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Abstract
We study the problem of scheduling a set of jobs with release dates, deadlines and pro-
cessing requirements (orworks) on parallel speed scalable processors so as tominimize
the total energy consumption. We consider that both preemptions and migrations of
jobs are allowed. For this problem, there exists an optimal polynomial-time algorithm
which uses as a black box an algorithm for linear programming. Here, we formulate the
problem as a convex program and we propose a combinatorial polynomial-time algo-
rithmwhich is based onfindingmaximumflows.Our algorithm runs inO(nf (n) logU )

time, where n is the number of jobs,U is the range of all possible values of processors’
speeds divided by the desired accuracy and f (n) is the time needed for computing a
maximum flow in a layered graph with O(n) vertices.

Keywords Energy efficient scheduling · Speed scaling · Network flows · Convex
programming
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1 Introduction

Energy consumption is amajor issue in our days. Great efforts are devoted to the reduc-
tion of energy dissipation in computing environments ranging from small portable
devices to large data centers. From an algorithmic point of view, new challenging
optimization problems are studied in which the energy consumption is taken into
account as a constraint or as the optimization goal itself (for recent reviews see Albers
2010, 2011; Irani and Pruhs 2005). This later approach has been adopted in the seminal
paper of Yao et al. (1995) who considered the problem of scheduling a set of jobs with
release dates and deadlines on a single processor so that the total energy is minimized,
under the so-called speed scaling model in which the speed of a processor can be
varied over time and the power consumption is a convex function of the processor’s
speed. Specifically, at a given time t , if the speed of a processor is s(t), then the power
consumption is s(t)α , where α > 1 is a constant, and the energy consumption is the
power integrated over time.

Single processorYao et al. (1995) proposed an optimal offline algorithm, known as the
YDS algorithm according to the initials of the authors, for the problem of minimizing
the energy with preemptions, i.e., where the execution of a job may be interrupted and
resumed later on. In the same work, they initiated the study of online algorithms for
this problem, introducing the Average Rate (AVR) and the Optimal Available (OA)
algorithms. Bansal et al. (2007) proposed a new online algorithm, the BKP algorithm
according to the authors’ initials, which has better competitive ratio than AVR and OA
for large values of α.

Multiprocessor When there are multiple processors available, we may consider dif-
ferent variants of speed scaling problems. In the non-migratory variant, we allow
preemptions of jobs but not migrations. This means that a job may be interrupted and
resumed later on the same processor, but it is not allowed to continue its execution
on a different processor. In the migratory variant, both preemptions and migrations of
jobs are allowed.

Albers et al. (2007) considered the multiprocessor non-migratory problem of min-
imizing the energy of a set of unit-work jobs. For the case in which the jobs have
agreeable deadlines, they proposed an optimal polynomial time algorithm. Then, they
showed that the problem isNP-hard when the jobs have arbitrary deadlines and they
proposed anαα24α-approximation algorithm for it.Note that, the ratio of this algorithm
is constant becauseα is a constant. For themore general problem inwhich the jobs have
arbitrary works, Greiner et al. (2009) established a generic reduction transforming a ρ-
approximation algorithm for the single-processor problem to a ρB�α�-approximation
algorithm for the multiprocessor non-migratory problem, where B�α� is the �α�-th
Bell number. This result basically implies a constant factor approximation algorithm
for the multiprocessor non-migratory problem with arbitrary works.

For themigratory variant, Chen et al. (2004) initiated the study of themultiprocessor
speed scaling problem ofminimizing the energy and they proposed a greedy algorithm
for the basic setting inwhich all jobs have the same release date and deadline. Bingham
and Greenstreet (2008) proposed a polynomial-time algorithm for the more general
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setting where the jobs have arbitrary release dates and deadlines. The algorithm in
Bingham and Greenstreet (2008) needs an algorithm for linear programming as a
black box. So, after this work, an intriguing open question was whether there exists a
faster combinatorial algorithm.

It has to be noticed that after the conference version of our paper, multiproces-
sor speed scaling problems attracted much attention and new papers appeared (e.g.,
Bampis et al. 2012, 2013) in the direction of improving the above results and general-
izing them for power-heterogeneous environments in which different processors obey
to different power functions.

Multi-objective In general, energy and performance are conflicting objectives and
a series of papers addressed speed scaling problems in a multicriteria context. Pruhs
et al. (2008) studied the problem of optimizing performance without exceeding a fixed
budget of energy. Their objective was total flow time minimization and they presented
an optimal polynomial-time algorithm for instances with unit-work jobs. In order to
prove the optimality of their algorithm, they formulated the problem as a convex pro-
gram and they showed that their algorithms always produces a solution satisfying the
well-known Karush, Kuhn, Tucker (KKT) conditions which are necessary and suffi-
cient conditions for optimality in convex programming. Albers and Fujiwara (2007)
studied the problem of minimizing the total flow time plus energy which is an alterna-
tiveway for optimizing two conflicting objectives. Finally, Chan et al. (2009) proposed
an online algorithm for maximizing the throughput and minimizing the energy of a
set of jobs which have to be executed by a processor whose speed is bounded above.
Their algorithm has constant competitive ratio in terms of both objectives.

Our contribution and organization of the paper We consider the multiprocessor
migratory speed scaling problem and our objective is energy minimization. In Sect. 3,
we formulate the problem as a convex program. In Sect. 4, we apply the KKT con-
ditions to our convex program and we obtain a set of structural properties of optimal
schedules. Then, in Sect. 5, we propose an optimal algorithm which is based on max-
imum flow computations. The running time of our algorithm, which we call BAL, is
O(n f (n) logU ), where n is the number of jobs, U is the range of all possible values
of processors’ speed divided by the desired accuracy and f (n) is the complexity of
computing a maximum flow in a layered graph with O(n) vertices. Independently
to our work, Albers et al. (2011) proposed another optimal algorithm for the same
problem which also explores the relation of the problem with maximum flow.

2 Preliminaries

We begin with a formal description of our problem and some definitions. An instance
of our problem consists of a set of jobs J = {J1, . . . , Jn} which have to be executed
by m parallel processors. Each job J j is specified by an amount of work w j , a release
date r j and a deadline d j . The processors are speed scalablewhichmeans that they can
vary their speeds dynamically over time. Every processor satisfies the speed-to-power
function P(s) = sα , where P(s) is the processor’s power consumption if it runs with

123



Journal of Combinatorial Optimization (2019) 37:1266–1282 1269

speed s and α > 1 is a constant. It has to be noticed that the speed of a processor may
be any non-negative value. If a processor runs with speed s for t units of time, then
it executes t · s units of work and it consumes t · sα units of energy. In our setting,
we allow preemptions and migrations of the jobs. That is, a job may be executed on
some processor, suspended and resumed later on the same or on a different processor.
However, we do not allow parallel execution of a job which means that a job cannot
be run by more that one processors at a given time. Our objective is to find a schedule
with minimum energy consumption so that every job is entirely executed between its
release date and its deadline.

An important remark is that there is always an optimal schedule for our problem
such that every job J j is executed with fixed speed s j . This is a well-known fact for
most speed scaling problems (see Yao et al. 1995) and it can be derived by using the
convexity of the speed-to-power function.

Let t0 < t1 < · · · < t� be the times which correspond to all the release dates and
deadlines of the jobs. We define the intervals Ii = [ti−1, ti ), for all 1 ≤ i ≤ �, and we
refer by I to the set of all these intervals, i.e., I = {I1, I2, . . . , I�}. For a time interval
Ii ∈ I, we denote by |Ii | its length and by Ai the set of jobs which are allowed to be
executed during Ii , i.e., Ai = {J j ∈ J : Ii ⊆ [r j , d j )}. If J j ∈ Ai , then we say that
job J j is active during Ii .

Next,we state a problemwhichwe callWorkAssignment Problem (WAP) andwhich
is a key ingredient for our analysis.WAP resembles to our original problem except that
the speed of each processor is fixed (it cannot be varied) and the number of available
processors is not the same at each time. An instance of WAP consists of a set of jobs
J = {J1, . . . , Jn} and a set of disjoint time intervals I = {I1, I2, . . . , I�}. Each job J j
has an amount of work w j and it is active (i.e., it is allowed to be executed) in a subset
of the intervals. During interval Ii there are mi available processors. Furthermore, we
are given a value v. Our objective is to decide whether there exists a feasible schedule
in which all jobs are feasibly executed with a fixed speed v. Note that a schedule
is feasible only if each job is entirely executed during the intervals that it is active.
Preemptions and migrations of jobs are allowed but parallel execution of a job is not
permitted. In WAP, each job J j has a fixed processing time equal to

w j
v
. Therefore,

WAP can be solved in polynomial time with a variant of the optimal algorithm of the
well-known scheduling problem P|pmtn, r j , d j |− (see Baptiste et al. 2004).

3 Convex programming formulation

In this section, we propose a convex program for our problem. We introduce the
variables s j and ti, j , for all J j ∈ J and Ii ⊆ [r j , d j ), corresponding to the speed of
job J j and the total amount of time that job J j is processed during Ii , respectively.
Then, the problem can be formulated as follows:

min
∑

J j∈J
w j s

α−1
j (1)

∑

Ii⊆[r j ,d j )

ti, j ≥ w j

s j
J j ∈ J (2)
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∑

J j∈Ai

ti, j ≤ m · |Ii | Ii ∈ I (3)

ti, j ≤ |Ii | J j ∈ J , Ii ⊆ [r j , d j ) (4)

ti, j ≥ 0 J j ∈ J , Ii ⊆ [r j , d j ) (5)

s j ≥ 0 J j ∈ J (6)

Expression (1) corresponds to the total energy consumption. Constraints (3) enforce
that at least w j units of work are executed for each job J j . Because of the constraints
(4), at most m processors are used at each time. Due to the constraints (5), a job J j is
executed by at most one processor at each time. Constraints (6) and (6) ensure the non-
negativity of the variables s j and ti, j . It has to be mentioned that Constraints (1)–(6)
are not sufficient for feasibility, i.e., there exist unfeasible schedules satisfying all of
them. However, by applying the well-known McNaughton’s algorithm (McNaughton
1959) in each interval Ii ∈ I, every such schedule can be converted into a feasible
one without increasing the total energy consumption.

The single variable functions w j s
α−1
j are convex, as (w j s

α−1
j )′′ = (α − 1)(α −

2)w j s
α−3
j > 0, for each α > 2. Similarly, the single variable functions w j/s j are also

convex. Because the objective function and Constraints (3) consist of convex function
sums while all remaining constraints are linear, the above mathematical program is
convex for α > 2. By using variable t j corresponding to job J j processing time
instead of variable s j , we obtain an equivalent mathematical program which is convex
for any α > 1. In particular, every occurrence of s j is replaced byw j/t j , the objective
function becomes

∑
j∈J wα

j /t
α−1
j , Constraints (3) become

∑
Ii⊆[r j ,d j )

ti, j ≥ t j , for

J j ∈ J , and all other constraints remain identical. Function wα
j /t

α−1
j is convex, since

(wα
j /t

α−1
j )′′ = α(α−1)wα

j /t
α+1
j > 0, for eachα > 1.Because speed relationships are

more intuitive, we elaborate on the convex programwith the s j variables. Nevertheless,
our analysismaybe equivalently applied using the convexprogramwith the t j variables
and obtain an optimal algorithm for all α > 1.

Since our problem can be formulated as a convex program, it can be solved
in polynomial time as follows. We solve the convex program in polynomial time
by applying the Ellipsoid Algorithm and we obtain a processing time (i.e., speed)
for each job. Once these processing times have been computed, we construct
a feasible schedule by using an optimal algorithm for the feasibility problem
P|pmtn, r j , d j |−. In the remainder of the paper, we derive a faster combinatorial
algorithm.

4 Structure of an optimal schedule

In what follows, we elaborate on the structure of an optimal schedule for our prob-
lem and we derive some properties which are necessary and sufficient for optimality.
These properties are obtained by using the well-known KKT (Karush, Kuhn, Tucker)
conditions which are necessary and sufficient for optimality in convex programming
(see Nemirovski et al. 1994). A description of the KKT conditions can be found in the
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“Appendix”.We apply the KKT conditions to the convex program that we presented in
the previous section and we obtain the following lemma which specifies the structure
of an optimal schedule.

Lemma 1 A feasible solution of the problem is optimal if and only if, for every Ii ∈ I,
the following properties hold:

1. If |Ai | ≤ m, then ti, j = |Ii | for every job J j ∈ Ai .
2. Otherwise, it holds that

i.
∑

J j∈Ai
ti, j = m · |Ii |.

ii. All jobs J j ∈ Ai with 0 < ti, j < |Ii | have equal speeds.
iii. If a job J j ∈ Ai is not executed during Ii , i.e., ti, j = 0, then s j ≤ s j ′ for any

job J j ′ ∈ Ai with ti, j ′ > 0.
iv. If a job J j ∈ Ai is executed during the whole interval Ii , i.e., ti, j = |Ii |, then

s j ≥ s j ′ for any job J j ′ ∈ Ai with ti, j ′ < |Ii |.

Proof The proof consists of two parts. Part 1 shows that a solution satisfying the KKT
conditions also satisfies the lemma’s properties. Part 2 shows that all feasible solutions
satisfying the lemma’s properties attain equal energy consumption and assign the same
speeds to the jobs. Because there is always an optimal solution to the convex program
satisfying the KKT conditions, the lemma follows.

Part 1Consider an interval Ii s.t. |Ai | ≤ m. A job J j cannot be executed for more than
|Ii | units of time during the interval Ii because we do not allow parallel execution of
jobs. Assume for contradiction that there exists an optimal schedule S∗ s.t. ti, j < |Ii |,
for some job J j ∈ Ai . Then, we can increase the time that J j is processed during Ii
in order to obtain a new schedule which is feasible because |Ai | ≤ m and of lower
energy consumption.

Now, we consider the more challenging case of an interval Ii s.t. |Ai | > m. Note
that, with a similar argument as before, we can show that

∑
J j∈Ai

ti, j = m · |Ii |. We
prove the remaining properties by applying the KKT conditions.

We associate to each constraint of the convex program a dual variable. So, to the
constraints (3)–(6), we associate the dual variables λ j , μi , πi, j and σi, j , respectively.
Clearly, s j > 0 for each job J j ∈ J . Therefore, by the complementary slackness
conditions, the dual variables associated with the constraints (6) must be equal to zero.

By stationarity conditions,

∇
⎛

⎝
∑

J j∈J
w j s

α−1
j

⎞

⎠ +
∑

J j∈J
λ j · ∇

(
w j

s j
−

∑

Ii⊆[r j ,d j )

ti, j

)

+
∑

Ii∈I
μi∇

( ∑

J j∈Ai

ti, j − m · |Ii |
)

+
∑

Ii∈I

∑

J j∈Ai

πi, j∇(ti, j − |Ii |) +
∑

Ii∈I

∑

J j∈Ai

σi, j∇(−ti, j ) = 0 ⇔
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∑

J j∈J

(
(α − 1)w j s

α−2
j − λ j

w j

s2j

)
∇s j

+
∑

Ii∈I

∑

J j∈Ai

(
− λ j + μi + πi, j − σi, j

)
∇ti, j = 0

In order to satisfy the stationarity conditions, the coefficients of the partial deriva-
tives ∇s j and ∇ti, j must be equal to zero. Thus, we get that

(α − 1)sα
j = μi + πi, j − σi, j Ii ∈ I, J j ∈ Ai (7)

By complementary slackness conditions,

πi, j · (ti, j − |Ii |) = 0 Ii ∈ I, J j ∈ Ai (8)

σi, j · (−ti, j ) = 0 Ii ∈ I, J j ∈ Ai (9)

Note that, if we applied the KKT conditions in the formulation with processing
time variables t j instead of the speed variables s j , then the would derive exactly the
same conditions (7) - (9). For a given job J j ∈ Ai , we consider the following cases:

– 0 < ti, j < |Ii |
Complementary slackness conditions (8) and (9) imply that πi, j = σi, j = 0. As
a result, (7) can be written as

(α − 1)sα
j = μi . (10)

Therefore, all such jobs have the same speed which is proportional to μi . That is,
2ii is true.

– ti, j = 0
By (8), we have that πi, j = 0 and (7) is expressed as (α −1)sα

j = μi −σi, j . Since
σi, j ≥ 0, we get that

(α − 1)sα
j ≤ μi . (11)

– ti, j = |Ii |
By (9), we get that σi, j = 0. So, (7) becomes (α − 1)sα

j = μi + πi, j . Given that
πi, j ≥ 0,

(α − 1)sα
j ≥ μi . (12)

By Eqs. (10), (11) and (12), we conclude that 2iii and 2iv are satisfied by an optimal
schedule.

Part 2 Given an optimal solution of the convex program that satisfies the KKT con-
ditions, we derived some relations between the primal variables. Based on them, we
obtained some structural properties of an optimal schedule for our problem. Next, we
show that these properties are also sufficient for optimality.

Assume for the sake of contradiction that there exists a non-optimal schedule S
satisfying the properties of Lemma 1 and let S∗ be an optimal schedule which satisfies
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Lemma 1. We denote by E , s j and ti, j the energy consumption, the speed of job J j
and the total execution time of job J j during Ii , respectively, in schedule S. Let E∗,
s∗
j and t∗i, j be the corresponding values for the schedule S∗.
We define the set J ′ which contains the jobs J j with s j > s∗

j . Since E > E∗, J ′
is not empty. By the definition of J ′,

∑

J j∈J ′

∑

Ii :⊆[r j ,d j )

ti, j <
∑

J j∈J ′

∑

Ii :⊆[r j ,d j )

t∗i, j

Hence, there is at least one interval Ii such that

∑

J j∈J ′
ti, j <

∑

J j∈J ′
t∗i, j

If |Ai | ≤ m, then there is at least one job J j such that ti, j < t∗i, j . Due to the property 1
of Lemma1, it should hold that ti, j = t∗i, j = |Ii |which is a contradiction. So, itmust be
the case that |Ai | > m. Then, the last equation gives that ti, j < t∗i, j for some job J j ∈
J ′. Thus, ti, j < |Ii | and t∗i, j > 0.Both schedulesS andS∗ must have equal sumof pro-
cessing times during the interval Ii , by property 2i of Lemma 1. So, there must be a job
J j ′ /∈ J ′ such that ti, j ′ > t∗i, j ′ . Therefore, ti, j ′ > 0 and t∗i, j ′ < |Ii |. We conclude that

s j ′ ≥ s j > s∗
j ≥ s∗

j ′

Thefirst inequality comes from the fact that ti, j ′ > 0, ti, j < |Ii | andLemma1. The sec-
ond inequality holds because J j ∈ J ′. The third inequality is obtained similarly with
the first inequality.Given the above,we have a contradiction on the fact that J j ′ /∈ J ′.�

5 Optimal combinatorial algorithm

Next,wepropose anoptimal combinatorial algorithm for our problemwhich constructs
schedules satisfying Lemma 1.

Our algorithm is based on the notion of critical jobs defined below. Initially, the
algorithm conjectures that all jobs are executed at the same speed in the optimal
schedule and it assigns to all of them a sufficiently large speed. The key idea is to
continuously decrease the speeds of the jobs step by step. At each step, it assigns
a speed to the critical jobs which are ignored in the subsequent steps and it goes on
reducing the speeds of the remaining jobs. At the end of the last step, every job has been
assigned a speed. Critical jobs are recognized by finding a minimum (s, t)-cut in an
appropriate graph as we describe in the following. Once the algorithm has computed a
speed, i.e., a processing time, for each job, it constructs a feasible schedule by applying
an optimal algorithm for P|pmtn, r j , d j |−.

At a given step, the algorithm performs a binary search in order to reduce the speeds
of the jobs. The binary search is performed by solving repeatedly different instances
of the WAP. Each instance of the WAP is solved by a maximum flow computation.
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Fig. 1 Graph corresponding to an instance of the WAP

Specifically, given an instance < J , I, v > of the WAP, the algorithm constructs a
directed graph G as follows (Fig. 1). There is one node for each job J j ∈ J , one node
for each interval Ii ∈ I, a source node s and a destination node t . The algorithm intro-
duces an arc (s, J j ), for each J j ∈ J , with capacity

w j
v
, an arc (J j , Ii ) with capacity

|Ii |, for each couple of job J j and interval Ii such that J j ∈ Ai , and an arc (Ii , t) with
capacity mi |Ii | for each interval Ii ∈ I. We say that this is the corresponding graph
of < J , I, v >. The algorithm decides if an instance < J , I, v > of the WAP is
feasible by computing a maximum (s, t)-flow on its corresponding graph G, based on
the following theorem.

Theorem 1 There exists a feasible schedule for an instance < J , I, v > of the WAP
iff there exists a feasible (s, t)-flow of value

∑
J j∈J

w j
v

in the corresponding graph
G.

We are ready to introduce the notion of criticality for feasible instances of the
WAP. Given a feasible instance for the WAP, we say that job Jc is critical if, for any
feasible schedule S and for each interval Ii such that Jc ∈ Ai , either ti,c = |Ii | or∑

J j∈Ai
ti, j = mi |Ii |, where ti, j is the total amount of time that job J j is processed

during Ii in S. Moreover, we say that an instance < J , I, v > of the WAP is critical
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if v is the minimum speed so that the set of jobs J can be feasibly executed during
the intervals in I. We refer to this speed v as the critical speed of J and I.

Based on the Theorem 1, we extend the notion of criticality. Let us consider a
feasible instance < J , I, v > of the WAP and let G be its corresponding graph.
Given an arc e and a feasible (s, t)-flow F of G, we say that the arc e is saturated by
F if the amount of flow that crosses the arc e according to F is equal to the capacity
of e. Additionally, we say that a path p of G is saturated by F if there exists at least
one arc e in p which is saturated. Then, a job Jc is critical if every path Jc, Ii , t is
saturated by any maximum (s, t)-flow F .

In order to continue our analysis, we need the following lemma which relates, in a
sense, the notions of critical job and critical instance.

Lemma 2 If < J , I, v > is a critical instance of WAP, then there is at least one
critical job J j ∈ J .

Proof Let G be the corresponding graph of < J , I, v >. Since the instance
< J , I, v > is critical, there exists a minimum (s, t)-cut C in G that contains either
an arc (J j , Ii ), for some J j ∈ J and Ii ∈ I, or an arc (Ii , t), for some Ii ∈ I. If
this was not the case, the only minimum (s, t)-cut would be the one with all the arcs
(s, J j ). This means that we could reduce the speed v to v − ε, for an infinitesimal
quantity ε > 0, and the instance < J , I, v − ε > would admit a feasible flow equal
to

∑
J j∈J

w j
v−ε

which contradicts the criticality of < J , I, v >.
Now, there must be at least one arc (s, Jc) that does not belong to C, which is a

minimum (s, t)-cut containing at least one of the arcs (J j , Ii ) or (Ii , t). If all arcs
(s, J j ) were included in C, then C would have greater capacity than the (s, t)-cut that
contains just all the arcs (s, J j ) in contradiction with the fact that C is a minimum
(s, t)-cut. Based on the definition of an (s, t)-cut, we conclude that all paths Jc, Ii , t
must have an arc that belongs in C so that if we remove the arcs of C, the nodes s and
t become disconnected. Hence, the job Jc is critical. �

Note that the instance < J , I, v − ε > is not feasible if < J , I, v > is critical.
Up to now, the notion of a critical job has been defined only in the context of feasible
instances. We extend this notion for unfeasible instances as follows. In an unfeasible
instance < J , I, v − ε >, a job J j is called critical if every path J j , Ii , t is saturated
by any maximum (s, t)-flow in the corresponding graph G ′.

Let < J , I, v > be a critical instance of the WAP and let G be its corresponding
graph. Next, we propose a way for identifying the critical jobs of < J , I, v > using
the graph G ′ that corresponds to the instance < J , I, v − ε >, for some sufficiently
small constant ε > 0 based on Lemmas 3 and 4 below. The value of ε is such that the
two instances have exactly the same set of critical jobs. Moreover, the critical jobs of
< J , I, v − ε > can be found by computing a minimum (s, t)-cut in the graph that
corresponds to < J , I, v − ε >.

Lemma 3 Given a critical instance < J , I, v > of the WAP, there exists a sufficiently
small constant ε > 0 such that the unfeasible instance < J , I, v − ε > and <

J , I, v > have exactly the same critical jobs. The same holds for any other unfeasible
instance < J , I, v − ε′ > such that 0 < ε′ ≤ ε.

123



1276 Journal of Combinatorial Optimization (2019) 37:1266–1282

Proof Since < J , I, v > is a critical instance, because of Lemma 2, it must contain
at least one critical job.

If all the jobs of the instance are critical, then, in the graph G that corresponds to
< J , I, v >, there is a minimum (s, t)-cut C that contains exactly one arc of every
path J j , Ii , t . Clearly, C is a minimum (s, t)-cut for the graph G ′ that corresponds to
< J , I, v − ε > for any ε > 0, because all the arcs (s, J j ), J j ∈ J , have greater
capacity in G ′ than in G, while all the other arcs have equal capacities in the two
graphs. Hence, for any job J j ∈ J , either the arc (J j , Ii ) or the arc (Ii , t) is saturated
by any maximum (s, t)-flow in G ′, for all Ii ∈ I such that J j ∈ Ai . That is, all jobs
are critical in G ′ as well and the lemma is true.

Now, assume that there is at least one non-critical job. Consider a non-critical job J j .
We know that there must be at least one maximum (s, t)-flowF in G such that at least
one path J j , Ii , t is not saturated by F , for some Ii ∈ I such that J j ∈ Ai . Consider
such a path J j , Ii , t . Since the path is not saturated, we have that c(J j ,Ii ) − f(J j ,Ii ) > 0
and c(Ii ,t) − f(Ii ,t) > 0, where ce is the capacity of the arc e and fe is the amount of
flow that passes through e according to F , respectively. Then, we set

η j = min{c(J j ,Ii ) − f(J j ,Ii ), c(Ii ,t) − f(Ii ,t)}

The intuition behind the valueη j is the following.Assume thatwe increase the capacity
of the arc (s, J j ) while keeping the same capacities for the remaining arcs. If this
increase is less than η j , then there is a maximum (s, t)-flow F ′ in the new graph such
that neither the arc (J j , Ii ), nor the arc (Ii , t) are saturated by F ′. The maximum
(s, t)-flow F ′ in the new graph can be easily obtained from the maximum (s, t)-flow
F in G.

For every non-critical job J j , we fix a positive value η j as we described in the
previous paragraph. Note that we do not want to compute such a value but we only
care for its existence. Let ηmin be the minimum value η j , among all the non-critical
jobs. From the instance< J , I, v >, we obtain an unfeasible instance< J , I, v−ε >

as follows. We pick an ε such that the total increase of the capacities of all the arcs
from the source node to the job nodes is less than ηmin . In other words, the value ε

must satisfy the following inequality

∑

J j∈J

w j

v − ε
<

∑

J j∈J

w j

v
+ ηmin

Let us, now, explain why the two instances have the same critical jobs. Initially,
we will show that if a job is non-critical in G, then it remains non-critical in G ′. By
the way we picked ε, for any non-critical job J j in G, there is always a maximum
(s, t)-flow such that some path from J j to t is not saturated in G ′. Therefore, each
non-critical job in G, remains a non-critical job in G ′.

Next, consider a critical job J j of < J , I, v >. By construction, the arc (s, J j )
has greater capacities in G ′ than in G and all the arcs (J j , Ii ) and (Ii , t), J j ∈ Ai ,
have equal capacities in the two graphs. We conclude that (s, J j ) cannot belong to
any minimum (s, t)-cut in G ′. Thus, every path J j , Ii , t is saturated by any maximum
(s, t)-flow in G ′. Therefore, if a job is critical in G, then it is critical in G ′ as well. �
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The following lemma is a direct consequence of the definition of criticality on
feasible and infeasible WAP instances.

Lemma 4 Assume that < J , I, v > is a critical instance for the WAP and let G ′ be
the graph that corresponds to the instance < J , I, v − ε >, for any sufficiently small
constant ε > 0 in accordance with the Lemma 3. Then, any minimum (s, t)-cut C′ of
G ′ contains exactly:
i. one arc of every path J j , Ii , t for any critical job J j ,
ii. the arc (s, J j ) for each non-critical job J j .

We are now ready to give a high level description of our algorithm. When the
algorithm begins, we assume that the optimal schedule consumes a large amount of
energy and all jobs are executed with the same speed sU B . This speed value is selected
so that there exists a feasible schedule executing all jobs with equal speed sU B . Then,
the algorithm decreases the common speed of all jobs up to a point where no further
reduction is possible so as to obtain a feasible schedule. At this point, all jobs are
assumed to be executed with the same speed, which is critical, and there is at least one
job that cannot be executed with speed less than this, in any feasible schedule. The
jobs that cannot be executed with speed less than the critical one form the current set
of critical jobs. So, the critical job(s) is (are) assigned the critical speed and is (are)
ignored thereafter. In what follows, the algorithm considers the subproblem in which
some jobs are omitted (critical jobs), because they are already assigned the lowest
speed possible (critical speed) so that they can be feasibly executed, and there are less
thanm processors during some intervals because these processors are dedicated to the
omitted jobs.

In more detail, the algorithm schedules the jobs in a sequence of � ≤ n discrete
steps. In the initial step, it identifies the set Jcri t of critical jobs which are the ones
executed with the maximum speed in the optimal schedule. To do so, it first computes
the speed scri t that these jobs are assigned, i.e., the speed for which < J , I, scri t > is
a critical WAP instance. The value scri t is determined by performing binary search in
the interval [sLB, sU B], where sLB is a speed value such < J , I, sLB > is infeasible.
Once scri t is determined, the critical jobs are identified by computing a maximum
flow on the infeasible WAP instance < J , I, scri t − ε >. The value ε is selected
so that it satisfies the requirement of the Lemma 3, i.e., the feasible, critical WAP
instance < J , I, scri t > and the infeasible WAP instance < J , I, scri t − ε > have
the same set of critical jobs. Based on the maximum flow computation, the algorithm
determines the critical jobs using Lemma 4 which indicates that there is a unique
minimum cut on the corresponding graph of < J , I, scri t − ε >, for any ε > 0 upper
bounded as indicated by Lemma 3. Note that, if we choose ε = 0, then the graph of
< J , I, scri t > has multiple different minimum cuts with respect to the number of
(s, J j ) edges, because it is a feasible WAP instance, and identifying the critical jobs
is not obvious. This observation is the reason for detecting the critical jobs on the
graph of < J , I, scri t − ε >. Once the algorithm identifies the critical jobs, it goes
on with the remaining jobs and machine-intervals in the same manner. Algorithm 1 is
a pseudocode of the proposed algorithm.

Next, we derive a valid, concrete value ε. Given a value ε in accordance with
Lemma 3, Algorithm 1 produces the distinct job speed values s1 > s2 > · · · >
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s�. Because these speed values are critical speeds of critical jobs in critical WAP
instances, they must belong to a well-defined discrete, exponential set as indicated by
the following lemma.

Lemma 5 Let s j ′ be the speed that Algorithm 1 assigns to job J j ′ ∈ J . It holds that
s j ′ = (

∑
J j∈S w j )/(

∑
Ii∈I xi |Ii |), for some subset S ⊆ J of jobs and numbers

xi ∈ [0,m] of machines ∀Ii ∈ I.

Proof When job J j ′ is assigned a speed by the algorithm, it is a critical job for some
critical WAP instance < J ′, I ′, v′ > and s j ′ = v′. Let S be the set of critical jobs
in < J ′, I ′, v′ > and

∑
Ii∈I xi |Ii | the sum of the arcs of the (J j , Ii , t) paths in

the Lemma 4 minimum cut. By the definition of criticality, it must be the case that
s j ′ = (

∑
J j∈S w j )/(

∑
Ii∈I xi |Ii |). �

Inwhat follows,wederive a suitable value for ε assuming that input data are integers.
However, the arguments can be adapted to obtain an alternative, valid ε in the case of
bounded rational input data. Lemma 3 selects a value ε such that the feasible, critical
WAP instance < J , I, v > and the infeasible instance < J , I, v − ε > have the
same set of critical jobs, and thus the same set of non-critical jobs. In each step of the
algorithm, this requirement for the value ε is equivalent to sk − sk+1 ≥ ε. Otherwise,
by the way the algorithm computes sk and sk+1 and the way ε is obtained in the proof
of Lemma 3, the corresponding WAP instances < J , I, v > and < J , I, v − ε > in
the computation of sk would not have the same set of non-critical jobs, i.e., we would
have a contradiction. Because the input data are integral and the fact that the speed
values produced by the algorithm belong to a discrete set as indicated by Lemmas 5
and 6 derives an appropriate ε value.

Lemma 6 Consider a pair of jobs J j ′ , J j ′′ ∈ J for which Algorithm 1 assigns speeds
s j ′ and s j ′′ such that s j ′ �= s j ′′ . Without loss of generality, suppose that s j ′ > s j ′′ .
Assuming that the input data are integral, if ε = 1/2m2L2, where L = dmax − rmin,
then it holds that s j ′ − s j ′′ > ε.

Proof By Lemma 5, s j ′ = (
∑

J j∈S′ w j )/(
∑

Ii∈I x ′
i |Ii |) and s j ′′ = (

∑
J j∈S′′ w j )/

(
∑

Ii∈I x ′′
i |Ii |), where S ′,S ′′ ⊆ J and x ′

i , x
′′
i ∈ [0,m] for Ii ∈ I. Then, it holds that

s j ′ − s j ′′ =
∑

J j∈S′ w j
∑

Ii∈I x ′
i |Ii |

−
∑

J j∈S′′ w j
∑

Ii∈I x ′′
i |Ii |

=
(∑

J j∈S′ w j

) (∑
Ii∈I x ′′

i |Ii |
)

−
(∑

J j∈S′′ w j

) (∑
Ii∈I x ′

i |Ii |
)

(∑
Ii∈I x ′

i |Ii |
) (∑

Ii∈I x ′′
i |Ii |

)

>
1/2(∑

Ii∈I x ′
i |Ii |

) (∑
Ii∈I x ′′

i |Ii |
) >

1

2m2L2 ,

where the first inequality holds because the input data are integers and s′
j �= s j ′′ . �
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Note that the binary search procedure may compute scri t subject to ε accurracy.
However, once the set Jcri t of critical jobs has been determined, we may compute the
critical speed exactly as follows. For each interval Ii , letmi be the number of available
processors. Then, min{|Jcri t |,mi } processors are occupied by the jobs Jcri t which
are scheduled with constant speed so as to occupy these processors in every interval.
This last speed is equal to

scri t =
∑

J j∈Jcri t
w j

∑
Ii∈I min{|Jcri t |,mi }|Ii | (13)

Due to the convexity of the speed-to-power function, we know that each job J j
cannot be executedwith speed less than its density δ j = w j

d j−r j
in any optimal schedule.

Therefore, given a set of jobsJ , we know that there does not exist an optimal schedule
that executes all jobs with a speed s < maxJ j∈J {δ j }. Also, observe that if all jobs

have speed s = maxIi∈I{ 1
|Ii |

∑
J j∈J w j }, then we can construct a feasible schedule.

These bounds define the search space of the binary search performed in the initial
step. In the next step the critical speed of the previous step is an upper bound on the
speed of all remaining jobs and a lower bound is the maximum density among them.
We use these updated bounds to perform the binary search of the current step and we
go on like that.

Theorem 2 Given a sufficiently small constant ε satisfying Lemma 4, Algorithm 1
produces an optimal schedule.

Proof We will show that any schedule constructed by the algorithm satisfies the prop-
erties of Lemma 1. Let G(k) be the graph maintained by the algorithm at the beginning
of the k-th step.

We begin with the proof of property 1. Consider an interval Ii s.t. |Ai | ≤ m and
a job J j ∈ Ai . Assume that J j becomes critical in the k-th step. Then, either the
edge (J j , Ii ) or the edge (Ii , t) must belong to a minimum (s, t)-cut of G(k). Since
|Ai | ≤ m, only the first is possible which means that ti, j = |Ii | in the algorithm’s
schedule.

Algorithm 1
1: sU B = maxi { 1

|Ii |
∑

J j∈Ai
w j }, sLB = maxJ j∈J {δ j }

2: while J �= ∅ do
3: Find the maximum speed v so that the instance < J ,I, v > of the WAP is not feasible, using binary

search in the interval [sLB , sU B ] with repeated maximum flow computations until the size of the
interval is at most ε (this ε is small enough to satisfy Lemma 3).

4: Determine the set of critical jobs Jcri t by computing a minimum (s, t)-cut in the graph G′ that
corresponds to the instance < J ,I, v − ε > based on Lemma 4.

5: Assign to each job in Jcri t the speed computed according to Eq. (13).
6: J = J \Jcri t .
7: Update the set of available processors for each interval Ii ∈ I.
8: sU B = scri t , sLB = maxJ j∈J \Jcri t

{δ j }
9: Apply an optimal algorithm for P|pmtn, r j , d j |− to schedule the jobs, where each job J j has processing

time w j /s j .
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In the remainder of the proof, we consider an interval Ii s.t. |Ai | > m. Assume that
a job J j ∈ Ai is scheduled in the k-th iteration. Then, either the edge (J j , Ii ) or the
edge (Ii , t) belongs to a minimum (s, t)-cut of G(k). Since there are more thanm jobs
active during Ii , we conclude that

∑
J j∈Ai

ti, j = m|Ii | in the algorithm’s schedule
and property 2i is true.

For property 2ii, consider two jobs J j and J j ′ , active during Ii , such that 0 < ti, j <

|Ii | and 0 < ti, j ′ < |Ii |. We will show that the jobs are assigned equal speeds by
the algorithm. For this, it suffices to show that they are assigned a speed at the same
step. So, assume for contradiction that J j becomes critical before J j ′ , at the k-th step.
Then, either the arc (J j , Ii ) or the arc (Ii , t) belongs to a minimum (s, t)-cut C in
G(k). Since 0 < ti, j < |Ii |, we know that there exists a maximum (s, t)-flow in G(k)

such that 0 < f(J j ,Ii ) < |Ii |. Thus, it is the arc (Ii , t) that belongs in C. Consequently,
in G(k), the edge (Ii , t) is saturated by any maximum (s, t)-flow, and as a result, all
the processors during the interval Ii are dedicated to the execution of some tasks at
the end of the k-th step. Hence, J j ′ cannot be scheduled in a subsequent step.

For property 2iii, consider the case where ti, j = 0 for a job J j ∈ Ai and assume
that J j becomes critical at the k-th step. Then, either (Ii , t) does not appear in G(k)

or (Ii , t) belongs to a minimum (s, t)-cut of G(k). If none of these was true, then J j
would not be critical in G(k). Therefore, J j cannot have speed greater than any job
scheduled during Ii .

Next, let J j be a job with ti, j = |Ii | and assume that it is assigned a speed at the
k-th step. Given our previous observations, this cannot happen after a step where a job
J j ′ with 0 < ti, j ′ < |Ii | or ti, j ′ = 0 is scheduled. �

We turn, now, our attention to the running time of the algorithm. Because of
Lemma 2, at least one job is scheduled at each step of the algorithm. Therefore, there
will be at most n steps. Assume thatU is an upper bound on the speed of any job in the
optimal schedule, e.g., U = maxIi∈I{ 1

|Ii |
∑

J j∈J w j }. Then, the binary search needs

to check O(log U
ε
) values of speed to determine the next critical speed at one step,

where ε is small enough so that Lemmas 3 and 4 are satisfied. That is, BAL performs
O(log U

ε
)maximumflow calculations at each step. Thus, the overall complexity of our

algorithm is O(n f (n) log U
ε
), where f (n) is the complexity of computing a maximum

flow in a graph with O(n) vertices.
In a graph with V vertices and E edges, a maximum flow can be computed in

O(V 2E) time using (i) the push-relabel algorithm (Ahuja et al. 1993), or (ii) Dinic’s
blockingflowalgorithm (Dinitz 2006).Using the dynamic tree data structure bySleator
and Tarjan (1983), a maximum flow is computed in O(V E log V ) time. The network
of Algorithm 1 contains V = O(n) vertices and E = O(n2) edges. Based on this
result, we conclude the following corollary.

Corollary 1 There exists an optimal algorithm for the speed scaling problem on par-
allel processors with migration, running in O(n4 log(nm2L2U )) time.
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6 Conclusion

We studied the multiprocessor speed scaling problem of minimizing the energy with
migrations.Weproposed a combinatorial polynomial-time algorithmbased on a reduc-
tion to the maximum flow problem. Since there is not much work on problems with
migrations there are many directions and speed problems to be considered in a mul-
ticriteria context. All these problems seem to be very interesting and might require
new algorithmic techniques because of their continuous nature. We believe that the
approach used in our paper might be useful in this direction.
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Appendix: Convex programming and KKT conditions

A optimization problem in the following form is called a convex optimization problem
if all the functions f , g1, . . . , gm : Rn → R are convex.

min f (x)

gi (x) ≤ 01 ≤ i ≤ m

x ∈ R
n

In what follows, we state the KKT (Karush, Kuhn, Tucker) conditions which are
necessary and sufficient for optimality in convex programming (see Nemirovski et al.
1994).Consider any convexprogram in the above formwhere all functions all functions
gi are differentiable in their domain. Suppose that the program is strictly feasible, i.e.,
there is a point x such that gi (x) < 0, for all 1 ≤ i ≤ m. To each constraint gi (x) ≤ 0,
we associate a dual variable λi . Then, the KKT conditions are expressed as follows

gi (x) ≤ 0 1 ≤ i ≤ m (14)

λi ≥ 0 1 ≤ i ≤ m (15)

λi · gi (x) = 0 1 ≤ i ≤ m (16)

∇ f (x) +
m∑

i=1

λi · ∇gi (x) = 0 (17)

KKT conditions are necessary and sufficient for the solutions x ∈ Rn and λ ∈ Rm

to be primal and dual optimal, where λ = (λ1, λ2, . . . , λm). The conditions (14) are
known as primal feasible, (15) as dual feasible, (16) as complementary slackness and
(17) as stationarity conditions, respectively.
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