
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1007/978-3-030-04290-5_27

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Papanikolaou, M., Pagone, E., Salonitis, K., Jolly, M., Makatsoris, C., Vlacic, L. (Ed.), Dao, D. (Ed.), Howlett, R.
J. (Ed.), & Setchi, R. (Ed.) (2018). A computational framework towards energy efficient casting processes. Smart
Innovation, Systems and Technologies, 130, 263-276. Advance online publication. https://doi.org/10.1007/978-3-
030-04290-5_27

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Jan. 2025

https://doi.org/10.1007/978-3-030-04290-5_27
https://kclpure.kcl.ac.uk/portal/en/publications/1525ce95-a0cf-4c48-9991-e576f936f377
https://doi.org/10.1007/978-3-030-04290-5_27
https://doi.org/10.1007/978-3-030-04290-5_27


 

A Computational Framework Towards Energy Efficient 

Casting Processes 

Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and 

Charalampos Makatsoris 

Sustainable Manufacturing Systems Centre, Cranfield University, Cranfield, MK43 

0AL, United Kingdom 

Abstract. Casting is one of the most widely used, challenging and energy inten-

sive manufacturing processes. Due to the complex engineering problems associ-

ated with casting, foundry engineers are mainly concerned with the quality of the 

final casting component. Consequently, energy efficiency is often disregarded 

and huge amounts of energy are wasted in favor of high quality casting parts. In 

this paper, a novel computational framework for the constrained minimization of 

the pouring temperature is presented and applied on the Constrained Rapid In-

duction Melting Single Shot Up-Casting (CRIMSON) process. Minimizing the 

value of the pouring temperature can lead to significant energy savings during 

the melting and holding processes as well as to higher yield rate due to the result-

ing reduction of the solidification time. Moreover, a multi-objective optimization 

component has been integrated into our scheme to assist decision makers with 

estimating the trade-off between process parameters.  

 

Keywords: CRIMSON, Sustainability, Computational Framework, Sand Cast-

ing 

1 Introduction 

For a long period of time, the performance of manufacturing systems was assessed 

based on four main decision-making attributes, namely cost, quality, time and flexibil-

ity. According to recent reports, the energy consumption of industrial operations ac-

counted for about 24% of the total global primary energy supply [1] and for about 20 

% of the total CO2 emissions worldwide [2]. It has been therefore clearer than ever that 

manufacturing systems should be additionally evaluated according to their energy effi-

ciency, which is one of the key factors for sustainable manufacturing systems. These 

recent developments contributed towards the addition of sustainability to the list of the 

aforementioned decision-making attributes [3]. 

During the last decades, the dramatic increase of the world population as well as the 

need for consumer goods have initiated a more systematic approach towards identifying 
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processes and activities with high energy consumption and providing solutions for en-

ergy savings. Solutions around energy and sustainability performance can be achieved 

by following two main strategies: (a) efficient use of fuels and where possible renewa-

ble energy sources and (b) development of more efficient and sustainable manufactur-

ing processes. 

Casting is one of the most widely used primary metal forming processes. Casting is 

known for its complexity as it consists of 6 main manufacturing processes, namely 

melting, alloying, molding, pouring, solidification and finishing [4]. It is also common 

that heat treatment is implemented as a post-casting process [5]. Besides its complexity, 

casting has been known for its energy intensity. According to [6], the energy consump-

tion associated with the melting process is equal to 55% of the total energy consump-

tion. Moreover, according to the same investigation, the energy burden becomes even 

higher due to the tendency of foundries, which are mainly small businesses, not to take 

financial risks and invest in new furnace types incorporating advanced technologies 

with higher thermal efficiency, such as induction furnaces [7]. According to Salonitis 

et al. [4], some of the proposed methods for energy efficiency in foundries are (a) re-

ducing the holding time, (b) increasing the casting yield and (c) high quality melting. 

Resource efficiency in casting is an additional challenge that needs to be addressed. 

Salonitis et al. [4] used the Operational Material Efficiency (OME) criterion and 

showed that the yield in traditional sand casting processes is about 27%. The metal loss 

was associated with the fettling, machining and inspection stages, where up to 90% of 

the material was chopped off, up to 25% of the material was machined off and up to 

20% of the final casting components failed the inspection respectively. 

It is therefore of high importance that auditing and analysis tools for measuring the 

energy and resource efficiency are developed. A systematic effort to perform energy 

audits to assess the energy efficiency of sand casting foundries has been performed by 

Mehrabi et al. [8] who proposed a set of energy saving methods towards an energy 

efficient and sustainable foundry. Computer simulation and Life Cycle Assessment 

(LCA) analysis have also been performed for the optimization of conventional sand 

casting processes [9]. Results showed that the novel CRIMSON up-casting process can 

offer significantly higher energy efficiency and material yield. A computational frame-

work for performing systematic analysis of the energy and material flows in foundries 

has been developed by Pagone et al. [10]. This tool offers decision makers the oppor-

tunity to visualize the material and energy flows in casting processes using Sankey di-

agrams and identify the casting stages where action must be taken to enhance the overall 

process efficiency. 

Performing energy and material efficiency audits relies on real time data, collected 

during the manufacturing processes. However, real time data collection is not always 

feasible due to either the complexity of the processes or confidentiality reasons. This 

problem was partially overcome with the help of computer simulation. During the past 

few decades, the exponential growth of the computing power has allowed researchers 

to perform highly accurate numerical simulations of the behaviour of physical systems. 

As far as casting is concerned, Computational Fluid Dynamics (CFD) has been exten-

sively implemented for simulating the mold filling and solidification processes. Recent 

developments have allowed for the numerical modeling of casting, which involves a 



 

series of diverse phenomena such as heat flow, viscous metal flow with many transient 

free-surface boundaries, phase change and multiple length- and timescales [11]. The 

evolution of numerical models has also contributed towards the accurate prediction of 

casting defects using CFD simulations. More specifically, CFD has been implemented 

for the prediction of double oxide film defects [12], macroshrinkage [13] and mi-

croporosity [14]. According to Ravi [15], CFD has been proven to be particularly useful 

for 3 main purposes: (a) quality enhancement of final casting components [16], (b) yield 

improvement by reducing the mass of the feeding and gating channels [17] and (c) rapid 

development of new casting designs by reducing the number of foundry trials [18]. In 

addition, CFD simulations have been implemented as a step to build databases of cast-

ing process parameters and their effects on the final casting product. These databases 

have later on been used to train Artificial Neural Networks (ANNs) as simulation meta-

models with the help of the Design of Experiments (DoE) method [19]. In a similar 

study, CFD was combined with the Taguchi method to analyze the sand and methoding 

related defects in green sand casting and minimize the percentage of rejected final com-

ponents due to defects. Moreover, an optimized design of the gating and feeding system 

was proposed [20]. An interesting study has been presented by Keste et al. [21] focusing 

on the design optimization of the casting shape for the reduction of the residual stresses. 

For this purpose, the authors solved a constrained multivariable optimization problem 

with the geometrical parameters of the component as variables while the objective func-

tion was the minimization of the residual stresses. Their numerical results were in good 

agreement with experimental results.   

In this study, we have performed CFD simulations in conjunction with an in-house 

constrained optimization algorithm for the estimation of the minimum pouring temper-

ature that can be used in the CRIMSON process. More specifically, our optimization 

scheme is grounded on the assumption that the minimum pouring temperature that can 

be applied is the one for which solidification commences right at the end of the filling 

process. It is of utmost significance that solidification does not start occurring during 

the filling process as this will increase the air entrapment into the liquid metal. Casting 

with the minimum pouring temperature will contribute towards significant energy sav-

ings during the melting and holding phases. Our analysis is also extended to the effects 

of the pouring temperature on the shrinkage microporosity. A multi-objective optimi-

zation framework is also proposed for the evaluation of the optimum pouring tempera-

ture based on the balance between the desired properties of the final product and the 

energy efficiency of the process. 

2 Methodology 

2.1 Introduction 

The Constrained Rapid Induction Melting Single Shot Up-Casting Method 

(CRIMSON) has been developed by Jolly et al. [22]. The main benefit of this casting 

method compared to conventional sand casting techniques is reduced energy consump-

tion. CRIMSON uses an induction furnace and the required quantity of metal for filling 



just a single mold is melted. Afterwards, the crucible is transferred to a casting work-

station where the molten metal is pushed up with a piston to fill the mold using a com-

puter-controlled counter-gravity filling method. The very short melting, transfer and 

filling times of the liquid metal contribute towards minimum holding time and conse-

quently (a) significant energy savings are achieved and (b) the quality of the final prod-

uct is enhanced due to minimal possibility of surface oxide films formation. The design 

of the simulation geometry which comprises of the mold, the shot sleeve, where the 

molten metal is initially stored, and the piston is depicted in Fig. 1. 

 

Fig. 1. Schematic representation of the simulation geometry 

Optimization frameworks have been extensively implemented in a variety of engineer-

ing problems [23, 24]. The methodology presented in this investigation is schematically 

represented in the workflow of Fig. 2. Initially, the physical problem is defined by set-

ting up the simulation parameters such as the geometry files of the parts, the mesh and 

boundary conditions. The aforementioned parameters are stored in a single file which 

is used as an input for the CFD solver. Before solving the model, error checking is 

performed. Subsequently, the simulation results are fed to the optimizer using a parser 

and the new simulation parameters are evaluated and fed back into the CFD software. 

This task involves editing the input file used by the solver. This loop continues until 

the desired accuracy in the objective function set for each simulation case is achieved. 

The Constrained Optimization by Linear Approximation (COBYLA) method and 

the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) have been implemented 

for single- and multi-objective optimization case studies correspondingly. At the end 

of each optimization run, results are ready for post-processing. Further detail on each 

simulation step will be provided in the following paragraphs. The Flow-3D software 

[25] was adapted for performing our filling and solidification simulations. 



 

  

Fig. 2. Workflow of the computational framework 

2.2 Filling and Solidification setup 

The materials that have been assigned to each geometry component are listed on Table 

1, while the corresponding material properties have been imported from the Flow-3D 

materials database. In order to model the air entrainment into the molten metal due to 

turbulent disturbances, we used the air entrainment model of Flow-3D. The molten 

metal flow was considered to be viscous and turbulent and the Renormalized Group 

(RNG) model was used for modelling turbulence. The wall shear boundary conditions 

were set as no-slip while the surface defect concentration model was implemented to 

track the surface impurities’ formation due to the free surface oxides. The air tempera-

ture as well as the initial temperature of the casting components were set equal to 15 

°C and the air pressure was defined equal to the atmospheric. The piston velocity was 

constant and equal to 0.03 m/s while the filing process was completed within 10 s.  

Table 1. Component materials 

Component Material 

Metal Aluminum Silicon Alloy A356 

Mold Silica Sand 

Shot sleeve Ceramic 

Piston Ceramic 

Two different mesh types were applied across the simulation domain as shown in Fig. 

3. A fine mesh was applied on the mold domain to achieve accurate results, while a 

coarser mesh was applied on the rest of the simulation domain to minimize the compu-

tational cost. The density of the fine mesh was selected so as to ensure that there are at 



least two mesh cells in the minimum cross section of the casting design. As shown in 

Fig. 3(a) & (b) the two meshes were perfectly aligned in the x, y and z directions. In 

this way, enhanced data transfer between the two mesh blocks is achieved. The bound-

ary conditions imposed on each mesh plane are summarized in Table 2. 

(a) (b) 

  

Fig. 3. Computational mesh in the xz and yz planes 

Table 2. Mesh boundary conditions 

Fine Mesh Coarse Mesh 

xmin Wall (T=15°C) xmin Wall (T=15°C) 

xmax Wall (T=15°C) xmax Wall (T=15°C) 

ymin Wall (T=15°C) ymin Wall (T=15°C) 

ymax Wall (T=15°C) ymax Wall (T=15°C) 

zmin Symmetry zmin Symmetry 

zmax Pressure (P=1atm, T=15°C) zmax Symmetry 

Our simulations have been divided in two parts: (a) filling and (b) solidification. For 

the filling simulation the fluid momentum and continuity equations are being solved, 

while a first-order method is used for the approximation of the momentum advection. 

For the solidification stage, a zero-velocity field is considered and an implicit solver is 

used for the heat transfer calculation.  

2.3 Optimization 

As shown in Fig. 2, the main function of our optimization algorithm was to run the 

following sequence of actions in a loop until the desired accuracy in the objective func-

tion was achieved: (a) run a FLOW-3D simulation, (b) parse the FLOW-3D output files 

and store the values of the output variables under examination, (c) feed those values to 

the optimizer and (d) generate an input file for the next run using the updated input 



 

parameters. The Constrained Optimization By Linear Approximation (COBYLA) nu-

merical optimization method, integrated in the SciPy library, was used [26] for the sin-

gle-objective optimization case study. For the multi-objective optimization case study 

we implemented the Non-dominated Sorting Genetic Algorithm-II  (NSGA-II) [27] in-

tegrated in the Platypus library [28]. 

3 Results and Discussion 

3.1 Simulation 

 

(a) t=4s 

 

(b) t=6s 

 
(c) t=8s 

 

(d) t=10s 

 

Fig. 4. Velocity magnitude profiles during filling at (a) t=4s, (b) t=6s, (c) t=8s and (d) t=10 s 

For the sake of the current analysis we performed an initial simulation of the filling and 

solidification processes with an initial pouring temperature Tp=720 °C. As it can be 

observed in Fig. 4, filling is very smooth and the maximum velocity magnitude during 

this process is about equal to 0.4 m/s and is located at the minimum cross section of the 

casting as expected. It is also evident that filling is completed at t=10s. 

Fig. 5 presents the time evolution of the solidified liquid fraction across the compu-

tational domain. First of all, it can be observed that solidification is initiated at 3 loca-

tions: (a) the top part of the riser and the tensile bars which are exposed to the atmos-

phere, (b) the thin cross sections located at the middle of the tensile bars and (c) at the 

lowest section of the simulation domain which is contact with the piston. Additionally, 

we can see that the total solidification time Ts, for a pouring temperature Tp=720 °C, is 



equal to 486 s or 8.1 minutes. For pouring temperatures higher than 760 °C, the height 

of the casting geometry is slightly reduced with time. In addition, the height of the riser 

becomes even lower than the height of the tensile bars. This phenomenon can be at-

tributed to shrinkage and becomes more evident for higher values of the pouring tem-

perature Tp. It occurs because the riser is the part that solidifies at the end of the process.  

 

(a) Sf =0 

 

(b) Sf = 0.2  

 

(c) Sf = 0.4 

 

(d) Sf = 0.6  

 

(e) Sf = 0.8 

 

(f) Sf = 1 

 

Fig. 5. Solidified liquid fraction at (a) Sf=0, (b) Sf = 0.2, (c) Sf = 0.4, (d) Sf = 0.6, (e) Sf = 0.8, (f) 

Sf = 1 

3.2 Pouring Temperature Effects on the Solidification Time and the Casting 

Quality 

As an initial step, we investigated how the solidification time is affected by the pouring 

temperature. As observed in Fig. 6(a), the solidification time is approximately a linear 

function of the pouring temperature for a pouring temperature range between 700 and 

800 °C. It is therefore reasonable to conclude that reducing the pouring temperature 

affects not only the energy efficiency (savings achieved during the melting and holding 

phases) but the yield as well, because of the reduction of the total casting solidification 

time. 

For this particular investigation, we used shrinkage microporosity as a measure of 

the casting quality. Shrinkage microporosity is a type of casting defect which is char-

acterized by uniformly distributed bubbles across the casting volume and develops dur-

ing the later stages of the solidification process. As shown in Fig. 6(b), shrinkage mi-

croporosity decreases with increasing pouring temperature for this particular case 

study. This observation is attributed to the increased local fluidity induced by the higher 

pouring temperature. Therefore, it can be concluded that lower pouring temperature 

affects adversely the quality of the final casting component. 

  



 

(a) 

 

(b) 

 

Fig. 6. (a) Solidification time and (b) microporosity volume vs pouring temperature 

3.3 Single-objective optimization 

The results presented in the previous paragraph highlight the need for the development 

of computational tools assisting foundry engineers to make the right decisions for sus-

tainable manufacturing. To serve this purpose, we developed a computational frame-

work for the optimization of the casting process parameters based on the methodology 

presented in paragraph 2.3.  

For the first optimization case study our goal has been to minimize the pouring tem-

perature to improve the energy efficiency of the casting process. Our optimization ob-

jective was to determine the right pouring temperature so that solidification commences 

right at the end of the filling process.  In mathematical terms the optimization problem 

can be defined as: 

 Minimize 𝑓(𝑇𝑝), where 𝑓(𝑇𝑝) = 𝑎𝑏𝑠 (𝑆𝑓(𝑇𝑝)|
𝑡=10 𝑠

− 0.0001) 

 subject to 650 °C ≤ 𝑇𝑝 ≤ 750 °C 

 𝑇𝑝,0 = 670 °C  

where 𝑆𝑓(𝑇𝑝)|
𝑡=10 𝑠

 is the solid fraction at the end of the filling process (t=10 s) as a 

function of the pouring temperature and 𝑇𝑝,0 is the initial guess of the optimizer. 

Fig. 7 illustrates the solution approach by the COBYLA optimizer while the values 

of (a) the objective function 𝑓(𝑇𝑝) and (b) the pouring temperature 𝑇𝑝 are plotted 

against the optimizer iterations. It can be observed that the optimizer has reached close 

enough to the final solution within just about 13 iterations and that the optimum pouring 

temperature for the particular case study is equal to 693.74 °C. If a higher value than 

the optimum is selected, there will be additional energy consumption, while for a lower 

one, premature solidification will lead to additional defects in the final casting compo-

nent. 

 



 

(a) 

 

(b) 

 

Fig. 7. (a) Value of the objective function and (b) pouring temperature vs the number of iterations 

The effects of the minimization of the pouring temperature on the energy efficiency and 

the solidification time for a batch of 104 parts (Sigle line/Mass production) are illus-

trated in Fig. 8(a) and (b) respectively. Optimized results are being compared against a 

pouring temperature equal to TP = 750 °C. It is evident that the minimization of the 

pouring temperature contributes to a 4.3% reduction of the required heat for melting 

(1,554 MJ) and a 12% reduction of the total solidification time (172 hours). For the 

estimation of the heat required to melt the appropriate metal quantity for a single casting 

component, we used the following formula: 

 𝑄 = 𝑚𝑐𝑃𝛥𝑇 + 𝑚𝐿 (1) 

where 𝑄 is the total heat required, 𝑚 = 4.2 𝑘𝑔 is the mass a single casting component, 

𝑐𝑃 = 963 𝐽 𝑘𝑔⁄  the specific heat of A356, 𝛥𝑇 = 𝑇𝑃 − 15℃ and 𝐿 = 389 𝑘𝐽 𝑘𝑔⁄  the 

latent heat for the change of state of A356. 

(a) 

 

(b) 

 

Fig. 8. Comparison between initial and optimized pouring temperature effects on (a) the heat 

required for melting (b) the solidification time required for 10,000 casting parts (Sigle 

line/Mass production). 



 

3.4 Multi-objective optimization  

In the case of casting, as in any other engineering problem, decisions have to be made 

based on trade-offs between conflicting objectives. For instance, in this case study, an 

increase in the pouring temperature will lead to additional energy consumption but on 

the other hand, higher quality will be achieved due to less shrinkage microporosity (see 

paragraph 3.2). It is therefore crucial that computational tools for the estimation of these 

trade-offs are developed. These tools are of great utility when multiple objective func-

tions are under consideration, such as in the case of sustainability, where both product 

quality and energy efficiency should be maximized. 

In this study, we have used the NSGA-II multi-objective optimization algorithm in 

order to demonstrate the trade-off between the casting quality, measured via the mi-

croporosity volume in this case, and energy efficiency. In mathematical terms the opti-

mization problem can be defined as: 

 Minimize (𝑓(𝑇𝑝), Microporosity volume) 

 subject to 650 °C ≤ 𝑇𝑝 ≤ 750 °C 

The solution of this problem is a set of feasible solutions, also called a Pareto front, 

which is illustrated in Fig. 9. 

 

Fig. 9. Set of feasible solutions for the multi-objective optimization problem (Pareto front) 



4 Conclusions and Future Work 

During the last few decades, sustainability has been consolidated in the decision-mak-

ing framework of manufacturing processes. However, in the case of sustainable pro-

duction, many conflicting objectives are involved in the decision-making process. 

Therefore, the development of computational tools capable of providing decision mak-

ers with the required information is more than imperative. 

 In the current investigation we have developed a computational framework inte-

grating both single- and multi-objective optimization algorithms for the promotion of 

energy efficient casting processes. Our framework consists of an in-house algorithm 

plugged into the commercial CFD software Flow-3D. Our computational framework 

was applied on the CRIMSON casting process and two optimization case studies were 

performed: (a) a single-objective optimization case study for the minimization of the 

pouring temperature aiming at enhanced energy efficiency and (b) a multi-objective 

optimization case study for the demonstration of the trade-off between the energy effi-

ciency and the final cast product quality. Our results suggest that the optimum pouring 

temperature for the particular casting design is 693.74 °C. Moreover, a Pareto curve is 

provided for assisting decision makers to select the optimum pouring temperature based 

on the desired final product characteristics and energy efficiency. 

 This investigation has briefly shown the potential and benefits of applying a com-

putational framework towards sustainable production. Some future research directions 

suggested are: (a) the incorporation of more process parameters, such as the geometrical 

parameters of the mold shape, into the computational framework, (b) the extension of 

the application of the current framework to other types of casting processes and (c) the 

evaluation of whether the construction of databases and training of Artificial Neural 

Networks (ANNs) in favor of faster decision-making process is feasible. 
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