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Abstract

Argumentation is an approach to reasoning that can be implemented in machines be-
cause of its logical foundations, and which is easily understood by humans because
of its dialectical nature. By enabling humans to reason with machines through dia-
logues, argumentation accommodates even non-experts to scrutinise and communicate
with computational agents. Such technology is valuable at a time in which the need for
accountability in intelligent machines is ever increasing, and as human-machine inter-
action becomes ever more commonplace.

However, if practical argument-based applications are to be realised, the technologies
and systems that underpin them should be effective and efficient. Furthermore, applica-
tions should be optimised to run on the kinds of structures of argumentation which exist
in the domain that they operate in.

In this thesis, therefore, we seek to understand the performance of computational argument-
based dialogue systems. We begin by investigating the effect of domain on the per-
formance of these systems, and then develop two approaches to strategic reasoning in
argument-based dialogues that are computationally efficient and effective.
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Chapter 1

Introduction

1.1 Overview

Since ancient times [3], western logic has distinguished between classical logic that
develops normative models of formal reasoning, and dialectical models that seek to de-
scribe reasoning between interested parties who hold divergent views. With the onset of
computational machines in the modern era, the aim of logicians was to design machines
capable of mathematical reasoning, such that they could automatically derive new for-
mulae and proofs from a set of well defined initial axioms [96]. As such, a main part of
the focus of early Artificial Intelligence (AI) research was on how to capture reasoning,
based on classical logic, within a computational agent.

However, as computational machines have become commonplace in our day-to-day
lives, existing in complex and human-oriented environments, they must increasingly
deal with conflicting, incomplete, and inaccurate knowledge. Classical logic was not
adequate to represent such informal reasoning, and struggled with modelling knowledge
in the presence of uncertainty. Therefore, there has been a growing demand for compu-
tational systems that can deal with uncertain information, and for them to communicate
with us in a natural way. Dialectical reasoning, with its ability to synthesise conflicting
viewpoints, is an ideal approach to handle such information. Within the AI community,
this has led to to an expanding interest in the field of argumentation: a social approach to
dialectical reasoning, by which controversial standpoints can be reasoned about through
a rational exchange of beliefs between intelligent entities.

Argumentation is a field that spans many disciplines. In ancient Greece for example,
philosophers were interested in argumentation for its role in rhetoric [2], focusing on
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the ways in which arguments could best be delivered to influence audiences in public
discourse. Human-oriented approaches to argumentation have been continued in fields
such as linguistics [48], psychology [53], and neuroscience [97]. However, increasingly,
argumentation is also studied from a computational perspective, seeking to establish
strong, logical foundations for dialectical reasoning. Of specific importance is Dung’s
seminal work [33], which introduces an abstract approach to existing logics, allowing
for them to be represented with a dialectical characterisation that makes them suitable
for representing argumentative reasoning.

Dung’s logical formalisation of argumentation provides a model of dialectical rea-
soning that is used to develop argumentation systems that inform and support human
and machine reasoning. There are many types of argumentation systems that deal with
different aspects of argumentation. A subset of these systems focuses on the exchange
of arguments between agents, which, in this thesis, we refer to as dialogue systems.

An argument dialogue is a process by which agents exchange arguments in order to
achieve their goals, either as individuals or as a group. Simply, dialogue systems aim
to support agents in the dialogue process. These include systems that provide infras-
tructure, such as protocols and communication languages, to enable agents to exchange
arguments. Dialogue systems also includes more strategic aspects of the dialogue, such
as strategy generators that determine what utterances a dialogue participant should make
in order to realise the participant’s goals. Examples of applications of dialogue systems
include software tools that support humans in conducting principled debates [26], com-
putational agents that can act in dialogue situations on their human user’s behalf [31],
and the generation of strategies to encourage behaviour change in patients [58]. How-
ever, the computational complexity of strategic reasoning in dialogue is inherently non-
trivial [34]. Indeed, current approaches to computing the optimal strategy for dialogues
with a single agent have not been shown to scale well to increasingly large or complex
domains.

The intuitively dialectical nature of argumentation allows even non-expert users to
interact with and scrutinise argumentation systems. Argumentation is perhaps uniquely
placed in being implementable in computational systems (because of its logical foun-
dations) whilst also being naturally understandable by human users (because of the fa-
miliarity it has with common-sense reasoning). Thus, the true value of argumentation
is in its ability to bridge the gap between human and machine reasoning, improving
communication between users and machines, and increasing their understanding of one
another [77].
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However, humans do not always approach arguments consistently: who we are ar-
guing with, what we are arguing about, and where we are arguing all influence the way
in which we argue. We are adept at adjusting the way we argue to suit our current envi-
ronment. For example, consider a group of politicians engaging in an argument as part
of a parliamentary debate on a policy issue. Before a politician can speak in the debate,
they must first formulate the arguments they wish to express. The formulation of their
argument is a complex process. The politicians want to ensure their arguments are as
effective as possible, and this might require the use of evidence such as statistics or an
appeal to precedent. At the same time, they must ensure their arguments abide by the
expected standard of the arena of discourse; for example, in the United Kingdom, par-
liamentary debates explicitly forbid participants from attacking the credibility of other
participants. The politicians must follow strict rules in the way that they exchange ar-
guments; typically they have a specified duration for which they are permitted to speak,
and may only begin speaking when a moderator allows them to. Once the debate has
come to an end, it may be appropriate to take some action based on the evaluation of the
debate; for example, taking a vote on the policy to determine whether it is accepted.

Now consider a group of friends deciding on where they should eat dinner. Though
explicit rules are not usually followed in such a discussion, there are still social norms
that determine the way in which the discussion progresses. Thus, just like in the polit-
ical debate example above, the formulation, exchange, and evaluation of arguments is
influenced by the domain. In this informal example, participants are unlikely to have to
provide evidence for the claims of their arguments. Furthermore, there is no strict turn-
taking in friendly discussions, and it is more likely to be acceptable to interrupt another
participant. At the end of the discussion, a formal vote will probably not be taken; rather
the outcome for the argumentation will be some negotiated consensus.

Given that humans adjust the way in which they argue depending on the context and
the domain, we would expect computational systems that do not also adjust their ap-
proach to argument appropriately to have varying success in different domains: whether
you are a computational or human agent, approaching a political argument in the same
way as a deliberation between friends is unlikely to result in success. Thus, we should
ensure that computational systems involved in the argumentative process behave in a
way that is optimised to the domain in which they operate. By understanding how dif-
ferent domain properties impact on the performance of dialogue systems, and seeing
what properties an actual domain has, we can develop more efficient and effective sys-
tems for that domain.
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Therefore, in this thesis, in light of the above, we seek to examine the extent to
which the performance of argumentation systems can fluctuate depending on the varying
characteristics of argumentation domains. Furthermore, we propose two approaches to
strategic reasoning within dialogue systems that use approximation techniques to find
acceptable (possibly non-optimal) solutions, which scale to domains beyond what is
possible for current approaches that guarantee to find the optimal solution.

1.2 Motivation

We now explore further the motivation of this thesis. We begin by discussing the poten-
tial of argumentation to address two current hurdles for AI technology. Specifically in
Section 1.2.1 we examine how argumentation can be used for communication between
and with computational agents, and in Section 1.2.2 we examine how argumentation
may also be used to enable better scrutiny of intelligent entities.

1.2.1 Interaction with computational systems

The increasing affordability of computer hardware has led to computational systems
becoming ubiquitous in many aspects of our lives. As such, computer systems are no
longer just stand-alone, but are typically made up of physically-distributed yet intercon-
nected units. The field of distributed artificial intelligence considers how problems that
are difficult for a single unit to solve can be overcome by several separate units working
together [118]. As distributed systems become more complex, it is helpful to represent
them as multi-agent systems.

Multi-agent systems consider individual units of distributed systems as having their
own intentions, able to act on their beliefs and desires to achieve their own goals. At-
tributing such intent to computational systems can help us to understand the behaviour of
such seemingly social and autonomous systems. Multi-agent systems have thus become
a common paradigm in modern day software engineering, used to develop practical sys-
tems in a range of domains [68]. Indeed, the internet hosts many examples of multi-agent
systems, from marketplaces and personal assistants, to social media and forums.

An inherent characteristic of agents is that they use social behaviours in order to
achieve their goals in situations that they are not able to efficiently achieve them in-
dependently. Argumentation can be an effective formalisation for interaction between
agents. In particular, argument dialogues are a suitable way for agents with possible
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conflicting viewpoints, and divergent interests, to exchange their beliefs about the envi-
ronment. The ability for argumentation to be intuitively understood by humans makes
it an especially powerful representation for agent interaction. It allows humans to com-
municate in a natural way as a member of an agent system comprised of computational
agents.

1.2.2 Scrutability of computational systems

Early practical AI systems were based on the model of a single computational agent,
endowed with expert knowledge in a specific domain. The canonical example of such
a system is Mycin [23], an AI system used to aid physicians in the diagnosis of in-
fections. These expert systems are able to offer novel information to the user, which
typically takes the form of recommendations for action. Mycin enquires about the pa-
tient by engaging in a dialogue with the user, and then provides recommendations for
appropriate prescriptions. An important aspect of expert systems is that they perform
simple exchanges with the user which would help to provide the user with step-by-step
information on how the system had arrived at its recommendation. The exchanges allow
the user to scrutinise the reasoning process. This not only reassures the user that the
process is sound, but also that it can allow feedback into the system to improve future
reasoning. Indeed, Teach and Shortcliffe [105] revealed that the most important require-
ment for a user to accept a system is not how well it performs, but rather that it should
“be able to justify its advice in terms that are understandable and persuasive...”, and that
“a system that gives dogmatic advice is likely to be rejected entirely”. To ensure its
reasoning was understandable, during its enquiry, Mycin would allow the user to ask for
justification for why the current line of questioning would help to diagnose the problem.
Furthermore, once Mycin had given a recommendation, the user could ask to see the full
diagnostic trace of its reasoning.

More recent AI techniques, such as neural networks and machine learning, have
demonstrated an ability to excel in a wide range of tasks [99]. However, one of the
criticisms of such systems is that it is difficult to extract the reasoning processes by
which the computational agent has arrived at their conclusions [49], in the way that
expert systems were able to. This makes it difficult to justify taking important decisions
based on the output of such systems, and makes it harder to convince a non-expert that
such a system is truly trustworthy and reliable.

Such a limitation is especially troublesome in the modern era. Computational sys-
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tems are now becoming sufficiently sophisticated that they may soon pose a threat to
humans [119], and as such it has been argued that it has become a moral imperative that
intelligent machines are endowed with the ability to explain their reasoning to human
users [19]. Further, from a legal standpoint, as computational systems get more complex
it becomes harder to identify who or what is at fault when things go wrong [8]. There-
fore, it is vital that as modern AI techniques have a greater role in human society, their
ability to justify their output in a human understandable way is significantly improved,
as more traditional expert systems were required to do.

Given that argumentation allows human users to engage naturally with computa-
tional agents, it is a well-placed technology to fulfil this role in AI systems, so that they
can be adequately scrutinised by their users. Indeed, argumentation systems have been
developed for many real-world domains where the need for human scrutiny is required,
such as in healthcare [40], law [9], and eGovernance [5].

1.3 Research aims

As discussed above, argumentation provides an intuitive approach to human-machine
interaction, which is capable of becoming a key technology in the realisation of in-
creasingly sophisticated and increasingly social computational agents. This has led to
many dialogue systems being developed; however, they have been limited in several re-
spects. Specifically, when evaluating dialogue systems, little regard has been given to
the structural particularities of the domains in which they are being used. As a result,
the relationship between the argument domain and the performance of dialogue systems
is not well known.

A limitation of strategic reasoning in dialogue systems is that, due to their focus
on generating only the optimal strategy for a dialogue, the current approaches do not
scale computationally to larger domains. Thus, in this thesis, we intend to demonstrate
the impact that the domain can have on dialogue system. Furthermore, we present two
examples of how, through use of approximate techniques, we can generate efficient dia-
logue strategies that are still effective.

1. Can we identify a domain characteristic that correlates with performance of
a dialogue system, are we able to quantify the effect?
This questions is answered by investigating the extent to which there is a relation-
ship between the similarity of agents’ beliefs and the likelihood they can reach
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consensus by engaging in an argument dialogue (Chapter 3).

2. Is there a measurable relationship between the structural properties of a
problem domain and their performance-related properties?
This question is answered by an investigation of structural classes of argumenta-
tion, derived from realistic instantiations (Chapter 4). It has been shown that the
structures of these classes have a profound impact on a number of key properties
relevant to dialogue systems.

3. How can we develop effective and efficient approaches to strategic reasoning
in dialogue systems?
We demonstrate that by considering the structural properties of argumentation we
can develop systems that are advantageous when compared to the current state
of the art. We do this by presenting novel examples of dialogue systems that do
exploit the above-stated relationship. We present the two following examples.

• A heuristic approach for determining beneficial arguments to put forward in
a dialogue that considers only the structural properties of the argumentation
framework. This is presented in detail in Chapter 5.

• A evolutionary search approach to finding strategies for persuasion dialogues.
This is presented in details in 6.

1.4 A note on methodology

The research presented in this thesis largely follows an empirical methodology: the re-
sults rely on observations derived from simulations and experiments. However, unlike
other sciences that study the natural world, empirical research in AI requires a certain
amount of engineering. Since the systems we study are on some level artificial, the ex-
perimentation relies on the suitability of the logical models and programs that have been
engineered. This is both a benefit (the models we work with are often simple, especially
compared to natural cognition), and a detriment (models must be a meaningful repre-
sentation of a phenomena) for research. We must therefore be wary when conducting
empirical research in the field of AI to ensure that the engineered systems of study are
indeed consequential phenomena.

Thus, in this thesis the following steps are taken in the presentation of experiments.
First and most importantly, the motivation is given for why the investigated phenomenon

16



is relevant and interesting. Second, the logical models that underpin the experiment are
presented. Third, we give the parameters that are manipulated and measured by the
experiment. And finally, we present the results, with accompanying statistical analysis
where appropriate.

1.5 Thesis structure

The remainder of this thesis is structured as follows.

• Chapter 2, Background Introduces the necessary technical background for the
following chapters. We review the background literature.

• Chapter 3 Demonstrates a relationship between the domain and the performance
of dialogue systems. Specifically, we investigate how the similarity of agents’
beliefs (e.g., the way in which arguments in an argumentation framework are dis-
tributed between agents) correlates with the likelihood that the agents are able to
reach an agreement by engaging in a deliberation dialogue. The content of this
chapter has been published in [78].

• Chapter 4 Reinforces the existence of the relationship evidenced in the previous
chapter by considering how the the low-level properties of a framework can af-
fect the performance of an argumentation system. Specifically, we consider the
effect of structures of generalised argumentation frameworks on key properties
which are known to affect argumentation systems. We investigate structures of
Dung-style frameworks, as well as two generalisations: extended argumentation
frameworks that allow arguments to attack attack relations in order to express pref-
erences, and collective-attack frameworks that allow sets of attacking arguments.
We consider two case-studies based on existing argumentation systems, relating
to statistical-model selection and clinical trials. The content of this chapter has
been published in [81].

• Chapter 5 Recent works consider mechanisms for determining an optimal strat-
egy for persuading an agent of some particular goal argument. However, comput-
ing such optimal strategies is expensive, swiftly becoming impractical as the num-
ber of arguments increases. In response, we present a strategy that uses heuristic
information of the domain arguments and can be computed with high numbers of
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arguments. Our results show that not only is the heuristic strategy fast to compute,
it also performs significantly better than a random strategy. The content of this
chapter has been published in [79].

• Chapter 6 We explore a one-to-many persuasion setting, where a persuader presents
arguments to a multi-party audience, aiming to convince them of some particular
goal argument. The individual audience members each have differing personal
knowledge, which they use, together with the arguments presented by the per-
suader, to determine whether they are convinced of the goal. The persuader must,
therefore, carefully consider which arguments to assert, in order to maximise the
number of convinced audience members. For reasonably sized problems with
multiple audience members, it is computationally infeasible to search the space of
all possible strategies. Instead, we use techniques from search-based model engi-
neering to allow us to find an effective strategy for the persuader. We investigate
performance of our approach on a range of settings, and in our evaluation we con-
sider different structures and sizes of argumentation framework as well as varying
the size of the audience and of the audience members’ personal knowledge bases.
Furthermore, we show that the approach is flexible enough to support multiple
persuader objectives, allowing us to find persuader strategies that aim to minimise
the number of arguments that are asserted while still maximising the number of
convinced audience members. The content of this chapter is to appear in [80].

• Chapter 7, Conclusion A discussion of the main contributions of this thesis, and
directions for further study.
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Chapter 2

Background

2.1 Introduction

This chapter is divided into two parts. In the first, we present the technical background
for the remainder of the thesis, including Dung’s argumentation frameworks with ac-
companying semantics, and an overview of argumentation systems. In the second part,
we review the relevant literature on computing argument dialogue strategies as well as
work that has investigated the effect of domain on argumentation systems.

2.2 Technical background

2.2.1 Argumentation frameworks

An argument is defined as a set of grounds in support of a conclusion. Arguments can
take the form “conclusion because grounds”, where the grounds of the argument con-
stitute the evidence in support of the conclusion. The conclusion may be derived from
the grounds using deductive reasoning, as in the syllogistic example “Socrates is mortal
because Socrates is a man and all men are mortal”. Arguments can also rely on inductive
reasoning; for example consider the argument “all ravens are black because all observed
ravens have been black”. In fact, an argument can be built upon any type of reason-
ing, including abductive, analogistic, and even fallacious reasoning. This is a desirable
property as it allows formal reasoning to be represented alongside more common-sense
reasoning. However, for this reason, a key aspect of arguments is their defeasibility,
meaning that an argument can be invalidated if another argument is in conflict with it.
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Driving will be
slow because it

is rush hour.

We should drive
because driving

will get us
there quickly.

undercut

We should
cycle because
we will get

there quickly.

We should drive
because we will
get there safely.

refutation

Figure 2.1: Instantiated examples of an undercut and a refutation.

An argument conflict is referred to as an attack relation. We can read an attack from
argument a to argument b as “argument a is a reason against argument b”. It entails that it
would be rationally incoherent to find both arguments acceptable at the same time. Note
that if argument a attacks argument b, it does not necessarily imply that b attacks a. We
consider two types of attack: the refutation and the undercut. If argument a undercuts
argument b, then either the conclusion of argument a is not rationally coherent with
one of the grounds of argument b, or the conclusion of argument a is not rationally
coherent with the means by which the conclusion of argument b has been derived from
its grounds. If argument a refutes argument b, then the conclusion of argument a is not
rationally coherent with the conclusion of argument b. Examples of the undercut and
refutation are shown in Figure 2.1.

Since Dung’s seminal work [33], the dominant approach to argumentation-based
reasoning is to represent arguments as abstract entities in an argumentation framework
(AF). Commonly represented topologically as directed graphs, AFs are comprised of a
set of arguments and the attacks between them. See Figure 2.2 for an instantiated argu-
mentation framework represented as a directed graph, and Figure 2.3 for an abstracted
version of the same framework.

Definition 1. An argumentation framework is a tuple AF = 〈A,R〉, such that A is a

set of arguments1, and R ⊆ A × A, is a set of attacks where (x, y) ∈ R is an attack, x

to y.

The conflict relationship is central to the approach, and allows uncertain and pos-
sibly inconsistent knowledge to be formally represented. Since some of the arguments
in a framework may be invalid, a key question is, given an argumentation framework,
which arguments can be deemed to be valid? There are in fact multiple approaches, or

1In this thesis, we will consider only finite argumentation frameworks, where A is a finite set.
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The defendant
is innocent

because they
have not been
proven guilty

The defendant
is guilty

because they
have no alibiThe defendant

was seen by
their brother
in the park
at the time

of the crime

The defendant
was seen by
their sister in

the cinema
at the time

of the crime

The defendant
does not

have an alibi
because family
members are
not a reliable

source of alibi

We should use
family members

as witnesses
even if they

are unreliable
because there
are no other

witnesses
in this case

Figure 2.2: An instantiated argumentation framework.

a b

c

d

e f

Figure 2.3: An abstract argumentation framework.

semantics, by which the acceptable arguments, those that can be justified with respect
to the rest of the framework, can be inferred. However, each approach considers only
the abstract arguments and the attack relations between them, and does not examine the
internal details of the arguments. The acceptable arguments are thus determined by the
underlying structure of the framework. The following section provides an overview of
the semantics considered in this thesis.

2.2.2 Argumentation semantics

Argumentation semantics are based on the intuitive principles that it is not rational to
accept any two conflicting arguments, and that an argument which is attacked can only
be accepted if all of its attacking arguments are themselves attacked by an accepted
argument [33].

The notion that a set of valid arguments should be internally-consistent, in that no ar-
gument in that set should attack any other argument in the set, is covered by the property
of being conflict free.

Definition 2. Let 〈A,R〉 be an AF and S ⊆ A, S is conflict-free iff ∀x, y ∈ S: (x, y) 6∈
R.
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Example 1. Consider the AF in Figure 2.3, the sets {a, c, f} and {b, f} are both conflict

free because there are no attacks between the arguments in them. The set {a, c, d, f} is

not conflict free, because there is an attack between arguments c and d.

We can capture the intuition that a set of valid arguments should also be able to
defend itself from any external counter-arguments. Therefore, any argument not in the
set that attacks an argument within the set, should itself be attacked by an argument in
the set.

Definition 3. Let 〈A,R〉 be an AF and S ⊆ A, x ∈ A is acceptable with respect to S

iff, for all y such that (y, x) ∈ R, there ∃z ∈ S such that (z, y) ∈ R.

An argument x in an AF 〈A,R〉 is acceptable with respect to a set of other arguments
S ⊆ A if all arguments in A that attack x are attacked by an argument in S.

Example 2. Consider the AF in Figure 2.3, and the set S = {a, b}. Argument c is

acceptable with respect to the AF and S, as although there is an attack from argument

b ∈ S to c, there is an argument a ∈ S which attacks b; we say that a effectively defends
c.

Definition 4. Let 〈A,R〉 be an AF and S ⊆ A, S is admissible iff S is conflict-free and

each argument in S is acceptable w.r.t. S.

Example 3. Consider the AF in Figure 2.3. The set S = {a, c, f} is admissible since it

is conflict free, and a, c, and f , are all acceptable w.r.t. S and the AF.

There are a range of different semantics that build on these principles and determine
sets of arguments that can rationally be presented as coherent [7]. These sets are known
as extensions. Below, we survey some of these semantics (all from [33]), and highlight
the ones that are used in the rest of this thesis.

Grounded semantics

An argument is acceptable under the grounded semantics if it is in the smallest set S
such that every argument that is acceptable with respect to S is in S. The grounded
extension is necessarily unique.

Example 4. Consider the framework in Figure 2.3. The only argument acceptable under

the grounded extension is a.
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Intuitively, the grounded semantics can be characterised as being cautious since only
a relatively small number of arguments are acceptable under them. As such, sometimes
the semantics may be considered too restrictive in the determination of acceptable argu-
ments. However, the grounded semantics do provide a level of certainty in the arguments
determined to be acceptable.

Example 5. Consider the framework in Figure 2.2. Using the grounded semantics, we

are not able to infer whether the defendant is guilty or not guilty, since the arguments

with these as their conclusions are both excluded from the grounded extension. This

is because the conflict between the two alibis prevents us from finding either of them

acceptable under the grounded semantics.

Preferred semantics

The use of the preferred semantics gives a lower threshold for acceptability when com-
pared to the grounded semantics, potentially allowing more arguments to be inferred as
acceptable than the grounded semantics. An extension is preferred if it is maximally

admissible. A set S is maximally admissible if any of the arguments not in S were to be
added to S then it would no longer be admissible.

Definition 5. Let 〈A,R〉 be an AF and S ⊆ A, S is maximally admissible iff @e ∈
(A− S) : S ∪ {e} is admissible.

Example 6. Consider the framework in Figure 2.3. There are two maximally admissible

sets: {a, c, f} and {a, d, f}.

Since there are possibly multiple preferred extensions for an AF, to determine which
arguments are acceptable we use some inference. An inference can be either credulous

or sceptical.
An argument is acceptable under the preferred semantics with a credulous inference

if it is part of at least one maximally admissible sets. Note that the set of arguments that
are acceptable under the preferred credulous semantics is not necessarily conflict-free.

Example 7. Consider the framework in Figure 2.3. The set of arguments acceptable

under the preferred credulous semantics is {a, c, d, f}.

An argument is acceptable under the preferred semantics with a sceptical inference
if it is part of all maximally admissible sets.
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Example 8. Consider the framework in Figure 2.3. The set of arguments acceptable

under the preferred sceptical semantics is {a, f}.

We motivate the demonstrate the practical difference between the preferred credu-
lous and preferred sceptical semantics in the example below, and show why each may
be used over the other.

Example 9. Consider the framework in Figure 2.2. Under the preferred credulous se-

mantics, we accept both alibis and thus we find the defendant innocent; however, this

introduces a conflict in our acceptable arguments as the alibis are contradictory. Under

the preferred sceptical semantics, we are able to find the defendant innocent without

introducing any conflict, but it is then less clear the reasons for why we have done so,

since we find neither of the alibis acceptable.

2.2.3 Argumentation systems

The development of logical formalisms for the representation of dialectical reasoning
allows for the application of argumentation systems to a broad range of problems. Some
of these argumentation systems, such as argument solvers, focus on the abstract com-
putational challenges associated with argumentative reasoning. Other argumentation
systems, such as those used for dialogues, are designed to support the social aspects of
interaction.

Argument solvers

Many tasks in argumentation are computationally difficult [34], and therefore require
the development of algorithms specialising in performing them efficiently. Argument
solvers are programs that are designed to perform these tasks. There are many solvers,
each using different techniques; some of them use techniques especially designed for
argumentation (e.g. [93]), while others translate the problem to another domain and then
solve it with an existing technology (e.g. [69]).

Examples of typical tasks that solvers perform are given below, but note this is not
an exhaustive list, and some solvers may only perform a subset of the tasks [34].

• Compute an extension for a given framework and semantics.
• Compute all extensions for a given framework and semantics.
• Determine whether a given argument is credulously inferred for a given frame-

work and semantics.
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• Determine whether a given argument is sceptically inferred for a given framework
and semantics.

Dialogue systems

The second type of argumentation system we consider are dialogue systems. Argument
dialogues are a structured approach to rational interactions between parties. Partici-
pants in an argument dialogue engage in an exchange of arguments in order to achieve
some collective goal, while at the same time seeking to achieve their own personal goals.
Argument dialogues are of particular interest as they provide a structured means of com-
munication for social agents [77], allowing agents not only to state their beliefs but also
the reasons they have for holding those beliefs. Consider the following dialogue, in
which two agents discuss how to travel to the park.

Edward: The weather is nice today, so we should cycle to the park.
Sophie: I don’t want to cycle. If we take our bikes the traffic will slow us down,

it will be faster to take the tube.
Edward: There is no traffic at this time of the day, so cycling will be faster than

the tube.
Sophie: I do not have a helmet.

Edward: The segregated cycle paths will keep us safe.

We can see that by offering arguments and counter-arguments to one another, the
agents are able to reason collectively. Each agent offers arguments that are personal to
themselves, offering potentially novel information to the other. Through the exchange
of new knowledge, the participants are able to influence the beliefs of one another.

Computational studies of dialogue began with Hamblin, in which he defines a set of
dialogue games in logic (these games are simple, two-player, turn-based dialogues) [52].
The focus of Hamblin’s work on dialogue games was not to investigate the behaviour
of agents in dialogues, nor to design efficient mechanisms for dialogue, but rather to
identify the logical circumstances that lead to fallacies occurring through the course of
formal reasoning.

Much of the recent work on argument dialogues is centred around the exploration of
different types of dialogue. Walton and Krabbe’s initial typology of the various kinds
of dialogue [115] is commonly used as a basis for these investigations. They define dia-
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logue types based on the initial starting condition of the dialogue, the individual goals of
participants, and the goal of the dialogue (in the context of agents, this is better thought
of as the goal ascribed to all participants of the dialogue [71]). Table 2.1 summarises the
canonical dialogue types set out by Walton and Krabbe.

Table 2.1: A typology of dialogues

Dialogue type Initial conditions Individual goals Group goal
Information
seeking Individual ignorance

Acquire knowledge;
spread knowledge Spread of knowledge

Persuasion Conflict in points of view
Convince others
of your view

Resolve conflicting
views

Inquiry General ignorance
Obtaining new
knowledge

Discovery of new
knowledge

Deliberation Need for group action
Obtain a favourable
outcome

Reach a joint decision
for action

Negotiation
Cooperation between
self interested parties

Obtain a favourable
deal

Arrive at an
agreement

Eristic Antagonistic parties Inflict harm to others
Arrive at a provisional
accommodation

We can classify the dialogue between Edward and Sophie as a deliberation dialogue.
There is an initial need for group action, since the agents must decide on how to get to
their destination. They both wish to arrive at a joint decision in order to get to the park.
However, at the same time they both want to influence the decision towards a favourable
outcome for themselves: Sophie has a preference to take the tube whereas Edward has a
preference for cycling.

Although Walton and Krabbe’s typology provides a useful way to categorise and
discuss different kinds of dialogue, the way in which they are classified is informal.
Dialogue games are a way to formally define instances of these types of dialogue [71].
They introduce the key components of a dialogue system, which are as follows. The
valid utterances are formalised in a set of locutions agents can make during a dialogue
game, alongside a commitment store that defines the meaning of each utterance. For
example, a valid utterance may be to assert an argument known by the agent, which the
agent is then committed to defend for the duration of the dialogue. Combination rules
detail the sequences of locutions which are acceptable, and under what conditions they
can be made. Commencement and termination rules specify how a game begins, and
under what conditions, as well as to what outcome, it finishes.

Dialogue games have been defined for each of the dialogue types specified by Walton
and Krabbe: for example, inquiry dialogues [17], persuasion dialogues [87], negotiation
dialogues [73], and deliberation dialogues [104]. Dialogue games have been applied to
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real-world use in multiple domains, including medicine, eGovernance, and commerce.
In the medical domain, argument-based dialogues have been used as a process by which
a computational agent can help diagnose an illness by supporting a doctor [40]. The
PARMENIDES (Persuasive ARguMENt In DEmocracieS) system designed by Atkinson
et al [5] uses argumentation to support the public in consulting a computational agent
representing a government body on political issues. Delecroix et al. have developed a
virtual selling agent, that attempts to profile the customer over the course a persuasion
type dialogue [31].

While dialogue games specify which moves are valid to be made by an agent, they do
not address the issue of which of the valid moves should be made in order to maximise
the chance of an agent to achieve their goals. This decision makes up part of an agent’s
dialogue strategy. Though some mechanism design seeks to diminish the role of strategy
in dialogue [90], in more open settings of dialogues where agents can act on their self-
interest, strategic argumentation is a central to an agent achieving their goals [106].

In general, strategic argumentation does not just focus on which moves are optimal
to make in a dialogue, but also the way in which they are made. We can use the notions
of logos (appealing to logic and reason), pathos (appealing to emotions of the listener),
and ethos (appealing to the authority of the speaker) to distinguish between the differ-
ent aspects of strategy. However, in this thesis as with the majority of computational
research in strategic argumentation, the focus will be on the logos aspect of strategy,
though a computational approach to ethos [88] and pathos [12] may also be valuable.

Most work in strategic argumentation considers a setting in which a proponent at-
tempts to convince an opponent of the acceptability of a particular argument (commonly
referred to as the topic argument, as it is the focus of the dialogue). However, assump-
tions about details of the domain greatly vary between work. In Section 2.3.1, we pro-
vide a critical review of the prominent approaches to strategic reasoning in dialogue
systems.

2.3 Literature review

In this section we review the current state of the art in strategic argumentation, as well
as literature that has considered different structures of argumentation frameworks in the
evaluation of argumentation systems.
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2.3.1 Strategic argumentation

In this section we review the state of the art in approaches to determining participant
strategies for persuasion dialogues. Though direct comparison of the approaches is not
possible due to the differences in assumptions, where the computational performance of
the approach has been investigated, we give an indication of its scalability in terms of
the number of arguments in the domain.

Hunter considers a setting in which the proponent has a model of the opponent’s
initial beliefs, which they can use to formulate the optimal strategy for the proponent by
maximising expected utility [57]. In this setting, the persuasion is asymmetric, and the
opponent’s only behaviour is to indicate honestly whether they find the topic argument
acceptable at certain stages of the dialogue. However, the approach has not been investi-
gated through empirical evaluation, nor has the computational efficiency of the approach
been evalauted.

Black et al. propose an approach to generating a dialogue strategy in persuasion
dialogue through the use of AI planning techniques, to which they have applied to a
range of different settings [16]. They model the dialogue as a planning problem, which
can be given to a planner to generate the optimal strategies that an agent can follow.
The planning problem consists of the initial situation (the arguments known by each
dialogue participant), the possible actions available to the persuader (the set of asser-
tions), and a set of goal states (those in which the persuadee is convinced). Similar to
Hunter’s approach, Black et al. assume that the persauder has a probabilistic model of
the persuadee’s beliefs, but also consider that asserting an argument may induce new
knowledge in the persudee’s beliefs. The strategies produced by the approach are given
alongside a probability that the strategy will be successful in convincing the opponent
agent. The approach has been shown to scale to domains of at most 13 arguments in the
domain.

Hadoux et al. [50] support richer models argument dialogue, by using Mixed Ob-
servability Markov Decision Problems to model the dialogue that, after some minimi-
sation, can be used to generate dialogue policies for the proponent. The policies give
the proponent an optimal action for any possible point in the dialogue. Their approach
has been shown, through empirical evaluation, to scale up to 8 arguments in the domain.
It should be noted that bipartite frameworks are probably simpler to develop a strategy
over, since arguments would either be fully attacking or fully defending the topic, and
so the approach does not need to consider more nuanced arguments.
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Rienstra et al. [92] build on the work of Oren et al., and provide an approach to
strategising in dialogue that involves sophisticated modelling of the opponent. Their
approach allows the persuader to consider arguments that it itself is not aware of but be-
lieves are known to the opponent (referred to as virtual arguments); this is in contrast to
other approaches that assume the proponent is aware of all the arguments that are known
by the opponent. The approach of Rienstra et al. [92] was evaluated on frameworks of
size 10 (in which the topic argument is always in the grounded extension), but specific
investigation of the computational performance of the approach has not been presented.

Hadoux and Hunter use decision trees to model persuasion dialogues between two
participants [51]. They represent all possible dialogues from an initial situation in a
tree structure: an edge of the tree represents an asserted argument by either participants,
nodes represent decision points where one of the participants must take an action, leaf
nodes represent dialogue outcomes, and paths from root to leaf represent a possible
dialogue. They seek to generate a policy, that can tell a proponent the best action in
any node of the decision tree based on a probabilistic model of the opponents behaviour
and beliefs. Rules from decision theory are used to determine optimal actions once they
have optimised the tree structure. Their approach scales to domains of 8 arguments
for frameworks that do not contain cycles, but they suggest this performance may be
improved by further optimising the tree structure.

Focusing on persuading human users rather than computational agents, Rosenfeld
and Kraus use machine learning techniques to predict the most beneficial arguments
to assert during a dialogue [95]. They evaluate the effectiveness of their approach with
experiments involving over 100 dialogues with human participants. Their results showed
that human participants were at least as well convinced of the topic argument by their
approach as they would be by another human.

Proof dialogues are similar to persuasion dialogues, in that they involve two agents
asserting arguments in turn to one another to convince the other of the (un)acceptability
of a particular topic argument. However, a key difference to typical persuasion dialogues
is that in proof dialogues, agents argue over a shared argumentation framework whereas
in persuasion dialogues agents are normally assumed to have their own personal argu-
ment frameworks. Caminada proposes an approach to a proof dialogue in which an
agent may generate a sequence of arguments (similar to a strategy) in order to convince
the opponent that an argument that is justified under the grounded semantics is, indeed,
justified [24]. Moreover, the agent will not assert an argument that is not justified. The
key difference to this approach from other work on strategy is that it restricts the agent
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to honest behaviours: an agent is only able to convince an opponent of what it truly
believes to be the case by using arguments that it also believes. The strategy is therefore
suitable for an explanation system, but cannot be used for more general dialogue goals
where deceptive behaviours may be beneficial. Other approaches to proof dialogues
exist for different semantics (e.g. preferred sceptical [100], credulous sceptical [113],
and stable semantics [25]), and do not generally assume agents engage only in honest
behaviours. Nevertheless, the proof dialogue approaches are still limited by the assump-
tion of a shared argumentation framework. So while proof dialogues are appropriate for
establishing the acceptability of arguments in a framework, or demonstrating its accept-
ability through dialogue, they cannot be applied to more general persuasion scenarios.

A common feature of the above mentioned argument-based approaches to deter-
mining dialogue strategies is that they all attempt to find the optimal strategy. Since the
strategic problems are inherently computationally complex [34], approaches that attempt
to find an optimal solution will, under the P 6= NP assumption, have their worst-case
performance become exponentially worse as the number of arguments in the domain
increases. This is problematic because it limits the kinds of scenarios in which strategic
reasoning is computationally viable, and therefore the number of real-world domains.
An alternative approach would be to forgo the optimality of the found strategy, and in-
stead attempt to find an acceptable solution more efficiently. Approximate techniques
could be used to determine a dialogue strategy in domains in which would be infeasible
to find optimal solutions, or just situations where computational resources are limited or
expensive.

The use of an approximate heuristic when strategising in persuasion dialogues has
been considered by Oren et al, who present a heuristic for minimising the amount of
knowledge that is revealed by the persuader to the opponent during a dialogue [84]. The
heuristic is not designed to be used to determine strategies that are necessarily effective
at convincing the persuadee, nor does the approach seek to address performance issues
with strategic reasoning and so the scalability of the approach is not investigated.

The role of strategy in dialogue has been considered independently of argumentation
theory. For example, Shin has applied game theory to the domain of dialogue in order to
analyse strategising with respect to the relationship between the quality of information
available to the opponent and proponent, what information is withheld to each party,
and the allocation of the burden of proof [101, 102]. Glazer and Rubinstein have applied
mechanism design to generate rules on the process of strategising that optimises for the
success of a desirable outcome [44, 45]. However, neither of these approaches directly
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tackle the problem of selecting which utterances should be made by participants in a
dialogue setting.

2.3.2 How domain can impact performance of argument systems

In Section 2.2.3, we have presented an overview of argumentation systems. As dis-
cussed, argumentation systems are typically evaluated on arbitrary structures of frame-
work, which therefore leads to limited results. However, some systems have been eval-
uated with different structures in mind.

We now review the current state of the art, by critiquing notable examples of eval-
uations that specifically consider argumentation framework structure. In the domain of
dialogue systems, we review Black et al’s evaluation of their dialogue system. Fur-
ther, we also consider, though not the focus of this thesis, evaluations in the domain of
argument solvers.

Ladders and cycles in persuasion dialogues

Recall the approach to computing a dialogue strategy, proposed by Black et al. [16]
from the previous section. Their approach is evaluated empirically by generating ran-
domised initial starting scenarios to provide as input into the planner. The evaluation
considers the effectiveness of the strategies that are generated, as well as the time taken
to compute them. In initialising a starting scenario, the argumentation framework being
argued over by the agents is randomly generated, and the arguments available to each
agent is distributed. In the evaluation, three types of framework are considered. Bipar-
tite frameworks are used as one type of framework, where each partition is distributed
to a separate agent. These frameworks are considered to be strategically easier because
the agents do not need to be concerned about undermining their own arguments. The
other two framework types are non-bipartite. These two framework types are based on
topological notions of cycles and ladders, and are devised to be especially challenging
benchmarks. They are considered to be challenging because both types of structures
contain arguments that may be both beneficial or detrimental for a persuader, depending
on the persuadee’s beliefs. They use a naive strategy as a comparison for the perfor-
mance of their planning approach.

The results of Black et al.’s evaluation shows that while the planning approach is
generally faster and more effective than a naive approach, and the performance of both
approaches is at least partially determined by which type of framework is used in the
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initial scenario. More generally, the work demonstrates how the underlying framework
structure can influence the performance of a particular dialogue system.

However, the two challenging benchmarks are particular to this approach to gen-
erating a persuasion strategy using AI planning, in that it is currently unclear whether
these structures would be similarly challenging to other approaches to generating a strat-
egy, or whether they are challenging for argumentation systems in general. While the
structures have allowed some further insight into the evaluation of this argumentation
system, other structures are likely to be more relevant for the evaluation of different
argumentation systems.

Structural properties of frameworks on argument solvers

The impact of the structure of argumentation frameworks on the performance of argu-
ment solvers is recognised [77], but the relationship between the two is still not fully
understood. Below, we review work that has used frameworks of different structures in
the evaluation of the performance of argument solvers. Though the work below specifi-
cally investigates argument solvers, as examples of argumentation systems, they are still
somewhat relevant to the consideration of dialogue systems in this thesis due to their
use of argumentation frameworks as a domain. The empirical evaluation of the per-
formance of argument solvers is a more mature area of investigation compared to the
evaluation of the performance of dialogue systems and so they can offer insight for the
work undertaken in this thesis.

• The International Competition on Computational Models of Argumentation

The 2nd International Competition on Computational Models of Argumentation mea-
sures the efficiency of argument solvers at performing a number of different reason-
ing problems, across a selection of the most common semantics [43]. The competi-
tion requires argumentation framework instances on which the solvers run.

For the 2nd International Competition on Computational Models of Argumentation,
there was an open call for frameworks and framework generators, that could be used
as input for the solvers. A total of six benchmarks were used. Most of the bench-
marks used were randomly generated frameworks that were meant to be especially
challenging for solvers. Only one benchmark came from real-world sources: a set of
directed graphs from mass transit data that were interpreted as argumentation frame-
works.
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It is not clear whether the randomly generated frameworks have relevance to frame-
works of real-world argumentation. Indeed, even the frameworks based on real-world
structures are not within the context of argumentation or reasoning. However, this
range of benchmarks do provide a range of differing structures on which the solvers
were successfully benchmarked. From the results of the competition, it would appear
that some of the types of structures of framework proved to be more challenging for
solvers than other types. Further, not all solvers found the same structures challeng-
ing.

• Features of frameworks and difficulty of problems

Given that the structure of framework used is known to affect the difficulty of com-
puting extensions over that framework, a valuable direction of work is to identify
which structural features of framework produce especially difficult problems. Identi-
fying such frameworks can inform the design of solvers that are specialised in solving
frameworks with those features more efficiently than a general solver is able to.

The effect of framework features on the performance of solvers computing the pre-
ferred extension has been investigated by Cerutti et al. [39]. They use a range of
topographic features relating to the structure of framework to predict which solver
out of a set of four will be the most efficient in computing the preferred extension.
In order to identify which are the most relevant features they use predictive perfor-

mance models. Their results demonstrate which features are the best indicators of
performance for the solvers.

Rodrigues et al. investigate the computational complexity associated with comput-
ing the complete extensions across the domains that were used in the 2nd Interna-
tional Competition on Computational Models of Argumentation [94]. They found
that certain domains can generate a very large number of extensions and this can be
problematic for certain solvers, which fail to return a solution within the time limit
set by the competition. Further, from their analysis, they propose a measure to esti-
mate the difficulty of a framework based on its structural properties. The measures
includes the size and number of strongly-connected components within the frame-
work, the attack density of the strongly connected components, and the arrangement
of strongly-connected components across the framework. They found that the mea-
sure was a fair indicator of framework difficulty for many of the domains used.
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These approaches could be adapted to identify features of frameworks that affect the
performance of dialogue systems. However, currently, such an analysis would be
difficult due to the issues discussed in the Section 2.3.1 relating to the lack of a set of
benchmark problems and domains for dialogue systems.

• Social networks and argument solvers

Bistarelli and Santini [13] also consider how the underlying structure of a framework
can affect argument solvers. Specifically, they have investigated the efficiency of
argumentation solvers on different frameworks derived from the structures of social
networks.

They used randomly generated Erdős-Renyi networks, Watts-Strogatz networks, and
Kleinberg networks as their models of small-world, directed, social networks.2 They
then interpret these as argumentation frameworks, and use them as the benchmarks
for three solvers: Aspartix, Dung-O-Matic, and their own solver ConArg. Each
solver was tasked with completing enumeration tasks for a range of semantics on
each type of framework. They found that the performance of the solvers to complete
these tasks varied substantially between the different types of framework that they
investigated. Moreover, it was found that there was no solver that outperformed the
other solvers for all the framework types, and that a solver that performs well on one
type of framework may not perform well on other types.

Bistarelli and Santini’s results support the hypothesis that framework structure has a
profound effect on the performance of argumentation systems. The authors’ motiva-
tion for the use of social networks as benchmarks for argumentation systems is that
argumentation is a social approach to reasoning. While the social aspect of argumen-
tation is certainly important in the creation of argumentation systems [42], it is not
evident that the structure of the social network of arguing agents would be retained
in the structure of argumentation frameworks produced. It is therefore not obvious
how relevant the structures of framework that Bistarelli and Santini investigate are to
frameworks that would be encountered in real-world domains.

• Semantic web instantiations and argument solvers

Yun et al. generate argumentation frameworks from knowledge bases based on exis-
tential rules in order to benchmark argumentation solvers [120]. The existential rules

2Erdős-Renyi networks were also used as a benchmark in the argument solver competition.
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that they generate are based on the type of reasoning that occurs on the semantic web
when in the presence of inconsistencies.

Though not based on real-world examples, the generator produces randomly gener-
ated knowledge bases that would be similar to those found on the semantic web. The
knowledge bases are then translated to equivalent argumentation frameworks, ready
to be used in the evaluation of solvers.

The evaluation itself mirrors the aforementioned argument solver competition, us-
ing a number of the same solvers, checking them with the same problems, and uses
the same scoring system, but instead uses the new argumentation frameworks. The
results show that, for many of the problems, when using the new frameworks, a sig-
nificantly different ordering over the performance of the argument solvers is found.

• Portfolios of argument solvers

By investigating the performance of solvers from the 1st International Competition
on Computational Models of Argumentation, Cerutti et al. show that, in general,
there is not a single argument solver that is best for all computational problems, but
rather that the performance of solvers are complementary [37, 38]. They establish
that collections of solvers (portfolios) can be employed to solve problems over a
framework, where some initial analysis of the framework is undertaken to find which
solver in the collection is likely to be most efficient at solving the problem for the
given framework. They demonstrate through empirical evaluation that portfolios of
solvers typically outperform standalone solvers.

The results suggest that the structure of argumentation framework not only affects
the performance of argument solvers, but may affect the performance of different
solvers in different ways. This may be true of dialogue systems as well. It would
be interesting to investigate whether framework structure affects the performance of
dialogue systems in different ways, and indeed whether it is worthwhile to construct
portfolios of dialogue strategies depending on the domain. However, portfolios are
only possible if the systems that make them up can be directly compared. This is
not currently the case for dialogue strategy generators as they are all developed for
different forms of persuasion dialogue.

• Framework representation

Not only can the structure of argumentation framework affect the performance of
solvers, but the way in which the frameworks are represented can also have an impact
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of the speed of computation [36]. Cerutti et al. demonstrate that a framework with
the same structure, but represented in file format in a different way (for example with
a different ordering of arguments) can impact the performance of a solver.

Given that there are is standard representation of dialogue problems, this is not a pri-
ority for investigation within the dialogue domain. Nevertheless, if such a representa-
tion develops within the community, the impact of the representation on performance
should be taken into account since it has the potential to affect the performance of di-
alogue systems given that it can affect the performance of argument solvers. Ideally,
a representation of the problem should be optimised to improve the performance of
all systems that use it, but such a representation may not exist.

2.4 Summary

In this chapter we have introduced the necessary technical background for the remainder
of this thesis. We have reviewed argumentation systems, and we state that performance
is an important aspect of dialogue systems and argumentation systems in general.

We reviewed recent work that considers framework structure in the evaluation of
argumentation systems. While there is a competition for evaluating the performance of
argument solvers that uses a range of framework structures, the vast majority of work
on dialogue systems uses arbitrary frameworks and domains in their evaluation, and
as a result, in many cases, there is not a strong understanding of how structure and
domain affect the performance of dialogue systems. As a consequence, in the next two
chapters of this thesis, we undertakes further analyses of how domain may affect the
performance of dialogue systems. We begin by investigating deliberation dialogues, and
whether the similarity of participants’ initial beliefs correlates with the probability that
agents are able to reach an agreement. Further, we generate a benchmark library of
frameworks derived from popular generalisations of Dung’s argumentation framework,
and investigate the relationship between their low-level structure and their emergent
semantic level properties.

We also reviewed work in strategic argumentation. In general, the problem of deter-
mining an agent strategy in a persuasion dialogue for effectively convincing a persuadee
of a particular topic argument is far from trivial, and numerous approaches have been
investigated. The approaches that directly address the issue all attempt to find optimal
strategies. This comes at the cost of computational efficiency. So, while current state
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of the art solutions can produce optimal strategies, they do not scale to larger domains.
This is potentially problematic if we expect practical applications to be developed for
complex and human-oriented domains. In response to this issue, we propose two ap-
proximate solutions to strategic reasoning with a focus on scalability and performance.
Specifically, we first propose a heuristic for estimating how beneficial arguments would
be to assert in a persuasion dialogue, and use the heuristic to compute a proponent strat-
egy. In our second approach, we use evolutionary search to find effective strategies. We
demonstrate that both of these approaches are able to generate strategies in domains that
would be likely computationally infeasible for current approaches that generate optimal
strategies.
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Chapter 3

The impact of domain on dialogue
systems

3.1 Introduction

Autonomous agents must often collaborate with other agents to achieve their goals, for
example when it is impossible or inefficient to achieve them as individuals. One way for
a group of agents to coordinate their actions is to participate in a dialogue. Argument-
based dialogues are structured interactions between participants, involving the exchange
of formal arguments (e.g., [72]). There are many classes of argument dialogues, one
such class being the deliberation dialogue, in which participants attempt to agree on an
action. Such dialogues are a rational approach for agents to come to an agreement on
how to act, allowing the opportunity for an agent not only to express their preferences
over possible actions, but also to express the reasons they have for those preferences.
Thus, deliberation dialogues are important as possible collaboration and coordination
mechanisms that can be used in agent systems.

The complexities of agent-based argument dialogues mean that often only a lim-
ited number of properties can be studied formally without making overly restrictive
simplifications to the problem domain [89]. This can make formal analysis of agent
performance in dialogues difficult. A complementary approach is to use simulation and
empirical analysis. An example of such an empirical evaluation is Black and Bentley’s
experiments on simulations with a deliberation dialogue system that found that the use of
argument-based deliberation dialogues typically outperforms a basic consensus forming
algorithm [15]. However, while their experiments explore a large and sensitive param-
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eter space, they do not consider how the similarity of agents’ initial arguments affects
the dialogues (in their experiments they assume that agents have disjoint sets of initial
arguments), which could be a contributing factor to the outcome of the dialogue.

In this chapter we also study the behaviour of deliberation dialogues using empirical
methods. We investigate the dialogue system studied by Black and Bentley [15], first
presented by Black and Atkinson [14]. We extend Black and Bentley’s analysis by
considering whether the similarity of the sets of arguments known by participants at
the start of the dialogue affects the likelihood of whether agents successfully reach an
agreement. The similarity of the arguments of an agent at the start of the dialogue
can vary in real-world domains and so it is especially pertinent to understand how this
property affects the outcomes of dialogues.

Our results demonstrate that the similarity of initial arguments has a statistically
significant correlation with the likelihood of dialogue success for the investigated delib-
eration dialogue. We find that, in contrast to our intuition, the higher the similarity of
initial arguments the lower the likelihood of success. We provide a justification for this
relationship, and moreover, we analyse the extent of the relationship across the param-
eter space, helping to identify cases where the use of this specific deliberation dialogue
can be used effectively. In the wider context of this thesis, through this example, we
demonstrate that dialogue systems can have significant and surprising correlations with
the outcome of dialogues.

The chapter is structured as follows. In Section 3.2 we recapitulate the model of the
dialogue system originally presented by Black and Atkinson [14]. In Section 3.3 we
describe our implementation and method of experimentation, including how we varied
the similarity of the sets of arguments agents initially know about. In Section 3.4 we
present the results of our experiments, including an analysis of observed trends and a
detailed description of the relationships between variables. We discuss related work
and other deliberation dialogue evaluations in Section 3.5. Finally, we conclude with a
discussion in Section 3.6.

3.2 Deliberation dialogues

In this section we describe the model that defines the deliberation dialogues investigated
in this chapter. This model is the same as that described by Black and Bentley [15], first
presented by Black and Atkinson [14], which is based on the popular argument scheme
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and critical questions approach [114]. We use their model here because of its emphasis
on practical reasoning. First we give details of the argumentation model that agents use
to generate and evaluate arguments for and against different actions. We then describe
the dialogue system used by agents to exchange these arguments, including the dialogue
protocol that defines the structure of a deliberation dialogue, and the strategy that agents
use to determine which of their arguments they will exchange.

3.2.1 Argumentation model

Our key concern is with the performance of the system specified in [14], in which agents
have knowledge about the state of the world, about the preconditions and effects of ac-
tions they can perform, and about values that are either promoted or demoted by partic-
ular changes to the state of the world (these values represent qualitative social interests
that an agent wishes to uphold; for example, fairness, health benefit, or personal pri-
vacy) [10]. An agent can use its knowledge to construct arguments for or against actions
by instantiating a scheme for practical reasoning [4]: in the current circumstances R, we
should/should not perform action A, which will result in new circumstances S, which
will achieve goal G, which will promote/demote value V .

As a running example, we will consider the domain of two agents deliberating on
how to travel to their shared destination of the local park. The current and new circum-
stances are models of what is currently true of the world, such as proximity of the agents
to the park and weather conditions. There are a set of possible actions to perform, such
as taking a car or cycling to the destination. The goal for the agents is to arrive at the
destination. Values in the example are affordability, well-being, and timeliness; under
typical circumstances, we could expect the action of cycling to promote the values re-
lating to affordability and well-being (since cycling is free and is exercise), and demote
the value of timeliness (since cycling is a relatively slow way to travel). An agent in
this domain may be able to construct the following arguments for and against actions
to achieve its goal (note that we omit the current and new circumstances from these
arguments, assuming the reader can envisage appropriate instantiations).

• A1: We should cycle (action) because it promotes well-being (value) in achieving
getting to the park (goal).

• A2: We should not drive (action) because it demotes affordability (value) in
achieving getting to the park (goal).

40



• A3: We should drive (action) because it promotes timeliness (value) in achieving
getting to the park (goal).

The scheme for practical reasoning is associated with a set of characteristic criti-
cal questions (CQs), which can be used to identify challenges to proposals for action
that instantiate the scheme. These critical questions each relate to one of three rea-
soning stages: problem formulation, which considers the knowledge agents have about
the problem domain (e.g., whether the preconditions and effects of actions are correct,
whether state transitions promote or demote particular values); epistemic reasoning,
where agents determine the current circumstances; and action selection, where agents
construct and evaluate arguments for and against different action options. The deliber-
ation dialogues we study here consider only action selection, assuming that the other
stages have been dealt with previously with other types of dialogue; this action selection
stage determines three CQs for consideration (we use the numbering of CQs used in [4];
see [14] for a more detailed justification of the appropriateness of these CQs).

• CQ 6: Are there alternate ways of realising the same goal? Two arguments that
promote different actions attack one another.

• CQ 9: Does doing the action have a side effect which demotes some other value?
An argument that demotes an action attacks an argument that promotes the same
action.

• CQ 10: Does doing the action have a side effect which promotes some other
value? An argument that promotes an action for some value attacks an argument
that promotes the same action for a different value.

From these CQs we can identify attacks between arguments for and against actions
to achieve a particular goal: two arguments for different actions attack one another
(CQ6); an argument against an action a attacks another argument for the same action
a (CQ9); two arguments for the same action that each promote different values attack
one another (CQ10). Considering the example arguments given above, A1 attacks A3,
A3 attacks A1, and A2 attacks A3.

Each agent has a (total-order) ranking over the values, referred to as its audience,
which represents the importance it assigns to them. An agent uses its audience to
determine the relative strength of arguments according to the values they each pro-
mote/demote, and thus whether an attack succeeds as a defeat. In the example above,
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an agent who finds well-being to be a more important value than timeliness will find
argument A1 to be stronger than A3 and so will determine that A1 defeats A3, while
A3’s attack on A1 does not succeed as a defeat.

Given a set of arguments, the attacks between those arguments (determined by the
CQs above), and a particular agent’s audience, we evaluate the acceptability of an argu-
ment with respect to that agent with a Value Based Argumentation Framework (VAF)
(introduced in [6]), an extension of the argumentation frameworks (AF) of Dung [8].

Recall from Definition 4, that in an AF, an argument is acceptable with respect to
a set of arguments S if all of its attackers are attacked by some argument in S, and no
argument in S attacks an argument in S. In a VAF, we say that an argument succeeds
in defeating an argument it attacks if its value is ranked higher than (if the attack is
symmetric) or at least as high as (if the attack is asymmetric) the value of the argument
attacked (according to a particular agent’s audience). Arguments in a VAF are admissi-
ble with respect to an audience A and a set of arguments S if they are admissible with
respect to S in the AF that results from removing all the attacks that are unsuccessful as
defeats given the audience A. In this chapter, we consider an argument to be acceptable
to the agent if it is part of a maximal admissible set (a preferred extension) of the VAF
evaluated according to the agent’s audience.

For this chapter, we consider that an agent will find an action to be agreeable if
they find some argument for that action to be acceptable. Considering the example
arguments given above, if an agent prefers affordability to timeliness, which they prefer
to well-being, they will find arguments A2 and A1 to be acceptable and conclude that
the only agreeable action is to cycle (since this is the only action for which they have an
acceptable argument). If, however, the agent prefers timeliness to well-being, which is
prefered to affordability, they will find arguments A2 and A3 to be acceptable, and so
will determine that driving is the only agreeable action to achieve their goal. Observe
that arguments against actions are always acceptable given the instantiation of attacks
derived from CQs and these are not considered by the agent in determining which actions
it finds agreeable. Intuitively, this is because the CQs are concerned with evaluating
presumptive proposals for performing some action. It would be possible (and we believe
would not affect our experiments) to adapt the VAF generation and evaluation so as to
produce the same results in terms of agreeability of actions while avoiding the (perhaps
unintuitive) case where both an argument for and an argument against an action are
found to be acceptable; we choose here not to adapt the model in order that our results
are relatable to previous work [15, 14].
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We can also see that (as in [14]) if an attack is symmetric, then an attack only suc-
ceeds in defeat if the attacked argument’s value is more preferred than the value of the
argument being attacked; however, if an attack is asymmetric, then an attack succeeds
in defeat if the attacking argument’s value is at least as preferred as the value of the
argument being attacked. Asymmetric attacks occur only when an argument against an
action attacks another argument for that action; in this case, if both arguments’ values
are equally preferred, then it is undesirable for the argument for the action to withstand
the attack. If we have a symmetric attack where the values of the arguments attacking
one another are equally preferred, then it must be the case that each argument is for a
distinct action but promotes the same value; here, the attack does not succeed as a de-
feat, since it is reasonable to choose either action. We have described the mechanism
that an agent uses to determine attacks between arguments for and against actions; it
can then use an ordering over the values that motivate such arguments (its audience) in
order to determine the acceptability of the arguments and, from this, the agreeability of
actions. Next, we describe the dialogue system that agents use to jointly reason about
the agreeability of actions.

3.2.2 Dialogue System

Deliberation dialogues take place between two participating agents (each with an iden-
tifier taken from the set I = {x, y}) and we assume that the dialogue participants have
already agreed to participate in a deliberation dialogue in order to agree on an action to
perform in order to achieve some mutual goal (this goal is the topic of the dialogue). At
the start of the dialogue, each agent has available to it a set of arguments for and against
actions to achieve the goal, which are those arguments it can construct from its private
knowledge about the state of the world, the different actions that can be performed, and
the values promoted or demoted by those actions. Each agent also has an audience (their
personal ranking over the values).

During the course of the dialogue, agents take it in turns to make a single dialogue

move. There are four types of dialogue move that participants may make:

• assert a positive argument (an argument for an action);
• assert a negative argument (an argument against an action);
• agree to an action;
• indicate that they have no arguments that they wish to assert (with a pass).
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A dialogue terminates under two conditions: once two consecutive pass moves
appear (in which case the dialogue is a failure, and no agreement has been reach), or
two consecutive agree moves appear (in which case the dialogue is a success).

In order to evaluate which actions it finds agreeable at a point in the dialogue, an
agent considers all the arguments it is aware of at this point and evaluates them as de-
scribed in the previous section; it thus constructs a VAF consisting of the arguments it is
initially aware of at the start of the dialogue and those arguments that have been asserted
previously in the dialogue by the other agent, and evaluates this according to its audi-
ence. An action is agreeable to the agent if there is some argument for that action that it
finds acceptable given this evaluation. Note that the set of actions that are agreeable to
an agent may change over the course of the dialogue, due to it becoming aware of new
arguments as they are asserted by the other participant.

A dialogue protocol specifies which moves are permissible for an agent x during x’s
turn in a deliberation dialogue with topic p as follows:

• It is permissible to assert an argument a iff the argument is for or against an
action to achieve the topic p of the dialogue and a has not been asserted previously
during the dialogue.
• It is permissible to agree to an action c iff either:

– the immediately preceding move was an agree to the action c, or

– the other participant x has at some point previously in the dialogue asserted
a positive argument a for the action c.

• It is always permissible to pass.

While the dialogue protocol defines a set of moves it is permissible to make, an
agent uses a particular strategy to decide which of the permissible moves to select. The
strategy that the agents use is as follows.

• If it is permissible to agree to an action that the agent finds agreeable, then make
such an agree move; otherwise
• if it is permissible to assert a positive argument for an action that the agent

finds agreeable, then assert some such argument; otherwise
• if it is permissible to assert a negative argument against an action and the agent

finds that action not agreeable then assert some such argument; otherwise
• make a pass move.

A dialogue terminates successfully if there are two consecutive agree moves, as
both agents have managed to come to an agreement. A dialogue dialogue terminates
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unsuccessfully if there are two consecutive pass moves, as this implies that agents are
unable to come to an agreement, having nothing beneficial to say to one another.

3.3 Investigating similarity

Previous work has considered whether there is a relationship between the number of
unique values and actions being argued over, the number of arguments known by agents,
and the likelihood agents have of reaching agreement through use of the deliberation
dialogue system [15]. However, in those experiments the sets of arguments agents know
at the start of the dialogue are always disjoint. It is possible, perhaps even likely, that in
real world examples of agent dialogues there will be some overlap in the agents’ initial
argument sets. Thus, we are interested here in the question of whether the similarity of
agents’ initial arguments sets has an effect on the resulting dialogue.

To investigate this we perform experiments where we vary not only the number of
unique values and actions being argued over and the number of arguments known, but
also sim (a measure of the similarity of the sets of arguments known by each agent at
the start of the dialogue). We thus require four parameters as follows.

1. acts : The number of unique actions that can be argued about.
2. vals : The number of unique values that can be promoted or demoted by the

actions.
3. args : The number of arguments in the union of both agents’ initial arguments.
4. sim : A measure of how similar the agents’ sets of initial arguments are to one

another.

To run experiments across the parameter space, we generate random dialogue scenar-
ios; we initialise the two agents’ argumentation frameworks (and hence the arguments
that they each know at the start of the dialogue, referred to as their initial arguments)
and their audiences. For each run of the simulation, the scenario generator is given
acts actions, and vals values. It then generates all possible arguments that can be
constructed from the set of actions and the set of values. For each action and value pair
there are two arguments that can be produced, one argument that claims performing the
action will promote the value, and the other argument that claims performing the action
will demote the value. Therefore, the set of all possible arguments contains 2× acts×
vals arguments.
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Then, random arguments are removed from the set of all possible arguments until it
contains args arguments. Note that if args = 2× acts × vals then no arguments
need to be removed. Half of the arguments remaining in the set are randomly distributed
to one agent, with the other half being distributed to the other agent. The arguments that
are distributed to an agent simulate the set of initial arguments that it can generate using
its VAF. The set of initial arguments distributed to an agent x is denoted Rx.

It is clear to see at this point that Rxi and Rxj would be disjoint sets. However, this
is not always the case in agent dialogues. Two arguing agents are likely to have some
overlaps in their knowledge and hence may be able to generate and communicate the
same arguments. We introduce the sim parameter to determine how similar the sets Rxi

and Rxj should be — the higher the value of sim the more arguments that are shared
between agents. So, once Rxi and Rxj have initially been determined, (args/2)×sim
random arguments from each set are copied into the other set. It can be seen that after
this sharing process, if sim = 1 then agents will have args arguments each, and the
arguments the agents each have will be identical. Similarly, if sim = 0 then the agents
will have args/2 arguments each, and the arguments each agent has will remain disjoint
(note, this is equivalent to the situation studied by Black and Bentley [15]).

The total number of arguments in a dialogue scenario refers to the sum of the number
arguments initially known to one agent plus the number of arguments initially known
to the other agent, and is calculated from the experiment parameters according to the
following formula dargs+ (args× sim)c.

Our experiments investigate whether the similarity of agents’ initial arguments has
an effect on the simulated deliberation dialogues, across the following different param-
eter combinations.

• sim ∈ {0, 0.1, . . . , 0.9, 1.0},
• vals ∈ {2, 4, 6, 8, 10},
• acts ∈ {2, 4, 6, 8, 10},
• args ∈ {2, 3, . . . , (vals× acts× 2)}.

Further, each agent has a total ordering over their values. In our experiments, this
is randomly generated for each agent. Therefore, agents may have a different value
ordering. This means that even if agents have exactly the same arguments they may not
find the same outcome acceptable because they have different value orderings.

The randomised nature of the scenario generator and resulting simulated dialogue
means that generated dialogues are not only sensitive to the input parameters, but also
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an element of chance. As a result, many dialogues must be simulated for each parameter
combination: it is not sufficient only to run a single instance of a dialogue because
two dialogues generated with the same parameter combination can still differ on the
distribution of arguments among the agents, and the randomised aspect of the agents’
strategy (agents select a random dialogue move when more than one is determined by
the strategy). Thus, for each parameter combination, we simulate 1,000 dialogues and,
for each dialogue, we record whether it ended successfully (with both agents having
agreed on an action) or unsuccessfully (with agents failing to reach an agreement).

3.3.1 Relevance of framework structure and participant arguments

The structure of the argumentation frameworks of agents is determined by the critical
questions and argument scheme used. This particular scheme has been developed for the
purpose of practical reasoning, and has been shown to be relevant to many contexts [4].
Therefore, the argumentation framework structures we use are at least somewhat relevant
to real-world scenarios.

The arguments known by the dialogue participants at the start of the dialogue are a
random subset of the arguments from domain. This distribution may not be realistic. It
is possible that different distributions of arguments to participants would have an effect
on the dialogue’s behaviour and outcome. Many other distributions other than a random
distribution are possible. For example: it may be the case that if an agent knows an
argument against a particular action for a specific value, then they are more likely to
know further arguments against the same action for other values; or it may be the case
that agents are more or less likely to know arguments for only a subset of their values.

However, it is not immediately apparent which distribution of arguments is realistic,
or indeed whether it varies depending on specific agents and domains. A human study
to establish which distributions are realistic could be undertaken through interviews and
observations — but this is beyond the scope of our work. Therefore, in our experiments,
we work with a random distribution with the acknowledgement that different distribu-
tions may be more appropriate for different problem domains.
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Figure 3.1: Partial flow on a deliberation dialogue between agents ag1 and ag2. Note,
edges between arguments represents defeats not attacks.

3.3.2 Justification of empirical analysis

We use an empirical investigation to establish the outcomes of the deliberation dialogues
rather than deriving an analytic solution because the outcome of the dialogue is hard to
analyse for two reasons: (1) the outcome of the dialogue is not the same as the outcome
of just taking the union of both participants’ knowledge bases, and (2) the outcome is
dynamically dependant on the moves selected by each agent which can vary even when
using the same strategy since the strategy is non-deterministic.

The first reason this particular dialogue is hard to analyse formally is that the out-
come of the dialogue cannot be established simply by analysing the agreeable actions
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that result in taking the union of both participants’ knowledge bases. Even when there
exists an action that is agreeable to both agents in the union of their knowledge bases it
is still possible for the agents to fail to reach an agreement through the dialogue. There-
fore, the distributed nature of the reasoning process makes it distinct from just a single
agent reasoning over their own knowledge base. This property was demonstrated by
Black and Atkinson [14].

The second reason the dialogue is hard to analyse formally is that the outcome of the
dialogue depends on the moves selected by each agent during the dialogue. The strategy
employed by agents is not fully deterministic, and so dialogues with the same initial
configuration may still have different outcomes. We demonstrate this with the following
example dialogue scenario, illustrated partially in Figure 3.1.

The example dialogue is between two agents, ag1 and ag2. They each know two
arguments at the start of the dialogue: ag1 has an argument for action a promoting
value x, and an argument for action b promoting value x; ag2 has an argument against
an action a demoting value y, and an argument against an action b demoting value z.
Both agents also have a preference ordering over the values as follows: ag1’s ordering
is z < y < x, and ag2’s ordering is y < x < z. Initially, there are no defeats between
the arguments in either of the agents knowledge bases. The first move of the dialogue is
ag1’s.

Following the strategy, since it is not permissible to make an agree move, ag1 should
assert a positive argument for an action that it finds agreeable. Therefore, ag1 can assert
either one of its arguments in the first move. If it asserts the argument promoting action
a with value x, then ag2 adds it to their knowledge base. Though ag2 has an argument
demoting action a with value z, it is for a less preferred value as the argument it now
has promoting the action (y < x). Therefore, ag2 now has an action is finds agreeable,
and because ag1 just asserted the argument, it is permissible to make an agree move for
that action. The agree move is then reciprocated by ag1 because it also finds action a
agreeable, and the deliberation ends successfully.

Let’s now analyse the other dialogue branch, and assume ag1’s first move is to as-
sert the argument promoting action b with value y. ag2 then adds the argument to their
knowledge base. However, this time, ag2 has an argument that defeats the new argu-
ment: the argument demoting action b with value z is preferred to the new argument
(x < z). Since ag2 does not have any actions is finds agreeable, nor any positive ar-
guments for an action, ag2 will assert a negative argument. There are two negative
arguments ag2 can select. Let’s assume ag2 selects the argument demoting action a

49



with value y. When ag1 adds this argument to their knowledge base, it defeats the argu-
ment it had for promoting action a with value x because it prefers value y to value x. On
ag1’s turn, the only move it can make according to its strategy is to pass. Then, on ag2’s
turn, it asserts its remaining negative argument. The new argument has no effect on the
moves available to ag1, so it passes again. Finally, ag2 is left without any arguments to
assert, so it reciprocates the pass move. The dialogue therefore ends unsuccessfully.

3.4 Results

Black and Bentley [15] also studied the likelihood of success across the parameter space
studied here, but only for dialogues in which sim = 0. By limiting our parameter space
to the dialogues in which sim = 0 we obtain a very close reproduction of their results:
like them, we witness that successful dialogues are more likely with higher numbers
of actions and values, and we can observe the relationship between the total number
of arguments and the likelihood that the dialogue ends successfully (for low numbers of
values and actions there is a decrease in the likelihood of dialogue success as the number
of arguments increases, while for higher numbers the relationship is more complex, with
likelihood initially decreasing as the number of arguments increases up to a certain point,
after which the likelihood of dialogue success begins to increase).

However, by considering the different values of sim, we are able to make a number
of empirical observations from which novel conclusions can be drawn. In each of the
following subsections, we describe a particular aspect of our results, provide an expla-
nation for what has been observed, and discuss the significance of the result.

Our results are shown in Figures 3.2a–3.3. Figures 3.2a–3.2c each present three
graphs showing the the percentage of dialogues that end in success (y-axis), at different
numbers of total arguments (x-axis), for different values of sim (the darker the shade of
the plot, the lower the value of sim). The figures show the results for dialogues where
vals = 2 (Figure 3.2a), vals = 6 (Figure 3.2b), and vals = 10 (Figure 3.2c).
The graphs in each figure show the results for dialogues where acts = 2 (leftmost),
vals = 6 (centre), and vals = 10 (rightmost). Each point represents the average of
1,000 simulated dialogues with that parameter combination. Similar results were seen
across all combinations of vals and acts thus we present only a representative sample
of the results here.
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Figure 3.2: Graphs to show the relationship between the total number of arguments and
the percentage of dialogues that ended successfully, for different values of sim when
vals=2,6,10 (1000 runs for each parameter setting).
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Figure 3.3: A scatterplot to show the relationship between the similarity of initial belief
sets and the rate of success of the dialogue averaged over the total number of arguments
(1000 runs for each parameter setting), in dialogues where vals=10 and acts=10.

3.4.1 Dialogues tend to fail with many arguments

From the results in Figures 3.2a–3.2c we can see that dialogue success is very unlikely
at high levels of total arguments (every graph tails off into a 0% rate of dialogue success
as the number of total arguments tends towards its maximum value for the parameter
combination). We suggest that the reason for this is that if an agent believes every
possible argument over a set of values and actions then it will find no action acceptable:
all arguments for doing a particular action because that action promotes some value
will be defeated by the negative argument that demotes that action for the same value,
and hence the action will not be agreeable to the agent. In the case where agents start
the dialogue with every possible argument over a set of values and actions, the agents
begin the dialogue finding no actions agreeable and have no possibility of ever finding
an action agreeable (since they know all arguments, no asserted argument during the
dialogue will change the actions that are acceptable); this corresponds to the plot in the
graphs where sim = 1, and the total number of arguments is 2× acts× vals.

This observation cannot be made without considering dialogues in which sim 6= 0

because the lower the similarity, the lower the number of total arguments, and so at low
similarities, dialogues cannot have a large enough number of arguments to reveal this
trend. This can be seen in Figures 3.2a–3.2c where no plots for sim = 0 exist beyond
50% of the graphs’ maximum of the number of total arguments.
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Beyond a certain point, the more arguments an agent knows, the greater the chance
that dialogue success is impossible, and this effect becomes severe at high levels of total
number of arguments. Thus, it is not the case that the complete failure of dialogues for
very high number of total arguments is the fault of the dialogue system but rather is
down to the likely impossibility of an agent finding any action agreeable when believing
this many arguments. In real-world scenarios, agents are unlikely to have knowledge of
so many arguments at once and so we consider these types of dialogue to be unrealistic.

Thus, importantly, our results show that when using the deliberation dialogue, agents
will not come to an agreement when it would not be rational for them to agree to do any
of the possible actions. This result was proven theoretically Black and Atkinson [14].

3.4.2 Dialogues are less successful as similarity increases

Given these initial results, we investigated whether the likelihood of success of a dia-
logue (measured by whether the dialogue ends in agreement or not) correlates with the
similarity of the two agents’ initial arguments (measured by the sim parameter). Look-
ing at Figures 3.2a–3.2c, we can see how the sim parameter correlates with the rate of
dialogue success across different numbers of values, and actions, and total numbers of
arguments. Perhaps surprisingly, the general trend is that agents that have similar sets
of initial arguments are less likely to reach an agreement compared to agents that have
dissimilar sets of initial arguments. The result goes against the intuition that agents with
similar knowledge should be able to agree more easily.

We assessed the relationship between the similarity of agents’ initial arguments and
the rate of success of the dialogue averaged over the total number of arguments in di-
alogues where the number of actions was 10 and the number of values was 10. This
assessment was undertaken by calculating a Pearson product-moment correlation coef-
ficient, which showed that there is a very strong, negative relationship between the two
variables (coefficient r = −0.96, statistical significance p < 0.001), indicating that by
increasing the similarity of agents’ initial arguments the likelihood of the dialogue is
less likely. The scatterplot in Figure 3.3 displays these results.

We explain this relationship as follows. When a dialogue is initialised with sim = 1

(i.e. agents’ initial sets of beliefs are identical) any argument an agent asserts will already
be known by the other agent. In these dialogues, the agents’ sets of known arguments
remain the same throughout the dialogue (since any asserted argument will already be
known by both agents) so the actions an agent finds agreeable at the start of the dialogue
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will remain the same at every subsequent turn of the dialogue. If agents do not have any
agreeable actions in common at the start of the dialogue, then they never will, and so
the dialogue will fail. Considering the other extreme, when a dialogue is initialised with
sim = 0 (i.e. agents’ initial arguments are entirely disjoint), any argument an agent
asserts throughout the dialogue will be novel for the other agent, potentially changing
the actions it finds agreeable, and hence the actions that are agreeable to both agents.
The more often an assert move changes the actions agreeable to both agents, the more
likely it is that throughout the course of the dialogue there will be a point at which there
is at least one action agreeable to both agents. In summary, the lower the similarity of the
initial arguments, the greater the chance there will be at least one point in the dialogue
at which agents mutually find at least one action agreeable, and hence the greater the
chance that the dialogue will be successful.

Understanding the relationship between the similarity of the arguments known to
agents at the start of the dialogue and the likelihood of the dialogue succeeding is impor-
tant in understanding the situations in which deliberation dialogues are a useful method
for agents trying to reach an agreement for action, and this can help to identify real-world
scenarios in which this technique can usefully be applied.

3.4.3 The impact of similarity increases with the number of values

Varying sim for dialogues with a low number of values produces a relatively small
effect on the likelihood of the success of the dialogue. For example, dialogues with 2
values are changed only slightly by changing sim — as can be seen in Figure 3.2a, the
distances between plots for sim = 1 and sim = 0 are low, within 15%. Looking at
Figure 3.2b where the dialogues have 6 values, the distances between plots for sim = 1

and sim = 0 are wider in general, and this is evidence of an increasing effect of sim
at higher values. The distances are greater still for dialogues with 10 values, as seen in
Figure 3.2c, where we observe a nearly 50% difference in the likelihood of success of
the dialogue between dialogues where sim = 1 and sim = 0.

Generalising these results, we can say that the when agents have similar sets of initial
arguments then the likelihood of dialogue success increases as the number of values that
agents argue over increases. This tells us that in dialogues where a high number of
values are being argued over, similarity has a strong relationship on the likelihood of
dialogue success, and therefore it is especially pertinent for similarity to be considered
in these scenarios.
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3.4.4 Dialogues succeed at around 50% of the maximum total argu-
ments

For dialogues in which vals = 2 or acts = 2 we observe a general decrease in the
likelihood of dialogue success as the total number of arguments increases. Furthermore,
for dialogues in which acts = 2 we observe a decrease in the likelihood of dialogue
success as the total number of arguments increases, regardless of the number values.
This relationship can be seen in the relevant graphs in Figures 3.2a–3.2c, and was also
observed by Black and Bentley [15].

The relationship between the total number of arguments and the likelihood of success
is more complex when we consider dialogues in which vals > 2 and acts > 2.
The relationship can be described in three stages. First, in the lowest 10% of a graph’s
maximum total number of arguments we observe a decrease in the likelihood of dialogue
success similar to that in lower numbers of values and actions. However, in the second
stage, after the 10% point up to approximately 50% of a graph’s maximum total number
of arguments, the trend reverses and we observe an increase in the likelihood of dialogue
success as the total number of arguments increase. The trend reverses again in the third
stage, after 50% of a graph’s maximum total number of arguments onward, where we
observe a tail off towards a 0% likelihood of dialogue success. This relationship can be
seen in the relevant graphs in Figures 3.2a–3.2b. This more complex relationship was
not observed by Black and Bentley [15] because very high total numbers of arguments
can only be reached by considering sim > 0.

Dialogues with a low sim are less affected in the initial stage of the relationship and
are more greatly affected in the second stage (the trough is shallower, and the peak is
higher), whereas dialogues with a high sim are more affected in the initial stage of the
relationship and are less affected in the second stage (the trough is deeper, and the peak
is lower).

The shape of the relationship between the total number of arguments and the likeli-
hood of dialogue success as described here would have been extremely difficult to prove
using formal methods. However, by using the experimental approach we are able to in-
vestigate performance across the entire parameter space. The observation of the shape of
the relationship is useful because it allows us to predict accurately the chance a dialogue
will succeed for any given parameter combination.
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3.4.5 Wider applicability of results

The results presented above are limited to the specific deliberation dialogue system un-
der investigation, where agents use the value-based argumentation framework represen-
tation of their beliefs and also follow the specified dialogue protocol when acting. It
may be that the dialogue protocol or framework structure are a factor in determining the
results that we have established, and that the similarity of beliefs is only a correlation.
Nevertheless, the systems we investigate here are widely used in reasoning tools and
agreement technologies. So while our results may be limited to these properties, they
are relevant systems to study.

The argument scheme that the agents use is designed for value-based reasoning,
which has been shown to be useful for practical reasoning . The scheme has been the
basis of reasoning tools in many domains such as medicine [6], policy decision [111],
and law [46]. So while our results do not generalise to structures outside of the chosen
argumentation scheme, the structure is widely used in systems. Furthermore, deliber-
ation dialogues are an important class of dialogue system [114]. Moreover, they have
been shown to perform better in some scenarios at allowing agents to reach agreement
over consensus algorithms [15].

3.5 Related work

Our experiments are related to those of Black and Bentley [15], which are based on
the same argumentation model and dialogue system [14] as the work presented in this
chapter. Their work was perhaps the first to use empirical methods to evaluate the benefit
of using deliberation dialogues. In their experiments, they vary the number of values
and actions being deliberated over, and the number of arguments available to agents
at the start of the dialogue and show that the deliberation dialogue system typically
outperforms consensus forming. Here, we expand the parameter space to also vary the
similarity of the arguments that the agents have and show that this is an important factor
in the success of a deliberation dialogue.

Kok et al. similarly take an empirical approach to the investigation of argument-
based deliberation dialogues [64]. They focus on the expressive potential of argumen-
tation by using a deliberation dialogue system that allows agents to communicate using
elaborate arguments, assuming that agents that are able to express themselves better
would be able to perform more efficiently in argument dialogues. They show that an ar-
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guing strategy offers increased effectiveness over a non-arguing strategy. In their work,
agents’ arguments are generated from their respective knowledge bases, but they do not
consider how the efficiency of the dialogues depends on the similarity of the agents’ re-
spective knowledge bases, or the similarity of arguments that are generated from them.

In considering groups, Toniolo et al. investigate how argument-based deliberation
dialogues can be used by a team of agents that have their own potentially conflicting
goals and norms [110]. Using an empirical evaluation of their model, they find that ar-
gument dialogues are a more effective means of agent coordination than collaborative
plans (using the metric of the feasibility of the resulting plan). While their work does
consider agents as heterogeneous with their own goals and norms, they do not consider
how the similarity of their goals and norms (and hence their arguments) affects the qual-
ity of the plans produced.

Finally, Medellin-Gasque et al. present a dialogue protocol for deliberation and per-
suasion dialogues, in which agents argue over cooperative plans [74]. Interestingly, the
protocol allows for the type of the dialogue to change at a specific point, and thus allows
the dialogues to be somewhat dynamic. Similar to our work, their dialogue system is
based on the critical questions approach [114]. They implement 3 different agent strate-
gies (a random strategy, and 2 strategies that place some priority over dialogue moves),
which they test over a limited number of cases (20 initial states, generated from 4 dif-
ferent sets of information, and 5 different preference orders over values). Their results
show that, for the cases and strategies tested, the quality of the outcome of the dialogue
does not vary by altering the agents’ strategies, but by using a priority strategy rather
than a random strategy, the outcome can be reached more efficiently. Thus, agents’ dia-
logue strategies can be an important consideration for dialogues, in at least some initial
circumstances.

3.6 Conclusions and Discussion

Our results show how, in the argument-based deliberation dialogues investigated here,
the similarity of agents’ initial arguments correlates with the likelihood that a dialogue
ends in success. We found dialogues with high similarities of initial arguments are
less likely to end in agreement than dialogues with low similarities of initial arguments,
because the higher the similarity of initial arguments the less potential for agents to reach
a point in the dialogue at which there exists at least one action that is agreeable to both
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agents. Using an empirical approach, our investigation allowed a total analysis of the
parameter space over a large sample size of dialogues. Our results identify scenarios in
which using a deliberation dialogue is likely to lead to an agreement being reached, and
scenarios when a deliberation dialogue is not likely to lead to an agreement where other
agreement technologies may be more helpful in forming consensus.

In our investigation we explored the entire range of possible similarities of agents’
initial arguments: from dialogues where agents started with entirely disjoint sets of ini-
tial arguments to dialogues where agents started with identical sets of initial arguments.
Across this range we identified a statistically significant correlation of similarity on the
likelihood of dialogue success, but, it is unclear to what extent this range typically ex-
ists in real-world scenarios. The relationship between the sets of initial arguments we
randomly generate to those seen in real-world applications is also not understood (for
example, dialogues that were generated with a very high number of total arguments are
probably not realistic). The lack of real-world data is an identified problem in research
relating to applications of argumentation.

There is a question as to whether measuring the quality of a deliberation dialogue
simply on whether agents reach an agreement is the best or only measure. According
to Walton and Krabbe [115], while there is a public goal to find an agreement that is
ascribed to by both agents in a deliberation dialogue, agents also have a private goal
to influence the agreed upon action to one that is as favourable as possible to itself.
Working out a suitable metric for the success of an agent’s private goal is non-trivial as
it is unclear how to accurately measure the influence an agent has had on the dialogue,
and it is unclear how to measure which action is an agent’s most favoured (should it
be the agreeable action that promotes the highest value given local beliefs of the agent,
or given global beliefs of the system). There are also other factors that could be used
to measure the outcome of the dialogue: efficiency and speed of the dialogue (what
resources were spent during the dialogue?), soundness of the agreed upon action (is the
agreed upon action the best course of action from a global perspective?), and fairness
(is the outcome representative of all of the agents’ preferences?). For example, Black
and Bentley assign scores to dialogue outcomes, depending on whether the agreed upon
action is globally agreeable to both, one, or neither agent. However, there are many
other possible ways to measure the quality of a deliberation dialogue.

Walton et al. question whether models of deliberation dialogues are able to actually
capture the richness and depth of human-like deliberation dialogues [116]. Specifically,
they consider dialogues in which information available to participants of the dialogue
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is dynamic. This is certainly a limitation of our investigations since the knowledge the
agents have remains the same throughout the duration of the dialogue. If we extended the
dialogue system to simulate changing knowledge of the environment during the course
of the dialogue, an interesting investigation would be to see how the similarity of the in-
formation/arguments made available to both agents would affect the dialogue (i.e., what
happens if the information made available to agents becomes gradually more different
or if the information becomes gradually more similar?).

Though the investigations in this chapter consider the similarity of agents’ initial
beliefs, they do not consider the similarity of agents’ audiences (the ordering of their
preferences over values). It may seem reasonable to predict that the more similar agents’
preferences, the more likely they are to come to agreement. However, this hypothesis
has not been tested, and we leave this for future work.

The dialogue system investigated in this chapter allows for agents to argue about
their beliefs, but not about their preferences. Giving agents the ability to argue about
their preferences would allow for more sophisticated dialogues, and therefore may allow
agents to reach agreement more often. However, in some settings it may be preferable
that agents cannot argue about their preferences since agents may not wish to get into
an overly sophisticated debate: in human-oriented domains one may want to discourage
complex reasoning to ensure that the dialogue is easily understandable by a human, or in
time-critical domains there may not be the computational resources available to facilitate
more complex forms of dialogue.

In summary, the results presented in this chapter evidence that the domain used in di-
alogue systems can have correlate in large and unexpected ways with the performance of
the system. In this chapter we have considered the similarity of participants beliefs with
the outcome of a type of deliberation dialogue. Across domains, the structural properties
of argumentation framework can also vary; this idea is investigated in Section ??. Do
the structural properties of the argumentation framework influence the performance of
dialogue systems? In Chapter 4, we investigate the relationship between the structural
properties of argumentation systems (including dialogue systems) and their emergent
semantic-level properties.
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Chapter 4

Characteristics of generalised
argumentation frameworks

4.1 Introduction

While progress has been made in the development of practical argument-based systems
(from abstract solvers [22] to agreement technologies [77]), evaluations of such systems
are limited. A significant challenge in the evaluation of developed argument-based sys-
tems is the lack of repositories of argumentation frameworks from real-world domains
or applications [30]: currently, systems are typically evaluated on randomly generated
frameworks, with little consideration of the structure of such frameworks. However,
small differences in framework structures can have large, unexpected effects on the per-
formance of some argumentation systems. Indeed, in Section 2.3.2, we reviewed work
that had considered the effects of structure on the evaluation of argumentation systems,
all of which found the framework structure had a significant effect on the performance
of the respective system. Further, in the previous chapter, it was evidenced that the
way arguments are distributed between dialogue participants in a deliberation dialogue
influences whether they manage to come to an agreement.

Given that the underlying structure of argumentation have a profound impact on the
performance of argumentation systems, it is important that argumentation systems are
evaluated using relevant structures of framework. The identification and property anal-
ysis of relevant structures of argumentation frameworks are central problems currently
facing the argumentation community: understanding the properties of these frameworks
not only allows for a more grounded evaluation of argument-based systems, but can
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motivate the development of systems optimised for specific frameworks and structures.
Many different generalisations of classic Dung-style frameworks have been pro-

posed [21], each of which has its own structure. Because of this difference in the
structures of generalised frameworks, there is also likely to be differences in their char-
acteristics. Against this background, in this chapter, we consider structures derived from
different generalisations of argumentation framework (specifically, we consider the ex-
tended argumentation framework [76] and the collective-attack framework [83]). These
structures are particularly relevant as current argument technologies are already devel-
oped to use generalised frameworks (e.g. [75, 82]).

In our investigation of structures of generalised argumentation frameworks, we mea-
sure three key properties: the size of the grounded and preferred extensions of the
frameworks (known to affect the computational speed of argument solvers [28]); the
proportion of argument subsets of the framework in which a topic argument is accept-
able (known to be a factor in the effectiveness of dialogue strategies for persuasion and
deliberation [15, 78]); and whether the addition of a new argument to the framework
results in a change of acceptability of a topic argument (a type of dynamic argumenta-
tion, which is another factor in the efficiency of dialogue strategies [1], and may be a key
property for improving the computational efficiency of a variety of other argument-based
systems [67]).

The key contribution of this chapter is an experimental analysis of three different
argumentation frameworks (Dung-style, extended, and collective-attack), with a consid-
eration of relevant properties (extension size, subset acceptability, and dynamic argu-
mentation). We begin by introducing the argumentation frameworks we investigate in
this chapter. Next, we describe specific structures of these frameworks that we use in
our experimental comparisons. We then detail the properties we measure, present the
experiments we run, and discuss the results. We conclude with a discussion of related
work.

4.2 Generalised frameworks

Though argumentation frameworks are expressive, many generalisations have been pro-
posed which provide explicit representation of relationships other than attacks between
arguments, seeking to more intuitively capture particular aspects of argumentation [21].
The large number of proposed extensions is perhaps unsurprising when considering the
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practical issues of developing argumentation-based systems for a diverse range of real-
world problems [77].

Below, we provide the background and definitions for two popular extensions of ar-
gumentation frameworks which we focus on in this chapter: extended argumentation

frameworks (EAFs) which allow arguments to attack attacks in order to express pref-
erences between arguments [76], and collective-attack frameworks (CAFs) which allow
argument sets to attack arguments in order to express more complex attack relations [83].
In this chapter, we refer to AFs as defined by Dung (Definition 1) as Dung-style argu-
mentation frameworks (DAFs) to distinguish them from EAFs and CAFs.

CAFs and (some) EAFs can be translated into equivalent DAFs [85]. So why use the
generalised form of frameworks at all, if we can represent them equivalently as DAFs?
The generalised frameworks may still be valuable to use as they are typically more
compact representations, requiring fewer arguments than their DAF equivalent; this can
be beneficial for reasons relating to computational efficiency. Moreover, these extension
may represent the underlying meaning of the framework more intuitively for a human
agent.

4.2.1 Extended argumentation frameworks

EAFs allow the representation of arguments that attack attack relations [76], see Fig-
ure 4.1 for an instantiated example of an EAF. Given an argument a which attacks b, an
argument c may attack the attack between a and b. In this way, an EAF may be used
to capture (possibly conflicting) preference relations between arguments. For example,
see Figure 4.2 in which c represents a preference for a over b, which conflicts with d
representing a preference for b over a.

While it may be possible to represent preferences in Dung-style graphs without any
extension, EAFs provide an intuitive and succinct way to represent these preferences.
Though there are other generalised frameworks by which preference relations can be
modelled in argumentation (e.g., [61]), EAFs are an especially expressive model as they
represent preferences as defeasible arguments, allowing agents to argue about their pref-
erences and, powerfully, about preferences over other preferences.

Definition 6. An extended argumentation framework (EAF) is a tuple 〈A,R,D〉 s.t. A

is a finite set of arguments, R ⊆ A× A is a set of attacks,

• D ⊆ A×R is a set of attacks on attacks, and

• if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ R.
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Figure 4.1: An instantiated extended argumentation framework
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Figure 4.2: An abstract extended argumentation framework

EAF argumentation semantics are defined equivalently as for DAFs, with the follow-
ing adjustments [76].

Definition 7. Let 〈A,R,D〉 be an EAF and S ⊆ A.

• a defeatsS b (also written as a→S b) iff (a, b) ∈ R and @c ∈ S s.t. (c, (a, b)) ∈ D.

• S is conflict-free iff ∀a, b,∈ S: if (a, b) ∈ R then (b, a) 6∈ R or ∃c ∈ S s.t.

(c, (a, b)) ∈ D.

• RS = {x1 →S y1, . . . , xn →S yn} is a reinstatement set for c→S b iff: (i) c→S

b ∈ RS; (ii) ∀i ∈ {1, . . . , n}: xi ∈ S, and (iii) ∀x ∈ Rs, ∀y′ s.t. (y′, (s, y)) ∈ D:

∃x′ →S y′ ∈ RS .

• a ∈ A is acceptable w.r.t. S iff ∀b s.t. b →S a: ∃c ∈ S s.t. c →S b and there is a

reinstatement set for c→S b.

Example 10. Consider the EAF in Figure 4.2. The set of arguments acceptable under

the grounded semantics is a, c, e, which is also the only preferred extension. Since e is

not attacked and defeats the attack (d, c), c is not defeated by d.
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Figure 4.3: An instantiated collective-attack framework.
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Figure 4.4: An abstract collective-attack framework.

4.2.2 Collective-attack frameworks

CAFs generalise Dung-style frameworks by permitting sets of arguments that attack an
argument [83]. They can allow for a more intuitive representation of common-sense
reasoning and human dialogues and have been shown to be useful in practical appli-
cations of argumentation [84]. They are particularly suited to capturing support over
sub-arguments (as demonstrated in Figure 4.3), as well as accrual (allowing arguments
to accumulate in an attack on an argument, in situations where there are not strong
enough to do so individually). See Figure 4.4, in which there are two collective attacks:
the set of arguments {b, c} attacks the argument a, and {d, e} attacks b.

Definition 8. A collective-attack framework (CAF) is a pair 〈A,R〉 s.t. A is a finite set

of arguments, and R ⊆ (2A\{∅})× A is a set of attacks where (X, y) ∈ R is an attack

from the set of arguments X to the argument y.
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Similarly to EAFs, CAF argumentation semantics are defined equivalently as for
DAFs but with the following adjustments [83].

Definition 9. Let 〈A,R〉 be a CAF and S ⊆ A.

• S is conflict-free iff 6 ∃a ∈ S s.t. ∃S ′ ⊆ S s.t. (S ′, a) ∈ R.

• a ∈ A is acceptable w.r.t. S iff ∀B ⊆ A s.t. (B, a) ∈ R: ∃b ∈ B, ∃S ′ ⊆ S s.t.

(S ′, b) ∈ R.

Example 11. Consider the CAF in Figure 4.4. The set of arguments acceptable under

the grounded semantics is d, e, c, a, which is also the only preferred extension. b is not

acceptable, because there is a collective attack ((d, e), b), and d and e are both accept-

able since they are not attacked. a is acceptable because although there is a collective

attack ((b, c), a), b is not acceptable, and so the collective attack is not effective.

4.3 Classes of frameworks

Recall the previous definitions for argumentation frameworks: the principal argumen-
tation frameworks that we refer to as Dung-style frameworks in this chapter (DAFs,
Definition 1), extended argumentation frameworks (EAFs, Definition 6), and collective-
attack frameworks (CAFs, Definition 8). In the following sections, we detail the experi-
ments and results obtained from investigating the properties of these generalised frame-
works. In our experiments, we randomly generate instances of each of these generalised
frameworks, and so we must make decisions on their general properties (such as attack
density), as well as the properties specific to the extended types (in the case of EAF, how
many levels of preferences as well as the distribution of arguments across those levels;
and in the case of collective-attack frameworks, how large a set of arguments can attack
an argument). In this section, we present eight classes of frameworks (four for DAFs,
two for EAFs, and two for CAFs) that we investigate in our experiments.

4.3.1 DAF attack density

Attack density of a DAF is the ratio of attack relations to the number of arguments. A
framework with many attacks with respect to the number of arguments is dense, while a
framework with fewer attacks is sparse.

Definition 10. An n-sparse DAF (n-DAF) is a DAF 〈A,R〉 s.t. n = |A|
|R| , where n ∈

[0, 1].
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We investigate 0.25-DAFs, 0.5-DAFs and 0.75-DAFs. Note that as n increases, the
framework becomes more sparse. Note also that the number of attacks in the framework
is linearly related to the number of arguments in the frameworks. We found in initial
testing that if the number of attacks is tied instead to the number of possible attacks
in the graph then small changes in sparseness value produce very sharp changes in the
characteristics of that structural class of DAF; linearly relating the number of attacks to
arguments allows us to explore this relationship more finely.

This is not an orthodox approach to measuring sparsity, which would relate density to
the number of possible attacks instead: e.g., o = |A|2

|R| , where o is the orthodox measure
of sparsity. The measure of sparsity defined in Definition 10 can be connected to the
orthodox measure of sparsity as follows: o = n ∗ |A|. Our measure of sparsity is scale
invariant because if you double the number of arguments in the DAF then the measure of
sparsity doubles as well: a framework with 5 arguments and 20 attacks is a 0.25-sparse
DAF; a framework with 10 arguments and 20 attacks is a 0.5-sparse DAF.

We also consider a class of DAFs that correspond to minimum-spanning trees (mst-
DAFs), which are fully connected DAF in which the number of attacks is linearly related
to the number of arguments (|R| = |A| − 1). In order to formally define a mst-DAF,
we first define undirected walks in argumentation frameworks, and then define weakly-
connected argumentation frameworks.

An undirected walk between two arguments in an argumentation framework is a list
of arguments such that, between each argument in the list, there is an attack from one to
the other or vice versa.

Definition 11. An undirected walk in an argumentation framework AF = 〈A,R〉 be-

tween an argument a0 ∈ A and an argument an ∈ A is a list of arguments [a0, a1, ..., an]

such that ∀i ∈ {0, 1, ..., n− 1}, (ai, ai+1) ∈ R or (ai+1, ai) ∈ R.

Example 12. Consider the argumentation framework in Figure 4.5a. There is an undi-

rected walk between b and e, [b, c, d, e].

An argumentation framework is a weakly-connected argumentation framework if
there is an undirected path from every argument in the framework to every other argu-
ment.

Definition 12. An argumentation framework AF = 〈A,R〉 is a weakly-connected ar-
gumentation framework iff ∀a, b ∈ A there is an undirected walk between a and b in

AF .
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A mst-DAF is a weakly-connected argumentation framework such that if any attack
is removed from the framework it would no longer be a weakly-connected argumentation
framework. An example mst-DAF is shown in Figure 4.5a.

Definition 13. An argumentation framework AF = 〈A,R〉 is a minimum-spanning
tree DAF (mst-DAF) iff:

• AF is weakly-connected, and

• ∀r ∈ R,AFs = 〈A,Rs〉 is not weakly-connected, where Rs = R− {r}.

ab

c

d e

f

(a) mst-DAF

ab

c

d e

f

(b) 0.75-DAF

ab

c

d e

f

(c) 0.5-DAF

ab

c

d e

f

(d) 0.25-DAF

Figure 4.5: DAFs of varying densities.

4.3.2 Distributed HEAFs

We especially consider here hierarchical EAFs (HEAFs), a particularly interesting class
of EAFs that can be used to formalise practical reasoning [76]. HEAFs restrict the
structure of EAFs, such that the framework is stratified into partitions. The intuition is
that an argument can either attack arguments in its partition, or attack attack relations in
the partition directly below its own.

Definition 14. An EAF 〈A,R,D〉 is a hierarchical extended argumentation framework
(HEAF) iff there exists a partition P = [〈〈A1, R1〉, D1〉, ..., 〈〈Aj, Rj〉, Dj〉, ...] such that

both:

• A = ∪∞i=1Ai, R = ∪∞i=1Ri, D = ∪∞i=1Di, and for i = 1, ...,∞, 〈Ai, Ri〉 is a DAF,

and

• if (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1.

We refer to an argument a as being in a lower partition than an argument b if a ∈ Ap,

b ∈ Aq, and p < q.

The arguments in Figure 4.2 can be partitioned into 4 levels: {a, b}, {c, d}, {e, f},
and {g, h}, where {a, b} is the lowest partition and {g, h} is the highest.
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In some domains, particularly human dialogues, it seems reasonable to assume that
the number of arguments will be higher than the number of preferences over those argu-
ments, which will be higher than the number of preferences over preferences, etc. We
consider two different distributions of the proportion of arguments that appear in the dif-
ferent HEAF partitions: normally-distributed HEAFs (nHEAFs) and evenly-distributed

HEAFs (eHEAFs). In nHEAFs, arguments are distributed across the partitions with
more arguments in the lower partitions compared to the higher partitions. Whereas, in
eHEAFs, each partition has the same number of arguments.

For nEAFs, we use the binomial coefficient to approximate the normal distribution
(continuous) over a finite number of partitions (discrete), and thus the proportions with
which to assign arguments to each partition. We use the number of partitions relative
to the number of arguments in the graph that allows for the best fit with the normal
distribution (computed with Sturges’ formula [103]). The choice of normal distribu-
tion provides the desired trend of decreasing proportions, and is somewhat common in
natural domains [41].

Definition 15. The discrete normal distribution over l partitions is given by the formula

norm_dist(l) = [d0, d1, ..., dl−1] such that:

• n = 2l − 1, and

• dk = n!
k!(n−k)! .

The proportional weights of the partitions are thus given by the formula norm_prop(l) =

[p0, p1, ..., pl−1] such that pi = 2(di)÷ 2n.

We can then use this definition of a normal distribution over partitions to define
normally-distributed HEAFs. An example nHEAF is shown in Figure 4.6a.

Definition 16. A normally-distributed HEAF (nEAF) is a HEAF 〈A,R,D〉 with a

partition P = [〈〈A1, R1〉, D1〉, ..., 〈〈Am, Rm〉, Dm〉] such that:

• A = ∪mi=1Ai, R = ∪mi=1Ri, D = ∪mi=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a DAF,

• if (z, 〈x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1,

• m = blog2 |A|c+ 1 (Sturges’ formula), and

• |Aj| = b(pl−j × |A|) + 1c where norm_prop(m) = [p0, p1, ..., pl−1].

We also consider evenly-distributed HEAFs (eEAFs), in which each level of the
partition has an equal number of arguments. An example eHEAF is shown in Fig-
ure 4.6b. We consider eEAFs to be an interesting corner-case to investigate. Again, we
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Figure 4.6: The different distributions of HEAF.

use Sturges’ formula to compute an appropriate number of partitions for the number of
argument.

Definition 17. An evenly-distributed HEAF (eEAF) is a HEAF 〈A,R,D〉 with a parti-

tion P = [〈〈A1, R1〉, D1〉, ..., 〈〈Am, Rm〉, Dm〉] such that:

• A = ∪mi=1Ai, R = ∪mi=1Ri, D = ∪mi=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a DAF.

• If (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1,

• m = blog2 |A|c+ 1, and

• For i = 0, ...,m, |Ai| = d(|A| ÷m± 1)e.

4.3.3 Capped CAFs

We consider two structures of CAF: those in which the size of any collective-attack set
is no greater than (capped at) 3 and CAFs in which there is no restriction on the size of
collective-attacks sets. We refer to capped frameworks as cCAFS, and those which are
uncapped as uCAFs.

Definition 18. A capped collective-attack framework (cCAF) is a CAF 〈A,R〉 s.t.

∀(S, a) ∈ R : |S| ≤ 3.

Note, in the rest of this chapter, to emphasise the distinction with capped collective-
attack frameworks, we refer to collective-attack frameworks as uncapped collective-
attack frameworks, (uCAFs).

4.4 Investigating characteristics

In this section we describe the experiments we ran on the classes specified in the pre-
vious section (0.25-DAF, 0.5-DAF, 0.75-DAF, mst-DAF, eEAF, nEAF, cCAF, uCAF).
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We detail the three properties that we investigate (extension size, proportion of sub-
sets in which a topic is acceptable, and dynamic argumentation) and their relevance to
argument-based systems, and discuss the results for each class.

Our experiments were implemented in Java, partly using the Tweety library [108].
Experiments were run on an Intel i5 3.20GHz CPU, with 4GB RAM.

4.4.1 Framework generation for experimental setup

Before presenting the experiments, we first clarify the details of the experimental setup,
specifically the generation process of the argumentation framework structures.

• DAFs
The mst-DAFs are generated as random, directed, unweighted, spanning trees [112].
To generate denser DAFs, an mst-DAF is generated first, and then attacks are
added uniformly at random from the remaining set of possible attacks, until the
desired density is met.

• EAFs
EAFs are generated as follows. First, the arguments are distributed across the
defined number of partitions, according to the defined distribution (normal or uni-
form). Second, for each partition’s arguments, a 0.75-DAF is generated as above.
Third, for each argument in a partition p > 1, an attack is generated to an attack
in partition p− 1 that is selected uniformly at random.

• CAFs
Both uCAFs and cCAFs are first generated as mst-DAFs as above. Then, the
number of collective attacks to be added, ca is determined by a uniformly random
number in the range [1, n], where n is the number of arguments in the framework.
The ca sets of arguments for each collective attack are then generated.

For uCAFs, these sets can be of a maximum size n − 1, so for each set to be
generated, a uniformly random number in the range [2, n − 1] is used as its size.
For cCAFs, the sets can be of a maximum size of 3, so the sets can be of size
2 or 3 with equal probability. A random subset of arguments of the established
size is then selected. Note, that the subsets of arguments can overlap, or even be
identical.
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Finally, for each generated subset of arguments, an attack is generated from the
subset to a randomly selected argument that is in the framework but not in the
argument subset.

4.4.2 Size of extension

The First International Competition on Computational Models of Argumentation [28],
in which argument solvers attempt to complete a set of tasks related to computational
argumentation as efficiently as possible (such as computing an extension, or determin-
ing whether a particular argument is acceptable) used three different benchmark sets of
frameworks to evaluate the solvers. Two of the benchmark sets were based on the size
of the extensions of the frameworks: frameworks with large grounded extensions and
frameworks with a large number of stable extensions. The results showed that most
solvers were slower when tasked with frameworks with a large number of stable exten-
sions compared to those frameworks with a large grounded extension. This indicates
that the size of the extensions of a framework is an important consideration when em-
ploying an argument solver for certain tasks. It is therefore of interest which structures
of framework have large extensions.

We investigate how the average size of both the grounded and preferred sceptical
extensions differs between our chosen framework classes. We generate 1,000 instances
of each framework class for sizes of 12, 19, 24, 31, and 36 arguments and measure the
size of the extensions. The irregular intervals between the number of arguments are used
so that both even and odd sizes of argument frameworks are investigated.

In Figure 4.7, we show the size of the grounded and preferred sceptical extensions
for each class of framework. We use a series of line graphs to visualise the results, to
allow comparison of the framework classes across the parameter space of framework
size. For DAFs, we observe a trend for both semantics that the more dense the DAF,
the smaller the size of the extension. We also observe that the larger the framework, the
larger the extension will be on average, even as a proportion of total arguments.

We find that eEAFs are more likely to have a larger grounded extension than nEAFs,
but have similar sized preferred sceptical extensions. We reason that in EAFs, the more
preference arguments there are in a framework, the more likely attack relations in the
partition below will be defeated. This effectively lowers the attack density in lower par-
titions. So in the frameworks with a higher proportion of preference relations (eEAFs)
there will be a lower overall attack density. As we observe in DAFs, the lower the attack
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density of the framework, the larger the extension — this is reflected in the results for
the grounded extension.

Interestingly, CAF frameworks reverse the trend when using the grounded seman-
tics: the larger a uCAF/cCAF framework, the smaller the average grounded extension is.
This surprising result can be explained by the intuition that as you increase the number
of arguments in a CAF, this increases the proportion of collective attacks, and thus the
more arguments that are part of a collective attack relation, leading to a higher number
of attack cycles (the more arguments in a set S that collectively attack an argument a,
the higher the chance that a will attack at least one argument in S, causing a cycle), and
the more attack cycles in a framework the smaller the grounded extension is likely to
be. This is supported by the fact that we observe that uCAFs have a smaller grounded
extension on average than cCAFs, which, we conclude, is due to more arguments being
part of a collective attack relation in uCAFs (as there is no cap on the number of argu-
ments in the attack relation). When using the preferred semantics, cycles are less of a
factor in the size of the extension (since arguments in a cycle may still be justified), and
so we observe that the size of the preferred sceptical extension increases as the size of
the framework increases.

To further investigate the relationship between the size of extensions in CAFs and
the number of cycles, we examine the effect of the proportion of the number of even-
length cycles to the number of odd-length cycles. We use CAFs of size 12 from the
previous experiments (the grounded extensions of larger CAFs is too small). The range
of proportions plotted are from one even-length cycle for every odd-length cycle, up to
four even-length cycles for every odd-length cycle, in steps of 0.5. Proportions beyond
this range did not exist within the population in large enough numbers for sufficient
analysis.

The results of the further investigations are shown in the plots in Figure 4.8, where
a framework with a proportion of p even to odd cycles is a framework is p times as
many even cycles as odd cycles. The Pearson correlation coefficients are shown in Ta-
ble 4.1. We observe statistically significant, strong, positive correlations for all plots.
This demonstrates that there is a strong relationship between the ratio of even to odd
cycles in a CAF and the size of the grounded and preferred extensions. However, the
apparent effect of even/odd-length cycle proportions on extension size is larger under
the grounded semantics than the preferred semantics. Under the preferred semantics,
the range in the average size of the extension is less.

72



(a) Results for DAFs.

(b) Results for EAFs.

(c) Results for CAFs.

Figure 4.7: Graphs showing the size of extensions in framework structures.
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Figure 4.8: Scatterplots to show the relationship between the extension size and the
proportion of even to odd cycles in CAFs.

Semantics CAF R value

Preferred
cCAF 0.988
uCAF 0.971

Grounded
cCAF 0.985
uCAF 0.939

Table 4.1: Pearson correlation coefficients (R) for even/odd cycle proportions in CAFs
and size of extension (all statistically significant with p < 0.05).

4.4.3 Subsets in which topic is acceptable

A topic argument t of a framework will be acceptable in some subgraphs of the frame-
work, but not in others. A topic argument t will be acceptable in at most 50% of the
subsets, since it will not exist in half of the subsets of the power set (an argument is
deemed unacceptable in a framework it is not a part of). We refer to the proportion of
subsets in which the topic argument is acceptable as SA. This property of frameworks
has been found to be an important factor in determining a strategy in persuasion dia-
logues [15]: in a domain where SA is lower it is more difficult to persuade an agent that
t is acceptable.

We investigate whether average SA differs between the selected framework classes.
Our implementation is naive, exhaustively checking whether the topic is acceptable in
every set in the power set. The time for these experiments is very high due to the expo-
nential growth in the number of sets in the power set. To feasibly compute the results
we use the grounded semantics (which are faster to compute), and limit the framework
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size to 12 arguments. We generate 1,000 instances of each framework class with 12
arguments, each time randomly selecting a topic argument.

The results are presented in Figure 4.9. We use a box plot to visualise the data
to allow for comparisons of the different framework structure populations across the
continuous dependant variable of SA. In the different classes of DAF, we observe a
clear trend that the more dense a framework class, the lower SA is for that class. This
follows the trend observed in Figure 4.7, where the more dense a DAF, the smaller
the grounded extension. Similarly, uCAF frameworks typically have a smaller grounded
extension than cCAF frameworks, and this trend is repeated for SA. For nEAF and eEAF
frameworks of 12 arguments, there is little difference between the size of grounded
extensions, and this trend is again shown for SA, where eEAF and nEAF do not appear
to have different SA. When using the grounded semantics it appears that the size of the
extension and SA are fundamentally linked.

We use a series of t-tests to establish whether the differences observed in the frame-
work classes are statistically significant. Each class of framework is compared with
every other class of framework, giving 56 separate t-tests. The assumptions of the t-tests
are met as follows.

• Each class is approximately normally-distributed (confirmed by using the Kol-
mogorov–Smirnov test).
• The sample sizes of each class is equal (1,000 instances each).
• The classes are independent (instances being generated independently).

We find that the classes have significantly different SA (apart from nEAF and eEAF
which are distinct from other classes but not from each other) and thus that each class
is a distinct population (p < 0.05 for each class); this implies that the framework class
is a significant factor in determining SA. The largest difference between two classes is
between mst-DAF and nEAF (36.06 percentage points between means).

4.4.4 Dynamic argumentation

Argumentation is an inherently dynamic process, with arguments and attack relations
changing as new knowledge becomes available: for example, an individual agent ex-
ploring their environment to gain novel information, or a group of agents communicat-
ing new arguments to one another in a dialogue. The dynamic nature of argumentation
can potentially be exploited for computational efficiency [67] as well as for strategic
advantage [27].
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Subset Acceptability (SA)

Figure 4.9: Graphs showing subset acceptability in framework structures.

Amgoud and Vesic [1] consider whether the addition of a new argument to a frame-
work changes the acceptability of a specific argument (termed the topic argument). If the
addition of a new argument does not cause a change in the topic argument’s acceptability
we say the framework is resistant, otherwise is it susceptible. We investigate whether
there is a difference in the resistance of the different framework classes. We generate at
least 1,000 instances of each framework class with 12, 24, and 36 arguments, selecting
a topic argument at random, and testing whether the acceptability of the topic changes
with the removal of a random argument under the preferred sceptical semantics.

Figure 4.10 shows the results from experiments on dynamic argumentation, display-
ing the resistance for each framework class. We use a stacked bar chart to visualise the
data to allow for comparisons of the different framework structure populations across
the binary variable of resistance/susceptibility. For all classes we observe that the more
arguments in the framework, the less likely it is that adding a new argument will have
an effect on the acceptability of the topic argument. The intuition behind this result is
as follows: the more arguments in a framework, the more likely it is that the argument
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is topographically further away from the topic, and therefore the less likely the added
argument will change the acceptability of the topic (this relationship is explored further
in Chapter 5, where it is used as a heuristic to inform an argument-dialogue strategy).

In a cCAF, a new argument can alter the acceptability of arguments both through
introducing new argument-argument attacks as well as new collective attacks. This is
also true in uCAFs, though they have a greater chance of introducing collective attacks:
since the size of a collective attack is uncapped, each argument is in more collective
attack relations on average. Thus, when we add a new argument to a uCAF it is likely
to result in more changes in the acceptability of arguments, and this is a reason why we
observe that cCAFs are more resistant.

We see that eEAFs are more resistant than nEAFs, indicating that the higher the
proportion of preference arguments to arguments, the more resistant the EAF will be.
This is because an argument cannot alter the acceptability of an argument in a partition
higher than its own partition since all attack relations are either to arguments in the same
partition or to arguments in the partition directly below. Therefore, if the topic argument
is in a higher partition than the added argument, the framework is guaranteed to be
resistant. In eEAF it is more likely that the topic will be in a higher partition (since it
is randonly selected and there are more arguments in higher partitions than in a nEAF),
and thus the less likely it is that an added argument will have any effect on the topic’s
acceptability.

4.5 Case studies

In this section we present two case study frameworks, obtained from argumentation tools
deployed on real-world data. The case studies provide motivation for the relevance of the
classes of framework structure we investigate (showing the results of our experiments
map to results of the experiments run on real-world frameworks), and also allows us to
demonstrate how our results can inform argument technologies.

The tests for resistance and subset acceptability are averages over varying both the
framework and the argument topic. For our case studies we are unable to vary the
framework, since we have only a single framework for each case study; instead, we
vary the argument topic only.
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Figure 4.10: Graphs showing resistance of framework structures.

4.5.1 Trial aggregation

As evidence-based decision-making becomes increasingly important, clinical trials can
provide an important source of information to inform healthcare professionals. Hunter
and Williams propose an argument-based approach for aggregating the positive and
negative effects of potential treatments, by representing each study as an argument in
a Dung-style framework [60]. The recommended treatment options obtained from this
approach have been shown to align with published clinical guidelines, demonstrating the
usefulness of the approach. The approach performs a type of meta-analysis on a range
of clinical literature, producing a Dung-style argumentation framework (very sparse; al-
most a mst-DAF in structure), on which reasoning about possible treatment options is
done. We use such a framework as our first case study.

The results of our experiments on this framework are shown in Table 4.2. For each
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experiment on this framework, we find the are similar to the results obtained from mst-
DAF presented earlier in this chapter, with the size of extensions, SA, and resistance
being within the expected ranges of mst-DAFs. This evidences the relevance of the
structures we investigate. We examine the resistance of this particular framework, to
demonstrate how our results may be used to inform specific domains.

The resistance of the framework from the trial aggregation case study is exception-
ally high (97.2%). This indicates that new arguments added in the future, in this case
by the addition of new clinical studies, are unlikely to change the acceptability of other
arguments in the framework. This implies that new studies are unlikely to have an af-
fect on the recommended treatment, meaning there can be confidence in the current
recommendation. If a framework produced by the trial aggregation approach had a low
resistance, new studies would be likely to change the recommended treatment, and this
would imply that the recommendation is not yet reliable.

4.5.2 Statistical model selection

Clinicians without statistical training often need support to correctly analyse and reason
about their data. Sassoon et al. propose a tool that uses argumentation to aid in the
process of deciding which statistical model is most suited to a users’ data and prefer-
ences [98]. The requirements and preferences of the user, as well as preferences from
their specific context domain, are captured in an EAF, which can then inform the user
of the most suitable model to use. We use a framework produced by using this tool with
real-world data from a study involving clinicians (originally presented in [98]) as our
second case study. The framework is an example of an eEAF, being an EAF with the
same number of arguments at each level of the hierarchy.

The results of our experiments on this framework are shown in Table 4.2. For this
case study we find that for each experiment on the framework, the results again correlate
with the corresponding generalised framework class, this time eEAF. Perhaps the most
interesting result from this case study is the high SA of the framework (46.5%). Empir-
ical investigations have demonstrated that the higher SA, the easier it is for a persuader
to convince a persuade of a particular argument through dialogue [15, 78], and so we
would thus expect the persuasion of a user to use a particular statistical model to be
successful in the majority of cases.
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Table 4.2: Results for case study frameworks*

Case Study Args Gr Pr SA Res
Trial aggregation 34 9 9 41.9 97.2
Model selection 13 7 7 46.5 89.1

*Args: number of arguments in the framework. Gr and Pr: size of the grounded and preferred
sceptical semantics respectively. SA: percentage of subsets that determine topic to be
acceptable. Res is the resistance of the framework.

4.6 Conclusions and Discussion

In this chapter we have presented the results from measuring the properties of different
generalised frameworks (Dung frameworks, collective-attack frameworks, and hierar-
chical extended argumentation frameworks), and different structures of those frame-
works (relating to attack density, collective attack size, and preference distribution).
We have investigated properties of the frameworks that are especially pertinent to the
performance of argument-based systems: the size of extensions is a factor in the effi-
ciency of solvers, the resistance and SA of a framework are important properties for
argument-based dialogues as well as for strategic argumentation [15, 1], and dynamic
argumentation may have applications in the performance of argument solvers [67].

We have shown that the class of framework, and indeed the structure of the chosen
framework, has a significant effect on all of the investigated properties. Identifying
the characteristics of frameworks derived from argument technologies (such as different
generalised frameworks, as explored in this chapter) is important when considering how
to evaluate an argument-based system. Selecting relevant framework structures leads to
a grounded evaluation of the system, ensuring the system’s performance is measured on
a realistic domain. Furthermore, it allows systems to be optimised for specific domains
in which a general system may be less efficient. For example, solvers can be developed
to be faster for particular classes of framework, or a dialogue strategy can be effective
for particular knowledge domains.

A complementary approach to the one taken in this chapter is to evaluate systems
based on examples of human argumentation (such as recent work by Rosenfield and
Kraus [95]). Argument mining offers the possibility of obtaining large datasets of frame-
works from real-world human-based argumentation, and which can be applied to a vast
array of domains (e.g. from biomedical research literature [47]), providing a range of
framework structures related to human-reasoning. However, current corpora of human
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arguments are limited in size and availability to allow for large scale empirical investi-
gations (especially for EAF and CAF style frameworks). A direction for future work is
to investigate frameworks obtained from human reasoning, possibly through techniques
such as argument mining, and to investigate their characteristics.
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Chapter 5

A heuristic strategy for persuasion
dialogues

Argument-based dialogues are a useful mechanism for agent co-ordination, particularly
in the domains of human-machine interaction and agreement technologies [77]. In this
chapter, we focus on a simple type of persuasion dialogue (where one agent presents
arguments to another with the aim of convincing it to accept some argument that is the
topic of the dialogue) and consider the problem of how the persuader can determine
which arguments to present during the dialogue, i.e., what dialogue strategy it should
employ.

The development of methods for generating agent dialogue strategies is an active
area of research [107]. So far, work on this problem has shown that computing an
optimal strategy for one-to-one persuasion dialogues is computationally expensive, and
becomes intractable as the number of arguments in the dialogue domain increases. Black
et al. [15] consider the a simple persuasion dialogue setting similar to the one that we
focus on in this chapter, modelling it as a planning problem so that a planner can be
used to generate an optimal strategy for the persuaded. The planning approach was later
adapted by Black et al. to a richer model of argument dialogue [16]. Hadoux et al. [50]
and Rienstra et al. [92] also each support richer models of argument dialogue, generating
optimal strategies using Mixed Observability Markov Decision Problems (MOMDPs)
and a variant of the minimax algorithm respectively. While all of these approaches
[15, 50, 92] determine an optimal strategy for the persuader, none have been shown to
scale to domains with more than 13 arguments.

The key contribution of this chapter is a heuristic strategy for persuasion that can
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easily scale to domains with 50 arguments (with computation time of less than 1 second).
Although this heuristic strategy is not optimal, it gives a reasonable chance of successful
persuasion and significantly outperforms a strategy that randomly selects arguments.
Our heuristic strategy does not require the persuading agent to have any knowledge of
the persuadee, relying only on arguments the persuader knows may exist in the domain.
The heuristic uses a measure of topographical distance to the topic argument to estimate
the likelihood that any argument would (if asserted) affect the persuadee’s perception of
the topic’s acceptability.

We evaluate our strategy in a simple persuasion setting, where one agent, the per-

suader, asserts arguments with the aim of convincing the other agent, the responder, to
accept the topic of the dialogue, while the responder replies truthfully at each dialogue
step to indicate whether it finds the topic to be acceptable. Since our heuristic strategy
only uses knowledge of the arguments that might exist in the domain, it can also be ap-
plied in more complex persuasion settings (e.g., one with multiple participants, or one
in which each agent asserts arguments with the aim of having its preferred argument
accepted). As we discuss later in Section 5.7, we believe that the results we present
regarding the performance of the heuristic strategy in the simple persuasion setting are
indicative of the performance we might expect to see in more complex dialogue settings.

The development of strategies such as ours that scale to large numbers of arguments
is particularly important if we are to support a full range of dialogues, such as those in
which more than two agents are engaged in the communication [32]. Such non-trivial
dialogue scenarios have increasing numbers of arguments as the number of participat-
ing agents increases (typically, each agent brings arguments unknown to others in the
dialogue) so adapting current methods to compute optimal strategies for dialogues with
more than two parties would likely be impractical. A real-world example of such a
multi-party domain is Decide Madrid1, an online forum in which citizens can partici-
pate in debates in order to make meaningful decisions about local government policy.
Debates on this site have many interacting users, and commonly have in excess of 50
arguments.

This chapter is structured as follows. Section 2 provides the preliminary background
on argumentation and argument dialogues, in particular the two-player simple persua-
sion dialogue we use as a test-bed for our strategy. Section 3 introduces the heuristic
used to estimate the likelihood of each argument to persuade the responder, and in Sec-

1decide.madrid.es
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tion 4 the strategy is formally defined. Section 5 details the experimental set-up, and
Section 6 presents the results. Section 7 concludes with a discussion.

5.1 Argumentation and simple persuasion dialogues

Recall that, given an argument framework, we can determine which extensions (sets of
arguments) are rational for an agent to consider acceptable. While different extensions
are based on different intuitions, a desirable property for a set of acceptable arguments is
often that of admissibility. An argument is admissible with respect to a set of arguments
S if all of its attackers are attacked by some argument in S, and no argument in S attacks
an argument in S. For the rest of this chapter, we consider an argument to be acceptable

to an agent (w.r.t. an argumentation framework) if it is part of all maximal admissible
sets. These criteria for acceptability are known as the preferred sceptical semantics (as
in [33]).

Definition 19. We define a function, π(AF ), to return the set of acceptable arguments

under the preferred sceptical semantics of the given argumentation framework AF .

To investigate the effectiveness of the heuristic strategy we apply it to a persuasion
dialogue (adapted from [15]) that has two participating agents: a persuader and a re-

sponder. The persuader’s goal is to convince the responder of the dialogue topic (an
argument). The responder replies truthfully as to whether it finds the topic acceptable
given its (private) beliefs and the arguments asserted by the persuader. Agents engage
in a dialogue under an argument framework — the global knowledge (all possible argu-
ments in the domain, and the attacks between them) — from which their own personal
knowledge is a subset.

Definition 20. A simple persuasion dialogue scenario, under global knowledgeAFG =

〈AG, RG〉, is a tuple 〈AFP , AFR, t〉, such that:

• AFP = 〈AP , RP 〉, whereAP ⊆ AG andRP = RG∩(AP×AP ), is the persuader’s

initial knowledge base,

• AFR = 〈AR, RR〉, whereAR ⊆ AG andRR = RG∩(AR×AR), is the responder’s

initial knowledge base, and

• t ∈ AP , is the dialogue topic.

During the dialogue, the persuader and responder take turns to make utterances to
one another; the persuader may assert an argument or choose to terminate the dialogue,
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while the responder makes a yes or no move, indicating whether they find the topic
acceptable. A well-formed simple persuasion dialogue is one in which the persuader
only asserts arguments from their knowledge base, the responder replies truthfully by
indicating whether they currently find the topic argument acceptable, and that terminates
once either the responder is convinced or the persuader chooses to give up.

Definition 21. A well-formed simple persuasion dialogue of a simple persuasion di-

alogue scenario 〈AFP , AFR, t〉 under global knowledge 〈AG, RG〉, is a sequence of

moves [MP
0 ,M

R
0 , ...,M

P
n ,M

R
n ], such that:

• ∀i such that 0 < i < n, MP
i ∈ AP ,

• MP
n ∈ AP ∪ {terminate},

• ∀i such that 0 < i < n, MR
i = no and t /∈ π(〈AR ∪ {MP

0 , ...,M
P
i }, RG〉),

• MR
n ∈ {yes, no}, and

• MR
n = yes iff t ∈ π(〈AH ∪ {MP

0 , ...,M
P
n }, RG〉).

A dialogue is terminated iff either MP
n = terminate or MR

n = yes. A terminated

dialogue is said to be successful iff MR
n = yes, and unsuccessful otherwise.

Over the course of a well-formed simple persuasion dialogue, the responder has no
strategic concerns, as it must reply honestly if it finds the topic acceptable. However,
each turn of the persuader requires a decision as to whether an argument should be
asserted, and if so, which arguments in its knowledge base should be asserted. Previous
work [15] has applied automated planning techniques to find an optimal strategy for the
persuader to apply in this simple dialogue setting, but this does not scale well beyond 8
domain arguments. In Section 5.3 we present a heuristic strategy, and show that this can
easily scale to domains with up to 50 arguments. First, however, we give the intuition
on which this heuristic strategy relies.

5.2 Evaluating the influence of arguments

We consider the local topological properties of argument graphs to estimate how ben-
eficial an argument would be if asserted. The estimate is based on the intuition that
arguments topologically closer to the topic are more likely to affect its acceptability. We
estimate the likelihood that an argument affects the acceptability of the topic and deter-
mine whether the argument defends or attacks (perhaps indirectly) the topic. Note that
argument acceptability not only depends on the attackers of the argument, but on the
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Figure 5.1: An example argumentation framework.

acceptability of the attackers. Thus, we are interested in argument paths terminating in
the topic argument.

Definition 22. An argument path, in an argument graph AF = 〈A,R〉 with topic t, is

a list of arguments p = [a0, a1, ..., ak], such that:

• a0 = t,

• ∀i such that 1 ≤ i < k, 〈ai+1, ai〉 ∈ R,

• ∀i, j such that 0 ≤ i, j ≤ k, ai = aj iff i = j (arguments are distinct).

The depth of an argument a in an argument path p = [a0, a1, ..., ai] is given by the

function: depth(a, p) = x where a = ax.

Example 13. Consider the example argumentation framework in Figure 5.1 with the

topic being t. Valid argument paths include [t, f, g], [t, a, b], and [t, a, b, c]; sequences

of arguments that are not argument paths include [a, b, c] (the first argument is not the

topic), and [t, a, f ] (there is no such path is in the argumentation framework).

The distance of an argument from the topic argument provides an estimate of how
likely it is that asserting the argument will affect the acceptability of the topic. The in-
tuition behind this is as follows: for an argument to affect the topic through a particular
argument path, all preceding arguments on that path must be present; furthermore, any
arguments that precede the argument in question and support the topic cannot be de-
feated by an acceptable argument from another path. The more arguments that precede
the argument on a particular path, the more chance that one of these conditions may not
hold, thus the more likely it is that the argument will not affect the topic through that
path.

Example 14. Consider the example argumentation framework in Figure 5.1. The per-

suader wishes to convince the responder (whose arguments are unknown) that the topic

t is acceptable. Consider that the persuader chooses to assert the argument g; in order

for this to have a chance of changing the responder’s perception of the acceptability of

the topic, the responder must know f. Consider instead that the persuader chooses to
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assert the argument d (which is twice as far away from the topic as g); for this to have

a chance of changing the responder’s perception of the acceptability of t, not only must

the responder know a, b and c, but it must also be that the responder cannot know e.

To obtain an estimate of how likely each argument is to affect the acceptability of
the topic, we must consider all argument paths in the argument graph that start with the
topic. The importance of an argument on an argument path decreases to insignificantly
small amounts as it gets further from the topic, so we consider only argument paths up
to a specified depth.

Definition 23. The complete set of argument paths with depth d of an argumentation

framework AF and topic argument t, is a set of argument paths Cd
AF,t where:

Cd
AF,t = {[t, a1, ...ax] | [t, a1, ...ax] is an argument path in AF, x ≤ d, and

@[t, a1, ...ax, ..., ay] s.t. [t, a1, ...ax, ..., ay] is an argument path in AF and x < y ≤ d}.

An argument at an even depth in a path will be a supporting argument of the topic,
and its presence in an agent’s knowledge increases the likelihood that it finds the topic
acceptable (the argument is either the topic argument itself, or an argument that attacks
an opposing argument). Similarly, an argument at an odd depth will be an opposing

argument, and its presence decreases the likelihood that it finds the topic to be acceptable
(the argument is an attacker of a supporting argument). With respect to a particular
argument path, the magnitude of an argument’s value is an estimation of the likelihood
that the argument will affect the acceptability of the topic, and the sign indicates whether
it is likely to make the topic acceptable (positive sign) or unacceptable (negative sign).
Note that an argument can be both supporting and opposing of the topic in different
argument paths of the same AF.

Definition 24. The value of an argument a with depth d = depth(a, p) w.r.t. an argu-

ment path p = [a0, a1, ..., ai] is given by the function:

value(a, p) =


0 if a /∈ {a0, ..., ai}
1/2d if a ∈ {a0, ..., ai} and d mod 2 = 0

−1/2d if a ∈ {a0, ..., ai} and d mod 2 = 1

Example 15. Consider the AF in Figure 5.1 with the topic being t. The value of c, with

respect to the path [t, a, b, c, d], is − 1
23

= −1
8
. The value of d with respect to the same

argument path is 1
24

= 1
16

, which is both smaller in magnitude than the value of c (as

it is further from the topic) as well as positive (as it is defending the topic rather than

attacking).
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To get an accurate estimation of whether the presence of an argument in an agent’s
knowledge base is likely to make them find the topic acceptable, and thus predict how
beneficial it is for the persuader to assert that argument in a persuasion dialogue, the
value of the argument in all argument paths needs to be considered. To determine the
estimated utility of an argument, which represents the argument value with respect to
the complete set of argument paths, we sum the values of that argument with respect to
each argument path to the topic.

Definition 25. The estimated utility of an argument a in an argumentation framework

AF with topic t to a depth d, is a real number given by the function eu such that:

eu(a, Cd
AF,t) =

∑
p∈Cd

AF,t

value(a, p).

Example 16. Consider the AF in Figure 5.1 with the topic being t. The estimated utility

of c is the sum of two values in two argument paths. The two paths are [t, a, b, c, d] and

[t, a, b, c, e], in which c has a value of −1
8

in both. This gives a total estimated utility for

c as −1
8
− 1

8
= −1

4
.

5.3 Heuristic strategy

A persuader using the heuristic strategy will not give up trying to convince the responder
until it has run out of arguments to assert (known as an exhaustive persuader [18]).
It uses estimated utility to determine which argument to assert, choosing one not yet
asserted.

Definition 26. Consider a persuader with a knowledge base AFP = 〈AP , RP 〉 partic-

ipating in a dialogue D = [MP
0 ,M

R
0 , ...,M

P
n ,M

R
n ], under a global knowledge AFG =

〈AG, RG〉. The heuristic strategy for a depth d is given by the function hStrategyd such

that:

• if AP \ {MP
0 , ...,M

P
n } = ∅ then hStrategyd(D) = terminate, otherwise

• hStrategyd(D) =M where M ∈ {A ∈ AP − {MP
0 , ...,M

P
n } |

∀B ∈ AP − {MP
0 , ...,M

P
n }, eu(A,Cd

AFG,t) ≥ eu(B,Cd
AFG,t)}

Note that a persuader using the heuristic strategy can only assert arguments from
their knowledge base, but uses global knowledge to determine which argument to assert.
Similar to the virtual argument approach taken by Rienstra et al. [92], we assume that
the persuader can only assert arguments they are aware of, but the persuader is aware
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Figure 5.2: A framework with four arguments and the maximum number of attacks.

of the potential existence of all arguments in the domain, even those that they cannot
themselves assert.

5.3.1 Complexity of the heuristic strategy

The complexity of generating the heuristic strategy is dependant on the complexity of
two subcomputations: calculating the estimated utility for arguments in the framework
up to the specified depth, and then sorting the arguments according to their estimated
utility. The individual complexity of these computations are discussed below.

The complexity of calculating the estimated utility of the arguments in the heuristic
strategy to a depth is dependant on the size of the complete set of argument paths (Def-
inition 23); this is because the estimated utility of an argument is calculated from the
position of the argument in every argument path it is in.

An argumentation framework with the maximum number of attacks (see Figure 5.2)
is a framework with the maximum number of argument paths. There are (n − 1)! pos-
sible argument paths in such an argumentation framework (where n is the number of
arguments in the framework). This can be seen by considering that there are n − 1

possible arguments immediately following the topic, each of which have n− 2 possible
arguments immediately following them (since the argument immediately following the
topic cannot be repeated because arguments in a path must be unique), and so on up to
the final argument in each path. A visualisation of this is shown in Figure 5.3.

In the heuristic strategy, we only consider paths to a specified depth d. Therefore,
where the depth is less than the number of arguments in the framework, the size of the
the complete set of argument paths is reduced to (n− 1)!− (n− d)!.

This means computing the estimated utility of the arguments in the framework up
to the specified depth is O(n! − (n − d)!), which appears to be costly. However, in
practice, frameworks are typically very sparse [121], and so the number of argument
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Figure 5.3: A visualisation of the complete set of argument paths for the framework in
Figure 5.2. Note that there are four arguments in the framework, resulting in (4−1)! = 6
argument paths.

paths is reduced considerably. Also, we find that only a relatively small depth is required
for effective strategies, which further reduces the practical complexity.

Once the estimated utilities of the arguments have been computed, they need to be
sorted for the heuristic strategy. In the worst-case, all arguments in the framework will
have an estimated utility, and will need sorting. This sub-computation therefore has
the complexity of comparison sort, which is O(n log n) [63] where n is the number of
elements to be sorted (e.g. the number of arguments in the framework).

It may be possible to improve this complexity by combining the two subcomputa-
tions. The estimated utility is dependant on the position of the argument in the computed
paths, and since the positions in the paths are already sorted in ordered structures, it may
be that there is some overlap in the computation being done. However, in our imple-
mentation, we do not employ such a sophisticated algorithm, and instead deal with the
two sub-computations separately. Nevertheless, as is shown in the following evaluation,
the practical time taken to compute the strategy is sufficiently fast for our purposes, and
is significantly faster than existing solutions that find the optimal strategy.

5.4 Experimental setup and implementation

To evaluate our heuristic strategy we generate random simple persuasion dialogue sce-
narios, in which the persuader selects which arguments to assert. As a benchmark for
evaluation, we use a random strategy and a brute force strategy. The random strategy
will assert one of its unasserted arguments at random until the responder is persuaded or
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there are no unasserted arguments. Other proposed approaches to generating a strategy
for a persuasion dialogue use different models for the dialogue, and so a direct com-
parison to these approaches is not possible. A brute force strategy searches through
assertions until either it has searched all assertions or it has found a series of assertions
that convinces the responder; this is not a practical strategy as the persuader would not
be able to determine how good a series of assertions is without asserting it, however this
acts as a upper bound for comparison.

To generate a random simple persuasion dialogue scenario, an argument graph rep-
resenting the global knowledge must be selected. In our experiments, we randomly
generate two types of argument graph: tree-like graphs (Definition 29, an example is
shown in Figure 5.4) and grids (Definition 30, an example is shown in Figure 5.5). This
allows us to generate a large number of dialogue scenarios on which to run experiments.

In order to formally define a tree-like arguments frameworks, we first define directed
walks in argumentation frameworks, and then define rooted-tree argumentation frame-
works.

A directed walk between two arguments in an argumentation framework is a list of
arguments such that, between each argument in the list, there is an attack from one to the
other. Note that directed walks allow for repeated arguments, unlike arguments paths in
which each argument must be distinct.

Definition 27. A directed walk in an argumentation framework AF = 〈A,R〉 between

an argument a0 ∈ A and an argument an ∈ A is a list of arguments [a0, a1, ..., an] such

that ∀i ∈ {0, 1, ..., n− 1}, (ai, ai+1) ∈ R.

An argumentation framework is a rooted-tree argumentation framework with root r
if there is an directed walk from every argument in the framework to r, and the frame-
work is minimally connected in that removing any attack would mean the framework is
not fully connected anymore. The framework in Figure 5.1 is a rooted-tree argumenta-
tion framework, where t is the root.

Definition 28. An argumentation framework AF = 〈A,R〉 is a rooted-tree argumenta-
tion framework with root r ∈ A iff ∀a ∈ A there is a directed walk between a and r in

AF , and |A| = |R|+ 1.

A tree-like argumentation framework is a rooted-tree argumentation framework with
some additional random attacks added in. The additional attacks introduce the possi-
bility of cycles existing in the framework, introducing arguments that both attack and
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Figure 5.4: An example tree-like argumentation framework, based on the rooted-tree
argumentation in Figure 5.1, where dashed attacks are the additionally added attacks.
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Figure 5.5: An example grid of size 3.

defend the topic, making the task of persuasion more complicated. An example tree-like
argumentation framework is shown in Figure 5.4.

Definition 29. An argumentation framework AF = 〈A,R0 ∪ R1〉 is a tree-like argu-
mentation framework iff:

• 〈A,R0〉 is a rooted-tree argumentation framework with root r ∈ A,

• |A| = |R0|+ 1,

• R1 = A, and

• R0 ∩R1 = ∅.

We now define grids, the second type of framework structure used in our evaluation.

Definition 30. An argumentation framework AF = 〈A,R〉 is a grid of size n with topic

t iff:

• t ∈ A,

• A = {ai,j : 0 < i, j < n},
• R = {(ai,j, ai+1,j) : 0 < i < n− 1, 0 < j < n} ∪ {(ai,j, ai,j+1) : 0 < i < n, 0 <

j < n− 1}.

Once the argumentation framework that represents the global knowledge has been
generated, arguments are evenly distributed into the persuader’s and responder’s knowl-
edge bases at random (with 50% of arguments in the persuader’s and the other 50% in
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the responder’s), only ensuring the topic argument of the dialogue is initially known
by the persuader, but not by the responder. For our experiments the heuristic strategy
considers argument paths up to depth 5; initial testing showed this allowed for a strong
success rate while remaining fast to compute.

The implementation for the generation and testing of simple persuasion dialogues
was written in Java, and run on a standard PC (1.86 GHz dual-core processor, 2GB
RAM). We used libraries from Tweety [108] to determine whether the argument topic
was acceptable under the preferred sceptical semantics for a given argument graph.

5.4.1 Experimental assumptions

In our experiments, we have make three key assumptions regarding the dialogue set up,
which are set out in the previous sections. In this section, we examine these assumptions.

Virtual arguments

The heuristic strategy exploits knowledge that the persuader has of the dialogue domain;
we make the assumption that the persuader knows about the existence of all the argu-
ments in the global knowledge as virtual arguments, and uses this knowledge when eval-
uating which arguments should be asserted next. While this is a restrictive assumption,
for a persuader to be effective it must have at least some knowledge either of the domain
arguments, or of the persuadee’s arguments. In comparison to the approach presented in
this chapter, other mechanisms for generating dialogue strategies are similarly restric-
tive in that they assume the persuader has a model of the persuadee’s arguments [15, 92]
or of its expected behaviour [50]. However, in some domains it may be unrealistic to
assume that the persuader has prior knowledge of the responder. Instead, virtual argu-
ments act as a minimal form of opponent modelling: the persuader has a general sense
of arguments that may be known by the responder, but without specific knowledge of
the precise nature of these arguments [92].

We predict the heuristic strategy’s success rate could be improved by incorporating
knowledge of the arguments that are known by the responder into the utility calculation
for arguments at a slight cost to computation time, in domains where such knowledge is
available. This is discussed further in Section 5.6.2.

93



Framework structures

We use two types of framework structures in our evaluation: tree-like structures and
grid-like structures. We use these structures of frameworks for our evaluation because
they are fully-connected, sparse, and have few cycles in them. These properties are
based loosely on argument frameworks transcribed from BBC Radio 4’s Moral Maze
program, in which experts aim to persuade a panel of an opinion [66], and so are some-
what relevant to real-world persuasion. We do not use the frameworks from the corpus
itself, as there are too few instances to allow for a detailed evaluation.

We could have instead generated frameworks that held properties that were espe-
cially challenging for the strategy generation instead of generating semi-realistic argu-
mentation frameworks. However, we use subset acceptability as a proxy for how chal-
lenging the dialogue is, and this demonstrates the limits of the heuristic strategy.

Distribution of arguments

In Chapter 3 we found that the similarity of participants’ initial arguments at the start of
a dialogue can have an impact on the outcome of the dialogue. Therefore, in these exper-
iments we ensure that this parameter is kept constant. When generating the persuader’s
and responder’s knowledge bases, we ensure that the sets of arguments that they know
are disjoint.

For the simple persuasion scenarios we investigate here, and the behaviour of the
proposed heuristic strategy, having the persuader and responder have arguments in com-
mon would not affect the computation speed of the heuristic strategy (as all arguments
are still valued regardless of who they are known by). The outcome for the dialogue
may still be affected in the same way as the deliberation dialogues in Chapter 3. How-
ever, this would be due to the properties of the scenario, rather than a shortcoming of the
heuristic strategy. Therefore, we do not investigate any other distributions of arguments
between participants.

5.5 Evaluation of the heuristic strategy

5.5.1 The heuristic strategy has a high success rate

It is desirable for a dialogue strategy to have a high success rate in achieving an agent’s
dialogue goals no matter what the agents know. For simple persuasion dialogues, this
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means that the persuader’s strategy should have a high probability of persuading the re-
sponder of the topic argument. The heuristic, random, and brute force strategies were
run on dialogues with domains of tree-like argumentation frameworks that had 8 argu-
ments, with different proportions of argument subsets making the topic acceptable (this
is the same property as the SA measurement from Section 4.4.3). The proportion of ar-
gument subsets that make the topic acceptable have been shown to be a strong indicator
of how difficult a particular persuasion dialogue will be for the persuader [15]: if there
are few subsets of the framework in which the topic is acceptable, it is likely to be harder
for the persuader to manipulate the persuadee’s framework into one in which the topic
is acceptable. The probability of persuader success for the strategies was determined
by running many simulations of dialogues, each with a different randomly generated
argumentation framework, and recording the percentage of argument subsets that make
the topic acceptable in the argumentation framework, as well as whether the persuader
is successful when using the heuristic, brute force, or random strategy. The results are
shown in Figure 5.6.

We observe a similar trend for all strategies: as the proportion of argument subsets
of the global knowledge that make the topic acceptable increases, so does the likelihood
that the strategy is successful. At proportions of subsets making the topic acceptable it
is likely that, given the arguments known by the responder at the start of the dialogue,
it may be impossible for the persuader to be successful. At the other extreme of 50% of
subsets making the topic acceptable (in the topic is acceptable in all subsets that contain
it) the persuader only has to assert the topic argument at some point in the dialogue in
order to convince the responder: since both the heuristic strategy and random strategy are
exhaustive, asserting all their arguments until the responder is convinced, it is guaranteed
that the persuader will eventually be successful in these scenarios.

The results show that the heuristic strategy is, on average, significantly more likely to
be successful than the random strategy. In some scenarios, the heuristic strategy is over
three times more likely to be successful than the random strategy. In comparison, the
brute force strategy, which is the optimal, is better than the heuristic strategy. However,
the difference between the brute force strategy and heuristic strategy is noticeably less
than the difference between the heuristic strategy and the random strategy.
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Figure 5.6: Percentage success rate of heuristic, random, and brute force strategies.

Table 5.1: Time to compute heuristic strategy (seconds). Args is the number of argu-
ments in the domain.

Args 10 20 30 40 50
Time <0.1 0.21 0.37 0.56 0.77

5.5.2 The heuristic strategy is fast to compute

To determine the computational cost of generating the heuristic dialogue strategy, we
measure the time taken to compute the heuristic strategy in a randomly generated dia-
logue scenario. We generated tree-like argumentation frameworks of increasing sizes
{10, 20, 30, 40, 50}. The results are shown in Table 5.1, giving the average time for
1,000 random dialogue scenarios. For domains with fewer than 10 arguments the gen-
eration of the strategy took less than 0.1 seconds. At 11 arguments, the increase in time
is noticeable, allowing computation of the heuristic strategy in less than a second for as
many as 50 arguments in the domain. The results demonstrate that the heuristic strategy
is efficiently scalable with large numbers of arguments.

5.5.3 The heuristic strategy succeeds with many arguments

As can be seen from the results in Figure 5.6, the chance of successfully convincing the
responder depends heavily on the particular argument graph that determines the global
knowledge. The more subsets of arguments from the global knowledge that determine
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Figure 5.7: Success of the heuristic strategy with increasing numbers of arguments.

the topic to be acceptable, the more chance of reaching a point in the dialogue where
such a set of arguments is available to the responder, causing it to terminate the dialogue
successfully. To investigate how the performance of the heuristic strategy scales with
the number of arguments we needed to generate global knowledge argument graphs
in such a way that the proportion of argument subsets that determine the topic to be
acceptable remains near constant as the size of the graphs increases. Thus, here we used
partial grids, which allowed us to keep the average percentage of subsets of the global
knowledge that make the topic acceptable within the range 25%–35% for all argument
graphs we experimented with. We observe in Figure 5.7 that there is a slight decrease in
the success rate of the heuristic strategy as the number of arguments increases because,
as the argument graph grows, so does its complexity, and these complexities are ignored
by the heuristic strategy. The decrease in success can be considered a necessary sacrifice
for a computationally tractable strategy.

5.6 Suitability of heuristic strategy for other dialogues

In the previous section we demonstrated the effectiveness and efficiency of the heuristic
strategy for the simple persuasion scenario presented earlier (Definition 20). However,
we do not believe the heuristic is limited to just this simple scenario, but rather that it
can be applied to a range of sophisticated persuasion dialogue types. In this section,
we discuss how the heuristic is still likely to be useful for more sophisticated persua-
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sion dialogues with more sophisticated persuadees, multiple perusadees, and opponent
models.

5.6.1 Persuadee may assert arguments

In the simple persuasion dialogue, the responder does not themselves assert any argu-
ments, instead it only states each round whether it has been successfully persuaded. In
many persuasion dialogue models both participants are able to assert arguments as part
of the dialogue; this feature opens up the possibility of the persuadee asserting argu-
ments that were not previously known by the persuader, in the case where the persuader
does not have knowledge of the global argumentation framework.

In such dialogues, the heuristic can still provide an estimate of which order argu-
ments should be asserted, and would behave in the same way unless the persuadee does
assert an argument that was not previously known by the persuader. In the case where
the persuadee asserts an argument not previously known by the persuader there are two
options for the heuristic strategy. The first option is to ignore any new arguments, and
continue regardless: this would not have any impact on the effectiveness or efficiency of
the heuristic strategy because the behaviour of the persuader is unchanged, and thus the
outcome of the dialogue would be the same.

The second option is to encorporate any new arguments asserted by the persuadee
within the persuader’s framework, and then recompute the heuristic strategy with the
new information: this makes use of the additional knowledge the persuader has in such
dialogues, and is like to make the strategy more effective. It is likely that with additional
knowledge, the heuristic would be more accurate, and therefore would more accurately
estimate which arguments are the most effective to assert. However, the strategy would
also be less efficient, since the heuristic has to be recomputed every time the persuadee
puts forward a previously unknown argument.

5.6.2 Opponent models

Some dialogue models assume that the persuader has an opponent model of the the
persuadee. This gives the persuader an advantage in that it has knowledge of which
arguments are known by the persuadee, and therefore can determine more effectively
which arguments can be put forward to be convincing: the persuader knows which argu-
ments need to be countered, and which arguments the persuadee already has a counter-
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argument to.
Again, the heuristic strategy could be applied to such a dialogue by simply ignoring

the additional information in the opponent model; this would have no impact on the
effectiveness or efficiency of the strategy as the persuder would behave in the esame way
and so the outcome of the dialogue would be the same. However, the heuristic could be
adjusted to make use of such opponent models, and therefore improve the effectiveness
at some additional computational cost; this would combine the heuristic’s weighting of
arguments with the opponent model’s weighting of which arguments are known by the
persuadee. For example, arguments that the persuader knows the persuadee knows could
be weighted have a higher impact within the calculation of the heuristic.

5.6.3 Multiple persuadees

The simple persuasion dialogue has only two participants. Some other dialogue models
allow for multiple persuadees, in which the goal of the persuader is to persuade as many
persaudees as possible. Adding additional persuadees does not increase the time taken
to compute the heuristic strategy because the heuristic is computed on the argumenta-
tion framework of the persuader, instead on each individual persuadee framework. We
expect the effectiveness of the heuristic strategy to be unchanged as the multi-persuadee
dialogues would behave in the same way as multiple single-persuadee dialogues.

5.7 Conclusions and Discussion

In this chapter we have presented and evaluated a heuristic strategy that can be used in
persuasion dialogues. Our results show that this heuristic strategy is fast to compute,
even for domains with a large number of arguments, which had not been shown to be
the case for existing approaches that generate optimal strategies [15, 50, 92].

The heuristic strategy was evaluated by applying it to simple persuasion dialogues, in
which the responder acts truthfully, and only in response to the persuader. The scenario
we investigate has some application to real-world scenarios: Consider the example of an
agent trying to persuade an administrator to grant them privileged security permissions:
the agent can assert arguments in order to convince the administrator that it should be
granted, but the administrator does not have the resources to respond to all requests with
any more than a notification of acceptance or rejection. In future work, we intend to
investigate the performance of the heuristic strategy in more complex scenarios, specif-
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ically persuasion dialogues involving more than two participants, each of which may
have their own set of beliefs. We expect that existing approaches for determining opti-
mal strategies [15, 50, 92] would be even more computationally expensive here. This is
partly due to the fact these approaches use probabilistic information about the opponent
to determine the strategy, and with additional opponents added the number of possible
states in set of all opponent models grows exponentially.

Argument strategies that use heuristic information have also been investigated in dif-
ferent types of dialogue. Kontranis et al. evaluate a set of heuristic-style strategies that
agents use in a dialogue-type scenario, in which participants vote on the attacks between
globally known arguments, with the goal to reach a consensus [65]. In comparison, the
heuristic strategy we present is based on a typical dialogue game in which agents assert
arguments, rather than the focus of communication being on attack relations. Wardeh et

al. investigate PADUA, a dialogue protocol allowing agents to classify objects based on
evidence from previous examples of object classification [117]. Depending on whether
the opponent is agreeable or not, the persuader can select the appropriate heuristic strat-
egy in order to increase their success rate in deciding upon their desired classification.
However, Wardeh et al. do not investigate the scalability or performance of their pro-
posed strategies.

Oren et al. [84] also present a heuristic for determining a strategy in a more general
form of agent dialogue than the simple persuasion dialogue considered in this chapter.
In their work, Oren et al. consider instantiated arguments, constructed as a series of
literals in support of a conclusion literal, as opposed to the abstract arguments we con-
sider here. Oren et al.’s heuristic guides the dialogue participant in selecting arguments
that when asserted would minimise the information that is exposed to other participants
(as measured by the number of literals revealed) whereas our heuristic estimates which
arguments would be most beneficial to assert in order to achieve the participant’s goal.
However, we do not considered any associated cost with asserting arguments in this
chapter. In the next chapter, we propose a different approach to generating a strategy,
and we will considered a cost to asserting arguments.

100



Chapter 6

Deriving persuasion strategies using
search-based model engineering

6.1 Introduction

Persuasion is the task of inducing the acceptance of a belief in other agents. In the pre-
vious chapter, we consider a particular type of persuasion dialogue in which there is one
persuader and one persuadee. This chapter focuses on a one-to-many persuasion setting,
where a single persuader broadcasts arguments to a multi-party audience with the aim
of convincing them of some goal argument. Since each individual audience member
reasons with its own set of personal knowledge (which we assume is known to the per-
suader) any particular set of persuader arguments may be convincing to some audience
members but not others, and so the persuader must carefully select which arguments it
should assert in order to maximise the number of audience members it convinces. This
is a challenging problem because of the number of potential solutions and the number
of audience members to evaluate against: to exhaustively explore the solution space, for
each subset of the persuader’s arguments one must consider each audience member and
determine whether it would be convinced by those arguments.

A political speech is an example of many-to-one persuasion, in which the politician
attempts to persuade the public (comprised of many individual agents) that their party
is the one to vote for at the next election. In such a dialogue, the politician wants to
maximise the number of agents that are convinced.

Much of the recent work looking at strategic argumentation settings has focused on
one-to-one persuasion, e.g., [16, 50, 95, 51, 56, 92]. A notable exception is the work of

101



Hunter and Thimm [59], who also consider how to determine which set of arguments to
present to an audience, using probabilistic argumentation to capture uncertainty about
the audience members’ beliefs. In contrast to our approach, they do not allow for a
range of audience members each with different beliefs. Furthermore, their approach
has been shown to apply to settings with up to 7 arguments, while we show that our
approach scales to more than 200 arguments. In earlier work [54, 55], Hunter looks
at how one can select arguments that will resonate with a particular audience, but this
similarly assumes a typical audience member, while our approach allows representation
of distinct audience members. Bench-Capon et al. present a framework that can be
used to describe audiences comprised of members with different values [11], but do not
address the strategic considerations of the persuader in such a domain.

To efficiently determine the arguments the persuader should assert, i.e., its strategy,
we apply techniques from search-based model engineering (SBME) [20]. By represent-
ing the persuasion setting as a meta-model (a schema describing the structure of valid
solutions), we can apply evolutionary search to a find a near-optimal strategy for the per-
suader that maximises the number of convinced audience members. We ran experiments
over a range of settings, varying both the size of the problem and the structure of argu-
mentation framework representing the underlying knowledge available to the persuader
and audience members, and show that our approach:

C1 produces strategies that are effective in convincing members of the audience;

C2 finds strategies efficiently, in that it scales well with increasing numbers of argu-
ments in the domain, and increasing numbers of audience members; and

C3 can efficiently find strategies that satisfy multiple objectives (in particular, max-
imising convinced audience members while minimising arguments asserted).

This work is the first to apply evolutionary search to strategic argumentation. McBur-
ney and Parsons [70] propose the possibility of applying an evolutionary algorithm to
automate a chance discovery dialogue, where individuals exchange knowledge with the
aim of discovering unknown risks and opportunities, but, while they outline their pro-
posed approach, it has not been specified in detail. While the focus in our approach is on
a one-to-many persuasion setting, where a persuader uses its knowledge of the audience
members to select a set of arguments to assert, the approach we present is sufficiently
flexible to capture a range of argument dialogue settings, and we discuss in Section 6.6
our plans to extend this work to account for uncertainty in the persuader’s knowledge of
its audience and to allow dialogues in which each party may present arguments.
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Figure 6.1: A multi-audience persuasion game, with persuader p, persuadees u1, u2, and
strategy S.

Further, in their outline, McBurney and Parsons [70] describe a more traditional ap-
proach to using evolutionary algorithms, in which candidate solutions are represented
as binary strings. In contrast, our approach represents candidate solutions as high-level
models instead of binary strings. The approach of representing candidate solutions as
high-level models has two advantages. First, the candidate solutions are more under-
standable by a human user and so the process is more transparent as it does not deal
with abstract representations such as binary strings. Second, the computational cost of
the transformation from a model to a solution is potentially less than that of the trans-
formation between a binary string and a solution as the mapping from a binary string to
a solution is likely to be a more complex process.

This chapter is set out as follows. In Section 6.2 we formally define our multi-
audience persuasion setting and introduce search-based model engineering in Section 6.3.
Section 6.4 explains how we represent multi-audience persuasion as a meta-model and
use this to search for persuader strategies. We evaluate our approach in Section 6.5 and
finish with discussion in Section 6.6.

6.2 Multi-Audience Persuasion Games (MAPGs)

We consider a multi-audience persuasion game (MAPG), in which a persuader seeks to
convince a set of persuadees, known as the audience, that a particular topic argument
is justified. The persuader’s knowledge is represented by an AF, from which each per-
suadee’s knowledge is a subset. The audience captures each persuadee’s knowledge,
thus we assume that the persuader has certain knowledge of the audience members; we
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discuss in Section 6.6 how our approach can be adapted to allow for uncertain knowl-
edge of the persuadees. The persuader’s strategy is a subset of the persuader’s AF, which
are the arguments the persuader will assert to the audience. We assume without loss of

generality that persuadees each know the topic argument before the persuader presents
their arguments.

Definition 31. A multi-audience persuasion game is a tuple g = 〈p, t, U, S〉, such that:

• p = 〈Ap, Rp〉 is the argumentation framework belonging to the persuader.

• t ∈ Ap is the topic, the argument the persuader tries to convince the audiences of.

• U = {u1, ..., un} is the audience, where ui = 〈Ai, Ri〉 is the argumentation

framework belonging to persuadee i, s.t. Ai ⊆ Ap, Ri ⊆ Rp, and t ∈ Ai.

• S ⊆ Ap is the persuader’s strategy.

An example MAPG is shown in Figure 2. Note, the persuader’s strategy is asserted
to all persuadees at once; the persuader cannot choose to assert an argument to only
a subset of persuadees. In this chapter, we consider that a persuadee is convinced if,
under their framework combined with the strategy, the topic is justified under the pre-
ferred credulous semantics (which are well-suited to practical reasoning about what to
do [86]). However, the approach detailed in this chapter could easily be adapted to other
semantics, or indeed any arbitrary function that maps an argumentation framework to a
set of justified arguments.

Definition 32. We denote the justified arguments under the preferred credulous se-
mantics as σ(AF ) = {a | ∃S ⊆ A s.t. S is maximally admissible and a ∈ S}

Definition 33. In a multi-audience persuasion game g = 〈p, U, t, S〉 with the per-

suader’s framework p = 〈Ap, Rp〉, a persuadee i with AF 〈Ai, Ri〉 ∈ U is initially
convinced in g iff t ∈ σ(〈Ai, Ri〉). The function γ(g, ui) → [0, 1] returns 1 iff ui is ini-

tially convinced in g, 0 otherwise. Similarly, i is convinced in g iff t ∈ σ(〈Ai ∪ S,Rp ∩
(Ri ∪ (Ai ∪ S)2)〉). The function γ̂(g, ui) → [0, 1] returns 1 iff ui is convinced in g, 0

otherwise.

A persuader is typically interested in convincing as many persuadees as they can.
We measure effectiveness of a strategy as the increase in the number of convinced per-
suadees from those that are initially convinced. By asserting arguments, the persuader
may dissuade audience members of the topic; a persuader that dissaudes more audience
members than they persuade will have a negative effectiveness. As well as trying to con-
vince as many persuadees as possible, the persuader may also wish to minimise some
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cost associated with asserting a strategy. For this work, we assume the cost of a strategy
is the proportion of the persuader’s arguments put forward in the strategy. The per-
suader wants to minimise the number of arguments they present, since more arguments
may lead to audience disengagement [58]. We refer to this cost as the efficiency of a
strategy. We assume each persuadee is as valuable as each other, and so all persuadees
are of the same importance.

Definition 34. The effectiveness of the strategy in a multi-audience persuasion game

g = 〈p, U, t, S〉, denoted ε(g), is:
∑

u∈U γ̂(g, u)−
∑

u∈U γ(g, u).

Definition 35. The efficiency of the strategy in a multi-audience persuasion game g =

〈p, U, t, S〉 with persuader’s framework p = 〈Ap, Rp〉, denoted κ(g), is: |Ap|−|S|
|Ap| .

Example 17. Consider the example multi-audience persuasion game in Figure 2. The

effectiveness of the strategy is 2, as both persuadees will find the topic acceptable once

the arguments in S are added to their respective frameworks. The efficiency of the

strategy is 6−2
6

= 4
6

as two argument are asserted in the strategy. Note, that had the

persuader asserted the argument e as their strategy instead then the effectiveness would

remain the same but the efficiency would be improved to 6−1
6

= 5
6
.

We use evolutionary search to find an effective and efficient strategy of a multi-
audience persuasion game. We implement the problem using SBME, which provides a
natural and efficient encoding.

6.3 Search-Based Model Engineering (SBME)

Search-based methods have long been used to solve optimisation problems [35]. Here,
we give an overview of search-based methods, before examining SBME in more detail.

6.3.1 Meta-heuristic search.

Many optimisation problems can be solved by dedicated algorithms or using specialised
heuristics. However, as problems become more complex, it often becomes more ef-
ficient to find (near-)optimal solutions using meta-heuristic search techniques. These
techniques start from one (or a population of) randomly generated feasible candidate

solutions (i.e., solutions that satisfy all relevant constraints) and incrementally change
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these to explore the solution search space. The quality of any candidate solution is in-
dicated by one or more objective functions—functions that take a solution and provide
a numeric value indicating relative quality. A meta-heuristic algorithm then evolves the
population of candidate solutions by:
1. creating a set of new candidate solutions derived from the existing solutions;

2. ranking old and new candidate solutions according to their objective values; and

3. keeping only the highest-ranked n candidate solutions for the next round.
The algorithm ends either when a pre-defined number of evolutions have been ex-

plored or when another stopping criterion has been reached (e.g., when the objective
values of candidate solutions no longer change significantly).

Different meta-heuristic algorithms use different techniques for encoding solutions
and deriving new ones, as well as for ranking solutions. Here, we focus on evolutionary
search techniques, which derive a new candidate solution from each existing candidate
solution by applying a mutation operator randomly picked from a pre-defined set.

6.3.2 Search-based model engineering.

SBME [123, 62] aims to apply meta-heuristic search techniques in the context of model-
driven engineering (MDE). Specifically, SBME techniques search for models that are
optimal as defined by some objective functions.

To understand SBME, we first need to briefly introduce key notions of MDE, such
as model, meta-model, and model transformation. MDE’s central tenet is that software
should be developed using high-level models, expressed in domain-specific modelling
languages, rather than by directly writing programs in general-purpose modelling lan-
guages such as Java or C. Key to this is the ability to define modelling languages and
automatically and efficiently manipulate models expressed in these languages. Meta-
models support this by providing a formalised representation of a modelling-language’s
abstract syntax; that is, the concepts of the language and their interactions. Typically
in MDE, meta-models are expressed as class diagrams. Models are considered valid iff
they are an instance of the meta-model; that is, if every model element is an instance of
a corresponding meta-model element and all connections between model elements are
specified according to the associations defined in the meta-model. Model transforma-
tions, finally, are programs that take models as input and produce new models as outputs
(possibly instances of different meta-models).
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By employing SBME techniques for specifying optimisation problems we benefit
from three main advantages:

1. we can use the concept of model transformations to simplify the definition of
complex search operators that can ensure consistency of the generated offspring;

2. the use of models allows us to use the user’s domain expertise to consistently
encode complex problems and solutions and, we can ensure that the search space
exploration is done without generating inconsistent solutions;

3. this approach does not require the step of genotype to phenotype mapping that
would otherwise be required in traditional genetic programming approaches.

6.4 Multi-Audience Persuasion as a Search-Based Model
Engineering Problem

To represent a multi-audience persuasion game (MAPG) as a search-based model driven
engineering problem, we must first define a metamodel that encodes the space of pos-
sible solutions. This is shown in Figure 6.2 and we explain now how this corresponds
to our MAPGs (Definition 3). The persuader’s AF (〈Ap, RP 〉 in Def. 3) and the per-
suadees’ AFs (〈Ai, Ri〉 in Def. 3) are represented by the PersuaderAF class and the
PersuadeeAF class respectively. An MAPG has exactly one persuader and multiple
persuadees, captured by the multiplicity constraints in Figure 6.2 (1, resp. * for many).
The persuader framework contains all Arguments, denoted by the composition link
between PersuaderAF and Argument, while persuadee frameworks contain some
subset of the arguments. Arguments may attack one another (captured by the attacks
edge in Figure 6.2), and exactly one argument is distinguished as the topic. Multiple
arguments can be identified as forming the strategy of an MAPG (S in Def. 3), captured
via the strategy link between the MAPG and Argument classes.

For a particular persuader, audience and topic argument, we are interested in find-
ing a strategy that is effective and also, perhaps, efficient. To do this with our SBME
approach, we mutate the strategy using two mutation operators: the first adds a new
argument to the strategy; the second removes an argument from the strategy. The rest
of the model does not change. Applying these mutations to the solution candidates al-
lows exploration of any strategy in the search space. Two objective functions are used
to evaluate any strategy found: one determines its effectiveness and one determines its
efficiency. We can then apply an evolutionary search algorithm to find strategies that
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Figure 6.2: Metamodel for multi-audience persuasion games, as a class diagram.

perform well against these objectives as follows: (1) randomly generate a population of
instances of the metamodel; (2) apply a random mutation operator to each member of
the population, evaluate these against the objective function(s), select the most promis-
ing individuals for the next generation; (3) repeat (2) until the configured number of
generations has been reached.

6.5 Evaluation of Application of SBME to Find Strate-
gies for MAPGs

We run experiments to investigate performance of our approach, looking both at the
quality of solutions found and the time taken to find them. We use the SBME tool
MDEOptimiser (MDEO)1 to run a population based evolutionary algorithm over models
that instantiate the metamodel we define in the previous section, where only the strategy
is mutable. The algorithm is run for 250 generations with population size 30. We use
Tweety [109] together with the argmat-sat2 argument solver to determine whether a
particular persuadee is convinced by a strategy. This is one of the fastest solvers for the
required preferred decision problem, but it is worth noting that the performance of the
solver that is used has a significant effect on time taken to evaluate a strategy.

Across experiments, we vary: the number of arguments in the persuader’s frame-
work (af-size); the structure of the persuader’s framework (struct); the number of
persuadees (p-num); and the number of arguments known to each persuadee, expressed
as a proportion of the number of arguments in the persuader’s framework (p-size).

1https://mde-optimiser.github.io/
2http://sites.google.com/site/argumatrix/argmat-sat
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Figure 6.3: An example ladder. The topic is a.

6.5.1 Framework structures

We perform experiments with the following argumentation framework structures.

Ladders and Cycles

These are used in Black et al.’s evaluation of their strategies for one-to-one persuasion
dialogues [16]. We reuse them here as they are designed to be especially challenging for
persuasion, due to the existence of arguments that may be both beneficial or detrimental
for a persuader, depending on the persuadee’s beliefs.

Definition 36. A ladder of size n with topic t is an argumentation framework AF =

〈A,R〉 where:

• A = {t} ∪ {bi, ci : i < n}, and

• R = {(b0, t), (c0, t)} ∪ {(bi, bi−1), (ci, ci−1) : 0 < i < n} ∪ {(bi, ci : i < n}.

An example ladder is shown in Figure 6.3.

Definition 37. A cycle of size n and with topic a is an argumentation framework AF =

〈A,R〉 where:

• A = {t} ∪ {bi, ci : i < n}, and

• R = {(bi, t), (ci, bi) : i < n}∪{(bi−1, bi), (ci−1, ci) : 0 < i < n}∪{(bn−1, b0), (cn−1, c0)}.

An example cycle is shown in Figure 6.4.

Trees

These are rooted-tree argumentation frameworks, whose root is the topic argument. See
Chapter 5, Definition 29 for the formal definition. As a bipartite AF, these are expected
to be less challenging for the persauder than ladder or cycle AFs, since there is no risk
in asserting an argument that supports the topic.
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a

b0 b1 b2 b3

c0 c1 c2 c3

Figure 6.4: An example cycle. The topic is a.

Competition Frameworks

We take three AFs from the set used in The Second International Competition on Com-
putational Models of Argumentation, specifically one derived from a planning problem
(with 490 arguments), one based on a Barabási-Albert network (with 160 arguments),
and one translated from assumption-based argumentation (with 691 arguments).

For Ladders, Cycles, and Trees we can vary the size of the AF, but for the com-
petition frameworks this is fixed. The framework is used as the persuader’s AF. The
p-num persuadees’ AFs are uniformly random sub-graphs of the persuader’s AF, each
composed of p-size× af-size arguments (recall, p-size is a proportion), one of
which is ensured to be the topic argument.

6.5.2 Alternative approaches for comparison

As no existing work allows generation of strategies for multi-audience persuasion games,
we benchmark our approach against two naive alternative approaches, described below.

• Brute-force (BF) searches through all possible assertions (that is, the power set of
the arguments in the persuader’s AF) to find a strategy that maximises the number
of persuadees that are convinced. If, during the search, a strategy is found that
convinces all persuadees then the search terminates, otherwise the search is ex-
haustive. This approach is computationally intractable for large games, as shown
in Table 6.3, but for smaller AFs it is feasible to use this approach to determine an
optimal solution.
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• Random asserter (RA) first selects a uniformly random number of arguments to
assert, from 0 to the size of the persuader’s AF. Then a uniformly random subset
of this size is selected from the arguments in the persauder’s AF to assert.

6.5.3 Hardware details

We ran our experiments on Amazon Web Services Elastic Compute Spot instances. The
experiments have been configured to run inside a Docker container running Java 1.8.0
and Amazon Linux. Each experiment has been performed on an individual machine,
with 2 CPU cores and 2.5GB RAM allocated to the container. For each experiment,
we ran MDEO 10 and RA 10 times, so as to consider both average and best perfor-
mance. The complete implementation and the obtained results can be downloaded from
GitHub3.

6.5.4 C1: MDEO finds strategies that are effective

We compare the performance of our approach to RA and BF, considering here the single
objective to maximise the number of persuadees who are convinced. We use three set-
tings: (1) small games where struct ∈ {cycle, ladder, tree} of af-size
∈ {21, 51, 101} (e.g. 20 arguments + 1 topic argument), with p-num ∈ {1, 2, 5} per-
suadees, with p-size= {.25, .5, .75}; (2) larger games where struct ∈ {cycle,
ladder, tree} of af-size ∈ {51, 101, 201}, with p-num ∈ {10, 50, 100} per-
suadees, with p-size ∈ {.25, .5, .75}; (3) games using the competition frameworks,
with p-num = 50 and p-size = .5.

As BF is an exhaustive search, the strategies it returns are guaranteed to be optimal.
However, BF is computationally intractable and so we are unable to compute the best
outcome for larger games (with a 24 hour time-limit). For the games where we were
able to use BF to determine the best outcome (where af-size ≤ 21) MDEO always

found an optimal solution.
Tables 6.1 and 6.2 compare performance of RA and MDEO, showing the average

effectiveness of each solution found (Ma for MDEO, Ra for RA) and the effectiveness
of the best solution found (Mb for MDEO, Rb for RA). For smaller games (Table 6.1)
both approaches generally found the best solutions, but the average effectiveness of the
strategies found using MDEO is significantly better than for RA. For larger games, Ta-

3https://github.com/mde-optimiser/comma-18-mapg
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ble 6.2, we see that MDEO produces better average solutions than RA, and the best
solutions of MDEO are better than the best of RA. Cycle AFs proved difficult for both
approaches, often resulting in failure to find a strategy that increases the number of con-
vinced persuadees. We plan to investigate whether by giving MDEO a larger population
of solutions, or more evolutions, we may be able to find solutions for cycle AFs at the
cost of additional computational resources.

Results for the competition frameworks are shown in Table 6.4. Our approach was
unable to cope with the largest of these frameworks (with 691 arguments), timing out
after 24 hours, but was able to find effective strategies for the smaller competition frame-
works.

6.5.5 C2: MDEO can find solutions to large problems

For a single objective to maximise the number of convinced persuadees, we compare
the average time taken by MDEO to find a strategy with the time taken by BF. Table 6.3
shows the results for small games. For games with af-size larger than 11, the MDEO
approach is almost always faster than BF search. Exceptions to this (e.g. Ladder-21,
with p-num and p-size 25%) are when BF gets ‘lucky’, and quickly finds a solution
that convinces all persuadees. For games with af-size of 11, BF is faster. However,
closer observation of the MDEO search reveals that the best solution is actually found in
earlier generations. Therefore, for these scenarios, MDEO runtime can be improved by
specifying a lower number of generations, without an effect on the quality of solution
produced.

For larger games, with af-size up to 201 arguments and number of persuadees up
to 50, MDEO returns results within 90 minutes. (Full results are omitted here for space
reasons but can be found in our repository. This demonstrates the scalability of MDEO,
both to the number of arguments in the domain, but also with increasing numbers of
persuadees. Table 6.4 shows results for the competition frameworks: MDEO took more
than 24 hours to run for the largest of these, just over an hour for the framework with
480 arguments, and less than 16 minutes for the smallest competition framework.

6.5.6 C3: MDEO can find strategies that satisfy multiple objectives

Here we seek strategies that aim to both maximise the number of convinced persuadees
and minimise the number of arguments asserted. We compare both the efficiency and
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effectiveness of the strategies produced by MDEO and RA for this multi-objective case.
To compare the quality of search solutions with two objectives we use the hypervolume
(HV) unary quality indicator, proposed by Zitzler et al. [122]. The HV measures the
volume of objective space dominated by a set of objectives that form a Pareto front.
The HV metric must be maximised and the Pareto front with the higher HV value is
considered better. To use RA to determine a Pareto front, each run consisted of a batch
of 10 applications of RA (so in total we ran RA 10×10 times for each experiment). For
space reasons, we consider only games based on the larger AFs, including competition
frameworks, and do not consider cycles, for which it is hard to find a solution that
satisfies a single objective.

For the larger tree and ladder problems, we compare the hypervolumes over 10 runs,
included as box plots in Figure 6.5. In almost all cases, the average hypervolume ob-
tained by MDEO is higher than the one obtained with RA, indicating that MDEO out-
performed RA. Furthermore, MDEO performance is more consistent than that of RA (in
the box plots, vertically smaller plots indicate a smaller variance in the individual Pareto
fronts). For the competition-based games, the hypervolumes are shown in Table 6.4. We
see that for games with frameworks with 160 and 480 arguments MDEO is able to return
a solution in a reasonable time.

In two of the evaluated scenarios (indicated on Figure 6.5 with asterisks), RA found a
better solution than MDEO. We have repeated these experiment by adding two additional
mutation operators that can assign and remove 10 arguments each time, instead of one.
This allows MDEO to outperform RA in these cases, indicating that mutation operators
which only change a single argument may sometimes be insufficient to allow the search
to escape from a local maximum.

Across all experiments, the average time taken for MDEO to find the strategy for
the two objective case was not statistically longer than the time for the single objective
case. Indeed, due to the non-deterministic search of MDEO, there were many scenar-
ios in which the two objective cases were faster. This demonstrates that there is no
computational overhead for adding the additional objective.

6.6 Conclusions and Discussion

We have shown that we can use techniques from SBME to represent the multi-audience
persuasion setting as a meta-model, to which we can apply evolutionary search to find
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Table 6.1: Average and best effectiveness of solutions found by MDEO (respectively,
Ma, top left, Mb, bottom left) and by RA (respectively, Ra, top right, and Rb, bottom
right) for small games. The results in bold are the better performing approach for a
game. Asterisks show results where all persuadees are convinced.

p-num 1 1 1 2 2 2 5 5 5
p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ladder 11
1.0* 0.2
1.0* 1.0*

1.0* 0.08
1.0* 1.0*

0.0 0.0
0.0 0.0

0.0* -1.03
0.0* 0.0*

0.0 -0.5
0.0 0.0

0.0 -0.47
0.0 0.0

2.0 -0.61
2.0 2.0

1.0 -1.29
1.0 1.0

0.0 0.0
0.0 0.0

Ladder 21
0.0* -0.58
0.0* 0.0*

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.0* -0.48
1.0* 1.0*

0.0* -1.08
0.0* 0.0*

0.0 0.0
0.0 0.0

0.0* -2.87
0.0* 0.0*

2.0 -0.19
2.0 2.0

0.0 -0.56
0.0 0.0

Ladder 51
0.0* -0.54
0.0* 0.0*

0.0* -0.63
0.0* 0.0*

0.0* -0.53
0.0* 0.0*

2.0* 0.28
2.0* 2.0*

0.0 -0.48
0.0 0.0

0.0* -0.92
0.0* 0.0*

2.0* -1.32
2.0* 2.0*

1.0 -0.45
1.0 1.0

0.0 0.0
0.0 0.0

Cycle 11
1.0* 0.01
1.0* 1.0*

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.0 0.04
1.0 1.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.0 -1.35
1.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Cycle 21
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.0 0.0
1.0 0.0

0.0 0.0
0.0 0.0

1.7 -0.85
2.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Cycle 51
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Tree 11
0.0* -0.12
0.0* 0.0*

0.0* -0.5
0.0* 0.0*

0.0 0.0
0.0 0.0

2.0* 0.51
2.0* 2.0*

1.0* -0.49
1.0* 1.0*

0.0 0.0
0.0 0.0

2.0* 0.99
2.0* 2.0*

2.0 0.1
2.0 2.0

1.0 0.16
1.0 1.0

Tree 21
0.0* -0.88
0.0* 0.0*

0.0 0.0
0.0 0.0

0.0* -0.75
0.0* 0.0*

0.0 -0.63
0.0 0.0

2.0* 0.52
2.0* 2.0*

0.0 -0.44
0.0 0.0

0.0 -1.56
0.0 0.0

2.0* 1.1
2.0* 2.0*

0.0 -2.19
0.0 0.0

Tree 51
0.0* -0.67
0.0* 0.0*

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.0 0.16
1.0 1.0

0.0* 0.0*
0.0* 0.0*

0.0 0.0
0.0 0.0

1.0* 0.34
1.0* 1.0*

3.0 0.17
3.0 2.0

0.0 0.0
0.0 0.0

Table 6.2: Average and best effectiveness of solutions found by MDEO (respectively,
Ma, top left, Mb, bottom left) and by RA (respectively, Ra, top right, and Rb, bottom
right) for large games. The results in bold are the better performing approach for a game.
Asterisks show results where all persuadees are convinced.

p-num 10 10 10 50 50 50 100 100 100
p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ma Ra
Mb Rb

Ladder 51
1.0 -4.59
1.0 1.0

2.6 -1.55
3.0 2.0

0.0 0.06
0.0 1.0

7.0 -15.93
7.0 7.0

8.8 -10.25
10.0 7.0

4.0 -4.61
5.0 1.0

12.9 -28.44
13.0 13.0

15.8 -21.28
17.0 10.0

12.8 -10.0
14.0 5.0

Ladder 101
1.0 -4.23
1.0 1.0

3.2 0.03
4.0 3.0

4.1 -0.81
5.0 4.0

10.6 -16.16
11.0 10.0

10.0 -8.85
10.0 9.0

4.8 -8.26
6.0 2.0

19.9 -27.27
22.0 21.0

7.7 -21.74
9.0 7.0

12.4 -5.78
13.0 11.0

Ladder 201
3.0 -2.81
3.0 3.0

0.1 -2.09
1.0 1.0

1.0 -1.28
1.0 1.0

7.4 -17.34
8.0 7.0

7.8 -8.73
10.0 8.0

0.2 -6.13
2.0 1.0

20.0 -31.48
20.0 20.0

18.7 -17.39
21.0 16.0

9.9 -8.75
12.0 7.0

Cycle 51
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

1.9 0.0
2.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Cycle 101
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Cycle 201
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

Tree 51
4.0 -0.18
4.0 4.0

1.0 -2.68
1.0 1.0

1.0 -0.63
1.0 1.0

4.0 -14.78
4.0 4.0

6.2 -15.66
8.0 8.0

1.0 -7.37
1.0 1.0

35.0 -17.85
35.0 35.0

27.0 -4.8
27.0 27.0

0.0 -0.67
0.0 0.0

Tree 101
1.0 -4.44
1.0 1.0

2.0 -3.5
2.0 1.0

4.0* 1.75
4.0* 4.0*

11.0 -11.69
11.0 11.0

5.0 -1.3
5.0 3.0

1.0 -5.56
1.0 1.0

20.0 -20.23
20.0 7.0

36.0 -22.96
36.0 25.0

7.0 -9.68
7.0 7.0

Tree 201
5.0 -2.71
5.0 4.0

5.6 2.71
6.0* 6.0*

6.2 1.11
7.0 6.0

25.0 -9.37
25.0 21.0

8.0 -4.98
8.0 4.0

8.3 -5.11
9.0 3.0

50.0 -12.13
50.0 23.0

42.0 -11.87
42.0 29.0

7.0 -3.98
7.0 3.0
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Table 6.3: Comparison of average time taken by MDEO (M Time, in HH:MM:SS:ms)
with time taken by BF for large games. The faster approach is in bold. N/A indicates
that the solution took longer than 24 hours to find.

p-num 1 1 1 2 2 2 5 5 5
p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

M Time
BF Time

Ladder 11
00:00:12
00:00:00

00:00:11
00:00:02

00:00:13
00:00:06

00:00:20
00:00:00

00:00:23
00:00:13

00:00:22
00:00:13

00:00:52
00:00:31

00:00:55
00:00:32

00:00:52
00:00:32

Ladder 21
00:00:12
00:00:00

00:00:12
01:54:49

00:00:12
01:56:35

00:00:22
00:00:00

00:00:22
00:00:00

00:00:22
03:54:35

00:00:53
00:00:00

00:00:54
18:36:18

00:00:58
18:58:09

Ladder 51
00:00:13
N/A

00:00:14
N/A

00:00:15
N/A

00:00:24
N/A

00:00:27
N/A

00:00:26
N/A

00:00:54
N/A

00:00:59
N/A

00:01:05
N/A

Cycle 11
00:00:11
00:00:01

00:00:12
00:00:07

00:00:13
00:00:05

00:00:22
00:00:13

00:00:21
00:00:15

00:00:23
00:00:15

00:00:52
00:00:41

00:00:51
00:00:36

00:00:58
00:00:41

Cycle 21
00:00:11
03:36:53

00:00:12
03:32:46

00:00:13
03:56:49

00:00:22
06:45:16

00:00:22
07:17:00

00:00:24
07:40:23

00:00:53
10:02:09

00:00:55
18:41:30

00:00:56
13:20:00

Cycle 51
00:00:13
N/A

00:00:14
N/A

00:00:15
N/A

00:00:24
N/A

00:00:26
N/A

00:00:29
N/A

00:00:57
N/A

00:01:03
N/A

00:01:03
N/A

Tree 11
00:00:12
00:00:00

00:00:12
00:00:00

00:00:11
00:00:25

00:00:22
00:00:01

00:00:21
00:00:03

00:00:23
00:00:50

00:00:52
00:00:04

00:00:52
00:02:10

00:00:52
00:02:10

Tree 21
00:00:12
00:00:01

00:00:12
07:12:59

00:00:13
00:00:00

00:00:22
07:24:38

00:00:23
00:00:06

00:00:25
13:57:47

00:00:53
19:45:43

00:00:55
00:00:05

00:00:53
18:54:44

Tree 51
00:00:12
N/A

00:00:14
N/A

00:00:15
N/A

00:00:24
N/A

00:00:25
N/A

00:00:27
N/A

00:00:56
N/A

00:00:57
N/A

00:01:04
N/A

persuader strategies that maximise the number of convinced persuadees. Our evaluation
demonstrates that the approach produces strategies that are effective, and that it does so
efficiently even for large and complex scenarios. Further, we have shown how MDEO
can be adjusted to a multi-objective problem, in which the persuader minimises the
number of arguments asserted, while maximising the number of convinced persuadees.
Given their performance, it is likely that alternate approaches that attempt to find optimal
dialogue strategies would not be able to scale to multiple persuadees.

A key advantage of this SBME approach is that the high-level metamodel which
encodes multi-audience persuasion games is easy to interpret and to adjust to other types
of strategic argumentation problems. Having demonstrated here the potential of SBME
for solving strategic argumentation problems, we plan to apply SBME techniques to
other settings, such as those in which persuadees are able to respond to assertions of the
persuader, and in which the persuader has a probabilistic model of the persuadees’ AFs.

Currently, we have only explored scenarios in which persuadees have random initial
beliefs, however we could investigate how the similarity of their initial beliefs affects
the dynamics of the game; it has been shown that the similarity of participants beliefs
can have surprising effects on the outcome of deliberation dialogues [78].
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Table 6.4: Results for MDEO and RA on competition frameworks (BA:Barabási-Albert,
PP:Planning-problem, AB:Assumption-based). HV shows average hypervolume, eff
shows effectiveness (best and average). Times shown are averages. N/A indicates the
solution took longer than 24 hours to find.

Single Objective Multi Objective
MDEO time MDEO eff RA eff MDEO time MDEO HV RA HV

BA(160)
Avg

00:15:31.438
10 -2.64

00:15:04.175 0.20 0
Best 10 1

PP(480)
Avg

01:04:00.672
34 9.86

01:00:16.931 0.640 0.649
Best 34 34

AB(691)
Avg

N/A
N/A 0

N/A N/A 0
Best N/A 0

Another avenue of future work is the implementation of more specific mutation op-
erators that can select arguments which have a higher chance of increasing the strategy
effectiveness. For example, we could use a heuristic that estimates the utility of assert-
ing a particular argument and specify the total utility as an additional objective to be
maximised [79]. We are also interested in exploring if we can reduce the search time by
trimming from the search space the arguments that do not support the topic.
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Figure 6.5: Multi-objective performance of MDEO and RA. Ticks on the top x axis
shows number of persuadees in the scenario; bottom x axis shows number of arguments
known to each persuadee (as a proportion of af-size). The size of the persuader’s
AF and the graph structure are included in the top left corner of each row. For each
comparison, the light gray box plot on the left shows the spread of HVs obtained by
MDEO and the dark gray box plot on the right shows the spread of HVs obtained by
RA.
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Chapter 7

Conclusions

7.1 Introduction

This chapter is structured as follows. In Section 7.2, a summary of the thesis is provided,
highlighting the major contributions of the work. This is followed by an analysis of the
limitations of our research in Section 7.3, and then a discussion about some potential
directions for future work in Section 7.4. Finally, in Section 7.5, the chapter concludes
with some closing remarks.

7.2 Summary and contributions

In this thesis we have been concerned with the performance of dialogue systems. We
have investigated to what extent the performance of dialogue systems are affected by
their domains, and furthermore we have proposed two approaches to strategic reasoning
in dialogue systems that are efficient in their performance. We summarise the contribu-
tions below.

7.2.1 The impact of domain on dialogues

We have investigated the relationship of domain and the performance of dialogue sys-
tems. By simulating deliberation dialogues, in which agents argue over a set of possible
actions to take and the values that the actions can promote or demote, we found that
the specific properties of the similarity of participants’ initial beliefs can have surprising
correlations with the outcome of dialogue. Counter to our intuition, the results showed
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that the more similar participants’ starting beliefs the less likely they are to come to an
agreement.

We built a set of benchmarks of randomly generated argumentation frameworks,
constructed around three types of framework: Dung argumentation frameworks and
two popular generalisations, extended argumentation frameworks and collective-attack
frameworks. From these generated structures, we measured their emergent semantic-
based properties, specifically properties are known to affect the performance of argu-
mentation systems. Specifically, we measured the size of extensions, the resistance, and
the proportion of subsets of the framework in which a topic argument is acceptable. Fur-
thermore, we investigated these properties in two case studies of real-world applications
of argumentation that use structures similar to some of those we randomly generated.
The underlying structure of graph was found to be a strong indicator of these properties
in both the randomly generated graph as well as the case studies.

We conclude that domain and framework structure have profound, and often un-
predictable, relationships with the behaviour of dialogue systems. Thus, evaluations
of dialogue systems should consider a range of possible domains in their evaluations,
and ideally use multiple types of framework structure, or use structures derived from
real-world sources.

7.2.2 Efficient approaches to strategy in persuasion dialogues

Two approaches to strategic reasoning in persuasion dialogues have been presented in
this thesis. In particular, unlike previous approaches to generating dialogue strategies for
persuasion dialogues, we have proposed approaches that are not guaranteed to return an
optimal strategy. Instead, the approaches are able to produce strategies more efficiently,
using fewer computational resources. To do this, we have used approximate methods:
we designed a heuristic for persuasion (Chapter 5), as well as using evolutionary search
to find an acceptable strategy (Chapter 6).

By building simulation environments for the dialogues investigated, we were able
to rigorously evaluate how well the approaches performed, both in terms of computa-
tional efficiency as well as effectiveness. Our evaluations were performed over different
types of domain by varying the structure of framework used in the simulation. We have
shown that our approaches have been able to scale to domains far larger than what is
possible with approaches that seek to determine an optimal strategy. Furthermore, we
have demonstrated that our approaches outperform simple baseline alternatives in terms
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of effectiveness.
Due to the efficiency of the evolutionary search approach, we were able to simu-

late dialogues that were strategically more complex than typical one-to-one persuasion
dialogues. We were able to consider one-to-many persuasion dialogues in which the per-
suader attempts to convince as many persuadees as possible while still using the same
assertions. Our approach was able to scale to scenarios with up to 100 persuadees. We
have also considered dialogues in which there is a cost attached to asserting arguments,
and so the persuader has the additional objective to minimise this cost when selecting
which arguments to put forward; this consideration of the additional objective had very
little impact on the performance of our approach.

7.2.3 Contributions

We highlight the key contributions from the summary above.

• We have created a simulation environment for deliberation dialogues, in which
agents argue about the best joint action to take. The result of our simulations
have shown a surprising relationship between the similarity of the initial beliefs of
participants and the likelihood of an agreement being reached between them when
engaging in a deliberation dialogue.

• We have analysed the impact that framework structures derived from generalised
frameworks can have on a number of key properties that determine the perfor-
mance of dialogue systems.

• We have provided a heuristic for estimating the benefit of asserting an argument
in a persuasion dialogue, which we have demonstrated to suitable for determining
efficient and effective dialogue strategies to sizes of domain beyond that which
optimal approaches can cope with.

• We have provided an approach to generating persuasion dialogue strategies using
evolutionary search. We have shown that the approach performs well in one-to-
many persuasion dialogues, and dialogues in which the persuader are multiple
objectives to consider when evaluating the utility of a strategy.
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7.3 Critical assessment and limitations

In addition to their approximate natures, our approaches to strategic reasoning suffer
from some limitations, which are discussed below.

7.3.1 Relevance to human dialogues and reasoning

In the wider field of argumentation, limited work has been done to investigate whether
formal argumentation theory is relevant to how humans reason, and to what extent it is
descriptive not just normative. While the general dialectical principles of argumentation
appear to be intuitive to humans, thorough empirical studies investigating the link be-
tween formal argumentation and human psychology are rare. In the context of dialogue
systems, including those studied in this thesis, it is likely that our models and tools are
far removed from the complexities of human dialogues and reasoning to be adequately
captured.

Rahwan et al. explore the key concept of reinstatement in argumentation, and whether
the results arrived at by applying argumentation semantics to a reinstatement situation
relates to the way humans comprehend such a situation [91]. Their results show that
although reinstatement of arguments is a concept that humans use in their reasoning,
humans do not recognise a completely renewed acceptance of the reinstated argument
as occurs in argumentation theory. With a focus on arguments constructed from natural
language, Cerutti et al. examine to what extent human’s evaluation of an arguments’ ac-
ceptability agrees with that which is determined by argumentation theory: across three
different domains, they found that humans match what the theory predicts in most cases,
but there are exceptions [29]. Rosenfeld and Kraus evaluate their approach to applying
machine learning to strategic reasoning by investigating how effective it is at persuading
humans [95]. Their work is at the forefront of bridging the gap between human dialogue
and machine dialogue, which could pave the way to the widespread use of argumentation
technology in practical applications.

However, in this thesis, we have not tried to incorporate human comprehension or
human persuasion in our approaches by explicitly addressing the way they reason. Nor
have we used any human studies to evaluate the performance or effectiveness of the
dialogue strategies proposed. Thus, our results are only valid in human domains on the
assumption that argumentation theory is indeed an accurate representation of practical
human reasoning.
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7.3.2 Simplistic dialogue models

The dialogue models we investigated in this thesis are simplistic examples of dialogues.
Other approaches to strategic argumentation in persuasion dialogues have investigated
richer models. Some alternative approaches have considered opponent modelling, where
the persuader has probabilistic knowledge of which arguments are known by their oppo-
nent which they can use when determining arguments to put forward (e.g., [57, 16, 50,
92]). Approaches have also captured more sophisticated persuadees, who may them-
selves assert arguments in response to those arguments put forward by the persuader,
creating a more complex dynamic in the dialogue, where the persuader must respond to
counter arguments that are put forward (e.g. [16, 50, 92]). Black et al.’s model allows
for the arguments put forward by the persuader to induce new arguments within the per-
suadee’s knowledge base, and so the persuader has to consider what knowledge may be
revealed by their assertions and whether that will be advantageous to the persuasion or
not [16].

In contrast, in this thesis, we have considered only simple dialogues in which per-
suaders have exact knowledge of the persuadees’ arguments, and persuadees do not
themselves assert arguments. One way in which we have considered more complex
dialogues is in Chapter 6, where the dialogue model allows for there to be multiple
persuadees, as opposed to typical models in which there is only a single persuadee.
However, the dynamics of the multi-persuadee dialogue that we model remain straight-
forward in that persudees do not assert any arguments.

7.3.3 Reassurance of quality

The empirical evaluations of our proposed approximate approaches have shown that the
strategies they produce perform well when compared to naive alternatives. However,
given an individual solution produced by these approximate approaches, we may want
to know how effective it is in comparison to the optimal solution. For example, the evo-
lutionary search approach when used in a one-to-many dialogue may produce a strategy
that convinces 20% of persuadees — this may be an optimal solution, or it may be a very
poor result if the optimal solution can find a solution that convinces 90% of persuadees.
Our approaches currently offer no reassurance of the quality of their proposed solutions.

Without computing the optimal solution, there is no way to tell for certain how close
to optimal a given solution is. For some of the simple dialogues we tested, we were
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able to compare how the quality of the solution compared to an optimal solution by
finding it through brute force search. However, for many of the dialogues we simulated,
calculating the optimal solution is computationally intractable using current technology,
and so such a comparison is impossible.

It may be possible to provide some estimate of the quality of the solutions produced
by our approaches. In the case of the evolutionary search, we can use the proportion
of the search space that has been explored (the more search space is explored, the more
certain we can be the solution is of a high-quality), or the number of generations in which
the best found solution did not change (if, by the end of the search, new generations are
still producing better solutions then it is unlikely we have found an optimal solution). It
is less clear how an estimate of quality could be computed in the case of the heuristic
strategy.

7.4 Future work

7.4.1 Combining the heuristic and evolutionary strategies

The evolutionary algorithm presented in Chapter 6 can be refined in two directions. The
first direction is to attempt to trim the search space, by preventing the generation of
candidate strategies that we can definitely rule out. The second direction is to use a
heuristic to guide the search, so that it is able to converge more quickly to effective and
efficient strategies.

With regard to the first direction, it is possible to identify arguments that we would
never want to assert in a persuasion setting. For example, an argument that directly
attacks the topic argument will never be beneficial to assert. We can therefore, when
generating new populations, use more sophisticated mutation operators that will avoid
adding such arguments. This would reduce the search space, and thus would potentially
increase the speed of the approach. However, identifying the arguments to avoid, and
executing more complex mutation operators, would come at some increase in compu-
tational overhead. Further experiments would be required to find out whether the trade
off is always worthwhile, and if not, whether there are any particular circumstances in
which it is.

The heuristic proposed in Chapter 5 would seem to be a good starting point for inves-
tigating the second direction of whether the use of a heuristic to guide the evolutionary
search would be beneficial. Since the heuristic provides an estimate of to what extent
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an argument attacks or defends the topic argument, it can be used as an additional op-
timisation function to increase the rate of convergence of the evolutionary search. The
guidance is likely to be more helpful in earlier generations, where the average utility of
the population is low. As the population converges on a minimum, the heuristic becomes
less useful, and so it could be phased out at some point in the search (either after a num-
ber of generations, or after the rate of improvement of solutions starts to slow down).
However, as with the search space trimming, introducing the heuristic to the evolutionary
search comes at an increased computational cost, and further investigations are needed
to see how beneficial the approach is.

7.4.2 Evaluating real structures of argumentation framework

In this thesis we have investigated the impact that the structure of argumentation frame-
work used by a dialogue system has an impact on the system’s performance. In our
experiments, we used randomly generated frameworks with particular characteristics
that have been used in practical applications of argumentation. This is only a first step
in understanding the effect of structures. Due to developments in the field of argument
mining, it is becoming increasingly feasible to obtain structures of argumentation frame-
work from real-world sources, and thus it will be possible to investigate what emergent
properties these structures have. This will ultimately allow us to design dialogue systems
that perform well on the kinds of structures that exist in realistic domains.

7.4.3 Dialogue strategy competition

A difficulty with evaluating the performance of an approach to generating dialogue
strategies is that it is not possible to make a direct comparison with other approaches.
This is because each approach assumes a different protocol for the dialogue, or different
modelling of the persuadee(s) by the persuader, or a different distribution of arguments
amongst participants. As a result, no two approaches to generating dialogue strategies
have been evaluated on exactly the same type of dialogue.

A dialogue strategy competition, similar to the argument solver competitions, could
provide a set of standardised strategic problems to which to evaluate the performance
of different approaches. This would alleviate the issue above, and allow for detailed
benchmarking between approaches in a systematic way. As a result, this would motivate
the development of more efficient and effective dialogue strategy generators. However,
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as with the argument solver competitions, designing and organising the competition
would be non-trivial. The main challenges for a dialogue competition are listed below.

• Unlike the argument solver competition, where problems are already well-defined
in argumentation theory, there are no similarly canonical dialogue problems. A set
of dialogue problems would need to be designed and decided upon. Which type(s)
of dialogue should be included? Which objectives for dialogue success should be
used? How should other dialogue participants behave in response? Should the
persuader have models of other participants, what information should the models
represent, and how accurate should they be? Should competitors argue against one
another, or should they argue against standardised participants? It is not obvious
what the answers to these questions should be. Any choice will, to some extent,
bias the competition towards certain approaches. Therefore, a consensus should
be reached within the community, with some consideration of which problems
have the most application or relevance to real-world applications.

• Once the set of problems has been decided upon, there would still need to be a
generation of specific instances of these problems. In the argument solver com-
petitions, this relates to generating an AF on which to run the solver upon. In the
dialogue setting, AFs would also be a central component and so they would have
to be generated. But furthermore, additional parameters are needed to define a
dialogue problem, such as which arguments are known by each participant at the
start of the dialogue and which argument is the topic argument.

• A standardised format for solutions and problems would be required. Regarding
solutions, the simplest option would be the have competitors output a file for later
analysis. But what should the syntax of such input and output files look like?
There would need to be a consideration on both the size of a file (for the practical
reason of having to potentially store many of them) and the computational neu-
trality of the format (that is, it should, as much as possible, avoid being easier for
specific approaches).

• A practical consideration are where the computational resources required to run
the problems will come from. Further, the processing and analyse of the results
would be non-trivial, and so there would be a significant amount of human re-
sources to organise the competition.
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Nevertheless, despite these hurdles, a competition could do much to improve the
evaluation of the performances of current approaches to strategic reasoning in dialogue
systems.

7.5 Closing remarks

The work presented in this thesis contributes to research on dialogue systems in ar-
gumentation. Specifically, we have demonstrated that small changes in the domain of
dialogue can have significant and surprising effects on the performance of argumen-
tation systems. Further, we have proposed novel approaches to strategic problems in
persuasion dialogues, and we have demonstrated that they are computationally efficient.
By designing our approaches to be approximate rather than optimal, we have been able
to apply our approaches to dialogues and domains that are beyond that which current
approaches could likely cope with.

In order to realise real-world applications of argumentation in dialectical settings it
is vital to consider the practical issues of the performance of dialogue systems. Systems
that are able to explain their reasoning in a way that is intuitive to non-expert human
users are likely to become more prevalent as demand for scrutability and understanding
of artificial intelligence rises. The contributions of this thesis are a step in the develop-
ment of argumentation systems potentially becoming a key technology for explainable
AI.
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