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Abstract 23 

Myelodysplastic syndromes (MDS) are characterised by ineffective haematopoiesis and often 24 

include a dysregulation and dysfunction of the immune system. In the context of population 25 

ageing, MDS incidence is set to rise substantially, with exponential increases in health care 26 

costs, given the limited and expensive treatment options for these patients. Treatment 27 

selection is mainly based on calculated risk categories according to a Revised International 28 

Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of 29 

disease progression, it is an ineffective predictor of response to disease-modifying therapies. 30 

Redressing these unmet needs, the ‘immunome’ is a key, multifaceted component in the 31 

initiation and overall response against malignant cells in MDS, and the current omission of 32 

immune status monitoring may in part explain the insufficiencies of current prognostic 33 

stratification methods. Nevertheless, integrating these and other recent molecular advances 34 

into clinical practice proves difficult. This review highlights the complexity of immune 35 

dysregulation in MDS pathophysiology, and the fine balance between smouldering 36 

inflammation, adaptive immunity, and somatic mutations in promoting or suppressing 37 

malignant clones. We review the existing knowledge and discuss how state-of-the-art immune 38 

monitoring strategies could potentially permit novel patient sub-stratification, thereby 39 

empowering practical predictions of response to treatment in MDS. We propose novel 40 

multicentre studies, which are needed to achieve this goal. 41 

Keywords: MDS, immune dysregulation, immune profile, patient stratification  42 
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Introduction 43 

Myelodysplastic syndromes (MDS) represent a group of acquired clonal disorders of 44 

haematopoietic stem and progenitor cells (HSPCs), characterised by ineffective 45 

haematopoiesis, peripheral cytopenias, genetic instability, and an increased risk of 46 

progression to acute myeloid leukaemia (AML)1. Considering the higher prevalence in elderly 47 

patients, the population ageing in developed countries as well as higher diagnostic awareness, 48 

the incidence of MDS is set to rise substantially in coming decades2. 49 

Clinical outcomes can vary greatly, even between patients considered to have the same MDS 50 

subtype. Thus, MDS display marked heterogeneity regarding prognosis and the risk of disease 51 

progression. To overcome this heterogeneity, the IPSS was introduced and then later revised 52 

(IPSS-R) with the aim to provide discriminatory prognostic risk assessment regarding overall 53 

survival and risk of progression to AML3. Whilst the IPSS-R reliably predicts the risk of disease 54 

progression, it is not an effective tool to predict response to disease-modifying therapies4. 55 

This is not surprising since the IPSS-R, like the original IPSS, was developed based on clinical 56 

data from untreated MDS patients. Recent advances in targeted and large-scale next 57 

generation sequencing (NGS) have helped to illuminate the dynamic genomic landscape in 58 

MDS5–7. Although none of the most common recurrent somatic mutations is disease-defining, 59 

some have an independent impact on overall survival, such as in TP538. Thus, addition of 60 

molecular data to the IPSS-R can improve its predictive power5, 8, 9. 61 

Recent advances have also highlighted the role of immune dysregulation in MDS pathogenesis 62 

but are currently omitted from IPSS-R. This includes both abnormal activation of innate 63 

immune pathways and associated inflammation as well as aberrant cellular immune 64 

responses of independent prognostic value, which dynamically evolve during disease 65 
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progression10–13. The addition of comprehensive immunologic data to prognostic models 66 

could, similar to mutational data, further help to refine risk stratification across the boundary 67 

of lower- and higher-risk MDS. We envisage that continued clarification of the immune 68 

pathways that are dysregulated in selected MDS subtypes will improve patient stratification, 69 

the use and outcomes of existing treatments and novel immunotherapies, and drive the 70 

development of new targeted drugs. In this review, we highlight recent advances in the 71 

understanding of immune dysregulation in MDS, discuss their clinical implications as well as 72 

potential therapeutic applications, and outline how immune profiling could be implemented 73 

in future clinical trials. 74 

Predisposing and potential driving immune factors 75 

a) Smouldering inflammation and immunosenescence 76 

Chronic inflammation due to long-lasting exposure to persistent infection or sterile 77 

inflammation is a well-established predisposing factor for cancer14, 15, and increasing evidence 78 

implicates the activation of innate immune signalling in age-related haematopoietic 79 

senescence16, bone loss17, and MDS18. In fact, normal human ageing represents a state of 80 

chronic low-grade sterile inflammation, similar to that originally described as ‘para-81 

inflammation’ by Medzhitov19, and commonly referred to as ‘inflammaging’20. Stressed, 82 

damaged or otherwise malfunctioning, and/or dead cells release endogenous inducers of 83 

sterile inflammation, including damage-associated molecular patterns (DAMPs) like high-84 

mobility-group-protein B1 (HMGB1) and alarmin S100 proteins, which can be sensed through 85 

different receptors, such as Toll-like receptors (TLRs) and cytosolic nucleotide-binding domain 86 

and leucine-rich repeat pattern recognition receptors (NLRs)19, 20. The physiological purpose 87 

of the ensuing inflammatory response early in life and adulthood is to restore functionality 88 
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and homeostasis in the tissue. However, in old age, a period in life largely not foreseen by 89 

evolution, the continuous exposure to inflammatory stimuli/stressors (the ‘immune 90 

biography’) becomes detrimental, setting the biologic background favouring the susceptibility 91 

to age-related inflammatory disorders, autoimmunity, and deterioration of haematopoiesis. 92 

A reduced capacity to defend against pathogens and to initiate adaptive immunity is observed 93 

in ageing humans, together with enhanced pro-inflammatory reactions fuelled by 94 

‘endogenous/self-molecular garbage’20, 21. The presence of ‘smouldering’ inflammation in the 95 

elderly may aid the proliferation and survival of malignant MDS clones driven by genetic 96 

alterations (including a recently described condition known as clonal haematopoiesis of 97 

indeterminate potential [CHIP]22), subvert adaptive immunity, and alter cellular responses to 98 

therapeutic intervention. 99 

b) NLRP3 inflammasome: a driver of chronic inflammation in MDS 100 

Increased levels of DAMPs (e.g. S100A8/9) and activated NLR family, pyrin domain-containing 101 

protein 3 (NLRP3) inflammasomes are evident in MDS, particularly lower-risk disease18, 23–25. 102 

Notably, MDS HSPCs are specifically susceptible to DAMPs since they overexpress TLRs26, 27 103 

along with signal transducers, such as IRAK128 and TRAF629. Ligation of S100A8/9 to TLR4 104 

induces NF-κB-mediated transcription of pro-inflammatory cytokines, including pro-105 

interleukin (IL)-1β and IL-18, and transcriptional priming of inflammasome components30. 106 

Once activated, the NLRP3 inflammasome directs caspase-1-dependent conversion of pro-IL-107 

1β/IL-18 to their active forms and inflammatory pyroptotic cell death18. The consecutive 108 

release of pro-inflammatory cytokines, reactive oxygen species (ROS), and other intracellular 109 

contents into the extracellular milieu further activates the NLRP3 inflammasome, driving 110 

pyroptosis of HSPCs, consequent cytopenias, and an inflammatory circuit (FIG. 1). This milieu 111 

may support the propagation of the MDS clone through various pathways, including Wnt/β-112 
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catenin signalling31 or aberrant activation of the IL-1/p38MAPK pathway32. NLRP3 113 

inflammasome activation appears to be licensed by S100A8/9 and MDS-related gene 114 

mutations and is also evident in del(5q) MDS patients, featuring activation of the p53-115 

S100A8/9-TLR4 axis 10, 18, 24. However, whether inflammasome activation is a general feature 116 

of lower-risk MDS or particular subgroups needs to be evaluated in larger cohorts in the 117 

future. 118 

TLR signalling pathway activation in MDS HSPCs makes the TLR axis a promising therapeutic 119 

target (TABLE 1). In addition, novel NLRP3 inflammasome inhibitors or approved IL-1b 120 

inhibitors are in clinical development and may offer therapeutic promise in MDS10, which 121 

highlights the importance of refined patient stratification to identify patients with prominent 122 

‘autoinflammatory’ features, therefore most likely to benefit from inflammasome pathway 123 

inhibition. 124 

c) Somatic mutations and inflammatory status 125 

A complex and dynamic landscape of genetic mutations and cytogenetic lesions is evident in 126 

MDS5, 33. Acquisition of serial mutations and clonal diversification not only reflect on disease 127 

progression but also give an indication of the (in-)efficacy of the immune system to control 128 

outgrowth of malignant clones, as suggested in other malignancies34, 35. Underlying 129 

smouldering inflammation could contribute to the genomic instability and acquisition of 130 

additional mutations, as shown in gastrointestinal malignancies36, 37. In MDS, mutations 131 

affecting epigenetic modifiers (e.g. TET2, ASXL1) and RNA splicing factors (e.g. SF3B1, SRSF2) 132 

appear to represent predominantly ‘founder’ events33. Mutations in several of these genes 133 

have been linked to activated NLRP3 inflammasomes and enhanced innate immune 134 

signalling18, 38–40. Such mutant gene licensing of innate signalling pathways in myeloid 135 
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progenitors may provide the selective immune pressure conducive to malignant progression 136 

in MDS/AML. On the other hand, the observation of ‘founder’ mutations in the lymphoid 137 

lineage raises questions about the potential effect of intrinsically aberrant lymphocytes on the 138 

adaptive immune response and MDS/AML pathogenesis33, 41. 139 

The intricate relationship between mutagenesis and inflammatory processes is not limited to 140 

established MDS. Patients with CHIP22, a condition that likely precedes MDS and is 141 

characterised by the presence of MDS-related mutations in DNMT3A, TET2, ASXL1, or JAK2, 142 

were found to have an increased risk of inflammatory-related diseases, such as coronary heart 143 

disease42, 43. Recent studies point to the existence of shared autoinflammatory NLRP3-related 144 

pathways in CHIP/MDS and associated co-morbidities44, and suggest NLRP3 as a shared 145 

genetic risk factor for MDS and para-neoplastic Sweet syndrome45. 146 

The other important and yet poorly investigated aspect of MDS pathophysiology is the 147 

reciprocal effect of the (cellular) immune response on frequency and type of somatic 148 

mutations, and whether these mutations induce immunogenic neoantigens, as shown in other 149 

malignancies34. Due to the overall lower somatic mutation burden in both AML and MDS 150 

compared to other types of tumours46, the potential immunogenicity of these mutations is 151 

largely unexplored. We previously adopted an algorithm to predict neoantigens and combined 152 

this with mass cytometry to identify neoantigen-related immune signatures47. This initial 153 

investigation suggested that the presence of predicted neoantigens has a protective effect in 154 

patients with lower-risk disease. 155 

d) The microbiome and its impact on inflammation and immunome 156 

Profound changes in the microbiota and its interaction with the immune system are 157 

increasingly recognised to contribute to chronic inflammatory diseases, including 158 
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haematologic disorders48, 49. Various factors can reduce microbial diversity and 159 

commensalism, including treatment with broad-spectrum antibiotics, poor dietary patterns, 160 

drugs, chemotherapy, and environmental factors. For example, depletion of intestinal 161 

microbial flora by broad-spectrum antibiotic treatment of mice has been shown to cause a 162 

decrease in HSPC numbers and concomitant anaemia, highlighting the intricate relationship 163 

between host-microbiome and haematopoiesis50. 164 

Although no detailed study exists concerning the microbiome composition in MDS, the role of 165 

microbial-dependent inflammation in the development of pre-leukaemic myeloproliferation 166 

has been demonstrated recently in Tet2-deficient mice, in which intrinsic (Tet2 deficiency-167 

induced IL-6Ra overexpression) and extrinsic (microbial-induced IL-6) inflammatory cues 168 

cooperate and trigger proliferation of highly sensitive Tet2-deficient haematopoietic 169 

progenitor cells39. Clinically, overuse of antibiotics and/or a poor dietary pattern/nutritional 170 

reserve is also common in MDS/AML, and could lead to decreases of microbial diversity and 171 

commensalism in the gut, resulting in compromised immune responses and increased risk of 172 

inflammation. One study concerning relapse after allogeneic haematopoietic stem cell 173 

transplantation (HSCT) demonstrated that higher abundance of a bacterial group composed 174 

mostly of Eubacterium limosum could decrease the risk of relapse and disease progression51. 175 

Lack of commensal microbes like E. limosum or their immunomodulatory metabolites (e.g. 176 

short-chain fatty acids) can increase the risk of gut permeability, and result in translocation of 177 

pathobionts and overexpression of inflammatory cytokines52. Thus, identifying microbiome 178 

signatures that contribute to immune system deterioration in MDS may lead to novel 179 

therapeutic strategies to control inflammation and potentially prevent disease progression. 180 
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e) Immune dysregulation in MDS: autoimmunity or autoinflammation? 181 

Although there is evidence for the presence of both innate immune-related 182 

‘autoinflammation’ as well as adaptive autoimmune responses in MDS10, 53, 54, these two terms 183 

are sometimes used interchangeably, which may cause some confusion. The term 184 

‘autoimmunity’ coins a condition associated with the presence of autoreactive T cells and high 185 

autoantibody titres, whereas ‘autoinflammation’ generally refers to a condition with 186 

dysregulated myeloid-driven innate immune responses only. This view clearly separated 187 

autoinflammation and autoimmunity as distinct immunological diseases. However, and this 188 

may be true for MDS, some chronic inflammatory diseases may lie on a spectrum from 189 

autoinflammatory to autoimmune, sharing genetic associations, common inflammatory 190 

pathways (TLR, PI3K-Akt, and NF-kB signalling), and connecting by variable degrees of 191 

interaction between innate and adaptive immune responses55, 56 (FIG. 2). 192 

Autoimmune features were long considered as a coincidence rather than a predisposing factor 193 

for MDS. Spurred from case reports and smaller studies, a large population-based study was 194 

designed, which demonstrated an increased risk of MDS among patients with antecedent 195 

autoimmune disease (AID) (OR 2.1; 95% CI 1.7-2.6) or infectious disease (OR 1.3; 95% CI 1.1-196 

1.5), indicating that chronic immune stimulation (the ‘immune biography’) might act as a 197 

trigger for MDS development57. On the other hand, AID can be a favourable prognostic factor 198 

in patients with established MDS54, but additional large prospective studies are necessary to 199 

confirm these results. 200 
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Immune surveillance, microenvironment, and MDS progression 201 

a) Immune surveillance and MDS progression 202 

The immune response to cancer requires a series of carefully regulated events that in principle 203 

should amplify and broaden cellular immune responses58. Chronic inflammation affects 204 

immune surveillance and has two overlapping effects in MDS. On the one hand, DAMPs and/or 205 

founder gene mutations license the NLRP3 inflammasome to generate an inflammatory feed-206 

forward process characterised by excess pro-inflammatory cytokines, such as IL-1b, TNF-a, 207 

and IFN-g (FIG. 1). Pro-inflammatory cytokines may facilitate the selection of neoplastic clones 208 

by simultaneously enhancing their growth and exhausting non-neoplastic clones, as 209 

demonstrated by the paradoxical effects of IL-1β on AML versus normal progenitors32. 210 

Moreover, cytokine-mediated induction of immunoinhibitory molecules like programmed cell 211 

death-ligand 1 (PD-L1) may contribute to T cell suppression and reduced immune 212 

surveillance59. On the other hand, excess DAMPs may expand myeloid-derived suppressor 213 

cells (MDSCs)60, which overproduce suppressive cytokines, such as IL-10 and transforming 214 

growth factor-b (TGF-b), contributing to immunosuppression and ineffective 215 

haematopoiesis60, 61. 216 

In general, low-risk disease is related to a more pro-inflammatory immune response and 217 

higher numbers of effector-type cells, such as IL-17+ CD4+ cells11, while higher-risk disease is 218 

characterised by a predominantly suppressive milieu with significant expansion of 219 

immunosuppressive cells, such as Tregs62, 63 and MDSCs12, 60, accompanied by a reduction in 220 

the number and function of bone marrow (BM) dendritic cells64, peripheral CD8+ T65, and NK 221 

cells66 (FIG. 1). The proliferative capacity of Tregs appears compromised during earlier disease 222 

stages, but is restored during disease progression67. A positive correlation between the 223 
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numbers of circulating MDSCs and Tregs has been observed, suggesting a role of MDSCs in the 224 

expansion of Tregs and subsequent disease progression12. Moreover, an independent 225 

prognostic value of peripheral Treg and BM progenitor B cell frequencies in lower-risk MDS 226 

has been suggested13, 62. Reduced NK function in higher-risk MDS likely supports immune 227 

evasion and disease progression66, 68. Hence, a novel strategy to restore NK cell function and 228 

overcome MDSC-mediated suppression in MDS patients has been proposed (TABLE 1)69. In 229 

addition, the presence of KIR haplotype A on NK cells may represent an independent risk 230 

factor for the progression of MDS to AML70. 231 

Overall, similar to the role of inflammation in the initiation of MDS, the cellular immune 232 

response in established MDS is multifactorial and follows a stepwise transformation from an 233 

activated protective to a more immunosuppressive response as the disease progresses. 234 

Discrete patterns of cytokine expression may be evident throughout MDS progression and an 235 

integrative approach is required to study specific components of MDS pathogenesis in relation 236 

to cytokine network dynamics and immune cell states. 237 

b) Microenvironment and MDS progression 238 

Inflammatory cues from the surrounding microenvironment may actively contribute to the 239 

formation and/or maintenance of a mutagenic environment in MDS and might suppress 240 

immune effector responses71–74. Mesenchymal stromal cells (MSCs) and their progeny are 241 

important components of the HSPC niche and regulate haematopoiesis by cell-to-cell contact 242 

or through paracrine signals75. MSCs undergo functional decline with systemic ageing 76. This 243 

is further aggravated in MDS/AML MSCs, which have accumulated structural, epigenetic and 244 

functional alterations, chromosomal aberrations different from those found in HSPCs, and 245 

display activation of key inflammatory pathways77–81. Interestingly, MDS haematopoietic cells 246 
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can instruct healthy MSCs to acquire MDS-like features78. In turn, MDS MSCs produce a variety 247 

of cytokines and other factors (e.g. S100A8/925, 81), and exert immunomodulatory/-248 

suppressive functions that could further promote propagation of malignant HSCs25, 82. 249 

Mesenchymal S100A8/9 expression has been shown to be predictive of leukaemic evolution 250 

and progression-free survival in a cohort of homogeneously treated low-risk MDS patients, 251 

suggesting molecular characteristics of the mesenchymal niche as an important determinant 252 

of disease outcome25. 253 

Clinical experience with immune interventions 254 

Immunomodulatory therapies have long been employed for MDS, with benefits for selected 255 

patient subgroups. Immunosuppressive therapy (IST) with antithymocyte globulin (ATG), and 256 

in combination with prednisone or cyclosporine, provides a therapeutic option for selected 257 

lower-risk patients, particularly those with hypoplastic MDS, a still poorly defined subgroup83–258 

86. The immunomodulatory drug lenalidomide has shown a high rate of activity in lower-risk 259 

del(5q) MDS87, but also yields sustained responses in 26.9% lower-risk non-del(5q) MDS, while 260 

predictive immunological biomarkers associated with this response are lacking88. Allogeneic 261 

HSCT is another type of immunotherapy which has long been used in MDS and could lead to 262 

a beneficial graft-versus-leukaemia (GvL) effect. The success of this therapeutic approach may 263 

also be based on its capacity to reprogram the niche-driven immune dysregulation in MDS. 264 

While recent progress in cancer immunology and the emergence of novel cancer 265 

immunotherapies brought new hope for many cancer patients, including those with MDS and 266 

AML69, 89–92 (TABLE 1), the overall response rates to these therapies are variable and less than 267 

50% in the majority of malignancies, including MDS. So far, single-agent application of PD-268 

1/PD-L1 as well as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) checkpoint inhibitors 269 
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(CIs) has shown limited efficacy in advanced disease after hypomethylating agent (HMA) 270 

failure, with variable overall response rates as low as 0% for nivolumab (0/15)93, 4% for 271 

pembrolizumab (1/27)94, and 3.4 (1/29)-22% (2/9) for ipilimumab93, 95. Hence, combination 272 

strategies with CIs both in the upfront as well as HMA-refractory setting to counteract HMA-273 

induced checkpoint upregulation are currently under intensive investigation89, 92, 96. 274 

Nonetheless, single-agent therapy might display disease-modifying activity in selected 275 

patients, including elderly AML patients97. Recent studies have also indicated the potential of 276 

targeting the innate immune checkpoint CD47-SIRPa in cancer, including haematologic 277 

cancers98, 99. So far, blocking the interaction between the ‘don’t-eat me’ signal CD47 and the 278 

phagocyte inhibitory immunoreceptor SIRPa has shown low activity in a small AML/MDS 279 

cohort (1/10), but initial results from the combination therapy with 5-Aza are promising100. 280 

Altogether, there is growing evidence that the combination of drugs with different mechanism 281 

of action might offer clinical benefit in MDS/AML, while the search for reliable biomarkers for 282 

response continues. This will require innovative and multicentre clinical trial designs to obtain 283 

meaningful results in larger patient cohorts101. It is worth mentioning that reliable predictors 284 

are also lacking for routine monotherapies. For instance, recent studies have evaluated how 285 

mutations correlate with clinical benefit from HMA therapy. While earlier studies reported a 286 

favourable effect of TET2 mutations on response rates102, 103, this association was not 287 

confirmed in a different cohort104. 288 

Finding predictive biomarker(s) for response to therapy is of particular relevance for the 289 

elderly population, which often displays lower response and higher toxicity rates. However, 290 

finding a magic ‘fits all’ predictive biomarker in MDS is an unlikely scenario, considering the 291 

complexity of the disease and the role of several genetic, immunological, and environmental 292 

factors in its pathophysiology. Technological advances in recent years, thanks to affordable 293 
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omics experiments, led to a so-called ‘big data revolution’. The challenge, however, is to 294 

integrate the massive amount of data and create computational models to build knowledge 295 

and identify signatures that are important in patients’ stratification for immunotherapy105. To 296 

overcome this challenge, a more comprehensive and combinatorial approach is necessary, 297 

which utilises individual biomarkers as part of the bigger picture rather than the whole story. 298 

Systems Immunology; a way forward 299 

a) Framework for comprehensive immune monitoring in clinical trials 300 

Overall, sufficient evidence exists to support the role of the ‘immunome’ as an important and 301 

independent factor in MDS/AML patients` stratification. Nonetheless, immune responses 302 

against malignant clones require coordination between cell types and across tissues, and a 303 

systems immunity screening approach is necessary to evaluate the overall ‘immune fitness’ in 304 

cancer, as previously shown106. Data from recent cancer studies highlighting the power of 305 

integrative approaches are encouraging105, 107. Nevertheless, there is still no standard or 306 

widely accepted method for monitoring the overall immune response in haemato-oncology in 307 

general or MDS in particular. Data from state-of-the-art immune monitoring strategies need 308 

to be merged with clinical data and other omics data for multiomics-driven analysis to identify 309 

robust and predictive immune-signatures, and map the interaction between disease-310 

associated inflammation and potentially host-beneficial cellular immune responses (FIG. 3). 311 

Multiomics-driven analysis has shown the power to identify key molecular pathways in cancer 312 

progression and could identify pathway-enriched cancer driver modules based on DNA, RNA, 313 

and protein data108. For instance, web tools like LinkedOmics provide a user-friendly platform 314 

to explore, analyse, and compare cancer multiomics data within and across tumour types109. 315 

The widespread use of NGS technologies and the maturation of cutting-edge technologies, 316 
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such as single-cell RNA-seq110, CITE-seq111/Ab-seq112, and mass cytometry by time of flight 317 

(CyTOF)113, generate large datasets that can be mined for immunologically relevant 318 

parameters and serve as input for integrative data analysis. 319 

Over the last years, NGS technologies are increasingly used in the clinical setting for 320 

mutational profiling in MDS, utilising comprehensive myeloid NGS panels114. In many clinics, 321 

multiparameter flow cytometry (MFC) is increasingly used to reinforce MDS diagnosis115, 116. 322 

MFC has also been extensively applied to characterise the immune landscape in MDS11, 12, 60, 323 

62–67, 117 and has demonstrated utility for monitoring immune-modifying agents in high-risk 324 

MDS/AML118 or minimal residual disease monitoring, as has been shown in multiple 325 

myeloma119. CyTOF, which achieves an even higher resolution of the single-cell proteome, has 326 

been broadly applied in the solid cancer field to profile the tumour immune landscape120, 121, 327 

to monitor checkpoint-blockade-induced immune responses, and predict response to PD-1 328 

immunotherapy122, 123. CyTOF has also been already successfully adopted for 329 

immunophenotypic analysis of clinical samples in MDS124, prospective immune monitoring of 330 

patients with chronic myeloid leukaemia (CML)125, and to further characterise the immune 331 

signature in a wider range of T cell subsets in MDS126. 332 

There are, however, two important questions to be addressed: 1) Which immunological 333 

markers to use? 2) How will we define an immunoscore? We are still in the early days but 334 

resources are already available, which could be used and customised for MDS/AML. In an 335 

attempt to identify and characterise all major human immune cell lineages in a single assay, 336 

Hartmann et al. have designed and validated a CyTOF panel that can be incorporated into 337 

cancer immunotherapy trials127. This framework provides a set of markers also relevant for 338 

future clinical trials in MDS and may be extended by markers relevant for further 339 

immunophenotyping of immune cell subsets and HSPCs (supplementary TABLE S1). 340 
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In solid tumours, infiltrating T cells have been generally associated with a positive prognosis, 341 

which led to the development of the Immunoscore, a scoring system based on the 342 

quantification of cytotoxic and memory T cells in the tumour centre and invasive margin128, 343 

129. While this immunohistochemical tool has demonstrated prognostic value for solid 344 

tumours130, it cannot be directly applied to the MDS/AML BM microenvironment, which lacks 345 

a clear invasive margin and a tumour core. However, automated image analysis of BM tissues 346 

in combination with flow cytometry and clinical parameters has been shown useful for 347 

predicting treatment responses in CML131. A comprehensive immunoscore for MDS will likely 348 

be based on multivariate features derived from genomic, transcriptomic, and proteomic data 349 

(FIG. 3 and supplementary FIG. S1). The solid tumour field provides examples of how such 350 

immune profiling can be used to train predictive models and generate immunoscores132–134. 351 

Overall, this will require an expanding computational toolbox to process, analyse and visualise 352 

the highly complex and heterogeneous datasets being generated on bulk tissue and at single-353 

cell level (reviewed by Finotello et al.135) as well as validation of predictive biomarkers in 354 

independent cohorts and across MDS subtypes. 355 

Moreover, comprehensive interrogation of cancer immunity in MDS requires longitudinal as 356 

well as paired sampling to evaluate the impact of a given therapy on peripheral blood immune 357 

cells and the BM immune microenvironment. Combinatorial agents, such as 5-Aza and 358 

lenalidomide, can exert direct immunomodulatory effects on immune cells and BM MSCs79, 359 

136, 137. Thus, careful dissection of the net immunomodulatory effects of combination therapy 360 

through serial assessment can provide adequate information regarding activation of 361 

alternative pathways and inform subsequent clinical trials. 362 
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b) Dissecting good and not so good immune responses 363 

While it is, for instance, possible that autoinflammatory and autoimmune features are present 364 

in a single patient, a dominant clinical representation of one of these conditions is more likely. 365 

An important aspect of immune profiling in MDS would therefore be to identify MDS patients 366 

with an underlying autoimmune response that could benefit from immunosuppressive 367 

therapy (IST) or potentially Treg-based therapies to reinstate immune regulation (FIG. 3). 368 

Immune profiling may also help to identify lower-risk MDS patients who harbour a signature 369 

characteristic of smouldering innate inflammation in the absence of autoimmune disease. 370 

These patients may benefit from novel therapies targeting S100A8/9-related inflammasome 371 

activation or TLR pathways. Patients with potentially immunogenic somatic mutations may 372 

benefit from novel vaccination therapies with or without immune CIs to reinstate the 373 

beneficial immune response against dysplastic clones. On the other hand, it is equally 374 

important to identify patients without dominant inflammatory/autoimmune features or 375 

immunogenic somatic mutations who are less likely to respond to novel immunotherapies and 376 

may benefit from other forms of therapies, such as early HSCT. 377 

Conclusion 378 

In conclusion, collection of comprehensive omics datasets will leverage the development of a 379 

computational pipeline specific to MDS that will help to identify key features at various 380 

biological levels, their interconnectivity, and to better predict patient outcomes. To achieve 381 

this, well-coordinated studies on large cohorts of patients are crucial to combine known as 382 

well as potentially relevant predictive immunological biomarkers with clinical data. We expect 383 

that applying validated immune signatures to routine clinical investigations will improve 384 

patients’ stratification for therapeutic intervention, and ultimately improve patient outcomes.  385 
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Figure legends 386 

Fig. 1: The immune contexture in MDS. Certain conditions associated with chronic immune 387 

stimulation, such as ageing, chronic infection, and autoimmune disease, may contribute to set 388 

the biologic background for MDS development (left). Chronic immune stimulation leads to 389 

sustained TLR activation that may drive haematopoietic skewing and loss of stem cell 390 

quiescence. Initial events may induce a ‘myeloid bias’ of HSCs and multipotent progenitors, 391 

and such a bias could skew the accumulation of somatic mutations conferring clonal 392 

advantage and/or differentiation defects towards the myeloid lineage. Elevated levels of pro-393 

inflammatory cytokines, reactive oxygen/nitrogen species, and DAMPs induce activation of 394 

the NLRP3 inflammasome, resulting in pyroptosis of HSPCs, consequent cytopenias, an 395 

inflammasome-driven inflammatory circuit, and an increasing dysfunction of the 396 

haematopoietic stem cell niche including mesenchymal alterations (middle). Subsequently, 397 

the presence of smouldering inflammation may support the propagation of pre-malignant 398 

clones (e.g. via ROS-dependent Wnt/b-catenin pathway) and subvert adaptive immunity 399 

(right). The immune contexture dynamically changes with disease progression. In higher-risk 400 

MDS, an expansion of MDSCs and Tregs contributes to the suppression of antitumour 401 

responses and immune evasion of malignant clones. Regarding CD4+ T cell subsets, which 402 

display significant plasticity in response to changing environmental cues, different CD4+ T cell 403 

signatures are to be expected in MDS subtypes with predictive value for disease progression 404 

and response to therapy, as shown in other diseases like aplastic anaemia138. Abbreviations: 405 

ASXL1, additional sex combs-like 1, transcriptional regulator; DAMP, damage-associated 406 

molecular pattern; DC, dendritic cell; DNMT3A, DNA methyltransferase 3 alpha; HIF-1a, 407 

hypoxia-inducible factor 1, alpha subunit; HSPC, haematopoietic stem and precursor cell; IL-408 

1R1, interleukin-1 receptor, type 1; IL-1RAP, interleukin-1 receptor accessory protein; M, 409 
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macrophage; MDSC, myeloid-derived suppressor cell; MSC; mesenchymal stromal cell; NK, 410 

natural killer cell; NLRP3; nucleotide-binding domain and leucine-rich repeat pattern 411 

recognition receptor (NLR) family, pyrin domain-containing protein 3; ROS, reactive oxygen 412 

species; RNS, reactive nitrogen species; SF3B1, RNA splicing factor 3B, subunit 1; SRSF2, 413 

serine/arginine-rich splicing factor 2; STAT3-P, signal transducer and activator of transcription 414 

3, phosphorylated; TET2, tet methylcytosine dioxygenase 2; TLR, Toll-like receptor; TNFR, 415 

tumour necrosis factor receptor; Treg, regulatory T cell; U2AF1, U2 small nuclear RNA auxiliary 416 

factor 1. 417 

Fig. 2: MDS across the autoinflammatory/autoimmune disease continuum. The clinical 418 

heterogeneity of MDS may reflect the variable contribution of autoinflammatory and 419 

autoimmune processes to disease pathogenesis. The classic autoinflammatory syndromes are 420 

usually related to monogenic (e.g. cryopyrin-associated periodic syndromes [CAPS], TNF 421 

receptor-associated periodic syndrome [TRAPS]) or polygenic mutations (e.g. Crohn’s disease) 422 

in genes important in the regulation of the innate immune response. Several 423 

autoinflammatory disorders, including CAPS139 and Crohn’s disease140, have been linked to 424 

mutations/genetic variants in NLRP3 and overproduction of IL-1b. The adaptive immune 425 

response plays the predominant role in the clinical expression of monogenic (e.g. immune 426 

dysregulation polyendocrinopathy enteropathy X-linked syndrome [IPEX]) and polygenic (e.g. 427 

rheumatoid arthritis, systemic lupus erythematosus [SLE]) autoimmune diseases. However, 428 

innate immune mechanisms, in particular the NLRP3 inflammasome, are also emerging as 429 

important players in various autoimmune diseases, including SLE141. Some diseases, referred 430 

to as mixed-pattern diseases, are on the borderline between autoimmune and 431 

autoinflammatory diseases, and may share genetic associations, treatment responses and 432 

clinical manifestations142. Abbreviations: DAMPs, danger-associated molecular patterns; Mf, 433 
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macrophage; MHC class II, major histocompatibility complex class II; Mo, monocyte; Neu, 434 

neutrophil; NLRP3; nucleotide-binding domain and leucine-rich repeat pattern recognition 435 

receptor (NLR) family, pyrin domain-containing protein 3; PAMPs, pathogen-associated 436 

molecular patterns. 437 

Fig. 3: Multiomics pipeline for MDS. Implementing systems biology approaches in MDS is an 438 

unmet and urgent clinical need to not only understand the pathophysiology of this complex 439 

disease but also to create a more personalised approach to therapy. Multiple types of highly 440 

complex and rich omics data are being generated in large scale and are particularly helpful in 441 

MDS patients’ risk stratification and for identifying novel therapeutic targets. Different data 442 

types, including clinical, genomic (multigene NGS-based sequencing panels), transcriptomic 443 

(single-cell RNA-seq), targeted transcriptomic (NanoString143), proteomic/immunophenotypic 444 

(CyTOF, flow cytometry), and metagenomic (16S ribosomal rRNA sequencing, high-445 

throughput shotgun sequencing) datasets, will be combined with the development of a 446 

bioinformatics pipeline, allowing an integrative view of the immunome in MDS patients. The 447 

advent of new technologies like TARGET-seq144, which combines high-sensitivity single-cell 448 

mutational analysis and parallel RNA-seq, will further help to resolve inflammatory signatures 449 

of MDS genetic subclones and non-mutant cells. The analytical pipeline will employ 450 

customized computational methods to incorporate single-cell and bulk multiomics data, 451 

leveraging on mathematical models to provide a holistic view of all components and modelling 452 

of biological networks to identify disease signatures. This provides an unprecedented 453 

opportunity to identify immune profiles, examine the association between common driver 454 

mutations and immune subtype, and to better understand how somatic mutations and 455 

immune cell activation states impact the disease course, response to treatment, and outcome. 456 

Abbreviations: ASXL1, additional sex combs-like 1, transcriptional regulator; BM, bone 457 
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marrow; HMA, hypomethylating agent; HR, higher-risk; HSCT, haematopoietic stem cell 458 

transplantation; IS, immunosuppressive; IST, immunosuppressive therapy; PB, peripheral 459 

blood; QOL/PRO, quality of life/patient reported outcome; SF3B1, RNA splicing factor 3B, 460 

subunit 1; TET2, tet methylcytosine dioxygenase 2; TLR, Toll-like receptor. 461 

Table legends 462 

Table 1: Novel therapeutic agents evaluating immune targets in MDS 463 

Aza, 5-azacytidine; BTK, Bruton’s tyrosine kinase; CAR, chimeric antigen receptor; CCUS, clonal 464 

cytopenia of undetermined significance; HMA, hypomethylating agent; int-1, intermediate-1; 465 

int-2, intermediate-2; Len, lenalidomide; MM, multiple myeloma; RAEB, refractory anemia 466 

with excess blasts; R/R, refractory/relapsed; TRIKE; trispecific killer engager. 467 

468 
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