure can be visualized as a group of IoT devices
are completely barred in a specific time slot. In the 1st time
slot, none of IoT device defers the access attempt, such that
the transmission procedure is same as the baseline scheme
(R1

BL = 1). After the 1st time slot, the back-off procedure
starts to execute, an non-empty IoT device defers its access
attempt if the back-off being trigged.

Due to the back-off mechanism, only active IoT devices
without RACH attempt failures in the last tBO time slots can
attempt to transmit a preamble, and only those IoT devices
generate interference that determine the preamble transmission
success probability in the mth time slot. The non-restrict
probability with the back-off scheme Rm

BO is derived as

Rm
BO =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
[m−1∑

j=1

(1 − Pj
BO)T j

BOR
j
BO︸ ︷︷ ︸

(a)

]
T m

BO,

tBO + 1 ≥ m ≥ 1,

1 −
[ m−1∑

j=m−tBO

(1 − Pj
BO)T j

BOR
j
BO︸ ︷︷ ︸

(a)

]
T m

BO,

m > tBO,

(25)

where (a) is the probability that an randomly chosen IoT
device fails to transmit a preamble in the jth time slot, and
thus this IoT device would defer its RACH request in the mth
time slot due to the back-off mechanism.

V. PERFORMANCE METRICS

We have derived the preamble transmission success prob-
ability in each time slot in the last section, and then based
on the derived probability, many performance metrics can be
obtained.

A. The Number of Received Packets per BS

We first analyze the number of received packets per BS of
cellular-based mIoT networks as a function of the densities
of IoT devices using same preamble and BS, which reflects
the density of successfully RACH IoT devices using same
preamble per BS ([26, eq. (6)). In our model, the number of
received packets per BS in the mth time slot Cm is defined
as

Cm Δ= T mRmλDp · Pm/λB. (26)

Substituting (8) into (26), the number of received packets per
BS Cm is derived as

Cm =
T mRmλDp

λB
exp

(
− γthσ

2

ρ
− 2(γth)

2
α
T mRmλDp

λB

×
∫ ∞

(γth)
−1
α

y

1 + yα
dy
) (

1 +
T mRmλDpγth

cλB(1 + γth)

)−c−1

.

(27)

In (26), Cm is negatively proportional to the density ratio λB ,
and in (8), the preamble transmission success probability Pm

is positively proportional to the density ratio λB , which
positively improves Cm. Therefore, λB introduce a tradeoff
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in the system performance of Cm, which is jointly determined
by two opposite factors: 1) the average received SINR of each
BS, 2) the average number of associated IoT devices of each
BS. Practically, when BSs are deployed with a relatively large
density, rare IoT devices can successfully transmit a preamble
to their associated BSs, due to the large interference leading
to extremely low received SINR. In this scenario, Cm is
dominantly determined by the factor 1 (i.e., average received
SINR of each BS), and thus increasing the BS intensity λB can
greatly improve the number of received packets per BS. How-
ever, increasing the BS intensity increases the received SINR,
but decreases the average number of associated IoT devices,
which contributes to higher number of received packets per BS
in the scenario of overloaded network, but decreases the that in
the scenario of non-overloaded network due to low utilization
of channel resources (i.e., the factor 2 dominantly determined
Cm in this scenario). Therefore, Cm is concave downward, and
there exists a optimal BS density deployment which enables
the maximum number of received packets per BS as shown
in (28), as shown at the bottom of this page.

To obtain the optimal number of received packets per BS
in proposed IoT-enabled cellular network, we take the first
derivative on Cm, and obtain the density of BSs achieving the
maximum number of received packets per BS λ∗

B as (28).

B. Mean of Cm and Pm

The number of received packets per BS in the mth time
slot Cm is derived by using Pm following (27). Next,
we derive the mean of preamble transmission success prob-
abilities of a randomly chosen IoT device over M time slots
and the mean of number of received packets per BS over M
time slots, which are expressed as

E[Pm] =
( M∑

m=1

Pm
)
/M, and E[Cm] =

( M∑

m=1

Cm
)
/M. (29)

C. Average Queue Length

The preamble transmission success probability provides
insights on the received SINR for a random IoT device in
each time slot, but does not evaluate the packets accumulation
status. Many previous works have indicated that the queue
length is a good indication of network congestion [4], [5]. The
queue length refers to the number of packets that are waiting
in buffer to be transmitted [48]. Next, we evaluate the average
queue length E[Qm], which denotes the average number of
packets accumulated in the buffer in the mth time slot, which
is derived as

E[Qm] = μm
New + μm

Cum −RmT mPm, (30)

Fig. 5. Preamble transmission success probability.

where μm
Cum is the intensity of number of accumulated packets

in the mth time slot given in (13), μm
New is the intensity of

the new arrival packets in the mth time slot, Pm is given in
Theorem 1, T m is given in Theorem 2, and Rm is given in
Section IV.B.

VI. NUMERICAL RESULTS

In this section, we validate our analysis via independent
system level simulations, where the BSs and IoT devices are
deployed via independent PPPs in a 100 km2 area. Each IoT
device employs the channel inversion power control, and asso-
ciated with its nearest BS. Importantly, the real buffer at each
IoT device is simulated to capture the packets arrival and accu-
mulation process evolved along the time. The received SINR
of each active and non-deferred IoT device (i.e., IoT devices
with packets and do not deferred by the ACB or the back-off
mechanism) in each time slot is captured, and compared with
the SINR threshold γth to determine the success or failure of
each RACH attempt. Furthermore, in the ACB scheme, we also
simulate that each IoT device generates a random number
q ∈ [0, 1] and compares with the ACB factor PACB to deter-
mine whether the current RACH is deferred, and in the back-
off scheme, we capture all RACH failures and practically defer
RACH attempts of these IoT devices for the next tBO time
slots. In all figures of this section, we use “Ana.” and “Sim.” to
abbreviate “Analytical” and “Simulation”, respectively. Unless
otherwise stated, we set the same new packets arrival rate
for each time slot (ε1

New = ε2
New = · · · = εm

New = 0.1
packets/ms), ρ = −90 dBm, σ2 = −90 dBm, λB = 10
BS/km2, λDp = 100 IoT deivces/preamble/km2, α = 4, and
γth = −10 dB. In the back-off scheme, we set that failure
transmission IoT device waits 1 time slot before retransmission
in the back-off scheme.

Fig. 5 plots the preamble transmission success probabil-
ity P versus the density ratio λDp/λB for various path-loss

λ∗
B =

T mRmλDp

2

(
2(γth)

2
α

∫ ∞

(γth)
−1
α

y

1 + yα
dy +

γth

(1 + γth)

+

√
(
2(γth)

2
α

∫ ∞

(γth)
−1
α

y

1 + yα
dy
)2

+
γth

2

(1 + γth)2
+ (4 +

8
c
)
(∫ ∞

(γth)
−1
α

y

1 + yα
dy
) (γth)

α+2
α

(1 + γth)

)
. (28)



JIANG et al.: RANDOM ACCESS ANALYSIS FOR MIoT NETWORKS UNDER A NEW SPATIO-TEMPORAL MODEL 5799

Fig. 6. The number of received packets per BS.

exponents (α) and various time duration (τc + τg), where the
analytical plots of the preamble transmission success proba-
bility in a single time slot P is calculated using (8) (R = 1).
We first see the well match between the analysis and the
simulation results, which validates the accuracy of developed
single time slot mathematical framework. We observe that
increasing the density ratio between the IoT devices and the
BSs decreases the preamble transmission success probability
of the 1st time slot, due to the increasing aggregate interference
from more IoT devices transmitting signals simultaneously.
We also notice that increasing the interval duration between
RACHs decreases the preamble transmission success proba-
bility. This can be explained by the reason that the number of
new arrival packets during longer interval duration increases,
and leads to higher non-empty probability of IoT devices as
shown in (12).

Fig. 6 plots the number of received packets per BS C in
a single time slot versus the density of BSs λB for various
SINR threshold γth (R = 1). We set λDp = 500 IoT
deivces/preamble/km2. The analytical curves for the number
of received packets per BS are plotted using (27), and the
optimal BSs densities that achieve the maximum number of
received packets per BS are plotted using (28). We can see that
the calculated optimal BS densities well predict the optimal
density points achieving the maximum number of received
packets per BS. The first increasing trend of the number of
received packets per BS is mainly due to the improvement
of the average received SINR, whereas the decreasing trend
after λ∗

B is mainly due to the decreased average number of
associated IoT devices of each BS leading to the reduction in
channel resources utilization.

Fig. 7 plots the preamble transmission success probabilities
of a random IoT device in each time slot with the baseline
scheme, the ACB scheme, and the back-off scheme using (28).
For each scheme, the preamble transmission success
probabilities decrease with increasing time, due to that the
intensity of interfering IoT devices grows with increasing non-
empty probability of each IoT device, caused by the increasing
average number of accumulated packets. For each scheme, its
preamble transmission success probability with γth = −5 dB
decreases faster than that with γth = −10 dB, due to the
higher chance of the accumulated packets being reduced for

Fig. 7. Preamble transmission success probability of each time slot.

Fig. 8. Average Queue Length of each time slot.

γth = −10 dB leading to relatively lower average non-empty
probability of each IoT device. Interestingly, we observe
that the preamble transmission success probabilities of
a random IoT device in each time slot always follow
ACB(PACB = 0.5) > back-off > ACB(PACB = 0.9) >
baseline scheme (except the 1st time slot, where the back-off
procedure is not executed), this is because more strict
congestion control schemes reduce more access requests
from the side of IoT devices, which decrease the aggregate
interference in the network.

We also notice that for γth = −10 dB case, the preamble
transmission success probabilities with the PACB = 0.5
slightly outperform that of ACB scheme (PACB = 0.9), and
the gap between them reduces with increasing time, whilst for
γth = −5 dB, the preamble transmission success probabilities
with PACB = 0.5 is much greater than that with PACB = 0.9,
and such gap increases with increasing time. This is because
for γth = −5 dB, the ACB scheme PACB = 0.5
is more efficient than PACB = 0.9, in terms of providing
higher average SINR by reducing the probability of queue
flushing, but reversely for γth = −10 dB, the ACB scheme
(PACB = 0.5) has less access requests leading to lower utiliza-
tion of channel resources. The preamble transmission success
probability of a randomly chosen IoT device with back-off
scheme is fluctuated, due to the alternation of high load and
low load network condition in each time slot. Furthermore,
for γth = −10 dB case, the fluctuation become stable quickly,
due to the accumulated packets can be handled much quicker.
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Fig. 9. Preamble transmission success probability of each time slot.

In Fig 8, we plots the average queue length with
γth = −10 dB using (30). We observe that the average queue
length of the baseline scheme, the ACB(PACB = 0.9) scheme
and the back-off scheme gradually becomes steady (i.e., they
become unchanging in the 10th time slot). This is due to
that these schemes provides relatively faster buffer flushing
that can maintain the average accumulated packets in an
acceptable level. The average queue lengths follow baseline <
ACB(PACB = 0.9) < back-off < ACB(PACB = 0.5) scheme,
which shed lights on the buffer flushing capability of each
scheme in this network condition.

Fig. 9 plots the preamble transmission success probability
of a random IoT device in each time slot with the baseline
scheme, the ACB scheme, and the back-off scheme. We set
τc + τg = 5 ms, ACB factor PACB = 0.3, and new arrival
traffics only happen in the first 10 time slots (εm

New = 0
for m > 10). Note that this simulation method with new
arrival traffics happen in first several time slots is to exam-
ine how well the network can handle bursty traffic, where
similar practical simulations has been tested in [11]and [12].
In both Fig. 9(a) and Fig. 9(b), the preamble transmission
success probabilities decrease in the first 10 time slots, due to
increasing traffic (new packets arrived) leading to increasing
active probabilities of IoT devices. After first 10 time slots,
these probabilities increase with time, due to decreasing traffic
(i.e., no new packets arrive) leading to decreased active
probabilities of IoT devices. After most of the accumulated
packets are delivered with time, the preamble transmission
success probabilities reaches the stable ceiling. Interestingly,

Fig. 10. The mean of preamble transmission success probabilities and the
transmission capacities per BS per preamble.

we see that the preamble transmission success probabilities
in Fig. 9(a) (γth = −8 dB) become stable earlier than that
in Fig. 9(b) (γth = −6 dB), due to that the higher chance
of the accumulated packets being reduced in lower threshold
case.

The preamble transmission success probability of the base-
line scheme increases rapidly after first 10 time slots and
outperforms other two schemes after first 12th time slots
in Fig. 9(a), but it increases relatively slowly after first 10 time
slots and only outperforms that of the ACB scheme after
first 25 time slots in Fig. 9(b), due to that the baseline
scheme provide faster buffer flushing, which leads to lower
chance of the accumulated packets being reduced in relatively
higher loaded network condition due to the high aggregate
interference. The back-off scheme performs better than the
baseline scheme in the first 10 time slots (except 1st time slot
where back-off is not executed), due to that it automatically
defers the retransmission requests and control the congestion
in the overloaded network condition. Interestingly, it gradu-
ally outperforms the ACB scheme with strictly ACB factor
PACB = 0.3 after the first 10 time slots, due to that the back-
off scheme automatically release the blocking of packets and
provide faster buffer flushing than the ACB scheme in the
non-overloaded network condition.

In Fig. 10(a) and Fig. 10(b), we plot the mean of preamble
transmission success probabilities and the mean of numbers of
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received packets per BS over 10 time slots with each scheme,
respectively. We set τg = 1 ms and ACB factor PACB = 0.3.
Note that the new traffics arrival happen in every time slot.
In Fig. 10(a), the ACB scheme always outperforms the other
two schemes, and the mean of probabilities of the back-off
scheme is slightly higher than that of the baseline scheme
before γth = −25 dB, and then such gap between the back-off
scheme and the baseline scheme increase with increasing γth,
which is due to that the back-off scheme blocks more packets.

In Fig. 10(b) we observe that 1) For −40 ≤ γth ≤ −25
dB, the mean of numbers of received packets per BS with the
back-off scheme is slightly lower than the baseline scheme,
but nearly double that of the ACB scheme, due to the pream-
ble transmission success probability is close to 1 as shown
in Fig. 10(a), and thus less packets are blocked in the IoT
device in the back-off scheme. 2) For −25 < γth ≤ −15 dB,
the mean of numbers of received packets per BS with the
baseline and the back-off schemes decrease dramatically and
reduce to same level with the ACB scheme. The back-off
scheme gradually outperforms the baseline scheme around the
γth = −20 and −15 dB, because the back-off scheme grad-
ually blocks more IoT devices, and provides better network
condition as well as higher probabilities of removing packets
from the queue. 3) For −15 < γth ≤ −5 dB, the ACB scheme
outperforms the other schemes, which showcases that the
ACB scheme with a relatively strict ACB factor can provide
improved successful transmission in overloaded network.

VII. CONCLUSION

In this paper, we developed a spatio-temporal mathematical
model to analyze the RACH of cellular-based mIoT networks.
We first analyzed RACH in the single time slot, and provide
the preamble detection probability performed on a randomly
chosen BS, preamble transmission success probability per-
formed on a BS associated with a randomly chosen IoT
device. We then derived the preamble transmission success
probabilities of a randomly chosen IoT device with baseline,
ACB, and back-off schemes by modeling the queue evolution
over different time slot. Our numerical results show that the
ACB and back-off schemes outperform the baseline scheme
in terms of the preamble transmission success probability.
We also show that the baseline scheme outperforms the ACB
and back-off schemes in terms of the number of received
packets per BS for light traffic, and the back-off scheme
performs closing to the optimal performing scheme in both
light and heavy traffic conditions.

APPENDIX A
A PROOF OF LEMMA 1

The Laplace Transform of aggregate inter-cell interference
can be derived as

LIinter (s)
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(A.1)

where s = γth/ρ, Ex[∗] is the expectation with respect to the
random variable x, (a) follows from independence between
λDp, Pi, and hi, (b) follows from the probability generation
functional (PGFL) of the PPP, (c) follows from the Laplace
Transform of h, and (d) obtained by changing the variables
y = x

(SP )
1
η

. The kth moments of the transmit power is

expressed as [31]

EP [P k] =
ρkγ(kα

2 + 1, πλB(P
ρ )

2
α )

(πλB)
kα
2 (1 − e−πλB( P

ρ )
2
α )

, (A.2)

where γ(a, b) =
∫ b

0
ta−1e−tdt is the lower incomplete gamma

function. As mentioned earlier, the transmit power of IoT
device is large enough for uplink path-loss inversion, while
not violating its own maximum transmit power constraint, and
thus The moments of the transmit power is obtained as

EP [P
2
α ] =

ρ
2
α

πλB
. (A.3)

Substituting (A.3) into (A.1), we derive the Laplace Transform
of aggregate inter-cell interference.

APPENDIX B
A PROOF OF LEMMA 2

The Laplace Transform of aggregate intra-cell interference
is conditioned on known the number of interfering intra-cell
IoT devices ZB given as

LIintra(s)

=
∞∑

n=0

P {ZB = n}
(
E
[
e−sI

]∣∣ZB = n
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= P{ZB = 0}+
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[
exp(−s
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1
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(a)
= P {ZB = 0}+
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n=1

P {ZB = n}
( 1
1 + sρ

)n
, (B.1)

where s = γth/ρ, P {ZB = n} is the probability of the number
of interfering intra-cell IoT devices ZB = n given in (10), and
(a) follows from the Laplace Transform of hn. After some
mathematical manipulations, we proved (7) in Lemma 2.
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