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Introduction 
 
In the last decade, a combination of novel computational approaches, increases in available 
computing capacity, and availability of training data, have facilitated the application of powerful 
mathematical algorithms in the field of artificial intelligence. This has led to dramatic advances in 
the performance of computers in tasks that have previously only been possible for humans. 
Methods that are able to make predictions of data without direct human intervention in the 
training process are referred to as machine learning. Image classification has been at the 
forefront of machine learning research, and as visual pattern recognition plays a larger role in 
dermatology than perhaps any other medical specialities, early clinical applications of machine 
learning have been within this speciality.  
 
What is artificial intelligence and machine learning? 
 
Artificial intelligence (AI) is difficult to define precisely. In Alan Turing’s seminal paper 
‘Computing Machinery and Intelligence’, he proposes the well known Turing test, whereby a 
machine is deemed intelligent if it’s indistinguishable from a human in conversation by an 
impartial observer.1 In modern parlance, Artificial General Intelligence refers to the ability of a 
machine to communicate, reason and operate independently in both familiar and novel 
scenarios in a similar manner to a human. This remains far beyond the scope of current 
methods and is not what is being referred to when the term ‘AI’ is commonly used. Most 
references to AI now are often as an interchangeable term to ‘machine learning’ or ‘deep 
learning’, the latter being a specific form of machine learning that is discussed in more detail 
below (see Table 1 for a glossary of terms). Machine learning refers to algorithms and statistical 
models that learn from labelled training data from which they are able to recognise and infer 
patterns (Figure 1A).  
 
Table 1: essential terminology in the field of machine learning and artificial intelligence 
 

Artificial Intelligence (AI) The ability of machines, such as computers, to 
simulate human intelligence 

Machine learning Algorithms and statistical models that are 
programmed to learn from data, therefore 
recognising and inferring patterns within it. 
This enables computers to perform specific 
tasks without explicit instructions from a 
human operator.  



Supervised learning Refers to machine learning tasks whereby  the 
goal is to identify a function that best maps a 
set of inputs (e.g. image) to their correct 
output (label). This is based learning or 
training on pre-matched pairs. This is in 
contrast to unsupervised learning, where novel 
patterns such as groups or ‘clusters’ are 
identified in data without influence from prior 
knowledge or labelling.  

Over-fitting A common problem in machine learning where 
the model has high accuracy when tested on 
data from the same source as its training data, 
but its performance doesn’t generalise to 
novel sources of data.  

Neural network A form of supervised machine learning 
inspired by biology whereby data passes 
through a series of interconnected neurons, 
which are individually weighted to make 
predictions. During training, the data passes 
through the network in an iterative manner and 
the weightings are continually adjusted to 
optimise its ability to match label to data. 

Deep learning Refers to a neural network with multiple layers 
of ‘neurons’ that have adjustable weights 
(mathematical functions). 

Convolutional neural network Refers to a type of neural network whereby 
the layers apply filters for specific features to 
areas within an image 

 
 
Generally, during the training of a machine learning model a subset of the data is ‘held back’ 
and then subsequently used for testing the accuracy of the trained model. The accuracy of the 
model is assessed on this test dataset according to its accuracy in correctly matching an image 
to its label, for example melanoma or benign naevus. In any classification system there will be a 
trade off between sensitivity and specificity; for example an AI system may output a probability 
score for melanoma between 0 and 1 and this would require the operator to set a threshold for 
the decision boundary.  At a low threshold, a higher proportion of melanomas will be captured 
(high sensitivity) but there is a risk of classifying benign naevi as malignant (low specificity). As 
the threshold is increased, this would decrease the sensitivity, but increase the specificity (i.e. 
fewer benign naevi classified as melanoma). The behaviour of a machine learning classifier in 
response to changing the threshold can be visualized as a receiver operating curve (ROC). The 
greater the area under the curve (AUROC), the more accurate the classifier (Figure 1B).  
 



 
 
Figure 1: A) Schematic depicting how a machine learning algorithm trains on a large dataset to 
be able to match data to label (supervised learning), the performance of which can then be 



assessed. B) Schematic of receiver operating characteristics (ROC) curve, which is a way of 
visualising the performance of a trained model’s sensitivity and specificity. Typically, machine 
learning studies will use ROC curves and calculations of the Area Under the Curve (AUC or 
AUROC) to quantify accuracy. The dashed line represents the desired perfect performance, 
when sensitivity and specificity are both 100%; in this scenario, the AUC would be 1.0. In reality, 
there is a trade-off between sensitivity and specificity, which gives rise to a curve. C) Schematic 
depicting how classification tasks are performed in convolutional neural networks. Pixel data 
from an image is passed through an architecture consisting of multiple layers of connecting 
nodes. In convolutional neural networks, these layers contain unique 'convolutional layers', 
which operate as filters. These filters work because it was recognised that the location of a 
feature within an image is often less important than whether that feature is present or absent - 
an example might be (theoretically) the presence or absence of blue-grey veiling within a 
melanoma. A convolutional ‘filter’ learns a particular feature of the image irrespective of where it 
occurs within the image (represented by the black squares). The network is composed of a 
large number of hierarchical filters that learn increasingly high level representations of the 
image. These could in principle learn dermoscopic features similar to those described by 
clinicians, although in practice the precise features recognised are likely to differ from classic 
diagnostic criteria. 
 
Deep learning and neural networks 
 
Neural networks (Figure 1C) pass input data through a series of interconnected nodes 
(analogous to biological neurons). Each node functions as a mathematical operation (addition, 
multiplication etc)  and a group of interconnected nodes within the network is referred to as a 
‘layer’ within a network, with the overall structure of the layers being referred to as the 
‘architecture’. During training, every node is adjusted and optimised through an iterative process 
called backpropagation2,3, allowing the neural network to improve its classification accuracy.  
 
Neural networks with multiple ‘hidden layers’ of nodes (Figure 1C) are referred to as ‘deep’ 
neural nets and perform ‘deep learning’. Although the concept of deep neural networks was 
described decades ago, lack of affordable and efficient computing power was a major limitation 
in being able to train them effectively.  However, in 2013 it was recognised that graphical 
processing units (GPUs), originally designed for 3-dimensional graphics in computer games, 
could be repurposed to power the repetitive training required for neural networks 4,5. Of note, 
convolutional neural networks are a specific form of deep learning architecture that have proven 
effective for the classification of image data. Convolutional neural networks have massively 
increased in popularity as a method for computer-based image classification after the victory of 
the GPU-powered CNN AlexNet in 2012, which won the ImageNet competition with a top 5 error 
rate of 15.3%, which was a remarkable 10% improvement on the next best competitor5.  
 
In the past few years, use of convolutional neural networks in classification tasks has exploded 
due to demonstrable and consistently superior efficacy, as well as availability. Novel CNN 
architectures have been developed, improved and made available for public use by institutions 
with a high level of expertise and computational resources; examples of these include 
‘Inception’ by Google, and ‘ResNet’ by Microsoft. These architectures can be accessed using 
software such as TensorFlow (developed by Google) or PyTorch (developed by Facebook) and 
then trained further for a specific purpose or used in a novel application. A common approach 



would be to take a pre-trained image recognition network architecture such as ‘Inception’ by 
Google, and specialise its application by inputting a specific type of image data. This process is 
referred to as transfer learning. 
 
The application of convolutional deep learning in dermatology 
 
Classifying data using CNNs is now relatively accessible, computationally efficient, and 
inexpensive; hence the explosion in so-called ‘artificial intelligence’. In medicine, to date the 
main areas of application have been the visual diagnostic specialties of dermatology, radiology 
and pathology. Automating aspects of dermatology with computer-aided image classification 
has been attempted in dermatology for over 30 years 6–8; however previous efforts have 
achieved only limited accuracy. Although attempts have been made in recent years to use 
neural networks to diagnose or monitor inflammatory dermatoses 9,10,11, these have generally 
not been as successful or impressive as the networks constructed to diagnose skin lesions, 
particularly melanoma. Melanoma is therefore the focus of the remainder of this review, and 
supplementary figure 1 summarises these head-to-head comparison studies12–21. 
 
In 2017, Esteva et al published a landmark study in Nature which was notable for being the first 
to compare a neural network’s performance against dermatologists.14 They used a pre-trained 
GoogLeNet Inception v3 architecture and fine-tuned the network (transfer learning) using a 
dataset of 127,463 clinical and dermoscopic images of skin lesions (subsequent studies have 
shown it is possible to train networks on significantly smaller datasets, numbering in the 
thousands). For testing, they selected a subset of clinical and dermoscopic images confirmed 
with biopsy and asked over 20 dermatologists for their treatment decisions. Dermatologists were 
presented with 265 clinical images and 111 dermoscopic images of ‘keratinocytic’ or 
‘melanocytic’ nature, and asked whether they would advise (a) biopsy/further treatment or (b) 
reassure the patient. They inferred a ‘malignant’ or ‘benign’ diagnosis from these management 
decisions, and then plotted the dermatologists’ performance on the network’s ROC curves with 
regards to classifying the keratinocytic or melanocytic lesions (which were subdivided as 
dermoscopic or clinical) as ‘benign’ or ‘malignant’ (Figure 2A). In both ‘keratinocytic’ and 
‘melanocytic’ categories, the average dermatologist performed at a level below the CNN ROC 
curves, with only one individual dermatologist performing better than the CNN ROC in each 
category. This suggests that in the context of this study, the CNN has superior accuracy to 
dermatologists.  
 
A recently published large study detailed in two papers by Brinker et al.19,20 involved training a 
‘ResNet’ model on the publically available International Skin Imaging Collaboration (ISIC) 
database22, which contains in excess of 20,000 labelled dermoscopic images, which is required 
to meet some basic quality standards. This network was trained on over 12,000 images to 
perform two tasks: the first was to classify dermoscopic images of melanocytic lesions as 
benign or malignant (Figure 2B), and the second was to classify clinical images of melanocytic 
lesions as benign or malignant (Figure 2C). The dermatologists were assessed using 200 test 
images, with the decision requested mirroring that of the Esteva study: to biopsy/treat or to 
reassure. Additionally, the dermatologists demographic data, such as experience and training 



level, were requested. The method used to quantify the relative performance also consisted of 
drawing a mean ROC curve by calculating the average predicted class probability for each test 
image (Figure 2B-C). The dermatologists’ performance for the same set of images was then 
plotted on the ROC curve. Barring a few individual exceptions, the dermatologists’ performance 
fell below the CNN ROC curves in both the clinical and dermoscopic image classifications. The 
authors  also used a second approach, whereby they set the sensitivity of the CNN at the level 
of the attending dermatologists, and compared the mean specificity achieved at equivalent 
sensitivity.  In the dermoscopic test, at a sensitivity of 74.1%, the dermatologists’ specificity was 
60% whereas the CNN achieved a superior 86.5%. 
 
As part of an international effort to produce technology for early melanoma diagnosis, in 2016 
an annual challenge was established to test the performance of machine learning algorithms 
using the image database from the ISIC.22 A recent paper by Tschandl et al21 summarises the 
performance of the most recent competition in August-September 2018, and also compares the 
performance of the submitted algorithms against 511 human readers recruited from the World 
Dermoscopy Congress who comprised a mixture of board-certified dermatologists, dermatology 
residents and general practitioners (Figure 2D). Test batches of 30 images were generated to 
compare the groups, with a choice of 7 diagnoses as multiple choice questions (MCQs) 
provided. When comparing all 139 algorithms to all dermatologists, dermatologists on average 
achieved 17/30 on the image MCQs, whereas the algorithms on average achieved 19. As 
expected, years of experience improved the probability for making a correct diagnosis. 
Regardless, the top 3 algorithms in the challenge outperformed even experts with >10 years 
experience and the ROC curves of these top 3 algorithms sit well above the average 
performance of the human readers.  
 



 



Figure 2: Receiver Operating Characteristics (ROC) curves from studies by Esteva, Brinker and 
Tschandl. Most often, the dermatologists' comparative ROCs are plotted as individual data 
points; lying below the curve means that their sensitivity and specificity and therefore accuracy, 
is considered inferior to the model in the study. The studies all demonstrate that on average, 
dermatologists sit below the ROC curve of the machine learning algorithm. It is noticeable that 
the performance of the clinicians in Brinker’s studies (B-C), for example, is inferior to clinicians 
in the Esteva study(A). Although there is a greater spread of clinical experience in the Brinker 
study, you could also hypothesise the discrepancy may be related to methods how the clinicians 
were tested. In both Brinker and Tschandl’s studies, some individual data points represent 
performance discrepancy that is significantly lower than data would suggest in the real world, 
which could suggest that the  assessments may be biased against clinicians.  
 
Key biases, limitations and risks of automated skin lesion classification 
 
Given that, remarkably, all of the published studies indicate superiority of machine learning 
algorithms to dermatologists, it is worth exploring the biases commonly found in these study 
designs. These can be categorised into biases which favour the networks and biases which 
disadvantage clinicians. With regards to the first category, it is first worth noting that in the 
studies described, the neural networks are generally trained and tested on the same dataset. 
This closed-loop system of training and testing highlights a common limitation within machine 
learning called ‘generalisability’. On the occasions that generalisability has been tested, neural 
networks have often been found lacking. For example, Han et al released their neural network, 
which was a Microsoft ResNet-152 architecture trained on nearly 20,000 skin lesion images 
from a variety of sources as a web application15. When Navarette-Dechent et al. tested the 
network on data from the ISIC dataset, which the network had not previously been exposed to, 
its performance dropped from a reported AUC of 0.91, to achieving the  correct diagnosis in only 
29 out of 100 lesions, which would imply a far lower AUC 23. As algorithms are fundamentally a 
reflection of their training data, this means that if the input image dataset is biased in some way, 
this will have a direct impact on algorithmic performance, which will only be apparent when they 
are tested on completely separate datasets,. 
 
Another important limitation of the methodology used to compare AI models with dermatologists 
is that ROC curves, although a useful visual representation of sensitivity and specificity, do not 
address other important clinical risks. For example, in order to capture more melanomas 
(increased sensitivity), the algorithm may incorrectly misclassify more benign naevi as malignant 
(false positives). However, this could potentially lead to unnecessary biopsies for patients, which 
asides from patient harm, would create additional demand on an already burdened healthcare 
system. There is evidence that dermatologists have improved ‘number need to biopsy’ (NNB) 
metrics for melanoma in comparison to non-dermatologists.24. The reporting of  NNB would be a 
useful addition to studies such as Esteva’s, as it would aid in the estimation of potential patient 
and health economic impact. 
 
It is also worth noting that these datasets are retrospectively collated and repurposed for image 
classification training; this means that the images captured may not be representative in terms 
of proportion of diagnoses, or in terms of having typical features. As neural networks are 
essentially a reflection of their labelled data input, this will undoubtedly have consequences on 



how they perform. However, given the lack of ‘real-world’ studies, it is difficult to know how 
significant this is. When it comes to assessing clinicians using images from these datasets, this 
may also introduce an element of bias that disadvantages clinicians too, as lesions that were 
deemed worthy of capturing via photograph or being biopsied may not be representative of the 
lesion type, resulting in the sensitivity of clinicians diagnostically may be lower than in a normal 
clinic. This hypothesis for discrepancy in diagnostic accuracy is borne out in a recent Cochrane 
review, where the diagnostic sensitivity of dermatologists examining melanocytic lesions with 
dermoscopy is 92%25, which is significantly higher than typically found in neural network studies. 
For example in Tschandl’s web-based study of 511 clinicians, the sensitivity of experts was 
81.2%. The manner in which clinical decisions are inferred as ‘benign’ or ‘malignant’ also makes 
some assumptions that may not be accurate; for example, a dermatologist’s decision to biopsy 
a lesion is a reflection of risk, not an outright ‘malignant’ classification.  
 
From a safety perspective, there are two considerations that have yet to be addressed thus far 
in studies. Firstly, in order to ‘replace’ a dermatologist, an algorithm must be able to match the 
current gold standard for screening a patient’s skin lesions. Currently, this is a clinical 
assessment by a dermatologist, who examines the lesion in the context of patient history and 
the rest of their skin. Published studies do not compare neural networks to this standard of 
assessment; they are only compared to dermatologists presented with dermoscopic or clinical 
images, sometimes with limited additional clinical information. This not only biases the studies 
against dermatologists, who are not trained or accustomed to make diagnoses without this 
information, it also represents a limiting factor in justifying their deployment in a clinical setting 
as a replacement for dermatologists. Fundamentally, it has not yet been demonstrated that they 
are equivalent to the standard of dermatological care currently provided to patients. A second 
important consideration is the fact that training data lack sufficient quantities of certain types of 
lesions, particularly the rarer presentations of malignancy, such as amelanotic melanoma.15 It is 
not yet clear how algorithms perform when presented with entirely novel, potentially malignant, 
lesions; this has rare but significant safety implications for patients.  
 
From a legal perspective, an issue that has yet to be fully addressed is the lack of explainability 
by neural networks. Currently, it is not possible to know what contributes to their decision-
making process. This has led to criticisms and concerns that neural networks function as ‘black 
boxes’ with potential unanticipated and hard to explain failure modes. The European Union’s 
General Data Protection Requirement (GDPR) specifies explainability as a requirement for 
algorithmic decision-making, which is currently not achievable 26,27. Algorithmic decision-making 
also has uncertain status in the USA; where the Food and Drug Administration have advised 
that until there exists a body of evidence from clinical trials, clinical decisions suggested by AI 
ought to be considered AI-guided, not AI-provided, and liability would still rest with the clinician 
28. 
 
The AI-integrated Health Service of the Future? 
 
There are attempts to deploy ‘AI’ technologies within the healthcare space within two main 
scenarios: direct to consumer/public and as a decision aid for clinicians.The direct to consumer 



model already exists in some fashion; there are smartphone apps such as SkinVision, which 
enable individuals to assess and track their skin lesions. However, currently such apps do not 
make accountable diagnoses and usually explicitly state in their terms and conditions that they 
do not provide a diagnostic service nor do they intend to replace or substitute visits to 
healthcare providers. At present, it is not clear yet what the benefits and risks of such a tool are 
in terms of how frequently it provides false reassurance, and how frequently it recommends 
referral when this is not needed. Although health data democratisation has benefits from the 
perspective of patient autonomy, it may be that this does not translate to better health outcomes 
and might instead lead to unnecessary concern and investigations. Moreover, fundamentally, 
healthcare is currently structured in such a way that responsibility and liability are carried by the 
provider and not the patient, and as such these apps do not have a clear-cut position in 
healthcare infrastructure. 
 
The current social and legal framework of healthcare is better primed for incorporating AI as a 
decision aid for clinicians, particularly in enhancing decision-making by non-specialists (Figure 
3). This could potentially be of great use in dermatology services due to the ever-growing 
burden of skin cancer. In the UK, there is a longstanding shortfall of consultant dermatologists, 
and current workforce planning is insufficient to address this. The volume of skin cancers has a 
knock-on effect on patients with chronic inflammatory skin diseases, essentially reducing their 
access to dermatologists. Dermatologists are also aware that generally, a high proportion of 
referrals to dermatology with suspected skin cancer on the urgent ‘two-week wait’ pathway do 
not require further investigation and are actually immediately discharged. Many of the lesions 
falling into this category are easily recognised by dermatologists, but are not easily recognised 
by non-specialists. One could hypothesise that CNN-based applications can aid a GP service to 
triage skin lesions more effectively, and ensure that patients are managed by the appropriate 
clinical services. Having a clinical user also mitigates many of the risks and limitations inherent 
to CNN-based technologies, improving both safety profile and patient experience.  



 
 
Figure 3: Schematic showing hypothetical use of a machine learning algorithm to help non-
expert clinicians risk stratify lesions to make clinical decisions. Clinicians routinely weigh up both 
the benefits and limitations of common diagnostic aids such as prostate specific antigen or D-
dimers. Currently, there are very few useful dermatological diagnostic decision aids available to 
non-expert clinicians as the diagnostic process is dominated by image recognition; CNNs could 
represent a new class of decision aid that could help non-expert clinicians triage appropriately 
and narrow down their differential diagnosis.  
 
 
The recently published Topol Review on ‘Preparing the healthcare workforce to deliver the 
digital future’ states that ‘to reap the benefits, the NHS must focus on building a digitally ready 
workforce that is fully engaged and has the skills and confidence to adopt and adapt new 
technologies in practice and in context’. It also concludes that the ‘adoption of technology 
should be used to give healthcare staff more time to care and interact directly with patients’.29 In 
the context of dermatology, this very much holds true. Technology adoption could improve 
clinical pathways, and enable our neediest patients to access dermatology services more 
efficiently. It is unlikely that they will threaten our profession; in reality they represent  an 
opportunity for personal learning, service improvement and leadership that could be 
transformative for our future healthcare system. 
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