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a b s t r a c t 

Heat exchanger network synthesis exploits excess heat by integrating process hot and cold streams and 

improves energy efficiency by reducing utility usage. Determining provably good solutions to the min- 

imum number of matches is a bottleneck of designing a heat recovery network using the sequential 

method. This subproblem is an N P -hard mixed-integer linear program exhibiting combinatorial explo- 

sion in the possible hot and cold stream configurations. We explore this challenging optimization prob- 

lem from a graph theoretic perspective and correlate it with other special optimization problems such 

as cost flow network and packing problems. In the case of a single temperature interval, we develop 

a new optimization formulation without problematic big-M parameters. We develop heuristic methods 

with performance guarantees using three approaches: (i) relaxation rounding, (ii) water filling, and (iii) 

greedy packing. Numerical results from a collection of 51 instances substantiate the strength of the meth- 

ods. 

© 2018 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Heat exchanger network synthesis (HENS) minimizes cost and

improves energy recovery in chemical processes ( Baliban et al.,

2012; Biegler et al., 1997; Elia et al., 2010; Smith, 20 0 0 ). HENS

exploits excess heat by integrating process hot and cold streams

and improves energy efficiency by reducing utility usage ( Escobar

and Trierweiler, 2013; Floudas and Grossmann, 1987; Furman

and Sahinidis, 2002; Gundersen and Naess, 1988 ). Floudas et al.

(2012) review the critical role of heat integration for energy

systems producing liquid transportation fuels ( Niziolek et al.,

2015 ). Other important applications of HENS include: refrigeration
� This manuscript is dedicated, with deepest respect, to the memory of Professor 

C.A. Floudas. Professor Floudas showed that, given many provably-strong solutions 

to the minimum number of matches problem, he could design effective heat re- 

covery networks. So the diverse solutions generated by this manuscript directly im- 

prove Professor Floudas’ method for automatically generating heat exchanger net- 

work configurations. 
�� DOI of original item: 10.1016/j.compchemeng.2018.03.002 . 
�� A publisher’s error resulted in this article appearing in the wrong issue. The 

article is reprinted here for the reader’s convenience and for the continuity of the 

special issue. For citation purposes, please use the original publication details; Com- 

puters and Chemical Engineering, 113(2018), pp. 57–85. 
∗ Corresponding author. 

E-mail addresses: d.letsios@imperial.ac.uk (D. Letsios), 

g.kouyialis14@imperial.ac.uk (G. Kouyialis), r.misener@imperial.ac.uk (R. Misener). 
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ystems ( Shelton and Grossmann, 1986 ), batch semi-continuous

rocesses ( Castro et al., 2015; Zhao et al., 1998 ) and water

tilization systems ( Bagajewicz et al., 2002 ). 

Heat exchanger network design is a mixed-integer nonlinear

ptimization (MINLP) problem ( Ciric and Floudas, 1991; Hasan

t al., 2010; Papalexandri and Pistikopoulos, 1994; Yee and Gross-

ann, 1990 ). Mistry and Misener (2016) recently showed that ex-

ressions incorporating logarithmic mean temperature difference,

.e. the nonlinear nature of heat exchange, may be reformulated

o decrease the number of nonconvex nonlinear terms in the opti-

ization problem. But HENS remains a difficult MINLP with many

onconvex nonlinearities. One way to generate good HENS solu-

ions is to use the so-called sequential method ( Furman and Sahini-

is, 2002 ). The sequential method decomposes the original HENS

INLP into three tasks: (i) minimizing utility cost, (ii) minimizing

he number of matches, and (iii) minimizing the investment cost.

he method optimizes the three mathematical models sequen-

ially with: (i) a linear program (LP) ( Cerda et al., 1983; Papoulias

nd Grossmann, 1983 ), (ii) a mixed-integer linear program (MILP)

 Cerda and Westerberg, 1983; Papoulias and Grossmann, 1983 ),

nd (iii) a nonlinear program (NLP) ( Floudas et al., 1986 ). The se-

uential method may not return the global solution of the origi-

al MINLP, but solutions generated with the sequential method are

ractically useful. 

This paper investigates the minimum number of matches prob-

em ( Floudas, 1995 ), the computational bottleneck of the sequential
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Nomenclature. 

Name Description 

Cardinalities 

n Number of hot streams 

m Number of cold streams 

k Number of temperature intervals 

v Number of matches (objective value) 

Indices 

i ∈ H Hot stream 

j ∈ C Cold stream 

s, t, u ∈ T Temperature interval 

b ∈ B Bin (single temperature interval problem) 

Sets 

H, C Hot, cold streams 

T Temperature intervals 

M Set of matches (subset of H × C ) 

C i ( M ), H j ( M ) Cold, hot streams matched with i ∈ H, j ∈ C in M 

B Bins (single temperature interval problem) 

A ( M ) Set of valid quadruples ( i, s, j, t ) with respect to a set M of 

matches 

A u ( M ) Set of quadruples ( i, s, j, t ) ∈ A ( M ) with s ≤ u < t 

V H ( M ) Set of pairs ( i, s ) ∈ H × T appearing in A ( M ) (transportation 

vertices) 

V C ( M ) Set of pairs ( j, t ) ∈ C × T appearing in A ( M ) (transportation 

vertices) 

V C 
i,s 

(M) Set of pairs ( j, t ) ∈ V C ( M ) such that ( i, s, j, t ) belongs to A ( M ) 

V H 
j,t 

(M) Set of pairs ( i, s ) ∈ V H ( M ) such that ( i, s, j, t ) belongs to A ( M ) 

Parameters 

h i Total heat supplied by hot stream i ( h i = 

∑ 

s ∈ T σi,s ) 

h max Maximum heat among all hot streams ( h max = max i ∈ H { h i } ) 
c j Total heat demanded by cold stream j ( c j = 

∑ 

t∈ T δ j,t ) 

σ i, s Heat supply of hot stream i in interval s 

δj, t Heat demand of cold stream j in interval t 

�
 σ , � δ Vectors of all heat supplies, demands 

�
 σt , 
�
 δt Vectors of all heat supplies, demands in temperature 

interval t 

R t Residual heat exiting temperature interval t 

U i, j Upper bound (big-M parameter) on the heat exchanged via 

match ( i, j ) 

λi, j Fractional cost approximation of match ( i, j ) (Lagrangian 

relaxation) 
�
 λ Vector of all fractional cost approximations λi, j 

Variables 

y i, j Binary variable indicating whether i and j are matched 

q i, j, t Heat of hot stream i received by cold stream j in interval t 

q i, s, j, t Heat exported by hot stream i in s and received by cold 

stream j in t 

�
 y , � q Vectors of binary, continuous variables 

r i, s Heat residual of heat of hot stream i exiting s 

x b Binary variable indicating whether bin b is used 

w i, b Binary variable indicating whether hot stream i is placed 

in bin b 

z j, b Binary variable indicating whether cold stream j is placed 

in bin b 

Other 

N Minimum cost flow network 

G Solution graph (single temperature interval problem) 

φ( M ) Filling ratio of a set M of matches 

�
 y f , � q f Optimal fractional solution 

αi , β j Number of matches of hot stream i , cold stream j 

L i, j Heat exchanged from hot stream i to cold stream j 

I Instance of the problem 

r Remaining heat of an algorithm 
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ethod. The minimum number of matches problem is a strongly

 P -hard MILP ( Furman and Sahinidis, 2001 ). Mathematical sym-

etry in the problem structure combinatorially increases the pos-

ible stream configurations and deteriorates the performance of ex-

ct, tree-based algorithms ( Kouyialis and Misener, 2017 ). 

Because state-of-the-art approaches cannot solve the minimum

umber of matches problem to global optimality for moderately-

ized instances ( Chen et al., 2015b ), engineers develop experience-

otivated heuristics ( Cerda et al., 1983; Linnhoff and Hindmarsh,

983 ). Linnhoff and Hindmarsh (1983) highlight the importance of

enerating good solutions quickly: a design engineer may want to
ctively interact with a good minimum number of matches solu-

ion and consider changing the utility usage as a result of the MILP

utcome. Furman and Sahinidis (2004) propose a collection of ap-

roximation algorithms, i.e. heuristics with performance guaran-

ees, for the minimum number of matches problem by exploiting

he LP relaxation of an MILP formulation. Furman and Sahinidis

2004) present a unified worst-case analysis of their algorithms’

erformance guarantees and show a non-constant approximation

atio scaling with the number of temperature intervals. They also

rove a constant performance guarantee for the single temperature

nterval problem. 

The standard MILP formulations for the minimum number of

atches contain big-M constraints, i.e. the on/off switches associ-

ted with weak continuous relaxations of MILP. Both optimization-

ased heuristics and exact state-of-the-art methods for solving

inimum number of matches problem are highly affected by the

ig-M parameter. Trivial methods for computing the big-M param-

ters are typically adopted, but Gundersen et al. (1997) propose a

ighter way of computing the big-M parameters. 

This manuscript develops new heuristics and provably efficient

pproximation algorithms for the minimum number of matches

roblem. These methods have guaranteed solution quality and ef-

cient run-time bounds. In the sequential method, many possible

tream configurations are required to evaluate the minimum over-

ll cost ( Floudas, 1995 ), so a complementary contribution of this

ork is a heuristic methodology for producing multiple solutions

fficiently. We classify the heuristics based on their algorithmic na-

ure into three categories: (i) relaxation rounding, (ii) water filling,

nd (iii) greedy packing. 

The relaxation rounding heuristics we consider are (i) Fractional

P Rounding (FLPR), (ii) Lagrangian Relaxation Rounding (LRR), and

iii) Covering Relaxation Rounding (CRR). The water-filling heuris-

ics are (i) Water-Filling Greedy (WFG), and (ii) Water-Filling MILP

WFM). Finally, the greedy packing heuristics are (i) Largest Heat

atch LP-based (LHM-LP), (ii) Largest Heat Match Greedy (LHM),

iii) Largest Fraction Match (LFM), and (iv) Shortest Stream (SS).

ajor ingredients of these heuristics are adaptations of single

emperature interval algorithms and maximum heat computations

ith match restrictions. We propose (i) a novel MILP formulation,

nd (ii) an improved greedy approximation algorithm for the sin-

le temperature interval problem. Furthermore, we present (i) a

reedy algorithm computing maximum heat between two streams

nd their corresponding big-M parameter, (ii) an LP computing the

aximum heat in a single temperature interval using a subset of

atches, and (iii) an extended maximum heat LP using a subset of

atches on multiple temperature intervals. 

The manuscript proceeds as follows: Section 2 formally defines

he minimum number of matches problem and discusses mathe-

atical models. Section 3 discusses computational complexity and

pproximation algorithms for the minimum number of matches

roblem. Section 4 focusses on the single temperature interval

roblem. Section 5 explores computing the maximum heat ex-

hanged between the streams with match restrictions. Sections 6 –

 present our heuristics for the minimum number of matches

roblem based on: (i) relaxation rounding, (ii) water filling, and

iii) greedy packing, respectively, as well as new theoretical perfor-

ance guarantees. Section 9 evaluates experimentally the heuris-

ics and discusses numerical results. Sections 10 and 11 discuss the

anuscript contributions and conclude the paper. 

. Minimum number of matches for heat exchanger network 

ynthesis 

This section defines the minimum number of matches problem

nd presents the standard transportation and transshipment MILP

odels. Table 1 contains the notation. 
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2.1. Problem definition 

Heat exchanger network design involves a set HS of hot pro-

cess streams to be cooled and a set CS of cold process streams to

be heated. Each hot stream i posits an initial temperature T HS 
in ,i 

and a target temperature T HS 
out ,i 

( < T HS 
in ,i 

). Analogously, each cold

stream j has an initial temperature T CS 
in , j 

and a target temperature

T CS 
out , j 

( > T CS 
in , j 

). Every hot stream i and cold stream j are associated

flow rate heat capacities FCp i and FCp j , respectively. Minimum heat

recovery approach temperature �T min relates the hot and cold

stream temperature axes. A hot utility i in a set HU and a cold util-

ity j in a set CU may be purchased at a cost, e.g. with unitary costs

κHU 
i 

and κCU 
j 

. Like the streams, the utilities have inlet and outlet

temperatures T HU 
in ,i 

, T HU 
out ,i 

, T CU 
in , j 

and T CU 
out , j 

. The first step in a sequen-

tial approach to HENS minimizes the utility cost and thereby spec-

ifies the heat each utility introduces in the network. The next step

minimizes the number of matches. Appendix F discusses the tran-

sition from the minimizing utility cost to minimizing the number

of matches. After this transition, each utility may, without loss of

generality, be treated as a stream. 

The minimum number of matches problem posits a set of hot

process streams to be cooled and a set of cold process streams to

be heated. Each stream is associated with an initial and a target

temperature. This set of temperatures defines a collection of tem-

perature intervals . Each hot stream exports (or supplies) heat in

each temperature interval between its initial and target temper-

atures. Similarly, each cold stream receives (or demands) heat in

each temperature interval between its initial and target temper-

atures. Appendix F formally defines the temperature range parti-

tioning. Heat may flow from a hot to a cold stream in the same

or a lower temperature interval, but not in a higher one. In each

temperature interval, the residual heat descends to lower tempera-

ture intervals. A zero heat residual is a pinch point . A pinch point

restricts the maximum energy integration and divides the network

into subnetworks. 

A problem instance consists of a set H = { 1 , 2 , . . . , n } of hot

streams, a set C = { 1 , 2 , . . . , m } of cold streams, and a set T =
{ 1 , 2 , . . . , k } of temperature intervals. Hot stream i ∈ H has heat

supply σ i, s in temperature interval s ∈ T and cold stream j ∈ C

has heat demand δj, t in temperature interval t ∈ T . Heat conser-

vation is satisfied, i.e. 
∑ 

i ∈ H 
∑ 

s ∈ T σi,s = 

∑ 

j∈ C 
∑ 

t∈ T δ j,t . We denote

by h i = 

∑ 

s ∈ T σi,s the total heat supply of hot stream i ∈ H and by

c j = 

∑ 

t∈ T δ j,t the total heat demand of cold stream j ∈ C . 

A feasible solution specifies a way to transfer the hot streams’

heat supply to the cold streams, i.e. an amount q i, s, j, t of heat ex-

changed between hot stream i ∈ H in temperature interval s ∈ T and

cold stream j ∈ C in temperature interval t ∈ T . Heat may only flow

to the same or a lower temperature interval, i.e. q i,s, j,t = 0 , for each

i ∈ H, j ∈ C and s, t ∈ T such that s > t . A hot stream i ∈ H and a cold

stream j ∈ C are matched , if there is a positive amount of heat ex-

changed between them, i.e. 
s, t ∈ T q i, s, j, t > 0. The objective is to

find a feasible solution minimizing the number of matches ( i, j ). 

2.2. Mathematical models 

The transportation and transshipment models formulate the

minimum number of matches as a mixed-integer linear program

(MILP). 

Transportation model ( Cerda and Westerberg, 1983 ). As illustrated in

Fig. 1 a, the transportation model represents heat as a commodity

transported from supply nodes to destination nodes. For each hot

stream i ∈ H , there is a set of supply nodes, one for each temper-

ature interval s ∈ T with σ i, s > 0. For each cold stream j ∈ C , there

is a set of demand nodes, one for each temperature interval t ∈ T
ith δj, t > 0. There is an arc between the supply node ( i, s ) and

he destination node ( j, t ) if s ≤ t , for each i ∈ H, j ∈ C and s, t ∈ T . 

In the MILP formulation, variable q i, s, j, t specifies the heat

ransferred from hot stream i ∈ H in temperature interval s ∈ T to

old stream j ∈ C in temperature interval t ∈ T . Binary variable y i, j 
f whether streams i ∈ H and j ∈ C are matched or not. Parameter

 i, j is a big-M parameter bounding the amount of heat exchanged

etween every pair of hot stream i ∈ H and cold stream j ∈ C , e.g.

 i, j = min { h i , c j } . The problem is formulated: 

in 

∑ 

i ∈ H 

∑ 

j∈ C 
y i, j (1)

∑ 

j∈ C 

∑ 

t∈ T 
q i,s, j,t = σi,s i ∈ H, s ∈ T (2)

∑ 

i ∈ H 

∑ 

s ∈ T 
q i,s, j,t = δ j,t j ∈ C, t ∈ T (3)

∑ 

s,t∈ T 
q i,s, j,t ≤ U i, j · y i, j i ∈ H, j ∈ C (4)

 i,s, j,t = 0 i ∈ H, j ∈ C, s, t ∈ T : s > t (5)

 i, j ∈ { 0 , 1 } , q i,s, j,t ≥ 0 i ∈ H, j ∈ C, s, t ∈ T (6)

xpression (1) , the objective function, minimizes the number of

atches. Eqs. (2) and (3) ensure heat conservation. Eqs. (4) enforce

 match between a hot and a cold stream if they exchange a posi-

ive amount of heat. Eqs. (4) are big-M constraints . Eqs. (5) ensure

hat no heat flows to a hotter temperature. 

The transportation model may be reduced by removing re-

undant variables and constraints. Specifically, a mathematically-

quivalent reduced transportation MILP model removes: (i) all vari-

bles q i, s, j, t with s > t and (ii) Eqs. (5) . But modern commercial

ILP solvers may detect redundant variables constrained to a fixed

alue and exploit this information to their benefit. Table G.6 shows

hat the aggregate performance of CPLEX and Gurobi is unaffected

y the redundant constraints and variables. 

ransshipment model ( Papoulias and Grossmann, 1983 ). As illus-

rated in Fig. 1 b, the transshipment formulation transfers heat

rom hot streams to cold streams via intermediate transshipment

odes. In each temperature interval, the heat entering a transship-

ent node either transfers to a cold stream in the same tempera-

ure interval or it descends to the transshipment node of the sub-

equent temperature interval as residual heat. 

Binary variable y i, j is 1 if hot stream i ∈ H is matched with cold

tream j ∈ C and 0 otherwise. Variable q i, j, t represents the heat re-

eived by cold stream j ∈ C in temperature interval t ∈ T originally

xported by hot stream i ∈ H . Variable r i, s represents the residual

eat of hot stream i ∈ H that descends from temperature interval s

o temperature interval s + 1 . Parameter U i, j is a big-M parameter

ounding the heat exchanged between hot stream i ∈ H and cold

tream j ∈ C , e.g. U i, j = min { h i , c j } . The problem is formulated: 

in 

∑ 

i ∈ H 

∑ 

j∈ C 
y i, j (7)

∑ 

j∈ C 
q i, j,s + r i,s = σi,s + r i,s −1 i ∈ H, s ∈ T (8)

 i,k = 0 i ∈ H (9)
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Fig. 1. In the transportation model ( Cerda and Westerberg, 1983 ), each hot stream i supplies σ i, t units of heat in temperature interval t which can be received, in the same 

or a lower temperature interval, by a cold stream j which demands δj, t units of heat in t . In the transshipment model ( Papoulias and Grossmann, 1983 ), there are also 

intermediate nodes transferring residual heat to a lower temperature interval. This figure is adapted from Furman and Sahinidis (2004) . 
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∑ 

i ∈ H 
q i, j,t = δ j,t j ∈ C, t ∈ T (10) 

∑ 

t∈ T 
q i, j,t ≤ U i, j · y i, j i ∈ H, j ∈ C (11) 

 i, j ∈ { 0 , 1 } , q i, j,t , r i,s ≥ 0 i ∈ H, j ∈ C, s, t ∈ T (12) 

xpression (7) minimizes the number of matches. Eqs. (8) –(10)

nforce heat conservation. Eq. (11) allows positive heat exchange

etween hot stream i ∈ H and cold stream j ∈ C only if ( i, j ) are

atched. 

. Heuristics with performance guarantees 

.1. Computational complexity 

We briefly introduce N P -completeness and basic computa-

ional complexity classes ( Arora and Barak, 2009; Papadimitriou,

994 ). A polynomial algorithm produces a solution for a computa-

ional problem with a running time polynomial to the size of the

roblem instance. There exist problems which admit a polynomial-

ime algorithm and others which do not. There is also the class

f N P -complete problems for which we do not know whether they

dmit a polynomial algorithm or not. The question of whether N P -

omplete problems admit a polynomial algorithm is known as the

 = N P question. In general, it is conjectured that P � = N P , i.e.

 P -complete problems are not solvable in polynomial time. An

ptimization problem is N P -hard if its decision version is N P -

omplete. A computational problem is strongly N P -hard if it re-

ains N P -hard when all parameters are bounded by a polynomial

o the size of the instance. 

The minimum number of matches problem is known to be

trongly N P -hard, even in the special case of a single temperature

nterval. Furman and Sahinidis (2004) propose an N P -hardness re-

uction from the well-known 3-Partition problem, i.e. they show

hat the minimum number of matches problem has difficulty

quivalent to the 3-Partition problem. Appendix A presents an al-

ernative N P -hardness reduction from the bin packing problem.
his alternative setting of the minimum number of matches prob-

em gives new insight into the packing nature of the problem.

 major contribution of this paper is to design efficient, greedy

euristics motivated by packing. 

heorem 1. There exists an N P -hardness reduction from bin packing

o the minimum number of matches problem with a single tempera-

ure interval. 

roof. See Appendix A . �

.2. Approximation algorithms 

A heuristic with a performance guarantee is usually called an

pproximation algorithm ( Vazirani, 2001; Williamson and Shmoys,

011 ). Unless P = N P , there is no polynomial algorithm solving

n N P -hard problem. An approximation algorithm is a polyno-

ial algorithm producing a near-optimal solution to an optimiza-

ion problem. Formally, consider an optimization problem, with-

ut loss of generality minimization, and a polynomial Algorithm A

or solving it (not necessarily to global optimality). For each prob-

em instance I , let C ALG ( I ) and C OPT ( I ) be the algorithm’s objective

alue and the optimal objective value, respectively. Algorithm A is

-approximate if, for every problem instance I , it holds that: 

 ALG ( I ) ≤ ρ · C OPT ( I ) . 

hat is, a ρ-approximation algorithm computes, in polynomial

ime, a solution with an objective value at most ρ times the op-

imal objective value. The value ρ is the approximation ratio of

lgorithm A . To prove a ρ-approximation ratio, we proceed as

epicted in Fig. 2 . For each problem instance, we compute ana-

ytically a lower bound C LB ( I ) of the optimal objective value, i.e.

 LB ( I ) ≤ C OPT ( I ), and we show that the algorithm’s objective value is

t most ρ times the lower bound, i.e. C ALG ( I ) ≤ρ · C LB ( I ). The ratio of

 ρ-approximation algorithm is tight if the algorithm is not ρ − ε
pproximate for any ε > 0. An algorithm is O ( f ( n ))-approximate and

( f ( n ))-approximate, where f ( n ) is a function of an input parameter
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Table 2 

Performance guarantees for the minimum number of matches problem. The performance guarantees 

marked † are from Furman and Sahinidis (2004) ; all others are new to this manuscript. 

Heuristic Abbrev. Section Performance guarantee Running time 

Single temperature interval problem 

Simple greedy SG 4.2 2 † (tight) O ( nm ) 

Improved greedy IG 4.2 1.5 (tight) O ( nm ) 

Relaxation rounding heuristics 

Fractional LP rounding FLPR 6.1 O ( k ) † , O ( U max ), ( n ) 1 LP 

Lagrangian relaxation rounding LRR 6.2 2 LPs 

Covering relaxation rounding CRR 6.3 O ( nm ) ILPs 

Water filling heuristics 

Water filling MILP WFM 7 and 4.1 O ( k ) † , ( k ) O ( k ) MILPs 

Water filling greedy WFG 7 and 4.2 O ( k ) † , ( k ) O ( nmk ) 

Greedy packing heuristics 

Largest heat match LP-based LHM-LP 8.2 O ( log n + log (h max /ε)) O ( n 2 m 

2 ) LPs 

Largest heat match greedy LHM 8.2 O ( n 2 m 

2 k ) 

Largest fraction match LFM 8.3 O ( n 2 m 

2 k ) 

Shortest stream SS 8.4 O ( nmk ) 
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n , if the algorithm does not have an approximation ratio asymptot-

ically higher and lower, respectively, than f ( n ). 

Approximation algorithms have been developed for two prob-

lem classes relevant to process systems engineering: heat ex-

changer networks ( Furman and Sahinidis, 2004 ) and pooling ( Dey

and Gupte, 2015 ). Table 2 lists performance guarantees for the

minimum number of matches problem; most are new to this

manuscript. 

4. Single temperature interval problem 

This section proposes efficient algorithms for the single temper-

ature interval problem. Using graph theoretic properties, we ob-

tain: (i) a novel, efficiently solvable MILP formulation without big-

M constraints and (ii) an improved 3/2-approximation algorithm.

Of course, the single temperature interval problem is not immedi-

ately applicable to the minimum number of matches problem with

multiple temperature intervals. But designing efficient approxima-

tion algorithms for the single temperature interval is the first, es-

sential step before considering multiple temperature intervals. Ad-

ditionally, the water filling heuristics introduced in Section 7 re-

peatedly solve the single temperature interval problem. 

In the single temperature interval problem, a feasible solu-

tion can be represented as a bipartite graph G = (H ∪ C, M) in

which there is a node for each hot stream i ∈ H , a node for

each cold stream j ∈ C and the set M ⊆H × C specifies the matches.

Appendix B shows the existence of an optimal solution whose

graph G does not contain any cycle. A connected graph without

cycles is a tree , so G is a forest consisting of trees. Appendix B also

shows that the number v of edges in G , i.e. the number of matches,

is related to the number � of trees with the equality v = n + m − � .

Since n and m are input parameters, minimizing the number of

matches in a single temperature interval is equivalent to finding a

solution whose graph consists of a maximal number � of trees. 

4.1. Novel MILP formulation 

We propose a novel MILP formulation for the single tempera-

ture interval problem. In an optimal solution without cycles, there

can be at most min { n, m } trees. From a packing perspective, we

assume that there are min { n, m } available bins and each stream

is placed into exactly one bin. If a bin is non-empty, then its con-

tent corresponds to a tree of the graph. The objective is to find a

feasible solution with a maximum number of bins. 

To formulate the problem as an MILP, we define the set B =
{ 1 , 2 , . . . , min { n, m }} of available bins. Binary variable x is 0 if bin
b 
 ∈ B is empty and 1, otherwise. A binary variable w i, b indicates

hether hot stream i ∈ H is placed into bin b ∈ B . Similarly, a bi-

ary variable z j, b specifies whether cold stream j ∈ C is placed into

in b ∈ B . Then, the minimum number of matches problem can be

ormulated: 

ax 
∑ 

b∈ B 
x b (13)

 b ≤
∑ 

i ∈ H 
w i,b b ∈ B (14)

 b ≤
∑ 

j∈ C 
z j,b b ∈ B (15)

∑ 

b∈ B 
w i,b = 1 i ∈ H (16)

∑ 

b∈ B 
z j,b = 1 j ∈ C (17)

∑ 

i ∈ H 
w i,b · h i = 

∑ 

j∈ C 
z j,b · c j b ∈ B (18)

 b , w i,b , z j,b ∈ { 0 , 1 } b ∈ B, i ∈ H, j ∈ C (19)

xpression (13) , the objective function, maximizes the number of

ins. Eqs. (14) and (15) ensure that a bin is used if there is at

east one stream in it. Eqs. (16) and (17) enforce that each stream

s assigned to exactly one bin. Finally, Eqs. (18) ensure the heat

onservation of each bin. Note that, unlike the transportation and

ransshipment models, Eqs. (13) –(18) do not use a big-M param-

ter. Appendix D formulates the single temperature interval prob-

em without heat conservation. Eqs. (D.1) –(D.6) are similar to Eqs.

13) –(19) except (i) they drop constraints (14) and (ii) equalities

16) and (18) become inequalities (D.3) and (D.5) . 

.2. Improved approximation algorithm 

Furman and Sahinidis (2004) propose a greedy 2-approximation

lgorithm for the minimum number of matches problem in a sin-

le temperature interval. We show that their analysis is tight. We

lso propose an improved, tight 1.5-approximation algorithm by

rioritizing matches with equal heat loads and exploiting graph

heoretic properties. 
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Algorithm 1 Simple Greedy (SG), developed by Furman and 

Sahinidis (2004) , is applicable to one temperature interval only. 

1: Sort the streams so that h 1 ≥ h 2 ≥ · · · ≥ h n and c 1 ≥ c 2 ≥ · · · ≥
c m 

. 

2: Set i = 1 and j = 1 . 

3: while there is remaining heat load to be transferred do 

4: Transfer q i, j = min { h i , c j } 
5: Set h i = h i − q i, j and c j = c j − q i, j 

6: if h i = 0 , then set i = i + 1 

7: if c j = 0 , then set j = j + 1 

8: end while 

Algorithm 2 Improved Greedy (IG) is applicable to one tempera- 

ture interval only. 

1: for each pair of hot stream i and cold stream j s.t. h i = c j do 

2: Transfer h i amount of heat load (also equal to c j ) between 

them and remove them. 

3: end for 

4: Run Algorithm SG with respect to the remaining streams. 
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The simple greedy (SG) algorithm considers the hot and the

old streams in non-increasing heat load order ( Furman and

ahinidis, 2004 ). Initially, the first hot stream is matched to the

rst cold stream and an amount min { h 1 , c 1 } of heat is transferred

etween them. Without loss of generality h 1 > c 1 , which implies

hat an amount h 1 − c 1 of heat load remains to be transferred

rom h 1 to the remaining cold streams. Subsequently, the algorithm

atches h 1 to c 2 , by transferring min { h 1 − c 1 , c 2 } heat. The same

rocedure repeats with the other streams until all remaining heat

oad is transferred. 

Furman and Sahinidis (2004) show that Algorithm SG is 2-

pproximate for one temperature interval. Our new result in

heorem 2 shows that this ratio is tight. 

heorem 2. Algorithm SG achieves an approximation ratio of 2 for

he single temperature interval problem and it is tight. 

roof. See Appendix B . �

Algorithm IG improves Algorithm SG by: (i) matching the pairs

f hot and cold streams with equal heat loads and (ii) using the

cyclic property in the graph representation of an optimal solu-

ion. In practice, hot and cold process streams are unlikely to have

qual supplies and demands of heat, so discussing equal heat loads

s largely a thought experiment. But the updated analysis allows

s to claim an improved performance bound on Algorithm SG. Ad-

itionally, the notion of matching roughly equivalent supplies and

emands inspires the Section 8.3 Largest fraction match first heuris-

ic. 

heorem 3. Algorithm IG achieves an approximation ratio of 1.5 for

he single temperature interval problem and it is tight. 

roof. See Appendix B . �

. Maximum heat computations with match restrictions 

This section discusses computing the maximum heat that can

e feasibly exchanged in a minimum number of matches instance.

ection 5.1 discusses the specific instance of two streams and

hereby reduces the value of big-M parameter U i, j . Sections 5.2 and

.3 generalize Section 5.1 from 2 streams to any number of the

andidate matches. Section 5.2 is limited to a restricted subset of

atches in a single temperature interval. Section 5.3 calculates the

aximum heat that can be feasibly exchanged for the most general
ase of multiple temperature intervals. These maximum heat com-

utations are an essential ingredient of our heuristic methods and

im in using a match in the most profitable way. They also answer

he feasibility of the minimum number of matches problem. 

.1. Two streams and big-M parameter computation 

A common way of computing the big-M parameters is set-

ing U i, j = min { h i , c j } for each i ∈ H and j ∈ C . Gundersen et al.

1997) propose a better method for calculating the big-M param-

ter. Our novel Greedy Algorithm MHG (Maximum Heat Greedy)

btains tighter U i, j bounds than either the trivial bounds or the

undersen et al. (1997) bounds by exploiting the transshipment

odel structure. 

Given hot stream i and cold stream j , Algorithm MHG computes

he maximum amount of heat that can be feasibly exchanged be-

ween i and j in any feasible solution. Algorithm MHG is tight in

he sense that there is always a feasible solution where streams

 and j exchange exactly U i, j units of heat. Note that, in addi-

ion to U i, j , the algorithm computes a value q i, s, j, t of the heat

xchanged between each hot stream i ∈ H in temperature interval

 ∈ T and each cold stream j ∈ C in temperature interval t ∈ T , so

hat 
∑ 

s,t∈ T q i,s, j,t = U i, j . These q i, s, j, t values are required by greedy

acking heuristics in Section 8 . 

lgorithm 3 Maximum Heat Greedy (MHG). 

nput: Hot stream i ∈ H and cold stream j ∈ C 

1: � q ← 

�
 0 

2: for u = 1 , 2 , . . . , k − 1 do 

3: R u = 

∑ n 
i =1 

∑ u 
s =1 σi,s −

∑ m 

j=1 

∑ u 
t=1 δ j,t 

4: end for 

5: for u = 1 , 2 , . . . , k do 

6: q i,u, j,u ← min { σi,u , δ j,u } 
7: σi,u ← σi,u − q i,u, j,u 

8: δ j,u ← δ j,u − q i,u, j,u 

9: end for 

10: for s = 1 , 2 , . . . , k − 1 do 

11: for t = s + 1 , s + 2 , . . . , k do 

12: q i,s, j,t = min { σi,s , δ j,t , min s ≤u ≤t−1 { R u }} 
13: σi,s ← σi,s − q i,s, j,t 

14: δ j,t ← δ j,t − q i,s, j,t 

15: for u = s, s + 1 , s + 2 , . . . , t − 1 do 

16: R u ← R u − q i,s, j,t 

17: end for 

18: end for 

19: end for 

0: Return 

�
 q 

Algorithm 3 is a pseudocode of Algorithm MHG. The correct-

ess, i.e. the maximality of the heat exchanged between i and j , is

 corollary of the well known maximum flow–minimum cut the-

rem. Initially, the procedure transfers the maximum amount of

eat across the same temperature interval; q i,u,s,u = min { σi,u , δ j,u }
or each u ∈ T . The remaining heat is transferred greedily in

 top down manner, with respect to the temperature inter-

als, by accounting heat residual capacities. For each tempera-

ure interval u ∈ T , the heat residual capacity R u = 

∑ n 
i =1 

∑ u 
s =1 σi,s −

 m 

j=1 

∑ u 
t=1 δ j,t imposes an upper bound on the amount of heat that

ay descend from temperature intervals 1 , 2 , . . . , u to temperature

ntervals u + 1 , u + 2 , . . . , k . 

.2. Single temperature interval 

Given an instance of the single temperature interval problem

nd a subset M of matches, the maximum amount of heat that can
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be feasibly exchanged between the streams using only the matches

in M can be computed by solving MaxHeatLP. Like the single tem-

perature interval algorithms of Section 4 , MaxHeatLP is not directly

applicable to a minimum number of matches problem with multi-

ple temperature intervals. But MaxHeatLP is an important part of

our water filling heuristics. For simplicity, MaxHeatLP drops tem-

perature interval indices for variables q i, j . 

max 
∑ 

(i, j) ∈ M 

q i, j 

∑ 

j∈ C 
q i, j ≤ h i i ∈ H 

∑ 

i ∈ H 
q i, j ≤ c j j ∈ C 

q i, j ≥ 0 i ∈ H, j ∈ C 

(MaxHeatLP)

5.3. Multiple temperature intervals 

Maximizing the heat exchanged through a subset of matches

across multiple temperature intervals can solved with an LP that

generalizes MaxHeatLP. The generalized LP must satisfy the ad-

ditional requirement that, after removing a maximum heat ex-

change, the remaining instance is feasible. Feasibility is achieved

using residual capacity constraints which are essential for the effi-

ciency of greedy packing heuristics (see Section 8.1 ). 

Given a set M of matches, let A ( M ) be the set of quadruples ( i, s,

j, t ) such that a positive amount of heat can be feasibly transferred

via the transportation arc with endpoints the nodes ( i, s ) and ( j,

t ). The set A ( M ) does not contain any quadruple ( i, s, j, t ) with:

(i) s > t , (ii) σi,s = 0 , (iii) δ j,t = 0 , or (iv) (i, j) �∈ M. Let V 

H ( M ) and

V 

C ( M ) be the set of transportation vertices ( i, s ) and ( j, t ), respec-

tively, that appear in A ( M ). Similarly, given two fixed vertices ( i,

s ) ∈ V 

H ( M ) and ( j, t ) ∈ V 

C ( M ), we define the sets V C 
i,s 

(M) and V H 
j,t 

(M)

of their respective neighbors in A ( M ). 

Consider a temperature interval u ∈ T . We define by A u ( M ) ⊆A ( M )

the subset of quadruples with s ≤ u < t , for u ∈ T . The total heat

transferred via the arcs in A u ( M ) must be upper bounded by R u =∑ n 
i =1 

∑ u 
s =1 σi,s −

∑ m 

j=1 

∑ u 
t=1 δ j,t . Furthermore, A ( M ) eliminates any

quadruple ( i, s, j, t ) with R u = 0 , for some s ≤ u < t . Finally, we de-

note by T ( M ) the subset of temperature intervals affected by the

matches in M , i.e. if u ∈ T ( M ), then there exists a quadruple ( i, s, j,

t ) ∈ A ( M ), with s ≤ u < t . The procedure MHLP ( M ) is based on solving

the following LP: 

max 
∑ 

(i,s, j,t) ∈ A (M) 

q i,s, j,t (20)

∑ 

( j,t) ∈ V C 
i,s 

(M) 

q i,s, j,t ≤ σi,s (i, s ) ∈ V 

H (M) (21)

∑ 

(i,s ) ∈ V H 
j,t 

(M) 

q i,s, j,t ≤ δ j,t ( j, t) ∈ V 

C (M) (22)

∑ 

(i,s, j,t) ∈ A u (M) 

q i,s, j,t ≤ R u u ∈ T (M) (23)

q i,s, j,t ≥ 0 (i, s, j, t) ∈ A (M) (24)

Expression (20) maximizes the total exchanged heat by using only

the matches in M . Constraints (21) and (22) ensure that each

stream uses only part of its available heat. Constraints (23) enforce

the heat residual capacities. 
. Relaxation rounding heuristics 

This section investigates relaxation rounding heuristics for the

inimum number of matches problem. These heuristics begin by

ptimizing an efficiently-solvable relaxation of the original MILP.

he efficiently-solvable relaxation allows violation of certain con-

traints, so that the optimal solution(s) is (are) typically infeasi-

le in the original MILP. The resulting infeasible solutions are sub-

equently rounded to feasible solutions for the original MILP. We

onsider 3 types of relaxations. Section 6.1 relaxes the integrality

onstraints and proposes fractional LP rounding. Section 6.2 relaxes

he big-M constraints, i.e. Eq. (4) , and uses Lagrangian relaxation

ounding. Section 6.3 relaxes the heat conservation equations, i.e.

qs. (2) –(3) , and takes an approach based on covering relaxations.

ig. 3 shows the main components of relaxation rounding heuris-

ics. 

lgorithm 4 Fractional LP Rounding (FLPR) ( Furman and Sahinidis,

004 ). 

1: ( � y f , � q f ) ← F ractionalLP (I) � (FracLP) solving, Section 6.1

2: � q ← 

�
 q f 

3: for each i ∈ H and j ∈ C do 

4: if 
∑ 

s,t∈ T q i,s, j,t > 0 then 

5: y i, j ← 1 

6: else 

7: y i, j ← 0 

8: end if 

9: end for 

10: Return ( � y , � q ) 

.1. Fractional LP rounding 

The LP rounding heuristic, originally proposed by Furman and

ahinidis (2004) , transforms an optimal fractional solution for the

ransportation MILP to a feasible integral solution. We show that

he fractional LP can be solved efficiently via network flow tech-

iques. We observe that, in the worst case, the heuristic produces

 weak solution if it starts with an arbitrary optimal solution of the

ractional LP. We derive a novel performance guarantee showing

hat the heuristic is efficient when the heat of each chosen match

 i, j ) is close to big-M parameter U i, j , in the optimal fractional so-

ution. 

Consider the fractional LP obtained by replacing the integrality

onstraints y i, j ∈ {0, 1} of the transportation MILP, i.e. Eqs. (1) –(6) ,

ith the constraints 0 ≤ y i, j ≤ 1, for each i ∈ H and j ∈ C : 

in 

∑ 

i ∈ H 

∑ 

j∈ C 
y i, j ∑ 

j∈ C 

∑ 

t∈ T 
q i,s, j,t = σi,s i ∈ H, s ∈ T 

∑ 

i ∈ H 

∑ 

s ∈ T 
q i,s, j,t = δ j,t j ∈ C, t ∈ T ∑ 

s,t∈ T 
q i,s, j,t ≤ U i, j · y i, j i ∈ H, j ∈ C 

q i,s, j,t = 0 i ∈ H, j ∈ C, s, t ∈ T : s > t 

0 ≤ y i, j ≤ 1 , q i,s, j,t ≥ 0 i ∈ H, j ∈ C, s, t ∈ T 

(FracLP)

FracLP can be solved via minimum cost flow methods. Fig. 4 il-

ustrates a network N , i.e. a minimum cost flow problem instance,

uch that finding a minimum cost flow in N is equivalent to op-

imizing the fractional LP. Network N is a layered graph with six

ayers of nodes: (i) a source node S , (ii) a node for each hot stream

 ∈ H , (iii) a node for each pair ( i, s ) of hot stream i ∈ H and tem-

erature interval s ∈ T , (iv) a node for each pair ( j, t ) for each cold
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Fig. 3. The main components of relaxation rounding heuristics are (i) a preprocessing step, (ii) a relaxation, and (iii) a rounding scheme. The preprocessing step constructs 

the relaxation. Fractional relaxation and covering relaxation require big-M parameter computations, while Lagrangian relaxation minimum cost LP requires cost calculations. 

FLPR and LRR compute a feasible heat exchange between all streams, i.e. values to variables q i, s, j, t , b y solving their r espectiv e r elaxations and r ound the r elaxed solutions 

according to Algorithm 4 . Heuristic CRR adds matches incrementally until it ends up with a feasible solution. Feasibility is determined using the maximum heat LP in 

Section 5.3 . 

Fig. 4. Minimum cost network flow formulation of FracLP. The heat is modeled as flow transferred from a source node S to a destination node D . All finite capacities are 

labeled above the corresponding arcs. The cost is incurred in each arc between node ( i, s ) ∈ H × T and node ( j, t ) ∈ C × T under the condition that heat flows to the same or a 

lower temperature interval. 
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tream j ∈ C and temperature interval t ∈ T , (v) a node for each cold

tream j ∈ C , and (vi) a destination node D . We add: (i) the arc ( S,

 ) with capacity h i for each i ∈ H , (ii) the arc ( i , ( i, s )) with capacity

i, s for each i ∈ H and s ∈ T , (iii) the arc (( i, s ), ( j, t )) with infinite

apacity for each i ∈ H, j ∈ C and s, t ∈ T , (iv) the arc (( j, t ), j ) with

apacity δj, t for each j ∈ H and t ∈ T , and (v) the arc ( j, D ) with ca-

acity c j for each j ∈ C . Each arc (( i, s ), ( j, t )) has cost 1/ U i, j for i ∈ H,

 ∈ C and s, t ∈ T . Every other arc has zero cost. Any flow of cost

i h i on network N is equivalent to a feasible solution for FracLP

ith the same cost and vice versa. 

Furman and Sahinidis (2004) observe that any feasible solution

f FracLP can be rounded to a feasible solution of the original prob-

em via Algorithm 4 , a simple greedy procedure that we call FLPR.

P

iven a problem instance I , the procedure FractionalLP ( I ) computes

n optimal solution of FracLP. We denote by ( � y f , � q f ) the optimal

ractional solution. 

An inherent drawback of the Furman and Sahinidis (2004) ap-

roach is the existence of optimal fractional solutions with un-

ecessary matches. Theorem 4 shows that Algorithm FLPR perfor-

ance is bad in the worst case, even for instances with a single

emperature interval. The proof, given in Appendix C , can be ex-

ended so that unnecessary matches occur across multiple temper-

ture intervals. 

heorem 4. Algorithm FLPR is ( n ) -approximate. 

roof. See Appendix C . �
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Consider an optimal fractional solution to FracLP and suppose

that M ⊆H × C is the set of pairs of streams exchanging a posi-

tive amount of heat. For each ( i, j ) ∈ M , denote by L i, j the heat ex-

changed between hot stream i and cold stream j . We define: 

φ(M) = min 

(i, j) ∈ M 

{
L i, j 

U i, j 

}
as the filling ratio , which corresponds to the minimum portion

of an upper bound U i, j filled with the heat L i, j , for some match

( i, j ). Given an optimal fractional solution with filling ratio φ( M ),

Theorem 5 obtains a 1/ φ( M )-approximation ratio for FLPR. 

Theorem 5. Given an optimal fractional solution with a set M

of matches and filling ratio φ( M ), FLPR produces a (1/ φ( M )) -

approximate integral solution. 

Proof. See Appendix C . �

In the case where all heat supplies and demands are in-

tegers, the integrality of the minimum cost flow polytope and

Theorem 5 imply that FLPR is U max -approximate, where U max =
max (i, j) ∈ H×C { U i, j } is the biggest big-M parameter. A corollary of

the L i, j / U i, j ratio is that a fractional solution transferring heat L i, j 
close to capacity U i, j corresponds to a good integral solution. For

example, if the optimal fractional solution satisfies L i, j > 0.5 · U i, j ,

for every used match ( i, j ) such that L i, j � = 0, then FLPR gives a

2-approximate integral solution. Finally, branch-and-cut repeatedly

solves the fractional problem, so our new bound proves the big-

M parameter’s relevance for exact methods. Because performance

guarantee of FLPR scales with the big-M parameters U i, j , we im-

prove the heuristic performance by computing a small big-M pa-

rameter U i, j using Algorithm MHG in Section 5.1 . 

6.2. Lagrangian relaxation rounding 

Furman and Sahinidis (2004) design efficient heuristics for the

minimum number of matches problem by applying the method of

Lagrangian relaxation and relaxing the big-M constraints. This ap-

proach generalizes Algorithm FLPR by approximating the fractional

cost of every possible match ( i, j ) ∈ H × C and solving an appropri-

ate LP using these costs. We present the LP and revisit different

ways of approximating the fractional match costs. 

In a feasible solution, the fractional cost λi, j of a match ( i, j ) is

the cost incurred per unit of heat transferred via ( i, j ). In particu-

lar, 

λi, j = 

{
1 /L i, j , if L i, j > 0 , and 

0 , if L i, j = 0 

where L i, j is the heat exchanged via ( i, j ). Then, the number

of matches can be expressed as 
i, s, j, t λi, j · q i, s, j, t . Furman and

Sahinidis (2004) propose a collection of heuristics computing a sin-

gle cost value for each match ( i, j ) and constructing a minimum

cost solution. This solution is rounded to a feasible integral solu-

tion equivalently to FLPR. 

Given a cost vector � λ of the matches, a minimum cost solution

is obtained by solving: 

min 

∑ 

i ∈ H 

∑ 

j∈ C 

∑ 

s,t∈ T 
λi, j · q i,s, j,t 

∑ 

j∈ C 

∑ 

t∈ T 
q i,s, j,t = σi,s i ∈ H, s ∈ T 

∑ 

i ∈ H 

∑ 

s ∈ T 
q i,s, j,t = δ j,t j ∈ C, t ∈ T 

q i,s, j,t ≥ 0 i ∈ H, j ∈ C, s, t ∈ T 

(CostLP)
i  
A challenge in Lagrangian relaxation rounding is computing a

ost λi, j for each hot stream i ∈ H and cold stream j ∈ C . We revisit

nd generalize policies for selecting costs. 

ost Policy 1 (Maximum heat). Matches that exchange large

mounts of heat incur low fractional cost. This observation moti-

ates selecting λi, j = 1 /U i, j , for each ( i, j ) ∈ H × C , where U i, j is an

pper bound on the heat that can be feasibly exchanged between i

nd j . In this case, Lagrangian relaxation rounding is equivalent to

LPR ( Algorithm 4 ). 

ost Policy 2 (Bounds on the number of matches). This cost selection

olicy uses lower bounds αi and β j on the number of matches of

ot stream i ∈ H and cold stream j ∈ C , respectively, in an optimal

olution. Given such lower bounds, at least αi cost is incurred for

he h i heat units of i and at least β j cost is incurred for the c j 
nits of j . On average, each heat unit of i is exchanged with cost

t least αi / h i and each heat unit of j is exchanged with cost at

east β j / c j . So, the fractional cost of each match ( i, j ) ∈ H × C can be

pproximated by setting λi, j = αi / h i , λi, j = β j / c j or λi, j = 

1 
2 ( 

αi 
h i 

+
β j 

c j 
) . 

Furman and Sahinidis (2004) use lower bounds αi = 1 and β j =
 , for each i ∈ H and j ∈ C . We show that, for any choice of lower

ounds αi and β j , this cost policy for selecting λi, j is not effective.

ven when αi and β j are tighter than 1, all feasible solutions of

ostLP attain the same cost. Consider any feasible solution ( � y , � q )

nd the fractional cost λi, j = αi /h i for each ( i, j ) ∈ H × C . Then the

ost of ( � y , � q ) in CostLP is: 

 

i ∈ H 

∑ 

j∈ C 

∑ 

s,t∈ T 
λi, j · q i,s, j,t = 

∑ 

i ∈ H 

∑ 

j∈ C 

∑ 

s,t∈ T 

αi 

h i 

· q i,s, j,t = 

∑ 

i ∈ H 
αi . 

ince every feasible solution in (CostLP) has cost 
i ∈ H αi , La-

rangian relaxation rounding returns an arbitrary solution. Simi-

arly, if λi, j = β j / c j for ( i, j ) ∈ H × C , every feasible solution has cost

j ∈ C β j . If λi, j = 

1 
2 ( 

αi 
h i 

+ 

β j 

c j 
) , all feasible solutions have the same

ost 1 / 2 · ( ∑ 

i ∈ H αi + 

∑ 

j∈ C β j ) . 

ost Policy 3 (Existing solution). This method of computing costs

ses an existing solution. The main idea is to use the actual frac-

ional costs for the solution’s matches and a non-zero cost for ev-

ry unmatched streams pair. A minimum cost solution with re-

pect to these costs may improve the initial solution. Suppose that

 is the set of matches in the initial solution and let L i, j be the

eat exchanged via ( i, j ) ∈ M . Furthermore, let U i, j be an upper

ound on the heat exchanged between i and j in any feasible so-

ution. Then, a possible selection of costs is λi, j = 1 /L i, j if ( i, j ) ∈ M ,

nd λi, j = 1 /U i, j otherwise. 

.3. Covering relaxation rounding 

This section proposes a novel covering relaxation rounding

euristic for the minimum number of matches problem. The ef-

ciency of Algorithm FLPR depends on lower bounding the unitary

ost of the heat transferred via each match. The goal of the cover-

ng relaxation is to use these costs and lower bound the number of

atches in a stream-to-stream to basis by relaxing heat conserva-

ion. The heuristic constructs a feasible integral solution by solving

uccessively instances of the covering relaxation. 

Consider a feasible MILP solution and suppose that M is the

et of matches. For each hot stream i ∈ H and cold stream j ∈ C ,

enote by C i ( M ) and H j ( M ) the subsets of cold and hot streams

atched with i and j , respectively, in M . Moreover, let U i, j be an

pper bound on the heat that can be feasibly exchanged between

 ∈ H and j ∈ C . Since the solution is feasible, it must be true that
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j∈ C i (M) U i, j ≥ h i and 

∑ 

i ∈ H j (M) U i, j ≥ c j . These inequalities are nec-

ssary, though not sufficient, feasibility conditions. By minimizing

he number of matches while ensuring these conditions, we obtain

 covering relaxation: 

min 

∑ 

i ∈ H 

∑ 

j∈ C 
y i, j 

∑ 

j∈ C 
y i, j · U i, j ≥ h i i ∈ H 

∑ 

i ∈ H 
y i, j · U i, j ≥ c j j ∈ C 

y i, j ∈ { 0 , 1 } i ∈ H, j ∈ C 

(CoverMILP) 

n certain cases, the matches of an optimal solution to CoverMILP

verlap well with the matches in a near-optimal solution for the

riginal problem. Our new Covering Relaxation Rounding (CRR)

euristic for the minimum number of matches problem succes-

ively solves instances of the covering relaxation CoverMILP. The

euristic chooses new matches iteratively until it terminates with

 feasible set M of matches. In the first iteration, Algorithm CRR

onstructs a feasible solution for the covering relaxation and adds

he chosen matches in M . Then, Algorithm CRR computes the max-

mum heat that can be feasibly exchanged using the matches in

 and stores the computed heat exchanges in 

�
 q . In the second

teration, the heuristic performs same steps with respect to the

maller updated instance ( � σ ′ , � δ′ ) , where σ ′ 
i,s 

= σi,s −
∑ 

j,t q i,s, j,t and
′ 
j,t 

= δ j,t −
∑ 

i,s q i,s, j,t . The heuristic terminates when all heat is ex-

hanged. 

lgorithm 5 Covering Relaxation Rounding (CRR). 

1: M ← ∅ 
2: � q ← 

�
 0 

3: r ← 

∑ 

i ∈ H h i 
4: while r > 0 do 

5: For each i ∈ H and s ∈ T , set σ ′ 
i,s 

← σi,s −
∑ 

j∈ C 
∑ 

t∈ T q i,s, j,t 

6: For each j ∈ C and t ∈ T , set δ′ 
j,t 

← δ j,t −
∑ 

i ∈ H 
∑ 

s ∈ T q i,s, j,t 

7: M 

′ ← Cov eringRelaxation ( � σ ′ , � δ′ ) � (CoverMILP) solving,

Section 6.3 

8: M ← M ∪ M 

′ 
9: �

 q ← M HLP ( � σ , � δ, M 

′ ) � Equations (20) - (24) LP solving,

Section 5.3 

10: r ← 

∑ 

i ∈ H h i −
∑ 

i ∈ H 
∑ 

j∈ C 
∑ 

s,t∈ T q i,s, j,t 

11: end while 

Algorithm 5 is a pseudocode of heuristic CRR. Procedure

ov eringRelaxation ( � σ , � δ) produces an optimal subset of matches for

he instance of the covering relaxation in which the heat sup-

lies and demands are specified by the vectors � σ and 

�
 δ, respec-

ively. Procedure M HLP ( � σ , � δ, M ) (LP-based Maximum Heat) com-

utes the maximum amount of heat that can be feasibly exchanged

y using only the matches in M and is based on solving the LP in

ection 5.3 . 

. Water filling heuristics 

This section introduces water filling heuristics for the minimum

umber of matches problem. These heuristics produce a solution

teratively by exchanging the heat in each temperature interval, in

 top down manner. The water filling heuristics use, in each it-

ration, an efficient algorithm for the single temperature interval

roblem (see Section 4 ). 

Fig. 5 shows the main idea of a water filling heuristic for the

inimum number of matches problem with multiple temperature

ntervals. The problem is solved iteratively in a top-down manner,
rom the highest to the lowest temperature interval. Each iteration

roduces a solution for one temperature interval. The main com-

onents of a water filling heuristic are: (i) a maximum heat pro-

edure which reuses matches from previous iterations and (ii) an

fficient single temperature interval algorithm. 

Given a set M of matches and an instance ( � σt , 
�
 δt ) of the

roblem in the single temperature interval t , the procedure

 HS( � σt , 
�
 δt , M ) (Maximum Heat for Single temperature interval)

omputes the maximum heat that can be exchanged between the

treams in t using only the matches in M . At a given tempera-

ure interval t , the MHS procedure solves the LP in Section 5.2 .

he procedure SingleT emperatureInterv al( � σt , 
�
 δt ) produces an effi-

ient solution for the single temperature interval problem with a

inimum number of matches and total heat to satisfy one cold

tream. SingleT emperatureInterv al( � σt , 
�
 δt ) either: (i) solves the MILP

xactly (Water Filling MILP-based or WFM) or (ii) applies the im-

roved greedy approximation Algorithm IG in Section 4 (Water

illing Greedy or WFG). Both water filling heuristics solve instances

f the single temperature interval problem in which there is no

eat conservation, i.e. the heat supplied by the hot streams is

reater or equal than the heat demanded by the cold streams.

he exact WFM uses the MILP proposed in Eqs. (D.1) –(D.6) of

ppendix D . The greedy heuristic WFG adapts Algorithm IG by

erminating when the entire heat demanded by the cold streams

as been transferred. After addressing the single temperature in-

erval, the excess heat descends to the next temperature interval.

lgorithm 6 represents our water filling approach in pseudocode.

ig. 6 shows the main components of water filling heuristics. 

lgorithm 6 Water Filling (WF). 

1: M ← ∅ 
2: � q ← 

�
 0 

3: for t = 1 , 2 , . . . , k do 

4: if t � = 1 then 

5: �
 q ′ ← M HS( � σt , 

�
 δt , M ) � (MaxHeatLP) solve, Section 5.2

6: �
 q ← 

�
 q + 

�
 q ′ 

7: For each i ∈ H, set σi,t ← σi,t −
∑ 

j∈ C 
∑ 

t∈ T q ′ i, j,t 

8: For each j ∈ C, set δ j,t ← δ j,t −
∑ 

i ∈ H 
∑ 

s ∈ T q ′ i, j,t 

9: end if 

10: (M 

′ , � q ′ ) ← SingleT emperatureInterv al( � σt , 
�
 δt ) � Eqs (D.1 -

D.2) or Alg IG, Sec 4.2 

11: M ← M ∪ M 

′ 
12: �

 q ← 

�
 q + 

�
 q ′ 

13: if t � = k then 

14: for i ∈ H do 

15: �
 σi,t+1 ← 

�
 σi,t+1 + ( � σi,t −

∑ 

j q i, j,t ) (excess heat de-

scending) 

16: end for 

17: end if 

18: end for 

heorem 6. Algorithms WFG and WFM are ( k ) -approximate. 

roof. See Appendix D . �

. Greedy packing heuristics 

This section proposes greedy heuristics motivated by the pack-

ng nature of the minimum number of matches problem. Each

reedy packing heuristic starts from an infeasible solution with

ero heat transferred between the streams and iterates towards

easibility by greedily selecting matches. The two main ingredi-

nts of such a heuristic are: (i) a match selection policy and
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Fig. 5. A water filling heuristic computes a solution by exploiting the top down temperature interval structure and moving from the higher to the lower temperature 

interval. In each temperature interval t , the heuristic isolates the streams with positive heat at t , it matches them and descends the excess heat to the next interval which is 

sequentially solved. 

Fig. 6. Water filling heuristics solve the temperature intervals serially in a top-down manner and keep composition feasible. The main components are (i) a maximum 

heat computation re-using higher temperature interval matches, (ii) a single temperature interval problem algorithm, and (iii) excess heat descending between consecutive 

temperature intervals. Heuristic WFM uses the Appendix D MILP formulation for solving the single temperature interval problem, while heuristic WFG uses the Section 4.2 Al- 

gorithm IG. 

Fig. 7. Greedy packing heuristics select matches iteratively one by one. The main components of greedy packing heuristics are (i) a heat exchange policy, and (ii) a match 

selection policy. Greedy packing heuristics apply these policies with respect to all unmatched stream pairs, in each iteration. Options for the heat exchange policy include 

dynamic heat exchange , which solves the Section 5.3 maximum heat LP, and static heat exchange , which uses the Section 5.1 greedy algorithm. Once the heat exchange policy 

has been applied for every unmatched pair of streams, a match selection policy chooses the new match, e.g. (i) with the largest heat (LHM), (ii) with the largest fraction 

(LFM), or (iii) of the shortest stream (SS). 
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(ii) a heat exchange policy for transferring heat via the matches.

Section 8.1 observes that a greedy heuristic has a poor worst-

case performance if heat residual capacities are not considered.

Section 8.2 –8.4 define formally the greedy heuristics: (i) Largest

Heat Match First, (ii) Largest Fraction Match First, and (iii) Smallest

Stream First. Fig. 7 shows the main components of greedy packing

heuristics. 
.1. A pathological example and heat residual capacities 

A greedy match selection heuristic is efficient if it performs

 small number of iterations and chooses matches exchanging

arge heat load in each iteration. Our greedy heuristics perform

arge moves towards feasibility by choosing good matches in terms

f: (i) heat and (ii) stream fraction. An efficient greedy heuristic
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Fig. 8. A bad example of a non monotonic heuristic. If a heuristic begins by match- 

ing h 1 with c 2 and h 2 with c 3 , then many unnecessary matches might be required 

to end up with a feasible solution. 
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Algorithm 7 Largest Heat Match First LP-based (LHM-LP). 

1: M ← ∅ 
2: r ← 

∑ 

i ∈ H h i 
3: while r > 0 do 

4: (i ′ , j ′ ) ← arg max (i, j) ∈ H×C\ M 

{ MHLP (M ∪ { (i, j) } ) } � Eqs 

(20)–(24), Section 5.3 

5: M ← M ∪ { (i ′ , j ′ ) } 
6: r ← 

∑ 

i ∈ H h i − M HLP (M ) 

7: end while 

8: Return M 
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hould also be monotonic in the sense that every chosen match

chieves a strictly positive increase on the covered instance size. 

The Fig. 8 example shows a pathological behavior of greedy

on-monotonic heuristics. The instance consists of 3 hot streams, 3

old streams and 3 temperature intervals. Hot stream i ∈ H has heat

upply σi,s = 1 for s = i and no supply in any other temperature in-

erval. Cold stream j ∈ C has heat demand δ j,t = 1 for t = j and no

emand in any other temperature interval. Consider the heuristic

hich selects a match that may exchange the maximum amount of

eat in each iteration. The matches ( h 1 , c 2 ) and ( h 2 , c 3 ) consist the

nitial selections. In the subsequent iteration, no match increases

he heat that can be feasibly exchanged between the streams and

he heuristic chooses unnecessary matches. 

A sufficient condition enforcing strictly monotonic behavior and

voiding the above pathology, is for each algorithm iteration to sat-

sfy the heat residual capacities. As depicted in Fig. 9 , a greedy

euristic maintains a set M of selected matches together with a

ecomposition of the original instance I into two instances I A and

 

B . If I = (H, C, T , � σ , � δ) , then it holds that I A = (H, C, T , � σ A , � δA ) and

 

B = (H, C, T , � σ B , � δB ) , where σ = 

�
 σ A + 

�
 σ B and 

�
 δ = 

�
 δA + 

�
 δB . The set

 corresponds to a feasible solution for I A and the instance I B re-

ains to be solved. In particular, I A is obtained by computing a

aximal amount of heat exchanged by using the matches in M

nd I B is the remaining part of I . Initially, I A is empty and I B is

xactly the original instance I . A selection of a match increases the

otal heat exchanged in I A and reduces it in I B . Appendix E observes

hat a greedy heuristic is monotonic if I B is feasible in each itera-

ion. Furthermore, I B is feasible if and only if I A satisfies the heat

esidual capacities R u = 

∑ 

i ∈ H 
∑ u 

s =1 σi,s −
∑ 

j∈ C 
∑ u 

t=1 δ j,t , for u ∈ T . 

.2. Largest heat match first 

Our largest heat match first heuristics arise from the idea that

he matches should individually carry large amounts of heat in a

ear optimal solution. Suppose that Q v is the maximum heat that

ay be transferred between the streams using only a number v of

atches. Then, minimizing the number of matches is expressed as

in { v : Q v ≥
∑ n 

i =1 h i } . This observation motivates the greedy pack-

ng heuristic which selects matches iteratively until it ends up with

 feasible set M of matches exchanging 
∑ n 

i =1 h i units of heat. In

ach iteration, the heuristic chooses a match maximizing the ad-

itional heat exchanged. Our two variants of largest heat matches

euristics are: (i) LP-based Largest Heat Match (LHM-LP) and (ii)

reedy Largest Heat Match (LHM). 

Heuristic LHM-LP uses the MHLP ( M ) (LP-based Maximum Heat)

rocedure to compute the maximum heat that can be transferred

etween the streams using only the matches in the set M . This

rocedure is repeated O ( nm ) times in each iteration, once for every

andidate match, and solves an LP incorporating the proposed heat

esidual capacities. Algorithm 7 is an LHM-LP heuristic using the LP

n Section 5.3 . The algorithm maintains a set M of chosen matches

nd selects a new match ( i ′ , j ′ ) to maximize MHLP ( M ∪ ( i ′ , j ′ )). 
heorem 7. Algorithm LHM-LP is O ( log n + log h max 
ε ) -approximate,

here ε is the required precision. 

roof. See Appendix E . �

LHM-LP heuristic is polynomial-time in the worst case. The i th

teration solves nm − i + 1 LP instances which sums to solving a to-

al of 
∑ nm 

i =1 (nm − i + 1) = O (n 2 m 

2 ) LP instances in the worst case.

owever, for large instances, the algorithm is time consuming be-

ause of this iterative LP solving. So, we also propose an alter-

ative, time-efficient greedy approach. The new heuristic version

uilds a solution by selecting matches and deciding the heat ex-

hanges, without modifying them in subsequent iterations. 

The new approach for implementing the heuristic, that we call

HM, requires the MHG ( � σ , � δ, i, j) procedure. Given an instance

( � σ , � δ) of the problem, it computes the maximum heat that can be

easibly exchanged between hot stream i ∈ H and cold stream j ∈ C ,

s defined in Section 5.1 . The procedure also computes a corre-

ponding value q i, s, j, t of heat exchanged between i ∈ H in tempera-

ure interval s ∈ T and j ∈ C in temperature interval t ∈ T . LHM main-

ains a set M of currently chosen matches together with their re-

pective vector � q of heat exchanges. In each iteration, it selects the

atch ( i ′ , j ′ ) and heat exchanges q ′ between i ′ and j ′ so that the

alue MHG ( � σ , � δ, i ′ , j ′ ) is maximum. Algorithm 8 is a pseudocode

f this heuristic. 

lgorithm 8 Largest Heat Match First Greedy (LHM). 

1: M ← ∅ 
2: � q ← 

�
 0 

3: r ← 

∑ 

i ∈ H h i 
4: while r > 0 do 

5: (i ′ , j ′ , � q ′ ) ← arg max (i, j) ∈ H×C\ M 

{ MHG ( � σ , � δ, i, j) } � Algorithm

MHG, Section 5.1 

6: M ← M ∪ { (i ′ , j ′ ) } 
7: �

 q ← 

�
 q + 

�
 q ′ 

8: For each s ∈ T , set σi ′ ,s ← σi ′ ,s −
∑ 

t∈ T q ′ i ′ ,s, j ′ ,t 
9: For each t ∈ T , set δ j ′ ,t ← δ j ′ ,t −

∑ 

s ∈ T q ′ i ′ ,s, j ′ ,t 
10: r ← r − ∑ 

s,t∈ T q ′ i ′ ,s, j ′ ,t 
11: end while 

12: Return M 

.3. Largest fraction match first 

The heuristic Largest Fraction Match First (LFM) exploits the bi-

artite nature of the problem by employing matches which ex-

hange large fractions of the stream heats. Consider a feasible so-

ution with a set M of matches. Every match ( i, j ) ∈ M covers a

raction 

∑ 

s,t∈ T 
q i,s, j,t 

h i 
of hot stream i ∈ H and a fraction 

∑ 

s,t∈ T 
q i,s, j,t 

c j 

f cold stream j ∈ C . The total covered fraction of all streams is

qual to 
∑ 

(i, j) ∈ M 

∑ 

s,t∈ T 
(

q i,s, j,t 

h i 
+ 

q i,s, j,t 

c j 

)
= n + m . Suppose that F v 

s the maximum amount of total stream fraction that can be
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Fig. 9. Decomposition of a greedy packing heuristic. The problem instance I is the union of the instance I A already solved by the heuristic and the instance I B that remains 

to be solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 9 Smallest Steam First (SS). 

1: Sort the hot streams in non-decreasing order of their heat 

loads, i.e. h 1 ≤ h 2 ≤ · · · ≤ h n . 

2: M ← ∅ 
3: � q ← 

�
 0 

4: for i ∈ H do 

5: r ← h i 
6: while r > 0 do 

7: (i, j ′ , � q ′ ) ← arg max j∈ C { MHG ( � σ , � δ, i, j) } � Algorithm 

MHG, Section 5.1 

8: M ← M ∪ { (i, j ′ ) } 
9: �

 q ← 

�
 q + 

�
 q ′ 

10: For each s ∈ T , set σi,s ← σi,s −
∑ 

t∈ T q ′ i,s, j ′ ,t 
11: For each t ∈ T , set δ j ′ ,t ← δ j ′ ,t −

∑ 

s ∈ T q ′ i,s, j ′ ,t 
12: r ← r − ∑ 

s,t∈ T q ′ i ′ ,s, j ′ ,t 
13: end while 

14: end for 

15: Return M 
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covered using no more than v matches. Then, minimizing the num-

ber of matches is expressed as min { v : F v ≥ n + m } . Based on this

observation, the main idea of LFM heuristic is to construct itera-

tively a feasible set of matches, by selecting the match covering

the largest fraction of streams, in each iteration. That is, LFM pri-

oritizes proportional matches in a way that high heat hot streams

are matched with high heat cold streams and low heat hot streams

with low heat cold streams. In this sense, it generalizes the idea

of Algorithm IG for the single temperature interval problem (see

Section 4 ), according to which it is beneficial to match streams of

(roughly) equal heat. 

An alternative that would be similar to LHM-LP is an LFM

heuristic with an MFLP ( M ) (LP-based Maximum Fraction) proce-

dure computing the maximum fraction of streams that can be

covered using only a given set M of matches. Like the LHM-LP

heuristic, this procedure would be based on solving an LP (see

Appendix E ), except that the objective function maximizes the total

stream fraction. The LFM heuristic can be also modified to attain

more efficient running times using Algorithm MHG , as defined in

Section 5.1 . In each iteration, the heuristic selects the match ( i, j )

with the highest value 
U ′ 

i, j 

h i 
+ 

U ′ 
i, j 

c j 
, where U 

′ 
i, j 

is the maximum heat

that can be feasibly exchanged between i and j in the remaining

instance. 

8.4. Smallest stream heuristic 

Subsequently, we propose Smallest Stream First (SS) heuristic

based on greedy match selection, which also incorporates stream

priorities so that a stream is involved in a small number of

matches. Let αi and β j be the number of matches of hot stream

i ∈ H and cold stream j ∈ C , respectively. Minimizing the number

of matches problem is expressed as min { 
i ∈ H αi }, or equivalently

min { 
j ∈ C β j }. Based on this observation, we investigate heuristics

that specify a certain order of the hot streams and match them

one by one, using individually a small number of matches. Such a

heuristic requires: (i) a stream ordering strategy and (ii) a match

selection strategy. To reduce the number of matches of small hot

streams, heuristic SS uses the order h 1 ≤ h 2 ≤ ��� ≤ h n . 

In each iteration, the next stream is matched with a low num-

ber of cold streams using a greedy match selection strategy; we

use greedy LHM heuristic. Observe that SS heuristic is more effi-

cient in terms of running time compared to the other greedy pack-

ing heuristics, because it solves a subproblem with only one hot

stream in each iteration. Algorithm 9 is a pseudocode of SS heuris-

tic. Note that other variants of ordered stream heuristics may be

obtained in a similar way. The heuristic uses the MHG algorithm

in Section 5.1 . 

9. Numerical results 

This section evaluates the proposed heuristics on three test

sets. Section 9.1 provides information on system specifications and
enchmark instances. Section 9.2 presents computational results

f exact methods and shows that commercial, state-of-the-art ap-

roaches have difficult solving moderately-sized instances to global

ptimality. Section 9.3 and 9.4 evaluate experimentally the heuris-

ic methods and compares the obtained results with those previ-

usly reported in the literature. All result tables are provided in

ppendix G . Letsios et al. (2017) provide test cases and source code

or the paper’s computational experiments. 

.1. System specification and benchmark instances 

All computations are run on an Intel Core i7-4790 CPU 3.60GHz

ith 15.6 GB RAM running 64-bit Ubuntu 14.04. CPLEX 12.6.3 and

urobi 6.5.2 solve the minimum number of matches problem ex-

ctly. The mathematical optimization models and heuristics are

mplemented in Python 2.7.6 and Pyomo 4.4.1 ( Hart et al., 2011;

012 ). 

We use problem instances from two existing test sets ( Chen

t al., 2015b; Furman and Sahinidis, 2004 ). We also generate two

ollections of larger test cases. The smaller of the two sets uses

ork of Grossmann (2017) . The larger of the two sets was created

sing our own random generation method. An instance of gen-

ral heat exchanger network design consists of streams and util-

ties with inlet, outlet temperatures, flow rate heat capacities and

ther parameters. Appendix F shows how a minimum number of

atches instances arises from the original instance of general heat

xchanger network design. 

The Furman (20 0 0) test set consists of test cases from the

ngineering literature. Table G.4 reports bibliographic informa-

ion on the origin of these test cases. We manually digitize this

ata set and make it publicly available for the first time ( Letsios

t al., 2017 ). Table G.4 lists the 26 problem instance names and
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Fig. 10. Box and whisker diagram of 48 heuristic performance ratios, i.e. computed 

solution / best known solution for the problems with 43 streams or fewer. 
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nformation on their sizes. The total number streams and temper-

ture intervals varies from 6 to 38 and from 5 to 32, respectively.

able G.4 also lists the number of binary and continuous variables

s well as the number of constraints in the transshipment MILP

ormulation. 

The Chen et al. (2015a,b) test set consists of 10 problem in-

tances. These instances are classified into two categories depend-

ng on whether they consist of balanced or unbalanced streams.

est cases with balanced streams have flowrate heat capacities in

he same order of magnitude, while test cases with unbalanced

treams have dissimilar flowrate heat capacities spanning several

rders of magnitude. The sizes of these instances range from 10 to

2 streams and from 12 to 35 temperature intervals. Table G.4 re-

orts more information on the size of each test case. 

The Grossmann (2017) test set is generated randomly. The inlet,

utlet temperatures of these instances are fixed while the values of

owrate heat capacities are generated randomly with fixed seeds.

his test set contains 12 moderately challenging problems (see

able G.4 ) with a classification into balanced and unbalanced in-

tances, similarly to the Chen et al. (2015a,b) test set. The smallest

roblem involves 27 streams and 23 temperature intervals while

he largest one consists of 43 streams and 37 temperature inter-

als. 

The large scale test set is generated randomly. These instances

ave 80 hot streams, 80 cold streams, 1 hot utility and 1 cold util-

ty. For each hot stream i ∈ HS , the inlet temperature T HS 
in ,i 

is cho-

en uniformly at random in the interval (30, 400]. Then, the outlet

emperature T HS 
out ,i 

is selected uniformly at random in the interval

30 , T HS 
in ,i 

) . Analogously, for each cold stream j ∈ CS , the outlet tem-

erature T CS 
out , j 

is chosen uniformly at random in the interval (20,

00]. Next, the inlet temperature T CS 
in , j 

is chosen uniformly at ran-

om in the interval [20 , T CS 
out , j 

) . The flow rate heat capacities FCp i 
nd FCp j of hot stream i and cold stream j are chosen as float-

ng numbers with two decimal digits in the interval [0, 15]. The

ot utility has inlet temperature T HU 
in 

= 500 , outlet temperature

 

HS 
out = 499 , and cost κHU = 80 . The cold utility has inlet temper-

ture T CU 
in 

= 20 , outlet temperature T CU 
out = 21 , and cost κCU = 20 .

he minimum heat recovery approach temperature is �T min = 10 . 

.2. Exact methods 

We evaluate exact methods using state-of-the-art commercial

pproaches. For each problem instance, CPLEX and Gurobi solve the

ection 2 transportation and transshipment models. Based on the

ifficulty of each test set, we set a time limit for each solver run

s follows: (i) 1800 s for the Furman (20 0 0) test set, (ii) 7200 s

or the Chen et al. (2015a,b) test set, and (iii) 14,400 s for the

rossmann (2017) and large scale test sets. In each solver run, we

et absolute gap 0.99, relative gap 4%, and maximum number of

hreads 1. 

Table G.5 reports the best found objective value, CPU time and

elative gap, for each solver run. Observe that state-of-the-art ap-

roaches cannot, in general, solve moderately-sized problems with

0–40 streams to global optimality. For example, none of the test

ases in the Grossmann (2017) or large scale test sets is solved to

lobal optimality within the specified time limit. Table G.9 con-

ains the results reported by Furman and Sahinidis (2004) using

PLEX 7.0 with 7 h time limit. CPLEX 7.0 fails to solve 4 instances

o global optimality. Interestingly, CPLEX 12.6.3 still cannot solve 3

f these 4 instances with a 1.5 h timeout. 

Theoretically, the transshipment MILP is better than the trans-

ortation MILP because the former has asymptotically fewer

ariables. This observation is validated experimentally with the

xception of very few instances, e.g. balanced10 , in which

he transportation model computes a better solution within the
ime limit. CPLEX and Gurobi are comparable and neither dom-

nates the other. Instances with balanced streams are harder to

olve, which highlights the difficulty introduced by symmetry,

ee Kouyialis and Misener (2017) . The preceding numerical analy-

is refers to the extended transportation MILP. Table G.6 compares

olver performance to the reduced transportation MILP, i.e. a for-

ulation removing redundant variables q i, s, j, t with s > t and Eqs.

5) . Note that modern versions of CPLEX and Gurobi show effec-

ively no difference between the two formulations. 

.3. Heuristic methods 

We implement the proposed heuristics using Python and de-

elop the LP models with Pyomo ( Hart et al., 2011; 2012 ). We use

PLEX 12.6.3 with default settings to solve all LP models within

he heuristic methods. Letsios et al. (2017) make the source code

vailable. The following discussion covers the 48 problems with 43

treams or fewer. Section 9.4 discusses the 3 examples with 160

treams each. 

The difficulty of solving the minimum number of matches prob-

em to global optimality motivates the design of heuristic methods

nd approximation algorithms with proven performance guaran-

ees. Tables G.7 and G.8 contain the computed objective value and

PU times, respectively, of the heuristics for all test cases. For the

hallenging Chen et al. (2015a,b) and Grossmann (2017) test sets,

euristic LHM-LP always produces the best solution. The LHM-LP

unning time is significantly higher compared to all heuristics due

o the iterative LP solving, despite the fact that it is guaranteed

o be polynomial in the worst case. Alternatively, heuristic SS pro-

uces the second best heuristic result with very efficient running

imes in the Chen et al. (2015a,b) and Grossmann (2017) test sets.

ig. 10 depicts the performance ratio of the proposed heuristics us-

ng a box and whisker plot, where the computed objective value is

ormalized with the one found by CPLEX for the transshipment

ILP. Fig. 11 shows a box and whisker plot of the CPU times of

ll heuristics in log 10 scale normalized by the minimum CPU time

or each test case. Fig. 12 shows a line chart verifying that our

reedy packing approach produces better solutions than the relax-

tion rounding and water filling ones. 

Table G.9 contains the heuristic results reported by Furman and

ahinidis (2004) and the ones obtained with our improved ver-

ion of the FLPR, LRR, and WFG heuristics of Furman and Sahini-

is (2004) . Our versions of FLPR, LRR, and WFG perform better for
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Fig. 11. Box and whisker diagram of 48 CPU times (log 10 scale) normalized by the 

minimum CPU time for each test case. 

Fig. 12. Line chart comparing the performance ratio, i.e. computed solution / best 

known solution, of the best computed result by heuristic methods: relaxation 

rounding, water filling, and greedy packing. This graph applies to the 48 problems 

with 43 streams or fewer. 
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the Furman and Sahinidis (2004) test set because of our new Al-

gorithm MHG for tightening the big-M parameters. For example,

out of the 26 instances, our version of FLPR performs strictly bet-

ter than the Furman and Sahinidis (2004) version 20 times and

worse only once ( 10sp1 ). To further explore the effect of the

big-M parameter, Table G.10 shows how different computations

for the big-M parameter change the FLPR and LRR performance.

Table G.10 also demonstrates the importance of the big-M param-

eter on the transportation MILP fractional relaxation quality. 

In particular, Table G.10 compares the three big-M computa-

tion methods discussed in Section 5.1 : (i) the trivial bounds, (ii)

the Gundersen et al. (1997) method, and (iii) our greedy Algorithm

MHG. Our greedy maximum heat algorithm dominates the other

approaches for computing the big-M parameters. Algorithm MHG

also outperforms the other two big-M computation methods by

finding smaller feasible solutions via both Fractional LP Rounding

and Lagrangian Relaxation Rounding. In the 48 test cases, Algo-

rithm MHG produces the best FLPR and LRR feasible solutions in

46 and 43 test cases, respectively. Algorithm MHG is strictly best
or 33 FLPR and 32 LRR test cases. Finally, Algorithm MHG achieves

he tightest fractional MILP relaxation for all test instances. 

Fig. 10 and Table G.7 show that our new CRR heuristic is com-

etitive with the other relaxation rounding heuristics, performing

s well or better than FLPR or LRR in 19 of the 48 test cases and

trictly outperforming both FLPR and LRR in 8 test cases. Although

RR solves a sequence of MILPs, Fig. 11 and Table G.8 show that its

unning time is efficient compared to the other relaxation round-

ng heuristics. 

Our water filling heuristics are equivalent to or better than

urman and Sahinidis (2004) for 25 of their 26 test set instances

all except 7sp2 ). In particular, our Algorithm WFG is strictly bet-

er than their WFG in 18 of 26 instances and is worse in just one.

his improvement stems from the new 1.5-approximation algo-

ithm for the single temperature interval problem (see Section 4.2 ).

he novel Algorithm WFM is competitive with Algorithm WFG and

roduces equivalent or better feasible solutions for 37 of the 48

est cases. In particular, WFM has a better performance ratio than

FG (see Fig. 10 ) and WFM is strictly better than WFG in all but 1

f the Grossmann (2017) instances. The strength of WFM highlights

he importance of our new MILP formulation in Eqs. (13) –(19) . At

ach iteration, WFM solves an MILP without big-M constraints and

herefore has a running time in the same order of magnitude as its

reedy counterpart WFG (see Fig. 11 ). 

In summary, our heuristics obtained via the relaxation round-

ng and water filling methods improve the corresponding ones pro-

osed by Furman and Sahinidis (2004) . Furthermore, greedy pack-

ng heuristics achieve even better results in more than 90% of the

est cases. 

.4. Larger scale instances 

Although CPLEX and Gurobi do not converge to global opti-

ality for many of the Furman (20 0 0) , Chen et al. (2015a,b) , and

rossmann (2017) instances, the solvers produce the best heuris-

ic solutions in all test cases. But the literature instances are only

oderately sized. We expect that the heuristic performance im-

roves relative to the exact approaches as the problem sizes in-

rease. Towards a more complete numerical analysis, we randomly

enerate 3 larger scale instances with 160 streams each. 

For larger problems, the running time may be important to a

esign engineer ( Linnhoff and Hindmarsh, 1983 ). We apply the

east time consuming heuristic of each type for solving the larger

cale instances, i.e. apply relaxation rounding heuristic FLPR, wa-

er filling heuristic WFG, and greedy packing heuristic SS. We also

olve the transshipment model using CPLEX 12.6.3 with a 4h time-

ut. The results are in Table G.11 . 

For these instances, greedy packing SS computes a better so-

ution than the relaxation rounding FLPR heuristic or the water

lling WFG heuristic, but SS has larger running time. In instance

arge-scale1 , greedy packing SS computes 218, a better solu-

ion than the CPLEX value 219. Moreover, the CPLEX heuristic spent

he first 1hr of computation time at solution 257 (18% worse than

he solution SS obtains in 10 min) and the next 2 h of computation

ime at solution 235 (8% worse than the solution SS obtains in 10

inutes). Any design engineer wishing to interact with the results

ould be frustrated by these times. 

In instance large-scale2 , CPLEX computes a slightly better

olution (239) than the SS heuristic (242). But the good CPLEX so-

ution is computed slightly before the 4 h timeout. For more than

.5 h, the best CPLEX heuristic is 273 (13% worse than the solution

S obtains in 10 min). Finally, in instance large-scale0 , CPLEX

omputes a significantly better solution (175) than the SS heuristic

233). But CPLEX computes the good solution after 2 h and the in-

umbent is similar to the greedy packing SS solution for the first
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 h. These findings demonstrate that greedy packing approaches

re particularly useful when transitioning to larger scale instances.

Note that we could additionally study approaches to improve

he heuristic performance of CPLEX, e.g. by changing CPLEX pa-

ameters or using a parallel version of CPLEX. But the point of

his paper is to develop a deep understanding of a very impor-

ant problem that consistently arises in process systems engineer-

ng ( Floudas et al., 2012 ). 

0. Discussion of manuscript contributions 

This section reflects on this paper’s contributions and sit-

ates the work with respect to existing literature. We begin

n Section 4 by designing efficient heuristics for the minimum

umber of matches problem with the special case of a single

emperature interval. Initially, we show that the 2 performance

uarantee by Furman and Sahinidis (2004) is tight. Using graph

heoretic properties, we propose a new MILP formulation for the

ingle temperature interval problem which does not contain any

ig-M constraints. We also develop an improved, tight, greedy 1.5-

pproximation algorithm which prioritizes stream matches with

qual heat loads. Apart from the its independent interest, solving

he single temperature interval problem is a major ingredient of

ater filling heuristics. 

The multiple temperature interval problem requires big-M pa-

ameters. We reduce these parameters in Section 5 by computing

he maximum amount of heat transfer with match restrictions. Ini-

ially, we present a greedy algorithm for exchanging the maximum

mount of heat between two streams. This algorithm computes

ighter big-M parameters than Gundersen et al. (1997) . We also

ropose LP-based ways for computing the maximum exchanged

eat using only a subset of the available matches. Maximum heat

omputations are fundamental ingredients of our heuristic meth-

ds and detect the overall problem feasibility. This paper empha-

izes how tighter big-M parameters improve heuristics with perfor-

ance guarantees, but notice that improving the big-M parameters

ill also tend to improve exact methods. 

Section 6 further investigates the relaxation rounding heuristics

f Furman and Sahinidis (2004) . Furman and Sahinidis (2004) pro-

ose a heuristic for the minimum number of matches problem

ased on rounding the LP relaxation of the transportation MILP

ormulation ( Fractional LP Rounding (FLPR) ). Initially, we formulate

he LP relaxation as a minimum cost flow problem showing that

t can be solved with network flow techniques which are more

fficient than generic linear programming. We derive a negative

erformance guarantee showing that FLPR has poor performance

n the worst case. We also prove a new positive performance

uarantee for FLPR indicating that its worst-case performance

ay be improved with tighter big-M parameters. Experimental

valuation shows that the performance of FLPR improves with

ur tighter algorithm for computing big-M parameters. Motivated

y the method of Lagrangian Relaxation, Furman and Sahinidis

2004) proposed an approach generalizing FLPR by approximating

he cost of the heat transferred via each match. We revisit possible

olicies for approximating the cost of each match. Interestingly,

e show that this approach can be used as a generic method

or potentially improving a solution of the minimum number of

atches problem. Heuristic Lagrangian Relaxation Rounding (LRR)

ims to improve the solution of FLPR in this way. Finally, we pro-

ose a new heuristic, namely Covering Relaxation Rounding (CRR) ,

hat successively solves instances of a new covering relaxation

hich also requires big-M parameters. 

Section 7 defines water filling heuristics as a class of heuris-

ics solving the minimum number of matches problem in a top-

own manner, i.e. from highest to lowest temperature interval.

erda et al. (1983) and Furman and Sahinidis (2004) have solution
ethods based on water filling. We improve these heuristics by

eveloping novel, efficient ways for solving the single temperature

nterval problem. For example, heuristics MILP-based Water Filling

WFM) and Greedy Water Filling (WFG) incorporate the new MILP

ormulation ( Eqs. (13) –(19) ) and greedy Algorithm IG, respectively.

ith appropriate LP, we further improve water filling heuristics

y reusing in each iteration matches selected in previous itera-

ions. Furman and Sahinidis (2004) showed a performance guar-

ntee scaling with the number of temperature intervals. We show

hat this performance guarantee is asymptotically tight for water

lling heuristics. 

Section 8 develops a new greedy packing approach for design-

ng efficient heuristics for the minimum the number of matches

roblem motivated by the packing nature of the problem. Greedy

acking requires feasibility conditions which may be interpreted as

 decomposition method analogous to pinch point decomposition,

ee Linnhoff and Hindmarsh (1983) . Similarly to Cerda et al. (1983) ,

tream ordering affects the efficiency of greedy packing heuristics.

ased on the feasibility conditions, the LP in Eqs. (20) –(24) selects

atches carrying a large amount of heat and incurring low uni-

ary cost for exchanging heat. Heuristic LP-based Largest Heat Match

LHM-LM) selects matches greedily by solving instances of this LP.

sing a standard packing argument, we obtain a new logarithmic

erformance guarantee. LHM-LP has a polynomial worst-case run-

ing time but is experimentally time-consuming due to the re-

eated LP solving. We propose three other greedy packing heuristic

ariants which improve the running time at the price of solution

uality. These other variants are based on different time-efficient

trategies for selecting good matches. Heuristic Largest Heat Match

LHM) selects matches exchanging high heat in a pairwise man-

er. Heuristic Largest Fraction Match (LFM) is inspired by the idea

f our greedy approximation algorithm for the single temperature

nterval problem which prioritizes roughly equal matches. Heuris-

ic Smallest Stream First (SS) is inspired by the idea of the tick-off

euristic ( Linnhoff and Hindmarsh, 1983 ) and produces matches in

 stream to stream basis, where a hot stream is ticked-off by being

atched with a small number of cold streams. 

Finally, Section 9 shows numerically that our new way of com-

uting the big-M parameters, our improved algorithms for the

ingle temperature interval, and the other enhancements improve

he performance of relaxation rounding and water-filling heuris-

ics. The numerical results also show that our novel greedy pack-

ng heuristics typically find better feasible solutions than relaxation

ounding and water-filling ones. But the tradeoff is that the relax-

tion rounding and water filling algorithms achieve very efficient

un times. 

1. Conclusion 

In his Ph.D. thesis, Professor Floudas showed that, given a solu-

ion to the minimum number of matches problem, he could solve

 nonlinear optimization problem designing effective heat recov-

ry networks. But the sequential HENS method cannot guaran-

ee that promising minimum number of matches solutions will

e optimal (or even feasible!) to Professor Floudas’ nonlinear op-

imization problem. Since the nonlinear optimization problem is

elatively easy to solve, we propose generating many good candi-

ate solutions to the minimum number of matches problem. This

anuscript develops nine heuristics with performance guarantees

o the minimum number of matches problem. Each of the nine

euristics is either novel or provably the best in its class. Beyond

pproximation algorithms, our work has interesting implications

or solving the minimum number of matches problem exactly, e.g.

he analysis into reducing big-M parameters or the possibility of

uickly generating good primal feasible solutions. 
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Fig. B.13. An instance showing the tightness of the 2 performance guarantee for 

Algorithm SG. 
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approximate for ( H, C ) with the addition of match ( i, j ) . 
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Appendix A. N P -hardness reduction 

Theorem 1. There exists an N P -hardness reduction from bin packing

to the minimum number of matches problem with a single tempera-

ture interval. 

Proof. Initially, define the decision version of bin packing. A bin

packing instance consists of a set B = { 1 , 2 , . . . , m } of bins, each bin

of capacity K , and a set O = { 1 , 2 , . . . , n } of objects, where object

i ∈ O has size s i ∈ (0, K ]. The goal is to determine whether there ex-

ist a feasible packing O 1 , O 2 , . . . , O m 

of the objects into the bins,

where O j ⊆O is the subset of objects packed in bin j ∈ B . Each ob-

ject is placed in exactly one bin, i.e. ∪ 

m 

j=1 
O j = O and O j ∩ O j ′ = ∅

for each 1 ≤ j < j ′ ≤ m , and the total size of the objects in a bin do

not exceed its capacity, i.e. 
∑ 

i ∈ O j s i ≤ K, for j ∈ B . 

Consider an instance ( O, n, B, m ) of bin packing. Construct an

instance of the minimum number of matches problem with a sin-

gle temperature interval by setting H = O, h i = s i for i = 1 , . . . , n,

 = B and c j = K for j = 1 , . . . , m . We claim that bin packing has a

feasible solution if and only if the constructed minimum number

of matches instance is feasible using exactly n matches. 

To the first direction, consider a feasible packing O 1 , . . . , O m 

. For

each i ∈ H and j ∈ C , we obtain a solution for the minimum num-

ber of matches instance by setting q i, j = h i if i ∈ O j , and q i, j = 0 ,

otherwise. By the constraints ∪ 

m 

j=1 
O j = O and O j ∩ O j ′ = ∅ for each

1 ≤ j < j ′ ≤ m , there is exactly one j ∈ B such that i ∈ O j . Hence, the

number of matches is |{ (i, j) ∈ H × C : q i, j > 0 }| = n and 

∑ 

j∈ C q i, j =
h i for every i ∈ H . Since the capacity of bin j ∈ B is not exceeded,

we have that 
∑ 

i ∈ O j s i ≤ K, or equivalently 
i ∈ H q i, j ≤ c j for all j ∈ C .

Thus, the obtained solution is feasible. 

To the other direction, consider a feasible solution for the min-

imum number of matches instance. Obtain a feasible packing by

placing object i ∈ O in the bin j if and only if q i, j > 0. Since the so-

lution contains at most n matches and h i > 0, for each i ∈ H , each

hot stream i ∈ H matches with exactly one cold stream j ∈ C and it

holds that q i, j = h i . That is, each object is placed in exactly one bin.

Given that 
∑ 

i ∈ H q i, j ≤ c j = K, the bin capacity constraints are also

satisfied. �

Appendix B. Single temperature interval problem 

Lemma 8 concerns the structure of an optimal solution for the

single temperature interval problem. It shows that the correspond-

ing graph is acyclic and that the number of matches is related to

the number of graph’s connected components (trees), if arc direc-

tions are ignored. 

Lemma 8. Consider an instance H, C of the single temperature inter-

val problem. For each optimal solution ( � y ∗, � q ∗) , there exists an integer

� ∗ ∈ [1, min { n, m }] s.t. 

• if arc directions are ignored, the corresponding graph G ( � y ∗, � q ∗) is

a forest consisting of � ∗ trees, i.e. there are no cycles, and 
• ( � y ∗, � q ∗) contains v ∗ = m + n − � ∗ matches. 

Proof. Assume that G ( � y ∗, � q ∗) contains a cycle, af-

ter removing arc directions. Moreover, let M =
{ (i 1 , j 1 ) , (i 2 , j 1 ) , (i 2 , j 2 ) , (i 3 , j 2 ) , . . . , (i g , j g−1 ) , (i g , j g ) , (i 1 , j g ) } be

a subset of matches forming a cycle. Denote by q ∗
min 

= min { q ∗
i, j 

:

(i, j) ∈ M} the minimum amount of heat transferred via a match
n M . Without loss of generality, assume that q ∗
i 1 , j 1 

= q ∗
min 

. Start-

ng from ( � y ∗, � q ∗) , produce a feasible solution ( � y , � q ) as follows.

et q i 1 , j 1 
= 0 , q i e , j e = q ∗

i e , j e 
− q ∗

min 
and q i e , j e −1 

= q ∗
i e , j e −1 

+ q ∗
min 

, for

 = 2 , . . . , g, as well as q i 1 , j g = q ∗
i 1 , j g 

+ q ∗
min 

. The new solution ( � y , � q )

s feasible and has a strictly smaller number of matches compared

o ( � y ∗, � q ∗) , which is a contradiction. 

Since G ( � y ∗, � q ∗) does not contain a cycle, it must be a forest

onsisting of � ∗ trees (which we call bins from a packing per-

pective). Let B = { 1 , . . . , � ∗} be the set of these trees and M b the

ubset of matches in tree b ∈ B . By definition, tree b ∈ B contains

 M b | matches (edges) and, therefore, | M b | + 1 streams (nodes). Fur-

hermore, each stream appears in exactly one tree implying that
 � ∗
b=1 | M b | = n + m − � ∗. Thus, it holds that the number of matches

n ( � y ∗, � q ∗) is equal to: 

 = 

� ∗∑ 

b=1 

| M b | = n + m − � ∗. �

Theorem 2 that Algorithm SG, developed by Furman and Sahini-

is (2004) , is tight. 

heorem 2. Algorithm SG achieves an approximation ratio of 2 for

he single temperature interval problem and it is tight. 

roof. In the algorithm’s solution, the number v of matches is

qual to the number of steps that the algorithm performs. For each

air of streams i ∈ H and j ∈ C matched by the algorithm, at least

ne has zero remaining heat load exactly after they have been

atched. Therefore, the number of steps is at most v ≤ n + m − 1 .

he optimal solution contains at least v ∗ ≥ max { n, m }. Hence, the

lgorithm is 2-approximate. 

Consider a set of n hot streams with heat loads h i = 2 n + 1 −
 for 1 ≤ i ≤ n and m = n + 1 cold streams with c j = 2 n − j, for

 ≤ j ≤ m . As shown in Fig. B.13 for the special case n = 5 , the

lgorithm uses 2 n matches while the optimal solution has n + 1

atches. Hence, the 2 approximation ratio of Algorithm SG is

symptotically tight. �

Lemma 9 formalizes the benefit of matching stream pairs

ith equal heat loads and indicates the way of manipulating

hese matches in the analysis of Algorithm IG and the proof of

heorem 3 . 

emma 9. Consider an instance ( H, C ) of the single temperature in-

erval problem and suppose that there exists a pair of streams i ∈ H

nd j ∈ C such that h i = c j . Then, 

• there exists an optimal solution ( � y ∗, � q ∗) s.t. q ∗
i, j 

= h i , i.e. i and j

are matched together, 
• any ρ-approximate solution for ( H �{ i }, C �{ j }) is also ρ-

https://doi.org/10.13039/501100000266
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Fig. B.14. An instance showing the tightness of the 1.5 performance guarantee for 

Algorithm IG. 
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roof. Consider an optimal solution ( � y ∗, � q ∗) in which i and j are

ot matched solely to each other. Suppose that i is matched with

j 1 , j 2 , . . . , j m 

′ while j is matched with i 1 , i 2 , . . . , i n ′ . Without loss of

enerality, q ∗
i, j 

= 0 ; the case 0 < q ∗
i, j 

< h i is treated similarly. Start-

ng from ( � y ∗, � q ∗) , we obtain the slightly modified solution ( � y , � q ) in

hich i is matched only with j . The c j units of heat of i 1 , i 2 , . . . , i n ′ 
riginally transferred to j are now exchanged with j 1 , j 2 , . . . , j m 

′ ,
hich are no longer matched with i . The remaining solution is

ot modified. Analogously to the proof of Theorem 2 , we show

hat there can be at most n ′ + m 

′ − 1 new matches between the

 

′ hot streams (i.e. i 1 , i 2 , . . . , i n ′ ) and the m 

′ cold streams (i.e.

j 1 , j 2 , . . . , j m 

′ ) in ( � y , � q ) . By also taking into account the new match

 i, j ), we conclude that there exists always a solution in which i is

nly matched with j and has no more matches than ( � y ∗, � q ∗) . 
Consider an optimal solution ( � y ∗, � q ∗) for ( H, C ), in which there

re v ∗ matches and i is matched only with j . An optimal solution

or ( H �{ i }, C �{ j }) contains v ∗ − 1 matches. Suppose that ( � y , � q ) is the

nion of a ρ-approximate solution for ( H �{ i }, C �{ j }) and the match

 i, j ). Let v be the number of matches in ( � y , � q ) . Clearly, v − 1 ≤ ρ ·
(v ∗ − 1) which implies that v ≤ρ · v ∗, as ρ ≥ 1. �

The following theorem shows a tight analysis for Algorithm IG. 

heorem 3. Algorithm IG achieves an approximation ratio of 1.5 for

he single temperature interval problem and it is tight. 

roof. By Theorem 2 , Algorithm IG produces a solution ( � y , � q )

ith v ≤ n + m matches. Consider an optimal solution ( � y ∗, � q ∗) . By

emma 8 , ( � y ∗, � q ∗) consists of � ∗ trees and has v ∗ = n + m − � ∗

atches. Due Lemma 9 , we may assume that instance does not

ontain a pair of equal hot and cold streams. Hence, each tree in

he optimal solution contains at least 3 streams, i.e. � ∗ ≤ (n + m ) / 3 .

hus, v ∗ ≥ (2 / 3)(n + m ) and we conclude that v ≤ (3/2) v ∗. 

For the tightness of our analysis, consider an instance of the

roblem with n hot streams, where h i = 4 n − 2 i for i = 1 , . . . , n,

nd m = 2 n cold streams such that c j = 4 n − 2 j − 1 for j = 1 , . . . , n

nd c j = 1 for j = n + 1 , . . . , 2 n . Algorithm IG uses 3 n matches,

hile the optimal solution uses 2 n matches. Hence the 3/2 approx-

mation ratio of the algorithm is tight. Figs. B.14 a and B.14 b show

he special case with n = 4 . �

ppendix C. Relaxation rounding heuristics 

heorem 4. Algorithm FLPR is ( n ) -approximate. 
roof. We construct a minimum number of matches instance for

hich Algorithm FLPR produces a solution ( n ) times far from the

ptimal solution. This instance consists of a single temperature in-

erval and an equal number of hot and cold streams, i.e. n = m,

ith the same heat load h i = n and c j = n, for each i ∈ H and j ∈ C .

ecause of the single temperature interval, we ignore the temper-

ture interval indices of the variables � q . In the optimal solution,

ach hot stream is matched with exactly one cold stream and there

re v ∗ = n matches in total. Given that there exist feasible solutions

uch that q i, j = n, for every possible i ∈ H and j ∈ C , the algorithm

omputes the upper bound U i, j = n . In an optimal fractional solu-

ion, it holds that q 
f 
i, j 

= 1 , for each i ∈ H and j ∈ C . In this case, Algo-

ithm FLPR sets y i, j = 1 for each pair of streams i ∈ H, j ∈ C and uses

 total number of matches equal to v = 

∑ 

i ∈ H 
∑ 

j∈ C y i, j = (n 2 ) .

herefore, it is ( n )-approximate. �

heorem 5. Given an optimal fractional solution with a set M of

atches and filling ratio φ( M ), FLPR produces a 1 
φ(M) 

-approximate in-

egral solution. 

roof. We denote Algorithm FLPR’s solution and the optimal frac-

ional solution by ( � y , � q ) and ( � y f , � q f ) , respectively. Moreover, sup-

ose that ( � y ∗, � q ∗) is an optimal integral solution. Let M ⊆H × C be

he set of matched pairs of streams by the algorithm, i.e. y i, j = 1 ,

f ( i, j ) ∈ M , and y i, j = 0 , otherwise. Then, it holds that: ∑ 

i, j) ∈ M 

y i, j = 

∑ 

(i, j) ∈ M 

U i, j 

L i, j 

∑ 

s,t∈ T 

q i,s, j,t 

U i, j 

≤ 1 

φ(M) 

∑ 

(i, j) ∈ M 

∑ 

s,t∈ T 

q f 
i,s, j,t 

U i, j 

≤ 1 

φ(M) 

∑ 

(i, j) ∈ M 

y f 
i, j 

≤ 1 

φ(M) 

∑ 

i ∈ H 

∑ 

j∈ C 
y ∗i, j . 

he first equality is obtained by using the fact that, for each ( i,

 ) ∈ M , it holds that y i, j = 

U i, j 

L i, j 

L i, j 

U i, j 
and L i, j = 

∑ 

s,t∈ T q i,s, j,t . The first

nequality is true by the definition of the filling ratio φ( M ) and

he fact that � q = 

�
 q f . The second inequality holds by the big-M con-

traint of the fractional relaxation. The final inequality is valid due

o the fact that the optimal fractional solution is a lower bound on

he optimal integral solution. �

ppendix D. Water filling heuristics 

The reformulated MILP in Eqs. (D.1) –(D.6) solves the single tem-

erature interval problem without heat conservation. It is similar

o the MILP in Eqs. (13) –(19) with heat conservation, except that it

oes not contain constraints (14) while Equalities (16) and (18) be-

ome the inequalities (D.3) and (D.5) . In the single temperature in-

erval problem with (without) heat conservation, the total heat of

ot streams is equal to (greater than or equal to) the demand of

he cold streams. Each water filling algorithm step solves the single

emperature interval problem without heat conservation. All heat

emands of cold streams are satisfied and the excess heat supply

f hot streams descends to the subsequent temperature interval. 

max 
∑ 

b∈ B 
x b (D.1) 

x b ≥
∑ 

j∈ C 
z j,b b ∈ B (D.2) 

∑ 

b∈ B 
w i,b ≤ 1 i ∈ H (D.3) 
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Fig. D.15. An instance showing (asymptotically) the tightness of the O ( k ) performance guarantee for greedy packing heuristics. In this instance, it holds that n = m = k and 

every heat supply and heat demand belongs to {0, 1} in each temperature interval. In the optimal solution, hot stream i is matched with cold stream j = i and there are n 

matches. In the algorithm’s solution, hot stream i is matched with cold streams 1 , . . . , m − i + 1 and there are ( n 2 ) matches in total. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

e

P  

m  

f  

t

 

s  

o  

t  

c

L  

s

P  

t  

d  

t  

s  

s

i  

l

 

L  

p  

a

L  

i  

u  

t

P

s  

a

∑ 

b∈ B 
z j,b = 1 j ∈ C (D.4)

∑ 

i ∈ H 
w i,b · h i ≥

∑ 

j∈ C 
z j,b · c j b ∈ B (D.5)

x b , w i,b , z j,b ∈ { 0 , 1 } b ∈ B, i ∈ H, j ∈ C (D.6)

Theorem 6 shows an asymptotically tight performance guaran-

tee for water filling heuristics proportional to the number of tem-

perature intervals. The positive performance guarantee implies the

proof of Furman and Sahinidis (2004) . 

Theorem 6. Algorithms WFG and WFM are �( k ) -approximate (i.e.

both O ( k ) -approximate and ( k ) -approximate). 

Proof. A water filling algorithm solves an instance of the sin-

gle temperature interval problem in each temperature interval t =
1 , . . . , k . This instance consists of at most n hot streams and at

most m cold streams. By Theorem 2 , algorithms WFG and WFM in-

troduce at most n + m new matches in each temperature interval

and produce a solution with v ≤ k (n + m ) matches. In the optimal

solution, each hot and cold stream appears in at least one match

which means that v ∗ ≥ max { n, m } matches are chosen in total. So,

v ≤ 2 k · v ∗. 

On the negative side, we show a lower bound on the perfor-

mance guarantee of algorithms WFG and WFM using the exten-

sion of the problem instance in Fig. D.15 with an equal number of

hot streams, cold streams and temperature intervals, i.e. m = n = k .

Each hot stream i ∈ H has heat supply σ i, s ∈ {0, 1} and each cold

stream j ∈ C has heat demand δj, t ∈ {0, 1}, for each s, t ∈ T . Hot

stream i has unit heat in temperature intervals { 1 , . . . , k − i + 1 }
and no supply elsewhere. Cold stream j demands unit heat in tem-

perature intervals { j, . . . , k } and no demand elsewhere. In the op-

timal solution, hot stream i is matched with cold stream j = i and

there are v ∗ = k matches in total. Algorithms WFG and WFM pro-

duce the same solution in which hot stream i is matched with cold

streams { 1 , 2 , . . . , k − i + 1 } , where j = i, and there are v = O (k 2 )

matches in total. �

Appendix E. Greedy packing heuristics 

Lemma 10 shows a condition ensuring the strict monotonicity

of a greedy heuristic which decomposes any instance I into the in-

stances I A (already solved) and I B (remaining to be solved) in each

iteration (see Section 8.1 ). 
emma 10. A greedy heuristic is strictly monotonic if I B is feasible in

ach iteration. 

roof. Given that I A is of maximal heat (see Section 8.1 ), any

atch of M is redundant in any feasible solution of I B . Since I B is

easible, there exists a match in H × C �M whose selection increases

he amount of heat exchanged in I A . �

Lemma 11 states necessary and sufficient conditions for the fea-

ibility of a minimum number of matches instance I . The first set

f conditions ensures that heat always flows from the hot side to

he same or lower temperature intervals on the cold side. The last

ondition enforces heat conservation. 

emma 11. An instance I of the minimum number of matches is fea-

ible if and only if the following conditions hold. 

• For each u ∈ T �{ k }, it is the case that R u ≥ 0, or equivalently 

∑ 

i ∈ H 

u ∑ 

s =1 

σi,s ≥
∑ 

j∈ C 

u ∑ 

t=1 

δ j,t 

• It holds that R k = 0 , or equivalently 

∑ 

i ∈ H 

k ∑ 

s =1 

σi,s = 

∑ 

j∈ C 

k ∑ 

t=1 

δ j,t . 

roof. To the first direction, a violation of a condition makes the

ask of constructing a feasible solution impossible. To the opposite

irection, Algorithm MHG in Section 3 constructs a feasible solu-

ion for every instance satisfying the conditions; it suffices to con-

ider all the hot and cold streams as one large hot and large cold

tream, respectively. The single hot stream has heat load 
i ∈ H σ i, s 

n temperature interval s ∈ T and the single cold stream has heat

oad 
j, t δj, t in temperature interval t ∈ T . �

Given a decomposition of an instance I into instances I A and I B ,

emma 12 shows that a careful construction of I A respecting the

roposed heat residual capacities in Section 8.1 implies that I B is

lso feasible. 

emma 12. Consider a decomposition of a feasible instance I into the

nstances I A and I B . Let R , � R A and � R B be the corresponding heat resid-

al capacities. If I A is feasible and it holds that R A u ≤ R u for each u ∈ T,

hen I B is also feasible. 

roof. To show that the Lemma is true, it suffices to show that I B 

atisfies the feasibility conditions of Lemma 11 . Consider a temper-

ture interval u ∈ T �{ k }. Then, 
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A 
u ≤ R u ⇔ 

∑ 

i ∈ H 

u ∑ 

s =1 

σ A 
i,s −

∑ 

j∈ C 

u ∑ 

t=1 

δA 
j,t ≤

∑ 

i ∈ H 

u ∑ 

s =1 

σi,s −
∑ 

j∈ C 

u ∑ 

t=1 

δ j,t 

⇔ 

∑ 

i ∈ H 

u ∑ 

s =1 

(
σi,s − σ A 

i,s 

)
≥

∑ 

j∈ C 

u ∑ 

t=1 

(
δ j,t − δA 

j,t 

)

⇔ 

∑ 

i ∈ H 

u ∑ 

s =1 

σ B 
i,s ≥

∑ 

j∈ C 

u ∑ 

t=1 

δB 
j,t 

n the same fashion, the fact that R k = R A 
k 

= 0 implies that R B 
k 

= 0 .

ence, I B is feasible. �

Given a set M matches, the LP in Eqs. (E.1) –(E.5) maximizes the

otal stream fraction that can be covered using only matches in M .

t is similar to the LP in Eqs. (20) –(24) in Section 8.2 , except that

he maximum fraction objective function (E.1) replaces the maxi-

um heat objective function (20) . 

ax 
∑ 

(i,s, j,t) ∈ A (M) 

(
q i,s, j,t 

h i 

+ 

q i,s, j,t 

c j 

)
(E.1) 

∑ 

( j,t) ∈ V C 
i,s 

(M) 

q i,s, j,t ≤ σi,s (i, s ) ∈ V 

H (M) (E.2) 

∑ 

(i,s ) ∈ V H 
j,t 

(M) 

q i,s, j,t ≤ δ j,t ( j, t) ∈ V 

C (M) (E.3) 

∑ 

(i,s, j,t) ∈ A u (M) 

q i,s, j,t ≤ R u u ∈ T (E.4) 

 i,s, j,t ≥ 0 (i, s, j, t) ∈ A (M) (E.5) 

The following theorem shows a performance guarantee for Al-

orithm LHM-LP using a standard packing argument. 

heorem 7. Algorithm LHM-LP is O ( log n + log h max 
ε ) -approximate,

here ε is the required precision. 

roof. Initially, we show an approximation ratio of O ( log n +
og h max ) for the special case of the problem with integer parame-

ers. Then, we generalize the result to decimal parameters. 

We denote by v the number of the algorithm’s matches and by

 

∗ the number of matches in an optimal solution. To upper bound

 , we assign unitary costs to the transferred heat in the algorithm’s

olution as follows. Algorithm LHM-LP constructs a feasible set

 of matches greedily. At each iteration, LHM-LP selects a match

hose addition in M maximizes the heat that can be feasibly ex-

hanged using the matches in M . For � = 1 , . . . , v , let M � be the set

f selected matches at the end of the � th iteration and Q � be the

aximum amount of heat the can be feasibly exchanged between

ll streams using exactly the matches in M � . Before the algorithm

egins, M 0 = ∅ and Q 0 = 0 . The extra amount of transferable heat

ith the addition of the � th chosen match is E � = Q � − Q � −1 , for

 = 1 , . . . , v . We set the unitary cost to this part of the algorithm’s

otal heat as κ� = 

1 
E � 

. Then, the algorithm’s number of matches can

e expressed: 

 = 

v ∑ 

� =1 

κ� · E � . (E.6) 

et S � be the total remaining heat to be transferred when the � th

teration completes. Then, S 0 = Q and S � = Q − Q � , for � = 1 , . . . , v ,
here Q = 

∑ n 
i =1 h i is the total amount of heat. Note that S v = 0

ecause the algorithm produces a feasible solution. Since the al-

orithm chooses the match that results in the highest increase

f transferred heat in each iteration, it must be the case that
 1 ≥ ��� ≥ E v or equivalently κ1 ≤ ��� ≤κv . At the end of the � th it-

ration, the remaining heat can be transferred using at most v ∗ ad-

itional matches by selecting the remaining matches of an optimal

olution. Using a simple average argument we get that κ� ≤ v ∗
S � −1 

,

or each � = 1 , . . . , v . Thus, Eq. (E.6) implies: 

 ≤
v ∑ 

� =1 

( v ∗

S � −1 

)
· E � = 

v ∑ 

� =1 

(
E � 

Q − Q � −1 

)
· v ∗. (E.7) 

y the integrality of the minimum cost network flow polytope,

ach value E � is an integer, for � = 1 , . . . , v . Hence, 

E � 

Q − Q � −1 

= 

E � ∑ 

e =1 

1 

Q − Q � −1 

≤
E � ∑ 

e =1 

1 

Q − Q � −1 − e + 1 

. 

iven that Q � = Q � −1 + E � , 

E � 

Q − Q � −1 

≤
Q � −1 ∑ 

e = Q � −1 

1 

Q − e 
. (E.8) 

nequalities (E.7) and (E.8) imply: 

 ≤
( 

Q ∑ 

e =1 

1 

e 

) 

· v ∗. 

sing the asymptotic bound 

∑ Q 
e =1 

1 
e = O ( log Q ) of harmonic se-

ies and the fact that Q ≤ n · h max , we conclude that the algorithm

s O ( log n + log h max ) -approximate, where h max = max i ∈ H { h i } is the

aximum heat of a hot stream. 

Generalizing to decimal parameters, the algorithm is O ( log n +
og h max 

ε ) , where ε is the precision required for solving the prob-

em instance. The reasoning is the same except that, instead of

onsidering integer units, we consider ε units to extend inequal-

ty (E.8) . �

ppendix F. Minimum utility cost problem 

This section shows how to obtain a minimum number of

atches problem instance from a general heat exchanger network

esign problem instance via minimizing utility cost. We include

his appendix for completeness, but this material is available else-

here ( Floudas, 1995 ). Table F.3 lists the notation. 

eneral heat exchanger network design. An instance of the general

eat exchanger network design consists of a set HS = { 1 , 2 , . . . , ns }
f hot streams, a set CS = { 1 , 2 , . . . , ms } of cold streams, a set HU =
 1 , 2 , . . . , nu } of hot utilities and a set CU = { 1 , 2 , . . . , mu } of cold

tilities. Each hot stream i ∈ HS (cold stream j ∈ CS ) has initial inlet,

utlet temperatures T HS 
in ,i 

, T HS 
out ,i 

(resp. T CS 
in , j 

, T CS 
out , j 

) and flowrate heat

apacity FCp i (resp. FCp j ). Each hot utility i ∈ HU (cold utility j ∈ CU )

s associated with inlet, outlet temperatures T HU 
in ,i 

, T HU 
out ,i 

(resp. T CU 
in , j 

,

 

CU 
out , j 

) and a cost κHU 
i 

(resp. κCU 
j 

). 

emperature intervals. The sequential method begins by comput-

ng a set T I = { 1 , 2 , . . . , k } of k temperature intervals ( Ciric and

loudas, 1989; Linnhoff and Flower, 1978 ). A minimum heat re-

overy approach temperature �T min specifies the minimum tem-

erature difference between two streams exchanging heat. In

rder to incorporate �T min in the problem’s setting, we en-

orce that each temperature interval corresponds to a tempera-

ure range on the hot stream side shifted up by �T min with re-

pect to its corresponding temperature range on the cold stream

ide. Let TI H and TI C be the temperature intervals on the hot

nd cold side, respectively. Consider, on the hot side, all k + 1

iscrete temperature values T 1 > T 2 > · · · > T k +1 belonging to the

et { T HS 
in ,i 

: i ∈ HS} ∪ { T HU 
in ,i 

: i ∈ HU} ∪ { T CS 
in , j 

+ �T min : j ∈ CS} ∪ { T CU 
in , j 

+
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Table F.3 

Minimum utility cost notation. 

Name Description 

Cardinalities, Indices, Sets 

ns, ms Number of hot, cold streams 

nu, mu Number of hot, cold utilities 

k Number of temperature intervals 

i ∈ HS ∪ HU Hot stream, utility 

j ∈ CS ∪ CU Cold stream, utility 

t ∈ TI Temperature interval 

HS, CS Set of hot, cold streams 

HU, CU Set of hot, cold utilities 

TI Set of temperature intervals 

Parameters 

FCp i , FCp j Flowrate heat capacity of hot stream i , cold stream j 

T HS 
in ,i 

, T HS 
out ,i 

Inlet, outlet temperature of hot stream i 

T CS 
in , j 

, T CS 
out , j 

Inlet, outlet temperature of cold stream j 

T HU 
in ,i 

, T HU 
out ,i 

Inlet, outlet temperature of hot utility i 

T CU 
in , j 

, T CU 
out , j 

Inlet, outlet temperature of cold utility j 

�T min Minimum heat recovery approach temperature 

κHU 
i 

, κCU 
j 

Unitary cost of hot utility i , cold utility j 

σ HS 
i,t 

Heat supply of hot stream i in interval t 

δCS 
j,t 

Heat demand of cold stream j in interval t 

Variables 

σ HU 
i,t 

Heat supply of hot utility i in interval t 

δCU 
j,t 

Heat demand of cold utility j in interval t 

R t Residual heat exiting temperature interval t 
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�T min : j ∈ CU} . Then, we define T I H = ∪ 

k 
t=1 

{ [ T t , T t+1 ] } and T I C =
∪ 

k 
t=1 

{ [ T t − �T min , T t+1 − �T min ] } . We set T I = T I H and we observe

that TI C contains exactly the same temperature intervals with TI

shifted by �T min . Moreover, we set �T t = T t − T t+1 , for t ∈ TI . 

For each temperature interval t ∈ TI , we are now able to com-

pute the quantity σ HS 
i,t 

of heat load exported by hot stream i ∈ HS

as well as the amount δCS 
j,t 

of heat load received by cold stream

j ∈ CS in t ∈ TI . Specifically, for each i ∈ HS and t ∈ TI , we set 

σ HS 
i,t = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

F Cp i · �T t , if T in 
i 

≥ T t and T out 
i 

≤ T t+1 

F Cp i · (T t − T out 
i 

) , if T in 
i 

≥ T t and T out 
i 

> T t+1 

0 , if T in 
i 

< T t 

Similarly, for each j ∈ CS and t ∈ TI , 

δCS 
j,t = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

F Cp j ·�T t , if T in 
j 

≤T t+1 −�T min and T out 
j 

≥T t −�T min 

F Cp j ·(T out 
j 

−(T t+1 −�T min )) , if T in 
j 

≤T t+1 −�T min and T out 
j 

<T t −�T min 

0 , if T in 
j 

>T t+1 −�T min 
inimum utility cost. This problem is solved in order to compute

he minimum amount of utility heat so that there is heat balance

n the network. For each hot utility i ∈ HU and cold utility j ∈ CU

he continuous variables σ HU 
i,t 

and δCU 
j,t 

correspond to the amount

f heat of i and j , respectively, in temperature interval t . The LP

ses a heat residual variable R t , for each t ∈ TI . Let TI i be the set of

emperature intervals to which hot utility i ∈ HU can transfer heat,

easibly. Similarly, let TI j be the set of temperature intervals from

hich cold utility j ∈ CU can receive heat. The minimum utility cost

roblem can be solved by using the following LP model (see Cerda

t al. (1983) ; Papoulias and Grossmann (1983) ). 

in 

∑ 

i ∈ HU 

∑ 

t∈ T I 
κHU 

i · σ HU 
i,t + 

∑ 

j∈ CU 

∑ 

t∈ T I 
κCU 

j · δCU 
j,t (F.1)

∑ 

i ∈ HS 

σ HS 
i,t + 

∑ 

i ∈ HU 

σ HU 
i,t + R t = 

∑ 

j∈ CS 

δCS 
j,t + 

∑ 

j∈ CU 

δCU 
j,t + R t+1 t ∈T I (F.2)

 1 , R k +1 = 0 (F.3)

HU 
i,t = 0 i ∈ HU, t ∈ T I \ T I i (F.4)

CU 
j,t = 0 j ∈ CU, t ∈ T I \ T I j (F.5)

HU 
i,t , δCU 

j,t , R t ≥ 0 i ∈ HU, j ∈ CU, t ∈ T I (F.6)

Expression F.1 minimizes the utility cost. Constraints F.2 and

.3 ensure energy balance. Constraints F.4 and F.5 ensure that heat

ows from a temperature interval to the same or a lower temper-

ture interval. 

inimum number of matches. Given an optimal solution of the

inimum utility cost problem, we obtain an instance of the mini-

um number of matches problem as follows. All utilities are con-

idered as streams, i.e. H = H S ∪ H U, C = C S ∪ C U, n = ns + nu and

 = ms + mu . Furthermore, T = T I. Finally, for each i ∈ H and t ∈ T

he parameter σ i, t is equal to σ HS 
i,t 

or σ HU 
i,t 

depending on whether

 was originally a hot stream or utility. The parameters δj, t are ob-

ained similarly, for each j ∈ C and t ∈ T . 
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A
ppendix G. Experimental results 
Table G.4 

Problem sizes of the test cases. The number of variables and constraints are computed w

et al., 2017 ). 

Test Case Hot streams Cold streams Temp. intervals Bin

Furman and Sahinidis (2004) Test set 

10sp-la1 5 6 9 30 

10sp-ol1 5 7 8 35 

10sp1 5 6 9 30 

12sp1 10 3 13 30 

14sp1 7 8 14 56 

15sp-tkm 10 7 15 70 

20sp1 10 11 20 110

22sp-ph 12 12 18 144

22sp1 12 12 17 144

23sp1 11 13 19 143

28sp-as1 17 13 15 221

37sp-yfyv 21 17 32 357

4sp1 3 3 5 9 

6sp-cf1 3 4 5 12 

6sp-gg1 3 3 5 9 

6sp1 3 4 6 12 

7sp-cm1 4 5 8 20 

7sp-s1 7 2 8 14 

7sp-torw1 5 4 7 20 

7sp1 3 5 6 15 

7sp2 4 4 7 16 

7sp4 7 2 8 14 

8sp-fs1 6 4 8 24 

8sp1 5 5 8 25 

9sp-al1 5 6 9 30 

9sp-has1 6 5 9 30 

Chen et al. (2015a,b) Test Set 

balanced10 12 11 20 132

balanced12 14 13 23 182

balanced15 17 16 28 272

balanced5 7 6 12 42 

balanced8 10 9 16 90 

unbalanced10 12 11 20 132

unbalanced15 17 16 28 272

unbalanced17 19 18 32 342

unbalanced20 22 21 36 462

unbalanced5 7 6 12 42 

Grossmann (2017) Test set 

balanced12_random0 14 13 23 182

balanced12_random1 14 13 23 182

balanced12_random2 14 13 23 182

balanced15_random0 17 16 28 272

balanced15_random1 17 16 28 272

balanced15_random2 17 16 28 272

unbalanced17_random0 19 18 32 342

unbalanced17_random1 19 18 32 342

unbalanced17_random2 19 18 32 342

unbalanced20_random0 22 21 36 462

unbalanced20_random1 22 21 36 462

unbalanced20_random2 22 21 36 462
ith respect to the transshipment model. All test cases are available online ( Letsios 

ary vars Continuousvars Constraints Ref 

315 134 Linnhoff. and Ahmad (1989) 

320 136 Shenoy (1995) 

315 134 Pho and Lapidus (1973) 

520 209 Grossmann and Sargent (1978) 

882 273 Grossmann and Sargent (1978) 

1200 335 Tantimuratha et al. (20 0 0) 

 2400 540 Grossmann and Sargent (1978) 

 2808 588 Polley and Heggs (1999) 

 2652 564 Miguel et al. (1998) 

 2926 610 Mocsny and Govind (1984) 

 3570 688 Ahmad and Smith (1989) 

 12,096 1594 Yu et al. (20 0 0) 

60 42 Lee et al. (1970) 

75 50 Ciric and Floudas (1989) 

60 42 Gundersen and Grossmann (1990) 

90 57 Lee et al. (1970) 

192 96 Colberg and Morari (1990) 

168 93 Shenoy (1995) 

175 88 Trivedi et al. (1990) 

108 66 Masso and Rudd (1969) 

140 76 Masso and Rudd (1969) 

168 93 Dolan et al. (1990) 

240 110 Farhanieh and Sunden (1990) 

240 110 Grossmann and Sargent (1978) 

315 134 Ahmad and Linnhoff (1989) 

324 135 Hall et al. (1990) 

 2880 604 

 4508 817 

 8092 1213 

588 205 

1600 404 

 2880 604 

 8092 1213 

 11,552 1545 

 17,424 2032 

588 205 

 4508 817 

 4508 817 

 4508 817 

 8092 1213 

 8092 1213 

 8092 1213 

 11,552 1545 

 11,552 1545 

 11,552 1545 

 17,424 2032 

 17,424 2032 

 17,424 2032 
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Table G.5 

Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with relative gap 4%. Relative gap is defined (best incumbent–best lower 

bound) / best incumbent and ∗ indicates timeout. Bold values mark the best solver result. The transshipment formulation performs better than the 

transportation model: the transshipment model solves one additional problem ( balanced10 ) and performs as well or better than the transportation 

model on 46 of the 48 test cases (with respect to time or gap closed). CPLEX solves the small models slightly faster than Gurobi while Gurobi closes 

more of the optimality gap for large problems. All exact method results are available online ( Letsios et al., 2017 ). 

Test Case CPLEX transportation CPLEX transshipment Gurobi transportation Gurobi transshipment 

Value Time (s) Gap Value Time (s) Gap Value Time (s) Gap Value Time (s) Gap 

Furman and Sahinidis (2004) Test set (30 min time limit) 

10sp-la1 12 0.04 12 0.03 12 0.10 12 0.09 

10sp-ol1 14 0.06 14 0.03 14 0.13 14 0.11 

10sp1 10 0.51 10 0.05 10 0.24 10 0.13 

12sp1 12 0.08 12 0.05 12 0.16 12 0.11 

14sp1 14 145.50 14 41.23 14 170.45 14 126.71 

15sp-tkm 19 0.17 19 0.07 19 0.28 19 0.14 

20sp1 19 ∗ 19% 19 ∗ 19% 19 ∗ 21% 19 ∗ 15% 

22sp-ph 26 0.25 26 0.04 26 0.44 26 0.13 

22sp1 25 ∗ 12% 25 ∗ 11% 25 ∗ 12% 25 ∗ 12% 

23sp1 23 ∗ 28% 23 ∗ 28% 23 ∗ 30% 23 ∗ 26% 

28sp-as1 30 0.19 30 0.05 30 0.44 30 0.12 

37sp-yfyv 36 54.80 36 7.36 36 20.40 36 6.02 

4sp1 5 0.03 5 0.02 5 0.10 5 0.08 

6sp-cf1 6 0.03 6 0.03 6 0.09 6 0.09 

6sp-gg1 3 0.02 3 0.02 3 0.09 3 0.08 

6sp1 6 0.03 6 0.02 6 0.30 6 0.09 

7sp-cm1 10 0.02 10 0.02 10 0.09 10 0.08 

7sp-s1 10 0.02 10 0.02 10 0.09 10 0.08 

7sp-torw1 10 0.03 10 0.02 10 0.10 10 0.09 

7sp1 7 0.03 7 0.04 7 0.09 7 0.08 

7sp2 7 0.05 7 0.03 7 0.09 7 0.09 

7sp4 8 0.03 8 0.02 8 0.10 8 0.08 

8sp-fs1 11 0.03 11 0.02 11 0.10 11 0.08 

8sp1 9 0.04 9 0.03 9 0.14 9 0.10 

9sp-al1 12 0.04 12 0.03 12 0.11 12 0.09 

9sp-has1 13 0.04 13 0.04 13 0.12 13 0.09 

Chen et al. (2015a,b) Test set (2 h time limit) 

balanced10 25 ∗ 6% 24 1607.14 25 ∗ 4% 24 358.18 

balanced12 30 ∗ 16% 28 ∗ 7% 29 ∗ 13% 29 ∗ 10% 

balanced15 36 ∗ 19% 37 ∗ 17% 35 ∗ 17% 36 ∗ 16% 

balanced5 14 0.27 14 0.20 14 0.43 14 0.23 

balanced8 20 180.84 20 69.16 20 997.01 20 248.08 

unbalanced10 25 36.24 25 7.45 25 46.81 25 15.97 

unbalanced15 36 ∗ 8% 36 ∗ 4% 36 ∗ 8% 36 ∗ 4% 

unbalanced17 43 ∗ 15% 43 ∗ 11% 43 ∗ 13% 43 ∗ 9% 

unbalanced20 55 ∗ 22% 51 ∗ 13% 51 ∗ 17% 50 ∗ 10% 

unbalanced5 16 0.09 16 0.05 16 0.26 16 0.13 

Grossmann (2017) Test set (4 h time limit) 

balanced12_random0 29 ∗ 13% 28 ∗ 7% 29 ∗ 13% 28 ∗ 7% 

balanced12_random1 29 ∗ 13% 29 ∗ 9% 30 ∗ 13% 29 ∗ 10% 

balanced12_random2 30 ∗ 16% 29 ∗ 10% 29 ∗ 10% 29 ∗ 10% 

balanced15_random0 36 ∗ 18% 36 ∗ 15% 35 ∗ 14% 36 ∗ 13% 

balanced15_random1 36 ∗ 18% 36 ∗ 15% 35 ∗ 17% 35 ∗ 11% 

balanced15_random2 36 ∗ 17% 35 ∗ 12% 36 ∗ 16% 35 ∗ 11% 

unbalanced17_random0 44 ∗ 16% 43 ∗ 9% 43 ∗ 13% 43 ∗ 9% 

unbalanced17_random1 44 ∗ 16% 44 ∗ 10% 44 ∗ 15% 43 ∗ 6% 

unbalanced17_random2 43 ∗ 13% 43 ∗ 9% 43 ∗ 13% 43 ∗ 9% 

unbalanced20_random0 51 ∗ 16% 51 ∗ 12% 52 ∗ 19% 52 ∗ 13% 

unbalanced20_random1 52 ∗ 18% 52 ∗ 15% 52 ∗ 19% 51 ∗ 11% 

unbalanced20_random2 51 ∗ 16% 52 ∗ 14% 52 ∗ 19% 50 ∗ 10% 
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Table G.6 

Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with relative gap 4% for solving the transportation and reduced transportation MILP 

models. The relative gap is (best incumbent - best lower bound) / best incumbent and ∗ indicates timeout. All exact method results are available online in 

Letsios et al. (2017) . 

Test Case CPLEX transportation CPLEX reduced transportation Gurobi transportation Gurobi reduced transportation 

Value Time Gap Value Time Gap Value Time Gap Value Time Gap 

Furman and Sahinidis (2004) Test set(30 min time limit) 

10sp-la1 12 0.04 12 0.05 12 0.10 12 0.13 

10sp-ol1 14 0.06 14 0.04 14 0.13 14 0.11 

10sp1 10 0.51 10 0.65 10 0.24 10 0.13 

12sp1 12 0.08 12 0.08 12 0.16 12 0.13 

14sp1 14 145.50 14 144.87 14 170.45 14 172.62 

15sp-tkm 19 0.17 19 0.14 19 0.28 19 0.20 

20sp1 19 ∗ 19% 19 ∗ 19% 19 ∗ 21% 19 ∗ 21% 

22sp-ph 26 0.25 26 0.13 26 0.44 26 0.24 

22sp1 25 ∗ 12% 25 ∗ 12% 25 ∗ 12% 25 ∗ 12% 

23sp1 23 ∗ 28% 23 ∗ 28% 23 ∗ 30% 23 ∗ 30% 

28sp-as1 30 0.19 30 0.09 30 0.44 30 0.23 

37sp-yfyv 36 54.80 36 32.86 36 20.40 36 89.50 

4sp1 5 0.03 5 0.02 5 0.10 5 0.08 

6sp-cf1 6 0.03 6 0.02 6 0.09 6 0.08 

6sp-gg1 3 0.02 3 0.02 3 0.09 3 0.08 

6sp1 6 0.03 6 0.02 6 0.30 6 0.08 

7sp-cm1 10 0.02 10 0.02 10 0.09 10 0.09 

7sp-s1 10 0.02 10 0.02 10 0.09 10 0.12 

7sp-torw1 10 0.03 10 0.03 10 0.10 10 0.09 

7sp1 7 0.03 7 0.23 7 0.09 7 0.08 

7sp2 7 0.05 7 0.04 7 0.09 7 0.09 

7sp4 8 0.03 8 0.02 8 0.10 8 0.10 

8sp-fs1 11 0.03 11 0.05 11 0.10 11 0.10 

8sp1 9 0.04 9 0.07 9 0.14 9 0.13 

9sp-al1 12 0.04 12 0.03 12 0.11 12 0.10 

9sp-has1 13 0.04 13 0.04 13 0.12 13 0.10 

Chen et al. (2015a,b) Test set (2 h time limit) 

balanced10 25 ∗ 6% 25 ∗ 6% 25 ∗ 4% 25 ∗ 8% 

balanced12 30 ∗ 16% 30 ∗ 16% 29 ∗ 13% 29 ∗ 13% 

balanced15 36 ∗ 19% 37 ∗ 21% 35 ∗ 17% 36 ∗ 19% 

balanced5 14 0.27 14 0.26 14 0.43 14 0.33 

balanced8 20 180.84 20 885.66 20 997.01 20 214.00 

unbalanced10 25 36.24 25 64.92 25 46.81 25 61.19 

unbalanced15 36 ∗ 8% 36 ∗ 9% 36 ∗ 8% 36 ∗ 8% 

unbalanced17 43 ∗ 15% 43 ∗ 15% 43 ∗ 13% 43 ∗ 13% 

unbalanced20 55 ∗ 22% 53 ∗ 21% 51 ∗ 17% 53 ∗ 20% 

unbalanced5 16 0.09 16 0.08 16 0.26 16 0.22 

Grossmann (2017) Test set (4 h time limit) 

balanced12_random0 29 ∗ 13% 28 ∗ 8% 29 ∗ 13% 29 ∗ 13% 

balanced12_random1 29 ∗ 13% 29 ∗ 11% 30 ∗ 13% 29 ∗ 10% 

balanced12_random2 30 ∗ 16% 29 ∗ 13% 29 ∗ 10% 28 ∗ 7% 

balanced15_random0 36 ∗ 18% 36 ∗ 18% 35 ∗ 14% 36 ∗ 19% 

balanced15_random1 36 ∗ 18% 36 ∗ 18% 35 ∗ 17% 35 ∗ 17% 

balanced15_random2 36 ∗ 17% 37 ∗ 19% 36 ∗ 16% 36 ∗ 19% 

unbalanced17_random0 44 ∗ 16% 43 ∗ 14% 43 ∗ 13% 43 ∗ 13% 

unbalanced17_random1 44 ∗ 16% 44 ∗ 15% 44 ∗ 15% 44 ∗ 15% 

unbalanced17_random2 43 ∗ 13% 43 ∗ 14% 43 ∗ 13% 44 ∗ 13% 

unbalanced20_random0 51 ∗ 16% 51 ∗ 16% 52 ∗ 19% 52 ∗ 19% 

unbalanced20_random1 52 ∗ 18% 52 ∗ 18% 52 ∗ 19% 52 ∗ 17% 

unbalanced20_random2 51 ∗ 16% 51 ∗ 17% 52 ∗ 19% 53 ∗ 20% 
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Table G.7 

Upper bounds, i.e. feasible solutions, computed by our heuristics and CPLEX 12.6.3 with time limit (i) 30 min for the 

Furman and Sahinidis (2004) Test Set, (ii) 2 h for the Chen et al. (2015a,b) test set, and (iii) 4 h for the Grossmann 

(2017) test set. Symbol ∗ indicates timeout. Bold values indicate the best computed value. Italic values indicate the best 

heuristic result. The proposed heuristics produce feasible as good as the exact solver for 13 of the 48 test cases. All 

heuristic results are available online ( Letsios et al., 2017 ). 

Test Case Relaxation rounding Water filling Greedy packing CPLEX 

FLPR LRR CRR WFG WFM LHM LFM LHM-LP SS 

Furman and Sahinidis (2004) Test set 

10sp-la1 16 17 16 16 15 15 13 14 13 12 

10sp-ol1 18 18 17 18 18 19 17 15 16 14 

10sp1 18 15 13 15 12 17 15 11 12 10 

12sp1 16 17 13 14 15 18 17 13 13 12 

14sp1 14 20 18 21 19 16 16 15 16 14 

15sp-tkm 20 22 20 23 25 21 22 19 21 19 

20sp1 22 20 23 24 21 20 21 20 21 19 ∗

22sp-ph 27 28 28 27 28 37 27 27 27 26 

22sp1 35 37 36 42 35 34 31 27 29 25 ∗

23sp1 32 32 40 50 33 32 32 26 26 23 ∗

28sp-as1 30 30 30 40 45 50 50 30 40 30 

37sp-yfyv 44 40 45 37 43 55 46 40 37 36 

4sp1 5 5 5 5 5 5 5 5 5 5 

6sp-cf1 6 6 6 6 7 6 6 6 6 6 

6sp-gg1 3 3 3 3 3 3 3 3 3 3 

6sp1 8 7 9 9 6 6 6 6 6 6 

7sp-cm1 10 10 10 10 10 10 10 10 10 10 

7sp-s1 10 10 10 10 10 10 10 10 10 10 

7sp-torw1 11 12 10 12 12 12 11 11 10 10 

7sp1 8 10 11 10 8 9 8 8 8 7 

7sp2 7 7 7 9 9 7 7 7 7 7 

7sp4 8 8 8 8 8 10 8 8 8 8 

8sp-fs1 13 13 12 12 12 15 12 14 12 11 

8sp1 11 11 10 14 9 10 10 10 10 9 

9sp-al1 16 17 16 16 15 15 13 14 13 12 

9sp-has1 15 14 15 15 16 15 14 13 15 13 

Chen et al. (2015a,b) Test set 

balanced10 39 42 37 42 38 40 42 30 35 24 

balanced12 42 48 53 48 45 48 41 37 41 28 ∗

balanced15 60 69 71 63 61 82 62 43 51 37 ∗

balanced5 18 17 18 18 19 20 18 15 19 14 

balanced8 28 33 35 29 32 29 30 24 30 20 

unbalanced10 38 46 43 46 43 42 35 29 33 25 

unbalanced15 57 64 63 64 60 85 55 44 49 36 ∗

unbalanced17 70 78 73 79 75 86 67 50 57 43 ∗

unbalanced20 89 89 104 84 90 106 80 61 68 51 ∗

unbalanced5 19 20 18 21 22 19 18 18 18 16 

Grossmann (2017) Test set 

balanced12_random0 42 48 52 44 43 44 45 32 42 28 ∗

balanced12_random1 45 49 53 50 45 47 43 35 40 29 ∗

balanced12_random2 42 49 57 49 40 46 43 34 42 29 ∗

balanced15_random0 60 61 66 67 61 64 63 43 53 36 ∗

balanced15_random1 56 65 71 66 56 65 55 40 52 36 ∗

balanced15_random2 54 69 63 63 61 67 55 41 54 35 ∗

unbalanced17_random0 74 80 86 81 65 102 72 52 67 43 ∗

unbalanced17_random1 74 74 104 84 77 100 70 55 56 44 ∗

unbalanced17_random2 70 79 95 77 77 111 76 52 59 43 ∗

unbalanced20_random0 93 93 109 100 85 115 86 60 64 51 ∗

unbalanced20_random1 83 89 117 92 88 114 100 63 75 52 ∗

unbalanced20_random2 87 86 111 102 92 131 96 69 74 52 ∗
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Table G.8 

CPU times of the heuristics and CPLEX 12.6.3 with time limit (i) 30 min for the Furman and Sahinidis (2004) test set, (ii) 2 h for 

the Chen et al. (2015a,b) test set, and (iii) 4 h for the Grossmann (2017) test set. An ∗ indicates timeout. All heuristic results are 

available online ( Letsios et al., 2017 ). Bold values indicate the running time of the solver computing the best heuristic result. 

Test Case Relaxation rounding Water filling Greedy packing CPLEX 

FLPR LRR CRR WFG WFM LHM LFM LHM-LP SS 

Furman and Sahinidis (2004) Test set 

10sp-la1 0.01 0.01 0.10 0.14 0.28 0.02 0.01 7.76 < 0.01 0.03 

10sp-ol1 0.01 0.01 0.07 0.10 0.21 0.02 0.01 9.83 < 0.01 0.03 

10sp1 0.01 0.01 0.10 0.13 0.26 0.02 0.01 7.39 < 0.01 0.05 

12sp1 0.01 0.01 0.10 0.25 0.40 0.04 0.02 9.79 < 0.01 0.05 

14sp1 0.01 0.01 0.13 0.22 0.42 0.09 0.04 24.49 0.02 41.23 

15sp-tkm 0.01 0.01 0.12 0.23 0.52 0.17 0.09 29.46 0.02 0.07 

20sp1 0.01 0.01 0.29 0.37 0.60 0.52 0.24 64.63 0.05 ∗

22sp-ph 0.01 0.02 0.20 0.46 0.64 0.92 0.30 156.76 0.05 0.04 

22sp1 0.02 0.02 0.32 0.39 0.60 0.76 0.34 144.77 0.06 ∗

23sp1 0.04 0.04 0.34 0.29 0.52 0.91 0.40 239.94 0.07 ∗

28sp-as1 0.01 0.01 0.09 0.31 0.57 1.26 0.38 227.06 0.05 0.05 

37sp-yfyv 0.02 0.03 0.92 0.82 1.45 14.68 4.74 1435.94 0.50 7.36 

4sp1 0.01 0.01 0.04 0.08 0.16 < 0.01 < 0.01 0.75 < 0.01 0.02 

6sp-cf1 0.01 0.01 0.09 0.08 0.18 < 0.01 < 0.01 1.25 < 0.01 0.03 

6sp-gg1 0.01 0.01 0.05 0.07 0.12 < 0.01 < 0.01 0.42 < 0.01 0.02 

6sp1 0.01 0.01 0.07 0.07 0.14 < 0.01 < 0.01 1.36 < 0.01 0.02 

7sp-cm1 0.01 0.01 0.05 0.10 0.24 0.01 < 0.01 3.51 < 0.01 0.02 

7sp-s1 0.01 0.01 0.05 0.13 0.23 0.01 < 0.01 2.18 < 0.01 0.02 

7sp-torw1 0.01 0.01 0.09 0.09 0.21 0.01 0.01 3.82 < 0.01 0.02 

7sp1 0.01 0.01 0.09 0.08 0.17 < 0.01 < 0.01 2.10 < 0.01 0.04 

7sp2 0.01 0.01 0.09 0.06 0.16 < 0.01 < 0.01 2.15 < 0.01 0.03 

7sp4 0.01 0.01 0.04 0.13 0.27 < 0.01 < 0.01 1.61 < 0.01 0.02 

8sp-fs1 0.01 0.01 0.09 0.15 0.27 0.01 < 0.01 5.84 < 0.01 0.02 

8sp1 0.01 0.01 0.10 0.13 0.25 0.01 < 0.01 4.75 < 0.01 0.03 

9sp-al1 0.01 0.01 0.09 0.13 0.28 0.02 0.01 8.18 < 0.01 0.03 

9sp-has1 0.01 0.01 0.09 0.12 0.34 0.02 0.01 6.99 < 0.01 0.04 

Chen et al. (2015a,b) Test set 

balanced10 0.02 0.02 0.32 0.43 0.84 1.15 0.50 181.13 0.09 1607.14 

balanced12 0.03 0.03 0.62 0.57 1.05 2.74 1.00 397.37 0.16 ∗

balanced15 0.05 0.05 0.83 0.76 1.23 10.96 3.45 1147.96 0.41 ∗

balanced5 0.01 0.01 0.11 0.25 0.50 0.05 0.03 13.64 0.01 0.20 

balanced8 0.02 0.01 0.21 0.31 0.65 0.33 0.15 68.85 0.04 69.16 

unbalanced10 0.03 0.02 0.30 0.47 0.72 1.19 0.50 173.88 0.08 7.45 

unbalanced15 0.05 0.04 0.90 0.74 1.34 11.28 3.78 1185.72 0.39 ∗

unbalanced17 0.07 0.07 1.45 0.95 1.76 21.25 8.31 2742.15 0.71 ∗

unbalanced20 0.13 0.13 3.08 1.25 2.41 47.55 15.94 7154.64 1.34 ∗

unbalanced5 0.01 0.01 0.11 0.26 0.45 0.05 0.04 16.40 0.01 0.05 

Grossmann (2017) Test set 

balanced12_random0 0.03 0.03 0.46 0.59 1.00 2.51 1.15 351.10 0.17 ∗

balanced12_random1 0.03 0.03 0.46 0.59 1.11 2.74 0.99 398.26 0.16 ∗

balanced12_random2 0.03 0.03 0.46 0.60 0.88 2.61 0.95 382.57 0.17 ∗

balanced15_random0 0.04 0.05 0.83 0.76 1.49 8.87 4.13 1241.33 0.43 ∗

balanced15_random1 0.05 0.04 0.90 0.83 1.36 9.01 3.22 1041.37 0.42 ∗

balanced15_random2 0.05 0.05 0.90 0.82 1.53 9.26 3.43 1104.94 0.43 ∗

unbalanced17_random0 0.12 0.11 1.85 0.95 1.72 24.25 8.65 3689.80 0.80 ∗

unbalanced17_random1 0.12 0.12 1.82 0.79 1.54 24.08 8.32 4052.52 1.53 ∗

unbalanced17_random2 0.12 0.12 1.89 1.00 1.60 25.60 9.72 3471.80 0.73 ∗

unbalanced20_random0 0.18 0.17 3.23 1.22 2.18 50.67 18.37 8820.55 1.31 ∗

unbalanced20_random1 0.21 0.19 3.48 1.24 2.21 51.19 19.35 9613.90 1.40 ∗

unbalanced20_random2 0.23 0.22 3.17 1.28 2.33 56.47 17.93 11854.82 1.40 ∗
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Table G.9 

Comparison of our results (labeled LKM17) with the ones reported by Furman and Sahinidis (2004) (labeled FS04). The 

LKM17 heuristics FLPR, LRR, and WFG perform better than their FS04 counterparts because of our improved calculation of 

the big-M parameter U ij . The CPLEX comparison basically confirms that CPLEX has improved in the past 13 years: LKM17 

use CPLEX 12.6.3 while FS04 use CPLEX 7.0. An ∗ indicates 30 min timeout while ∗∗ corresponds to a 7 h timeout. All 

results are available online ( Letsios et al., 2017 ). 

Test Case Relaxation rounding Water filling CPLEX 

FS04 LKM17 FS04 LKM17 FS04 LKM17 

FLPR LRR FLPR LRR CRR WFG WFG WFM Value Time Value Time 

10sp-la1 21 19 16 17 16 22 16 15 12 0.07 12 0.03 

10sp-ol1 22 17 18 18 17 23 18 18 14 0.09 14 0.03 

10sp1 14 14 18 15 13 21 15 12 10 2.20 10 0.05 

12sp1 17 18 16 17 13 18 14 15 12 0.04 12 0.05 

14sp1 27 21 14 20 18 27 21 19 14 33.76 14 41.23 

15sp-tkm 29 27 20 22 20 29 23 25 19 0.70 19 0.07 

20sp1 24 25 22 20 23 25 24 21 19 ∗∗ 19 ∗

22sp-ph 34 40 27 28 28 35 27 28 26 1.84 26 0.04 

22sp1 41 42 35 37 36 54 42 35 25 ∗∗ 25 ∗

23sp1 38 32 32 32 40 60 50 33 23 ∗∗ 23 ∗

28sp-as1 41 45 30 30 30 43 40 45 30 0.03 30 0.05 

37sp-yfyv 67 59 44 40 45 61 37 43 36 ∗∗ 36 7.36 

4sp1 5 6 5 5 5 5 5 5 5 0.00 5 0.02 

6sp-cf1 6 6 6 6 6 7 6 7 6 0.01 6 0.03 

6sp-gg1 3 3 3 3 3 3 3 3 3 0.00 3 0.02 

6sp1 9 10 8 7 9 9 9 6 6 0.00 6 0.02 

7sp-cm1 11 10 10 10 10 10 10 10 10 0.00 10 0.02 

7sp-s1 10 10 10 10 10 10 10 10 10 0.00 10 0.02 

7sp-torw1 14 15 11 12 10 13 12 12 10 0.03 10 0.02 

7sp1 10 13 8 10 11 10 10 8 7 0.01 7 0.04 

7sp2 8 7 7 7 7 8 9 9 7 0.04 7 0.03 

7sp4 11 9 8 8 8 8 8 8 8 0.00 8 0.02 

8sp-fs1 14 14 13 13 12 14 12 12 11 0.01 11 0.02 

8sp1 11 13 11 11 10 14 14 9 9 0.03 9 0.03 

9sp-al1 17 19 16 17 16 20 16 15 12 0.03 12 0.03 

9sp-has1 16 14 15 14 15 18 15 16 13 0.03 13 0.04 
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Table G.10 

This table compares the effect of three different methods for computing the big-M parameter U ij : (i) simple greedy, (ii) the 

Gundersen et al. (1997) (GTA97) method and (iii) our greedy Algorithm MHG (LKM17). Bold values mark the best result for each 

of the heuristics. LKM17 outperforms the other two big-M computation methods by finding smaller feasible solutions via both 

Fractional LP Rounding and Lagrangian Relaxation Rounding. It also achieves the tightest fractional relaxation for all test instances. 

Test Case Fractional LP rounding Lagrangian relaxation rounding Fractional relaxation 

Simple GTA97 LKM17 Simple GTA97 LKM17 Simple GTA97 LKM17 

Furman and Sahinidis (2004) Test set 

10sp-la1 17 15 16 17 16 17 7.04 7.57 8.35 

10sp-ol1 20 19 18 22 23 18 8.29 8.86 9.94 

10sp1 18 18 18 14 17 15 7.11 7.24 7.39 

12sp1 17 17 16 17 17 17 10.06 10.12 10.26 

14sp1 27 20 14 22 17 20 8.79 8.92 9.06 

15sp-tkm 27 27 20 25 25 22 11.01 11.47 14.31 

20sp1 22 22 22 27 24 20 11.75 11.75 11.75 

22sp-ph 31 30 27 32 30 28 20.15 20.89 22.23 

22sp1 45 37 35 40 44 37 13.66 14.04 15.86 

23sp1 40 37 32 35 33 32 13.31 13.40 13.40 

28sp-as1 41 30 30 45 30 30 27.51 27.96 28.45 

37sp-yfyv 56 53 44 42 42 40 31.96 31.93 32.28 

4sp1 5 5 5 5 5 5 4.03 4.06 4.25 

6sp-cf1 6 6 6 6 6 6 4.10 4.10 4.18 

6sp-gg1 3 3 3 3 3 3 3.00 3.00 3.00 

6sp1 8 7 8 8 7 7 4.00 4.00 4.00 

7sp-cm1 11 10 10 10 10 10 6.61 7.15 8.40 

7sp-s1 10 10 10 10 10 10 7.83 7.83 10.00 

7sp-torw1 15 15 11 14 13 12 5.68 5.84 6.56 

7sp1 10 10 8 9 9 10 5.00 5.00 5.01 

7sp2 9 7 7 7 7 7 4.37 4.37 4.37 

7sp4 11 11 8 9 9 8 7.01 7.01 7.11 

8sp-fs1 15 13 13 14 13 13 6.89 7.50 8.69 

8sp1 11 11 11 12 12 11 6.15 6.22 6.30 

9sp-al1 17 15 16 17 16 17 7.04 7.57 8.35 

9sp-has1 16 15 15 14 15 14 6.91 7.14 9.98 

Chen et al. (2015a,b) Test set 

balanced10 61 46 39 46 43 42 13.51 13.92 15.29 

balanced12 71 52 42 57 56 48 15.69 16.16 17.48 

balanced15 91 63 60 91 69 69 18.84 19.31 21.56 

balanced5 26 19 18 20 22 17 8.09 8.40 8.95 

balanced8 42 33 28 38 35 33 11.54 11.88 12.76 

unbalanced10 52 49 38 53 54 46 14.31 15.05 16.96 

unbalanced15 73 60 57 76 62 64 19.62 20.59 23.17 

unbalanced17 96 78 70 101 84 78 21.90 23.53 27.48 

unbalanced20 132 95 89 137 99 89 25.89 27.72 32.43 

unbalanced5 23 22 19 21 23 20 8.34 8.82 10.93 

Grossmann (2017) Test set 

balanced12_random0 73 56 42 61 52 48 15.76 16.21 17.51 

balanced12_random1 62 56 45 60 54 49 15.67 16.06 17.37 

balanced12_random2 66 51 42 53 57 49 15.67 16.14 17.40 

balanced15_random0 93 68 60 75 73 61 18.59 19.19 21.47 

balanced15_random1 96 68 56 79 73 65 18.86 19.38 21.59 

balanced15_random2 102 64 54 86 76 69 18.73 19.41 21.95 

unbalanced17_random0 106 77 74 108 95 80 22.48 23.97 27.64 

unbalanced17_random1 116 82 74 99 91 74 22.43 23.89 27.66 

unbalanced17_random2 101 84 70 94 92 79 21.99 23.61 27.74 

unbalanced20_random0 131 95 93 136 103 93 26.02 27.91 32.49 

unbalanced20_random1 138 91 83 139 104 89 26.01 27.74 32.64 

unbalanced20_random2 138 102 87 131 100 86 25.68 27.67 32.60 

Table G.11 

Upper bounds, i.e. feasible solutions, for large-scale instances computed by the least time consum- 

ing heuristics of each type and CPLEX 12.6.3 transshipment model with 4h timeout. Symbol ∗ indi- 

cates timeout. Bold marks the best upper bound. Italic marks the best heuristic result. In instance 

large_scale1 , heuristic LFM computes the best heuristic result. 

Test Case Relaxation rounding Water filling Greedy packing CPLEX 

FLPR WFG SS transshipment 

Value Time Value Time Value Time Value Time 

large_scale0 233 8.84 306 58.52 233 642.94 175 ∗

large_scale1 273 15.59 432 54.53 218 652.00 219 ∗

large_scale2 279 41.83 497 54.46 242 670.32 239 ∗
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