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Abstract 

Recent findings have demonstrated fibroblast growth factor-20 (FGF20) to have 

neuroprotective effects on dopamine neurones in vitro. In this thesis, FGF20’s 

neuroprotective effects on dopamine neurones were further investigated. A ventral 

mesencephalic (VM) embryonic dopamine neurone culture system and a partially 

lesioned 6-hydroxydopamine (6OHDA) rat model of Parkinson’s disease (PD) were 

established in which FGF20 was evaluated for its neuroprotective effects both in vitro 

and in vivo.  Using immunohistochemistry, FGF20 and at least three of its receptors 

(fibroblast growth factor receptor (FGFR) 1, 3, and 4) were demonstrated to be localised 

to dopamine neurones and glial cells in the rat nigrostriatal tract and in VM embryonic 

dopamine neurone cultures. In vitro, FGF20 protected VM embryonic dopamine 

neurones against 6OHDA toxicity, and, in vivo, chronic supra-nigral delivery of FGF20 

protected nigrostriatal dopamine neurones against a partial 6OHDA lesion. Importantly, 

FGF20 also preserved motor function in the 6OHDA lesioned rats. In a separate in vivo 

study, experiments were carried out to investigate whether pharmacological inhibition 

of FGFR activation is able to potentiate 6OHDA-induced nigrostriatal degeneration in 

the rat, and results from this study suggest that the endogenous FGF system might play 

a protective role in the nigrostriatal tract. Additionally, in PC12 cells, FGF20’s 

neuroprotective effects against 6OHDA toxicity were demonstrated to be mediated by 

the FGFRs at the receptor level, and by the ERK1/2 MAPK pathway at the intracellular 

level. Others have shown the heparin sulphate proteoglycan, agrin to potentiate FGF2 

stimulated ERK1/2 activation and neurite outgrowth in PC12 cells. It was demonstrated 

here that agrin potentiates FGF20 stimulated ERK1/2 activation, but it fails to potentiate 

FGF20’s neuroprotective effects in PC12 cells. Taken together, these findings provide 

further support for FGF20’s neuroprotective potential in PD.  
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Chapter 1. General Introduction 

1.1. Parkinson’s Disease 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder that 

affects 1-2% of people over 60, and 3-5% of people over 85 (Alves et al., 2008). In PD, 

the extensive loss of nigrostriatal dopamine neurones leads to the development of a 

range of motor deficits, including tremor, rigidity, akinesia, and bradykinesia (Samii et 

al., 2004). Around 90% of PD cases are sporadic or idiopathic, and the aetiological 

factors that cause these sporadic forms of PD are still poorly understood. Familial forms 

of PD, on the other hand, only account for <5% of PD cases, and they are caused by a 

number of well characterised single gene mutations. In the majority of cases of PD 

(>90%), the onset of motor symptoms usually occurs between the ages of 60-70 (Samii 

et al., 2004). In a small number of cases of early onset PD (~5-10%), motor symptoms, 

however, appear at a much earlier point in life, usually before the age of 41 (Muthane et 

al., 1994).  

A key pathological hallmark of PD is the presence of eosinophilic cytoplasmic 

protein inclusions in the dopamine neurones of the substantia nigra pars compacta 

(SNc), as well as other areas of the brain (Schulz & Falkenburger, 2004). These 

inclusions are called Lewy bodies (LBs), and they consist mainly of lipids, 

neurofilament, and a number of other proteins, including, α-synuclein (SNCA), 

synphylin-1, ubiquitin (Ub), and enzymes of the ubiquitin proteasome system  (UPS) 

(Chung et al., 2001). In PD, LB pathology and neuronal degeneration is by far the most 

pronounced in the nigrostriatal dopaminergic pathway, but it is not limited exclusively 

to this specific region of the brain. Less extensive LB pathology and neuronal 

degeneration, relative to the nigrostriatal tract, is also observed in several other regions 

of the brain, including the raphe nucleus, the locus coeruleus, the nucleus basalis of 

Meynert, the amygdala, the dorsal motor nucleus of the vagus, and the basal reticular 

nuclei of the brainstem (Agid et al., 1989; Ziemssen & Reichmann, 2007; Ferrer, 2011). 

Moreover, in addition to the cardinal motor symptoms that characterise the disease, PD 

patients often also suffer from a range of non-motor symptoms, and it is thought that 

these symptoms are caused by pathology in these other affected areas of the brain. 

Examples of such non-motor symptoms include, depression, dementia, olfactory 

deficits, constipation, urinary incontinence, and sleep disturbances. For instance, the 

dorsal raphe nucleus is important in the regulation of mood, and it is believed that 
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degeneration of this nucleus gives rise to depression in PD patients (Tan et al., 2011), 

while dementia is attributed to degeneration of the nucleus basalis of Meynert, an area 

of the brain that plays an important role in cognition (Bohnen & Albin, 2011). The locus 

coeruleus and other nuclei of the brainstem play an important role in regulating 

alertness and circadian rhythms, and it is, thus, thought that degeneration in these nuclei 

is partly responsible for the sleep disturbance symptoms in PD (Simuni & Sethi, 2008). 

The symptoms of constipation and urinary incontinence, on the other hand, are classical 

symptoms of autonomic dysfunction, and they are, thus, believed to be caused by 

pathology in the dorsal motor nucleus of the vagus, a nucleus which plays an important 

role in regulating output from the autonomic nervous system (Simuni & Sethi, 2008).       

 

1.2. Aetiology of PD 

The aetiology leading to dopamine neurone degeneration in PD remains incompletely 

understood. Research has, however, provided evidence for the likely involvement of 

numerous factors in the aetiology of PD; and it is likely that neuronal cell death 

ultimately results from multiple detrimental insults synergistically damaging dopamine 

neurones to a fatal degree (Sulzer, 2007). The non-genetic contributory factors most 

widely studied, include oxidative stress, mitochondrial dysfunction, ubiquitin 

proteasome system (UPS) dysfunction, exposure to environmental toxins, and 

neuroinflammation. A brief overview of the evidence implicating each of these factors 

in the aetiology of PD is described in the sections below.  

Monozygotic twin studies have ruled out a major involvement of genetic factors 

in the development of sporadic PD (Tanner et al., 1999). Mutations in a number of 

different genes have, on the other hand, been shown to cause familial forms of PD, 

including the α-synuclein (SNCA), PTEN-induced putative kinase 1 (PINK-1), DJ-1, 

leucine rich repeat kinase 2 (LRRK-2), parkin, and ubiquitin C-terminal hydrolase L1 

(UCH-L1) genes (Cordato & Chan, 2004). The SNCA gene encodes the SNCA protein, 

a protein that is widely expressed by both neurones and glial cells throughout the CNS 

(Bennett, 2005). In neurones, SNCA is most abundantly present in pre-synaptic nerve 

terminals, but the function of the protein, however, remains poorly understood. Three 

missense substitution mutations (A30P, E53T, and E46K), and a number of duplication 

and triplication mutations in the SNCA gene have been demonstrated to cause autosomal 

dominant familial forms of PD that are characterised by an early onset and rapid 

progression of motor symptoms (Tan & Skipper, 2007; Bekris et al., 2010). The PINK-1 



 
 

18  
 

gene encodes the PINK-1 protein, a ubiquitously expressed mitochondrial 

serine/threonine protein kinase enzyme, while the DJ-1 gene encodes the DJ-1 protein, a 

highly conserved protein that is widely expressed in neurones and glial cells, but whose 

function is still unknown (Dodson & Guo, 2007). Mutations in both the PINK-1 and DJ-

1 genes have been found to cause rare autosomal recessive early onset familial forms of 

PD (Tan & Skipper, 2007; Bekris et al., 2010). The LRRK-2 gene codes for the LRRK-2 

protein, a protein kinase whose exact function is also still unknown (Biskup & West, 

2009). Six mutations in the LRRK-2 gene have been found to cause autosomal dominant 

forms of familial PD, and unlike most of the other forms of familial PD which are 

mostly characterised by early onset of disease, LRRK-2 familial PD cases are associated 

with late onset of motor symptoms that are typical of sporadic PD  (Tan & Skipper, 

2007; Bekris et al., 2010). This has lead to a number of LRRK-2 familial cases of PD 

being misdiagnosed as sporadic cases (Tan & Skipper, 2007). The parkin and UCH-L1 

genes are functionally related as they both code for proteins that form part of the UPS. 

The parkin gene codes for an ubiquitin E3 ligase enzyme (Mizuno et al., 2001), while 

UCH-L1 codes for an abundant de-ubiquitinating enzyme that is specifically localised to 

neurones (Setsuie & Wada, 2007). Mutations in the parkin gene cause autosomal 

recessive juvenile onset forms of parkinsonism, which accounts for ~50% of all cases of 

familial PD (Tan & Skipper, 2007; Bekris et al., 2010). Notably, parkin associated 

familial forms of PD are characterised by having atypical pathological features as 

inclusions are absent in most cases (Tan & Skipper, 2007; Bekris et al., 2010). A single 

substitution (I193M) mutation in the UCH-L1 gene has been documented to cause an 

extremely rare early onset autosomal recessive form of PD, which has, thus far, only 

been detected in two siblings (Tan & Skipper, 2007; Bekris et al., 2010). Moreover, 

recent results from genome wide association studies (GWAS) have demonstrated that 

genetic factors also appear to play a contributory role in the aetiology of sporadic PD, as 

specific single nucleotide polymorphisms (SNPs) in a number of different genes 

increases the risk of developing PD (Bekris et al., 2010; Nalls et al., 2011). 

Interestingly, SNPs in both the SNCA and LRRK-2 genes have been found to increase 

the incidence of sporadic PD (Mizuta et al., 2006; Nalls et al., 2011; Saad et al., 2011). 

The mechanisms through which all of the above mentioned mutations cause PD 

pathology or increase the risk of developing PD, however, remain poorly understood, 

and substantial research efforts are currently dedicated to uncovering these mechanisms.    
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1.2.1. Oxidative Stress 

A range of free radical species, including, for example, the superoxide and the hydroxyl 

radicals, are generated as by-products of many metabolic reactions taking place in cells. 

Cells have got a range of detoxifying mechanisms, which normally inactivates these 

highly reactive entities, and maintains them at non-toxic levels (Halliwell, 2006). The 

superoxide dismutase enzyme, for example, catalyses the conversion of superoxide into 

the non-radicals, H2O2 and O2. The tripeptide glutathione (GSH) also plays an important 

anti-oxidant role in cells by inactivating free radicals through reduction reactions. 

However, if free radical levels builds up to toxic levels in a cell, they can cause cellular 

dysfunction by their ability to react with proteins and nucleic acids, leading to a 

distortion of their structure and function (Halliwell, 2006). Additionally, free radicals 

can react with plasma membrane lipids to set off a cascade of lipid peroxidation 

(Halliwell, 2006). This process ultimately also leads to cellular dysfunction by 

increasing plasma membrane permeability, and by inactivating receptors, enzymes, and 

ion channels (Halliwell, 2006). Oxidative damage can occur either when detoxifying 

mechanisms are overwhelmed by the generation of abnormally high levels of free 

radicals and/or when the functioning of free radical scavenging mechanisms are for 

some reason impaired.  

It has been reported that several markers of oxidative stress are increased in the 

substantia nigra (SN) of PD patients. Levels of 4-hydroxy-2,3-nonenal, a marker of lipid 

peroxidation, and 8-hydroxyguanosine, a marker of nucleoside oxidation, are found at 

~6 and ~16 fold higher levels, respectively, in the SN of PD patients when compared to 

age matched controls (Yoritaka et al., 1996; Zhang et al., 1999). Decreased levels of 

reduced GSH have also been shown to be present in the remaining nigral neurones of 

PD patients compared to age matched controls (Sofic et al., 1992; Pearce et al., 1997). 

Interestingly, in healthy brains, there is already a greater level of oxidative stress in the 

SN compared to other brain regions (Floor & Wetzel, 1998). It has been proposed that 

this increased oxidative stress load could make dopamine neurones more vulnerable to 

cell death, and this might account for why dopamine neurones are preferentially lost in 

PD. The increased level of oxidative stress has been attributed to the dopamine catabolic 

pathway producing high levels of free radicals (Hald & Lotharius, 2005). Dopamine can 

be broken down by either an enzymatic pathway or through auto-oxidation. The latter 

pathway produces the highly reactive free radical species, dopamine-quinone as a by-

product. Additionally, both pathways also produce H2O2 as by-products. Although H2O2 
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itself isn’t a free radical, it can be converted into the hydroxyl radical in the presence of 

ferrous iron through the so called Fenton reaction (Hald & Lotharius, 2005). The 

presence of significantly higher levels of iron in the SN of PD brains compared to 

control brains have provided further evidence in support of this theory (Dexter et al., 

1989).  

 

1.2.2. Mitochondrial Dysfunction 

Mitochondria play an essential role in the normal functioning of cells. Through the 

respiratory chain, mitochondria produce adenosine triphosphate (ATP) molecules that 

act as an energy source that facilitates many of the biochemical reactions within cells. 

Substantial evidence has implicated mitochondrial deficits in the aetiology of PD. There 

is a 35% reduction in complex 1 mitochondrial activity in the SN of PD patients 

compared to aged match controls (Schapira et al., 1989). A reduced amount of 

mitochondrial complex 1 protein in the SN of PD patients has also been reported 

(Mizuno et al., 1989). Furthermore, two mitochondrial complex I inhibitors, 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone, are both dopamine neurone 

toxins that are capable of inducing dopamine neurone degeneration and parkinsonian-

like symptoms when administered to animals (Betarbet et al., 2000; Richardson et al., 

2007). More recently, PD pathology (progressive nigrostriatal dopamine neurone 

degeneration) and progressive motor deficits were also reproduced in a transgenic 

mouse strain in which the important mitochondrial transcription factor, Tfam was 

knocked out (Ekstrand et al., 2007).  

It is proposed that complex 1 deficiency can lead to neuronal cell death through 

two mechanisms (Sherer et al., 2002). Complex 1 deficiency can lead to a shortage of 

ATP within a neurone. This in turn will cause the partial depolarisation of a neurone’s 

plasma membrane, as Na+/K+ ATPase pumps don’t have sufficient energy available to 

them to maintain the resting membrane potential. This partial depolarisation removes 

the Mg2+ block in N-methyl-D-aspartate (NMDA) receptors, which allows the receptors 

to be activated by excitatory inputs of much lower magnitudes than that which is 

normally required. Additionally, in PD, pathological changes in the basal ganglia 

circuitry lead to the subthalamic nucleus becoming hyperactive. As glutamatergic 

afferents from the subthalamic nucleus have been shown to project onto the SNc 

(Blandini et al., 2000), it is likely that abnormally high levels of glutamate are being 

released in the SNc in PD. This reduced activation threshold of the NMDA receptors 
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combined with increased glutamate release in the SNc subsequently leads to the 

excessive activation of NMDA receptors which, ultimately, stimulates excitotoxic cell 

death by allowing the entry and accumulation of toxic levels of intracellular Ca2+ 

(Keane et al., 2011). Another consequence of complex 1 dysfunction is the augmented 

production of free radicals at the level of the electron transport chain (Keane et al., 

2011). It is, therefore, thought that the toxic effects mediated by complex 1 dysfunction 

can also be caused by these free radicals causing oxidative damage to cellular proteins, 

lipids, and nucleic acids.           

 

1.2.3. Ubiquitin Protein System Dysfunction 

The ubiquitin proteasome system (UPS) constitutes the main catabolic pathway through 

which damaged or unwanted cellular proteins are broken down (Hegde & Upadhya, 

2007). The UPS system consists of two main components. One component comprises of 

a series of enzymes (ubiquitin (Ub) activating, conjugating and ligating enzymes) that 

act to attach polyUb chains to target proteins, which marks proteins for later 

degradation. The 26S proteasome comprises the second component, and this multi-

subunit tubular protein engulfs polyUb labelled proteins and digests them into small 

polypeptides. As mentioned earlier, both Ub and UPS enzymes are found within the 

LBs that are present in PD, and these findings provided the first evidence that UPS 

dysfunction might contribute to the aetiology of PD. Moreover, the presence of the 

inclusion bodies themselves points to a possible dysfunctioning of the UPS in PD, as 

inhibition of the UPS leads to the formation of inclusion bodies (McNaught et al., 

2004). Several other findings have also provided substantial support for a role of UPS 

dysfunction. Both the parkin and UCH-L1 genes code for proteins of the UPS, and 

mutations in either of these genes cause familial forms of PD  (Cordato & Chan, 2004). 

Proteasome activity in the SN of PD patients has been shown to be significantly lower 

compared to controls (McNaught et al., 2003). Furthermore, proteasome inhibitors such 

as epoxomicin and lactacystin have been shown to induce dopamine neurone 

degeneration and LB inclusion formation both in vitro and in vivo (detailed in section 

3.1.1.2). The nature of the UPS dysfunction that occurs in PD and the mechanism 

through which such dysfunction contributes to PD is still poorly understood, and it is 

currently under investigation (Olanow & McNaught, 2006).      
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1.2.4. Toxic Environmental Factors 

Experimental, clinical and epidemiological findings have suggested that exposure to a 

number of environmental pesticides and metals might contribute to the aetiology of PD. 

It has to be noted, though, that no environmental factor has, thus far, been conclusively 

shown to contribute to the development of PD.  

In the early sixties, MPTP was found to induce a parkinsonian syndrome nearly 

indistinguishable from PD, after a group of drug addicts accidentally injected 

themselves with this toxic heroin analogue. The toxin was later shown to also produce a 

PD-like syndrome in mice and primates that is associated with the selective 

degeneration of nigrostriatal dopamine neurones (Schober, 2004). The widespread 

presence of several MPTP analogues in the environment opened the possibility that 

environmental toxins might contribute to dopamine neurone degeneration in PD 

(Collins & Neafsey, 2002). Epidemiological research also identified pesticide exposure 

to be a risk factor for PD (Ascherio et al., 2006). Furthermore, several studies have also 

found that a number of factors that are associated with increased exposure to industrial 

toxins and pesticides, including rural living, farming, and well water drinking also 

increase the risk of developing PD (Monte, 2001). These findings have to be interpreted 

with caution, however, as a nearly equal number of studies have found no association 

between the above mentioned factors and PD (Lai et al., 2002). A number of pesticides 

with an analogous structure to MPTP, including o-PCB, tinuvin123, paraquat, and the 

B-carbolines have subsequently been reported to be toxic to dopamine neurones 

(Monte, 2001). Furthermore,  in one study,  the B-carbolines, norharman and harman 

and their methylation enzymes were found to be elevated in the cerebrospinal fluid of 

12 out of 22 PD (Matsubara et al., 1995). A few cases of sporadic PD have also been 

reported after exposure to paraquat (Sanchez-Ramos et al., 1987), and this toxin also 

induces mild dopamine neurone degeneration with SNCA aggregation in mice 

(McCormack et al., 2002). Several other pesticides unrelated to MPTP have also been 

implicated in PD aetiology, including rotenone, and the organochlorines (Monte, 2001). 

Interestingly, it has been revealed that a synergistic toxic effect on dopamine neurones 

is brought about when some toxins are co-administered (Monte, 2001). The two widely 

used pesticides, maneb and paraquat, for example, act synergistically to cause dopamine 

neurone degeneration when co-administered in mice (Thiruchelvam et al., 2000).  

A smaller body of evidence has also suggested that metal exposure might 

contribute to the aetiology of PD. Epidemiological research has found a range of 
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transition metals, including manganese, copper, iron, and mercury to increase the risk of 

PD after chronic occupational exposure (Gorell et al., 1999). Studies with post-mortem 

brain tissue from normal and PD patients have provided further support for an 

involvement of iron. In normal brains, substantially higher concentrations of iron has 

been shown to be present in the SN compared to most other brain regions (Zecca et al., 

1994). Iron concentrations have also been shown to be increased in the SN of a group of 

PD patients when compared to aged matched controls (Dexter et al., 1989). Through the 

Fenton reaction, iron has the ability to greatly enhance the conversion of H202 into the 

hydroxyl free radical. And because H2O2 is produced as a by-product of dopamine 

metabolism, it has been suggested that increased levels of iron might contribute to 

dopamine neurone degeneration by augmenting oxidative stress levels in these neurones 

(Dexter et al., 1989).     

 

1.2.5. Neuro-Inflammation 

Recent findings have indicated that neuro-inflammatory processes might also play a 

contributory role in causing the nigrostriatal degeneration in PD. Evidence supporting 

this notion comes mainly from immunohistochemical studies carried out in post-mortem 

brain tissue which have shown a number of inflammatory markers to be present at 

raised levels in the SN of PD patients. Several pro-inflammatory cytokines, including 

interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis factor-α (TNFα), and 

interferon-γ (IFNγ), and also pro-inflammatory mediators, including prostaglandin-E2 

(PGE2) are present at raised levels in glial cells within the SN of PD brains (Wu et al., 

2002; Teismann & Schulz, 2004; Hirsch & Hunot, 2009; Long-Smith et al., 2009). 

Additionally, raised levels of IL-1B, IL-6, TNFα, and IFNγ have also been detected in 

the cerebrospinal fluid and serum of PD patients (Wu et al., 2002; Hirsch & Hunot, 

2009; Long-Smith et al., 2009). IFNγ, TNFα, and IL-1B all stimulate increased nitrite 

production through a CD23-dependent mechanism in astrocytoma cultures (Hunot et 

al., 1999; Teismann & Schulz, 2004). It has, thus, been suggested that raised levels of 

these cytokines in the SN might contribute to dopamine neurone cell death by 

increasing nitric oxide production to toxic levels by stimulating inducible nitric oxide 

synthetase (iNOS) activity (Hunot et al., 1999). Increased production of nitric oxide has 

the potential to cause cytotoxic effects due to the tendency of nitric oxide to react with 

superoxide radicals to produce highly reactive peroxynitrite radicals, which damage 
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cellular proteins and DNA by forming adducts with them (Hald & Lotharius, 2005). 

Support for this possibility is provided by immunohistochemistry results showing 

increased levels of iNOS and nitrotyrosine to be present in glial and dopamine neurones 

in the SN of the PD brain, respectively (Hunot et al., 1999). Furthermore, CD23 has 

been shown to be present in nigrostriatal dopamine neurones in PD but not control 

brains (Hunot et al., 1999).  

Moreover, it has been suggested that microglia, the resident immune cells of the 

brain might play an active role in causing this postulated neuroinflammatory-induced 

nigrostriatal dopamine neurone degeneration. There is a consistent and substantial 

increase in the number of activated microglia present in the SN of post-mortem PD 

brains when compared to control (Mirza et al., 2000; Wu et al., 2002), and using an 

MRI technique, increased numbers of activated microglia have also been demonstrated 

to be present in the midbrain in a group of early-stage PD patients (Ouchi et al., 2005). 

This contention is, however, highly speculative as it is only based on indirect evidence 

showing microglia to have the capability to produce a number of molecules with 

cytotoxic potential when they become activated, including reactive oxygen species 

(ROS), reactive nitrogen species, pro-inflammatory cytokines, prostaglandins, and 

proteases (Banati et al., 1993; Kreutzberg, 1996; Wu et al., 2002; Long-Smith et al., 

2009). It is, however, feasible that both the activated microglia and the inflammatory 

markers detected in the SN of PD brains do not actually play any active role in causing 

the nigrostriatal neurodegeneration in PD, as no convincing direct evidence have 

implicated neuroinflammation to cause degeneration of nigrostriatal dopamine neurones 

thus far. Instead it is possible that the activated microglia and inflammatory mediators 

play a non-pathological passive role in regulating the phagocytosis of degenerating 

dopamine neurones, and that their presence in the SN of PD brains is wholly secondary 

to the degeneration of the dopamine neurones.  

 

1.3. Current Pharmacological Treatments for the Motor Symptoms in PD 

All of the pharmacological treatments that are currently used clinically to treat the 

motor symptoms of PD bring about their therapeutic effects by enhancing dopaminergic 

neurotransmission in the brain. The dopamine precursor, L-3,4-dihydroxyphenylalanine 

( L-DOPA) has been used to provide symptomatic relief for PD since the 1960s, and it 

still remains the gold standard pharmacological treatment for PD today (Mercuri & 

Bernardi, 2005). L-DOPA is usually administered orally, and as L-DOPA’s central 
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bioavailability is significantly reduced due to extensive peripheral metabolism, it is 

normally co-administered with the peripheral DOPA decarboxylase inhibitor, 

carbidopa, which acts to greatly enhance L-DOPA’s central bio-availability (Rezak, 

2007). In the PD brain, L-DOPA is taken up into the remaining functional nigrostriatal 

dopaminergic neurones, where it enters into the dopamine synthesis pathway, and 

becomes converted into dopamine. L-DOPA, thus, acts to increase dopamine 

neurotransmission in the dopamine deficient striatum by increasing dopamine synthesis. 

This leads to an increase in extracellular striatal dopamine levels, which in turn acts to 

increase striatal dopamine receptor activation to more normal levels.  

In more recent times, two additional classes of dopamine neurotransmission 

augmenting drugs have also come to be used routinely to treat the motor symptoms of 

PD, monoamine oxidase-B (MAO-B) inhibitors, and dopamine receptor agonists 

(Rezak, 2007). MAO-B enzymes are localised throughout the striatum, where they 

catalyse the breakdown of dopamine, and the MAO-B inhibitors, thus, acts to boost 

dopaminergic neurotransmission in the striatum by preventing the breakdown of 

endogenous pools of dopamine. Two MAO-B inhibitors are currently approved for the 

treatment of PD, selegiline and rasagiline. Selegiline only produces very mild 

therapeutic effects and it is for this reason rarely used clinically (Thobois et al., 2005). 

Rasagiline, on the other hand, is a much more potent inhibitor of MAO-B, and it is more 

commonly used clinically, as it has been shown to provide much more effective 

symptomatic relief compared to selegiline (Rezak, 2007). A number of different 

dopamine receptors agonists are currently approved for treating PD, including 

ropinirole, pramipexole, and bromocriptine. This class of drugs bring about their 

therapeutic effect by directly activating hypostimulated dopamine receptors on the 

medium spiny striatal GABAergic neurones. Both rasalgiline and all of the dopamine 

receptor agonists, however, have inferior therapeutic efficacy when compared to L-

DOPA, and as a monotherapy they only provide effective symptomatic relief in early 

PD (Schapira, 2009). Both the dopamine receptor agonists and the MAO-B inhibitors 

have nevertheless been shown to provide therapeutic benefits in advanced disease when 

used as adjuvant therapy in combination with L-DOPA (Singh et al., 2007).  

In most cases, L-DOPA treatment provides effective symptomatic relief for the 

motor symptoms in PD for around 3-5 years after treatment is initiated. L-DOPA, 

however, fails to provide satisfactory long term symptomatic relief due to the 

development of serious and debilitating motor complications with prolonged L-DOPA 
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use (Singh et al., 2007). These motor complications include dyskinesias, and also so 

called ‘on-off’ and ‘wearing off’ phenomena. L-DOPA-induced dyskinesias or LID are 

involuntary movements that take either a choreic or dystonic form, and they most often 

coincide with peak L-DOPA plasma levels. The ‘on-off’ phenomenon refers to the 

unpredictable and transient periods when L-DOPA medicated PD patients experience a 

loss of therapeutically restored motor function, while the ‘wearing off’ phenomenon 

refers to the loss of motor function experienced towards the end of a specific L-DOPA 

dose period.  

Substantial pre-clinical and clinical evidence has suggested that the 

pharmacokinetic properties of L-DOPA, and in particular the short half life of L-DOPA 

of around 60-90min is mainly to blame for causing these motor complications (Singh et 

al., 2007). Under physiological conditions, nigrostriatal dopamine neurones fire 

continuously at a near constant rate, with burst firing only occurring briefly and 

transiently when reward is anticipated or when novel stimuli are encountered (Steiger, 

2008). This predominant tonic firing pattern stimulates a tonic and sustained release of 

dopamine in the striatum, which in turn gives rise to a continuous tonic activation of 

striatal dopamine receptors. Because of the relatively short half-life of L-DOPA, 

treatment with L-DOPA fails to replicate this physiological tonic and continuous pattern 

of striatal dopamine receptor activation that is observed under normal conditions 

(Schapira, 2009). Instead L-DOPA therapy results in striatal dopamine receptors being 

stimulated in a non-physiological pulsatile manner, with peak and trough levels of 

dopamine receptor activation coinciding with peak and trough L-DOPA plasma 

concentrations after administration of each L-DOPA dose (Singh et al., 2007). 

Moreover, it is believed that motor complications tend to increase with disease 

progression due to the increasingly denervated striatum becoming increasingly less able 

to effectively buffer striatal extracellular dopamine levels after L-DOPA dosing (Singh 

et al., 2007).  

 

1.4. Current Research Strategies aimed at Finding Improved Treatments for PD 

Due to the serious shortcomings that are associated with the currently available drugs to 

treat PD, there is an urgent clinical need for new more effective pharmacological 

treatments, and enormous research efforts are currently focused on discovering and 

developing new treatments for PD. The four main research strategies aimed at finding 

new improved pharmacological treatments for the motor symptoms in PD include, the 
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development of approaches to provide a more continuous stimulation of striatal 

dopamine receptors, the development of non-dopaminergic drugs that are able to 

provide more effective symptomatic relief, the development of neurorestorative cell 

transplant therapies, and the development of neuroprotective drugs that can slow or halt 

disease progression. A brief overview of each of these research strategies is given 

below.   

 

1.4.1. Strategies Aimed at Providing More Continuous Stimulation of Striatal 

Dopamine Receptors 

As it is thought that the pulsatile activation of dopamine receptors by L-DOPA therapy 

is mainly to blame for causing L-DOPA induced motor complications, significant 

research efforts have been undertaken to develop treatment strategies that allows for a 

more continuous and constant activation of striatal dopamine receptors to be achieved 

(Rezak, 2007; Singh et al., 2007; Steiger, 2008). One specific strategy has focused on 

trying to alter the pharmacokinetics of the current dopamine based drugs so as to 

achieve more sustained plasma concentrations. Even when co-administered with 

carbidopa, ~20% of an administered L-DOPA dose fails to enter the systemic 

circulation due to metabolism of L-DOPA by catechol-O-methyl transferase (COMT) 

enzymes located in the gut into 3-O-methyl-DOPA, a chemical derivative that acts as a 

false dopamine neurotransmitter (Rezak, 2007). By administering L-DOPA in 

combination not only with carbidopa, but also with a COMT inhibitor such as 

entacapone, the half life of L-DOPA can be extended from ~60-90min to ~3h (Olanow 

et al., 2006). Although this increase in half life only gives rise to a relatively less 

pronounced pulsatile pattern of dopamine receptor stimulation rather than to a truly 

continuous stimulation pattern, clinical trials have shown supplementation of L-DOPA 

with COMT inhibitors to significantly increase ‘on’ time and also to decrease 

dyskinesias (Thobois et al., 2005).  

Moreover, most of the newer dopamine receptor agonists that are currently used 

to treat PD have relatively long half lives, and in most cases when used as mono-

therapy they are associated with far fewer motor complications (Schapira et al., 2006; 

Schapira, 2009). Attempts are, therefore, made to postpone treatment with L-DOPA for 

as long as possible, and to only supplement dopamine receptor agonist treatment with 

L-DOPA at a point in the disease progression when unsatisfactory therapeutic effects 

are achieved with the dopamine receptor agonist alone (Rezak, 2007). Additionally, 
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separate attempts have also been made to develop drug formulations and delivery 

systems that can provide more continuous plasma concentrations of the dopamine based 

drugs. A sustained release formulation of L-DOPA has for example been developed, but 

disappointingly it failed to show any benefits in reducing motor complications when 

tested in clinical trials (Steiger, 2008). Research efforts in this area are, however, still 

continuing, and an intra-intestinal L-DOPA delivery technique is currently being 

evaluated in clinical trials (Olanow et al., 2006). Rotigotine, a new long acting 

dopamine receptor agonist delivered as a once daily patch has also recently been 

approved and shown to be effective as a mono-therapy in early PD and as an adjuvant in 

advanced disease (Rascol & Perez-Lloret, 2009). It, however, remains to be determined 

whether the latter approach offers any benefits in reducing L-DOPA induced motor 

complications.        

 

1.4.2. Strategies aimed at Targeting Non-Dopaminergic Neurotransmitter Systems 

Another one of the current main research strategies is aimed at developing new drugs 

that can provide symptomatic relief for the motor symptoms in PD by 

pharmacologically modulating non-dopaminergic targets in the brain. Receptors for a 

number of different non-dopaminergic neurotransmitter systems are localised not only 

to nigrostriatal dopamine neurones but also to various non-dopaminergic neural systems 

that make up the rest of the basal ganglia circuitry involved in motor function (Schapira 

et al., 2006; Schapira, 2007; Fox et al., 2008). It is thought that targeting of some of 

these receptors might provide symptomatic relief in PD either by modulating dopamine 

release from nigrostriatal dopamine neurones or alternatively by correcting 

dysfunctional signalling in neuronal pathways in the basal ganglia downstream of the 

degenerating nigrostriatal dopaminergic pathway.  A number of non-dopaminergic 

drugs including, nicotinic acetylcholine receptor agonists, α2 adrenergic receptors 

antagonists, and adenosine A2 receptor antagonists have all shown promise in animal 

models of PD, but subsequently failed to significantly improve motor symptoms in PD 

patients in clinical trials (Schapira, 2007; Singh et al., 2007; Fox et al., 2008; Schapira, 

2009). Furthermore, substantial current research efforts are also aimed at investigating 

whether non-dopaminergic drugs might be able to reduce the motor complications 

induced by L-DOPA when they are co-administered with L-DOPA. For example, it is 

believed that glutamate hyperactivity in the striatum might be the cause of L-DOPA 

induced dyskinesias, and NMDA and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) 
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propanoic acid (AMPA) receptor antagonists have been evaluated for their ability to 

reduce dyskinesias in PD patients in clinical trials, but they were shown to be 

ineffective (Fox et al., 2008). Various subtypes of 5-hydroxytryptamine (5HT) receptors 

are localised throughout the basal ganglia circuitry, and a number of different drugs 

targeting 5HT receptors, including antagonists at the 5HT2, 5HT2A, 5HT2C receptors, 

and agonists at 5HT1B receptors have been shown to reduce L-DOPA induced 

dyskinesias in animal models, but they remain to be evaluated in clinical trials (Schapira 

et al., 2006; Fox et al., 2008).          

 

1.4.3. Strategies Aimed at Developing Neurorestorative Cell Transplant Therapies 

Over the last 30 years, substantial research efforts have been focused on developing a 

neurorestorative cell transplant therapy for PD. As discussed earlier, the motor 

symptoms in PD results from the selective degeneration of a specific subset of 

dopaminergic neurones that are anatomically localised within the nigrostriatal 

dopaminergic pathway, a distinct and well defined area of the brain. These features 

make PD a technically viable disease candidate for cell transplantation therapies, as 

only a single subset of neurones need to be transplanted into a single well defined target 

site within the brain. The first evidence that cell transplant therapies might be able to 

restore motor function in PD was provided by experiments in which allogeneic rodent 

adult adrenal medullary or foetal mesencephalic tissue was grafted into the dopamine 

depleted striatum of 6-hydroxydopamine (6OHDA) lesioned rats (Drucker-Colin & 

Verdugo-Diaz, 2004). Foetal ventral mesencephalic tissue was used in these 

experiments because it contains the embryonic dopaminergic neurones that develop into 

the nigrostriatal dopaminergic tract in adults. Adrenal medullary tissue, on the other 

hand, was used because it is primarily composed of neuroendocrine chromaffin cells 

that are able to synthesise, store, and release a number of different catecholamine 

neurotransmitters. Results from these studies demonstrated that although only a small 

percentage of the transplanted cells survived, a population of the surviving cells retained 

a dopaminergic phenotype, and these neurones sprouted nerve terminals that 

reinnervated the striatum (Snyder & Olanow, 2005). Importantly the transplants also 

alleviated the motor deficits present in the 6OHDA lesioned rats. Over the course of the 

following two decades, a number of both open label and double blind randomised 

clinical trials were subsequently carried out to assess the effectiveness of these cell 

transplantation approaches in PD (Snyder & Olanow, 2005). In these studies, a number 
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of different transplantation techniques were used to graft either allogeneic adrenal 

medullary tissue or foetal mesencephalic tissue obtained from aborted foetuses into the 

caudate putamen of PD patients. Post-mortem histological results from some of these 

studies demonstrated that, as was observed in the pre-clinical studies, only a small 

number of the transplanted cells survived in the long term (Snyder & Olanow, 2005). 

Importantly, some of the surviving transplanted cells were found to have retained a 

dopaminergic phenotype, and these surviving dopaminergic neurones sent out 

projections that reinnervated the striatum. However, disappointingly, although the 

transplants alleviated motor deficits in some individual patients in the initial open label 

studies, foetal mesencephalic transplants were found not to provide significant clinical 

benefits in all of the large double blind randomised studies (Drucker-Colin & Verdugo-

Diaz, 2004). Worryingly, the transplants also induced severe and debilitating off-

medication dyskinesias in a large proportion of the PD patients that received the 

transplants (Snyder & Olanow, 2005). A number of hypotheses have been put forward 

to explain both the lack of efficacy of the transplants and the dyskinesias induced by the 

transplants. Some researchers have argued that it is primarily technical problems that 

have limited the success of the trials carried out, thus far, and it is believed that the 

approach has the potential to offer significant clinical benefit if the transplant techniques 

are optimised to overcome these problems. It is, for instance, believed that the lack of 

efficacy of the transplants is due to an insufficient number of the transplanted cells 

surviving to provide a therapeutic degree of reinnervation of the striatum (Correia et al., 

2005). A number of different factors have also been put forward as being potential 

causes of the transplant-induced dyskinesias, including uneven reinnervation of the 

striatum by the transplanted cells, inflammation around the implantation site, and the 

heterologous cell composition of the transplanted tissue, which results in the 

transplanted tissue containing not only dopaminergic neurones but also several other 

cell types (Correia et al., 2005). In the case of foetal mesencephalic transplants, the graft 

tissue often contains large populations of serotonergic neurones, and there is evidence 

that release of serotonin by these neurones in the striatum stimulates dysfunctional 

signalling in the basal ganglia circuitry that leads to the transplant-induced dyskinesias 

(Wakeman et al., 2011). Current research efforts are, therefore, attempting to develop a 

transplant procedure that increases the survival of the transplanted cells, and which also 

eliminates or reduces the factors that are thought to induce dyskinesias. 
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However, even if an optimal clinically effective transplant procedure is 

developed, the widespread use of ventral mesencephalic transplants for the treatment of 

PD would be prohibited by graft tissue supply constraints, as ~6-8 aborted foetuses of a 

specific developmental stage is needed for each transplant procedure (Taylor & Minger, 

2005). Additionally, ethical issues prevent the use of tissue from aborted foetuses in 

many countries. Therefore, in recent years, PD cell transplant research has focused 

mainly on finding better sources of graft tissue material rather than on optimising foetal 

mesencephalic transplant procedures. Recent findings have indicated that stem cells 

hold the potential of being the ideal source of graft tissue for PD transplants. Stem cells 

are undifferentiated progenitor cells, and it is believed that the capability of these cells 

not only to self-amplify but also to differentiate into a number of different cell types 

means that they have the potential to provide an infinite supply of dopaminergic 

grafting material for transplants. A number of different types of stem cells are found 

throughout the developing and adult body, and some are pluripotent and able to 

differentiate into any of the cells that make up the body, while others are multipotent, 

and only able to differentiate into a more limited number of cell types. A number of 

different types of stem cells have been demonstrated to have potential in PD transplant 

therapies, including embryonic stem cells (ESCs), neural stem cells (NSCs), and 

induced pluripotent stem cells (iPSCs). 

ESCs are pluripotent stem cells that are derived from the inner cell mass of the 

pre-implantation blastocyst. Protocols have been developed to not only maintain and 

expand ESCs in culture, but also to differentiate them into neurones with a 

dopaminergic phenotype. When these ESC-derived dopaminergic neurones are 

transplanted into the dopamine depleted striatum of animals with nigrostriatal lesions, a 

proportion of the dopamine neurones in the grafts not only survive but also reinnervate 

the striatum, and, importantly, the grafts have been demonstrated to bring about a robust 

improvement in the motor symptoms present in the lesioned animals. A number of 

different protocols are currently available to differentiate ESCs from mice, monkeys, 

and humans into dopaminergic neurones, and, importantly, ESC-derived dopaminergic 

neurone transplants derived from all of the latter species have also been shown to be 

effective in animal models of PD, both in terms of obtaining reinnervation of the 

dopamine depleted striatum and alleviating motor deficits (Kawasaki et al., 2000; Kim 

et al., 2002; Takagi et al., 2005; Brederlau et al., 2006; Chung et al., 2006; Roy et al., 

2006; Rodriguez-Gomez et al., 2007; Sonntag et al., 2007; Chiba et al., 2008; Cho et 
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al., 2008; Hedlund et al., 2008; Sanchez-Pernaute et al., 2008; Friling et al., 2009; 

Lonardo et al., 2010; Kriks et al., 2011). In the initial ESC transplant experiments, the 

same two main problems were encountered with ESCs derived from all of the 

abovementioned species. Only a small number of dopaminergic neurones in the grafts 

were found to survive in the long term, and this was thought to be mainly due to the 

initial un-optimised differentiating protocols giving rise to poor yields of dopamine 

neurones (Kawasaki et al., 2000; Kim et al., 2002; Brederlau et al., 2006). The second 

major problem was that many of the grafts developed into teratomas after 

transplantation (Kawasaki et al., 2000; Kim et al., 2002; Roy et al., 2006; Sonntag et 

al., 2007; Chiba et al., 2008). Improved differentiating protocols have, however, 

subsequently been developed which have overcome both of these limitations. Optimised 

differentiation protocols have been developed that produce a high yield of dopaminergic 

neurones from mice, monkey and human ESCs, and the increased dopamine neuron 

yields have been shown to give rise to increased survival rates after grafting (Kim et al., 

2002; Chung et al., 2005; Roy et al., 2006; Sonntag et al., 2007; Chiba et al., 2008; Cho 

et al., 2008; Friling et al., 2009; Lonardo et al., 2010; Kriks et al., 2011). Additionally, 

the risk of teratoma formation has been greatly reduced by using fluorescence-activated 

cell sorting techniques to select only cells with a committed neural lineage for 

transplantation, and, by doing so, greatly reducing the number of tumourigenic 

pluripotent stem cells that are included in a transplant (Chung et al., 2006; Hedlund et 

al., 2008; Friling et al., 2009). Alternatively, teratoma formation has also been shown to 

be eliminated or reduced through the use of relatively long differentiation protocols 

which yield transplants containing primarily post-mitotic cells, and not many 

undifferentiated cells with tumourigenic potential (Sonntag et al., 2007; Sanchez-

Pernaute et al., 2008; Kriks et al., 2011). 

NSCs are multipotent stem cells that are committed to a neural lineage, and they 

are found in a number of different regions of the developing and adult brain. As with 

ESCs, protocols have also been developed to differentiate NSCs derived from the 

embryonic ventral mesencephalon of rats and humans, and also form the subventricular 

zone (SVZ) of embryonic rats into dopamine neurone enriched cultures, and NSC-

derived dopaminergic neurone transplants derived from all of the latter species have 

been shown to be effective in animal models of PD, both in terms of obtaining 

reinnervation of the dopamine depleted striatum and alleviating motor deficits (Studer et 

al., 1998; Sanchez-Pernaute et al., 2001; Shim et al., 2007; O'Keeffe et al., 2008; Parish 
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et al., 2008). A significant advantage that the NSC-derived transplants have over ESC-

derived transplants is that they appear to have a very low tumourigenic potential, as no 

teratomas have, thus, far, been recorded in any of the studies with NSC-derived 

transplants. As with the ESC-derived transplants, only minimal survival of the grafted 

dopaminergic neurones was achieved with some of the initial NSC differentiation 

protocols (Studer et al., 1998; Sanchez-Pernaute et al., 2001; Shim et al., 2007).  This 

problem has, however, also been overcome by the recent development of optimised 

NSC differentiating protocols that give rise to greatly improved yields of dopaminergic 

neurones, which after transplant demonstrate robust and high levels of survival of 

functional integrated dopaminergic neurones (O'Keeffe et al., 2008; Parish et al., 2008).    

iPSCs are produced by converting differentiated  somatic cells into pluripotent 

stem cells. This reprogramming of somatic cells into stem cells is achieved by altering 

transcription factor activity in somatic cells with the use of genetic engineering 

techniques and also by adding a number of different de-differentiation factors to the 

cells (Wijeyekoon & Barker, 2009). These stem cells have the potential to become the 

most favourable graft tissue source, as iPCSc are able to yield autogeneic graft tissue; 

and this would avoid all the problems of immune rejection that are associated with not 

only foetal mesencephalic transplants but also with transplants carried out with ESCs 

and NSCs, as the currently available techniques only allow the later two stems to be 

derived from allogeneic sources. One group has developed a protocol that not only 

converts fibroblasts into pluripotent stem cells, but which subsequently also brings 

about the differentiation of a population of these pluripotent cells into dopamine 

neurones (Wernig et al., 2008). Striatal transplantation of these iPSC-derived cell 

populations enriched for dopaminergic neurones into 6OHDA lesioned rats brought 

about an improvement of motor function (Wernig et al., 2008). However, although 

some of the transplanted cells survived and also retained a dopaminergic phenotype, it 

was only a very small proportion of the transplanted cells, and worryingly, some of the 

cells were found to have developed into teratomas. Unlike the ESC and NSC 

techniques, optimised procedures, thus, still need to be developed for iPSCs to 

overcome the above two issues. 

Despite the tremendous progress that has, thus, far been made, clinical trials 

with stem cell derived grafting tissue are, however, still a long way off, as substantial 

pre-clinical testing in animal models of PD would be needed not only to develop an 

optimal standardised grafting procedure that allows for the long term survival and 
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integration of a sufficient number of dopaminergic neurones into the striatum, but also 

to extensively evaluate the effectiveness and safety of the procedure. Importantly, it 

needs to be specifically demonstrated that a standardised differentiation protocol and 

transplantation procedure leads to robust and consistently reproducible improvements in 

motor function in animal models, and also that the procedure has a low risk of causing 

cancerous growths and other adverse effects such as dyskinesias.         

 

1.4.4. Strategies Aimed at Finding Neuroprotective Treatments that can Slow 

Disease Progression  

In PD, there is a progressive loss of nigrostriatal dopamine neurones over many years, 

with motor deficits only appearing once more than ~60% of dopamine neurones in the 

SNc are lost (Dauer & Przedborski, 2003). A major shortcoming of all of the currently 

available treatments for PD is that they only provide symptomatic relief for the motor 

symptoms of PD, and they do nothing to slow down the ongoing degeneration of the 

remaining functional dopaminergic neurones (Peterson & Nutt, 2008). The third main 

current research strategy aimed at finding new pharmacological treatments for PD is, 

therefore, aimed at developing new treatments that are able to slow down the ongoing 

nigrostriatal degeneration in PD. Such neuroprotective drugs have the potential to bring 

about the greatest therapeutic benefit, as unlike the currently available therapies, they 

would be able to slow down or halt disease progression. So far, most rational drug 

design strategies aimed at developing new neuroprotective drugs for PD have aimed at 

investigating the neuroprotective potential of agents that either stimulate dopamine 

neurone survival (see section 1.5 below) or drugs that counter one or more of the 

putative aetiological causes of nigrostriatal degeneration in PD that have been 

identified, thus far; including, oxidative stress, mitochondrial dysfunction, and neuro-

inflammation. Many agents that counteract the putative pathological processes involved 

in PD have, indeed, been shown to have neuroprotective effects in animal models of PD 

including, for example anti-oxidants, anti-apoptotic agents, iron chelators, and inhibitors 

of glutamate signalling (Thobois et al., 2005; Schapira, 2007; Singh et al., 2007; Fox et 

al., 2008; Schapira, 2009). A number of agents have also been tested for their 

neuroprotective potential in clinical trials, including the following selected examples. 

Coenzyme Q10 is a component of the electron transport chain and it has been tested in 

clinical trials for its neuroprotective effects based on the rationale that it might help to 

correct the mitochondrial dysfunction present in the PD brain (Hauser, 2010). A number 
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of agents with anti-oxidant properties, including vitamin E and the MAO-B inhibitors 

have also been tested based on the logic that they might counteract the increased levels 

of oxidative stress that is present in the PD SN (Hauser, 2010). However, unfortunately 

no treatment has, thus, far, been conclusively shown to have significant and clinically 

relevant neuroprotective effects in clinical trials with PD patients (Hauser, 2010). 

Additionally, anti-inflammatory treatments might also be able to provide 

neuroprotection in PD, as a number of agents with anti-inflammatory activities have 

been shown to have neuroprotective effects in animal models of PD, including 

dexamethasone, cyclo-oxygenase-2 (COX2) inhibitors, minocycline, naloxone, and 

vasoactive intestinal peptide (Gao et al., 2003; Liu, 2006). None of these drugs have 

however been evaluated in clinical trials thus far, and as most of the aforementioned 

drugs have additional pharmacological actions that don’t target inflammatory processes, 

it remains to be conclusively shown that their neuroprotective effects do actually stem 

from their anti-inflammatory effects rather than from their other actions.      

 

1.5. The Potential of Growth Factors as Neuroprotective Treatments for PD 

It has long been known that neurotrophic growth factors have the capability to stimulate 

the survival of neuronal cells, and that the presence of specific growth factors in the 

intact adult brain is essential in allowing for the survival of specific populations of 

neurones (Dawbarn & Allen, 2003). For this reason, substantial research efforts have 

focused on evaluating whether neurotrophic growth factors might have neuroprotective 

potential in PD, and recent pre-clinical findings have identified numerous neurotrophic 

growth factors that do (Peterson & Nutt, 2008). It is believed that neurotrophins will, at 

worse, be able to stimulate the survival and functioning of the remaining dopamine 

neurones, and, by doing so, potentially either halt or slow the progression of PD 

(Peterson & Nutt, 2008). At best, neurotrophins might also be able to stimulate the 

regeneration of non-functional dopamine neurones, leading to a restoration of lost motor 

function.  

Pre-clinical experiments have identified a myriad of neurotrophins that have 

potential in treating PD, including fibroblast growth factor-2 (FGF2), insulin like 

growth factor (IGF), epidermal growth factor (EGF), transforming growth factor alpha 

(TGF-α), interleukins, TNF-α, IFN-γ, conserved dopamine neurotrophic factor (CDNF), 

brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor 

(GDNF) (Unsicker, 1994; Peterson & Nutt, 2008). Of these growth factors, GDNF has 
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been investigated the most thoroughly (Kirik et al., 2004). In rats and monkeys, 

centrally administered GDNF protects nigrostriatal dopamine neurones against 6OHDA, 

and MPTP-induced cell death, respectively (Sullivan et al., 1998; Grondin et al., 2002). 

In an initial small clinical trial, GDNF significantly improved motor deficits in a group 

of PD patients when delivered directly into the putamen (Gill et al., 2003). However,  in 

a number of subsequent clinical trials, centrally delivered GDNF failed to show any 

benefit in late-stage PD patients (Kirik et al., 2004). The lack of effect is believed to be 

due to GDNF not reaching its target receptors on dopamine neurones, as a result of 

limited diffusion from the infusion site. Thus, although there are still some technical 

problems to overcome to allow the effective delivery of neurotrophins, the results 

achieved with GDNF have provided support for the effectiveness of neurotrophins in 

treating PD.       

          

1.6. Neuroprotective Potential of FGF20 in PD 

Fibroblast growth factor-20 (FGF20) has recently been identified to be another growth 

factor that could have neuroprotective potential in PD (see section 4.1.5 for more 

details). In the rat, mRNA for FGF20 is present in the embryonic midbrain, and in the 

adult brain, FGF20 mRNA is localised in both the SN and the striatum (Ohmachi et al., 

2003; Grothe et al., 2004). In vitro, recombinant human FGF20 protects rat ventral 

mesencephalic (VM) embryonic dopamine neurones against serum withdrawal, 

glutamate toxicity, and 6OHDA-induced cell death (Ohmachi et al., 2000; Ohmachi et 

al., 2003; Murase & McKay, 2006). Moreover, evidence from biochemical and genetic 

studies in humans have indicated that dysfunctioning of FGF20 signaling and also 

fibroblast growth factor (FGF) signaling in general might play a role in the aetiology of 

PD. In the SNc, the prototypic FGF family member,  FGF2 is abundantly present in 

post-mortem control brains, but nearly completely absent in PD brains (Tooyama et al., 

1994), and a number of FGF20 SNP polymorphisms have been found to be associated 

with an increased risk of PD (detailed in section 4.1.5). The above findings taken 

together with results from post mortem studies showing FGFR1 to be present in the 

remaining SNc dopamine neurones of PD patients (Walker et al., 1998), provide 

convincing support that exogenous application of FGF20 to the nigrostriatal tract might 

have neuroprotective therapeutic potential in PD. 
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1.7. Overall Aims of this Thesis 

As detailed above and expanded on in more detail in Chapter 3 (section 4.1.5), recent 

findings have demonstrated FGF20 to have neuroprotective potential in PD, and the 

main aim of this thesis was to further investigate FGF20’s neuroprotective effects on 

dopamine neurones. FGF20 has previously been shown to have neuroprotective effects 

on dopamine neurones, in vitro. And two of the primary aims of this thesis were, firstly, 

to confirm FGF20’s previously reported in vitro neuroprotective effects, by testing 

whether FGF20 is able to protect VM embryonic dopamine neurones against 6OHDA, 

and, secondly, to evaluate for the first time whether FGF20’s neuroprotective effects on 

dopamine neurones are also present in vivo, in the partially lesioned 6OHDA rat model 

of PD.  

Prior to carrying out the planned in vitro and in vivo neuroprotection studies 

with FGF20, it was important to ensure that FGF20’s receptors, the fibroblast growth 

factor receptors (FGFRs) were, indeed, present in both of the abovementioned model 

systems. Therefore, in Chapter 2, immunohistochemistry studies were carried out with 

the aim of characterising, in detail, the colocalisation profiles of FGF20, and the 

FGFR1, 3, and 4 in both VM cultures, and in the nigrostriatal tract of the rat brain.  

In Chapter 3, 6OHDA dose-response experiments were carried out with the aim 

of establishing an appropriate partially lesioned 6OHDA rat model of PD in which 

FGF20 could be evaluated for its neuroprotective effects on dopamine neurones, in vivo. 

Furthermore, to successfully evaluate FGF20’s neuroprotective efficacy, in vivo, it was 

essential that a biologically active dose of the growth factor was tested in the planned 

neuroprotection study. Experiments were, thus, also carried out – in which 

phosphorylated extracellular regulated kinase-1/2 (phospho-ERK1/2) was used as a 

marker of FGF20 stimulated FGFR activation - with the aim of identifying a 

biologically active intra-nigrally delivered dose of FGF20.  

In Chapter 4, studies were carried firstly to confirm FGF20’s in vitro 

neuroprotective effects, by testing whether FGF20 is able to protect VM embryonic 

dopamine neurones against 6OHDA, and secondly to determine if FGF20’s 

neuroprotective effects are also present in vivo, by evaluating whether FGF20 is able to 

protect nigrostriatal dopamine neurones in the partially lesioned 6OHDA rat model of 

PD that was established in Chapter 3.  Evidence from a number of studies has indicated 

that one of the physiological roles of the endogenous FGF system in the nigrostriatal 
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tract is to stimulate and maintain the survival of dopamine neurones. An additional aim 

of Chapter 4 was to determine if the endogenous FGF system does, indeed, play a role 

in protecting nigrostriatal dopamine neurones by evaluating whether chronic 

pharmacological inhibition of FGFR signaling potentiates 6OHDA-induced nigrostriatal 

dopamine neurone degeneration in the rat.  

In Chapter 5, cell viability studies were carried out in PC12 cells with the aim of 

investigating the signalling mechanisms mediating FGF20’s neuroprotective effects 

against 6OHDA. More specifically, it was evaluated whether FGF20’s neuroprotective 

effects are, indeed, mediated by the FGFRs, and at the intracellular level, experiments 

were carried out to determine if FGF20’s neuroprotective effects are mediated by the 

extracellular regulated kinase-1/2 (ERK1/2) mitogen activated protein kinase (MAPK) 

pathway. The heparin sulphate proteoglycans (HSPGs) play an important role in 

modulating FGF signaling, and the HSPG, agrin when co-applied with FGF2, 

potentiates both FGF2-stimulated ERK1/2 activation and neurite outgrowth in PC12 

cells. In chapter 5 it was evaluated, firstly, whether agrin is able to potentiate FGF20 

induced ERK1/2 activation, and, secondly, if agrin potentiates FGF20’s neuroprotective 

effects against 6OHDA toxicity in the PC12 cells. When taken together, it was hoped 

that the results generated from all of the studies undertaken as part of this thesis would 

further research efforts aimed at characterising the neuroprotective potential of FGF20 

in the treatment of PD. 
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Chapter  2: Immunohistochemical Localisation of FGF20 and 

FGFR 1, 3, and 4 in the Rat Nigrostriatal Tract and in 

Ventral Mesencephalic Embryonic Dopamine Neurone 

Cultures 

2.1. Introduction 

2.1.1. The Fibroblast Growth Factor Family  

The fibroblast growth factor (FGF) family is a group of structurally related polypeptide 

growth factors, currently composed of 23 members, FGF1-23 (Reuss & von Bohlen und 

Halbach, 2003). The prototypic FGFs, FGF1 and FGF2, were the first two FGFs to be 

discovered, and were originally called acidic and basic fibroblast growth factor, due to 

the acidic and basic iso-electric points associated with the proteins, respectively, and 

because of FGF2’s mitogenic effects on fibroblasts (Rudland et al., 1974; Esch et al., 

1985). When the FGF family was shown to contain numerous members, a nomenclature 

was adopted in which each FGF family member is distinguished by a numerical suffix 

indicating the sequential order in which it was identified. The molecular weight of the 

different FGF family members varies between 17-34kDa, and the family members all 

share a similar general peptide structure, with there being 13-71% amino acid homology 

between the different members. The FGFs are distributed widely throughout most 

tissues of both the developing and adult body, and they function to regulate a diverse 

range of physiological processes, including differentiation, mitogenesis, cell survival, 

and angiogenesis (Eswarakumar et al., 2005). In the central nervous system (CNS), the 

FGFs play a crucial role in regulating the development of the brain during 

embryogenesis (Dono, 2003; Thisse & Thisse, 2005), and in the adult CNS, the FGFs 

have specifically been shown to regulate differentiation, neural plasticity, and neuronal 

survival in a number of different brain areas (Eckenstein, 1994; Reuss & von Bohlen 

und Halbach, 2003). In the neurogenic areas of the brain, including the subventricular 

zone and the subgranular zone, the FGFs play an important role in regulating 

neurogenesis (Dono, 2003; Reuss & von Bohlen und Halbach, 2003). Importantly, the 

FGFs have also been demonstrated to play a role in regulating the repair processes that 

are initiated after injury of the nervous system (Reuss & von Bohlen und Halbach, 

2003).      
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2.1.2. The Fibroblast Growth Factor Receptors 

The FGFs mediate their biological effects by activating their membrane bound receptor 

tyrosine kinases (RTKs), the FGFRs. There are four subtypes of FGFRs referred to as 

the FGFR-1, 2, 3, and 4, and all four subtypes are composed of ~820 amino acids 

(Johnson et al., 1990). The FGFRs have a general structure similar to that found in most 

other RTKs. Thus, they consist of an extracellular N-terminal ligand binding domain, a 

single transmembrane domain, and an intracellular C-terminal domain containing the 

protein kinase catalytic activity of the receptor. A unique feature of the FGFRs is the 

presence of three immunoglobulin (Ig)-like domains in the extracellular C-terminal 

domain of the receptors (Fig. 2.1). The Ig-like domain closest to the N-terminal of the 

receptor is referred to as D1, while the middle and juxtamembrane Ig-like domains are 

called D2 and D3, respectively (Johnson et al., 1990). The peptide sequence linking D1 

and D2 is rich in acidic residues and is referred to as the acid box. There is a relatively 

high degree of amino acid sequence homology between the four FGFR subtypes 

(Eckenstein, 1994). In the D1, D2, and D3 Ig-like domains, the degree of sequence 

homology ranges from 19-40%, 61-79%, and 74-81% between the 4 receptor subtypes, 

respectively. As expected the highest degree of amino acid sequence homology (75-

92%) is found in the tyrosine kinase domains of the FGFRs.     

Different isoforms of each of the FGFR subtypes have been shown to exist. 

Each FGFR subtype is coded for by a single gene, and alternative splicing of the genes 

gives rise to the different isoforms. The FGFR1, 2, and 3 all exist as two prototypical 

FGFR isoforms, referred to as the b and c isoforms (Johnson et al., 1991). The C-

terminal half of the D3 Ig-like domain of the FGFRs is only coded for by a single exon. 

The juxtamembrane half of D3, on the other hand, can be coded for by either exon 8 or 

exon 9 of the FGFR gene, giving rise to the b and c isoforms of the receptor, 

respectively (Fig. 2.1). The D3 domain plays an important role in ligand binding, and 

accordingly the b and c isoforms display substantial differences in their affinities for the 

various FGF ligands (Yayon et al., 1992). It appears that the FGFR4 (Johnson et al., 

1991) does not exist as these prototypical b and c isoforms, but 3 alternative isoforms of 

this receptor have nevertheless also been identified (van Heumen et al., 1999; Ezzat et 

al., 2001; Kwiatkowski et al., 2008). All 3 of the additional FGFR4 isoforms have been 

shown to consist of C-terminal truncated forms of the FGFR4. Two of the isoforms 

results from the alternative splicing of intron 17 of the FGFR4 gene (van Heumen et al., 

1999), while one is the product of an mRNA splice variant lacking exon 16 
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(Kwiatkowski et al., 2008). Furthermore, in addition to the membrane bound FGFRs, 

soluble forms of the FGFR subtypes have also been identified (Root & Shipley, 2000). 

Their function is not well understood, but it is thought that they might be secreted 

extracellularly, where they could modulate FGFR activation by competing with 

membrane bound FGFRs for binding of FGFR ligands.   
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2.1.3. Localisation of the FGFs in areas of the Brain other than the Nigrostriatal 

Tract 

Of the 23 FGFs, 13 have so far been localised to the adult brain including, FGF1, FGF2, 

FGF4, FGF5, FGF8, FGF9, FGF10, FGF14, FGF20, FGF22, and FGF23 (Bean et al., 

1991; Goldfarb et al., 1991; Kuzis et al., 1995; Yamamoto et al., 2000; Yamashita et 

al., 2000; Nakatake et al., 2001; Hajihosseini et al., 2008; Shakkottai et al., 2009). Of 

these 13, the mRNA and protein localisation profiles of only FGF1 and FGF2 have been 

comprehensively characterised in the rodent brain using in situ hybridization and/or 

immunohistochemistry (Gonzalez et al., 1995; Kuzis et al., 1995). The localisation 

profile of FGF10 in the mouse brain has been comprehensively studied using a 

genetically transfected FGF10 reporter gene system (Hajihosseini et al., 2008).  FGF1 

and FGF2 mRNA and protein have been shown to be distributed widely throughout the 

brain, with both being found in nearly all areas of the brain (Gonzalez et al., 1995). 

Additionally, FGF2 was shown to be present in nearly all cell types found in the CNS, 

including neurones, glial cells, ependymal and subependymal cells, endothelial cells, as 

well as cells that make up the meninges (Gonzalez et al., 1995). FGF1, on the other 

hand, appears to be preferentially found in glial cells, although it is also present in some 

neurones (Kuzis et al., 1995). FGF10 was found to be expressed in the cerebellum, 

thalamus, hindbrain, hippocampus, telencephalon, hypothalamus, pituitary gland, and 

also in ependymal cells (Hajihosseini et al., 2008). In non-comprehensive studies 

utilising in situ hybridisation studies, FGF5 was localised to the hippocampus, 

thalamus, and the cerebral cortex (Goldfarb et al., 1991), while FGF23 was localised to 

the ventromedial thalamic nucleus (Yamashita et al., 2000). In another study, FGF14 

mRNA and protein was shown to be present in granule and purkinje cells in the 

cerebellum (Shakkottai et al., 2009).   

 

2.1.4. Localisation of the FGFRs in areas of the Rat Brain other than the 

Nigrostriatal Tract 

Using in situ hybridisation, the mRNA expression patterns of the 4 FGFRs have been 

comprehensively characterised in the adult rat brain in a number of studies (Wanaka et 

al., 1990; Yazaki et al., 1994; Belluardo et al., 1997). The latter studies found only the 

FGFR1, 2, and 3 to be expressed in the rat brain, with mRNA for FGFR4 being found to 

be undetectable in all areas of the brain. Recent findings have, however, shown this to 
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be incorrect, as it has been robustly demonstrated that mRNA for the FGFR4 is 

abundantly present in the medial habenula (MHB), where FGFR4 mRNA is expressed 

in cholinergic neurones (Miyake & Itoh, 1996). In contrast to FGFR4, FGFR1, 2, and 3 

have been shown to have a widespread distribution in the brain, with mRNA for all 

three of the receptors being present in numerous structures within the telencephalon, 

diencephalon, mesencephalon, metencephalon, and myelencephalon (Yazaki et al., 

1994; Belluardo et al., 1997). All three of the receptors are particularly abundantly 

expressed in the lower brainstem and the cerebellum. In the diencephalon and 

telencephalon – with the exception of the hippocampal formation – mRNA encoding the 

receptors is expressed at substantially lower levels or not at all. Furthermore, mRNA for 

FGFR1, 2, and 3 is expressed abundantly in several physiologically and pathologically 

important nuclei, including the substantia nigra (SN), the locus coeruleus (LC), the 

dorsal raphe nucleus (DRN), and two cholinergic nuclei (the pedunculopontine and 

laterodorsal tegmental nuclei) (Wanaka et al., 1990; Yazaki et al., 1994; Belluardo et 

al., 1997). Moreover, in most areas of the brain, FGFR1 mRNA was shown to be 

present predominantly in neurones, although it is also found at low levels in non-

neuronal/glial tissues and cells (white matter, pia mater, the choroid plexus, and 

ependymal cells) (Wanaka et al., 1990; Yazaki et al., 1994; Belluardo et al., 1997). In 

contrast, it appears that FGFR2 and FGFR3 mRNA is mainly found in glial cells.  

Thus far, the localisation profile of only the FGFR2 protein has been 

systematically characterised in the rat brain with immunohistochemistry (Chadashvili & 

Peterson, 2006). In this study, the localisation profile of the FGFR2 protein was shown 

to be comparable to its mRNA expression profile, as the FGFR2 protein was found to 

be present in most areas of the brain. The FGFR2 protein was demonstrated to only be 

present in astrocytes in all of the areas evaluated, confirming the assertion made in 

previous in situ hybridisation studies that FGFR2 mRNA is preferentially expressed in 

glial cells (Wanaka et al., 1990; Yazaki et al., 1994; Belluardo et al., 1997). 

Immunohistochemical studies describing localisation profiles of FGFR1, 3, and 4 in the 

brain are currently lacking. FGFR1 protein has, however, been reported to be present in 

astrocytes in the cerebral cortex (Clarke et al., 2001), and in the ventral tegmental area, 

where FGFR1 was shown to be present in dopamine and GABAergic neurones, and also 

in astrocytes (Flores et al., 2010). Another study has characterised the localisation of 

FGFR1 and 3 in the hippocampus (Ferrer & Marti, 1998). FGFR1 was shown to be 
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present in nearly all of the hippocampal neurones, while FGFR3 was only present in 

astrocytes within the hippocampus.   

2.1.5. Localisation of the FGFs and the FGFRs in the Nigrostriatal Tract of the Rat 

Brain 

An important physiological role for the FGF system in the nigrostriatal dopaminergic 

tract is suggested by the abundant presence of a number of FGFs and FGFRs in this 

pathway. Thus far, 5 of the FGF family members have been detected in the nigrostriatal 

tract of the brain, FGF1, 2, 8, 9, and 20. As with other areas of the brain, the localisation 

profiles of the prototypical FGFs, FGF1 and FGF2, within the nigrostriatal tract have 

been characterised the most thoroughly. FGF1 and FGF2 mRNA and protein have been 

localised to both the SN and the striatum  (Bean et al., 1991; Kuzis et al., 1995; Claus et 

al., 2004), and in the SNc, both FGF1 and 2 specifically localizes to dopamine neurones 

(Bean et al., 1991; Claus et al., 2004). In both the SN and striatum, it appears that FGF1 

is mainly present in neurones, while FGF2 is found in both neuronal and glial cells 

(Bean et al., 1991; Kuzis et al., 1995; Claus et al., 2004). The striatal localisation of 

FGF1 and 2 have been demonstrated in only the rat (Kuzis et al., 1995; Claus et al., 

2004), while the nigral localisation has been shown in the rat, monkey, and human brain 

(Bean et al., 1991; Kuzis et al., 1995; Claus et al., 2004). FGF8, 9, and 20 have only 

more recently been shown to be present in the nigrostriatal tract, and their localisation 

profiles have, thus far, been characterised less comprehensively. In the human brain, the 

FGF8 protein has been localised to dopamine neurones in the substantia nigra (Tanaka 

et al., 2001), whereas the FGF9 protein has been shown to be present in the SN and in 

the striatum in both the human and the rat brain (Todo et al., 1998). In the rat brain, 

FGF9 was found to be present mainly in neurones within both the SN and striatum, with 

only a few astrocytes staining weakly positive for FGF9, and in the human nigrostriatal 

tract, reactive astrocytes stained positive for FGF9 (Todo et al., 1998). In the rat brain, 

mRNA for FGF20 has also been shown to preferentially localise to the SNc and the 

striatum (Ohmachi et al., 2003; Grothe et al., 2004).  

Both in situ hybridisation and PCR studies have demonstrated that the mRNA 

transcripts encoding FGFR1, 2, and 3 are present in both the striatum and the SN 

(Yazaki et al., 1994; Gonzalez et al., 1995; Belluardo et al., 1997; Claus et al., 2004). In 

the Claus et al., 2004 study, it was also specifically evaluated if FGFR4 mRNA is 

present in the striatum and SN, but none were detected. In the SNc and SNr, FGFR1 

mRNA was present at moderately high levels in a large percentage of the neuronal cells 
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that were present in the area, whereas FGFR2 and 3 mRNA were expressed at low to 

moderate levels in a small percentage of the glial cells present in the area (Belluardo et 

al., 1997). In the striatum, FGFR1 mRNA was not detected at all, while mRNA for both 

FGFR2 and 3 were detected, but again only in glial cells.  

The localisation profile of the FGFR1 and 2 proteins have also been 

characterised by immunohistochemistry in the nigrostriatal tract. In the human brain, 

contrary to the previously reported mRNA expression results described above, the 

FGFR1 protein has been shown to be present in the SNc not only in dopamine neurones, 

but also in a subset of astrocytes (Walker et al., 1998). In the nigrostriatal tract of the rat 

brain, both the FGFR1 and 2 proteins have been found to be present in the SN and the 

striatum (Gonzalez et al., 1995; Chadashvili & Peterson, 2006; Murase & McKay, 

2006). The FGFR2 protein was shown to be present exclusively in astrocytes in both the 

SN and the striatum. In the SN, FGFR2 was localised in astrocytes in both the SNc and 

SNr, and in the striatum, the FGFR2 protein was found in astrocytes within both the 

white and grey matter.         

The immunohistochemical characterisation of the localisation profiles of the 

FGFRs within the nigrostriatal tract, however, remains incomplete. In the nigrostriatal 

tract of the rat brain, no reports have, thus far, comprehensively characterised the 

localisation profiles of the FGFR1, 3, and 4 proteins within the nigrostriatal tract of the 

rat. While in the nigrostriatal tract of the human brain, the localisation profiles of the 

FGFR1, 2, 3, and 4 proteins still need to be characterised in the striatum. In the human 

SN, only the localisation profile of the FGFR1 protein has been characterised, and the 

localisation profile of the FGFR2, 3, and 4 proteins, thus, still also need to be 

characterised comprehensively. Additionally, although FGF20 mRNA has been shown 

to be localised to the striatum and the SN of the rat, there are currently no published 

immunohistochemical studies confirming that the FGF20 protein is, indeed, present 

within the nigrostriatal tract. 
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2.2. Objectives 

2.2.1. Objective 1. Characterise the Immunohistochemical Localisation Profiles of 

FGF20 and FGFR1, 3, and 4 in the Rat Nigrostriatal Tract and in Ventral 

Mesencephalic Embryonic Dopamine Neurone Cultures 

In studies carried out as part of chapter 4 of this thesis, FGF20’s ability to protect 

dopamine neurones against 6OHDA toxicity in VM cultures and in the 6OHDA 

lesioned rat model of PD was evaluated. Prior to carrying out these studies, it was 

important to ensure that FGF20’s receptors, the FGFRs were, indeed, present in both of 

these model systems. Using immunohistochemistry, studies undertaken as part of this 

Chapter aimed to characterise, in detail, the colocalisation profiles of FGF20, and the 

FGFR1, 3, and 4 in both VM cultures, and in the nigrostriatal tract of rats. The 

localisation pattern of FGFR2 was not characterised because a previous study has 

already comprehensively described the localisation profile of this receptor within the rat 

nigrostriatal tract.  
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2.3. Methods 

2.3.1. Preparation of Paraffin Wax Embedded Rat Brain Sections for 

Immunostaining 

2.3.1.1. Paraffin Wax Embedding of Rat Brain Tissue 

Naive male Sprague Dawley rats (Harlan, UK) weighing ~250g were intra-cardially 

perfusion fixed and their brains removed and embedded in paraffin wax using the 

procedure described in detail below. Rats were administered with an overdose (5mg/kg, 

i.p) of pentobarbital (Euthatal), and once a surgical plane of anaesthesia – tested for by 

the loss of a hindlimb withdrawal reflex – was reached, the rat’s abdominal and thoracic 

cavities were exposed through a laparotomy and thoracotomy, respectively. The main 

blood vessels supplying the gastrointestinal tract were punctured so as to serve as an 

outlet for the systemic blood, which needs to be cleared out of the cardiovascular 

system prior to perfusion with para-formaldehyde (PFA). The rats were then intra-

cardially perfused with ~200ml of ice cold PBS solution (pH7.6) to clear as much blood 

from the circulatory system as possible, and thereafter, with ~200ml of ice cold 4% PFA 

solution (dissolved in 0.9% NaCl, pH 7.6) to fix the brain in situ. Next, the PFA 

perfused brains were carefully removed from the skull and kept in a 4% PFA solution 

for a further 4 days at 4°C to ensure complete fixation of the entire brain. The brains 

were then cut to produce single blocks of brain tissue that contained both the entire SN 

and striatum. This was done by cutting off the cerebellum at the caudal end of the 

brains, and ~3cm of brain tissue at the rostral end of the brains.  

The blocked rat brains were then placed into plastic cassettes and embedded in 

paraffin wax using a Leica automated tissue processing machine. To dehydrate the brain 

tissue, the brain blocks were immersed and agitated for 1x 2hr session in 90% industrial 

methylated spirits (IMS), and then for 3x 2hr sessions in 100% IMS, with solution 

changes separating each session. To clear the brains, they were next immersed and 

agitated in a 50% xylene: 50% IMS solution for 1x 2hr session, and then in a 100% 

xylene solution for 3x 2hr sessions. Next, the brains were infiltrated with paraffin wax 

by immersing and agitating them in a paraffin wax solution kept at between 56-58°C for 

2x 2hr sessions, with solution changes separating each session. Finally, the paraffin wax 

embedded brains were mounted into wax blocks by positioning them in tissue moulds, 

filling the moulds with wax, and then leaving the moulds at 4°C to allow the wax to set 

into blocks.  
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2.3.1.2. Preparation of Nigral and Striatal Tissue Sections from the Paraffin Wax 

Embedded Rat Brains for Immunohistochemical Staining 

8µm thick coronal sections of the wax embedded brains were cut at RT with a 

microtome at the rostro-caudal levels containing the SN and the striatum. For each of 

these areas, serial sections were taken of the entire SN and striatum, so that sections 

were obtained for each area from a caudal, medial, and rostral level. After cutting the 

sections, they were transferred into a water bath kept at ~45°C, in which they were left 

to float on the water surface for a few minutes until the sections had expanded fully. 

Sections were then transferred onto Superfrost Plus glass microscope slides, firmly 

pushed down against the slide using blotting paper dampened with 30% IMS, and 

incubated at 37°C for 1h to strengthen the adhesion of the sections to the microscope 

slides. 

The brain sections were then prepared for immunohistochemical staining, firstly, 

by de-waxing and dehydrating them. Sections were immersed in 100% xylene for 2x 

5min time-periods and subsequently immersed in 100% IMS for 4x 2min time-periods, 

with solution changes separating each immersion. The sections that were stained using 

the horseradish peroxidase (HRP)/diaminobenzidine (DAB) avidin-biotin complex 

(ABC) indirect staining method were then immersed for 10min in a 3% H2O2 solution 

(dissolved in H2O) to inactivate any endogenous peroxidase activity. Thereafter, 

antigenicity was restored in the sections with the use of citric acid antigen retrieval. This 

was done by boiling the de-waxed sections in a citric acid (1M, dissolved in dH2O, 

pH6.0) solution for ~8min in a microwave pressure cooker. After this, the sections were 

removed from the citric acid solution and thoroughly rinsed in dH2O to wash away any 

remaining buffer solution. Excess dH2O was removed from the slides/sections by 

dabbing them lightly on blotting paper, after which a PAP pen was used to apply a 

hydrophobic barrier around each brain section. Sections were then incubated in blocking 

buffer (1% bovine serum albumin (BSA) and 10% NaAz dissolved in 0.5M tris buffered 

saline (TBS), pH7.6) for 10min to block non-specific binding sites. 
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2.3.2. Culturing and Preparation of Ventral Mesencephalic Cultures for 

Immunofluorescence Staining 

2.3.2.1. Coating of Glass Coverslips with Poly-D-lysine for Use in Cell Culture 

Experiments 

13mm glass coverslips were coated with poly-D-lysine. Batches of ~300 coverslips 

were immersed and agitated in an 80% ethanol solution for 2h at RT to sterilise the 

coverslips. The coverslips were then rinsed 3x with sterile dH20 to remove all traces of 

ethanol. Thereafter, the coverslips were immersed and agitated in a 0.1mg/ml poly-D-

lysine solution (made up in dH2O) for 3h at RT. The coverslips were then again washed 

3x in dH2O, this time to remove any unbound poly-D-lysine. The poly-D-lysine coated 

coverslips were then stored in dH2O in a sealed sterile container kept in the fridge.   

 

2.3.2.2. Preparation of VM Cell Suspension for Plating 

Pregnant female time-mated rats incubating E15 rat embryos (Harlan, UK) were 

anaesthetised using carbon dioxide. Once the rats reached a surgical plane of 

anaesthesia – checked for by loss of the hindlimb reflex – a laparotomy was carried out, 

and the rat embryos removed and placed in a PBS solution kept on ice. Around 10-15 

embryos were usually obtained from a single pregnant female rat. Under a dissecting 

microscope and under sterile conditions, VM brain tissue was dissected out from the 

developing brains of each of the individual rat embryos, and all of the individual pieces 

of VM brain tissue originating from the same mother were pooled together in 1ml of ice 

cold sterile Dulbecco’s phosphate buffered saline (D-PBS). The dissected VM tissue 

was washed 3x with D-PBS, and then incubated in 0.25% trypsin (dissolved in D-PBS) 

at 37°C for 10min. 8ml of foetal bovine serum (FBS) positive (FBS+) cell culture media 

(Dulbecco’s modified eagles medium (DMEM) Glutamax media supplemented with 

10% foetal bovine serum (FBS), 100 units of penicillin, and 100g/ml of streptomycin) 

was added to the tissue suspension, and the suspension centrifuged for 2min at 400g. 

The supernatant was discarded, and the cells re-suspended in 1ml of FBS+ cell culture 

media. The cell suspension was triturated using a flame polished pasteur pipette until a 

single cell suspension was obtained.  
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2.3.2.3. Quantification of Cell Densities using Trypan Blue Cell Exclusion 

The number of viable cells present in the 1ml VM cell suspension was then quantified 

using trypan blue cell exclusion. A 50µl aliquot of the 1ml VM cell suspension was 

pipetted into an eppendorf tube. 50µl of a 0.04% trypan blue solution was added to the 

50µl of cell suspension and the resulting 100µl solution triturated to ensure that the cells 

were evenly distributed throughout the solution. ~50µl of the trypan blue cell 

suspension was then pipetted into the counting chamber of a haemocytometer, ensuring 

that the chamber was filled completely. The following method was then used to 

calculate the total number of cells that were present in the original 1ml cell suspension. 

Using an inverted phase contrast microscope, the number of cells present in 4 different 

haemocytometer counting cells were counted. These 4 counts were summed, and the 

resulting value multiplied by the dilution factor, which was 2 in this case. Finally, this 

value was then multiplied by 10000 to give the total number of cells that are present in 

the 1ml of cell suspension.  

 

2.3.2.4. Plating of VM Cultures onto Poly-D-Lysine coated Glass Coverslips 

 In all VM cell culture experiments, cells were plated onto 13mm poly-D-lysine coated 

glass coverslips by transferring 500µl of cell suspension, prepared at an appropriate 

concentration, into each well of a 24 well tissue culture plate. To achieve this, the 1ml 

of cell suspension was diluted so that each 500µl of cell suspension contained the same 

number of cells as was desired to be present in each well. As cells were plated at a 

density of 300000 cells/coverslip in all of the VM culture experiments, the 1ml 

suspensions of cells were, thus, diluted as to give a final concentration of 300000 

cells/500µl of cell suspension. The diluted cell suspension was thoroughly mixed to 

ensure that the cells were evenly distributed throughout the solution. Finally, the cells 

were then plated onto 13mm poly-D-lysine coated coverslips placed inside the wells of 

a 24 well NunC tissue culture plate. To do this, 500µl aliquots of the appropriately 

diluted cell suspensions were slowly applied to the coverslips as repeated drops, which 

were positioned as to ensure that the cells were distributed evenly over the entire surface 

of the coverslip.  The plated VM embryonic neurone cultures were then left to grow in a 

cell culture incubator under standard conditions, 37°C, 95% humidity, and 5%CO2, until 

the cultures were used, with old media being replaced with fresh media every ~3 days. 
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At 6 days in vitro (DIV6), cultures were fixed by incubation in ice cold 4% PFA 

for 10min. The cultures were then washed in TBS to remove all traces of the PFA 

solution, and then kept in TBS in the fridge until they were used in 

immunohistochemistry experiments.       

 

2.3.3. Localisation of FGF20 and FGFR1, 3, and 4 in the Rat SN and Striatum 

using ABC-HRP/DAB Immunohistochemistry 

In initial immunohistochemistry experiments, striatal and nigral coronal rat brain 

sections were stained with the horseradish peroxidase (HRP)/diaminobenzidine (DAB) 

avidin-biotin complex (ABC) indirect staining method to determine whether each of the 

antigens (FGF20, and FGFR1, 3, and 4) were present in the SN and striatum, and also to 

characterise the general staining pattern for each of the antigens in these regions. 

 

2.3.3.1. Application of Primary and Secondary Antibodies 

Previously prepared rat brain sections (as detailed in section 2.3.1) were incubated in 

blocking buffer (1% BSA and 10% NaAz dissolved in 0.5M TBS, pH7.6) for 10min to 

block non-specific binding sites. The blocking solution was removed, and to localise 

FGF20, sections were incubated with a rat monoclonal anti-FGF20 primary antibody 

(R&D systems, MAB2547, 1/50) at RT overnight. To localise FGFR1, 3, and 4, 

sections were incubated overnight at RT with rabbit anti-FGFR1 (sigma, F5421, 1/50), 

anti-FGFR3 (Santa Cruz Biotechnology, sc-9006, 1/50), or anti-FGFR4 (Santa Cruz 

Biotechnology, sc-123, 1/50) primary antibodies, respectively. In all cases, sections 

were then washed in TBS (0.5M TBS, pH7.6) for 10min to remove any unbound 

primary antibody, and antigen localisation visualised with the HRP/DAB/ABC method. 

For FGF20 staining, sections were, thus, subsequently incubated with a goat anti-rat 

biotinylated secondary antibody (Vectorlabs, BA-9400, 1/200) for 2h at RT. For 

FGFR1, 3, and 4, sections were incubated with a donkey anti-rabbit biotinylated 

secondary antibody (Vectorlabs, BA-1000, 1/200) for 2h at RT.   

 

2.3.3.2. Visualisation of Staining using the HRP/DAB ABC Method  

An avidin-biotin-HRP complex was freshly prepared using a Vectorlabs ABC kit 

(Vectorlabs Ltd., UK). This was done by mixing/diluting solution A (Avidin-OH) with 
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solution B (biotinylated HRP) in an appropriate ratio in TBS (10µl of solution A and B 

was added to every 1ml of 0.5M TBS, pH7.6). Sections were washed for 10min in TBS 

to remove any excess unbound secondary antibody, and then incubated for 1h in the 

freshly prepared avidin-biotin-HRP complex to allow the complex to conjugate to the 

biotinylated secondary antibody bound in the sections. Sections were washed in TBS to 

remove any excess unbound avidin-biotin-HRP complexes. Finally, antigen localisation 

was visualised by incubating the sections in a 0.05% DAB/0.03%H2O2 solution 

dissolved in TBS (0.1M TBS, pH7.6) for 10min. This results in a brown coloured stain 

developing in the close vicinity of the antibody-localised antigen, as the HRP enzyme 

converts DAB into a brown coloured water insoluble precipitate in the presence of 

hydrogen peroxide. Following this, sections were removed from the DAB solution and 

thoroughly washed in dH2O to remove any remaining DAB solution from the slides. 

Sections were subsequently counterstained with haematoxylin to visualise cell nuclei. 

The sections were immersed in a Mayer’s haematoxylin solution (0.1% haematoxylin, 

5% alum, 0.02% sodium iodate, 2% acetic acid, dissolved in dH2O) for ~ 90sec, and 

thereafter, the sections were thoroughly washed with dH2O, and staining differentiated 

by immersing in a differentiation solution (0.5% HCl dissolved in 70% IMS) for 

~60sec. Thereafter, sections were firstly dehydrated by immersing them in 100% IMS 

for 4x 2min time-periods, and then subsequently cleared by immersing them in 100% 

xylene for 2x 5min time-periods, with solution changes separating each immersion 

period. Glass coverslips were then finally mounted on top of the 

immunohistochemically stained sections using the hydrophobic mountant, dibutyl 

phthalate in xylene (DPX). Images of the HRP/DAB stained sections were acquired 

using a standard Zeiss bright field microscope fitted with an Axiocam colour camera 

and using Axiovision image analysis software. 

 

2.3.4. Immunofluorescence Colocalisation Experiments in Ventral Mesencephalic 

Cultures and Rat Brain Sections 

In all of the immunofluorescence colocalisation experiments carried out, FGF20 and 

FGFR1, 3, and 4 localisation were visualised using a 3 step indirect 

immunofluorescence method employing a biotinylated secondary antibody conjugated 

to a 594 fluorophore-streptavidin complex. Previously prepared rat brain sections (as 

detailed in section 2.3.1) or ventral VM cultures (as detailed in section 2.3.2) were 

incubated with blocking buffer for 10min at RT to block non-specific binding sites. The 
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blocking buffer was removed, and to localise FGF20, the rat brain sections or VM 

cultures were then incubated with a rat monoclonal anti-FGF20 primary antibody (R&D 

systems, MAB2547, 1/50) at RT overnight. To localise FGFR1, 3, and 4, rat brain 

sections or VM cultures were incubated overnight at RT with rabbit anti-FGFR1 (sigma, 

F5421, 1/50), anti-FGFR3 (Santa Cruz Biotechnology, sc-9006, 1/50), or anti-FGFR4 

(Santa Cruz Biotechnology, sc-123, 1/50) primary antibodies, respectively. The sections 

or VM cultures were then washed with TBS, and for experiments with FGF20, 

incubated for 1hr at RT with a goat anti-rat biotinylated secondary antibody 

(Vectorlabs, BA-9400, 1/200). For experiments with FGFR1, 3, and 4, sections or VM 

cultures were incubated with a donkey anti-rabbit biotinylated secondary antibody 

(Vectorlabs, BA-1000, 1/200). Thereafter, in all cases, sections or VM cultures were 

washed with TBS and incubated for 1hr at RT with a fluorescent AlexaFluor-594 

streptavidin complex (Invitrogen, S11227, 1/1000).  

For FGF20 colocalisation experiments with TH, glial fibrillary acidic protein 

(GFAP), or ionised calcium binding adapter molecule 1 (Iba1), sections or VM cultures 

were washed with TBS and subsequently incubated with a rabbit polyclonal anti-TH 

(AB152, Millipore, 1/1000), anti-GFAP (Dako, Z0334, 1/500), or anti-Iba1 (Wako, 

019-19741, 1/500) primary antibody for 1h at RT, respectively. Thereafter, sections or 

VM cultures were washed with TBS, and in all of the above cases, they were incubated 

for 1h at RT with a donkey anti-rabbit-488 fluorescent secondary antibody (Invitrogen, 

A21206, 1/1000) solution containing Hoechst 33258 (Sigma, B2883, 1µg/ml).      

For all of the FGFR colocalisation experiments with TH, GFAP, and human 

neuronal protein (HuCD), sections or VM cultures were washed with TBS and 

subsequently incubated with a mouse monoclonal anti-TH (Chemicon, MAB318, 

1/1000), anti-GFAP (Sigma, G3893, 1/1000), or anti-HuCD (Molecular Probes, A-

21271, 1/1000) primary antibody at RT for 1h, respectively. Thereafter, sections or VM 

cultures were washed with TBS, and in all cases, they were incubated for 1h at RT with 

an AlexaFluor-488 goat anti-mouse fluorescent antibody (Invitrogen, A11029, 1/1000) 

solution containing Hoechst. The immunofluorochemically stained rat brain sections 

and VM cultures were then washed in TBS, and immediately mounted with glass 

coverslips or onto glass microscope slides, respectively, using the hydrophilic anti-fade 

mountant, mowiol 4-88.  Fluorescence images were acquired in all cases using a Zeiss 

Apotome fluorescent microscope and Axiovision image analysis software. For all 

colocalisation experiments, 2D images were acquired from a single z plane. Three 
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images were acquired from each area of interest, with the first, second, and third image 

being taken using narrow bandpass filters for Hoechst, AlexaFluor-488, and 

AlexaFluor-594 fluorescent dyes, respectively. The Axiovision software automatically 

assigned images taken with filter set 1, 2, and 3 a green, blue and red colour, 

respectively. Once acquired, the three images were then saved as three separate JPEG 

files. Using Adobe Photoshop, the image clarity of each of the three images taken from 

a specific area of interest was then optimised separately by making global adjustments 

in the contrast, brightness, and levels of the images. Thereafter, Photoshop was used to 

produce a merged image from the 3 optimised images, and also to annotate the images.       

‘No primary antibody’ control experiments were carried out with all of the 

abovementioned secondary antibody combinations that were used in both the 

immunohistochemistry and immunofluorescence experiments to confirm that the 

secondary antibodies themselves did not give rise to any non-specific staining when 

applied in the absence of any primary antibodies. Exactly the same staining protocol 

was followed in these control experiments to that used in the actual experiments, with 

the only difference being that the sections were not incubated with any of the respective 

primary antibody combinations, and control staining experiments were carried out with 

all of the respective brain/cell sample preparations in which the the antibody 

combinations were used, including nigral and striatal sections, and/or ventral 

mesencephalic cell culutres. Results from the control experiments demonstrated none of 

the secondary antibody combinations to produce any non-specific staining when applied 

in the absence of primary antibody.     

 

2.3.5. Drugs and Chemicals 

The Pentobarbital (Euthatal) was obtained from Merial Animal Health Ltd (Essex, UK). 

The diaminobenzidine (DAB), bovine serum albumin (BSA), Poly-D-lysine, trypan 

blue, sodium azide (NaAz), and the Mayers Haemotyoxylin were all purchased from 

Sigma-Aldrich (Dorset, UK). The foetal bovine serum (FBS), DMEM Glutamax media, 

and penicillin/streptomycin were all obtained from Invitrogen. 
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2.4. Results 

In the nigrostriatal tract of rats, the localisation profiles for each of the antigens (FGF20 

and FGFR1, 3, and 4) were determined in all of the main distinct anatomical areas 

comprising this pathway including, the striatum, the SNc, and the SNr. Striatal or nigral 

coronal rat brain sections were initially stained immunohistochemically using the 

HRP/DAB/ABC method to determine whether each of the antigens were, indeed, 

present in each area. These results also provided an indication of the general staining 

pattern present, i.e. whether there was a diffuse and/or cell specific (neuronal or glial) 

staining pattern. However, because the colocalisation profiles of each of the antigens 

were characterised in detail in later immunofluorescence experiments, in each of the 

abovementioned brain areas, examples of DAB stained images for only selected 

antigen/area combinations are shown here. Immunofluorescence colocalisation studies 

were then subsequently carried out to determine the specific cell types that the antigens 

co-localised with in each area. It was determined whether each antigen was present in 

the cell bodies of neuronal cells and also in specific types of glial cells, including 

astrocytes, microglia, and oligodendrocytes. In most cases, determinations were made 

based on results from colocalisation studies using markers of each cell type. Human 

neuronal protein (HuCD), glial fibrillary acidic protein (GFAP), and ionised calcium 

binding adapter molecule 1 (Iba1) were used as markers of neurones, astrocytes, and 

microglia respectively. In situations where appropriate antibody combinations were not 

available to carry out colocalisation studies, determinations were based on the 

distinctive morphology of positive cells. Colocalisation with oligodendrocytes was 

exclusively determined by the morphology of stained cells as a specific marker for these 

glial cells was not available – Refer to (Cammer et al., 1991; Wu et al., 2001; Bernstein 

et al., 2004) for examples of the morphology of immunostained oligodendrocytes in the 

adult rat brain. Importantly, in the SNc and striatum it was also determined, through 

colocalisation experiments, whether each antigen co-localises with dopamine cell bodies 

and nerve terminals, respectively. Tyrosine hydroxylase (TH), the rate limiting enzyme 

in the dopamine synthesis pathway was used as a marker of dopamine neurones in these 

experiments. All of the localisation profiles that are reported for each antigen were 

found to be representative of the caudal, medial, and rostral levels of both the striatum 

and SNc. In VM cultures, immunofluorescence studies were carried out to determine 

whether each antigen is present in dopaminergic neurones, non-dopaminergic neurones, 

and astrocytes. 
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2.4.1. HRP/DAB Immunostaining Results 

2.4.1.1. FGF20, and FGFR1, 3, and 4 are all Present in the Rat Striatum  

FGF20, and FGFR1, 3, and 4 were all found to be present within the rat striatum (Fig 

2.2). Only cells with a glial morphology stained positive for FGF20 (Fig 2.2.A). In 

contrast, both  neuronal and glial cells stained positive for FGFR1, 3, and 4 (Fig 2.2.B, 

2.2.C, and 2.2D). Additionally, for FGFR1 and FGF20, a diffuse punctuate staining 

pattern was also present throughout the striatum (Fig 2.2.A, and 2.2.B). For all of the 

antigens, positive cells/staining were distributed equally throughout the striatum.  
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2.4.1.2. FGF20, and FGFR1, 3, and 4 are all Present in the Rat SN  

FGFR1, 3, and 4 were all found to be present in both neuronal and glial cells in the SNc 

(Fig 2.3), and the SNr. DAB stained images from the SNr are not shown here as for 

most of the antigens evaluated, an equivalent staining pattern was observed in both the 

SNr and the SNc. FGF20, on the other hand, was present exclusively in the SNr, with 

no staining at all being observed in the SNc (DAB stained images of FGF20 staining in 

the SN is not shown as FGF20’s staining pattern in the SN is most clearly illustrated by 

later immunofluorescence results shown in Fig 2.5.A). Both neuronal and glial cells in 

the SNr were positive for FGF20, and a diffuse punctuate staining for FGF20 was also 

present throughout the SNr (this is also clearly illustrated in Fig 2.5.A).    
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2.4.2. Immunofluorescence Results 

2.4.2.1. Colocalisation Profile of FGF20 in the Rat Striatum and SN 

In the striatum, FGF20 was present in astrocytes (Fig 2.4.B), but not in neuronal cells 

(based on the morphology of stained cells), oligodendrocytes (based on the morphology 

of stained cells), or microglia (Fig 2.4.C). Most of the astrocytes within the striatum 

appeared to be positive for FGF20, and some were more strongly positive than others. 

FGF20 staining was localised to only the processes of astrocytes, with no nuclear 

staining being observed in any of the positively stained astrocytes. A diffuse punctuate 

FGF20 staining pattern was present in the striatum, but it did not colocalise with striatal 

TH+ dopamine neurone terminals (Fig 2.4.A).  

As mentioned earlier, FGF20 staining was completely absent in the SNc, and 

FGF20 was found not to co-localise with any of the dopamine neurone cell bodies in the 

SNc (Fig 2.5.A). A strong diffuse punctuate FGF20+ staining pattern was, however, 

present throughout the SNr, and all of the TH+ dopamine neurone dendrites extending 

into the SNr were surrounded by this diffuse positivity (Fig 2.5.A). Additionally, in the 

SNr, FGF20 was also present in astrocytes (Fig 2.5.B) and in a small number of 

neuronal cells (Fig 2.5.B, morphological determination), but not in microglia (results 

not shown) or oligodendrocytes (morphological determination). As in the striatum, most 

of the astrocytes within the SNr appeared to be positive for FGF20, and staining for 

FGF20 was found to be restricted to the processes of the astrocytes, with no nuclear 

staining being observed in any of these cells. In the few positive neurones, FGF20 was 

found to have a purely cytoplasmic localisation, with no nuclear staining being observed 

in any neurones.  
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2.4.2.2. Colocalisation Profile of FGFR1 in the Rat Striatum and SN 

Within the striatum, FGFR1 was present in neuronal cells (Fig 2.6.B), astrocytes (Fig 

2.6.C), and oligodendrocytes (Fig 2.6.B&C, morphological determination), but not in 

microglia (morphological determination). A cytoplasmic staining pattern was observed 

for FGFR1 in both the positive neurones and glial cells, and no nuclear staining was 

observed in any positive cells. A diffuse punctuate FGFR1 staining pattern was present 

in the striatum, and it was found to colocalise with TH+ dopamine neurone terminals, 

but based on a purely subjective estimate, only ~40% of TH+ striatal terminals co-

localised with FGFR1 (Fig 2.6.A).  
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In the SNc, FGFR1 was present in all TH+ dopamine neurone cell bodies (Fig 2.7.A), 

but not in astrocytes (Fig 2.7.B) or microglia (morphological determination). Numerous 

oligodendrocytes in the SNc were strongly FGFR1+ (Fig 2.7.A&B, morphological 

determination), including some that appeared to be interacting with TH+ neurone cell 

bodies. Additionally, a small number of TH negative neurones in the SNc also appeared 

to stain positive for FGFR1 (morphological determination). A punctuate staining pattern 

was present in the nuclei and cytoplasm of all of the TH+ and TH- neurones in the SNc 

that stained positive for FGFR1. In the positive oligodendrocytes, FGFR1 staining was 

localised to only the cytoplasm, with no nuclear staining being observed in these cells.  

In the SNr, FGFR1 was present in neurones (Fig 2.8.A), astrocytes (Fig 2.8.B), 

and oligodendrocytes (Fig 2.8.A&B, morphological determination), but not in microglia 

(morphological determination). In contrast to the SNc, a purely cytoplasmic staining 

pattern was observed for FGFR1 in positive neurones in the SNr, with no nuclear 

staining being observed in these positive neurones. In the SNr, a purely cytoplasmic 

staining pattern was observed for FGFR1 in both the positive neurones and 

oligodendrocytes, with no nuclear staining being observed in any positive cells. 

Furthermore, FGFR1 staining was restricted to the processes of positive astrocytes, with 

no nuclear staining also being observed in any of these cells. 
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3.4.2.3. Colocalisation Profile of FGFR3 in the Rat Striatum and SN 

Within the striatum, FGFR3 was present in neurones (Fig 2.9.A), and in numerous 

oligodendrocytes (Fig 2.9.A&B, morphological determination), but not in astrocytes 

(Fig 2.9.B) or microglia (morphological determination). Interestingly, FGFR3 was 

found to only localise to the nuclei of neurones, with no staining being observed in the 

cytoplasm of any of the positive neurones. FGFR3 localised to only the cytoplasm of 

oligodendrocytes, with no nuclear staining being observed in any of these glial cells. 
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In the SNc, FGFR3 was present in the nuclei of all TH+ dopamine neurones (Fig 

2.10.A), and also in numerous oligodendrocytes (Fig 2.10.A&B, morphological 

determination), but not in astrocytes (Fig 2.10.B) or microglia (morphological 

determination). As with other FGFR3 positive neurones, FGFR3 staining was found to 

only localise to the nuclei of TH+ neurones. In oligodendrocytes, FGFR3 staining was 

restricted to the cytoplasm and processes of these cells.  

In the SNr, FGFR3 was present in oligodendrocytes (Fig 2.11.A&B), and in the 

nuclei of neurones (Fig 2.11.A), but not in astrocytes (Fig 2.11.B) or microglia 

(morphological determination). Again, FGFR3 was found to only be localised to the 

nuclei of positive neurones, while FGFR3 staining was restricted to the cytoplasm and 

processes of all of the positively stained oligodendrocytes.  
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3.4.2.4. Colocalisation Profile of FGFR4 in the MHB, Striatum and SN 

A previous study has shown that, within the rat brain, FGFR4 mRNA is exclusively 

localised to cholinergic neurones in the medial habenula (MHB) (Miyake & Itoh, 1996). 

Results obtained in this study conflicts with these findings, as FGFR4 was found also to 

be present within the nigrostriatal tract (Fig 2.12.A and 13). Localisation of FGFR4 in 

the MHB was, therefore, characterised to provide evidence that the antibody used in this 

study is able to correctly detect FGFR4. In the MHB, cells with a neuronal morphology 

were strongly FGFR4+ (Fig 2.12.B). FGFR4 was found to localise to the cytoplasm of 

all the positive MHB neurones, and no nuclear staining was observed in any of the cells. 

In the striatum, FGFR4 was present in neuronal cells (Fig 2.12.A) and oligodendrocytes 

(Fig 2.12.A, morphological determination), but not in astrocytes (results not shown) or 

microglia (morphological determination). In the striatum, FGFR4 localised to the 

cytoplasm and processes of positive neurones and oligodendroctyes, and no nuclear 

staining was observed in any of the positive cells.  

In the SNc, FGFR4 was present in all TH+ dopamine neurones (Fig 2.13.A), and 

also in numerous oligodendrocytes (Fig 2.13.A, morphological determination). 

Furthermore, staining for FGFR4 was stronger in some TH+ neurones compared to 

others in the SNc,  and small number of what appeared to be spindle shaped TH- 

neurones were also FGFR4+ (Fig 2.13.A). In the SNr, FGFR4 was present in neuronal 

cells (Fig 2.13B.) and oligodendrocytes (Fig 2.13.B, morphological determination), but 

not in astrocytes (results not shown) or microglia (morphological determination). In the 

SN, FGFR4 localised to the cytoplasm of positive neurones and oligodendrocytes, and 

no nuclear staining was observed in any of the positive cells. 
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3.4.2.5. Colocalisation Profile of FGF20, and FGFR1, 3, and 4 in Ventral 

Mesencephalic Embryonic Cultures 

FGF20 was found not to be present in any cell types in the VM cultures (results not 

shown). FGFR1, on the other hand, was localised not only in most of the TH+ 

dopaminergic neurones (Fig 2.14.A) and HuCD+ neuronal cells (Fig 2.14.B) present in 

the cultures, but also in most of the astrocytes (Fig 2.14.C). In most cases, FGFR1 was 

found to localise to not only the cytoplasm but also to the nucleus of the positive 

neurones and/or glial cells. However, in a small number of astrocytes and neurones 

(TH+ and HuCD+), a purely cytoplasmic FGFR1 localisation pattern was observed, 

with no nuclear staining being seen in these cells. Furthermore, not only FGFR1 but 

also FGFR3 and 4 were also present on what appeared to be neuronal precursor cells, an 

example of which can be seen for FGFR1 in Fig2.14.B and for FGFR3 in Fig 2.15.C. 
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As with FGFR1, FGFR3 was also localised not only in most of the TH+ dopaminergic 

neurones (Fig 2.15.A) and HuCD+ neuronal cells present in the cultures, (Fig 2.15.B), 

but also in most of the astrocytes (Fig 2.15.C). In most cases, FGFR3 was found to 

localise to not only the cytoplasm but also to the nucleus of the positive neurones and/or 

glial cells. However, in a small number of astrocytes and neurones (TH+ and HuCD+), 

a purely cytoplasmic FGFR3 localisation pattern was observed. 

FGFR4 was localised in most of the TH+ dopaminergic neurones (Fig 2.16.A) 

and HuCD+ neuronal cells present in the cultures (Fig 2.16.B ), but, in contrast to 

FGFR1 and 3, it was not localised in any astrocytes (Fig 2.16.C ). Similar to FGFR1 

and 3, FGFR4 was found to localise to not only the cytoplasm but also to the nucleus of 

positive neurones, in most cases. However, in a small number of neurones (TH+ and 

HuCD+), a purely cytoplasmic FGFR4 localisation pattern was observed.  
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2.5. Discussion 

In studies carried out as part of Chapter 4 of this thesis, FGF20’s ability to protect 

dopamine neurones against 6OHDA toxicity in VM cultures and in the 6OHDA rat 

model of PD was evaluated. Prior to carrying out these studies, it was important to 

ensure that FGF20’s receptors, the FGFRs were, indeed, present in both of these model 

systems. Therefore, in the current Chapter, the immunohistochemical localisation 

profiles of FGF20 and FGFR1, 3, and 4 were comprehensively characterised in the 

nigrostriatal tract of the rat brain and in VM embryonic dopamine neurone cultures.  

 

2.5.1. Localisation of FGF20 and FGFR1, 3, and 4 in VM Cultures 

In VM embryonic dopamine neurone cultures, FGF20 was found not to be localised in 

any of the cell types present in the culture. FGF20 has been shown to have a 

neurotrophic effect on VM dopamine neurone cultures when applied exogenously, with 

FGF20 treatment being able to greatly increase the yield of dopamine neurones derived 

from VM cultures (Correia et al., 2007). Results generated in this study indicate that 

there might be a chance that FGF20 actually does not play a physiological role in the 

developing nigrostriatal tract, based on results from this study showing FGF20 not to be 

present in the DIV6 VM cultures. This would be in contrast to FGF2, which is present 

in both the developing (Bean et al., 1992) and the adult nigrostriatal tract (see section 

2.1.5). It has, however, been shown that certain growth factors including the FGF’s are 

only expressed in specific areas of the developing rat brain at specific gestational 

periods (Powell et al., 1991; Kuzis et al., 1995; Monfils et al., 2006). A study in which 

the temporal expression pattern of FGF20 in the developing midbrain is 

comprehensively characterised throughout embryogenesis would, thus, be needed 

before it could be conclusively determined whether or not FGF20 plays a role in the 

development of the nigrostriatal tract during embryogenesis. 

FGFR1, 3, and 4 were all found to be present abundantly in a number of 

different cell types within the VM cultures. This is not surprising, as the FGF system 

has been shown to play an important role in regulating the development of the 

embryonic brain (Dono, 2003; Thisse & Thisse, 2005). FGFR1 and 3 had an equivalent 

colocalisation profile in the VM cultures, as both receptors were found to colocalise to 

most of the astrocytes, dopamine neurones, and non-dopaminergic neurones within the 

VM cultures. FGFR4, on the other hand, was found to localise to both dopaminergic 
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and non-dopaminergic neurones, but unlike FGFR1 and 3, FGFR4 was found not to 

localise to any astrocytes. For FGFR1, FGFR3, and FGFR4 a purely cytoplasmic 

staining pattern was observed in some astrocytes or neurones, while in others a nuclear 

and cytoplasmic staining pattern was observed. This indicates that all three receptors 

might signal through a nuclear signalling pathway in the VM cells (see section 2.5.3 for 

detailed discussion).  

 

2.5.2. Localisation of FGF20 in the Rat Nigrostriatal Tract 

In the rat brain, FGF20 was found to be present in both the SN and the striatum. In the 

SN, FGF20 was however, exclusively localised to the SNr, with no FGF20 staining 

being observed in the SNc. The results showing FGF20 not to be localised in the SNc 

conflicts with previously reported in situ hybridisation results which showed FGF20 to 

be exclusively localised to dopamine neurones in the SNc of the rat brain (Ohmachi et 

al., 2000). It has been demonstrated that specific mRNA transcripts are in some cases 

locally translated into proteins at nerve terminals after being transported from their site 

of production in the cell body to nerve terminals (Giuditta et al., 2008). This 

discrepancy might, thus, be due to FGF20 mRNA being transcribed but not translated at 

the level of the SNc, with FGF20 mRNA only locally being translated into protein in 

the striatal dopaminergic nerve terminals after being transported there. This scenario is, 

however, unlikely to apply to FGF20, as, if this was the case, one would expect FGF20 

protein to be localised to TH+ nerve terminals in the striatum, and although a diffuse 

punctuate FGF20 staining pattern was observed in the striatum in this study, FGF20 was 

found not to co-localise to striatal TH+ nerve terminals. The only feasible explanation 

for this discrepancy might, thus, be that the FGF20 mRNA gets transcribed into mRNA 

but not translated into protein, as has been reported to occur with a number of specific 

mRNA transcripts in certain contexts (Honda et al., 1993; Pascal et al., 2008). 

Importantly, it also needs to be noted that the results from the Ohmachi et al., 2000 

study showing FGF20 to be exclusively localised to nigrostriatal dopaminergic 

neurones are controversial, as in another study, FGF20 was shown to be predominantly 

expressed by non-dopaminergic cells, as a unilateral 6OHDA lesion in rats fails to 

attenuate FGF20 mRNA levels in both the striatum and SN of the lesioned nigrostriatal 

tract (Grothe et al., 2004). Furthermore, results from this study also conflict with results 

from the Ohmachi et al., 2000 study in a second manner, as it was demonstrated here 

that FGF20 localised to the SNr and also to the striatum, whereas the Ohmachi et al., 
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2000 study found FGF20 mRNA to be present in no other region in the rat brain apart 

from the SNc. In this study, a highly sensitive 3 step indirect ABC fluorescence method 

(see section 2.3.4) was used which allowed for the amplification of the FGF20 

fluorescence signal. It is, thus, possible that FGF20 is expressed at a relatively low copy 

number in the SNr and striatum, which resulted in the in situ hybridisation technique in 

the Ohmachi et al., 2000 study having an insufficient sensitivity to detect FGF20 

mRNA in the SNr and striatum, and possibly other areas of the brain as well. Further 

support is provided for this possibility by a recent study that detected FGF20 mRNA not 

only in the rat SN but also in the striatum with the use of the highly sensitive PCR 

method (Grothe et al., 2004).  

Moreover, in this study, FGF20 was found to be localised to numerous 

astrocytes and to a very  small number of neuronal cells within the SNr. Additionally, 

FGF20 appeared to be localised to afferent SNr nerve terminals, as a diffuse punctuate 

FGF20 staining pattern consistent with that observed for axon terminals was observed 

throughout the SNr. Although not verified in this study, it is likely that this diffuse 

staining localises to either glutamatergic or GABAergic nerve terminals which comprise 

the main afferent inputs into the SNr (Blandini et al., 2000). Despite FGF20 not being 

present in the SNc where the cell bodies of the nigrostriatal dopamine neurones are 

localised, it is still feasible that endogenous FGF20 might act on dopamine neurones at 

the nigral level, under physiological conditions; as numerous TH+ dopamine neurone 

dendrites extended throughout the SNr where they were surrounded by FGF20.  

As was observed in the SNr, in the rat striatum a diffuse punctuate FGF20 

staining pattern consistent with that observed for axon terminals was also observed 

throughout the striatum. However, it appears that the diffuse FGF20 striatal staining 

localises with non-dopaminergic striatal afferent terminals, as the diffuse FGF20 

staining did not co-localise to striatal TH+ dopamine nerve terminals. Additionally, 

FGF20 was also abundantly localised in most, if not all, of the astrocytes present in the 

striatum. The prototypical FGF family member, FGF2 also localises to striatal 

astrocytes (Gonzalez et al., 1995), and indirect evidence from in vitro studies have 

indicated that astrocyte-derived striatal FGF2 might play an important neurotrophic role 

in the nigrostriatal tract by stimulating and maintaining dopamine neurone survival. In 

VM embryonic dopamine neurone cultures, astrocytic FGF2 release is stimulated by the 

activation of dopamine receptors located on the astrocytes, and this dopamine 

stimulated astrocyte-derived FGF2 has a neurotrophic effect on dopamine neurones in 
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the culture (Reuss & von Bohlen und Halbach, 2003; Li  et al., 2006). Results showing 

FGF20 to also be abundantly localised to striatal astrocytes, opens the possibility that 

FGF20 might be another FGF family member that acts alongside FGF2 to maintain an 

optimal neurotrophic environment within the rat nigrostriatal tract.  

 

2.5.3. Localisation of FGFR1, 3, and 4 in the Rat Nigrostriatal Tract 

Results from this study demonstrated FGFR1, 3, and 4 all to be present in the rat 

nigrostriatal tract, and there was a partial correlation between the colocalisation profiles 

of the different receptors. The localisation profiles of the three receptors were identical 

in respect to their colocalisation with oligodendrocytes and microglia within the 

nigrostriatal tract. FGFR1, 3, and 4 were all localised to oligodendrocytes within the 

SNc, SNr, and the striatum. This is not surprising, as the FGF system has been shown to 

play an important role in regulating the functioning of both embryonic and adult 

oligodendrocytes (Butt & Berry, 2000). In contrast, all three of the receptors did not 

localise to microglia in any of the areas examined. Furthermore, all three of the 

receptors were found to colocalise with TH+ dopamine neurones in the SNc, and to 

HuCD+ neuronal cells within the SNr, and the striatum. The sub-cellular localisation of 

FGFR3 in dopamine neurones and in neuronal cells, however, differed to that observed 

for FGFR1 and 4. For FGFR1 and 4 a cytoplasmic localisation pattern was observed in 

all TH+ dopamine neurones and HuCD+ neurones, while FGFR3 was exclusively 

localised to the nuclei of neurones in all of the nigrostriatal areas examined. The FGFRs 

are RTKs, and they are, therefore, traditionally considered to exist and function as 

classical plasma membrane receptors that signal through various second messenger 

systems (detailed in section 5.1). The nuclear staining pattern that we observed for 

FGFR3 is, thus, not consistent with the staining pattern that one would expect to 

observe for a RTK, opening the possibility that the FGFR3 nuclear staining might be 

non-specific or artefactual. Recent findings have, however, conclusively demonstrated 

that a number of plasma membrane receptors also signal through an unorthodox nuclear 

signalling pathway that involves the translocation of the receptors from the plasma 

membrane to the nucleus, and the FGFRs are a prototypical example of such receptors 

(Bryant & Stow, 2005). Activation of membrane bound FGFR1 by FGF2, for example, 

leads to the nuclear translocation of some of the FGFR1-FGF2 complexes (Bryant & 

Stow, 2005). This nuclear translocation has been shown to be essential in allowing 

FGF2’s full mitogenic effects to be expressed (Bossard et al., 2003). It is, however, 
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unlikely that the nuclear staining that we observed for FGFR3 is due to the receptor 

signalling through such a nuclear translocation pathway in neurones within the 

nigrostriatal tract. If this was the case, one would expect both nuclear and cytoplasmic 

staining to be observed, and exclusively nuclear FGFR3 staining was observed in 

neurones within the nigrostriatal tract. The nuclear localisation pattern observed for 

FGFR3 can, however, be explained by findings which have shown some growth factor 

receptors to exist as specific isoforms that localise exclusively to the nucleus of cells, 

where they signal through various intracrine mechanisms (Bailly et al., 2000; Soulet et 

al., 2005), and there is in fact evidence for FGFR3 existing as such an isoform. FGFR3 

is most widely known to exist as the two classical b and c FGFR isoforms (Johnson et 

al., 1991). Recent studies have, however, demonstrated another 3 additional C-terminal 

truncated isoforms of FGFR3 to exist, and one of these isoforms appears to be localised 

exclusively to the nucleus (Keegan et al., 1991; Johnston et al., 1995). It is, thus, 

possible that the nuclear FGFR3 staining represents the presence of such an exclusively 

nuclear localised receptor in the neurones within the nigrostriatal tract. Before such an 

explanation could be accepted further experiments are, however, required to ensure that 

the neuronal FGFR3 staining isn’t artefactual or non-specific. More specifically, the 

FGFR3 localisation profile needs to be replicated with FGFR3 primary antibodies 

targeting alternative epitopes of the FGFR3 protein. Additionally, the specificity of the 

staining also needs to be confirmed in control experiments in which it is evaluated 

whether the FGFR3 staining can be blocked with the antigenic peptides used to generate 

the primary antibodies. Such control experiments were not carried out in this study due 

to us not having access to these antigenic peptides. These additional studies are 

particularly necessary due to the results showing FGFR3 to be localised to neuronal 

cells being controversial in itself, as previous studies have reported FGFR3 mRNA to 

be mainly localised to glial cells within the nigrostriatal tract within the rat brain 

(Wanaka et al., 1990; Yazaki et al., 1994; Belluardo et al., 1997). As mentioned above, 

5 isoforms of FGFR3 have, thus, far been detected, and the failure of these studies to 

detect FGFR3 in neuronal cells could simply be due to the primers used in their studies 

not being designed to detect all of the different isoforms of the FGFR3. 
The findings showing FGFR1 to be localised with TH+ neurones in the SNc, 

and with neurones in the SNr and striatum is consistent with previous reports. Using in 

situ hybridisation, FGFR1 mRNA has been demonstrated to be localised to both glial 

and neuronal cells in the SNc, SNr, and also in the striatum (Wanaka et al., 1990; 
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Yazaki et al., 1994; Belluardo et al., 1997). Using immunohistochemistry, the FGFR1 

protein has also previously been shown to co-localise to dopamine neurones in the rat 

and human SNc (Walker et al., 1998).  

As mentioned earlier, in this study, FGFR4 was found to be expressed in TH+ 

neurones in the SNc, and also in HuCD+ neurones in the SNr and striatum. 

Additionally, FGFR4 was also found to be present in a small number of spindle shaped 

non-dopamine neurones in the SNc and in numerous oligodendrocytes in all areas of the 

nigrostriatal tract. These results conflict with previous studies in which FGFR4 mRNA 

was found to be exclusively localised to cholinergic neurones within the MHB of the rat 

brain (Miyake & Itoh, 1996). In order to validate that the antibody used was, indeed, 

appropriately detecting FGFR4, control experiments were carried out to check if the 

antibody used in this study was able to detect FGFR4 in neuronal cells in this area of the 

brain where FGFR4 mRNA has previously been reported to be present. In these 

experiments, neuronal cells within the MHB were found to stain strongly positive for 

FGFR4, thus, providing supporting evidence that the antibody was appropriately 

detecting FGFR4 in the rat brain. The staining detected for FGFR4 appeared to be lower 

in the nigrostriatal tract compared to the MHB. It is, thus, possible that the in situ 

hybridisation technique used in the Miyake et al., 1996 study was sensitive enough to 

detect FGFR4 in the MHB where the receptor is expressed at relatively high levels, but 

not in other areas of the brain where it appears FGFR4 is expressed at lower levels. 

Moreover, like FGFR3, FGFR4 has also been shown to exist as a number of different 

isoforms which result from the alternative splicing of the FGFR4 gene (van Heumen et 

al., 1999; Ezzat et al., 2001; Kwiatkowski et al., 2008). FGFR4 does not exist as the 

classical b and c FGFR isoforms, which exist for FGFR1, 2, and 3. Instead, FGFR4 has 

been shown to exist as 3 additional C-terminal truncated isoforms. It is, thus, also 

possible that the previous in situ hybridisation studies failed to detect FGFR4 in the 

nigrostriatal tract and in other areas of the brain due to the primers in their studies 

binding to an FGFR4 isoform that is expressed only in the MHB and not to isoforms 

expressed in other areas of the rat brain. Additionally, the conclusiveness of published 

in situ hybridisation studies also remain questionable based on the fact that in many 

cases mRNA for a specific protein is found by initial studies to be localised to only 

specific areas, only for later studies then to contradict this by reporting the mRNA to be 

localised to additional areas. This is actually the case with FGFR4, as two initial studies 

found no FGFR4 mRNA to be localised in the brain at all (Partanen et al., 1991; Yazaki 
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et al., 1994), whereas a subsequent study contradicted these results by demonstrating  

FGFR4 to be localised in the MHB of the rat brain (Miyake & Itoh, 1996). 

Of the 3 FGFRs examined in this study, only the FGFR1 was found to be 

localised to astrocytes within the nigrostriatal tract. In the SN, only a very small number 

of astrocytes were found to be present in the SNc, and FGFR1 appeared not to 

colocalise to any of these astrocytes. In the SNr and striatum, on the other hand, 

numerous astrocytes were present throughout these areas of the nigrostriatal tract, and 

FGFR1 co-localised to many if not all of the astrocytes present in the SNr and striatum. 

The results showing FGFR1 to be localised to both neurones and glial cells in the 

nigrostriatal tract are consistent with previous reports which demonstrated FGFR1 to be 

localised to both neuronal and glial cell in the SN and striatum (Wanaka et al., 1990; 

Yazaki et al., 1994; Belluardo et al., 1997; Walker et al., 1998).  

 

2.5.4. Conclusion 

In the current study, the colocalisation profiles of FGF20 and the FGFR1, 3, and 4 

proteins in both VM cultures and in the nigrostriatal tract of the rat brain were 

immunohistochemically characterised. A previous study has comprehensively 

characterised the localisation profile of the FGFR2 protein in the rat nigrostriatal tract 

(Chadashvili & Peterson, 2006). The results presented in this Chapter, however, provide 

the first detailed account describing the localisation of the FGFR1, 3, and 4 proteins in 

VM cultures and in the nigrostriatal tract of the rat brain. FGFR1, 3, and 4 were 

demonstrated to be abundantly present within VM cultures and also throughout the 

nigrostriatal tract of the rat brain. In the Chadashvili & Peterson, 2006 study, FGFR2 

was also shown to be present in the SN and striatum, although it was found to be 

exclusively localised to astrocytes. The widespread presence of all 4 of the FGFRs 

within the nigrostriatal tract, and more particularly, the localisation of FGFR1, 3, and 4 

to nigrostriatal dopamine neurones, provide a sound anatomical rationale for 

investigating the neuroprotective potential that pharmacological activation of the FGF 

system might have in PD. Furthermore, if the FGFs are protecting dopamine neurones 

by directly activating FGFRs on nigrostriatal dopamine neurones, results from this 

study indicates that targeting the FGF system at the level of the substantia nigra, rather 

than the striatum, is likely to have the greatest neuroprotective potential. This is as, at 

the nigral level, FGFR1, 3, and 4 were found to be present in TH+ nigrostriatal 
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dopamine neurones within the SNc. In the striatum, on the other hand, only FGFR1 co-

localises with striatal dopamine neurone terminals, and of all the TH+ striatal nerve 

terminals, only ~40% appear to be positive for FGFR1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

87  
 

Chapter 3: Establishing a Unilateral Partially Lesioned 

6OHDA Rat Model of Parkinson’s Disease in which to Test 

FGF20 for its Neuroprotective Effects 

3.1. Introduction 

3.1.1. Animal Models of PD 

Animal models of PD serve as essential tools in research efforts that are aimed at 

uncovering the pathogenic processes that cause PD, and also at finding new more 

effective treatments for the disease. Although numerous animal models of PD are 

currently available, only a selected number of these are widely used due to many of the 

available models having significant shortcomings that limit their use. In order for an 

animal model to be considered to be a representative and practically useful model, it has 

to fulfil three main criteria. Firstly, the aetiology that causes the induced disease state in 

the animal model must be representative of the ascertained or putative aetiological 

mechanisms that cause the disease in humans, that is, the model must have good 

construct validity. For a PD animal model to have good construct validity, the factors 

that induce the model must, therefore, include one or more of the putative aetiological 

causes of PD, which include oxidative stress, mitochondrial dysfunction, UPS 

dysfunction, exposure to environmental toxins, and neuroinflammation (detailed in 

section 1.2). Secondly, the model also has to have good face validity, meaning that the 

cardinal symptoms and pathological features that manifest in the animal model must 

reflect those observed in the clinic. A PD animal model with good face validity, must, 

therefore, reproduce not only the progressively developing cardinal clinical symptoms 

of PD, which include bradykinesia, akinesia, rigidity, and postural instability, but also 

the key pathological features of PD, namely, progressive nigrostriatal dopaminergic 

degeneration, and formation of SNCA and Ub positive LB inclusions in dopamine 

neurones. Thirdly, the model also has to have good predictive validity, which means 

that there has to be a good correlation between the therapeutic effects achieved by drugs 

in the animal model and in the clinic, and this is particularly important for models 

which are used in drug discovery research. 

 The main PD animal models that are currently available can be divided into five 

sub-groups based on the way in which they are induced: pharmacologically, proteasome 

inhibitor, pesticide, genetically, and neurotoxin induced models. In the following 
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sections, a brief overview of each of these sub-groups of models is given. The main aim 

of the current chapter is to establish an appropriate partially lesioned 6OHDA rat model 

of PD in which to test FGF20 for its neuroprotective effects in vivo. The overview given 

below, thus, also serves to rationalise why the 6OHDA rat model was chosen in 

preference to the other models by detailing the specific shortcomings that make the 

other models unamenable to neuroprotective studies. Additionally, all of the favourable 

attributes of the partially lesioned 6OHDA rat model of PD that make it particularly 

amenable to early stage neuroprotection studies are also highlighted.   

 

3.1.1.1. Pharmacologically-Induced Models  

 Two of the most commonly used pharmacologically induced models PD include the 

reserpine and the haloperidol rodent models. Reserpine is a vesicular monoamine 

transporter inhibitor, and when systemically administered to rats, it acts to deplete 

vesicular stores of several catecholamine neurotransmitters in the brain, including 

dopamine, serotonin, and noradrenaline. Around 12h after administration, rats display 

the classical features of reserpine treatment, which include akinesia, ptosis, and 

piloerection (Betarbet et al., 2002; Jenner, 2008; Duty & Jenner, 2011). The latter two 

signs result from the depletion of noradrenaline and serotonin, and reversal of these 

signs by drugs is most commonly used to screen for agents with antidepressant activity. 

Akinesia, on the other hand, results from the depletion of striatal dopamine stores. The 

reserpine rat model of PD, thus, reproduces not only the striatal dopamine deficiency 

observed in PD, but also the akinesia that results from striatal dopamine depletion.  

 Haloperidol, on the other hand, is a dopamine receptor antagonist, and, when 

systemically administered to rodents, it acts to inhibit striatal dopaminergic 

neurotransmission by inhibiting the activation of striatal dopamine receptors, and 

through this action it induces catalepsy and rigidity in the rodents (Duty & Jenner, 

2011). The haloperidol model, thus, reproduces both the reduction in dopamine receptor 

activation observed in PD, and also one of the cardinal motor symptoms of PD, rigidity. 

In drug discovery research, the reserpine and the haloperidol rodent models of PD are 

widely used to identify potential new symptomatic treatments for PD by screening 

drugs for their ability to reverse reserpine-induced akinesia, and haloperidol-induced 

rigidity, respectively. 

 A major shortcoming associated with the pharmacologically induced models of 

PD includes the apparent lack of construct validity. Additionally, these models also 
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have poor face validity, as the disruption of striatal dopaminergic transmission induced 

by the drugs is only temporary, and no degeneration or pathological changes are 

brought about by the drugs in the nigrostriatal tract. The latter shortcoming makes these 

models unsuitable for use in studies aimed at finding neuroprotective agents that can 

protect dopamine neurones from neurodegeneration, and also for most studies 

investigating PD pathogenesis. These pharmacological models are, nevertheless, widely 

used in early stage drug discovery research aimed at finding new symptomatic 

treatments for PD, as these models possess excellent predictive validities, and also 

because the models are time and cost efficient. The reserpine rat model, for example, 

was the first animal model in which L-DOPA’s therapeutic efficacy was demonstrated, 

and all of the current drugs that are currently used to treat PD clinically are effective at 

reversing akinesia in the reserpine rat (Duty et al., 2011).      

 

3.1.1.2. Proteasome Inhibitor Model  

A number of different selective proteasome inhibitors, including epoxomicin and 

lactacystin, have been demonstrated to induce PD-like phenotypes when administered to 

rats (McNaught et al., 2002; Fornai et al., 2003; Emborg, 2004; Niu et al., 2009). Either 

chronic systemic administration or single intra-cerebral (both intra-nigral and intra-

striatal) injections of proteasome inhibitors have been shown to induce progressive 

nigrostriatal dopaminergic degeneration accompanied by progressively developing 

apomorphine responsive motor deficits. Additionally, SNCA and Ub positive LB-like 

inclusions are also observed in the dopamine neurones of the proteasome inhibitor 

treated rats. The proteasome inhibitor model, therefore, initially appeared to be an ideal 

model system as it possessed good face, construct and also good but incompletely 

validated predictive validity. However, disappointingly this model failed to become 

widely utilised due to the model having poor reproducibility (Duty & Jenner, 2011).   

 

3.1.1.3. Genetically Induced Models  

As discussed earlier in section 1.2, a number of single gene mutations have been shown 

to be the cause of familial forms of PD. Mutations in the SNCA and LRKK-2 genes are 

responsible for causing autosomal dominant forms of familial PD, while mutations in 

either the parkin, PINK-1, or DJ-1 gene leads to autosomal recessive forms of PD. It 

was hoped that representative transgenic mouse models of PD could be created by 
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producing transgenic strains of mice with analogous mutations in the genes associated 

with the familial forms of PD, but disappointingly little success has been achieved thus 

far. Transgenic mouse strains that express either mutant PD associated forms SNCA or 

LRRK-2 have been created and characterised, and so have knockout mice in which the 

parkin, PINK-1, or DJ-1 gene have been deleted (Harvey et al., 2008; Dawson et al., 

2010; Taylor et al., 2010). Unfortunately, none of these genetic manipulations gave rise 

to dopamine neurone degeneration, and none of the transgenic mice strains 

demonstrated robust motor deficits, making these models unsuitable for use in drug 

discovery research. One of the transgenic mouse models overexpressing the A53T 

SNCA mutant gene that causes familial PD has, however, been shown to reproduce the 

LB pathology observed in PD, as dopamine neurones in the mice were found to contain 

Ub and SNCA positive proteinacious inclusions (Dawson et al., 2010). This model 

might, thus, be useful for studying the processes that lead to inclusion formation. It 

might also be useful in a limited number of drug discovery studies that are aimed at 

identifying drugs that can inhibit inclusion formation.   

Despite these initial disappointments, research in this area is ongoing, and 

attempts are currently underway to create better transgenic animal models of PD by 

genetically inducing some of the putative aetiological causes of PD in mice. A defect in 

mitochondrial respiration is thought to be one of the putative causes of sporadic PD, 

and, encouragingly, the selective induction of a mitochondrial defect in dopamine 

neurones produces a highly representative parkinsonian phenotype in the resulting mice 

strain, which is referred to as the mitoPARK mouse (Ekstrand et al., 2007; Terzioglu & 

Galter, 2008; Ekstrand & Galter, 2009). The transcription factor, TFAM plays an 

important role in regulating the transcription of mitochondrial DNA; and selective 

deletion of TFAM using a conditional knockdown strategy in the MitoPARK mice leads 

to progressive nigrostriatal dopaminergic degeneration and the formation of inclusions 

in the remaining dopamine neurones. Importantly, the nigrostriatal pathology was 

demonstrated to be accompanied by progressively developing motor deficits, which 

responded to L-DOPA treatment. This model, therefore, has the potential to be an 

excellent research tool at it appears, from these initial reports, that the model has one of 

the best construct and face validity profiles of any of the currently available models. 

The model reproduces not only the main symptoms and pathological features of PD, but 

also the progressive development of these features, a character lacking in many of the 

models that are currently widely used. The robustness and predictive validity of the 
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model, however, still needs to be validated as these findings have, thus far, not been 

replicated by any independent groups, and no studies have thus far evaluated the 

predictive validity of the model. 

 

3.1.1.4. Neurotoxin Induced Models of PD 

3.1.1.4.1. Rotenone Model  

Three main neurotoxin-induced models of PD are currently available, the rotenone 

rodent model, the MPTP model, and the 6OHDA rat model, although only the latter two 

models are widely used in PD research. In the rotenone rodent model, a parkinsonian-

like phenotype is induced in rats by administering them with chronic systemic injections 

of rotenone, an organic plant root derived pesticide (Betarbet et al., 2000; Beal, 2001; 

Betarbet et al., 2002; Duty & Jenner, 2011). Rotenone is a selective mitochondrial 

complex 1 inhibitor, and when chronically administered to rats, it causes selective and 

progressive nigrostriatal dopaminergic degeneration accompanied by progressively 

developing apomorphine responsive motor deficits, including postural instability and 

bradykinesia. Additionally, rotenone also induces the formation of SNCA and Ub 

positive LB-like inclusions in dopamine neurones.  Overall, the rotenone model, thus, 

fulfils all the criteria for being a highly representative model of PD, as it has good 

construct, face, and predictive validity, although the later remains to be 

comprehensively validated. However, unfortunately, the rotenone model has failed to 

become widely utilised due to two main shortcomings. There is significant variation in 

the sensitivity of different rats to the nigrostriatal toxicity of rotenone, with only ~50% 

of treated rats developing the described parkinsonian phenotype (Beal, 2001). In 

additional to this, rotenone also produces severe illness in the treated rats, with ~30% of 

rats dying due to peripheral toxicity (Duty & Jenner, 2011). These shortcomings 

unfortunately prevent this model from being successfully used in neuroprotection 

studies, and it limits its use to specific studies investigating PD pathogenic processes.   

 

3.1.1.4.2. MPTP Model 

The selective dopamine neurone toxin, MPTP is used to create PD models in both mice 

and non-human primates (NHPs), and these MPTP models represent some of the most 

widely used animal models of PD (Beal, 2001; Betarbet et al., 2002; Emborg, 2004; 

Jenner, 2008; Duty & Jenner, 2011). After systemic administration, MPTP readily 
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crosses the blood brain barrier (BBB) and enters the CNS due to the high lipophilicity 

of the compound. In the CNS, MPTP gets metabolised into its active toxic metabolite, 

1-methyl-4-phenylpyridium (MPP+) by MAO-B enzymes that are localised throughout 

the brain. MPP+ subsequently gets selectively taken up and concentrated in dopamine 

neurones due to MPP+ being a substrate for the dopamine transporter which is 

selectively expressed in dopamine neurones. Once inside the dopamine neurones, MPP+ 

accumulates in mitochondria, and it ultimately causes dopamine neurone degeneration 

by stimulating free radical production and also by inhibiting mitochondrial complex 1 

activity (Beal, 2001). Due to many animal species including most rat strains being 

insensitive to the toxic effects of MPTP for poorly understood reasons, MPTP’s use is 

limited to sensitive animal species, including certain strains of mice (C57 black, and 

Swiss Webster) and NHPs (Duty & Jenner, 2011). In mice, repeated systemic MPTP 

administration has been reported in some studies to cause both nigrostriatal dopamine 

neurone degeneration and motor deficits (Jenner, 2008). The use of the MPTP mouse 

model is, however, limited by the fact that MPTP induces robust nigrostriatal 

degeneration and motor deficits in mice only when administered at relatively high 

doses, which are associated with significant adverse affects and mortality (Emborg, 

2004). Research carried out in the MPTP primate model of PD, on the other hand, has 

and still is making major contributions to PD research efforts, and it is currently 

considered the gold standard animal model of PD due the model having one of the best 

construct, face, and predictive validity profiles of any of the available models. The 

model is considered to have good construct validity as the mechanisms causing MPTP 

induced dopamine neurone degeneration, mitochondrial complex 1 inhibition and free 

radical production, corresponds with two of the putative aetiological causes of PD. The 

model is considered to have good face validity as repeated systemic administration of 

MPTP to NHPs causes not only selective nigrostriatal dopamine neurone degeneration 

but also all of the cardinal motor symptoms of PD in the primates, including akinesia, 

bradykinesia, rigidity, and postural stability (Beal, 2001; Duty & Jenner, 2011). An 

additional advantage of this model is that an equivalent degree of nigrostriatal 

degeneration (~70%) is induced in most MPTP primate models to that observed in early 

stage PD (Duty & Jenner, 2011). Importantly, the model also has excellent predictive 

validity, as all of the dopamine based drugs that are currently used in the clinic are also 

effective in the MPTP primate (Jenner, 2008). Moreover, the model has also been 

extensively used in research into L-DOPA induced dyskinesias (LID) as long term L-
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DOPA treatment induces motor complications in MPTP treated primates that are 

indistinguishable from those observed in PD patients (Duty & Jenner, 2011). The 

model, nevertheless, does have some shortcomings, the main ones being that MPTP 

does not induce the formation of LB-like inclusions in most studies, and the onset of 

nigrostriatal degeneration achieved in the model is acute rather than progressive (Beal, 

2001; Betarbet et al., 2002). Furthermore, the cost and ethical issues that are associated 

with the use of NHPs in research limits the use of this model mainly to late stage pre-

clinical drug development research.             

 

3.1.1.4.3. 6-Hydroxydopamine Rat Model of PD 

In the 6OHDA rat model of PD, the selective degeneration of the nigrostriatal 

dopaminergic pathway that is observed in PD is reproduced in rats with the use of the 

selective dopamine neurone toxin, 6OHDA. Because 6OHDA does not cross the BBB, 

it needs to be delivered directly to either the SNc, the medial forebrain bundle (MFB), 

or the striatum using stereotaxic surgery. After being introduced directly into the 

nigrostriatal tract, 6OHDA is actively accumulated in dopamine neurones as a 

consequence of 6OHDA being a substrate for both the dopamine and noradrenaline 

transporter proteins (Simola et al., 2007). Because 6OHDA is also a substrate for the 

noradrenaline transporter, it induces the degeneration of not only dopamine neurones, 

but also noradrenergic neurones (Simola et al., 2007). However, in most 6OHDA rat 

models of PD, intra-cerebral administration of 6OHDA leads to minimal noradrenergic 

nerve damage due to the 6OHDA infusion site being limited to the vicinity of the 

nigrostriatal dopaminergic tract, in areas of the brain that are relatively sparsely 

innervated by noradrenergic inputs and also not in close proximity to the noradrenergic 

nuclei of the brain. Additionally, in some 6OHDA rat models of PD, rats are pre-treated 

with a noradrenaline reuptake inhibitor such as desipramine prior to 6OHDA lesioning 

to limit any noradrenergic degeneration (Schwarting & Huston, 1996b). Upon entering 

the cytoplasm of dopamine neurones, 6OHDA is rapidly and non-enzymatically 

oxidised in the presence of molecular oxygen, leading to the generation of the highly 

reactive ROS, H2O2 and p-quinone (Schwarting & Huston, 1996b; Soto-Otero et al., 

2000). 6OHDA’s cytotoxic effects on dopamine neurones, however, result not only 

from excessive ROS production, but also from 6OHDA-mediated inhibition of complex 

1 of the mitochondrial respiratory chain (Glinka & Youdim, 1995; Glinka et al., 1996; 

Schwarting & Huston, 1996b; Soto-Otero et al., 2000).  
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Tyrosine hydroxylase (TH) is the rate limiting enzyme in the dopamine 

synthesis pathway, and because of the relatively selective localisation of TH to 

catecholaminergic neurones, it is often used as a marker of dopamine neurones. In the 

6OHDA rat model of PD, the degree of nigrostriatal degeneration induced by 6OHDA 

is, therefore, quantified using TH immunohistochemistry, and in drug discovery studies, 

test treatments are evaluated for their ability to preserve both striatal TH levels and 

nigral TH+ cell counts at significantly higher levels compared to vehicle treated 

6OHDA lesioned rats. Importantly, the nigrostriatal degeneration induced by 6OHDA 

leads to the development of motor deficits in the rats, including akinesia, postural 

instability, and rigidity, and these deficits can be quantified by a number of behavioural 

tests of motor function (Deumens et al., 2002). In most studies using the 6OHDA rat 

model of PD, unilaterally rather than bilaterally lesioned rats are utilised as bilateral 

lesions produce debilitating adverse effects in the rats, including severe aphagia and 

adipsia. Additionally, in some studies the use of a unilateral model removes the need for 

a sham lesioned group, as it allows the non-lesioned contralateral nigrostriatal tract and 

rat paw to serve as appropriate controls for TH-immunohistochemistry and motor 

function results, respectively.  

Motor tests that are commonly employed to quantify motor deficits in 

unilaterally 6ODHA lesioned rats include both tests that measure drug induced motor 

asymmetries, for example, the apomorphine and amphetamine induced rotation tests 

(Schwarting & Huston, 1996a), and tests that measure spontaneous motor function, such 

as the cylinder test and the adjusted stepping test (Schallert & Tillerson, 2000). In the 

two drug-induced rotational tests, the rotational behaviour of unilaterally 6OHDA 

lesioned rats is assessed after injecting the rats with either apomorphine (a D2 receptor 

agonist) or amphetamine (a catecholamine releasing agent). In unilaterally lesioned rats, 

apomorphine stimulates post-synaptic dopamine receptors on the striatal medium spiny 

gabaergic neurones in the striatum ipsilateral to the lesion to a much greater extent 

compared to the contralateral intact striatal hemisphere. This is due to the unilateral 

nigrostriatal lesion inducing a unilateral depletion of striatal dopamine levels, and a 

consequent unilateral supersensitisation of striatal dopamine receptors in the striatal 

hemisphere ipsilateral to the lesion. For this reason, apomorphine induces rotations in 

the rat that is directed ipsilateral to the lesion. Because amphetamine, on the other hand, 

acts to release dopamine from nerve terminals, its administration causes stimulation of 

dopamine receptors in the intact contralateral striatum, and only minor stimulation of 
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dopamine receptors in the ipsilateral denervated striatum. As a result of this, 

amphetamine, thus, causes the unilaterally 6OHDA lesioned rats to rotate contralaterally 

to the lesion.  

After unilateral 6ODHA lesioning, rats develop forelimb motor asymmetry, as 

the unilateral degeneration of the nigrostriatal tract results in motor deficits developing 

in the impaired forelimb contralateral to the lesioned hemisphere, while normal motor 

function is retained in the unimpaired forelimb ipsilateral to the lesioned hemisphere. In 

the cylinder test, this asymmetry in motor deficits is quantified and used as a measure of 

contralateral forelimb akinesia (Schallert & Tillerson, 2000). Briefly, rats are placed 

inside transparent plexiglass cylinders in order to encourage exploratory rearing 

behaviour (see section 3.3.2.1 for detailed methods). By recording forelimb use during 

rearing movements, forelimb use preferences are then quantified; i.e., the percentage of 

total rears that is supported by either both forelimbs, the ipsilateral forelimb alone, or 

the contralateral forelimb alone is quantified. In this test, the unilateral contralateral 

forelimb motor deficits induced by unilateral 6OHDA lesioning results in a significantly 

smaller percentage of total rears being supported by both forelimbs and by the 

contralateral forelimb alone, while a significantly greater percentage of rears is 

supported by the ipsilateral forelimb alone. In the adjusted stepping test, on the other 

hand, the capability of rats to make balance restoring adjusting step movements with 

their ipsilateral or contralateral forelimbs is quantified (see section 3.3.2.2 for detailed 

methods). After unilateral 6OHDA lesioning, a significant reduction in the number of 

adjusted steps made by the contralateral forelimb is recorded, while the adjusted 

stepping ability of the forelimb ipsilateral to the lesioned hemisphere is retained. The 

reductions in adjusted stepping ability that are detected by this test are taken to be a 

quantitative measure of postural instability (Schallert & Tillerson, 2000). Importantly, it 

has been demonstrated that the relative size of the motor deficits that are detected by 

both the cylinder test and the adjusted stepping test are proportional to the degree of 

nigrostriatal degeneration that is present in rats (Lee et al., 1996; Schallert & Tillerson, 

2000).     

Overall, the 6OHDA rat model of PD is considered to be one of the most 

representative and useful animal models of PD as the model possesses one of the best 

and most thoroughly validated construct, face, and predictive validities of any of the 

currently available models. The model has good construct validity as the mechanisms 

mediating 6OHDA’s cytotoxic effects on dopamine neurones overlaps with some of the 
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putative aetiological causes of PD, namely, oxidative stress and mitochondrial complex 

1 inhibition. The model also has excellent face validity as both the nigrostriatal 

dopamine neurone degeneration and the consequent motor deficits that are present in 

PD are reproduced in the model. Importantly, not only the striatal TH and dopamine 

depletion but also the nigral dopamine neurone degeneration that is observed in PD is 

robustly recreated in the 6ODHA rat model (Duty & Jenner, 2011).  In addition to this, 

many of the other biochemical and inflammatory abnormalities that are associated with 

PD are also reproduced in the model (Duty & Jenner, 2011). In the 6OHDA lesioned rat 

brain, striatal levels of the anti-oxidant enzymes GSH peroxidase and superoxide 

dismutase are depleted, while nigral levels of microglial activation, TNFα, and iron are 

raised. Furthermore, many of the PD associated plastic changes that occur in other 

neural systems that make up the basal ganglia are also reproduced in the 6OHDA 

lesioned rat brain. These changes include increased firing of the subthalamic nucleus, 

increased glutamate levels and firing rate in the basal ganglia output nuclei, and also 

increased striatal enkephalin levels, and decreased striatal dynorphin and substance P 

levels. Importantly, the model also has excellent predictive validity, as all of the 

dopamine based drugs that are currently used in the clinic are also effective in the 

6OHDA rat model of PD (Jenner, 2008). 

For these reasons, the 6OHDA rat model of PD is one of the most widely used 

animal models of PD, and the beneficial features possessed by the model has made it 

useful in not only research into the pathogenesis of PD but also for testing a number of 

different types of potential treatments for PD. The robust and easily quantifiable motor 

deficits that are induced by full 6ODHA lesions and the high predictive validity of the 

model has resulted in the model being particularly useful in early stage pre-clinical PD 

research efforts that are aimed at identifying potential new pharmacological 

symptomatic treatments for PD. The model has additionally also been extensively used 

to test neurorestorative cell transplant therapies for PD (detailed in section 1.4.3). 

Moreover, after around three weeks of chronic L-DOPA treatment, unilaterally 6OHDA 

lesioned rats start to display dyskinesias analogous to those observed in the PD patients 

after long term L-DOPA treatment. The dyskinesias observed in the rats – termed 

abnormal involuntary movements (AIMS) - include choreiform twisting of the neck and 

upper body, abnormal movements of the forelimb, abnormal orolingual movements, and 

increased locomotor activity, with all of these abnormal movements occurring 

contralaterally to the lesion (Duty & Jenner, 2011). A further application of the 6OHDA 
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treated rat is, therefore, to study the mechanisms leading to L-DOPA induced 

dyskinesias, and also to identify new treatments that have the potential to alleviate L-

DOPA induced dyskinesias. Furthermore, as discussed earlier, there is currently an 

urgent need for the development of new neuroprotective therapies for PD, and in more 

recent times the 6OHDA rat model of PD has also been extensively used in research 

efforts aimed at identifying treatments for PD that might have neuroprotective potential. 

The robust and easily quantifiable nigrostriatal lesion that is induced by 6OHDA has 

made this model particularly amenable to such neuroprotective studies, as it allows 

treatments that are able to protect nigrostriatal dopamine neurones against 6OHDA-

induced degeneration to be identified.      

 

3.1.1.4.4. The 6OHDA Partially Lesioned Rat Model of PD 

By adjusting the dose of 6OHDA that is delivered to the nigrostriatal tract, it is possible 

to induce either a full or a partial nigrostriatal tract lesion in rats. In PD, there is a 

gradual loss of nigrostriatal dopamine neurones over many years. Motor symptoms in 

most cases only appear once more than ~60% of dopamine neurones in the SNc have 

been lost (Dauer & Przedborski, 2003), and at this point symptomatic treatment with L-

DOPA is usually commenced. In most drug discovery studies, it is, therefore, preferable 

to use a partially lesioned 6ODHA rat model of PD as this would represent a more 

clinically representative model than compared to a fully lesioned model. Moreover, in 

drug discovery studies aimed at identifying potential neuroprotective therapies, it is 

essential to use a partially lesioned model in order to give the test treatment a realistic 

opportunity to mediate any beneficial effects, and also to more fully evaluate its 

therapeutic potential, and this is particularly necessary due to the onset of 6OHDA-

induced nigrostriatal degeneration being relatively acute rather than progressive. The 

relatively high doses of 6ODHA used to induce a full lesion causes nearly all of the 

dopamine neurones in the lesioned nigrostriatal tract to die (Schwarting & Huston, 

1996b). On the other hand, when the nigrostriatal tract is partially lesioned, by using a 

lower dose of 6OHDA, dopamine neurones have three possible fates. One group of 

dopamine neurones will undergo apoptosis or necrosis and die (Jeon et al., 1995). A 

second group of neurones will remain alive but will lose their dopaminergic phenotype 

and become non-functional (Bowenkamp et al., 1996). A third group of dopamine 

neurones will remain healthy and maintain normal functionality (Jeon et al., 1995). In a 

partially lesioned model, a test treatment, therefore, has the opportunity to have a 
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therapeutic effect through 3 possible mechanisms. It can have a neuroprotective effect 

by preventing the neurones exposed to lethal concentrations of toxin from dying (Alexi 

et al., 2000). Secondly, it could have a regenerative effect by restoring the damaged 

neurones to a functional state (Bowenkamp et al., 1995). Thirdly, it can also increase 

the functioning of the remaining healthy neurones, providing symptomatic relief by 

compensating for the loss in functionality caused by the lesion (Gash et al., 1995; Gash 

et al., 1996). Another advantage offered by a partially lesioned model is that the lower 

6OHDA dose used is likely to cause dopamine neurone degeneration at a slower rate 

compared to the higher doses used in a fully lesioned model. In a full lesion model, 

degenerating nigral cell bodies are found as early as 12h after the 6OHDA infusion is 

made (Jeon et al., 1995). Some of the biological effects mediated by certain 

neuroprotective drugs, such as growth factors are known to take hours or even days to 

become apparent, as they are brought about by changes in gene transcription. A slower 

onset of degeneration would, thus, provide a substantial benefit when evaluating 

neuroprotective treatments, as it would lengthen the effective time-period in which the 

treatment could bring about its neuroprotective effects. However, an advantage 

possessed by fully lesioned 6OHDA models is that, in most cases, they induce robust 

motor impairments which can be easily measured by several different motor tests. The 

basal ganglia circuitry, however, has extensive and remarkably effective compensatory 

mechanisms that can maintain basal ganglia output signals at near normal levels when 

only a partial nigrostriatal lesion has been inflicted (Bezard et al., 2003). A 

disadvantage of the partially lesioned 6OHDA rat model of PD, therefore, is that this 

model produces more subtle motor deficits which can only be detected by a number of 

the more sensitive motor tests. 
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3.2. Objectives 

3.2.1. Objective 1. Establish a Unilateral Partially Lesioned 6OHDA Rat Model of 

PD in which to Test FGF20 for its In Vivo Neuroprotective Effects 

Recent findings have shown FGF20 to have neuroprotective effects on dopamine 

neurones in vitro (detailed in section 4.1.5), and one of the main aims of this thesis was 

to evaluate whether FGF20’s neuroprotective effects on dopamine neurones are also 

apparent, in vivo, in the partially lesioned 6OHDA rat model of PD (see Chapter 4). 

The first aim of the current study was to establish an appropriate partially lesioned 

6OHDA rat model of PD in which to evaluate FGF20 for its ability to protect 

nigrostriatal dopamine neurones, in vivo. To accomplish this objective, 6OHDA dose-

response experiments were carried out to identify an intra-nigrally delivered dose of 

6OHDA that induces a ~60-80% partial nigrostriatal lesion. However, in an initial 

6OHDA dose-response experiment, the infusion procedure was found to induce a 

substantial nigrostriatal lesion by itself. For this reason, a follow-up 6OHDA dose-

response experiment was carried out in which a refined lesioning protocol was used. It 

is possible to induce partial unilateral 6ODHA induced nigrostriatal lesions in rats by 

infusing low doses of 6OHDA directly into either the substantia nigra where the 

nigrostriatal dopamine neurone cell bodies are located, or into the striatum where the 

dopamine neurone terminals are located. In the current study, nigrostriatal lesions were 

induced with intra-nigral rather than intra-striatal 6OHDA infusions mainly because of 

practical considerations. In the subsequent neuroprotection study it was planned that 

FGF20 would be administered supra-nigrally rather than into the striatum as 

immunohistochemistry results generated as part of Chapter 2 demonstrated the FGFRs 

to be more abundantly localised in the SN compared to the striatum. Intra-nigral 

6OHDA infusions were, thus, used as this would allow both 6OHDA and FGF20 

infusions to be delivered through a single dual-cannulae brain cannula.    

Furthermore, because partial nigrostriatal lesions induce subtle motor deficits 

that are more difficult to detect than that induced by full lesions, two drug-induced 

motor tests (apomorphine and amphetamine induced rotations) and two spontaneous 

motor tests (adjusted stepping test and cylinder test) were evaluated in this study to 

identify tests that are capable of detecting motor deficits induced by a partial 6OHDA 

lesion.  
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3.2.2. Objective 2 - Identify a Biologically Active Dose of FGF20 to use in a Future 

In Vivo Neuroprotection Study 

To successfully evaluate FGF20’s neuroprotective efficacy in vivo, it is essential that a 

biologically active dose of the growth factor is tested. FGF20 mediates its biological 

effects by activating its membrane bound RTKs, the FGF receptors (FGFRs), of which 

there are 4 subtypes which are referred to as the FGFR1, 2, 3, and 4 (detailed in section 

2.1.2). Several of the FGFRs are localised to nigrostriatal dopamine neurones and also 

to glial cells within the SN of the rat brain (see Chapter 2), and the anti-apoptotic and 

mitogenic effects stimulated by FGFR activation is mediated through the extracellular 

regulated kinase-1/2 (ERK-1/2) MAPK signalling pathway (Gardner & Johnson, 1996; 

Gu et al., 2004; Khalil et al., 2005). A second aim of this Chapter was to identify a 

biologically active intra-nigrally delivered dose of FGF20 that can be employed in the 

in vivo neuroprotection study by using phospho-ERK1/2 as a biomarker of FGF20 

mediated FGFR activation. 
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3.3. Methods 

3.3.1. Unilateral 6OHDA Nigrostriatal Tract Lesioning  

3.3.1.1. Animals 

Male Sprague Dawley rats, weighing between 270-300g, were obtained from Charles 

River (Kent, UK). The rats were maintained on a 12:12h light:dark cycle (lights on at 7 

am). Room temperatures were kept at 22±2°C and room humidity at 55%. Food and 

water was available ad libitum. All animal procedures were undertaken in accordance 

with the UK Animals (Scientific Procedures) Act 1986.  

 

3.3.1.2. Unilateral 6OHDA Lesioning of the Rat Nigrostriatal Tract – PROTOCOL 

1 

A 5µl Hamilton micro-syringe (23G) was fitted to an upright infusion pump attached to 

a stereotaxic frame. The inter-aural line was used as a reference point to calculate the 

coordinates at which the intra-nigral 6OHDA infusions had to be delivered at. The 

injection needle of the Hamilton syringe was, therefore, positioned so that its tip was 

located right in the centre of the tapered point of an ear bar that had been tightened in 

place on the stereotaxic frame. Once the AP and DV co-ordinates of the inter-aural line 

were recorded, rats were anaesthetised with a mixture of ketamine (75mg/kg, i.p.) and 

medetomidine (0.5 mg/kg, i.p.). Rats were pre-treated with the noradrenaline reuptake 

inhibitor, desipramine (25 mg/kg i.p.) and the MAO-B inhibitor, pargyline (5 mg/kg 

i.p.) 30min before being anaesthetised. 6OHDA is able to induce the degeneration of 

both dopamine and noradrenaline neurones, as 6OHDA is taken up by not only the 

dopamine transporter, but also by the noradrenaline transporter. Rats were therefore pre-

treated with desipramine to limit any 6OHDA induced degeneration of noradrenaline 

neurones. The pargyline pre-treatment, on the other hand, was given to potentiate 

6OHDA’s toxic effect on dopamine neurones by inhibiting 6OHDA from being 

metabolised into an inactive metabolite by MAO-B. The anaesthetised rats were 

mounted in the stereotaxic frame after shaving their scalps. Their scalps were 

disinfected with ethanol and povidone-iodine (Betadine), and a midline incision made in 

the scalp after checking for the absence of a hind-limb withdrawal response. The 

cranium was fully exposed using retractors, and the pericranial membrane scraped away 

with a scalpel blade. A burr hole was made in the cranium using a 20G drill bit, and the 



 
 

102  
 

meninges pierced. When any bleeding had ceased, the Hamilton micro-syringe was then 

filled with 5µl of either a vehicle (sterile dH2O containing 0.02% ascorbic acid) or a 

6OHDA solution (1.5µg/µl, 2µg/µl, or 3µg/µl 6OHDA dissolved in vehicle). The 

6OHDA solution was freshly prepared on the day of the lesioning, and it was dissolved 

in a 0.02% ascorbic acid solution, kept on ice, and wrapped in foil, all to minimise the 

inactivation of 6OHDA through auto-oxidation. Immediately after filling the micro-

syringe, the needle of the Hamilton syringe was slowly lowered into the brain until the 

tip of the injection needle was located at the desired intra-nigral coordinates (AP, +3.7; 

ML, +2.0; DV, +2.2, relative to the interaural line, (Paxinos & Watson, 1993)) and 

intra-nigral infusions of either vehicle or 6OHDA (6, 8, or 12µg 6OHDA dissolved in 

4µl of vehicle) were administered to the rats at a flow rate of 2µl/min. The syringe 

needle was left in place for 4min, after which the needle was removed, and the rats scalp 

sutured with self-dissolving polyester sutures. Rats were administered with an 

atipamezole (1mg/kg, s.c.) injection to reverse anaesthesia, and placed in a heated 

environment until recovery. Rats were given a saline injection (1ml, s.c.) to aid 

rehydration, and were maintained on a mashed food diet for 3 days post-surgery, or 

until rats started maintaining a healthy weight.  A total of 44 rats were used in this 

experiment, with an n of 11, 12, 13, and 8 being used in the sham, 6µg, 8µg, and 12µg 

groups, respectively.       

 

3.3.1.3 Unilateral Lesioning of the Rat Nigrostriatal Tract – PROTOCOL 2 

(Refined Protocol) 

A 5µl Hamilton micro-syringe was mounted onto an automated micro-infusion pump, 

and the tip of the syringe connected to a length of vinyl tubing which was, in turn, 

connected to a 33G stainless steel injection needle. The injection needle was fastened 

tightly onto a guide cannula holder which was securely fitted to the stereotaxic frame. 

Intra-nigral 6OHDA or vehicle infusions were then administered to the rats by using 

nearly exactly the same protocol as was in used in section 3.3.1.2, with only 3 

alterations being made. Firstly, in the current experiments intra-nigral infusions were 

administered to the rats using the 33G stainless steel needle described above instead of 

the 23G Hamilton syringe injection needle that was used in section 3.3.1.2. Secondly, a 

0.09% sterile saline solution containing 0.02% ascorbic acid was used as a vehicle in 

this study rather than the dH2O vehicle used in previous study, and lastly, the doses of 

6OHDA infused in this study differed to that used in section 3.3.1.2, as either vehicle 



 
 

103  
 

infusions, or 4µg, 6µg, or 8µg 6OHDA doses were administered to the rats. Thus, once 

the rat was mounted into the stereotaxic frame and a burr hole made in the skull, the 

33G injection needle and the length of tubing to which it was connected, were filled 

with 5µl of either a vehicle solution (0.09% sterile saline containing 0.02% ascorbic 

acid) or a 6OHDA solution (1µg/µl, 1.5µg/µl, or 2µg/µl 6OHDA dissolved in vehicle). 

The remainder of the lesioning procedure was, however, carried out exactly as described 

in section 3.3.1.2. A total of 26 rats were used in these experiments, with 7 rats being 

used in both the sham and 8µg groups, while 6 rats were used in both the 4µg and 6µg 

groups.  

 

3.3.2. Behavioural Measurement of Motor Deficits in the 6OHDA Lesioned Rats 

3.3.2.1. Cylinder Test 

Rats were placed in a transparent cylindrically shaped plexiglass enclosure (diameter = 

20cm, height = 30cm), and the rats rearing behaviour recorded in real-time by 

observation (Fig 3.1). The rearing behaviour of only a single rat was recorded at any 

one time. To allow the rearing behaviour of the rats to be clearly observed regardless of 

whether the rats were facing toward or away from an observer, a mirror was placed in 

an upright position against a wall, and the cylinder positioned in front of the mirror. The 

number of rearing postures supported by either both forelimbs, the ipsilateral (i.e. same 

side as the lesion) forelimb alone, or the contralateral (i.e. opposite side of the lesion) 

forelimb alone was then quantified. The percentage of total rearing postures supported 

by the ipsilateral forelimb alone was calculated, and, hereafter ‘ipsilateral forelimb use 

alone’ is taken to mean the percentage of total rears that were supported by the 

ipsilateral forelimb alone. In this thesis, increases in ipsilateral forelimb use alone were 

used as a measure of the degree of motor impairment that was present in the 

contralateral affected forelimb (see section 3.4.1.3). Cylinder test results for rats were 

only included in analyses if the rat reared 10 or more times in a session. Cylinder test 

measurements were taken 2 days (acclimatisation session) and 1 day (baseline 

measurements) prior to 6OHDA lesioning, and on day 5, 8, and 11 post-lesioning. Mean 

(±sem) ipsilateral forelimb use alone values were generated for each of the treatment 

groups, at each of the measurement time-points, and these results were analysed with 

two-way ANOVAs and Bonferroni post-hoc tests. Within the 6OHDA treatment 

groups, it was assessed whether ipsilateral forelimb use was significantly higher on any 
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of the time-points, post-lesioning when compared to baseline. Importantly, at each of 

the time-points, it was also assessed whether ipsilateral forelimb use was significantly 

different in any of the 6OHDA dose groups compared to the sham lesioned group.   

 

3.3.2.2. Adjusted Stepping Test 

Rats were held with both hands, with one hand supporting the rat’s hindquarters, and 

the other hand supporting the rat’s frontal body while at the same time immobilising 

one of the rat’s forelimbs (Fig. 3.2). The paw of the non-restrained forelimb was then 

placed on the surface of a lab bench, and the rat moved laterally at a steady pace 

(~90cm/45sec) along the edge of the bench, allowing the rat to make adjusting steps to 

regain its balance. The number of adjusted steps made by the rat with its ipsilateral and 

contralateral paws, over a distance of 90cm, was counted. Three repeat measurements 

were made to generate mean adjusted stepping test values for each paw. As with the 

cylinder test, adjusted step measurements were taken 2 days (acclimatisation session) 

and 1 day (baseline measurements) prior to 6OHDA lesioning, and on day 5, 8, and 11 

post-lesioning. Mean (±sem) ipsilateral and contralateral adjusted step values were 

generated for each of the treatment groups, at each of the measurement time-points. The 

magnitude of the decrease in the number of adjusted steps made, post-lesioning, was 
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used as a measure of forelimb motor deficits. In the adjusted stepping test, two 

independent data sets were generated, one that included all the results for the 

contralateral impaired forelimb, and another that included all the results for the 

ipsilateral unimpaired forelimb. The two independent data sets were then separately 

analysed by two independent two-way ANOVA and Bonferroni analyses. For each 

forelimb, it was evaluated whether adjusted step measurements were significantly 

different on any of the time-points, post-lesioning when compared to baseline, within 

each of the treatment groups. Additionally, for each forelimb, it was also determined 

whether at each of the time-points, adjusted step measurements were significantly 

different in any of the 6OHDA dose groups compared to the sham lesioned group.    

   

3.3.2.3. Drug-Induced Rotational Behaviour 

Drug-induced motor behaviour was measured using rotometers and the Roto-Rat data 

acquisition software supplied by Med Associates Inc. (St. Albans, Vermont, USA). 
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Apomorphine and amphetamine-induced rotational behaviour was measured on day 14 

and day 15, post-lesioning, respectively. Rats were injected with either apomorphine 

(1mg/kg, i.p.), or amphetamine (5mg/kg, i.p.), after which they were fitted with a 

harness, and placed inside a rotometer to which their harnesses were attached. 

Rotational behaviour was then recorded, by the Roto-Rat software, for a 70min period, 

post-injection. Over this period, the total number of clockwise and anti-clockwise 

rotations that were made by each of the rats was recorded in 5min time blocks. The 

mean number of net ipsiversive rotations and the mean number of net contraversive 

rotations made by each treatment group in each of the 5min time blocks were then 

calculated for the amphetamine-induced rotation and the apomorphine-induced rotation 

experiments, respectively. For each time block, net ipsiversive rotations were calculated 

by subtracting total contraversive rotations from total ipsiversive rotations, while net 

contraversive rotations were calculated by doing the inverse. These results were then 

analysed to produce two separate time-course profiles, one for the amphetamine induced 

mean net ipsiversive rotation 5min time block results, and another for the apomorphine-

induced mean net contraversive rotation results. From these time-course profile graphs, 

the 25min time period after drug administration during which peak rotational behaviour 

occurred was then identified. For the amphetamine and the apomorphine experiment, 

the mean cumulative net ipsiversive or contraversive rotations made by each of the 

different treatment groups during this 25min time period was then calculated, 

respectively. Finally, these mean peak cumulative rotation results were analysed with 

one way ANOVA and Dunnett’s post hoc test analyses, with the apomorphine and 

amphetamine results being analysed separately. For the amphetamine and the 

apomorphine experiment, it was assessed if the drug injections induced a significantly 

greater number of peak net ipsiversive or contraversive rotations, respectively, in any of 

the 6OHDA treatment groups compared to the sham lesioned group.  

 

3.3.3. Quantification of Nigrostriatal Tract Lesions using TH 

Immunohistochemistry  

3.3.3.1. Paraffin Wax Embedding of Rat Brain Tissue 

On day 16 post-lesioning, rats were intra-cardially perfusion fixed and their brain’s 

embedded in paraffin wax using exactly the same protocol as detailed in section 2.3.1.1. 
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3.3.3.2. Preparation of Nigral and Striatal Tissue Sections from the Paraffin Wax 

Embedded Rat Brains for Immunohistochemical Staining 

Paraffin wax embedded nigral and striatal brain sections were prepared for 

immunohistochemical staining using exactly the same protocol as that used for the 

HRP/DAB stained brain sections in section 2.3.1.2.  

 

3.3.3.3. Immunohistochemical Staining of Paraffin Wax Embedded Brain Sections 

for TH  

3.3.3.3.1. Application of Primary and Secondary Antibodies 

Striatal and nigral sections from the 6OHDA dose-response experiments that had been 

previously prepared were stained for TH. The blocking solution in which the prepared 

sections were still immersed in was removed, and the sections incubated with a rabbit 

polyclonal anti-TH primary antibody (Chemicon, AB152, 1 in 1000 dilution) overnight 

at RT. Sections were then washed in TBS buffer solution for 10min to remove any 

unbound primary antibody. In all cases, TH staining was visualised using the 

HRP/DAB/ABC method. Sections were, thus, subsequently incubated with a polyclonal 

biotinylated goat anti-rabbit secondary antibody (DAKO, E0432, 1 in 300 dilution) for 

2h at RT.  

 

3.3.3.3.2. Visualisation of TH Staining using the HRP/DAB/ABC Method  

TH staining was then visualised with the HRP/DAB/ABC method and glass coverslips 

mounted on top of the stained sections by using exactly the same protocol as described 

in section 2.3.3.2. The only exception is that none of the TH stained sections were 

counterstained with haematoxylin in this study.  

 

3.3.3.3.3. Quantification of Nigrostriatal Tract Lesions using TH 

Immunohistochemistry   

Digital images of the whole TH-immunostained striatal sections were acquired using an 

Epson Perfections V700 colour scanner, and densiometric analysis of the acquired 

images was carried out using ImageJ image analysis software. The mean grey staining 

densities present in the entire lesioned and non-lesioned striatal hemispheres were 

quantified. In these analyses, the net staining densities present in the striatal 
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hemispheres were calculated by subtracting background staining density measurements 

from the striatal density measurements. Two independent background staining 

measurements were generated for each section by quantifying the staining densities 

present in the entire ipsilateral and contralateral cerebral cortex hemispheres separately. 

Finally, ipsilateral and contralateral cerebral cortex background staining measurements 

were then subtracted from ipsilateral and contralateral striatal density measurements, 

respectively, to yield net striatal staining densities. The percentage staining density 

present in the lesioned hemispheres relative to the non-lesioned hemispheres (% TH-

immunoreactivity) were then calculated for sections from the rostral (AP, +1.6), medial 

(AP, +0.2), and caudal (AP, -1.4) striatum (all AP coordinates are relative to bregma 

(Paxinos & Watson, 1993)). For each rat, mean % TH-immunoreactivity values for each 

of the areas were derived by analysing three adjacent sections at each level. A mean 

overall % TH-immunoreactivity value was then derived for each rat by averaging the 

three % TH-immunoreactivity values generated for each of the 3 different rostro-caudal 

areas. Finally, mean overall % TH-immunoreactivity values were then calculated for 

each of the 6OHDA and vehicle treatment groups by averaging the mean overall % TH-

immunoreactivity values of all the rats in each group. Striatal TH 

immunohistochemistry results were analysed with one-way ANOVA and Dunnett’s test 

post-hoc analyses to determine if striatal % TH immunoreactivity levels in any of the 

6ODHA dose groups were significantly different to the sham group.    

Digital images of the lesioned and non-lesioned TH-immunostained nigral 

hemispheres were acquired at 10x magnification using a Zeiss bright field microscope 

fitted with an Axiovision colour camera.   Viable TH+ cells in the lesioned and non-

lesioned SNc were counted using ImageJ image analysis software. Only intact round 

cells with a clear nucleus and cytoplasm having a definite ‘‘halo’’ were counted. Mean 

nigral TH+ cell numbers present in the lesioned and non-lesioned hemispheres were 

also quantified by analysing 3 sections taken from a rostral (AP, -4.8), medial (AP, -

5.2), and caudal (AP, -5.8) area of the substantia nigra (all AP coordinates are relative to 

bregma (Paxinos & Watson, 1993)). Mean total TH+ nigral cell counts for each 

individual rat and for each treatment group were then calculated in the same manner as 

was done for the striatal TH immunohistochemistry results. Nigral TH 

immunohistochemistry results were analysed with two-way ANOVA and Bonferroni 

analyses to firstly determine whether, within each of the treatment groups, TH+ nigral 

cell counts were significantly different in the lesioned compared to the non-lesioned 



 
 

109  
 

hemisphere. Secondly, it was determined whether TH+ cell counts in the lesioned nigral 

hemisphere of any of the 6ODHA dose groups were significantly different compared to 

the sham group.   

‘No primary antibody’ control experiments were carried out with the anti-rabbit 

biotinylated secondary antibody (Vectorlabs, BA-1000, 1/200) that was used in all of 

the TH immunohistochemistry experiments to confirm that the secondary antibody by 

itself did not give rise to any non-specific staining when applied in the absence of the 

primary anti-TH antibody. Exactly the same staining protocol was followed in these 

control experiments to that used in the actual experiments, with the only difference 

being that nigral and striatal brain sections were not incubated with anti-TH primary 

antibody. Results from the control experiments demonstrated the abovementioned 

secondary antibody not to produce any non-specific staining when applied in the 

absence of primary antibody.     

 

3.3.4. FGF20 Dose Finding Experiments 

3.3.4.1. Acute Intra-Nigral FGF20 Infusions 

Intra-nigral FGF20 infusions were delivered to the brains of rats using a nearly identical 

procedure to that followed for the 6OHDA infusions in lesioning protocol 1 (see section 

3.3.1.2). Briefly, naive male Sprague Dawley rats weighing around ~270g were 

anaesthetised, mounted onto a stereotaxic frame, their skulls exposed, and a burr hole 

drilled in their skull. Using a 5µl Hamilton 23G micro-syringe, freshly prepared FGF20 

artificial cerebrospinal fluid (aCSF) vehicle solution (148mM NaCl, 3mM KCl, 1.4mM 

CaCl2, 0.8mM MgCl2, 1.5mM HPO4, 0.2mM NaH2PO4, 100ng/ml of rat serum 

albumin, pH7.4) or FGF20 (100ng and 1µg dissolved in 4µl of vehicle) infusions were 

delivered at exactly the same intra-nigral coordinates as that used for 6OHDA (AP, 

+3.7; ML, +2.0; DV, +2.2, relative to the interaural line (Paxinos & Watson, 1993)). In 

contrast to the 6OHDA dose-response study, the rats in this study were not allowed to 

recover after the intra-nigral FGF20 infusions were delivered. Instead, the rats were 

intra-cardially para-formaldehyde perfusion fixed 30min after the FGF20 infusions were 

made, and their brains removed. Paraffin wax embedded blocks of brain tissue 

containing the entire SN from each of the rat brains were then prepared, and serial 8µm 

thick coronal nigral sections were then cut with a microtome, so that sections were 

obtained from the entire SN using the same protocols as detailed in section 2.3.3.1 and 
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2.3.3.2. A total of 6 rats were used in these experiments, with 2 rats being used in the 

vehicle and each of the different FGF20 dose groups.  

 

3.3.4.2. Immunostaining of Nigral Sections for Phospho-ERK1/2 and 

Quantification of Nigral Phospho-ERK1/2 Positive Cells  

Nigral sections from the FGF20 dose finding study that had been previously prepared 

for immunohistochemical staining using the procedure in section 2.3.1 were stained for 

phospho-ERK1/2. As detailed later in section 3.2.2, the mitogenic and anti-apoptotic 

effects stimulated by FGFR1 activation is mediated through the ERK1/2 signalling 

pathway, and phospho-ERK1/2 (activated form of ERK1/2) was, therefore, used as a 

marker of FGFR activation in this study. The blocking solution in which the prepared 

sections were still immersed in was removed, and the sections incubated with a rabbit 

anti-phospho-ERK1/2 (Santa Cruz Biotechnology, sc-101761, 1/250) primary antibody 

at RT overnight. Next, sections were washed in TBS to remove any unbound primary 

antibody, and incubated with a donkey anti-rabbit biotinylated secondary antibody 

(Vectorlabs, BA-1000, 1/200) for 2h at RT. Thereafter, phospho-ERK1/2 staining was 

visualised with the HRP/DAB/ABC method and glass coverslips mounted on top of the 

stained sections by using exactly the same protocol as described in section 2.3.3.2. The 

only exception is that none of the stained sections were counterstained with 

haematoxylin in this study.  

Digital images of the phospho-ERK1/2-immunostained nigral sections were 

acquired at 10x magnification using a Zeiss bright field microscope fitted with an 

Axiovision colour camera. Phospho-ERK1/2 positive cell numbers at the nigral FGF20 

infusion sites were counted using ImageJ image analysis software. Net phospho-ERK 

positive cell counts were calculated by subtracting contralateral from ipsilateral cell 

counts, and mean phospho-ERK1/2 cell numbers for each rat were derived by analysing 

6-9 adjacent nigral sections taken from the infusion sites within the substantia nigra.  No 

statistical analysis was carried out on these results as only an ‘n’ of 2 rats were used in 

each group. 

 

3.3.5. Drugs and Chemicals 

FGF20 was obtained from Peprotech (Rocky Hill, N.J), and pentobarbital (Euthatal) 

was obtained from Merial Animal Health Ltd (Essex, UK). The Betadine was purchased 
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from LE West Ltd. (Barking, UK). Ketamine HCl (Vetlar), medetomidine HCl 

(Domitor), and atipamezole HCl (Antisedan) were all obtained from Pfizer (Sandwich, 

UK). 6-OHDA-HBr, L-ascorbic acid, desipramine HCl, pargyline HCl, apomorphine 

hydrochloride hydrate, D-amphetamine sulphate and all the other chemicals were 

obtained from Sigma-Aldrich (Dorset, UK). 

 

3.4. Results 

3.4.1. Nigrostriatal Dopaminergic Lesions and Motor Deficits Induced in Rats 

using Lesioning Protocol 1 

3.4.1.1. Dose-Dependent Reductions in Nigral TH+ Cell Counts and Striatal TH 

Levels Induced by Intra-Nigral Infusions of 6OHDA  

A 6OHDA dose-response experiment was carried out in rats to identify an intra-nigrally 

delivered dose of 6OHDA that induces a partial nigrostriatal tract lesion. Unilateral 

intra-nigral 6OHDA infusions dose-dependently reduced both striatal TH levels and 

nigral TH+ cell numbers in the lesioned nigrostriatal tracts (Fig 3.3 and 3.4). 

Striatal TH levels were reduced in the ipsilateral (lesioned) hemispheres of all of 

the 6OHDA dose groups, and surprisingly also in the sham lesioned group when 

compared to the contralateral striatal hemispheres (Fig 3.3.B). Quantitative results 

showing the % ipsilateral striatal TH levels (relative to the contralateral hemisphere) 

that were present in the different groups are shown in Fig 3.3.A. In the sham lesioned 

group, striatal TH levels were reduced in the ipsilateral striatum by ~25% compared to 

the contralateral striatum. The 6OHDA infusions produced a significant dose-dependent 

reduction in striatal TH levels (p<0.001), with the 6µg and 8µg 6OHDA doses inducing  

partial losses of ipsilateral striatal TH levels of ~55% and ~60%, respectively, while the 

12µg dose induced a complete 100% loss of striatal TH levels. All of the 6OHDA doses 

induced a significantly bigger loss of striatal TH levels when compared to the sham 

lesioned group (p<0.05).  

Similarly, the absolute number of TH+ cells were significantly lower in the 

lesioned SNc of all the groups, including the sham lesioned group, compared to the non-

lesioned SNc (Fig 3.4.A, p<0.01). Worryingly, in the sham lesioned group, TH+ cell 

numbers in the lesioned SNc was ~50% lower compared to the non-lesioned SNc.  

Again, 6OHDA reduced nigral TH+ cell numbers in a dose-dependent manner (p<0.01). 

In the 6µg, 8µg and 12µg 6OHDA groups, TH+ cell numbers in the lesioned SNc were 
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~75%, ~80% and ~100% lower than in the non-lesioned SNc (p<0.01). All three 

6OHDA doses reduced TH+ cell numbers in the lesioned hemisphere to a greater degree 

compared to vehicle (p<0.01).   
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3.4.1.2. Drug-Stimulated Motor Asymmetry Detected in Rats Lesioned using 

Protocol 1 

Amphetamine stimulated a time-dependent increase in net ipsiversive rotations in all of 

the 6OHDA dose groups, and also in the sham lesioned group (Fig 3.5.A). Peak net 

ipsiversive rotations occurred in the 25 to 50min time-period, post-amphetamine 

injection (Fig 3.5.A). In this period, amphetamine induced ~40 cumulative net 

ipsiversive rotations in the sham lesioned group (Fig 3.5.B). The 6OHDA infusions 

brought about a dose-dependent increase in amphetamine-induced cumulative net 

ipsiversive rotations during this period (Fig 3.5.B, p<0.01). Amphetamine induced 

~115, ~220, and ~355 net ipsiversive rotations in the 6µg, 8µg and 12µg 6OHDA 

groups, respectively. Amphetamine-induced net ipsiversive rotations were, however, 

only significantly higher in the 8µg and 12µg 6OHDA groups compared to the sham 

lesioned group (p<0.05 and p<0.01, respectively).  

Apomorphine stimulated a time-dependent increase in net contraversive 

rotations in all of the 6OHDA dose groups, but not in the sham lesioned group (Fig 

3.6.A). In the 6OHDA groups, peak net contraversive rotations occurred during the 15 

to 40min time period, post-apomorphine injection (Fig 3.6.A). During this period, 

apomorphine failed to induce any mean peak net contraversive rotations in the sham 

group, while in the 6µg, 8µg and 12µg 6OHDA groups, apomorphine induced mean 

peak net contraversive rotations of ~20, ~8, and ~68, respectively (Fig 3.6.B). However, 

net apomorphine-induced contraversive rotations were only significantly greater in the 

12µg fully lesioned rats compared to the sham lesioned rats (p<0.05).   
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3.4.1.3. Motor Deficits Detected by the Cylinder Test in Rats Lesioned using 

Protocol 1 

In the cylinder test, the majority of the rats in all of the groups mainly used both of their 

forelimbs to support themselves in a rearing position at baseline (Fig 3.7.A), with a 

mean of ~60-80% of total rears being supported by both forelimbs in the different 

groups. A much smaller % of total rearing postures were supported by the ipsilateral or 

contralateral forelimb alone (~7-22% of total rears) (Fig 3.7.A). These baseline results 

showed that the rats in all of the treatment groups had no preference for using one of 

their forelimbs over another, which demonstrates that no forelimb asymmetry was 

present in any of the groups at baseline. 

The forelimb motor deficits induced by a unilateral 6OHDA lesion can be 

expressed in a number of different ways. After a unilateral 6OHDA lesion, the affected 

contralateral paw will be used on far fewer occasions. This will be reflected in the 

results by the % of total rears being supported by the contralateral forelimb alone and by 

both forelimbs decreasing after lesioning. The % of total rears supported by the 

ipsilateral forelimb alone, on the other hand, will increase. Forelimb motor deficits can, 

therefore, be quantified by assessing the decrease in the % of total rears supported by 

the contralateral forelimb alone after lesioning. Alternatively, motor deficits can be 

quantified by measuring the increase in the % of total rears that are supported by the 

ipsilateral forelimb alone after lesioning. By analysing the raw data showing the 

absolute number of rears made by all of the rats in the different groups, one finds that 

each rat on average made ~23 total rears at baseline. A total of 44 rats were used in this 

study, and 27 of these rats only reared 0-3 times using their contralateral forelimb alone 

at baseline. For these 27 rats it would, therefore, not have been possible to calculate a 

meaningful decrease in the % of total rears supported by the contralateral forelimb alone 

after lesioning. For this reason, forelimb motor deficits were measured in this study by 

assessing the increases in the % of total rears supported by the ipsilateral forelimb alone 

(% ipsilateral forelimb use alone) that occurred after lesioning. Thus, hereafter, 

significant increases in % ipsilateral forelimb use post lesioning is taken to be a measure 

of the degree of motor deficits that were present in the contralateral forelimbs of the 

rats.      

Significant contralateral forelimb motor deficits were, in this way, detected by 

the cylinder test in the sham lesioned group, and in all of the 6OHDA dose groups at 

multiple time-points, post lesioning, when compared to baseline (Fig 3.7.B). The 12µg 
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group failed to respond in the cylinder test on day 5, post-lesioning, precluding the use 

of a two-way ANOVA to analyse these results. Instead, cylinder test results for this 

study were analysed by a number of separate independent one-way ANOVA and 

Dunnett’s test post hoc analyses to determine if in any of the treatment groups 

significantly greater motor deficits were present at any of the time-points post lesioning 

when compared to baseline. Additionally, results from each of the time-points were also 

analysed with independent one-way ANOVA analyses to assess whether motor deficits 

were significantly greater in any of the 6OHDA dose groups when compared to sham at 

each of the time-points.   

In the sham lesioned group, significant motor deficits were detected by the 

cylinder test on day 5 and 8 post-lesioning (p<0.01), but not on day 11. In the sham 

group, ipsilateral forelimb use alone increased from ~20% at baseline to ~45-60% post-

lesioning. Significant motor deficits were present in all of the 6OHDA dose groups at 

all of the time-points, post-lesioning, when compared to baseline (p<0.01). In the 6µg 

group, ipsilateral forelimb use alone increased from ~18% at baseline to ~57-62% at 

post-lesioning time-points, while in the 8µg group it increased from ~13% to ~72-90%. 

The biggest increase in motor deficits were, however, observed in the 12µg group, in 

which ipsilateral forelimb use alone increased from ~8% at baseline to ~96-99% post-

lesioning.  

As mentioned, the cylinder results were also analysed to determine if the 

6OHDA treatments induced a significantly greater degree of forelimb motor deficits at 

each of the different time-points, post-lesioning, compared to the sham lesioned group. 

The motor deficits detected by the cylinder test in the 6µg 6OHDA group were found 

not to be significantly greater than that detected in the sham lesioned group, on all of the 

time-points post-lesioning. The motor deficits detected in the 8µg group were 

significantly greater than the sham lesioned group on day 8 and 11, post-lesioning 

(p<0.01 and p<0.05, respectively), but not on day 5. In the 12µg group, motor deficits 

were significantly greater than the sham group on both day 8 and 11, post-lesioning 

(p<0.01).     
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3.4.1.4 Motor Deficits Detected by the Adjusted Stepping Test in rats Lesioned 

using Protocol 1 

The adjusted stepping test detected no motor deficits in the unaffected ipsilateral 

forelimbs of any of the treatment groups (Fig 3.8.B). At baseline, the different treatment 

groups made ~21-23 adjusted steps with their ipsilateral forelimbs, and in all of the 

groups there were no significant differences between the number of ipsilateral adjusted 

steps made at any of the time-points post-lesioning when compared to baseline. There 

were also no significant differences between the number of ipsilateral adjusted steps 

made by the different groups at each of the different time-points.  

At baseline, the different treatment groups made ~19-23 adjusted steps with their 

contralateral forelimbs, and the adjusted stepping test also failed to detect any 

significant motor deficits in the affected contralateral forelimbs of the sham and 6µg 

6OHDA groups at any of the time-points post-lesioning, when compared to baseline 

(Fig 3.8.A). Significant contralateral forelimb motor deficits were, however, detected in 

the 8µg and 12µg 6OHDA groups (p<0.05). In the 8µg group, contralateral forelimb 

measurements were ~22% lower on day 5 post-lesioning when compared to baseline 

(p<0.01), and importantly, these deficits were also significantly different to sham at this 

time-point (p<0.01). The reductions in contralateral adjusted step measurements 

observed on day 8 and 11, post-lesioning in the 8µg group were, however, found not to 

be statistically significant. In the 12µg 6OHDA group, significant contralateral motor 

deficits were detected at all 3 time-points, post-lesioning, with adjusted step 

measurements being reduced by ~61-94% on post lesioning time-points when compared 

to baseline (p<0.01), and importantly, the motor deficits in the 12µg 6OHDA group 

were also significantly greater to that present in the sham lesioned group at all of the 

time-points, post-lesioning (p<0.01).   
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3.4.2. Nigrostriatal Dopaminergic Lesions and Motor Deficits Induced in Rats 

using Lesioning Protocol 2 

3.4.2.1. Dose-Dependent Reductions in Nigral TH+ Cell Counts and Striatal TH 

Levels Induced in Rats using Lesioning Protocol 2  

In the first 6OHDA dose-response experiment that was carried out as part of this 

Chapter, a substantial nigrostriatal lesion was found to be present in the sham lesioned 

group. With the aim of identifying an intra-nigral infusion procedure that produces 

minimal nigrostriatal tract degeneration by itself, a second follow-up 6OHDA dose-

response experiment was carried out in which vehicle and 6OHDA infusions were 

delivered using a refined protocol (protocol 2, see section 3.3.1.3 for method).  

In this study, no reductions in striatal TH levels were found to be present in the 

ipsilateral striatum of the sham group when compared to the contralateral striatum (Fig 

3.9.A&B). This represents a substantial improvement when compared to the first study, 

where a substantial ~25% striatal lesion was present in the sham group. The unilateral 

intra-nigral 6OHDA infusions, however, induced a significant dose-dependent reduction 

in striatal TH levels in the lesioned hemispheres when compared to the contralateral 

striata (Fig 3.9.A), with the 6µg, and 8µg 6OHDA doses inducing nearly complete 

striatal TH loss of ~90% and ~95%, respectively, while the 4µg dose induced a 

desirable ~65% partial loss of striatal TH. All of the 6OHDA doses induced a 

significantly bigger loss of striatal TH compared to the sham lesioned group (p<0.01).  
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Nigral TH+ cell count results are shown in Fig 3.10. Although nigral TH+ cell numbers 

were found to be significantly lower in the ipsilateral SNc of the sham lesioned group 

compared to the contralateral SNc (p<0.05), cell numbers were only reduced by a 

negligible ~10% (Fig 3.10.A). The refined lesioning procedure, thus, also caused a 

substantially smaller degree of nigral TH+ cell loss compared to the original procedure, 

which induced an ~50% reduction in TH+ cells in the ipsilateral SNc. The 6OHDA 

doses also induced a dose-dependent loss of ipsilateral nigral TH+ cells (Fig 3.10.A). 

The 6µg and 8µg 6OHDA doses induced a nearly complete loss of TH+ nigral cells, 

with TH+ cell numbers in the lesioned SNc being ~92% and ~95% lower compared to 

the non-lesioned SNc in the two groups, respectively (p<0.01 in all cases). The 4µg 

dose, on the other hand, produced a desirable partial ~80% loss of nigral TH+ cells in 

the lesioned compared to the non-lesioned SNc. All three of the 6OHDA doses induced 

a significantly greater degree of TH+ cell loss in the lesioned SNc compared to that 

present in the sham lesioned group (p<0.01).  
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3.4.2.2. Drug-stimulated Motor Deficits Detected in Rats Lesioned using Protocol 2 

In contrast to the first study, in which both the apomorphine and the amphetamine 

rotation tests were used to assess motor asymmetry, only the amphetamine rotation test 

was used in this study. The apomorphine test was not used in this study because it was 

demonstrated to have an insufficient sensitivity to detect motors deficit in partially 

lesioned rats in the previous study.  

Amphetamine stimulated a time-dependent increase in net ipsiversive rotations 

in all of the 6OHDA dose groups (Fig 3.11.A). However, in contrast to the first study, 

amphetamine stimulated no net ipsiversive rotations in the sham lesioned group (Fig 

3.11.A). The minimal amount of nigrostriatal damage induced by the refined lesioning 

procedure, thus, gave rise to substantially lower motor deficits being detected in this test 

in the sham lesioned group, as ~40 cumulative amphetamine-induced rotations were 

recorded in the sham group in the first study. Peak net ipsiversive rotations occurred in 

the 40 to 65 min time-period, post-amphetamine injection (Fig 3.11.A). In this period, 

amphetamine induced no cumulative net ipsiversive rotations in the sham lesioned 

group, while the 6OHDA infusions brought about a dose-dependent increase in 

amphetamine-induced cumulative rotations (Fig 3.11.B, p<0.01), with ~220, ~222, and 

~579 net ipsiversive rotations being recorded in the 4µg, 6µg and 8µg 6OHDA groups, 

respectively. Rotations were found to be significantly higher in all of the 6OHDA dose 

groups when compared to the sham lesioned group (p<0.5 in all cases).  
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3.4.2.3. Motor Deficits Detected by the Cylinder Test in Rats Lesioned using 

Protocol 2 

The cylinder test failed to detect any significant motor deficits in the contralateral 

forelimb of the sham lesioned group at any of the time-points, post-lesioning, when 

compared to baseline (Fig 3.12). Significant contralateral forelimb motor deficits were, 

however, detected in all of the 6OHDA groups at all of the time-points, post-lesioning, 

when compared to baseline (Fig 3.12, p<0.05 in all cases). In the 4µg group, ipsilateral 

forelimb use alone increased from ~13% at baseline to ~74-91% at post-lesioning time-

points. In the 6µg group, ipsilateral forelimb use alone increased from ~6% at baseline 

to ~88-95% post-lesioning, while in the 8µg group it increased from ~17% to ~86-88%. 

Importantly, at all of the time-points, post-lesioning, the motor deficits detected in all of 

the 6OHDA groups were found to be significantly greater to that detected on the 

equivalent day in the sham lesioned group (p<0.05 in all cases).  
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3.4.2.4. Motor Deficits Detected by the Adjusted Stepping Test in Rats Lesioned 

using Protocol 2 

The adjusted stepping test detected no motor deficits in the unaffected ipsilateral 

forelimbs (Fig 13.3.B). At baseline, the different treatment groups made ~23-24 

adjusted steps with their ipsilateral forelimbs, and in all of the groups there were no 

significant differences between the number of ipsilateral adjusted steps made at any of 

the time-points post-lesioning when compared to baseline. There were also no 

significant differences between the number of ipsilateral adjusted steps made by the 

different groups at each of the different time-points.  
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At baseline, the different treatment groups made ~22-23 adjusted steps with their 

contralateral forelimbs, and significant contralateral forelimb motor deficits were 

detected in all of the treatment groups, including the sham group (Fig 13.3.A). In the 

sham and 4µg 6OHDA groups significant contralateral motor deficits were detected on 

day 8 and 11 (p<0.05 in all cases), but not on day 5, post-lesioning, when compared to 

baseline. In the sham group, adjusted step measurements were ~17-19% lower at the 

latter post-lesioning time points compared to baseline, while in the 4µg group they were 

~21-23% lower. In the 6µg and 8µg 6OHDA groups, significant contralateral forelimb 

motor deficits were detected at all of the time-points, post-lesioning, when compared to 

baseline. In the 6µg group, adjusted step measurements were ~20-28% lower on post-

lesioning time points compared to baseline (p<0.05 in all cases), while in the 8µg group 

they were ~35-42% lower (p<0.01 in all cases). The motor deficits in only the 6µg and 

8µg 6OHDA groups were, however, found to be significantly greater to that present in 

the sham lesioned group. In the 6µg group, motor deficits were only significantly 

greater compared to sham on day 5 post-lesioning (p<0.05), whereas in the 8µg 

6OHDA group, motor deficits were significantly greater to that present in the sham 

lesioned group at all time-points, post-lesioning (p<0.01).  
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3.4.3. ERK1/2 Activation Stimulated by Intra-Nigral Infusions of FGF20 

Only a relatively small number (~5-25) of phospho-ERK1/2 positive cells were present 

in the contralateral control nigral hemispheres (Fig 3.14.B). Intra-nigral infusions of not 

only FGF20 but also vehicle produced a substantial increase in phospho-ERK1/2 

positive cell numbers around the nigral infusion site relative to the equivalent area in the 

contralateral hemisphere (Fig 3.14.A&B). This is qualitatively demonstrated in the 

images in Fig 3.14.B, which show a substantially greater number of round brown 

stained phospho-ERK1/2 positive cells to be present in the ipsilateral relative to the 

contralateral hemispheres. Quantitative analysis of the results revealed there to be a 

trend towards FGF20 increasing net phospho-ERK1/2 positive cell numbers in a dose-

dependent manner, as ~81, ~93, and ~113 phospho-ERK1/2 positive cells were present 

in the vehicle, 100ng, and 1µg groups, respectively (Fig 3.14.A). However, statistical 

tests could, unfortunately, not be used to test for significant differences between groups, 

as an ‘n’ of only 2 was used in each group. Moreover, substantial phospho-ERK1/2 

activation was observed in cells all along the cannulae tracts (examples no shown). 
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3.5. Discussion 

3.5.1. Nigrostriatal Dopaminergic Lesions and Motor Deficits Induced in Rats 

using Lesioning Protocol 1 

One of the main aims of this thesis was to evaluate whether FGF20 has neuroprotective 

effects on dopamine neurones, in vivo, in the partially lesioned 6OHDA rat model of 

PD. In this study, 6OHDA dose-response experiments were carried out to identify an 

intra-nigrally delivered dose of 6OHDA that induces an appropriate partially lesioned 

6OHDA rat model of PD in which FGF20 could be evaluated for its neuroprotective 

effects. In an initial experiment, 6OHDA induced a dose-dependent loss of nigrostriatal 

dopamine neurones, with a 6µg and 8µg 6OHDA dose inducing a partial nigrostriatal 

lesion, whilst a 12µg dose induced an undesirable full lesion. However, unexpectedly 

and worryingly, in this initial study, the vehicle infusion alone caused a fairly 

substantial nigrostriatal lesion, reducing striatal TH levels by around ~25%, and TH+ 

nigral cell numbers by around ~50% when compared to the non-lesioned hemisphere. 

This indicated that the injection procedure itself caused some degree of nigrostriatal 

degeneration. Therefore, it follows that a substantial degree of nigrostriatal degeneration 

in the 6OHDA treatment groups can, thus, be attributed to the injection procedure rather 

than the selective toxic effects mediated by 6OHDA. The bulk of this damage is likely 

to be caused by the mechanical disruption induced by the insertion of the injection 

needle into the brain. Because there is a risk of 6OHDA forming a precipitate when 

dissolved in saline, the toxin was delivered in a dH2O vehicle solution in this initial 

study. The vehicle also contained 0.02% ascorbate, which was added to prevent the 

oxidative inactivation of 6OHDA prior to it being infused.  It is, thus, also likely that the 

dH20 vehicle caused some cell death as a result of it disrupting the osmotic conditions at 

the injection site. The osmotic damage caused by the vehicle infusion is, however, 

likely to be limited as very small volumes (4µl) were delivered into the SNc. As 

ascorbate is a non-toxic substance with anti-oxidant properties, it is unlikely that it 

contributed to any cell death, especially at the very low concentrations at which it was 

present.  

Although the aetiology of PD remains incompletely understood, there is 

evidence that a number of factors including mitochondrial dysfunction, oxidative stress, 

ubiquitin proteasome system dysfunction, and exposure to environmental toxins 

contribute to the development of PD. The dopaminergic cell death in PD is, however, 



 
 

135  
 

almost certainly not caused through mechanical or osmotic insults. There is, on the 

other hand, evidence that 6OHDA might induce dopamine neurone cell death through 

similar mechanisms that are at work in PD, as 6OHDA has been shown to induce 

dopamine neurone death by impairing the functioning of mitochondria, and/or through 

the generation of oxidative stress (Blum et al., 2001). In order to produce the most 

clinically relevant model of PD possible, it would, therefore, be desirable to minimise 

the amount of dopaminergic degeneration that is induced by insults other than the 

6OHDA toxin. Furthermore, it is also possible that mechanical and/or osmotic insults 

might cause the affected dopamine neurones to die immediately or at a very rapid rate. 

This might hinder the therapeutic potential of a treatment as it would reduce the number 

of dopamine neurones on which it could successfully have a beneficial effect. 

Moreover, although it was not investigated whether the infusion procedure inflicted 

damage on other non-dopaminergic cells around the infusion site, it is highly likely that 

the procedure also induced significant non-specific damage to non-dopaminergic cells 

not only in the SNc, but also in nearby regions, such as the SNr. Such non-specific 

damage to other cells would act to further reduce the practical usefulness of the model 

by reducing not only the face validity but potentially also the predictive validity of the 

model. For this reason, a second 6OHDA dose-response experiment was carried out in 

which the experimental design was refined so as to minimise the non-specific damage 

induced by the infusion procedure.  

In neuroprotection studies carried out with the 6OHDA rat model of PD, a 

treatment’s neuroprotective effects on dopamine neurones are assessed by determining 

if it preserved nigrostriatal dopamine neurones after 6OHDA lesioning. It is, however, 

also important to evaluate if any protection of dopamine neurones, offered by a 

treatment, also translates into a preservation of motor function after lesioning. 

Therefore, with the aim of identifying appropriate behavioural tests to use in future 

neuroprotection studies, a number of behavioural tests of motor function were assessed 

to identify tests that are sensitive enough to detect the relatively mild motor deficits that 

manifest in partially lesioned 6OHDA rats. Although the protocol used here induced 

unacceptable levels of 6OHDA-independent non-specific nigrostriatal damage, the 

behavioural results obtained from these rats are still useful in guiding the decision on 

which motor test to use in the future neuroprotection study. Of course, as with the 

nigrostriatal lesions, it is important for any motor deficits that are detected in a group of 

6OHDA lesioned rats to be significantly greater compared to that detected in the vehicle 
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group. This will ensure that a neuroprotective treatment has a window of opportunity to 

demonstrate a significant preservation of motor function at an equivalent level to that 

seen, for example, in the vehicle group.  

The motor tests evaluated in the initial 6OHDA dose response experiment 

included two drug-induced tests, the amphetamine and apomorphine-induced rotational 

tests, and two spontaneous tests of motor function, the adjusted stepping test and the 

cylinder test. Both the cylinder test and the amphetamine-induced rotations were 

sensitive enough to detect significantly greater motor asymmetry/deficits in not only the 

fully lesioned but also the partially lesioned rats. The adjusted stepping test detected 

significant motor deficits in the fully lesioned rats, and there was also a strong trend 

towards this test detecting significantly greater motor deficits in the 8µg partially 

lesioned group compared to the sham lesioned group. The apomorphine-induced 

rotational test, on the other hand, detected significant motor asymmetry in the fully 

lesioned rats, but in the partially lesioned rats it failed to detect any motor deficits. The 

detection of motor deficits in the 8µg partially lesioned group by the amphetamine-

induced rotational test but not by the apomorphine-induced rotational test is consistent 

with the literature, as a >90% depletion of striatal TH has been shown to be required for 

apomorphine to stimulate robust rotational behaviour (Schwarting & Huston, 1996a). 

Amphetamine, on the other hand, has been demonstrated to stimulate rotational 

behaviour when striatal TH is depleted by ≥50% (Schwarting & Huston, 1996a). Based 

on these results, only the amphetamine rotational test, the cylinder test, and the adjusted 

stepping test were selected to be further assessed in the subsequent refined 6OHDA 

dose-response study. 

 

3.5.2. Nigrostriatal Dopaminergic Lesions and Motor Deficits Induced in Rats 

using Lesioning Protocol 2 

In the initial 6OHDA dose-response experiment that was carried out, a substantial 

nigrostriatal lesion was found to be present in the sham lesioned group. With the aim of 

identifying an infusion procedure that produces minimal nigrostriatal tract degeneration 

by itself, a second follow-up 6OHDA dose-response experiment was carried out in 

which vehicle and 6OHDA infusions were delivered using a refined protocol (protocol 

2). It was concluded that the substantial lesion in the sham lesioned group observed in 

the first study was most likely the result of a relatively large (23G) injection needle and 

a non-physiological dH2O vehicle solution being used. For this reason, in the second 
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study, a much smaller 30G injection needle and a physiological 0.09% saline vehicle 

solution were, thus, used instead when administering the intra-nigral 6OHDA infusions. 

TH immunohistochemistry results from this second study demonstrated these 

refinements to have successfully reduced the non-specific damage induced by the 

procedure to negligible levels. Using the refined infusion protocol, vehicle infusions 

induced only a minimal degree of nigrostriatal degeneration, with no significant 

reduction in striatal TH levels and only an ~10% reduction in nigral TH+ cell counts 

being detected in the sham group. This represents a substantial improvement, as in the 

first study a significant ~25% striatal and ~50% nigral lesion was observed in the sham 

lesioned group. Importantly, in this study, the 6OHDA infusions induced a dose-

dependent degeneration of nigrostriatal dopamine neurones in the rats. However, both 

the 6µg and 8µg doses of 6ODHA induced an undesirable nearly complete nigrostriatal 

lesion of ~90%, and ~95%, respectively. The 4µg dose of 6OHDA, on the other hand, 

induced a desirable partial ~60-80% nigrostriatal lesion. Thus, based on the 

immunohistochemistry results, the 4µg dose of 6OHDA was considered to be the most 

appropriate dose to use in subsequent in vivo neuroprotection studies with FGF20. 

Surprisingly, using the refined protocol, 6OHDA had a much more pronounced 

potency at inducing nigrostriatal degeneration when compared to the first study, as 

equivalent 6OHDA doses caused substantially greater nigrostriatal dopamine neurone 

loss in the second study compared to the first. In the first study, for example, an 8µg 

dose of 6OHDA induced only ~60% nigrostriatal lesion, while in the second study, this 

same dose induced a nearly complete ~95% lesion. This is unexpected, particularly 

because the infusion procedure used in the first study was shown itself to induce a 

substantial degree of nigrostriatal degeneration, whereas the infusion procedure in the 

second study only caused minimal damage in the sham group. One possible explanation 

for this could be that the modified vehicle solution used in the second study somehow 

acted to enhance the potency of 6OHDA. This discrepancy is, however, more likely to 

have been caused by two different batches of 6OHDA being used in the studies. The 

6OHDA-HBr stock powder used to prepare the 6OHDA working solutions in the first 

study was ~3 years old, whereas a newly purchased batch of 6OHDA was used in the 

second study. As 6OHDA is known to be a fairly labile compound, the 6OHDA stock 

solution used in the first study might have contained substantially reduced amounts of 

active non-oxidised 6OHDA compared to the fresh batch of 6OHDA used in the second 

study.    
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In addition to the histological analyses, three different motor tests, the 

amphetamine-induced rotational test, the cylinder test, and the adjusted stepping test 

were also evaluated with the aim of identifying motor tests that are sensitive enough to 

detect motor deficits in partially lesioned 6OHDA rats. As expected, the minimal 

nigrostriatal tract damage induced by the vehicle infusions in this study resulted in only 

minimal motor deficits being detected in the sham group. Both the amphetamine-

induced rotational test and the cylinder test failed to detect significant motor 

deficits/asymmetry in the sham lesioned group at any of the time-points post-lesioning 

when compared to baseline, while the adjusted stepping test detected significant but 

relatively small reductions in motor function of ~10-15% in the sham lesioned group. 

Importantly, the 6OHDA infusions induced a dose-dependent increase in motor deficits 

in the rats. As discussed earlier, full nigrostriatal dopaminergic lesions have been 

documented to produce robust motor deficits in rats that are relatively easily 

quantifiable by several motor tests (Schwarting & Huston, 1996a). In this study, a 

nearly complete nigrostriatal lesion was induced by both the 6µg and the 8µg 6OHDA 

doses, and consistent with literature reports, all of the tests evaluated detected motor 

deficits significantly greater than that present in the sham lesioned rats, in both the 6µg 

and 8µg groups. Of the two spontaneous motor function tests, it appeared that the 

cylinder test had the greatest sensitivity, as the cylinder test detected significant motor 

deficits in the ~90% lesioned 6µg group on all of the time-points post-lesioning, 

whereas the adjusted stepping test detected motor deficits significantly greater than the 

sham group on only day 5, post-lesioning. Consequently, in the 4µg partially lesioned 

rats, motor deficits significantly greater than that observed in the sham group were 

detected by the amphetamine-induced rotational test and the cylinder test, but not by the 

adjusted stepping test. As mentioned above, of all of the 6OHDA doses tested in the 

second study, only the 4µg dose induced an appropriate ~60-80% nigrostriatal 

dopaminergic lesion. Therefore, a 4µg intra-nigrally delivered dose of 6OHDA was 

used in the subsequent in vivo neuroprotection studies with FGF20. As the adjusted 

stepping test was found not to have a sufficient sensitivity to detect the less pronounced 

motor deficits that were present in the partially lesioned 4µg group, this test was not 

used in the neuroprotection study. The cylinder test and the amphetamine-induced 

rotational test, on the other hand, were both employed, as both of these tests detected 

significantly greater motor deficits in the 4µg group compared to the sham lesioned 

group.   
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3.5.3. Identifying a Biologically Active Intra-Nigrally Delivered Dose of FGF20 

By using phospho-ERK1/2 as a marker of FGF20 stimulated FGFR activation, an 

attempt was made to identify a biologically active intra-nigrally delivered dose of 

FGF20. In this pilot study, it was anticipated that either no or very low phospho-

ERK1/2 positive cell numbers would be observed in the vehicle group, while 

substantially higher phospho-ERK1/2 activation levels would be induced by a 

biologically active dose of FGF20. This would have allowed a biologically active dose 

to be identified through a qualitative analysis of the results. Instead, results from these 

experiments revealed that both the FGF20 and the vehicle infusions stimulated a 

substantial increase in phospho-ERK1/2 activation at the infusion site. There was a 

trend towards FGF20 increasing phospho-ERK1/2 activation further in a dose-

dependent manner. Statistical tests could, however, not be carried out to establish if 

there were significantly higher phospho-ERK1/2 activation levels in the FGF20 groups, 

as only an n of 2 was used in each group.  

As increased phospho-ERK1/2 activation was observed not only at the infusion 

sites, but also all the way along the cannulae tracts, it appears that phospho-ERK1/2 

activation is being stimulated by the mechanical damage caused by the insertion of the 

injection needle. Moreover, it has previously been reported that the intra-hippocampal 

implantation of a microdialysis probe itself induces a substantial upregulation of FGF2 

mRNA and protein around the site of implantation (Humpel et al., 1994). It is, thus, 

likely that the mechanical damage induced by a foreign object being inserted into the 

brain stimulates the release of numerous signalling molecules in the brain tissue 

surrounding the inserted object. These signalling molecules would then stimulate the 

activation of numerous signalling pathways in the tissue surrounding the implantation 

site. Therefore, it could be anticipated that it would be difficult to study the effect of an 

intra-cerebrally infused test agent on signalling events in a specific brain area, if the 

signalling events are activated extensively or to a supra-maximal level by the damage 

alone. As FGF2 is a potent agonist at the FGFRs (Ornitz et al., 1996; Ford-Perriss et al., 

2001; Eswarakumar et al., 2005; Zhang et al., 2006; Heinzle et al., 2011), and it has 

been shown to be upregulated by the implantation process (Humpel et al., 1994), it is 

likely that signalling pathways activated by the FGFRs will fall in such a category in 

areas where FGFRs are expressed. The failure of these experiments to detect a 

biologically active dose of FGF20 could, thus, potentially be attributed to the 
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complications outlined above. However, it could also simply be due to a big enough 

dose of FGF20 not having been tested in these experiments.    

Although there are no published reports of FGF20 being tested for any central 

nervous system effects in vivo, several studies have investigated the pharmacologic 

activities mediated FGF2 when it is delivered to the central nervous system through 

continuous infusion. These studies reported FGF2 to have mitogenic (Kuhn et al., 1997; 

Kojima & Tator, 2002; Ohta et al., 2006), and neuroprotective (Srivastava et al., 2008) 

effects at a dose rate of 0.36µg/day. Moreover, pilot studies undertaken in this lab to 

probe the neuroprotective effects of FGF20 in rats bearing a full nigrostriatal tract lesion 

showed that FGF20, delivered over 6 days at a slightly higher dose rate of 2.5µg/day, 

provided some protection against losses of both striatal TH immunoreactivity and nigral 

TH+ cell numbers (unpublished results). Therefore, as the dose finding experiments 

failed to identify a biologically active dose, a range of FGF20 doses, including the 

2.5µg/day dose used in the previous pilot study, were evaluated in the in vivo 

neuroprotection study in Chapter 4. 

 

3.5.4. Conclusion 

An intra-nigral infusion procedure that induces a negligible degree of non-specific 

nigrostriatal degeneration by itself was successfully developed in this study. The use of 

an injection needle with the smallest possible gauge and also a physiological vehicle 

solution, in the infusion procedure, was demonstrated to be essential in minimising non-

specific nigrostriatal degeneration. The refined 6OHDA lesioning procedure was used 

in 6OHDA dose-response experiments to identify an intra-nigrally delivered dose of 

6OHDA that induces a partial ~60-80% lesion of the nigrostriatal tract in rats. Of all the 

doses of 6OHDA tested, only the 4µg 6OHDA dose produced an appropriate partial 

nigrostriatal dopaminergic lesion, while both the 6µg and the 8µg doses induced an 

undesirable near complete lesion. Of the four motor tests evaluated, only the cylinder 

test and the amphetamine-induced rotational test detected significant motor deficits in 

the 4µg partially lesioned rats. Thus, in the in vivo neuroprotection study carried out in 

Chapter 4, it was evaluated if FGF20 could protect against a partial nigrostriatal lesion 

induced by a 4µg intra-nigrally delivered dose of 6OHDA. The cylinder test and the 

amphetamine-induced rotational test were selected to be used to assess if FGF20 

improves the motor deficits induced by the partial nigrostriatal lesion. Since the FGF20 

dose finding experiments failed to successfully identify a biologically active intra-
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nigrally delivered dose of FGF20, a range of FGF20 doses based on preliminary 

findings from an earlier pilot study were used in the study. 
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Chapter 4: Neuroprotective Effects of Fibroblast Growth 

Factor-20 on Dopamine Neurones 

4.1. Introduction 

4.1.1. Protective and Regenerative Effects mediated by the FGF System 

In both the peripheral organs and the nervous system, several FGF family members 

protect numerous tissues from injury, and in many cases they also stimulate the 

regeneration of the injured tissues. Peripherally, FGFs have been shown to have a 

protective and/or regenerative effect on the heart, cartilage, and on endothelial cells. 

FGF1 and FGF2 protect the heart from ischaemic reperfusion injury both in vivo and ex 

vivo, with a single FGF pre-treatment preserving myocardial tissue and cardiac function 

(Detillieux et al., 2004). In the damaged knee joint, FGF2 stimulates cartilage repair 

when it is delivered by FGF2 overexpressing chondrocytes implanted into the knee joint 

(Cucchiarini et al., 2005; Jungnickel et al., 2006), while, in vitro, FGF2 protects 

endothelial cells against both serum withdrawal (Karsan et al., 1997) and 

hypoglycaemia (Han et al., 2005). Additionally, FGF2 has also been shown to stimulate 

skin wound healing (Obara et al., 2005).  

FGFs have been reported to have protective and/or regenerative effects in a 

number of different types of nervous system tissues, not only, in vitro, in immortalised 

and primary neurone cultures, but also, in vivo, in both the peripheral and central 

nervous system. FGF2 and FGF8 protect SKHMC neuroblastoma cells from oxidative 

stress (Mark et al., 1999), while both FGF2 and FGF4 protect SHSY5Y cells from nitric 

oxide toxicity (Wagle & Singh, 2000). Hippocampal primary neurone cultures are 

protected from glutamate toxicity by FGF2 (Lenhard et al., 2002), and from oxidative 

stress by both FGF2 and FGF4 (Detillieux et al., 2004). Additionally, FGF2 protects 

primary cerebellar neurones from ethanol induced cell death (Luo et al., 1997), and it 

also has neurotrophic effects on a number of different primary motor neurone cell 

cultures (Grothe & Wewetzer, 1996). In vivo, in the peripheral nervous system, FGF2 

protects hypoglossal neurones against lesioning (Grothe & Wewetzer, 1996), and the 

facial nerve against axotomy (Cuevas et al., 1995), while in another study FGF2 

enhanced the reinnervation of muscle after transection of the motor nerves innervating 

the muscle. FGF1 and FGF2 also promotes the survival and regeneration of the injured 

sciatic nerve (Laird et al., 1995; Grothe & Wewetzer, 1996; Jacques et al., 1999; Ohta 
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et al., 2004), with FGF1 not only promoting regeneration but also the 

electrophysiological functioning of the regenerated nerve (Wang et al., 2003). In vivo, 

in the CNS, FGFs also promote the survival and regeneration of a number of different 

injured brain structures. FGF2, when either exogenously applied or delivered by 

adenoviral overexpression, increases the survival and regeneration of the optic nerve 

after injury (Blanco et al., 2000; Sapieha et al., 2003). FGF2 application also protects 

the hippocampus against a kainite-induced lesion (Tretter et al., 2000), and it stimulates 

increased survival of neurones in the dorsal lateral geniculate nucleus after axotomy 

(Agarwala & Kalil, 1998). Furthermore, both FGF2 and FGF18 protects against 

cerebral ischaemic brain injury, with both FGFs reducing the infarct size and also 

preserving motor function (Li & Stephenson, 2002; Ellsworth et al., 2004). Thus, there 

is a wealth of evidence demonstrating the FGF system to play an important protective 

and/or regenerative role in many different tissues of the body.                  

 

4.1.2. Neurotrophic Effects of the FGFs on Dopamine Neurones 

The FGF system also plays an important physiological role in the nigrostriatal 

dopaminergic tract. All of the FGFRs and 5 of the 23 FGFs - FGF1, FGF2, FGF8, 

FGF9, and FGF20 - are expressed by one or more cell type in the nigrostriatal tract, 

with all being localised to dopamine neurones (detailed in section 2.1.5). Furthermore, 

in Chapter 2 of this thesis, using immunohistochemistry, FGF20 and FGFR1, 3, and 4 

were demonstrated to be localised abundantly in not only dopaminergic neurones, but 

also in a number of other cell types throughout the nigrostriatal tract of the rat brain. In 

VM embryonic dopamine neurone cultures, the FGFR1, 3, and 4 proteins were also 

shown to localise to a number of different cell types present in these cultures.  Evidence 

from a number of studies has indicated that the endogenous FGF system plays an 

important role in maintaining the survival of not only embryonic VM developing 

dopamine neurones, but also nigrostriatal dopamine neurones in the intact adult brain. 

In vitro, FGF2 stimulates survival and neurite outgrowth in VM embryonic rat 

dopamine neurones, while in human embryonic dopamine neurone cultures, FGF2 

stimulates increased survival and increased TH expression (Silani et al., 1994). FGF8 

also has neurotrophic effects on VM embryonic rat dopamine neurones, and treatment 

of VM cultures with FGF8 neutralising antibody decreased TH+ cell survival (Roussa et 

al., 2004), while in another study, inhibition of FGFR activation enhanced reserpine 

induced cell death of VM embryonic dopamine neurones (Murase & McKay, 2006). 
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Additionally, in VM embryonic cultures, FGF2 has also been shown to regulate 

extracellular dopamine levels by stimulating increased dopamine uptake by both 

dopamine neurones and astrocytes (Silani et al., 1994; Inazu et al., 1999).  Moreover, 

findings from several in vitro studies have provided indirect evidence that astrocyte-

derived striatal FGF2 might play an important neurotrohpic role in maintaining the 

survival of nigrostriatal dopamine neurones in the intact brain. In vitro, astrocytic FGF2 

release is stimulated by the activation of dopamine receptors located on the astrocytes. 

Both dopamine itself and the non-selective dopamine receptor agonist, apomorphine are 

capable of upregulating FGF2 release in astrocytes, and this dopamine receptor 

stimulated, astrocyte-derived FGF2 has a neurotrophic effect on dopamine neurones in 

culture (Reuss & von Bohlen und Halbach, 2003; Li et al., 2006). Selective activation 

of the D1 or D2 dopamine receptors are capable of upregulating FGF2 expression in 

astrocytes through a cAMP/PKA and ERK1/2-dependent pathway, respectively (Li et 

al., 2006). Based on these findings, it has been suggested that a retrograde trophic 

positive feedback pathway exists in the intact striatum. That is, dopamine released from 

nigrostriatal dopamine neurone terminals in the striatum acts on astrocytes to increase 

their release of striatal FGF2, which in turn mediates a neurotrophic effect on dopamine 

neurones. There is, however, currently no confirmatory evidence available from any in 

vivo studies that such a dopamine driven trophic feedback pathway actually exists under 

physiological conditions. However, if it does exist, in vivo, pharmacological activation 

of this neurotrophic pathway alone is insufficient to protect nigrostriatal dopaminergic 

neurones in the PD brain from ongoing degeneration, as clinical trials have 

demonstrated the commonly used dopamine receptor agonists to be ineffective in 

slowing down disease progression in PD (Hauser, 2010). Nevertheless, the postulated 

general neurotrophic role of the FGF system in the nigrostriatal system has been 

confirmed by an in vivo study in mice, in which transfection of nigrostriatal dopamine 

neurones with a FGFR1 mutant lacking a functional kinase domain resulted in ~20% 

reduction in nigral TH+ cell numbers, and also a decrease in striatal levels of TH and 

the dopamine metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) (Corso et al., 

2005).    

 

4.1.3. Role of the FGF system in the Lesioned Nigrostriatal Tract 

In the rat, 6OHDA lesioning of the nigrostriatal dopaminergic tract induces a robust 

increase in FGF2 mRNA and protein levels within the SN and the striatum (Chadi et al., 
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1994; Agarwala & Kalil, 1998), and this increase has been shown to be caused by a 

substantial upregulation of FGF2 expression by activated astrocytes throughout the 

basal ganglia (Chadi & Gomide, 2004). This is thought to be a protective response 

initiated by the brain to try and counteract the degenerative effects mediated by 

6OHDA. Moreover, an unidentified factor(s) derived from the adrenal glands has a 

permissive effect on this 6OHDA-induced upregulation of FGF2, as this effect was 

completely abolished by adrenalectomy in the rat (Chadi et al., 2008).  

Interestingly, FGF2 protein is nearly completely absent in the SNc of PD 

patients (Tooyama et al., 1994), whereas the FGFR1 is reported to be present in the 

remaining SNc dopamine neurones of PD patients (Walker et al., 1998). These findings 

suggest that the loss of FGF2 might contribute to the degeneration of dopamine 

neurones in PD, while the presence of the FGFR1 in the SNc of PD patients provides 

support that activation of the FGF system might have therapeutic potential in PD. 

  

4.1.4. Neuroprotective Effects of the FGFs on Dopamine Neurones  

In vitro, FGF2 protects VM dopamine neurones against 6OHDA, MPP+, rotenone, and 

glutamate-induced cell death (Park & Mytilineou, 1992; Mayer et al., 1993a; Otto & 

Unsicker, 1993; Casper & Blum, 1995; Hou et al., 1997; Grothe et al., 2000; Hsuan et 

al., 2006). Several in vivo studies have shown both FGF1 and FGF2 to have robust 

neuroprotective effects on nigrostriatal dopaminergic neurones in a number of different 

animal models of PD. In mice, continuous intracerebroventricular (icv) delivery of 

FGF2 protected nigrostriatal dopamine neurones against MPTP-induced nigrostriatal 

degeneration, and it also completely reversed MPTP-induced bradykinesia in the mice 

(Chadi et al., 1993). In rats, implantation of FGF2 overexpressing fibroblasts into the 

striatum protected against 6OHDA-induced dopamine neurone cell death, and it also 

alleviated 6OHDA-induced motor deficits (Shults et al., 2000). Intra-striatal delivery of 

FGF1 has also been shown to preserve striatal TH immunoreactivity in the 6OHDA 

lesioned rat (Jin & Iacovitti, 1995).  In the MPTP primate model of PD, icv infusions of 

FGF2 increased dopamine neurone survival and function, and it also alleviated MPTP-

induced motor deficits (Fontan et al., 2002). Importantly, in the latter study, FGF2 had 

superior neuroprotective effects (more potent and prolonged) on dopamine neurones 

than compared to GDNF, the current gold standard neurotrophin used in the 

experimental treatment of PD. Other FGF members, apart from FGF1 and FGF2, have 
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also been reported to have either neurotrophic and/or neuroprotective effects on 

dopamine neurones, including FGF9 and FGF20 (FGF20’s neuroprotective effects are 

detailed in section 4.1.5 below). FGF9 protects VM dopamine neurones against MPP+, 

in vitro, while, in vivo, it protects nigrostriatal dopamine neurones from MPP+ toxicity 

in the rat (Huang et al., 2009). It has been conclusively demonstrated that FGF2’s 

neurotrophic and neuroprotective effects are not specific to dopamine neurones, as 

FGF2 also has trophic and neuroprotective effects on glial cells and on a number of 

other types of neurones, including GABAergic and cholinergic neurones (detailed in 

section 4.1.1 and (Otto & Unsicker, 1993; Sensenbrenner, 1993; Bouvier & Mytilineou, 

1995a)). This raises the possibility that, if FGF2 is used as a treatment for PD, it might 

cause adverse effects – potentially malignant growth and dysregulated functioning of 

non-dopamine neurones.  

There is substantial direct and indirect evidence from both cell culture and in 

vivo experiments indicating that the neurotrophic and neuroprotective effects mediated 

by FGF2 on dopamine neurones are at least partially mediated through an astrocyte-

dependent indirect mechanism. In vitro, astrocyte proliferation is essential in allowing 

FGF2’s protective effects on VM dopamine neurone cultures against 6OHDA and 

MPP+ (Park & Mytilineou, 1992; Hou et al., 1997). Similarly, FGF2’s neurotrophic 

effects on human and rat embryonic dopamine neurone cultures are also dependent on 

astrocyte proliferation (Mayer et al., 1993a; Silani et al., 1994). It, thus, appears that 

FGF2 stimulates the release of neurotrophin(s) from astrocytes, which in turn have 

neurotrophic and/or neuroprotective actions on dopamine neurons. Accordingly, the 

supernatant derived from FGF2 stimulated astrocyte cultures stimulates differentiation 

and increased dopamine uptake in dopamine neurone cultures (Gaul & Lubbert, 1992), 

while in another study, FGF2’s neurotrophic effects on VM dopamine neurone cultures 

have been shown to be mediated by transforming growth factor-B (TGF-β) (Krieglstein 

et al., 1998). Furthermore, in vitro, the neuroprotective effects of FGF2 on embryonic 

hippocampal neurones against glutamate toxicity are inhibited by GDNF neutralising 

antibodies (Lenhard et al., 2002), while, in vivo, FGF2’s neuroprotective effects on 

hippocampal neurones against a kainate lesion are completely dependent on FGF2 

stimulated activin A release (Tretter et al., 2000). However, it appears that FGF2 

stimulated astrocyte derived factor(s) only partly mediate FGF2’s neurotrophic effects, 

as FGF2’s neurotrophic effects on VM dopamine neurone cultures have in another 
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study been shown to be partly mediated by a direct action on dopamine neurons (Mayer 

et al., 1993a).  

Furthermore, FGF2 also has the potential to increase the success of grafting 

therapies in PD. In the nigrostriatal-lesioned rat, co-grafting of embryonic dopamine 

neurones with FGF2 overexpressing fibroblasts or Schwann cells increased both the 

survival and fiber outgrowth of the grafted dopamine neurons (Takayama et al., 1995; 

Roceri et al., 2001). It also significantly improved motor deficits compared to the 

grafting of dopamine neurones alone. Another study has assessed the effectiveness of 

either FGF2 pretreatments or multiple icv infusions on dopamine neurone graft survival 

(Mayer et al., 1993b). Although both approaches improved graft survival and motor 

deficits, the icv infusions had substantially greater and more prolonged neurotrophic 

effects. Moreover, FGF2 can also be used to increase the success of grafting therapies 

by using it to increase the yield of dopamine neurones in embryonic dopamine neurone 

graft preparations, as FGF2 prolongs the proliferation and delays the differentiation of 

embryonic dopamine precursor cells (Bouvier & Mytilineou, 1995b). 

 

4.1.5. Neuroprotective effects of FGF20 on Dopamine Neurones and its Potential as 

a Treatment for PD 

FGF20 has recently been identified to be another FGF family member that could have 

neuroprotective potential in PD. FGF20 is a 211 amino acid polypeptide with a 

predicted molecular weight of ~23 kDa (Kirikoshi et al., 2000; Ohmachi et al., 2003). 

In the rat brain, FGF20 mRNA has been shown be localised in both the SN and the 

striatum (Ohmachi et al., 2003; Grothe et al., 2004); and in Chapter 2, using 

immunohistochemistry, FGF20 protein was demonstrated to be abundantly present in 

both the SN and the striatum of the rat brain (see section 2.4.1.1 and 2.4.2.1). 

Moreover, results generated in Chapter 2 demonstrated FGF20 to be exclusively 

localised to the SNr in the SN, with no FGF20 staining being observed in the SNc. 

These results conflicts with the previously reported in situ hybridisation results which 

showed FGF20 to be exclusively localised to dopamine neurones in the SNc of the rat 

brain (Ohmachi et al., 2000), and reasons for this discrepancy are discussed in detail in 

section 2.5.2. In vitro, recombinant human FGF20 protects VM embryonic dopamine 

neurones against serum withdrawal, glutamate toxicity, and 6OHDA-induced cell death 

(Ohmachi et al., 2000; Ohmachi et al., 2003; Murase & McKay, 2006). In the Murase & 

McKay, 2006 study, FGF20 was shown to preferentially protect calbindin negative 
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dopamine neurones in the VM cultures. These calbindin negative dopamine neurones 

are preferentially lost in PD patients (Gibb, 1992), and they are also more sensitive to 

dopamine neurone toxins (German et al., 1992). Calbindin is an intracellular calcium 

binding protein that plays an important role in buffering intracellular calcium levels. It 

is, thus, believed that the increased sensitivity of this subset of calbindin negative 

dopamine neurones is due to them having a reduced capacity to maintain intracellular 

calcium levels within a non-toxic range.  

Moreover, like FGF2, FGF20 also has the potential to improve the success of 

PD grafting therapies, as FGF20 stimulates the differentiation of rodent, monkey, and 

human embryonically derived neuronal stem cells into dopamine neurones. In one 

study, FGF20 treatment stimulated a ~5 fold increase in the yield of human embryonic 

stem cell (hESC)-derived dopamine neurones (Correia et al., 2007), while in another 

study, co-administration of FGF20 and FGF2 increased the yield of hESC derived 

dopamine neurones (Shimada et al., 2009). Similarly, co-application of FGF20 and 

FGF2 also induced the differentiation of monkey embryonic neuronal stem cells into a 

dopaminergic phenotype (Takagi et al., 2005).  These monkey ES-derived dopamine 

neurones were subsequently shown to alleviate MPTP-induced motor deficits and to 

increase striatal F-dopa uptake (an index of striatal dopamine neurone terminal density) 

when transplanted into the putamen of MPTP monkeys (Takagi et al., 2005). 

Furthermore, co-culturing of nurr1 overexpressing murine neural stem cells (NSC) with 

FGF20 overexpressing Schwann cells stimulated the differentiation of the NSC cells 

into dopamine neurones (Grothe et al., 2004). When these NSC-derived dopamine 

neurones were co-transplanted with FGF20 overexpressing Schwann cells in rodent 

grafting experiments, a greater number of the transplanted cells were found to have 

maintained their dopaminergic phenotype when compared to control transplants.  

Results from a number of genetic studies in humans have indicated that FGF20 

might play a role in the aetiology of PD, as 8 single nucleotide polymorphisms (SNPs) 

in the FGF20 gene have been found to increase the risk of PD, thus far. Alleles of the 

rs12720208, rs1721100, rs1989754, rs1721082, rs1799836, rs10888125, rs11203822, 

and the ss20399678 FGF20 gene SNPs have all been shown to be associated with an 

increased risk of developing PD (van der Walt et al., 2004; Satake et al., 2007; Gao et 

al., 2008; Mizuta et al., 2008; Wang et al., 2008; Wider et al., 2009; de Mena et al., 

2010). Interestingly, some of these FGF20 gene risk alleles have been shown to interact 

with MAO-B and SNCA PD risk alleles to synergistically increase the overall risk of PD 
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(Gao et al., 2008; Mizuta et al., 2008). These genetic findings are, however, 

controversial and still not conclusive, as a number of conflicting reports have found no 

association between some of the abovementioned FGF20 gene SNPs and PD. For 

example, for the rs12720208 SNP, one study found an association with PD to exist 

(Wang et al., 2008), but two reports failed to find an association (Wider et al., 2009; de 

Mena et al., 2010). For the rs1989754 SNP, there are two studies which found an 

association (van der Walt et al., 2004; Wang et al., 2008), and an equal number which 

found no association (Clarimon et al., 2005; Satake et al., 2007). Further independent 

replicate studies are also needed to confirm the association of the rs1799836 (Gao et al., 

2008), rs10888125 and rs11203822 (Wang et al., 2008), and the ss20399678 SNPs (van 

der Walt et al., 2004), as an association for each of these SNPs have only been reported 

by a single study. An association of the rs1721082 SNP with PD has been confirmed in 

two independent studies (Gao et al., 2008; Wang et al., 2008). However, the evidence 

for an association with PD is, by far, the most conclusive for the rs1721100 SNP. Five 

independent studies have found the rs1721100 SNP to be associated with PD (van der 

Walt et al., 2004; Satake et al., 2007; Gao et al., 2008; Mizuta et al., 2008; Wang et al., 

2008), while only one study has found no association (Clarimon et al., 2005) . 

In the Wang et al., 2008 study, in which an association was identified between 

the T allele of the rs12720208 FGF20 gene and PD, the authors also investigated the 

biological mechanism through which this SNP might increase PD risk. It was 

discovered that the rs12720208 SNP lies within a sequence that is a predicted binding 

site for the microRNA, miR-433. By binding specifically to its binding sites on target 

mRNA strands, miR-433 acts to inhibit the translation of the target mRNA into protein. 

In the rs12720208 C allele, the miR-433 binding site is intact, whereas, in the 

rs12720208 allele that is associated with PD, the T allele, the miR-433 binding 

sequence is disrupted. It was, thus, proposed that the T allele would give rise to higher 

levels of FGF20 protein, as miR-433 would be unable to suppress the translation of 

FGF20 mRNA into protein. This hypothesis was then substantiated by evidence from a 

number of studies. Using a luciferase reporter gene assay, miR-433 was shown to 

strongly inhibit the translation of the C allele, but not the T allele in a fibroblast cell 

line. In a second study, miR-433 suppressed translation of FGF20 in two fibroblast cell 

lines, one homozygous and the other heterozygous for the C allele, and as expected, this 

inhibition was greater in the fibroblast cell line that was homozygous for the C allele. 

Furthermore, in humans, FGF20 protein levels were shown to be higher in the brains of 



 
 

150  
 

T allele carriers when compared to C allele carriers. Lastly, in SHSY5Y cells, it was 

also demonstrated that FGF20 upregulates SNCA. Based on these finding, the authors 

proposed that the T allele of rs12720208 increases PD risk by increasing FGF20 protein 

levels – through disinhibition of mRNA translation – which in turn stimulates increased 

production of the SNCA protein, and overproduction of SNCA is widely believed to 

play a role in PD pathology. Additionally, another study found the rs12720208 SNP to 

be associated with increased hippocampal FGF20 expression in human post-mortem 

brains (Lemaitre et al., 2010); and using a quantitative neuroanatomical magnetic 

resonance imaging (MRI) technique, they also demonstrated the rs12720208 SNP to be 

associated with increased hippocampal volume in healthy volunteers. These reported 

findings however remain controversial, both the association of the rs127202 SNP with 

PD risk and also its association with increased FGF20 and SNCA protein levels, as 

several conflicting reports have subsequently been published. As mentioned earlier, 

only the Wang et al., 2008 study has found an association between the rs12720208 

FGF20 gene SNP and PD, while two other independent studies have contradicted their 

findings, reporting no association between rs12720208 and PD (Wider et al., 2009; de 

Mena et al., 2010). Additionally, in the Wider et al., 2009 study, FGF20 protein levels 

were measured in human brain tissue by immunoblot, and no association was found 

between FGF20 protein levels and the rs12720208 SNP. No association was also found 

between FGF20 and SNCA protein levels in human brain tissue samples in this study. 

Furthermore, although the Lemaitre et al., 2010 study found the rs12720208 SNP to be 

associated with increased hippocampal FGF20 expression and hippocampal volume, 

they detected no abnormalities in the morphology of the SN in both young and old 

rs12720208 T allele carriers. Nevertheless, although the findings from the Wang et al., 

2008 study remain inconclusive and controversial, it highlights the fact that there is a 

possibility that administration of exogenous FGF20 could potentially exaggerate rather 

than attenuate nigrostriatal degeneration. The wealth of evidence demonstrating 

activation of the FGF system to mediate protective and regenerative effects rather than 

degenerative effects on not only nigrostriatal neurones but also on many other tissues 

argues strongly against the theory that overexpression of FGF20 promotes nigrostriatal 

degeneration.     
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4.2. Objectives 

On balance, the evidence outlined above, provides convincing support for FGF20 

having neuroprotective therapeutic potential in the treatment of PD. In the current 

Chapter, studies were carried out to further investigate the neuroprotective effects that 

FGF20 has on dopamine neurones in pre-clinical model systems. Additionally, it was 

also evaluated whether the endogenous FGF system plays a role in protecting 

nigrostriatal dopamine neurones, in vivo, against 6OHDA induced toxicity.   

 

4.2.1. Objective 1. Evaluate if FGF20 Protects VM Embryonic Dopamine Neurones 

against 6OHDA Toxicity 

In Chapter 2, using immunohistochemistry, FGFR1, 3, and 4 were demonstrated to be 

present in VM dopamine neurones, and others have shown FGF20 to protect VM 

embryonic dopamine neurones against serum withdrawal, glutamate toxicity, and 

6OHDA. The first objective of the current study was to confirm results from the Murase 

& McKay, 2006 study which demonstrated FGF20 to protect VM dopamine neurones 

against 6OHDA, in vitro. A VM embryonic dopamine neurone culture system was 

established, and neuroprotection experiments carried out in the VM cultures with 

FGF20 to evaluate whether it is able to protect VM dopamine neurones against 

6OHDA-induced dopaminergic cell loss.  

 

4.2.2. Objective 2. Evaluate if FGF20 has Neuroprotective Effects on Dopamine 

Neurones in the Partially Lesioned 6OHDA Rat Model of PD 

In Chapter 2, using immunohistochemistry, FGFR1, 3, and 4 were shown to be present 

in nigrostriatal dopamine neurones in the adult rat brain. Thus far, there are, however, 

no published studies that have investigated whether FGF20’s neuroprotective effects on 

dopamine neurones are also present, in vivo, in animal models of PD. In the current 

study it was, therefore, evaluated if FGF20 is able to protect nigrostriatal dopamine 

neurones in the partially lesioned 6OHDA rat model of PD. In a previous study carried 

out in our laboratory, a supra-nigral bolus injection of FGF20 failed to protect 

nigrostriatal dopamine neurones from 6OHDA (unpublished findings). The temporal 

pattern in which growth factors activate their receptors often plays an important role in 

determining their biological effects. In order to effectively mediate their neurotrophic 

actions some neurotrophins, for example, need to stimulate their receptors continuously 
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rather than intermittently (Peterson & Nutt, 2008). In the current study, it was evaluated 

whether FGF20 has neuroprotective effects on dopamine neurones in the partially 

lesioned 6OHDA rat model of PD when continuously delivered to the SN by osmotic 

mini-pumps over a more chronic time-period. The partially lesioned 6OHDA rat model 

of PD that was used in this study was the one that was established in Chapter 3, in 

which a 4µg intra-nigrally delivered dose of 6OHDA  induced an optimal ~60-80% 

nigrostriatal lesion.  

In the in vivo neuroprotection study, FGF20 was chronically delivered directly 

to the substantia nigra of rats over the course of 7 consecutive days with the use of 

osmotic mini-pumps. As these mini-pumps were implanted subcutaneously in the rats, 

the as yet undelivered FGF20 treatment reserve solutions were kept at ~37°C for the 

course of the 7 day delivery period. An in vitro stability study was, therefore, carried 

out with the aim of determining how long FGF20 retains its biological activity when 

kept in solution at 37°C. 

 

4.2.3. Objective 3. Evaluate whether the Endogenous FGF System Plays a Role in 

Protecting Nigrostriatal Dopamine Neurones against 6OHDA Toxicity in the Rat 

The FGF system plays an important physiological role in both the developing and the 

intact adult nigrostriatal dopaminergic system. A number of the FGF family members 

and all of the FGFRs are present in the nigrostriatal tract (detailed in section 2.1.5 and 

Chapter 2). Evidence from a number of studies have indicated that one of the main 

roles of the endogenous FGF system in the nigrostriatal tract is to stimulate and 

maintain the survival of dopamine neurones. In embryonic VM cultures, the FGFs 

stimulate the survival of dopamine neurones, and in the adult rat, downregulation of 

FGFR1 in dopamine neurones causes a partial degeneration of nigrostriatal dopamine 

neurones (detailed in section 4.1.2). Moreover, there is also convincing indirect 

evidence indicating that the endogenous FGF system acts to protect the nigrostriatal 

tract against 6OHDA induced dopamine neurone cell death. 6OHDA lesioning of the 

nigrostriatal tract causes a robust upregulation of FGF2 at all levels of the nigrostriatal 

tract, and exogenous administration of FGF2 protects dopamine neurones against 

6OHDA toxicity both in vitro, and in animal models of PD (detailed in section 4.1.4). It 

is, thus, likely that the increased endogenous production of FGF2 stimulated by 

6OHDA lesioning would also have a protective effect on the toxin exposed dopamine 

neurones in a similar manner as when exogenous FGF2 is applied. Moreover, evidence 
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from biochemical and genetic studies in humans have indicated that dysfunctioning of 

the FGF system might play a role in the aetiology of PD.  FGF2 protein is nearly 

completely absent in the SNc of PD patients (Tooyama et al., 1994), and a number of 

FGF20 SNPs have been found to be associated with an increased risk of PD (detailed in 

section 4.1.5). 

In the current study, experiments were carried out to evaluate whether the 

endogenous FGF system does, indeed, play a role in protecting nigrostriatal dopamine 

neurones by evaluating whether chronic pharmacological inhibition of FGFR signaling 

potentiates 6OHDA-induced nigrostriatal dopamine neurone degeneration in the rat. 

Partial 6OHDA nigrostriatal lesions were induced in rats, and it was evaluated whether 

chronic systemic administration of the FGFR inhibitor, PD173074 was able to 

potentiate the nigrostriatal degeneration induced by the partial 6OHDA lesion.   
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4.3. Methods 

4.3.1. Neuroprotection Studies in Ventral Mesencephalic Embryonic Dopamine 

Neurone Cultures  

4.3.1.1. Preparation of VM Cultures 

VM cultures were prepared from rat embryos using the same protocol detailed in 

section 2.3.2.   

 

4.3.1.2. Immunohistochemical Characterisation of the VM Cultures 

Immunohistochemical experiments were carried out to quantify the percentage of total 

cells in the VM cultures that were neurones, dopaminergic neurones, or GABAergic 

neurones. In these experiments neuronal nuclei (NeuN), TH, and glutamate 

decarboxylase-67 (GAD67) were used as markers of neurones, dopaminergic neurones, 

and GABAergic neurones, respectively. Additionally, VM cultures were also stained for 

glial fibrillary acidic protein (GFAP), a marker of astrocytes, in order to determine 

whether astrocytes are present in the VM cultures.  

Naive days in vitro-6 (DIV6) VM cultures were PFA fixed. DMEM FBS+ media was 

removed from the cultures, after which the cultures were washed with TBS, and then 

fixed by incubating the cultures in ice cold 4% PFA (dissolved in D-PBS, pH7.6) for 

10min at RT. The PFA-fixed cell cultures were washed with TBS and the cultures then 

incubated for 10min in a 3% hydrogen peroxide solution (dissolved in H2O) to 

inactivate any endogenous peroxidase activity. Thereafter, cultures were washed with 

TBS, and incubated in blocking/permeabilisation buffer (1% BSA, 10% NaAz, and 

0.1% Tween20 dissolved in 0.5M TBS, pH7.6) for 10min to block non-specific binding 

sites and also to permeabilise cell membranes. To detect NeuN, TH, GAD67, and 

GFAP, VM cultures were then incubated with rabbit polyclonal anti-NeuN (Millipore, 

ABN78, 1/5000), anti-TH (Chemicon, AB152, 1/1000), anti-GAD67 (Santa Cruz 

Biotechnology, sc-28376, 1/500), and anti-GFAP (DAKO, Z0334, 1/1000) primary 

antibody overnight at RT, respectively. Thereafter, cultures were washed with TBS to 

remove any unbound primary antibody. In all cases, cultures were then incubated with a 

donkey anti-rabbit biotinylated secondary antibody (Vectorlabs, BA-1000, 1/200) for 1h 

at RT. Finally, staining was then visualised with the HRP/DAB/ABC method and the 

stained coverslips mounted onto glass microscope slides with DPX using the same 



 
 

155  
 

protocol as described in section 2.3.3.2. The only exception is that the procedure was 

carried out on the VM coverslips rather than brain sections.  

 To calculate the percentages of NeuN+, TH+, and GAD67+ cells that were 

present in the immunostained cultures, digital images of the immunostained coverslips 

were taken at 10x magnification at 10 randomly selected areas on each of the coverslips 

using a Zeiss light microscope fitted with an Axiocam colour camera. The total number 

of positive cells and haematoxylin stained nuclei present in the 10 images were then 

quantified using ImageJ image analysis software. The percentage of the total number of 

cells present in the cultures  that were positive for the different markers were then 

calculated by dividing the total number of cells on an immunostained coverslip that 

were positive for a specific antigen by the total number of haematoxylin stained nuclei 

present in the same coverslip. The percentage total cell values generated for each of the 

different markers was derived from one coverslip.       

 

4.3.1.3. FGF20 Neuroprotection Experiments in the VM Cultures 

FGF20 (100 and 500ng/ml) or FGF20’s vehicle (DMEM Glutamax serum free media 

containing 10ng/ml rat serum albumin) treatments were freshly prepared and applied to 

the VM cultures on DIV6 for 24h, with all treatments being applied as 500µl volumes to 

each individual coverslip. Immediately after the FGF20 treatment period, on DIV7, the 

FGF20 treatment solutions were removed, and the cells were then exposed to either 

6OHDA (40, 50, or 60µM depending on the sensitivity of the culture, see paragraph 

below for more details) or 6OHDA’s vehicle (serum free media containing 0.02% 

ascorbic acid) for 4h. Final 6OHDA concentrations were applied to the cultures by 

adding 50µl of a 10x more concentrated 6OHDA stock solution directly to 450µl of 

serum free media previously added to each well. All the stock concentrations of 

6OHDA were dissolved in a 0.2% ascorbate solution (dissolved in PBS, pH7.6) to limit 

the inactivation of 6OHDA by auto-oxidation. At the end of the 6ODHA exposure 

period, the 6OHDA treatment solutions were replaced with normal FBS+ media. The 

cells were then kept in FBS+ media until the morning of DIV8, at which point they 

were fixed. The DMEM FBS+ media was removed from the cultures, after which the 

cultures were washed with D-PBS, and then fixed by incubating the cultures in ice cold 

4% PFA (dissolved in D-PBS, pH7.6) for 10min. Thereafter, the PFA solution was 

removed, and the cultures washed with D-PBS to remove all traces of the PFA.  
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In preliminary 6OHDA dose response experiments, different VM culture 

preparations were found to have varying sensitivities to 6OHDA toxicity. After carrying 

out a number of repeat experiments, it was determined that depending on the sensitivity 

of the culture, a dose of between 40-60µM 6OHDA induced an ~50-80% reduction in 

VM TH+ cell numbers. To accommodate for this variability in sensitivity to 6OHDA, 

all FGF20 neuroprotection experiments were carried out in parallel in cells treated with 

either a 40, 50 or 60µM concentration of 6OHDA. Results from only the 6OHDA 

concentration groups that caused ~50-80% of cell death were then selected for inclusion 

in analyses. 

 

4.3.1.4. Immunocytochemical Staining of the VM Cultures for TH and 

Quantification of TH+ Neurones 

The PFA-fixed VM cultures were immunocytochemically stained for the dopamine 

neurone marker, TH using the HRP/DAB ABC indirect staining method. Coverslips 

were immersed for 10min in a 3% H2O2 solution (dissolved in dH2O) to inactivate any 

endogenous peroxidase activity present in the cultures. The hydrogen peroxide solution 

was removed, the cultures washed with TBS, and the cultures were then incubated in 

blocking/permeabilisation buffer (1% BSA, 10% NaAz, and 0.1% Tween20 dissolved 

in 0.5M TBS, pH7.6) for 10min to block non-specific binding sites and also to 

permeabilise cell membranes. The blocking solution was removed, and the cultures 

incubated overnight in rabbit anti-TH primary antibody (Chemicon, AB152, 1/1000) at 

RT. Thereafter, the primary antibody solution was removed, the cultures washed with 

TBS, and the cultures were then incubated for 2h in secondary biotinylated goat anti-

rabbit secondary antibody (Vectorlabs, BA-1000, 1/200) at RT. In all cases, staining 

was then visualised with the HRP/DAB/ABC method and the stained coverslips 

mounted onto glass microscope slides with DPX using the same protocol as described in 

section 2.3.3.2. The only exceptions are that the procedure was carried out on the VM 

coverslips rather than brain sections, and the cultures in this study were not 

counterstained with haematoxylin.  

To quantify the total number of TH+ dopamine neurones that were present in 

each of the VM culture coverslips, images of the entire TH immunostained coverslips 

were taken at 10x magnification using a Zeiss light microscope fitted with an Axiocam 

colour camera. The total number of TH+ neurones on each coverslip was then counted 

blind using the image analysis program, ImageJ. For each treatment group, mean 
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(±sem) TH+ cell count values were derived from results from 3 independent repeat 

experiments, and in each repeat experiment, each treatment group comprised of 3-5 

coverslips. Mean TH+ cell count results were analysed with a one way ANOVA and 

Bonferroni post hoc tests. In these analyses, it was evaluated whether TH+ cell counts 

were significantly different in any of the treatment groups compared to control, or 

whether cell counts in the FGF20 + 6ODHA treatment groups were significantly 

different from that in the vehicle + 6OHDA treatment group.  

        

4.3.2. Neuroprotection Studies with FGF20 in the Partially Lesioned 6OHDA Rat 

Model of Parkinson’s Disease 

4.3.2.1. Animals 

Male Sprague Dawley rats were sourced and maintained exactly as described in section 

3.3.1.1.    

 

4.3.2.2. Preparation of Osmotic Mini-pumps and Brain Cannulae for Implantation  

In the in vivo FGF20 neuroprotection study, experiments were carried out to investigate 

whether FGF20 is capable of protecting nigrostriatal dopamine neurones against a 

partial 6OHDA lesion when it is chronically delivered directly to the substantia nigra of 

the rats. The chronic supra-nigral FGF20 infusions were delivered by subcutaneously 

implanted osmotic mini-pumps that were connected to chronically implanted supra-

nigral brain infusion cannulae.  Special dual-barrelled brain cannulae were used, which 

were composed of two cannulae embedded immediately adjacent to one another in a 

single plastic support mould. One of the two cannulae served as a regular guide cannula 

(26G) through which an injection needle could be inserted to deliver an intra-nigral 

infusion of 6OHDA, while the second cannula served as an infusion cannula (30G) to 

which an osmotic pump containing a FGF20 treatment solution could be connected. 

Three different FGF20 treatment groups were included in the study, a FGF20 vehicle 

group, a 1µg/day FGF20 group, and a 2.5µg/day group, and Alzet 1007D osmotic mini-

pumps (Alzet Osmotic Pumps, DURECT Corporation, Cuperto, US) were used to 

deliver the treatments. The 1007D osmotic pump model delivers treatment solutions 

continuously at a rate of 0.5µl/hr over a period of 7 days. For the 1µg/day and 

2.5µg/day treatment groups, the mini-pumps were, thus, filled with solutions containing 

FGF20 at a concentration of 83.4ng/ml, and 208ng/ml, respectively. The two different 
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FGF20 concentrations were freshly prepared by dissolving lyophilised FGF20 powder 

(Peprotech Inc., NJ, US) in an aCSF vehicle solution (148mM NaCl, 3mM KCl, 1.4mM 

CaCl2, 0.8mM MgCl2, 1.5mM HPO4, 0.2mM NaH2PO4, pH7.4) to which 100ng/ml of 

rat serum albumin was added to act as a carrier protein for FGF20 (hereafter referred to 

as FGF20 vehicle). For the vehicle group, mini-pumps were filled with FGF20 vehicle 

solution only. All of the mini-pumps were filled with 84µl of freshly prepared treatment 

solution, and a metal flow moderator tube was then inserted into the outflow channel of 

the pumps. Prior to filling the pumps, ~5cm lengths of plastic PVC-60 tubing 

(ID=0.72mm, PlasticsOne tubing obtained from Bilaney Consultants Ltd., UK, Kent) 

were firmly connected to the osmotic pump infusion cannulae of all of the dual-

barrelled cannulae. An appropriate FGF20 treatment solution was then flushed through 

the tubing until the entire piece of tubing and also the attached osmotic pump infusion 

cannula were completely filled with the solution. Thereafter, the remaining free end of 

the PVC tubing filled with treatment solution was then connected to an appropriate 

osmotic mini-pump by fitting it over the flow moderator tube of the mini-pump. At this 

point, the osmotic mini-pump/infusion cannulae sets were ready for implantation. All of 

the above steps were undertaken under sterile conditions.         

 

4.3.2.3. Implantation of the Osmotic Pump/Brain Cannulae Sets  

Using stereotaxic surgery, the dual cannulae were implanted unilaterally at a supra-

nigral location in the brain of the rats. The dual-cannulae were implanted at coordinates 

which resulted in the tip of the osmotic pump infusion cannula being positioned ~2mm 

directly above the substantia nigra (AP, +3.7; ML, +2.0; DV, +2.6, relative to the 

interaural line (Paxinos & Watson, 1993)). As the guide cannulae on the dual-cannulae 

were positioned directly adjacent to the osmotic pump infusion cannulae, the guide 

cannulae were also positioned supra-nigrally at the implantation coordinates used. The 

tip of the guide cannulae, however, only extended 2mm into the brain, as the guide 

cannulae only served as an entrance site for an injection needle through which an intra-

nigral infusion of 6OHDA could be delivered at a later time-point.      

The following procedure was used to implant the rats with the dual-cannulae and 

the osmotic mini-pumps that accompanied each of the cannulae. A brain cannula – 

along with the osmotic mini-pump that was connected to it - was fastened onto a guide 

cannulae holder, which was, in turn, fitted to a stereotaxic frame. The inter-aural line 

was used as a reference point to calculate the coordinates at which each of the cannulae 
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had to be implanted at. The osmotic pump infusion cannulae were, therefore, positioned 

so that their tips were located right in the centre of the tapered point of an ear bar that 

had been tightened in place on the stereotaxic frame. Once the AP and DV co-ordinates 

of the inter-aural line were recorded, rats were anaesthetised with a mixture of ketamine 

(75mg/kg, i.p.) and medetomidine (0.5 mg/kg, i.p.). Rats were mounted in the 

stereotaxic frame after shaving their scalps. Their scalps were disinfected with ethanol 

and povidone-iodine (Betadine), and a midline incision made in the scalp after checking 

for the absence of a hind-limb withdrawal response. The cranium was fully exposed 

using retractors, and the peri-cranial membrane scraped away with a scalpel blade. The 

tips of the osmotic pump infusion cannulae were then aligned with the midline of the 

rat’s skull, and the midline coordinates recorded. The AP, DV, and ML starting 

coordinates were then used to calculate the coordinates at which the cannulae needed to 

be implanted. A burr hole was made in the cranium at the point where the cannulae had 

to be lowered into place, and the exposed meninges pierced. When any bleeding had 

ceased, the cannulae were then lowered slowly into the brain until the tips of the 

cannulae were located at the desired DV coordinates (see above for coordinates). Two 

support screws were then screwed into place in locations immediately to the front and 

side of the cannulae. The implanted cannulae were then secured in place by encasing the 

support screws and cannulae together in a single mound of dental cement. After the 

dual-cannulae were successfully implanted, the osmotic mini-pumps that were 

connected to the implanted cannulae were implanted subcutaneously on the rostral 

hindback of the rat. Using the rostral end of the incision site on the skull as an entry 

point, a subcutaneous cavity was created in the rostral hindback of the rat with a blunt 

dissection scissor. The osmotic mini-pumps were then inserted into the cavity, and once 

the pumps were in place, the rats were removed from the stereotaxic frame. ~2-3 sutures 

were then inserted on either side of the implanted cannulae, so that the skin firmly 

enclosed the implanted cannulae, its cement encasing, and also the vinyl tubing 

connecting it to the osmotic pumps. Only small openings were left in the skin to allow 

access to the guide cannulae, and through this opening, metal stilettes were inserted into 

the guide cannula to maintain their patency. Rats were then administered with an 

atipamezole (1mg/kg, s.c.) injection to reverse the anaesthesia, and placed in a heated 

environment until recovery. Rats were given a saline injection (1ml, s.c.) to aid 

rehydration, and were maintained on a mashed food diet for 3 days post-surgery, or 

until rats started maintaining a healthy weight. A total of 26 rats were used in these 
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experiments, with 6 rats being used in both the 1µg/day and 2.5µg/day FGF20 groups, 

while 10 rats were used in the vehicle treated 6OHDA lesioned group.  

        

 4.3.2.4. Partial Unilateral Lesioning of the Nigrostriatal Tract with 6OHDA 

One day after implantation of the supra-nigral cannulae and the connected mini-pumps, 

the nigrostriatal tracts of the rats were partially lesioned with 4µg intra-nigral 6OHDA 

infusions. The implanted osmotic mini-pumps commenced the supra-nigral delivery of 

their loaded FGF20 treatment solutions at their maximal 0.5µl/hr rate as soon as they 

had been heated to ~37°C. The lesions were, thus, carried out after the rats had been 

pre-treated for 1 day with the different FGF20 treatments. 30min before the 6OHDA 

infusions were delivered, the rats were pre-treated with the noradrenaline reuptake 

inhibitor, desipramine (25 mg/kg i.p.), and MAO-B inhibitor, pargyline (5 mg/kg i.p.) as 

previously described in section 3.3.1.2. Under isoflurane anaesthesia, 4µg 6OHDA 

infusions were then delivered directly into the substantia nigra’s of the rats. A 5µl 

Hamilton micro-syringe was mounted onto an automated micro-infusion pump, and the 

tip of the syringe connected to a length of vinyl tubing which was, in turn, connected to 

a 33G stainless steel injection needle. The injection needle and the length of tubing to 

which it was connected, were then filled with 5µl of a 1µg/µl 6OHDA solution. The 

6OHDA solution was freshly prepared on the day of the lesioning, and it was dissolved 

in a 0.02% ascorbic acid solution, kept on ice, and wrapped in foil, all to minimise the 

inactivation of 6OHDA through auto-oxidation. The injection needle loaded with 

6OHDA solution was then inserted into the brains of the rats through the supra-nigrally 

positioned guide cannulae, and an  intra-nigral (AP, +3.7; ML, +2.0; DV, +2.2, relative 

to the inter-aural line, (Paxinos & Watson, 1993)) 6OHDA (4µg 6OHDA dissolved in 

4µl of vehicle) infusion was then delivered at a flow rate of 2µl/min. The injection 

needle was left in place for 4min after the infusion had finished, after which the needle 

was removed, and the rats were then allowed to recover from the anaesthesia in a heated 

environment.  

 

4.3.2.5. Measuring Motor Deficits with the Cylinder Test 

In Chapter 3, both the cylinder test and the amphetamine rotation test were identified as 

being appropriate motor tests to use in the in vivo neuroprotection study due to them 

having sufficient sensitivities to detect motor deficits in partially lesioned rats. 
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However, because the project licence that was used for the experiments in Chapter 3 did 

not permit the implantation of osmotic mini-pumps, the in vivo neuroprotection 

experiments in this chapter were carried under a different project licence that included 

the later procedure, but not the amphetamine induced rotation test. For this reason, only 

the cylinder test was used to measure motor function in this study. Motor function was 

measured using the cylinder test 3 days (acclimatisation session) and 2 days (baseline 

measurements) prior to 6OHDA lesioning, and on day 5, 8, and 11 post-lesioning 

according to exactly the same protocol used in section 3.3.2.1. Cylinder test results were 

also analysed in the same manner as described in the latter section, with the only 

exception being that the results in this study were analysed to determine whether 

ipsilateral forelimb use was significantly different in any of the FGF20 dose groups 

compared to the vehicle treated 6OHDA lesioned group at each of the time-points.   

 

4.3.2.6. Quantification of Nigrostriatal Tract Lesions using TH 

Immunohistochemistry  

On day 12 post-lesioning, rats were intra-cardially PFA perfusion fixed and the degree 

of  nigrostriatal degeneration present in each of the different groups was then quantified 

with TH immunohistochemistry using exactly the same protocols as employed in 

section 3.3.3. TH immunohistochemistry results were analysed in exactly the same 

manner as in section 3.3.3.3.3, with the only exception being that the results in this 

study were analysed to determine whether striatal % TH immunoreactivity levels and 

nigral TH+ cell counts in the FGF20 dose groups were significantly different to the 

vehicle treated 6OHDA lesioned group.  

 

4.3.3. FGF20 Stability Study 

In the FGF20 stability study, ERK1/2 phosphorylation assays were carried out in PC12 

cells to determine how long FGF20 retains its biological activity in solution when kept 

at 37°C. ERK1/2 activation was used as a measure of FGF20’s biological activity in this 

study as FGF20 was found to stimulate ERK1/2 phosphorylation in PC12 cells in 

preliminary experiments. 
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4.3.3.1. Maintenance of PC12 cells  

A PC12 cell line was obtained from Prof. Britta Eickholt (King’s College London), and 

the cells cultured according to the following protocol. The PC12 cells were grown in 

75cm2 filter-capped plastic NunC tissue culture flasks in FBS+ DMEM media (DMEM 

Glutamax media supplemented with 10% FBS, 100 units of penicillin, and 100g/ml of 

streptomycin). The cells were grown in a cell culture incubator under standard 

conditions, 37°C, 95% humidity, and 5%CO2. When cells reached a confluency of ~80-

100%, the cells were diluted and split into a new flask(s) to yield cultures with ~5x 

lower densities. To split the cells, the DMEM FBS+ media in which the cells were 

bathed in was removed, and the cells washed 2x in ~5ml sterile D-PBS solution, and the 

cells detached with trypsin. 1ml of trypsin solution (0.05% trypsin dissolved in EDTA) 

was added to each 75cm flask, and the cells left to incubate in the trypsin solution for 5-

10min. The flasks were agitated to dislodge any remaining attached cells, and 4ml of 

DMEM FBS+ media added to each flask to inactivate trypsin’s enzymatic activity. The 

diluted cell suspension was tritriated thoroughly, and 1ml of the suspension transferred 

into a new tissue culture flask. ~12ml of DMEM FBS+ media was added to the new 

flask, and the solution swirled around thoroughly to ensure the cells are evenly 

distributed throughout the flask. The flask containing the diluted cell suspension was 

then placed back into the cell culture incubator. The cells were then left to grow again 

until they reached ~80-100% confluency, at which point they were either used in 

experiments, or split again. Around 2x every week old media was removed and replaced 

with fresh media.  

 

4.3.3.2. Preparation and Handling of FGF20 Stock Solution 

A FGF20 test stock solution was prepared fresh from stock powder at the same 

concentration (208ng/µl) as that used for the highest dose group in the in vivo 

neuroprotection study. The FGF20 solution was made up in a sterile eppendorf tube, 

and it was dissolved in exactly the same aCSF vehicle solution (148mM NaCl, 3mM 

KCl, 1.4mM CaCl2, 0.8mM MgCl2, 1.5mM HPO4, 0.2mM NaH2PO4, 100ng/ml rat 

serum albumin, pH7.4) used in the in vivo neuroprotection study. The ability of the 

FGF20 test solution to stimulate ERK1/2 phosphorylation in PC12 cells was then 

measured immediately after the solution was freshly prepared (D0 measurements). 

Thereafter, the test solution was kept in an incubator at 37°C, and the ability of the 
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FGF20 solution to stimulate ERK1/2 activation was then tested daily over the course of 

the following 7 consecutive days using the protocol detailed in the following sections.  

 

4.3.3.3. Application of FGF20 to PC12 cells at each of the Time-Points 

PC12 cells were grown in 75cm2 tissue culture flasks in FBS+ DMEM media until they 

were ~80-100% confluent. At this point, the FBS+ media was removed from the flasks, 

and replaced by FBS- DMEM media, in which the cells were kept in overnight. FBS 

contains a number of different exogenous growth factors, many of which are likely to 

stimulate ERK1/2 phosphorylation in the PC12 cells. The cells were, therefore, kept in 

serum free media overnight, so that the lowest possible baseline ERK1/2 

phosphorylation levels could be achieved in the un-stimulated cultures. After the 

overnight serum withdrawal period, the FBS- DMEM media was removed from the 

flasks. A 200ng/ml FGF20 solution - previously prepared from the same test stock 

FGF20 solution that was kept at 37°C – was then applied to the flask of PC12 cells for 

5min. A 200ng/ml concentration of FGF20 was shown in preliminary ERK1/2 

phosphorylation studies to represent a supra-maximal FGF20 concentration. To 

generate un-stimulated baseline (control) ERK1/2 phosphorylation measurements, on 

day 0, a FBS- solution containing only FGF20’s vehicle was added to a separate flask of 

serum-starved PC12 cells for 5min. In all cases, FGF20 was dissolved in serum free 

DMEM media, and FGF20 and control treatments were delivered as 5ml volumes to 

each flask.  

 

4.3.3.4. Preparation of Cell Lysates from the Stimulated PC12 Cells 

In all cases, immediately after the application of the last test treatment, the treatment 

solutions were removed from the flasks, and 250µl of lysis buffer added to each flask to 

lyse the cells. Each ~250µl of lysis buffer consisted of 200µl of 

RadioImmunoPrecipitation Assay (RIPA) buffer to which 50µl of phosphatase inhibitor 

stock solution (phosphatase inhibitor set 3, Calbiochem), and 2.5µl of protease inhibitor 

stock solution (protease inhibitor set 1, Calbiochem) was added. The flasks were then 

kept on ice for 10min and agitated at intervals during this period to ensure all the cells 

in the flasks were completely lysed. The cell lysate in each of the flasks were then 

thoroughly mixed by trituration, and 400µl of the cell lysate was then pipetted into 

appropriately labelled ependorf tubes. 100µl of loading buffer (4% SDS, 10% 2-
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mercaptoethanol, 20% glycerol, and 0.004% bromophenol blue dissolved in 0.125M 

Tris HCl buffer) was added to each 400µl cell lysate sample, and the resulting solution 

mixed thoroughly and heated for 10min at 95°C. The cell lysate samples were then 

stored at -20°C in the freezer.     

 

4.3.3.5. Quantification of ERK1/2 Phosphorylation using Western Blot Analyses  

The level of ERK1/2 activation stimulated by each of the different treatments was 

quantified in Western blot experiments. The cell lysate samples were thawed, and the 

proteins in the samples separated according to molecular weight with sodium dodecyl 

sulphate polyacrylamide gel (SDS-PAGE) electrophoresis. SDS-PAGE gels were 

freshly prepared in gel moulds so as to contain an ~2cm stacking gel (3% 

polyacrylamide, 10%SDS, and 10% APS) positioned on top of a larger ~5cm separating 

gel (10% polyacrylamide, 10% SDS, and 10% APS). The gels were mounted into an 

electrophoresis tank, and the tank filled with running buffer (0.2M glycine and 10%SDS 

dissolved in 0.25M TBS, pH7.6). 20µl of each of the different cell lysate samples were 

then loaded into the gel wells. 4µl of molecular weight marker solution (RPN800E full-

range colour molecular weight markers, GEHealthcare) was also loaded into one of the 

remaining empty wells in the same gel. The samples were then run firstly for 20min at 

120V in order to line up the protein samples at the top of the separating gel, and then for 

a further ~90min at 160V until the dye wavefront diffused out of the gel. After 

removing the gels from the tanks, the stacking gel portion of the gel was discarded, 

while the separating gel containing the separated protein samples were immersed and 

agitated in transfer buffer solution (0.2M glycine and 20% methanol dissolved in 0.25M 

TBS, pH7.6) for 10min. Pieces of nitrocellulose membrane were soaked in dH2O for 

5min to activate them, and thereafter soaked for a further 5min in transfer buffer. The 

nitrocellulose membrane and acrylamide gel were then layered on top of one another 

and sandwiched together between layers of blotting paper in a transfer cassette. The 

transfer cassette was inserted into an electrophoresis tank together with an ice pack, and 

the tank filled with transfer buffer. Finally the proteins were transferred out of the gel 

and onto the nitrocellulose membrane by running the transfer for ~60min at 160V. After 

this, the nitrocellulose membranes containing the separated protein samples were 

retrieved from the transfer cassettes and washed for 10min in a TBS-Tween solution 

(0.1% Tween-20 dissolved in 0.25M TBS, pH7.6). 
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The phospho-ERK1/2 protein bands that were present on the membranes were 

visualised and quantified using an indirect immunofluorescence method utilising 

fluorescent secondary antibodies and an Odyssey infrared fluorescence imager. To 

block non-specific binding sites, the membranes were immersed and agitated in a 

blocking solution (5% low fat milk powder, 0.1%Tween-20, 0.25M TBS, pH7.6) for 1h 

at RT. The milk blocking solution was removed, and the membranes incubated 

overnight in the fridge with a rabbit polyclonal anti-phospho-p44/42 (phospho-ERK1/2) 

primary antibody (Cell Signalling, 4370, 1/10000) solution made up in blocking 

solution. The membranes were then washed 3x with a TBS-Tween wash solution 

(0.1%Tween-20, 0.25M TBS, pH7.6) to remove any excess unbound primary antibody. 

In all of the Western blot experiments, the housekeeping protein, Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as a loading control. Membranes were, 

thus, next incubated with mouse anti-GAPDH primary antibody (Abcam, ab9484, 

1/5000) for 1h at RT. Membranes were again washed 3x in TBS-Tween, and the 

membranes then incubated simultaneously with IRDye-800CW goat anti-mouse (Licor 

Biosciences, 926-32210, 1/1000) and IRDye 680LT donkey anti-rabbit secondary 

(Licor Biosciences, 926-32212, 1/1000) antibodies for 1h at RT. Membranes were 

washed 3x with TBS-Tween, and the phospho-ERK1/2 and GAPDH bands were then 

visualised using a Odyssey Li-COR infrared fluorescent imager (Licor Biosciences). 

The approximate molecular weight of each of the bands on a membrane was estimated 

by reference to the MW ladder, and used to determine the identity of each band. 

GAPDH has a predicted MW of ~40kDa, and the bands with a MW of ~40kDa, 

~42kDa, and ~44kDa were, thus, taken to represent the bands for GAPDH, phospho-

p42, and phospho-p44, respectively. Band densities were quantified using a tool in the 

Odyssey application software. The density measurement tool allows you to highlight a 

specific band of interest, and it then automatically generates the optical density 

measurement for the selected band. All phospho-ERK1/2 band density measurements 

were normalised by dividing the density measurements of each phospho-ERK1/2 band 

by the density measurement of the corresponding GAPDH band.                   
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4.3.4. Studies to Evaluate Whether Pharmacological Inhibition of the FGFRs is 

able to Potentiate 6OHDA Induced Nigrostriatal Degeneration in the Rat  

In this study experiments were carried out to investigate whether the selective FGFR 

inhibitor, PD173074 is able to potentiate the nigrostriatal dopamine neurone 

degeneration and/or motor deficits induced by a partial 6OHDA lesion when it is 

administered chronically by s.c. injections.   

 

4.3.4.1. Animals 

Male Sprague Dawley rats were sourced and maintained exactly as described in section 

3.3.1.1.    

 

4.3.4.2. Chronic Subcutaneous Administration of PD173074  

Three groups of rats were dosed daily for 8 days with either PD173074’s vehicle 

(10%DMSO, 10%PEG200 dissolved in PBS, pH7.6, s.c), or with one of two doses of 

PD173074 (1mg/kg or 2mg/kg, s.c, dissolved in vehicle). The daily PD173074 

treatments were started 3 days prior to 6OHDA lesioning, and continued for 5 

consecutive days thereafter. The PD173074 treatment solutions were prepared fresh 

each day under sterile conditions. A total of 26 rats were used in these experiments, 

with 8 rats being used in both the vehicle and 1mg/kg PD173074 groups, while 7 rats 

were used in the 2mg/kg PD173074 group.  

 

4.3.4.3. Partial Unilateral 6OHDA Lesioning of the Nigrostriatal Tract of the 

PD173074 Treated Rats  

Three days after the daily PD173074 injections had commenced, and on the fourth 

PD173074 treatment day, the nigrostriatal tract of the rats were partially lesioned with a 

4µg intra-nigral 6OHDA infusion using nearly exactly the same protocol as described in 

section 3.3.1.3. The only exception is that rather than infusing the rats with vehicle or a 

range of 6OHDA doses, all rats received a 4µg intra-nigrally delivered dose of 6OHDA 

in the current study. On day 6 post-lesioning, rats were administered with an overdose 

of pentobarbital, and intra-cardially perfusion fixed with PFA (ice cold 4% PFA 

dissolved in 0.9% NaCl, pH 7.6). 
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4.3.4.4. Measurement of Motor Deficits in the PD173074 treated 6OHDA Lesioned 

Rats using The Adjusted Stepping and The Cylinder Test 

Motor function was measured using both the cylinder test and the adjusted stepping test 

according to exactly the same protocols as used in section 3.3.2.1 and section 3.3.2.2, 

respectively. Both tests were carried out 2 days (acclimatisation session) and 1 day 

(baseline measurements) before the PD173074 injections started, and on day 3 and 5 

post-lesioning. Cylinder test and adjusted stepping test results were analysed in the 

same manner as described in section 3.3.2.1 and section 3.3.2.2, respectively, with the 

only exception being that the results in this study were analysed to determine whether 

motor deficits were significantly different in any of the PD173074 dose groups 

compared to the vehicle treated 6OHDA lesioned group at each of the time-points.   

 

4.3.4.5. Measurement of Amphetamine-Induced Rotational Behaviour in the 

PD173074 treated 6OHDA Lesioned Rats 

Amphetamine-induced rotations were measured on day 6 post-lesioning using exactly 

the same protocol as described in section 3.3.2.3. Results were also analysed in nearly 

exactly the same manner as in the latter section, with the only exceptions being that 

peak net ipsiversive rotations were calculated for a 45min time-period, and results were 

analysed to determine if peak net ipsiversive rotations in the PD173074 dose groups 

were significantly different to the vehicle treated 6OHDA lesioned group.  

 

4.3.4.6. Quantification of Nigrostriatal Tract Lesions using TH 

Immunohistochemistry in the PD173074 Treated Rats  

On day 7 post-lesioning, rats were intra-cardially PFA perfusion fixed and the degree of 

nigrostriatal degeneration present in each of the different groups was then quantified 

with TH immunohistochemistry using exactly the same protocols as employed in 

section 3.3.3. TH immunohistochemistry results were analysed in exactly the same 

manner as in the latter section with the only exception being that the results in this study 

were analysed to determine whether striatal TH levels and nigral TH+ cell counts in the 

PD173074 dose groups were significantly different to the vehicle treated 6OHDA 

lesioned group.  
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4.3.5. Drugs and Chemicals 

PD173074 was obtained from Tocris Bioscience Ltd (UK, Bristol). Rat serum albumin 

was purchased from Sigma Aldrich Ltd (UK, Dorset), and all other drugs and chemicals 

were obtained from the same suppliers detailed in section 3.3.5, or from Sigma Aldrich 

Ltd. (UK, Dorset). 
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4.4. Results 

4.4.1. Neuroprotection Study with FGF20 in VM Cultures  

4.4.1.1. Immunohistochemical Characterisation of the Embryonic VM Cultures 

VM embryonic cultures at DIV6 were immunohistochemically characterised to define 

the cell populations that made up the culture. NeuN, TH, GAD67, and GFAP were used 

as markers of neurones, dopamine neurones, GABAergic neurones, and astrocytes, and 

all of these cell types were found to be present in the cultures (Fig 4.1). Neuronal cells 

made up ~45% of the total population of cells present in the culture, with TH+ 

dopamine neurones and GAD67+ GABAergic neurones making up ~3.5%, and ~7.4% 

of the total cell population, respectively. Astrocytes were present in large numbers, and 

they were ubiquitously distributed throughout the whole culture.  
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4.4.1.2. FGF20 Protects VM Dopamine Neurones against 6OHDA Toxicity 

FGF20 protected VM embryonic TH+ dopamine neurones against 6OHDA toxicity 

(Fig 4.2). The  mean TH+ cell count in the control group was ~990, and in the vehicle + 

6OHDA group, TH+ cell numbers were reduced to ~425, a cell count that was found to 

be  significantly lower compared to the control group (p<0.01). In the 100ng/ml and 

500ng/ml FGF20 + 6OHDA treatment groups, mean TH+ cell counts were preserved at 

~850 and ~904, respectively. In the vehicle + 6OHDA group, TH+ cell numbers were, 

thus, reduced by ~67% relative to the control group. Both FGF20 concentrations 

provided a significant protection against this cell death (p<0.05), with TH+ cell counts 

only being reduced by ~15% and ~9% in the 100ng/ml and 500ng/ml FGF20 + 6ODHA 

treatment groups compared to control, respectively. Furthermore, in both the FGF20 

treatment groups, TH+ cell numbers were preserved at control levels, as there was no 

significant difference between the number of TH+ cells present in both of the FGF20 

treatment groups compared to the control group. 
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4.4.2. Neuroprotection Studies with FGF20 in the Partially Lesioned 6OHDA Rat 

4.4.2.1. FGF20 Protects Nigrostriatal Dopamine Neurones against 6OHDA in Rats 

Neuroprotection studies were carried out to evaluate if FGF20 is able to protect 

nigrostriatal dopamine neurones in the partially lesioned 6OHDA rat model of PD. 

Chronic supra-nigral infusions of FGF20 dose-dependently protected dopamine 

neurones against a partial nigrostriatal lesion induced by a 4µg intra-nigral 6OHDA 

infusion (Fig 4.3 and 4.4). The 2.5µg/day but not the 1µg/day FGF20 dose preserved 

both striatal TH levels (Fig 4.3) and nigral TH+ cell numbers (Fig 4.4) at significantly 

higher levels compared to the vehicle treated 6OHDA lesioned group.  

In the vehicle treated 6OHDA lesioned group, striatal TH levels in the lesioned 

striatum was ~54% lower compared to the non-lesioned contralateral striatum, while in 

the 2.5µg/day group, striatal TH levels in the lesioned striatum was only ~33% lower 

vs. the contralateral striatum (Fig 4.3). Striatal TH levels were, thus, preserved at ~21% 

higher levels in the 2.5µg/day group compared to the vehicle treated 6OHDA group. 

Striatal TH levels in the 1µg/day FGF20 dose group was ~48%, levels equivalent to that 

in the vehicle treated 6OHDA lesioned group. 

In the vehicle treated 6OHDA lesioned group, TH+ cell numbers were reduced 

by ~71% in the lesioned SNc compared to the non-lesioned contralateral hemisphere, 

while in the 2.5µg/day group nigral cell counts were reduced by only ~50% compared 

to the non-lesioned SNc (Fig 4.4). Nigral cell counts were, thus, preserved at ~18% 

higher levels in the 2.5µg/day treatment group compared the vehicle treated group. In 

the 1µg/day FGF20 group, nigral cell counts in the lesioned hemisphere were reduced 

by ~68% to levels equivalent to that present in the vehicle treated 6OHDA lesioned 

group. 
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4.4.2.2. Effects of FGF20 on the Motor Deficits Induced by a Partial 6OHDA 

Lesion in Rats 

The cylinder test was used to assess whether chronic FGF20 treatment reduces the 

motor deficits induced by a partial 6OHA lesion in rats. Both of the FGF20 doses failed 

to preserve motor function at significantly higher levels compared to the vehicle treated 

6OHDA lesioned group (Fig 4.5). There was, however, a strong trend towards motor 

deficits being lower in the 2.5µg/day FGF20 group compared to vehicle, at all of the 

time-points, post-lesioning. At baseline, ipsilateral forelimb use alone (as a % of total 

forelimb use) was ~13%-20% in the different groups, and at this time-point there were 

no significant differences in ipsilateral forelimb use between the groups. In the vehicle 

group, ipsilateral forelimb use increased to ~45-68% on post-lesioning time-points, 

while in the 2.5µg/day FGF20 treatment group, ipsilateral forelimb use increased to 

only ~28-46%. Motor deficits in the affected contralateral forelimb were, thus, ~16-24% 

lower in the 2.5µg/day FGF20 group compared to vehicle on post-lesioning time-points, 

although these differences were found not to be statistically significant. In the 1µg/day 

FGF20 group, ipsilateral forelimb use increased to ~44-59% on post-lesioning time-

points, which represented equivalent increases to that observed in the vehicle treated 

rats. Furthermore, in the vehicle group, ipsilateral forelimb use was significantly higher 

at all of the time-points, post-lesioning, when compared to baseline levels (p<0.05), 

while, in the 2.5µg/day treatment group, on the other hand, ipsilateral forelimb use was 

not significantly higher at any of the time-points, post-lesioning, when compared to 

baseline levels. In the 1µg/day group, ipsilateral forelimb use was significantly higher 

compared to baseline levels on day 5 and 8 (p<0.05), but not day 8, post-lesioning.  
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4.4.3. Stability of FGF20’s Biological Activity when kept at 37°C 

ERK1/2 phosphorylation experiments were carried out in PC12 cells to determine how 

long FGF20 retains its biological activity when kept at 37°C. Results from this study 

indicated that FGF20 only retains its biological activity for up to a maximum of 3 days 

or 72h when it is kept in solution at 37°C (Fig 4.6). In the un-stimulated control group, 

normalised phospho-ERK1/2 band densities were around ~0.17-0.36 arbitrary units. 

FGF20 stimulated ERK1/2 activation at levels higher than that observed in the control 

on day 0, when a freshly prepared FGF20 solution was applied to the cells, and also on 

day 1 and 2, at which points the FGF20 solution had been at 37°C for 1 and 2 days, 

respectively. FGF20 stimulated an ~2-4.8 fold increase in ERK1/2 activation on day 0, 

1, and 2 compared to control, as phospho-ERK1/2 band densities were ~0.53-0.77 on 

the latter time-points. At all subsequent time-points, FGF20, however, failed to 

stimulate ERK1/2 activation at levels greater than that observed in the control group, as 

phospho-ERK1/2 band densities of ~0.06-0.26 were detected on the D3-D6 time-points. 
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4.4.4. Effects of PD173074 in Partially Lesioned 6OHDA Rats 

4.4.4.1. Effect of PD173074 on 6OHDA-induced Nigrostriatal Degeneration in Rats 

The FGFR antagonist, PD173074, was evaluated for its ability to potentiate 6OHDA-

induced nigrostriatal dopamine neurone degeneration in partially lesioned rats. In the 

vehicle treated group, the 4µg intra-nigral 6OHDA infusions successfully induced 

partial unilateral nigrostriatal lesions in the rats (Fig 4.7 & 4.8). Chronic subcutaneous 

PD173074 administration, however, failed to significantly potentiate the partial 

nigrostriatal dopamine neurone degeneration induced by a 4µg intra-nigral infusion of 

6OHDA (Fig 4.7 & 4.8). There was, however, a strong trend towards striatal TH levels 

being lower in both the PD173074 groups compared to the vehicle treated 6OHDA 
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lesioned rats (Fig 4.7). Additionally, there was also a trend towards nigral TH+ cell 

numbers being lower in the 2mg/kg group compared to the vehicle group (Fig 4.8).  

In the vehicle treated group, TH levels in the lesioned striatum was ~53% lower 

compared to the non-lesioned contralateral striatum, while in the 1 and 2mg/kg 

PD173074 groups, TH levels in the lesioned striatum was ~63% and~ 67% lower 

compared to the contralateral striatum, respectively (Fig 4.7). Thus, striatal TH levels 

were ~10% and ~14% lower in the 1 and 2mg/kg PD173074 groups compared to the 

vehicle group, respectively, although these differences were found not to be statistically 

significant.  

At the nigral level, TH+ cell numbers were reduced by ~71% in the lesioned 

SNc of the vehicle group compared to the non-lesioned contralateral hemisphere, while 

in the 2mg/kg PD173074 group, nigral cell counts were reduced by ~84% compared to 

the non-lesioned SNc (Fig 4.8). Nigral cell counts were, thus, ~13% lower in the 

2mg/kg PD173074 group compared the vehicle treated 6OHDA lesioned group, 

although this difference was found not to be statistically significant. Nigral TH+ cell 

counts in the lesioned SNc of the 1mg/kg group were ~75% lower compared to the non-

lesioned SNc, which represents a similar reduction to that observed in the vehicle 

treated 6ODHA lesioned rats.    
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4.4.4.2 Effect of PD173074 on the Rotations Stimulated by Amphetamine in 

Partially Lesioned 6OHDA Rats 

Chronic PD173074 administration failed to significantly potentiate the ipsiversive 

rotations stimulated by amphetamine in partially lesioned 6OHDA rats (Fig 4.9). There 

was however a strong trend towards amphetamine-induced rotations being higher in 

both the 1mg/kg and 2mg/kg PD173074 groups compared the vehicle treated 6OHDA 

lesioned rats. Amphetamine stimulated a time-dependent increase in net ipsiversive 

rotations in all of the treatment groups (Fig 4.9.A). Peak net ipsiversive rotations 

occurred in the 25 to 70min time-period, post-amphetamine injection (Fig 4.9.A).  

Amphetamine induced ~411, ~444 net cumulative ipsiversive rotations in the 1 and 

2mg/kg PD173074 groups, respectively, while only ~251 rotations were recorded in the 

vehicle treated 6OHDA lesioned group (Fig 4.9.B). Amphetamine-induced rotational 

behaviour was, thus, ~1.6 and ~1.8 fold higher in the 1mg/kg and 2mg/kg groups 

compared to the vehicle group, although these differences were found not to be 

statistically significant.  
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4.4.4.3. Effect of PD173074 on the Motor Deficits detected by the Adjusted 

Stepping and Cylinder Test in Partially Lesioned 6OHDA Rats 

In the cylinder test, no significant differences in motor deficits were found to exist 

between the groups at any of the time-points (Fig 4.10). There was, however, a trend 

towards motor deficits (% increases in ipsilateral forelimb use alone) being greater in 

both the 1mg/kg and 2mg/kg PD173074 groups compared to vehicle, at all of the time-

points, post-lesioning (Fig 4.10). At baseline, ipsilateral forelimb use alone was ~9-13% 

in the different treatment groups. In all of the treatment groups, ipsilateral forelimb use 

was significantly higher on all of the post-lesioning time-points when compared to 

baseline (p<0.01). In the vehicle treated 6OHDA lesioned group, ipsilateral forelimb 

use increased to 63-70% on post-lesioning time-points, while in the 2mg/kg PD173074 

group, ipsilateral forelimb use increased to ~77-85%. In the 1mg/kg PD173074 group, 

ipsilateral forelimb use increased to ~77% post-lesioning. Motor deficits detected by the 

cylinder were, thus, ~15% higher in the 2mg/kg PD173074 group, and 7-14% higher in 

the 1mg/kg group compared to the vehicle treated 6OHDA lesioned group. These 

differences were, however, found not be statistically significant.   
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PD173074 significantly potentiated the motor deficits detected by the adjusted stepping 

test in unilateral partially lesioned 6OHDA rats (Fig 4.11). At baseline, the different 

treatment groups made ~17-18 adjusted steps with their contralateral forelimbs, and 

significant motor deficits were detected in the affected contralateral forelimbs of all of 

the three groups at both time-points, post-lesioning, when compared to baseline (Fig 

4.11). In the vehicle group, contralateral forelimb measurements were ~17% lower on 

post-lesioning time-points when compared to baseline (p<0.01). In the 1mg/kg/day and 

2mg/kg/day PD173074 groups, contralateral forelimb measurements were ~28% and 

22% lower on post-lesioning time-points, respectively, when compared to baseline 

(p<0.01), and at both time-points post-lesioning, adjusted step measurements were 

significantly lower in the two PD173074 treatment groups compared to the vehicle 

treated 6OHDA lesioned rats (p<0.05).  
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4.5. Discussion 

Recent findings have indicated that FGF20 might have neuroprotective potential in the 

treatment of PD. In immunohistochemistry experiments carried out in Chapter 2 of this 

thesis, FGFR1, 3, and 4 were shown to be localised to dopamine neurones in VM 

embryonic cultures, and in the rat nigrostriatal tract, while others have shown FGF20 to 

protect primary VM embryonic dopamine neurones, in vitro, against serum withdrawal, 

glutamate toxicity, and 6OHDA (detailed in section 4.1.5). In the current study a 

number of experiments were carried out to further investigate FGF20’s neuroprotective 

effects on dopamine neurones. In vitro, it was firstly evaluated if FGF20 is able to 

protect VM embryonic dopamine neurones against 6OHDA, and in a subsequent in vivo 

study it was evaluated whether FGF20 is able to protect nigrostriatal dopamine 

neurones in the partially lesioned 6OHDA rat model of PD. Lastly, in a separate in vivo 

study, experiments were carried out to evaluate whether the endogenous FGF system in 

the nigrostriatal tract is able to protect dopamine neurones against injury, by evaluating 

whether pharmacological inhibition of FGFR activation is able to potentiate 6OHDA-

induced nigrostriatal degeneration in the rat.  

 

4.5.1. Neuroprotective Effects of FGF20 on Dopamine Neurones in VM Embryonic 

Cultures 

Results from the in vitro neuroprotection study confirm the findings from the Murase & 

McKay, 2006 study which showed FGF20 to protect VM dopamine neurones against 

6OHDA. Two concentrations of FGF20 (100 and 500 ng/ml) were tested for their 

ability to protect VM dopamine neurones against 6OHDA, and both of these 

concentrations preserved TH+ cell numbers at control levels. A maximal protective 

effect was, thus, achieved with the 100ng/ml concentration of FGF20, with negligible 

further benefits resulting from the higher 500ng/ml concentration. In this study, 

concentrations of FGF20 lower than 100ng/ml were not tested. Results from the Murase 

& McKay, 2006 study have, however, shown that an even lower concentration of 

FGF20 of 10ng/ml can provide maximal protection against 6OHDA induced dopamine 

neurone cell death in the VM culture system. Based on these findings, the 500ng/ml 

concentration tested in this study represents an excessively high concentration of 

FGF20. The results showing the 500ng/ml FGF20 concentration to provide an 

equivalent magnitude of protection compared to the 100ng/ml concentration, therefore, 
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serves to demonstrate that FGF20 does not mediate any toxic effects when applied at 

relatively high concentrations.  

In Chapter 2, FGFR1, 3, and 4 immunoreactivity was shown to be present in 

VM dopamine neurones, and FGFR1 and 3 were also found to be localised to astrocytes 

in the cultures. Additionally, although there are currently no reports demonstrating 

FGFR2 to be present in VM cultures, this receptor is also likely to be present in the VM 

cultures, as FGFR2 has been shown to be abundantly and ubiquitously expressed in the 

developing mouse midbrain through E9.5 to E16 (Ford-Perriss et al., 2001). Based on 

these results and also on previous findings showing FGF20 to be a relatively non-

selective agonist of the different FGFR subtypes (Zhang et al, 2006), FGF20’s 

neuroprotective effects could, thus, potentially be mediated through any of the FGFR 

subtypes in the VM cultures. The presence of the FGFR1 and 3 in astrocytes within the 

VM cultures also leaves open the possibility that FGF20’s neuroprotective effects might 

be either partly or wholly mediated through an indirect astrocyte dependent mechanism. 

As the neuroprotective effects of FGF2 on VM dopamine neurones have been shown to 

be mediated at least partly through an astrocyte-dependent mechanism (detailed in 

section 4.1.4), it is likely that FGF20 might also be mediating its protective effects 

through a similar mechanism, especially as FGF20 and FGF2 are both relatively non-

selective agonists at all of the FGFRs (Ornitz et al., 1996; Ford-Perriss et al., 2001; 

Eswarakumar et al., 2005; Zhang et al., 2006; Heinzle et al., 2011).  

 

4.5.2. Neuroprotective Effects of FGF20 on Dopamine Neurones in the Partially 

Lesioned 6OHDA Rat Model of PD 

After confirming FGF20 to have neuroprotective effects on dopamine neurones, in 

vitro, in the VM cultures, experiments were subsequently carried out to evaluate 

whether FGF20 is also able to protect nigrostriatal dopamine neurones in vivo, in the 

6OHDA rat model of PD. In this study, it was evaluated whether FGF20 is able to 

protect nigrostriatal dopamine neurones against a partial 6OHDA lesion when 

chronically delivered directly into the SN with the use of osmotic mini-pumps. The 

results from this study show for the first time that FGF20 is able to protect nigrostriatal 

dopamine neurones, in vivo, in the 6OHDA rat model of PD. FGF20 preserved 

nigrostriatal neurones in a dose-dependent manner, with a 1µg/day dose failing to 

provide any protection, while a 2.5µg/day dose preserved both striatal TH levels and 

nigral TH+ cell counts at significantly higher levels compared to the vehicle treated 
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6OHDA lesioned rats. The prototype FGF family member, FGF2 has in a number of 

studies been shown to have similar neuroprotective effects on dopamine neurones in the 

6OHDA rat model of PD (detailed in section 4.1.4). As FGF20 and FGF2 are both 

relatively non-selective FGFR agonists (Ornitz et al., 1996; Ford-Perriss et al., 2001; 

Eswarakumar et al., 2005; Zhang et al., 2006; Heinzle et al., 2011), it is, thus, not 

surprising that FGF20 also has protective effects in the 6OHDA rat model of PD. The 

significant preservation of nigrostriatal dopamine neurones in the 2.5µg/day group 

resulted in motor function being preserved in this group, as the motor deficits detected 

by the cylinder test were lower in 2.5µg/day group compared to the vehicle treated 

6OHDA lesioned rats at all time-points, post-lesioning. This preservation of motor 

deficits was, however, not statistically significant, but based on the strong trend towards 

the motor deficits being lower in the 2.5ug/day on all time-points, post-lesioning, it is 

probable that the lack of significance is the result of insufficient ‘n’ numbers being used 

in this study.             

Taken together, these findings provide further support that pharmacological 

activation of the FGF system in the nigrostriatal tract could potentially provide 

neuroprotection in PD. A myriad of other growth factors have previously been shown to 

have neuroprotective effects on dopamine neurones in the 6OHDA rat model of PD, 

including not only other members of the FGF family such as FGF1 and FGF2, but also 

GDNF, BDNF, CDNF and many others (detailed in section 1.5 & 4.1.2). Results from 

the current study, however, do not suggest that FGF20 would offer superior therapeutic 

effects in PD as a neuroprotective treatment compared to these other neurotrophins. 

First of all, based on the moderate magnitude of the neuroprotective effect obtained with 

FGF20 in this study, it is unlikely that FGF20 would have superior neuroprotective 

efficacy than FGF2 or many of the other neurotrophins. In the current study, FGF20 

preserved nigrostriatal dopaminergic neurones at ~18-21% higher levels compared to 

vehicle treated 6OHDA lesioned rats, whereas a number of other growth factors, 

including GDNF, FGF2, and IGF-1 have been shown to preserve nigrostriatal 

dopaminergic neurones by ~40-70% in similar experimental contexts to that used in this 

study (Kearns & Gash, 1995; Guan et al., 2000; Shults et al., 2000; Fox et al., 2001). 

Furthermore, in a previous in vitro study, FGF20’s neuroprotective effects were 

reported to be selective for dopamine neurones in VM cultures (Ohmachi et al., 2003). 

It was suggested that this apparent selectivity for dopamine neurones would potentially 

impart an advantage on FGF20 over other neuroprotective growth factors, in a 
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therapeutic setting, as the increased relative selectivity of FGF20 for dopamine neurones 

would likely result in it having less side effects, as many of the other growth factors 

have been documented to non-selectively protect a number other cell types, including 

glial cells, GABAergic neurones, and cholingergic neurones (Hyman et al., 1994; 

Krieglstein, 2004), at least in vitro. Findings from the VM neuroprotection study and 

also from others, however, contradict the notion that FGF20 specifically protects 

dopamine neurones in vitro. Although the protective effects of FGF20 on non-

dopaminergic neurones were not quantified in the VM study, it was obvious that FGF20 

non-selectively protected the integrity of the VM culture as a whole. In the vehicle 

treated 6OHDA groups, it could be observed that 6OHDA consistently caused large 

portions of the VM cultures to detach, whereas in the FGF20 treated cultures, only very 

limited cell detachment was observed. As dopamine neurones only made up ~3.5% of 

the culture, such extensive preservation of the VM cultures as to make it obviously 

apparent could only reflect FGF20 also having a protective effect on other non-

dopaminergic cells that made up the cultures. The contention that FGF20 has a non-

selective neuroprotective effect on VM cultures is also supported by a previous study 

which showed FGF20 to inhibit apoptosis in non-dopaminergic neurones in human 

embryonic stem cell derived dopamine neurone cultures (Correia et al., 2007). 

Furthermore, results from Chapter 2 showing the FGFRs to be present in non-

dopaminergic neurones and glial cells in VM cultures together with the fact that FGF2 - 

a FGF family member with an equivalent selectivity for the FGFR subtypes to FGF20 - 

has non-selective protective effects in VM cultures argues against the likelihood of 

FGF20 having a selective effect on dopamine neurones.  

There have, thus far, been no comprehensive efforts to distinguish which of the 

many neurotrophins with neuroprotective effects on dopamine neurones have the 

greatest neuroprotective potential in PD. A study comparing the relative neuroprotective 

efficacy of the most studied neurotrophins under the same experimental conditions, in 

vivo, are, thus, needed. The results from such a comparative study would then allow the 

identification of the neurotrophins and the neurotrophin receptors with the greatest 

neuroprotective potential in PD, allowing future research efforts to be focused on 

targeting the most promising neurotrophin systems. Furthermore, it would also be 

interesting to evaluate if a more efficacious neuroprotective effect might be obtained if 

two or more different classes of neurotrophins that are known to have neuroprotective 

effects on dopamine neurones are applied in combination.        
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In the current study, FGF20 was evaluated for its neuroprotective effects in a 

partially lesioned 6OHDA rat model of PD instead of a fully lesioned model. This was 

done not only because a partially lesioned model is considered a more clinically 

representative model, but also because a partial lesion model is likely to give a 

neuroprotective test treatment a greater opportunity to mediate any beneficial effects 

compared to a full lesion model. As detailed in section 3.1.1.4.4, a test treatment has the 

opportunity to have a therapeutic effect through 3 possible mechanisms in a partially 

lesioned model. It could have a neuroprotective effect by preventing the neurones 

exposed to lethal concentrations of toxin from dying (Alexi et al., 2000). Secondly, it 

could have a regenerative effect by restoring any damaged neurones to a functional state 

(Bowenkamp et al., 1995). Thirdly, it could also increase the functioning of any 

remaining healthy neurones, providing symptomatic relief by compensating for the loss 

in functionality caused by the lesion (Gash et al., 1995; Gash et al., 1996). In the in vivo 

neuroprotection study, FGF20 was infused directly into the SN of the rats for 7 

consecutive days, with the FGF20 infusions commencing one day prior to 6OHDA 

lesioning. As the delivery of FGF20 infusions were started one day prior to lesioning, it 

is possible that the 2.5µg/day FGF20 treatment preserved nigrostriatal dopamine 

neurones by having a neuroprotective effect on the nigrostriatal dopamine neurones. 

That is, FGF20 quite likely affected changes in the dopamine neurones, during the 

period before and close to when the lesioning was carried out, which made them more 

resistant to the toxic cell death inducing effects of 6OHDA, consequently resulting in 

less nigrostriatal dopamine neurones ultimately succumbing to 6OHDA-induced cell 

death. As the FGF20 infusions continued for 6 days post-lesioning, it is possible that the 

increased number of TH+ neurones observed in the 2.5ug/day group compared to 

vehicle could also have been the result of FGF20 stimulating the regeneration and 

restoration of the dopaminergic phenotype in the population of damaged but still viable 

nigrostriatal dopaminergic neurones which lost their dopaminergic phenotype. Results 

from the FGF20 stability studies, however, suggest that the preservation of the 

nigrostriatal dopamine neurones mediated by FGF20 is unlikely to be due to a 

regenerative effect mediated by FGF20. In the neuroprotection study, the osmotic mini-

pumps were implanted subcutaneously, and this meant that the FGF20 treatment 

solutions would have been kept at a temperature of 37°C for the duration of the 7 day 

infusion period. As FGF2 has been shown to have a relatively short half-life of ~24h 

when kept at 37°C and neutral pH (Gospodarowicz et al., 1986), there was a concern 
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that the same might apply to FGF20, which would mean that FGF20 might have lost its 

biological activity during the delivery period. For this reason, a stability study was 

carried out to determine how long FGF20 retains its biological activity when kept at 

37°C. These studies were unfortunately carried out after rather than before the in vivo 

neuroprotection study due to the facilities to carry out the study only being available at a 

later time. In the stability experiments, ERK1/2 phosphorylation assays were carried out 

to ascertain how long FGF20 retains its ability to stimulate ERK1/2 activation in PC12 

cells when it is kept at 37°C. Results from the study suggest that FGF20 only retains its 

biological activity for up to 3 days, at most, when kept at 37°C. Based on these results, 

it is, thus, likely that the beneficial effects mediated by the 2.5µg/day FGF20 dose were 

brought about by actions stimulated by FGF20 on only the first 2 or 3 days immediately 

after the mini-pumps were implanted, and it is likely that FGF20 actually had no further 

pharmacological effect at later time-points. As this would have resulted in FGF20 only 

having a relatively acute pharmacological effect before and immediately around the 

time of lesioning, it is likely that the preservation of nigrostriatal dopamine neurones 

represents primarily a neuroprotective effect mediated by FGF20 rather than a 

regenerative effect. Further investigations are, thus, needed to specifically investigate 

whether FGF20 has any regenerative capabilities. This could be evaluated in 

experiments in which the FGF20 treatments are only commenced a number of days after 

lesioning, at a time-point after which most degeneration has already occurred. In the rat, 

FGF2 has been demonstrated to stimulate not only the survival but also the regeneration 

of a number of different nerves after injury, including the sciatic nerve and motor nerves 

in the peripheral nervous system, and the optic nerve in the CNS (detailed in section 

4.1.1). Based on these findings, there is a reasonable chance that FGF20 might be able 

to stimulate such a regenerative response in the lesioned nigrostriatal tract. Furthermore, 

results showing FGF20 to upregulate TH activity and expression in VM dopaminergic 

neurones in vitro (Bao et al., 2005; Murase & McKay, 2006; Shimada et al., 2009) 

suggests that FGF20 would, indeed, also be able to bring therapeutic benefits through 

such a regenerative mechanism. Moreover, this ability of FGFR activation to stimulate 

an upregulation of TH in dopamine neurones, leaves open the possibility that an FGF 

based treatment could provide therapeutic benefits not only by preventing dopamine 

neurones from degenerating but also by augmenting the functioning of any remaining 

functional dopamine neurones. As rats in the in vivo study were culled at day 11 post-

lesioning, and possibly ~9 days after FGF20 last mediated a pharmacological effect, it is 
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unlikely that the increased levels of striatal TH levels in the 2.5µg/day FGF20 treatment 

group was partly due FGF20 stimulating increased TH synthesis in the remaining 

functional nigrostriatal dopamine neurones.  

Moreover, a number of approaches could be used in future studies to attempt to 

successfully deliver biologically active FGF20 treatments to the nigrostriatal tract over 

more chronic time-periods in order to evaluate whether a chronic FGF20 treatment 

period provides for a greater neuroprotective effect than the more acute ~2 day 

treatment period that is likely to have been achieved in the current study. Some recent 

stability studies with FGF20 have shown that FGF20’s thermal stability in solution can 

be enhanced by formulating FGF20 in a vehicle solution containing either heparin (Fan 

et al., 2007) or arginine sulfate (Maity et al., 2009). The development of a specific 

formulation of FGF20 that maintains its biological activity at 37°C for ~ 7 days would, 

thus, potentially allow FGF20 to be successfully evaluated when administered over a 

more chronic time-period using the same osmotic mini-pump based approach as used in 

this study. Alternatively, a genetic engineering based delivery approach, in which nigral 

cells are transfected with an FGF20 overexpressing viral vector, could potentially also 

allow for the effective chronic delivery of FGF20. Support for the effectiveness of the 

latter approach is provided by results which demonstrated GDNF to have superior 

neuroprotective effects in animal models of PD when delivered by a viral vector 

delivery system when compared to intra-nigral infusions (Kirik  et al., 2004).  

The mechanism through which FGF20 and other FGF’s mediate their 

neuroprotective effects on dopamine neurones, in vivo, in the 6OHDA rat model of PD 

has, thus far, not been studied. In immunohistochemistry studies carried out as part of 

Chapter 2, FGFR1, 3, and 4 immunoreactivity was shown to be localised to most if not 

all of the dopamine neurones in the SNc. This indicates that FGF20 might be mediating 

its neuroprotective effects through a direct mechanism by activating FGFRs on 

dopamine neurones. A previous study comprehensively characterised the localisation 

profile of the FGFR2 protein within the nigrostriatal tract, and although FGFR2 was 

found to be present in the SN and the striatum, it was exclusively localised to astrocytes. 

Any direct neuroprotective effects mediated by FGF20 on dopamine neurones is, thus, 

likely not to be mediated through activation of FGFR2. Additionally such a direct 

neuroprotective effect is also unlikely to be mediated through the FGFR3, as although 

FGFR3 was found to be localised to nigral dopamine neurone cell bodies, it was 

exclusively localised to dopamine neurone nuclei; making it unlikely that exogenously 
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applied FGF20 would stimulate neuroprotective effects through activation of FGFR3. 

Any direct FGF20 stimulated neuroprotective effect is, thus, likely to be mediated 

through activation of either FGFR1 or FGFR4.  

There is substantial direct and indirect evidence from both cell culture and in 

vivo experiments indicating that the neurotrophic and neuroprotective effects mediated 

by FGF2 on dopamine neurones are at least partially mediated through an astrocyte-

dependent indirect mechanism (detailed in section 4.1.4). Immunohistochemical results 

from Chapter 2 leaves open the possibility that FGF20’s neuroprotective effects on 

nigrostriatal dopamine neurones, in vivo, might also be either partially or completely 

being brought about through an indirect glial-mediated mechanism. FGFR1, 3, and 4 

were all demonstrated to be abundantly present in oligodendrocytes in the SN. 

Additionally, FGFR1 was found to be localised to astrocytes in the SNr (Walker et al., 

1998), while others have shown FGFR2 to be present in astrocytes within the SNc and 

SNr (Chadashvili & Peterson, 2006). It is therefore feasible that FGF20 might be 

indirectly protecting dopamine neurones by activating FGFRs on oligodendrocytes 

and/or astrocytes, and that the events stimulated in the glial cells then acts to indirectly 

protect the dopamine neurones. Based on the localisation profile of the different FGFRs, 

any such astrocyte-dependent effects would involve stimulation of the FGFR1 and/or 

FGFR2, while an oligodendrocytes-dependent effect, could be mediated by either the 

FGFR1, 3, and/or 4. 

The relatively widespread distribution of the FGFRs to non-dopaminergic 

neurones and also to glial cells throughout not only the nigrostriatal tract, but also the 

rest of the brain, raises the prospect that therapeutic targeting of the FGF system in PD 

through a pharmacological means could potentially lead to a number of unwanted 

adverse effects. Based on the pharmacology of the FGFs, a number of likely adverse 

effects could be anticipated to result from chronic systemic treatment with FGFR 

agonists. The FGFs are capable of stimulating changes in the metabolic pathways of 

neuronal cells. For example, FGF2 and FGF20 have been shown to stimulate the 

upregulation of TH expression and activity in dopamine neurone cultures (Bao et al., 

2005; Murase & McKay, 2006; Shimada et al., 2009). In the remaining dopamine 

neurones in the degenerating nigrostriatal tract of PD patients, such an upregulation of 

TH is likely to be beneficial. The FGFs have, however, also been shown to stimulate 

alterations in the biochemical processes in a number of non-dopaminergic neurones, 

including cholinergic and GABAergic neurones (Sensenbrenner, 1993). It is, thus, 
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possible that a pharmacological therapy targeting the FGF system could lead to various 

adverse effects resulting from the treatment stimulating a dysregulation of either 

dopaminergic or non-dopaminergic brain systems. As mentioned earlier, FGFR1, 3, and 

4 were all shown to be abundantly present in oligodendrocytes in the nigrostriatal tract, 

and there is evidence that activation of the FGFRs on oligodendrocytes in the adult 

brain might lead to deleterious rather than beneficial consequences, as several studies 

have reported FGF2 to stimulate a demyelinatory response in oligodendrocytes in the 

intact adult brain (Goddard et al., 1999; Goddard et al., 2001; Butt & Dinsdale, 2005a, 

b). Furthermore, as activation of the FGF system is pro-mitogenic, another obvious 

concern is that a systemic FGFR agonist therapy would be likely to increase the risk of 

cancers developing not only in the brain, but also in the peripheral organs, where the 

FGFRs are also relatively ubiquitously present (Heinzle et al., 2011). There is, indeed, 

some evidence that excessive FGFR signaling could cause cells to become cancerous. 

FGF20 stimulates DNA synthesis and cell proliferation in a number of different 

immortalised cell lines, and FGF20 overexpressing fibroblasts become transformed two 

weeks after being transfected with the FGF20 gene, and the transfected cells develop 

into rapidly growing tumours after s.c implantation into mice (Jeffers et al., 2001). 

 

4.5.3. Effect of Chronic Pharmacological Inhibition of the FGFRs on 6OHDA-

Induced Nigrostriatal Degeneration and Motor Deficits in the Rat  

Previous findings have demonstrated the FGF system to play an important neurotrophic 

role in sustaining the survival of nigrostriatal dopamine neurones in the intact adult 

brain (detailed in section 4.1.2). Indirect evidence also indicates that the upregulation of 

the FGF system in the nigrostriatal tract after 6OHDA lesioning in the rat might serve as 

an endogenous protective response which promotes the survival of 6OHDA exposed 

nigrostriatal dopamine neurones (detailed in section 4.1.3). It is important to gain a 

better understanding about the role that the FGF system plays in physiological and 

pathological contexts in the nigrostriatal tract, as there is some evidence that 

dysfunctioning of the FGF system might contribute to nigrostriatal degeneration in PD 

(detailed in section 4.1.3 & 4.1.5). In the current study, experiments were carried out in 

the 6OHDA rat model of PD to directly investigate whether the endogenous FGF 

system does, indeed, protect nigrostriatal dopamine neurones against 6ODHA-induced 

cell death. It was evaluated whether this is the case by testing whether chronic 

pharmacological inhibition of FGFR activation through systemic administration of the 



 
 

194  
 

non-selective FGFR antagonist, PD173074 is able to potentiate the nigrostriatal 

degeneration induced by a partial 6OHDA lesion in the rat. Results from this study 

suggest that the endogenous FGF system does provide a degree of protection against 

6OHDA toxicity in the 6OHDA rat model of PD.    

Based on a previous study showing a 1mg/kg/day dose of PD173074 to 

completely inhibit FGF-induced corneal revascularization, in vivo, in mice 

(Mohammadi et al., 1998), a 1 and a 2 mg/kg/day PD173074 dose was used in this 

study. A similar PD173074 dosing schedule to that used in the Mohammadi et al., 1998 

study was also employed in the current study. PD173074 or vehicle treatments were 

commenced 3 days prior to lesioning and continued for 5 days thereafter. It was 

evaluated whether the PD173074 treatments were able to potentiate not only 6OHDA-

induced degeneration of the nigrostriatal tract but also 6OHDA-induced motor deficits. 

The TH immunohistochemistry results showed there to be a trend towards striatal TH 

levels being lower in both of the PD173074 dose groups when compared to the vehicle 

treated 6OHDA lesioned rats, while TH+ nigral cell counts, on the other hand, were 

lower in the 2mg/kg but not the 1mg/kg PD173074 dose group when compared to 

vehicle. These differences were, however, moderate in size, and not statistically 

significant. The lower striatal TH density in the 1mg/kg group, and the lower striatal TH 

density and nigral TH+ cell counts in the 2mg/kg group manifested behaviourally in the 

rats, as more severe motor deficits were detected in both of the PD173074 dose groups. 

Three motor tests were used to quantify the motor deficits in the rats, amphetamine-

induced rotations, the cylinder test, and the adjusted stepping test, and all three of the 

tests detected larger motor deficits in the PD173074 treated groups compared to the 

control rats. Again, most of these differences were, however, moderate in size and not 

statistically significant. The only exception was the adjusted stepping results which 

showed motor deficits in both PD173074 groups to be significantly greater compared to 

the vehicle treated 6OHDA lesioned rats, at all of the time-points post-lesioning. Taken 

together, although the PD173074 treatments failed to cause a statistically significant 

potentiation of the 6OHDA-induced nigrostriatal degeneration; the strong trend towards 

all of the measures of nigrostriatal lesion size and also motor function being consistently 

lower in the 2mg/kg PD173074 group, strongly suggests that the endogenous FGF 

system plays a protective role in the nigrostriatal dopaminergic tract. The inability of 

this study to detect statistically significant differences is most likely the result of 

insufficient ‘n’ numbers being used in the study, as each treatment group included only 
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~7-8 rats. Recent statistical studies have shown that an ‘n’ of between 15-30 per group 

could potentially be required in some in vivo neuroprotection studies in order for the 

study to have sufficient power to detect true statistically significant effects (Dr Malcolm 

Macleod, University of Edinburgh, Internal seminar). Further studies using higher ‘n’ 

number are, thus, needed in order to conclusively determine whether the endogenous 

FGF system protects nigrostriatal dopamine neurones against 6OHDA toxicity.  

Furthermore, the TH immunohistochemistry results demonstrated striatal TH 

levels but not TH+ nigral cell counts to be lower in the 1mg/kg PD173074 group 

compared to the vehicle treated 6OHDA rats. This might be taken to indicate that this 

lower dose failed to actually potentiate the 6OHDA-induced loss of nigrostriatal 

dopamine neurones. Instead it is possible that the 1mg/kg dose only induced a 

downregulation of TH in the remaining nigrostriatal dopamine neurones. It has been 

demonstrated that FGF20 and FGF2 are able to stimulate the upregulation of TH 

expression and activity in TH+ dopamine neurones in vitro (Bao et al., 2005; Murase & 

McKay, 2006; Shimada et al., 2009), and based on these findings, it would, thus, be 

expected that TH levels would be downregulated if endogenous FGFR activation was 

inhibited. On the other hand, the fact that both striatal TH levels and nigral TH+ cell 

counts were lower in the 2mg/kg PD173074 group suggests that this higher dose of 

PD173074 might have actually potentiated the 6OHDA-induced dopamine neurone cell 

death.    

Moreover, the magnitude of the potentiation of 6OHDA-induced nigrostriatal 

degeneration brought about by the 2mg/kg dose of PD173074 was only moderate. 

Striatal TH levels and nigral TH+ cell counts in the 2mg/kg PD173074 group were only 

~14% and ~13% lower compared to the vehicle treated 6OHDA lesioned rats, 

respectively. However, the dose-response profile of PD173074 was not fully 

characterised in this study and no pharmacokinetic results for PD173074 are available. 

It, thus, cannot be ruled out that these modest potentiating effects are due to a sub-

maximal dose of PD173074 - which failed to completely block FGFR activation in the 

nigrostriatal tract - being used in this study. In a future study it, thus, needs to be 

evaluated whether 6OHDA-induced neurodegeneration could be potentiated more 

substantially by a higher dose of PD173704. As mentioned earlier, a 1 and 2mg/kg dose 

of PD173074 was selected to be used in this study based on results from a previous 

study showing a 1mg/kg/day dose of PD173074 to completely inhibit FGF-induced 

corneal revascularization, in vivo, in mice (Mohammadi et al., 1998). It is, however, 
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possible that a higher systemically administered dose of PD173074 is required to 

effectively block FGFRs in the brain when compared to the retina of the eye. Although 

a blood-retinal barrier, similar to the blood brain barrier does also exist, the blood-

retinal barrier has been shown to provide a less stringent barrier to systemically 

administered drugs, and it is, thus, possible that a lower concentration of PD173074 

accumulates in the brain compared to the retina after a systemic administration of the 

drug. Results from pharmacokinetic studies characterising the brain penetrance of 

PD173074 at the concentrations tested in this study would be needed to determine 

whether optimal brain concentrations of the drug were achieved. If it is, indeed, the case 

that optimal brain concentrations of PD173074 could not be achieved due to the drug 

having poor brain penetrance, this problem could easily be overcome by delivering 

PD173074 directly into the brain using either icv or intra-nigral/striatal infusions.     

Alternatively, the relatively modest potentiating effect achieved by blocking 

FGFR signaling could potentially be due to the existence of redundancy in the 

neurotrophic systems of the nigrostriatal tract. This is likely to be the case, as several 

other neurotrophic growth factors and their receptors are localised to the nigrostriatal 

tract, including GDNF, BDNF, and neurotrophin-3 (Gall et al., 1992; Howells et al., 2000). 

Furthermore, endogenous GDNF and BDNF have both been demonstrated to be 

required to maintain the survival of dopamine neurones in the intact adult brain. In one 

study, conditional knockdown of GDNF in mice caused a selective and extensive 

degeneration of monoaminergic neurones in the adult mouse brain, with the 

dopaminergic neurones in the SNc being severely affected, as an ~40% reduction in 

striatal GDNF lead to a significant ~60% loss of TH+ nigral cells relative to wild type 

mice (Pascual et al., 2008). In rats, downregulation of BDNF expression in the 

nigrostriatal tract with intra-nigral BDNF anti-sense oligonucleotide infusions induced 

an ~40% loss of nigral TH+ neurones, as well as motor deficits (Porritt et al., 2005).  

 In summary, results from the current study showed that there was a trend 

towards PD173074 potentiating both 6OHDA-induced nigrostriatal degeneration and 

motor deficits. These results suggest that the endogenous FGF system might play a role 

in protecting the nigrostriatal dopaminergic tract, but the failure of these results to reach 

statistical significance, however, means that these results cannot be taken to 

conclusively demonstrate this. Further studies using higher ‘n’ numbers and/or a 

PD173074 dosing regime that has been proven to yield optimal brain concentrations are 
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needed before it could be more conclusively decided whether the FGF system does, 

indeed, play a protective role in the nigrostriatal tract.   

       

4.5.4. Conclusion 

In the current study, experiments were carried out to further investigate the 

neuroprotective effects of FGF20 on dopamine neurones. In vitro, FGF20 was shown to 

protect VM dopaminergic neurones against 6OHDA toxicity, confirming previously 

published findings. Results from this study also demonstrate, for the first time, that 

FGF20 is able to protect dopamine neurones, in vivo, in the partially lesioned 6OHDA 

rat model of PD. Importantly, in vivo, FGF20 not only protected nigrostriatal 

dopaminergic neurones against 6OHDA-induced degeneration, but it also preserved 

motor function to some extent in the 6OHDA lesioned rats. In a separate in vivo study, 

experiments were carried out to investigate whether pharmacological inhibition of 

FGFR activation is able to potentiate 6OHDA-induced nigrostriatal degeneration in the 

rat, and results from this study suggests that the endogenous FGF system might play a 

protective role in the nigrostriatal tract. Taken together, these findings provide further 

support for the neuroprotective potential of FG20 in PD.  

 

 

 

 

 

 

 



 
 

198  
 

Chapter 5: Signalling Pathways Mediating FGF20’s 

Neuroprotective Effects Against 6ODHA in PC12 Cells 

5.1. Introduction 

5.1.1. The Fibroblast Growth Factor Receptors 

As detailed in section 2.1.2, there are 4 subtypes of FGFRs referred to as the FGFR1, 2, 

3, and 4. Briefly, the FGFRs have a general structure similar to that found in most other 

RTKs. Thus, they consist of an extracellular N-terminal ligand binding domain, a single 

transmembrane domain, and an intracellular C-terminal domain containing the protein 

kinase catalytic activity of the receptor. A unique feature of the FGFRs is the presence 

of 3 Ig-like domains in the extracellular N-terminal domain (Illustrated in Fig 2.1). The 

Ig-like domain closest to the N-terminal of the receptor is referred to as D1, while the 

middle and juxtamembrane Ig-like domains are called D2 and D3, respectively 

(Johnson et al., 1990). Different isoforms of each of the FGFR subtypes have been 

shown to exist, with the FGFR1, 2, and 3 all existing as two prototypical FGFR 

isoforms, referred to as the b and c isoforms (detailed in section 2.1.2). It appears that 

the FGFR4 (Johnson et al., 1991) does not exist as these prototypical b and c isoforms, 

but 3 alternative isoforms of this receptor has nevertheless also been identified thus far 

(van Heumen et al., 1999; Ezzat et al., 2001; Kwiatkowski et al., 2008).  

 

5.1.2. FGFR Activation 

FGFR activation occurs through the same mechanism as utilised by most typical RTKs 

(Schlessinger, 2000). The FGFR exists as a monomer in its inactivated state. Binding of 

a FGFR ligand to the extracellular ligand binding domain of the receptor stimulates 

receptor dimerisation to occur. The intracellular C-terminal tyrosine kinases of each of 

the monomers then proceed to autophosphorylate tyrosine residues on the C-terminal of 

its neighbouring FGFR monomer. Seven tyrosine autophosphorylation sites have been 

identified on the FGFR1, Tyr463, Tyr583, Tyr585, Tyr653, Tyr654, Tyr730, and 

Tyr766 (Mohammadi et al., 1992; Mohammadi et al., 1996) (Illustrated in Fig 2.1). 

These phosphotyrosine residues then serve as binding sites for src homology 2 (SH2) 

domain containing proteins through which numerous protein complexes are recruited to 

the activated receptor; ultimately facilitating the activation of numerous intracellular 

downstream signalling pathways. A unique feature associated with FGFR activation is 
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that cell surface heparin sulphate proteoglycans (HSPGs) interact with both FGF ligands 

and the FGFRs, and by doing so, they modulates FGFR signalling (detailed in section 

5.1.6).        

 

5.1.3. FGFR Signalling Mechanisms  

The FGFRs employ many of the classical intracellular signalling pathways used by 

other RTKs to bring about changes in cellular functioning. The signalling events 

initiated by the FGFR1 have, thus far, been the most thoroughly studied, and the 

overview of FGFR signalling given below will be limited to only this receptor.  

 

FGFR1 activation has been shown to lead to the activation of phospholipase C-γ (PLC-

γ), mitogen activated protein kinase (MAPK) pathways, phosphatidylinositol 3-kinases 

(PI-3K), tyrosine phosphatase non receptor type II (Shp2/PTPN11), and protein kinase 

B/RAC-alpha serine/threonine protein kinase (PKB/Akt)-dependent signalling 

pathways. More recently FGFR1 activation has also been found to lead to the activation 

of the lipid kinases, phospholipase A2 (PLA2) and phospholipase D (PLD), and the non-

receptor tyrosine kinases, src, and Jun N-terminal kinase (JNK). FGFR1 also signals 

through a novel mechanism involving the nuclear translocation of membrane bound 
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FGFR1-FGF2 complexes. The mechanisms through which FGFR1 recruits some of 

these signalling pathways have been well characterised and they are described below. 

The specific FGFR-mediated biological effects that have been attributed to each of the 

different pathways are also discussed. These pathways are schematically illustrated in 

Fig 5.1.  

 

5.1.3.1. Recruitment of PLC-γ-dependent Pathways 

Autophosphorylation of Tyr766 in the C-terminal of the FGFR1 creates a binding site 

for PLC-γ (Mohammadi et al., 1991). Once bound to this site, PLC-γ becomes activated 

through FGFR1-mediated tyrosine phosphorylation. Activated PLC-γ then converts 

membrane bound phosphatidylinositol-(4,5)-bisphosphate (PIP2) into the 2nd 

messengers, inositol-(3,4,5)-trisphosphate (IP3) and diacylglycerol (DAG). IP3 activates 

IP3 receptors on the endoplasmic reticulum, and mobilises calcium from intracellular 

stores. Ca2+ binds to and activates calmodulin, which in turn activates Ca2+/calmodulin 

dependent kinases. The concurrent binding of DAG and Ca2+ to a regulatory site on the 

serine/threonine kinase, protein kinase C (PKC) leads to its activation. Once activated, 

the latter two effector proteins of the PLC-γ signalling pathway subsequently bring 

about changes in cellular functioning by phosphorylating and altering the activity of a 

range of target proteins, including ion channels, receptors, enzymes,  and transcription 

factors (Schlessinger, 2000). PLC-γ dependent signalling events have been shown not to 

contribute to the mitogenic, differentiating, and chemotactic effects mediated by FGFR 

activation (Mohammadi et al., 1992; Clyman et al., 1994; Spivak-Kroizman et al., 

1994b). PLC-γ activation does, however, play a role in the anti-apoptotic/pro-survival 

effects mediated by the FGFR1 (Wert & Palfrey, 2000a). In its inactive state, PLC-γ is 

normally found in the cell cytosol. Its recruitment to the plasma membrane is essential 

in allowing it to interact with its SH2 domain binding sites on the activated FGFR1 and 

for its subsequent activation (Schlessinger, 2000). This recruitment is facilitated by 

FGFR1-mediated activation of the phospholipid kinase, phoshatidylinositol-3-Kinase 

(PI3K) (see below).  

 

5.1.3.2. Recruitment of Grb2, Shc, and Shp2 

The FGFR substrate 2 (FRS2) docking proteins, FRS2α and FRS2β are constitutively 

complexed to the juxtamembrane C-terminal domain of the FGFR1 through their 
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binding to phosphotyrosine residues (Ong et al., 2000). FRS2α and FRS2β have both 

got N-terminal myristyl groups which anchor them to the inner leaf of the plasma 

membrane (Ong et al., 2000). Within their structures, both of these signalling proteins 

have also got multiple tyrosine phosphorylation sites, which, once phosphorylated by an 

activated FGFR1, serve as binding sites for signalling proteins (Ong et al., 2000). 

However, as none of the signalling proteins recruited by FGFR1-bound FRS2β have 

been identified, only the signalling proteins recruited by FRS2α are discussed below. 

The adaptor protein, growth factor receptor-bound protein 2 (Grb2) is one of several 

proteins that bind phosphotyrosine residues on FRS2α (Ong et al., 2001). FGFR1 

activation, however, also leads to the recruitment of Grb2 by two further indirect 

pathways. The adaptor protein, src homology 2 domain containing (Shc) binds to 

Tyr766 of the activated FGFR1 and becomes phosphorylated (Klint et al., 1995). Grb2 

in turn binds to phosphotyrosine residues on Shc through its SH2 domain. Alternatively, 

Grb2 can be recruited indirectly by binding of its SH2 domain to phosphotyrosine 

residues on the protein phosphatase, Shp2 (Hadari et al., 1998). Shp2 is recruited to the 

FGFR1 signalling complex through its binding to phosphorylated FRS proteins. In 

addition to recruiting Grb2, Shp2 also has both negative and positive regulatory 

influences on FGFR1 signalling. Shp2 attenuates FGFR1 signalling by 

dephosphorylating phosphotyrosine residues on the autophosphorylated receptor, but, at 

the same time, Shp2 activity is also required for maximal FGFR1-mediated activation of 

the MAPK pathway (Hadari et al., 1998). The mechanism through which Shp2 

facilitates MAPK activation is, however, unknown. Shp2 has been shown to play a role 

in mediating some of FGFR1’s effects on cell differentiation (Hadari et al., 1998). 

 

5.1.3.3. Activation of PI3K 

Subsequent to Grb2 binding, GRB2-associated-binding protein 1 (Gab1) is recruited to 

the growing signalling complex through binding of its SH3 domain to a proline rich 

motif on Grb2 (Ong et al., 2000). Gab1’s assembly with FRS2α/Grb2 allows it to 

become phosphorylated by the FGFR1. The phosphotyrosine residues created on Gab1 

then serve as specific binding sites for the SH2 domain of P13K, recruiting it to the 

membrane bound receptor complex (Ong et al., 2000). A conformational change is 

induced in PI3K by its binding to Gab1, leading to the activation of the lipid kinase 

activity present in PI3K, which proceeds to generate PIP2, and PIP3 from membrane 

bound phosphatidylinositol phosphate (PIP). The PIP3 ultimately recruits PLC-γ to the 



 
 

202  
 

plasma membrane through the binding of PLCγ’s pleckstrin homology (PH) domain to 

the membrane bound PIP3 generated by PI3K. 

 

5.1.3.4. Recruitment of the Akt/PKB Pathway 

Additionally, this FRS2α/Grb2/PI3K pathway also brings about the activation of the 

anti-apoptotic protein kinase B (PKB)/Akt signalling pathway (Ong et al., 2000). 

Membrane bound PIP3 serves as a binding site for the PH domains of the protein 

serine/threonine kinases, phosphoinositide dependent protein kinase (PDK1) and 

PKB/Akt. Binding of PDK1 to PIP3 activates it, allowing it to proceed to phosphorylate 

its target protein, PKB. Threonine phosphorylation of PKB by PDK1, however, only 

partially activates it, and a second serine phosphorylation – carried out by either PDK2 

or PKC – is required for PKB to become fully activated (Schlessinger, 2000). Activated 

PKB plays an important role in mediating growth factor stimulated pro-survival effects 

by activating and inactivating various anti-apoptotic and pro-apoptotic effector systems, 

respectively (Schlessinger, 2000). For example, PKB phosphorylates and deactivates 

the pro-apoptotic factors, Bad and caspase 9, and it indirectly upregulates an NF-κB-

dependent program of gene expression. As of yet, the PKB signalling pathway has only 

been shown to contribute to FGFR’s effects on angiogenesis and cell differentiation 

(Chen et al., 2000; Forough et al., 2005). 

 

5.1.3.5. Recruitment of the MAPK Pathway  

MAPK pathways play a major role in mediating the mitogenic effects of most growth 

factor receptors, and this pathway has also been shown to be activated by the FGFR1 

(Schlessinger, 2000). Tyrosine phosphorylation of FRS docking proteins bound to the 

FGFR1 leads to the recruitment of multiple Grb2/ son of sevenless (sos) complexes via 

the binding of their SH2 domains to phosphotyrosine residues on the FRS proteins 

(Kouhara et al., 1997). Sos is a guanosine nucleotide exchange factor, and its 

recruitment to the plasma membrane brings it into contact with its target signalling 

protein, the monomeric G-protein-like protein, p21ras (ras). Sos stimulates the exchange 

of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on ras causing it to 

become activated. In its active form, ras-GTP phosphorylates and activates the MAP 

kinase kinase kinase (MAPKKK), Raf-1 (Spivak-Kroizman et al., 1994a). Raf-1 then 

phosphorylates and activates the MAP kinase kinase (MAPKK), MEK1/2, which in turn 
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phosphorylates and activates the MAP kinases (MAPK), ERK1/2 (Kuslak & Marker, 

2007). Ultimately ERK1/2 brings about its mitogenic effects by phosphorylating and 

modifying the activity of numerous target proteins, including transcription factors, gene 

expression coactivators/corepressors, and histone acetylases and deacetylases.  ERK1/2 

activation is crucial in mediating the mitogenic, anti-apoptotic, chemotactic, and 

differentiating actions stimulated by FGFR1 in a number of different cell types 

(Gardner & Johnson, 1996; Kuo et al., 1997; Nakamura et al., 2001; Shono et al., 2001; 

Gu et al., 2004; Khalil et al., 2005; Yang et al., 2008). Furthermore, FGFR1-mediated 

activation of the ERK1/2 signalling pathway has been shown to be potentiated by the 

recruitment of two further docking proteins, SH2 domain-containing adapter protein B 

(Shb) and p38 (crk), to the activated FGFR1. Shb is recruited to the receptor by binding 

of its SH2 domain to Tyr766 of the FGFR1 (Cross et al., 2002). Once bound, Shb 

becomes activated through FGFR1-mediated phosphorylation. Activated Shb then 

serves to potentiate FGFR1-mediated ERK1/2 activation by increasing FRS 

phosphorylation and by facilitating Shp2 recruitment and activation through an 

unknown mechanism (Cross et al., 2002). Crk, on the other hand, binds to Tyr463 of the 

FGFR1 through its SH2 domain, and this binding is also followed by its 

phosphorylation-induced activation (Larsson et al., 1999). Through an unknown 

mechanism, Crk acts to facilitate FGFR1-mediated activation of ERK1/2 and JNK. 

FGFR1’s mitogenic effects have been shown to be partly dependent on Crk recruitment 

and activation (Larsson et al., 1999).  

 

5.1.3.6. Activation of PLA2, PLD, and src 

Recent studies have shown that FGFR activation also leads to the activation of the 

cytoplasmic non-receptor kinase, src (Kanda et al., 2006), and the two phospholipases, 

PLA2 and PLD (Cross et al., 2000). Phosphorylation and activation of src is mediated 

indirectly by the non-receptor kinase, Fes, which in turn is activated by the FGFR1. Src 

is known to play an important role in modulating cell migration by activating focal 

adhesion proteins (FAKs), and src has, indeed, been shown to mediate the chemotactic 

effects stimulated by FGFR activation (Kanda et al., 2006). Additionally, FGFR1’s 

effect on differentiation is also dependent on src activation (Kuo et al., 1997; Klint et 

al., 1999). As with PLC-γ, FGFR-mediated recruitment of PLA2 and PLD is dependent 

on Tyr766 phosphorylation of the receptor, but the exact mechanism by which these 

two lipases are activated remains poorly characterised. FGFR-mediated activation of 
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PLA2 and PLD plays an important role in cytoskeletal reorganization stimulated by the 

FGFR1 (Cross et al., 2000).                 

 

5.1.4. Intracellular Signalling by Nuclear-Translocated FGFR-FGF2 Complexes 

Interestingly, in recent years it has become apparent that, in addition to utilising these 

classical signalling pathways, the FGFR1 also signals through an unorthodox nuclear 

signalling pathway which involves the translocation of FGFR1-FGF2 complexes to the 

cell nucleus (Bryant & Stow, 2005). This nuclear translocation has been shown to be 

essential in allowing FGFR1’s full mitogenic effects to be expressed (Bossard et al., 

2003). The signalling events initiated by nuclear translocated FGFR1-FGF2 complexes 

are, however, not well characterised. Recent evidence suggests that they might bring 

about their mitogenic effects by modulating the activity of the nuclear kinases, 

ribosomal S6 kinase 2 (RSK2), and casein kinase II (CK2) (Bailly et al., 2000; Soulet et 

al., 2005).  

 

5.1.5. Negative Regulation of FGFR1 Signalling 

To allow for the physiological control of cell growth and differentiation, it is essential 

for growth factor mediated mitogenic signals to be attenuated or terminated 

appropriately. A number of mechanisms that negatively regulate FGFR1 signalling have 

been identified. The ubiquitin ligase, casitas b-lineage lymphoma (Cbl) has been shown 

to be recruited to the activated FGFR1 through its binding to Grb2 (Wong et al., 2002), 

which in turn has been complexed to the receptor via its binding to FRS. The 

subsequent ubiquitination of both the FGFR1 and receptor bound FRS proteins 

ultimately leads to the internalisation and proteasomal digestion of the FGFR1 

signalling complex, terminating signalling by the receptor (Wong et al., 2002). 

Furthermore, there is also a negative feedback component in the MAPK pathway 

activated by the FGFR1. ERK1/2 phosphorylates several threonine residues on FRS2α 

(Lax et al., 2002). This drastically reduces the rate at which tyrosine residues on FRS2α 

are phosphorylated, which leads to a decrease in Grb2 recruitment, and an ablation of all 

FRS/Grb2-dependent signalling cascades activated by the FGFR1. Moreover, FGFR1 

signals have also been shown to be inhibited by negative crosstalk between MAPK 

pathways activated by other receptors. For example, activation of the platelet derived 

growth factor receptor by platelet derived growth factor stimulates the activation of a 
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MAPK that phosphorylates and inhibits the function of FGFR1-complexed FRS2α (Lax 

et al., 2002).  

 

5.1.6. Role of Heparin Sulphate Proteoglycans (HSPGs) in FGFR Signalling 

Extracellular membrane bound HSPGs play an important role in FGFR signalling. 

HSPGs consist of a protein core structure to which a variable number of heparin 

sulphate side chains are linked (Yanagishita & Hascall, 1992). In addition to this, 

HSPGs also contain oligosaccharide side chains. In early studies characterising FGF2’s 

binding sites on cells, it was discovered that, in addition to its high affinity FGFR 

binding sites, FGF2 also bound to a distinct low affinity, high capacity binding site 

(Moscatelli, 1987). This low affinity binding site was later found to be membrane bound 

HSPGs (Yayon et al., 1991).  

 Subsequently, it was shown that most of the FGF2 secreted into the extracellular 

space is not found in its soluble form. Instead, FGF2 was predominantly localised in the 

extracellular matrix (ECM) where it is specifically bound to HSPG (Baird & Ling, 

1987; Vlodavsky et al., 1987; Folkman et al., 1988). Some findings suggested that this 

HSPG-FGF2 complexing functioned to stabilise FGF2 in its active form, as HSPG 

binding protected FGF2 against denaturation and proteolytic degradation 

(Gospodarowicz & Cheng, 1986). ECM binding may also act to restrict the diffusion of 

secreted FGF2, and by doing so, ensure it acts locally in an autocrine or paracrine 

manner. It was later shown that soluble FGF2 and FGF2-heparin sulphate molecules 

could be liberated from the ECM by the action of the enzymes, heparinase and plasmin, 

respectively (Rifkin & Moscatelli, 1989). Importantly, it was shown that the soluble 

FGF2-heparin sulphate complexes were still able to activate the FGFR. This lead to the 

proposal that HSPGs might provide a storage site for secreted FGF2 in the ECM. 

Through the action of heparinase and plasmin – both of which are endogenous enzymes 

- the stored FGF2 could then be gradually released to mediate its effects over a 

prolonged period. Strong support for this proposal is provided by two studies 

(Flaumenhaft et al., 1989; Prats et al., 1989), in which FGF2 was shown, in vitro, to 

stimulate prolonged activation of plasminogen activator which persisted even after the 

cells were washed with PBS as to remove any unbound FGF2. However, when the cells 

were pre-treated with heparinase so as to strip the cells of HSPGs prior to FGF2 

application, only transient stimulation of plasminogen activator was observed.  
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 Soon after, it became apparent that, in addition to these passive roles in FGF2 

signalling, HSPGs also had more active roles. In Chinese hamster ovary cells, the 

presence of HSPGs were shown to be essential for binding of FGF2 to the FGFR1, as 

inhibition of HSPG synthesis abolished FGF2 binding (Yayon et al., 1991). FGF2’s 

mitogenic effects in fibroblasts are also completely abolished by inhibition of HSPG 

synthesis (Rapraeger et al., 1991). These inhibitory effects were completely reversed by 

the application of exogenous heparin sulphate. HSPGs, thus, appeared to have a 

permissive role in allowing the expression of FGF2’s biological effects. Subsequently, 

the presence of HSPGs has been reported to be a prerequisite in allowing the expression 

of a number of different biological effects mediated by FGF2 in several different cell 

types (Lundin et al., 2003). HSPGs have been shown to achieve this facilitation of 

FGF2 signalling by increasing the affinity of FGF2 for the FGFRs (Roghani et al., 

1994). Additionally, its presence also facilitates FGFR dimerisation (Spivak-Kroizman 

et al., 1994a), and it increases FGFR kinase activity (Lundin et al., 2000). 

Crystallographic studies have demonstrated HSPGs to form a ternary complex with both 

FGF2 and the FGFR, and by doing so, it acts to stabilise FGF2-FGFR interactions 

(Pellegrini, 2001).  

 Evidence from recent studies, however, indicates that HSPGs, in some 

situations, might have a relative rather than an absolute effect on FGF2 signalling. In 

the absence of HSPGs, FGF2 alone stimulated maximal activation of two of FGFR’s 

downstream signalling proteins, Shp2 and Crk (Lundin et al., 2003). FGF2 alone was 

also able to stimulate MAPK activation, but unlike the prolonged activation stimulated 

when HSPGs are present, only transient MAPK activation was induced in the absence 

of HSPGs. In another study, the absence of HSPGs had no effect on FGF2’s mitogenic 

effects on Balb/c3T3 cells (Fannon & Nugent, 1996). It is, thus, likely that HSPGs are 

essential in allowing the activation of only some of the signalling pathways recruited by 

FGFR1 activation. These results also indicate that the specific biological effects of 

FGF2 that require HSPGs varies between cell types, as HSPGs are essential in 

facilitating FGF2’s mitogenic effects in fibroblasts, while HSPGs are not needed at all 

for FGF2 to stimulate mitogenesis in Balb/c3T3 cells. 

 It has been postulated that in the absence of HSPGs, the FGFR1 takes up a 

conformation in which only a limited number of its C-terminal tyrosine phosphorylation 

sites are accessible to the tyrosine kinase activity of the receptor (Lundin et al., 2003). 

When the receptor becomes activated, in the absence of HSPGs, autophosphorylation of 
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these limited tyrosine residues recruits a limited number of FGFR1 signalling pathways, 

which in turn only gives rise to a limited number of FGF2-stimulated biological effects. 

However, when HSPGs are present, they interact with FGFR1 as to bring about a 

conformational change in the receptor which exposes additional tyrosine 

phosphorylation sites in the receptors C-terminal. Autophosphorylation of these tyrosine 

residues creates binding sites for the recruitment of additional signalling pathways, 

which in turn stimulates the extra biological effects observed only when HSPGs are also 

present. Support for this idea is provided by the Lundin et al., 2003 study, in which 

FGF2 recruited a differential set of signalling pathways depending on whether HSPGs 

were present or not. When HSPGs were present, FGF2 stimulated the phosphorylation 

of both Tyr463 and Tyr766 on the FGFR1. In contrast, when HSPGs were not present, 

FGF2 only stimulated the phosphorylation of Tyr463.  

 Moreover, it has also been proposed that HSPGs might help to bring about the 

differential biological effects mediated by FGF2 in different tissues (Faham et al., 

1998). The heparin sulphate side chains of HSPGs consist of linear polysaccharide 

chains composed of repeating sulphated disaccharide units (Yanagishita & Hascall, 

1992). The existence of several different disaccharide building blocks, with varying 

spatial sulphation patterns, gives rise to a large number heparin sulphate polymer 

subtypes. The use of different heparin sulphate subtypes in the biosynthesis of HSPGs, 

in turn, gives rise to numerous HSPG subtypes. A specific sequence of amino acids in 

FGF2’s structure acts as a binding site for the sulphate groups on heparin sulphate 

molecules (Pellegrini, 2001). This binding site selectively binds only to heparin sulphate 

molecules containing a specific sulphation pattern (Faham et al., 1998). It is, thus, 

possible that by varying the expression profile of HSPG subtypes, cells can regulate the 

amplitude and/or nature of the biological response stimulated by FGF2.       

 

5.1.7. Signalling Pathways Mediating the Neuroprotective Effects of the FGFs on 

Dopamine Neurones 

The neuroprotective effects mediated by both FGF2 and FGF20 on primary dopamine 

neurones, in vitro, have been demonstrated to be mediated through both the ERK1/2 and 

PI3K intracellular signalling pathways. The neuroprotective effects of FGF2 against 

rotenone-induced cell death have been shown to be inhibited by selective ERK1/2 and 

PI3K inhibitors in SH-SY5Y cells (Hsuan et al., 2006), while the neuroprotective 

effects of FGF20 on rat VM embryonic dopamine neurones against 6OHDA toxicity 
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was also inhibited by selective ERK1/2 and PI3K inhibitors (Ohmachi et al., 2003; 

Murase & McKay, 2006). Furthermore, FGF2’s protective effects, on the other hand, 

have also been demonstrated to be mediated through gap junctions, as FGF2 

upregulated the expression of specific gap junction proteins, and inhibitors of gap 

junction synthesis abolished FGF2’s neuroprotective effects in human embryonic 

dopamine neurone cultures (SiuYi Leung et al., 2001). In Chapter 3 of this thesis, 

FGF20 was shown to protect dopamine neurones both in vitro, in VM cultures and in 

vivo, in the 6OHDA rat model of PD. In the current study, further in vitro experiments 

were carried out, this time in PC12 cells, an immortalised catecholaminergic cell line, to 

further investigate the signalling mechanisms mediating FGF20’s neuroprotective 

effects.  

 

5.1.8. PC12 Cells as an In Vitro Model of Dopamine Neurones in which to 

Investigate the Signalling Mechanisms Mediating the Neuroprotective Effects of 

FGF20  

The PC12 cell line is an immortalised catecholaminergic neuronal cell line originally 

derived from a rat adrenal pheochromocytoma (Greene & Tischler, 1976), and it is 

widely used as an in vitro model of dopamine neurones due to the dopaminergic 

phenotype of the cells. PC12 cells contain all of the enzymes of the anabolic and 

catabolic dopamine metabolism pathways, including TH, dopa decarboxylase, 

dopamine-B-hydroxylase, MOA, and COMT (Greene & Tischler, 1976; Muller-

Ostermeyer et al., 2001), as well as dopamine (Shi et al., 2007). Additionally, the cells 

also contain the dopamine reuptake transporter (Kadota et al., 1996), the plasma 

membrane transporter protein responsible for the uptake of extracellular dopamine into 

the cell, as well as the vesicular monoamine transporter, the vesicular membrane protein 

that is responsible for the uptake of dopamine into intracellular vesicles (Liu et al., 

1994). Furthermore, PC12 cells are vulnerable to most of the toxins that are commonly 

used to cause dopamine neurone degeneration in cell and animal models of PD, 

including 6OHDA and MPP+ (Gelinas & Martinoli, 2002; Lee et al., 2005; Kavanagh et 

al., 2006; Meng et al., 2007; Mnich et al., 2010). Consequently, PC12 cells are widely 

used in neuroprotection studies to identify treatments that are able to protect against this 

neurotoxin-induced cell death, with the hope that the identified treatments will also have 

protective effects in animal models of PD, and ultimately also in PD patients. Thus far, 

PC12 cells do appear to be a representative model, as there is a good correlation 
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between in vitro and in vivo findings. For instance, FGF1, FGF2, and GDNF all have 

neuroprotective effects in PC12 cells (Boniece & Wagner, 1993; Bouleau et al., 2007; 

Su et al., 2007; Li et al., 2008; Rodriguez-Enfedaque et al., 2009) and also on dopamine 

neurones in animal models of PD (detailed in section 1.5). Additionally, the PC12 cell 

line also serves as a good in vitro system in which to investigate the signalling pathways 

and mechanisms mediating the protective effects of FGFs. A functioning FGF 

signalling system is present in PC12 cells. FGF2 mRNA and protein are found in PC12 

cells, and mRNA for the FGFR1, 3, and 4 but not the FGFR2 are present in the cells 

(Foehr et al., 1998; Muller-Ostermeyer et al., 2001). FGFs stimulate a number of 

biological responses in PC12 cells, including cell differentiation and neurite outgrowth 

(Neufeld et al., 1987; Renaud et al., 1996; Hadari et al., 1998; Lin et al., 1998; Kim et 

al., 2003; Jeon et al., 2010), and many of the classical FGFR signalling pathways 

described above are recruited after stimulation of FGFRs in PC12 cells, including the 

ERK1/2 MAPK, PI3K, and PLCγ pathways (Sigmund et al., 1990; Kremer et al., 1991; 

Spivak-Kroizman et al., 1994b; Foehr et al., 1998; Hadari et al., 1998; Karlsson et al., 

1998; Raffioni et al., 1999; Wert & Palfrey, 2000a; Kawamata et al., 2001). 

Importantly, both FGF1 and FGF2 have been shown to have neurotrophic and 

neuroprotective effects on PC12 cells. Both FGF1 and FGF2 increase the survival of 

PC12 cells in serum free conditions (Renaud et al., 1996; Muller-Ostermeyer et al., 

2001; Kawamata et al., 2003), while FGF1 protects PC12 cells against cell death 

induced by the chemotherapeutic agent, etoposide (Bouleau et al., 2007; Rodriguez-

Enfedaque et al., 2009), while FGF2 has been shown to protect PC12 cells against 

hypoxia-induced cell death (Boniece & Wagner, 1993). The neurotrophic effects of 

FGF2 on PC12 cells have in one report been shown to be mediated through both the 

ERK1/2 and PKCδ signalling pathways (Wert & Palfrey, 2000a), FGF1’s protective 

effects against etoposide has been shown to be dependent on the nuclear translocation of 

FGF1 (Rodriguez-Enfedaque et al., 2009), and also on FGF1s ability to reduce p53 

activity (Bouleau et al., 2007).  

 As detailed above, the HSPGs play an important role in modulating FGF 

signalling, and, importantly, PC12 cells have been demonstrated to be an appropriate in 

vitro model in which to study the influence of HSPGs on the biological and signalling 

events stimulated by the FGFs. PC12 cells produce HSPGs (Gowda et al., 1989), and 

the signalling responses and biological effects mediated by FGF application in PC12 

cells can be altered by co-administering FGF with the glycosaminoglycan, heparin, and 
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also with exogenous HSPGs. Heparin has been shown to potentiate FGF1 and FGF2 

stimulated neurite outgrowth in PC12 cells (Damon et al., 1988), and the HSPG, agrin 

when co-applied with FGF2 potentiates both FGF2-stimulated ERK1/2 activation and 

neurite outgrowth in PC12 cells (Kim et al., 2003). Because of all of the favourable 

attributes detailed above, PC12 cells were chosen as a model system in which to study 

the signalling mechanisms mediating the neuroprotective effects of FGF20 against 

6OHDA toxicity.   
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5.2. Objectives 

5.2.1. Objective 1. Evaluate if FGF20 Protects PC12 cells against 6OHDA Toxicity 

Surprisingly, there are currently no published studies which have evaluated if the FGFs 

are able to protect PC12 cells against any of the dopamine neurone toxins. The first 

objective of this Chapter was, therefore, to evaluate if FGF20 is able to protect PC12 

cells against 6OHDA toxicity. Using immunohistochemistry, it was firstly evaluated 

whether the FGFR1, 3, and 4 proteins were present in the PC12 cell line, and using 

ERK1/2 phosphorylation assays it was determined whether any FGFRs present in the 

cells were functional. Cell viability experiments were then subsequently carried out to 

determine if FGF20 is able to protect the PC12 cells against 6OHDA induced cell death. 

 

5.2.2. Objective 2. Identify the Signalling Pathways Mediating FGF20’s 

Neuroprotective Effects against 6OHDA Toxicity in PC12 cells 

The second objective of this Chapter was to investigate the signalling pathways 

that mediate FGF20’s protective effects against 6OHDA in the PC12 cells. At the 

receptor level, it was evaluated if FGF20’s protective effects are, indeed, mediated 

through the FGFRs, and at the intracellular level, it was determined if FGF20’s 

protective effects are mediated through the ERK1/2 MAPK pathway.  

 

5.2.3. Objective 3. Evaluate if the Heparin Sulphate Proteoglycan, Agrin is able to 

Potentiate the Neuroprotective Effects of FGF20 against 6OHDA in PC12 cells   

FGF20 has been shown to be secreted from cells, in vitro, despite the fact that FGF20 

lacks a classical N-terminal secretory signal, as FGF20 could be detected in the cell 

culture media of FGF20 overexpressing NIH 3T3 fibroblasts (Jeffers et al., 2001). 

Importantly, in the later study, a pool of FGF20 could be released from the ECM of the 

fibroblast cultures by treating the cultures with suramin, a compound that acts to disrupt 

the weak interactions that forms between a number of FGFs and HSPGs. Thus, like the 

prototypical FGFs, it appears, FGF20 also interacts with HSPG in the ECM. No studies 

have, however, thus far, investigated the modulatory effects that HSPGs have on the 

signalling and biological effects stimulated by FGF20. The third objective of this 

chapter was to investigate whether agrin is capable of modulating the signalling and 

biological effects mediated by FGF20 in PC12 cells. It was firstly evaluated whether 
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agrin is able to potentiate FGF20 induced ERK1/2 activation, and, secondly, if agrin 

potentiates FGF20’s neuroprotective effects against 6OHDA toxicity in the PC12 cells.    
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5.3. Methods 

5.3.1. Maintenance of PC12 cells  

PC12 cells were cultured and maintained according to exactly the same protocol 

detailed in section 4.3.3.1.  

 

5.3.2. Plating of PC12 Cells for Cell Viability Studies 

For all of the PC12 cell experiments, cells were grown in 75cm2 NunC plastic flasks 

until ~80-100% confluent, at which point they were plated into 24 well NunC plastic 

tissue culture plates. The DMEM FBS+ media in which the cells were bathed in was 

removed, and the cells washed by rinsing them 2x in ~5ml sterile D-PBS solution. 

Trypsin was then used to detach the cells from the flasks. 1ml of trypsin solution 

(0.05% trypsin dissolved in EDTA) was added to each 75cm2 flask, and the cells left to 

incubate in the trypsin solution for 5-10min in a cell culture incubator until most of the 

cells were fully detached. The flasks were agitated to dislodge any remaining attached 

cells, and 4ml of DMEM FBS+ media added to each flask to inactivate the enzymatic 

activity of trypsin. The 5ml cell suspension was then transferred from the flask into a 

15ml sterile centrifuge tube, and the cells centrifuged at 400g for 2min to create a cell 

pellet. The supernatant media suspension was poured off and the cell pellet re-

suspended in 1ml of DMEM FBS+ media, and the suspension triturated thoroughly with 

a pipette to ensure that the cells were evenly distributed throughout the suspension. The 

number of viable cells present in the 1ml cell suspension was then quantified by trypan 

blue cell exclusion using the protocol detailed in section 2.3.2.3.  

The 1ml of cell suspension was then diluted so that each 500µl of cell 

suspension contained the same number of cells as was desired to be present in each 

well. In all cases, PC12 cells were plated at a density of 50000 cells/well, and the 1ml 

suspension of cells was, thus, diluted as to give a final concentration of 50000 

cells/500µl of suspension.  The diluted cell suspensions were thoroughly mixed to 

ensure that the cells were evenly distributed throughout the solution. Finally, the cells 

were plated either onto 13mm poly-D-lysine coated coverslips (method for poly-D-

lysine coating of coverslips is detailed in section 2.3.2.1) placed inside the wells of a 

NunC 24 well tissue culture plate, or alternatively directly into the wells of 24 well 

NunC tissue culture plates. To do this, 500µl aliquots of the appropriately diluted cell 

suspensions were slowly applied to the wells or coverslips as repeated drops, which 
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were positioned as to ensure that the cells were distributed evenly over the entire surface 

of the coverslip or well.      

 

5.3.3. Immunohistochemical Characterisation of the PC12 Cell Line Used 

Immunohistochemistry experiments were carried out to confirm that the PC12 cells 

retained a catecholaminergic phenotype by evaluating if the cells expressed TH. 

Additionally, the cells were also characterised to determine if the FGFR1, 3, and 4 were 

localised in the PC12 cells.  

PC12 cells were plated onto poly-D-lysine coated glass coverslips  at a density 

of 50000 cells/coverslip, grown in DMEM FBS+ media until the coverslips were around 

~80-100% confluent, and at this point the cells were fixed by immersing them in a 4% 

PFA solution for 10min. The fixed PC12 cells were then immunohistochemically 

stained for TH, and FGFR1, 3, and 4 with the HRP/DAB/ABC method using nearly 

exactly the same protocol as was used in 2.3.3.2. The only difference is that in this 

experiment the visualisation protocol was carried out on the fixed PC12 cultures rather 

than brain sections. To detect TH, and the FGFR1, 3, and 4, PC12 cell cultures were 

incubated with rabbit anti-TH (Chemicon, AB152, 1/1000), anti-FGFR1 (Sigma, F5421, 

1/50), anti-FGFR3 (Santa Cruz Biotechnology, sc-9006), and anti-FGFR4 (Santa Cruz 

Biotechnology, sc-123, 1/50) primary antibody overnight at RT, respectively.  

 

5.3.4. Cell Viability Studies  

Four different cell viability studies were carried out in the PC12 cells with FGF20. In an 

initial cell viability study it was evaluated whether FGF20 is able to protect PC12 cells 

against 6OHDA toxicity. In a second and third subsequent study, cell viability 

experiments were carried out with the selective FGFR inhibitor, PD173074 and the 

selective MEK1/2 inhibitor, SL327 to determine if FGF20’s neuroprotective effects 

against 6OHDA is mediated by the FGFRs and the ERK1/2 MAPK pathway, 

respectively. In the fourth study, experiments were carried to evaluate whether the 

HSPG, agrin is able to modulate the neuroprotective effects mediated by both a sub and 

supra-maximal concentration of FGF20. In the neuroprotection cell viability study, a 

10ng/ml and a 200ng/ml concentration was identified as representing sub-maximal and 

supra-maximal FGF20 concentrations, respectively, in relation to FGF20’s ability to 

protect PC12 cells against 6OHDA toxicity.   
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In all of the cell viability studies, PC12 cells were plated at a density of 50000 

cells/well directly into 24 well NunC tissue culture plates. The plated cells were then 

placed in a cell incubator and left to grow for ~24h, at which point the cultures normally 

reached ~80-100% confluence. In the initial FGF20 neuroprotection studies, cells were 

then treated either with FGF20’s vehicle (1ng/ml rat serum albumin dissolved in FBS- 

DMEM media), or with a range of concentrations of FGF20 (10, 100, or 500ng/ml).  

 In PD173074 experiments, cultures were treated for 24h either with FGF20 

alone (200ng/ml), or with a FGF20 treatment (200ng/ml) added in combination with a 

range of concentrations of PD173074 (10, 100, or 1000nM, dissolved in FBS- media 

containing 0.02% DMSO). A 100nM concentration of PD173074 has in a previous 

study been demonstrated to maximally inhibit the pro-survival effects mediated by 

FGF2 on cerebellar granule neurones, in vitro (Skaper et al., 2000).  The concentrations 

of PD173074 employed in this study were, thus, selected as to include both sub and 

supra-maximal concentrations. 

In the SL327 experiments, cultures were treated for 24h either with FGF20 alone 

(200ng/ml), or with a FGF20 treatment (200ng/ml) added in combination with a range 

of concentrations of SL327 (10, 50, or 100µM, dissolved in FBS- media containing 

0.2% DMSO). The concentration range used in this study was selected based on 

previous studies using between 10 to 50µM SL327 to inhibit MEK1/2 signalling in 

various tissue culture preparations (Caughlan et al., 2004; Chen-Roetling et al., 2009; 

Lee et al., 2010). 

In the experiment with agrin, cultures were treated for 24h with one of six 

different treatments, agrin’s vehicle + FGF20’s vehicle, 500ng/ml agrin + FGF20’s 

vehicle, agrin’s vehicle + 10ng/ml FGF20 (submaximal conc.), 500ng/ml agrin + 

10ng/ml FGF20, agrin’s vehicle + 200ng/ml FGF20 (supramaximal conc.), 500ng/ml 

agrin + 200ng/ml FGF20. All of the treatments were delivered to each well as 500µl 

volumes. In a previous study, a 200ng/ml concentration of agrin was shown to 

potentiate ERK1/2 activation in PC12 cells (Kim et al., 2003), and the 500ng/ml 

concentration of agrin was, thus, selected so as to ensure a supra-maximally effective 

concentration was used. 

Thereafter, in all of the above cases, cells were exposed to 6OHDA (either 30, 

40, or 50µM, depending on the sensitivity of the cultures, see next paragraph for details) 

for 6h. Final 6OHDA concentrations were applied to the cultures by adding 50µl of a 

10x more concentrated 6OHDA stock solution directly to 450µl of DMEM FBS- media 
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previously added to each well. All the stock concentrations of 6OHDA were dissolved 

in a 0.2% ascorbate solution (dissolved in PBS, pH7.6) to limit the inactivation of 

6OHDA by auto-oxidation. Immediately after this, the 6OHDA treatment solutions 

were removed, and cell viability measured using the colourimetric MTS assay (see 

section 5.3.5 below).  

As with the VM cultures, different PC12 culture preparations were found also to 

have varying sensitivities to 6OHDA toxicity. After carrying out a number of repeat 

experiments, it was determined that depending on the sensitivity of the culture, a dose 

of between 30-50µM 6OHDA induced an ~50-80% reduction in cell viability relative to 

control. To accommodate for this variability, all FGF20 neuroprotection experiments 

were carried out in parallel in cells treated with either a 30, 40 or 50µM concentration of 

6OHDA. Results from only the 6OHDA concentration groups that caused ~50-80% of 

cell death were then selected for inclusion in analyses. 

 

5.3.5. Measurement of Cell Viability using the MTS Assay 

In the MTS assay, the overall metabolic activity that is present in a cell culture is 

quantified. In living cell cultures, the yellow coloured water soluble tetrazolium 

compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4 

sulfophenyl)-2H-tetrazolium (MTS) diffuses freely into the cytosol of living cells. Once 

inside, MTS is converted into a purple formazan product through the action of cytosolic 

dehydrogenase enzymes in the presence of phenazine methosulfate (PMS). As formazan 

absorbs light at 490-500nm, the degree of formazan formation in a specific cell culture 

can, thus, be quantified spectrophotometrically by measuring the degree of light that is 

absorbed at 490nm by the cell culture solution. And, in the MTS assay, this measure of 

metabolic activity is used as an indirect quantitative measure of cell viability, as the 

amount of formazan product that is produced has been shown to be directly proportional 

to the number of living cells that are present in a cell culture.              

A working MTS solution (330µg/ml MTS and 20µM PMS dissolved in serum 

free DMEM media) was prepared using MTS/PMS stock solutions provided in a 

CellTiter Aqueous non-Radioactive Cell Proliferation Assay kit (Promega). 200µl of 

this MTS working solution was added to each cell culture well. Cells were then left to 

incubate for 1h in the MTS solution while kept at 37°C in the cell culture incubator. 

Immediately thereafter, the cell cultures were analysed using a Flexstation (Molecular 

Devices) to quantify the degree of MTS to formazan conversion that occurred in each of 
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the different wells by measuring absorbance at 490nm. The degree of cell viability that 

was detected in each of the different treatment groups was expressed as a percentage of 

the cell viability that was present in the control group. These % control cell viability 

measurements were calculated by dividing the absolute 490nm absorbance value 

generated for each group by that of the control group, and by multiplying the resulting 

value by 100. For each treatment group, mean (±sem) % control cell viability values 

were derived from results from 3 independent repeat experiments, and in each repeat 

experiment, each treatment group comprised of 4 coverslips. In the initial FGF20 

neuroprotection experiment, cell viability results were analysed using one-way 

ANOVAs and Dunnett’s post hoc tests. Results were analysed to determine if cell 

viability measurements in each of the FGF20 treatment groups were significantly 

different compared to the vehicle + 6OHDA group.   

In the experiments with PD173074 and SL327, cell viability results were 

analysed with one-way ANOVA’s, and Bonferroni post-hoc tests. Results were 

analysed to determine whether cell viability measurements in each of the treatment 

groups were significantly different compared to the vehicle + 6OHDA group, and also 

whether cell viability measurements in any of the FGF20 + PD173074/SL327 groups 

were significantly different compared to the FGF20 + 6OHDA group.   In the cell 

viability studies with agrin, results were analysed with two-way ANOVAs and 

Bonferroni post-hoc tests. Results were analysed to determine if cell viability 

measurements in each of the treatment groups were significantly different compared to 

the vehicle + 6OHDA group. Additionally, it was also evaluated if cell viability in the 

sub-maximal (10ng/ml) and supra-maximal (200ng/ml) agrin negative FGF20 treatment 

groups were significantly different compared to the respective agrin positive FGF20 

treatment groups.   

 

5.3.6. ERK1/2 Phosphorylation Experiments 

5.3.6.1. Application of Treatments to PC12 Cells 

Four different ERK1/2 phosphorylation experiments were carried out in the PC12 cells 

with FGF20. In an initial experiment, it was evaluated whether FGF20 and FGF2 were 

able to stimulate ERK1/2 activation in the PC12 cells to determine if the PC12 cells 

contain a functioning FGF signalling system. In a second and third subsequent study, it 

was evaluated whether the selective FGFR inhibitor, PD173074 and/or the selective 
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MEK1/2 inhibitor, SL327 were able to inhibit FGF20 stimulated ERK1/2 

phosphorylation in the PC12 cells. In the fourth study, experiments were carried to 

evaluate whether the HSPG, agrin is able to modulate the degree of ERK1/2 activation 

stimulated by both a sub and supra-maximal concentration of FGF20. In preliminary 

experiments, a 10ng/ml and a 200ng/ml concentration was identified as representing 

sub-maximal and supra-maximal FGF20 concentrations, respectively, in relation to 

FGF20’s ability to stimulate ERK1/2 activation in PC12 cells. In all of these 

experiments, PC12 cells were grown in 75cm2 tissue culture flasks in FBS+ DMEM 

media until they were ~80-100% confluent. After overnight serum withdrawal, the FBS- 

DMEM media was removed from the flasks, and test treatments applied to the cells. In 

all cases, test treatments were dissolved in serum free DMEM media, and delivered as 

5ml volumes. Initial ERK1/2 phosphorylation experiments were carried out to 

determine if the PC12 cells contained functional FGFRs coupled to the ERK1/2 MAPK 

signalling pathway by evaluating if FGF2 and FGF20 were able to stimulate ERK1/2 

activation in the PC12 cells. In these experiments, serum starved PC12 cells were 

exposed to either a vehicle solution (1ng/ml rat serum albumin dissolved in FBS- 

DMEM media), 200ng/ml FGF20, 200ng/ml FGF2, or 100ng/ml nerve growth factor 

(NGF). NGF was used as a positive control in these experiments, as PC12 are widely 

known to be responsive to NGF application (Sabban, 1997; Spear et al., 1997; Wert & 

Palfrey, 2000b; Shimoke & Chiba, 2001; Kavanagh et al., 2006). 

In experiments carried out to determine if PD173074 blocks FGF20 stimulated 

ERK1/2 activation, cells were pre-treated for 1h with either PD173074’s vehicle (0.02% 

DMSO dissolved in serum free media), or with one of two concentrations of PD173074 

(50nM or 1000nM). A 50nM concentration of PD173074 has in previous studies been 

shown to mediate a maximal or complete inhibitory effect on FGF2 stimulated ERK1/2 

activation, in vitro (Skaper et al., 2000), and the 1000nM concentration, thus, represents 

a supra-maximal concentration. Thereafter, pre-treatment solutions were removed, and 

the cells that were pre-treated with PD173074’s vehicle, 50nM PD173074, and 1000nM 

PD173074 were then exposed for 5min to 200ng/ml FGF20 alone, 200ng/ml FGF20 + 

50nM PD173074, and 200ng/ml FGF20 + 1000nM PD173074, respectively.  

In experiments carried out to determine if SL327 blocks FGF20 stimulated 

ERK1/2 activation, cells were pre-treated for 1h with either SL327’s vehicle (0.2% 

DMSO dissolved in serum free media), or with one of two concentrations of SL327 

(10µM or 100µM). Thereafter, pre-treatment solutions were removed, and the cells pre-
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treated with SL327’s vehicle, 10µM SL327, and 100µM SL327 were then exposed for 

5min to 200ng/ml FGF20 alone, 200ng/ml FGF20 + 10µM SL327, and 200ng/ml 

FGF20 + 100µM SL327, respectively. 

In the experiments carried out to determine if  agrin modulated FGF20 simulated 

ERK1/2 activation, cultures were treated for 5min with one of six different treatments, 

agrin’s vehicle + FGF20’s vehicle (unstimulated control), 500ng/ml agrin + FGF20’s 

vehicle, agrin’s vehicle + 10ng/ml FGF20 (submaximal conc.), 500ng/ml agrin + 

10ng/ml FGF20, agrin’s vehicle + 200ng/ml FGF20 (supramaximal conc.), or 500ng/ml 

agrin + 200ng/ml FGF20. All of the treatments were delivered to each well as 500µl 

volumes.  

 

5.3.6.2. Preparation of Cell Lysates from the Stimulated PC12 Cells 

In all cases, immediately after the application of the last test treatment, the treatment 

solutions were removed and cell lysates prepared from the stimulated cells using exactly 

the same protocol as detailed in section 4.3.3.4.  

 

5.3.6.3. Quantification of ERK1/2 phosphorylation using Western Blot Analyses  

The level of ERK1/2 activation stimulated by each of the different treatment 

combinations was then quantified by Western blot analyses using exactly the same 

protocol as detailed in section 4.3.3.5. 

 

5.3.7. Drugs and Chemicals 

SL327 was obtained from Tocris Bioscience Ltd (UK, Bristol), and recombinant human 

FGF2 (FGF basic), recombinant rat agrin, and recombinant rat β-NGF were purchased 

from R&D Systems (US, MN). All other drugs and chemicals were obtained from the 

same suppliers detailed in section 3.3.5 and 4.3.5, or from Sigma Aldrich Ltd. (UK, 

Dorset). 
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5.4. Results 

5.4.1. Immunohistochemical Characterisation of the PC12 cell line  

Immunohistochemistry experiments were carried out to confirm that the PC12 cells 

expressed TH, and to determine whether FGF20’s receptors, the FGFRs are localised in 

the cells. The cells were shown to possess a catecholaminergic phenotype, as they were 

positive for TH (Fig 5.2), and the cells were also judged to have a characteristic 

polygonal morphology representative of PC12 cells. Additionally, FGFR1 and 3 were 

found to be present in the cells (Fig 5.2), but not FGFR4 (results not shown). For both 

FGFR1 and FGFR3, a cytoplasmic staining pattern was observed in some cells, while in 

other cells, the receptors were localised to both the cytoplasm and also to the nucleus. 

To determine whether the FGFRs localised in the PC12 cells were functional, it 

was evaluated whether the two FGFR ligands, FGF20 and FGF2 are able to stimulate 

ERK1/2 phosphorylation in the cells. The FGFR’s present in the PC12 cells were found 

to be functional as both FGF20 and FGF2 successfully induced ERK1/2 

phosphorylation in the cells (Fig 5.3). In the un-stimulated control group, normalised 

phospho-ERK1/2 band densities were around ~0.05 arbitrary units. Both the FGF20 and 

the FGF2 treatment stimulated ~3 fold increase in ERK1/2 activation compared to 

control, as phospho-ERK1/2 band densities were ~0.16-0.19 in the later 2 groups. NGF, 

however, had an immensely greater capacity to stimulate ERK1/2 activation. A 

supramaximal concentration of NGF induced ~5 fold greater degree of ERK1/2 

phosphorylation relative that stimulated by a supra-maximal concentration of the FGF 

ligands (Fig 5.3).  
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5.4.2. FGF20 Protects PC12 cells against 6OHDA Toxicity 

In the initial neuroprotection cell viability study, FGF20 concentration-dependently 

protected PC12 cells from 6OHDA toxicity (Fig 5.4). In the FGF20 vehicle + 6OHDA 

group, cell viability was reduced by ~50% compared to control (FGF20 vehicle + 

6OHDA vehicle group). Cell viability (% control) was significantly higher in all of the 

FGF20 + 6OHDA treatment groups vs. the FGF20 vehicle + 6OHDA group, with the 

10, 100, and 500ng/ml concentrations preserving cell viability at ~17% (p<0.01), ~28% 

(p<0.01), and ~26% (p<0.01) higher levels. The positive control, NGF preserved cell 

viability at substantially higher levels compared to the two higher doses of FGF20, as 

cell viability was preserved at ~97% in this treatment group (Fig 5.4). 
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5.4.3. FGF20’s Protective Effects are FGFR-Mediated 

The selective FGFR inhibitor, PD173074 was used to investigate if FGF20’s protective 

effects against 6ODHA toxicity were FGFR-mediated in PC12 cells. In ERK1/2 

phosphorylation assays, both a 50nM and a 1000nM concentration of PD173074 

completely blocked FGF20 stimulated ERK1/2 phosphorylation in the PC12 cells (Fig 

5.5.A). In the un-stimulated control group, normalised phospho-ERK1/2 band densities 

were around ~0.17 arbitrary units. The 200ng/ml FGF20 treatment stimulated ~2 fold 

increase in ERK1/2 activation compared to control, as phospho-ERK1/2 band densities 

were ~0.3-0.4 in this group. Both of the concentrations of PD173074 completely 

blocked this FGF20 stimulated increase in ERK1/2 activation, as phospho-ERK1/2 band 

densities in the PD173074 + FGF20 groups were ~0.12-0.17, levels equivalent or 

slightly below that observed in the control group.  

In cell viability experiments, PD173074 concentration-dependently inhibited 

FGF20’s ability to protect PC12 cells against 6OHDA toxicity (Fig 5.5.B). In the 

FGF20 vehicle + 6OHDA group, cell viability was 36% (relative to control). FGF20 

treatment preserved cell viability at significantly higher levels (~22% higher) vs. the 

FGF20 vehicle + 6OHDA group (p<0.01). PD173074 concentration–dependently 

inhibited FGF20’s protective effects, with cell viability in the 0.1, 0.5, and 1µM 

PD173074 groups being ~12%, ~26%, and ~32% lower compared to the FGF20 + 

6OHDA group, respectively. All of the PD173074 concentrations reduced cell viability 

levels to levels that were not significantly different to the FGF20 vehicle + 6OHDA 

group, and the cell viability levels in the 0.5, and 1µM PD173074 groups were also 

significantly lower compared to the FGF20 + 6OHDA group (p<0.01).      
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5.4.4. FGF20’s Protective Effects against 6OHDA Toxicity are Mediated by the 

ERK1/2 MAPK Signalling Pathway 

The MEK1/2 inhibitor, SL327 was used to investigate if FGF20’s protective effects are 

mediated by the ERK1/2 MAPK signalling pathway at an intracellular level in PC12 

cells. In ERK1/2 phosphorylation assays, both a 10µM and a 100µM concentration of 

SL327 completely blocked FGF20 stimulated ERK1/2 phosphorylation (Fig 5.6.A). In 

the un-stimulated control group, normalised phospho-ERK1/2 band densities were 

around ~0.12-0.22 arbitrary units. The 200ng/ml FGF20 treatment stimulated ~0.7-4 

fold increase in ERK1/2 activation compared to control, as phospho-ERK1/2 band 

densities were ~0.31-0.45 in this group. Both of the concentrations of SL327 completely 

blocked this FGF20 stimulated increase in ERK1/2 activation, as phospho-ERK1/2 band 

densities in the SL327 + FGF20 groups were ~0.02-0.05, levels slightly below that 

observed in the control group.  

In cell viability experiments, SL327 concentration-dependently inhibited 

FGF20’s ability to protect PC12 cells against 6OHDA toxicity (Fig 5.6.B). In the 

FGF20 vehicle + 6OHDA group, cell viability was ~21% (relative to control). FGF20 

treatment preserved cell viability at significantly higher levels (~14% higher) vs. the 

vehicle + 6OHDA group (p<0.05). PD173074 concentration–dependently inhibited 

FGF20’s protective effects, with cell viability in the 0.1µM, 0.5µM, and 1µM SL327 

groups being ~8%, ~11%, and ~17% lower compared to the FGF20 + 6OHDA group, 

respectively. Both the 50µM and 100µM SL327 concentrations reduced cell viability to 

levels not significantly different to the FGF20 vehicle + 6OHDA group, and the cell 

viability levels in all three of the SL327 groups were also significantly lower compared 

to the FGF20 + 6OHDA group (p<0.01).      
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5.4.5. The HSPG, Agrin Potentiates FGF20 Stimulated ERK1/2 activation, but 

Fails to Potentiate FGF20’s Neuroprotective Effects against 6OHDA Toxicity 

Agrin was investigated in ERK1/2 phosphorylation experiments for its ability to 

modulate FGF20’s ability to stimulate ERK1/2 activation, and in cell viability 

experiments, agrin was also evaluated for its ability to modulate the ability of FGF20 to 

protect PC12 cells against 6OHDA toxicity.  

In ERK1/2 phosphorylation experiments (Fig 5.7), no baseline ERK1/2 

activation was detected in the un-stimulated control group, as normalised phospho-

ERK1/2 band densities were around ~0.02-0.05 arbitrary units in this group. When 

agrin was applied alone, it failed to stimulate ERK1/2 phosphorylation, as phospho-

ERK1/2 band densities of ~0.02-0.05 were detected in this group, densities similar to 

that observed in the control group. The sub-maximal 10ng/ml concentration of FGF20 

also failed to stimulate any ERK1/2 activation when added alone, as phospho-ERK1/2 

band densities of ~0.01 were detected in this group. The supra-maximal 200ng/ml 

concentration of FGF20, on the other hand, stimulated ERK1/2 activation when applied 

by itself, as phospho-ERK1/2 band densities of ~0.11-0.28 were detected in this group, 

levels ~5.5 fold higher than in the control cells. When the 10ng/ml FGF20 concentration 

was applied in combination with agrin, it stimulated ERK1/2 phosphorylation at levels 

at least equivalent to that stimulated by the supra-maximal 200ng/ml concentration of 

FGF20 when applied alone, as phospho-ERK1/2 band densities in this group were 

~0.13-0.29. When the 200ng/ml concentration of FGF20 was applied in combination 

with agrin, an equivalent degree of ERK1/2 activation was stimulated compared to 

when it was applied alone. Agrin, thus, potentiated the degree of ERK1/2 activation 

stimulated by the sub-maximal concentration of FGF20, and it failed to modify the 

degree of ERK1/2 activation stimulated by the supra-maximal concentration of FGF20.  

In cell viability studies, agrin failed to significantly potentiate the protective 

effects mediated by FGF20 in PC12 cells (Fig 5.8). In the vehicle + 6OHDA group, cell 

viability was ~56% (relative to control). The sub-maximal 10ng/ml FGF20 

concentration when applied alone, failed to protect the PC12 cells against 6OHDA, as 

cell viability was not significantly different in this group compared to the vehicle + 

6OHDA group. Agrin failed to alter the protective effect mediated by the 10ng/ml 

FGF20 conc., as cell viability in the agrin + 10ng/ml FGF20 group was not significantly 

different to that in either the vehicle + 6OHDA, or the agrin vehicle + 10/ng/ml FGF20 

groups. The supra-maximal 200ng/ml FGF20 conc., on the other hand, significantly 
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protected the PC12 cells against 6OHDA toxicity, as cell viability was preserved at 

~79% in this group, at levels significantly higher than compared to the vehicle + 

6OHDA group (p<0.01). Interestingly, when the 200ng/ml FGF20 concentration was 

co-applied with agrin, cell viability actually decreased by ~6% compared to when the 

200ng/ml concentration was added alone, lowering cell viability to levels that were no 

longer significantly higher compared to the vehicle treated 6OHDA group. The 

neuroprotective effect mediated by the supra-maximal FGF20 concentration, thus, 

appeared to have been inhibited by agrin rather than being potentiated.  
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5.5. Discussion 

5.5.1. A Functional FGF Signalling System is Present in the PC12 Cell Line 

In previous studies carried out as part of Chapter 4, FGF20 was shown to protect 

dopamine neurones against 6OHDA-induced cell death, in vitro, in VM embryonic 

cultures and also, in vivo, in the 6OHDA rat model of PD. In the current Chapter, a 

PC12 cell culture system was used to study the signalling mechanisms through which 

FGF20 mediates it neuroprotective effects against 6OHDA toxicity. The PC12 cell 

culture system was selected as an appropriate model to carry out these experiments not 

only because PC12 cells have a dopaminergic phenotype, but also because PC12 cells 

are known to possess a functional FGFR signalling system. PC12 cells have previously 

been shown to contain mRNA for FGFR1, 3, and 4, and the FGFs stimulate a number of 

biological responses in PC12 cells, including differentiation and cell survival (detailed 

in section 5.1.8). However, it is widely known that there is considerable variation 

between the phenotype of different PC12 cell sub-clones, and some sub-clones of PC12 

cells have been found to be un-responsive to FGF (Altin et al., 1991; Lin et al., 1996). 

For this reason, several validation experiments were carried out to ensure that the clone 

of PC12 cells used in this study does, indeed, contain a functional FGF system. Using 

immunohistochemistry, it was evaluated whether the FGFR1, 3, and 4 proteins were 

present in the PC12 cells, and FGFR1 and 3 but not FGFR4 were found to be localised 

in the PC12 cell line. It was not examined if FGFR2 is present, but this receptor is 

unlikely to be present, as two previous studies have reported FGFR2 mRNA not to be 

expressed in PC12 cells (Foehr et al., 1998; Muller-Ostermeyer et al., 2001). 

Interestingly, for both FGFR1 and FGFR3, a cytoplasmic staining pattern was observed 

in some cells, while in other cells, the receptors were localised to both the cytoplasm 

and also to the nucleus. The FGFRs are RTKs, and they are, therefore, traditionally 

considered to exist and function as classical plasma membrane receptors that signal 

through various second messenger systems. Recent findings have, however, 

conclusively demonstrated that a number of plasma membrane receptors also signal 

through an unorthodox nuclear signalling pathway that involves the translocation of the 

receptors from the plasma membrane to the nucleus, and the FGFRs are a prototypical 

example of such receptors (Bryant & Stow, 2005). Activation of membrane bound 

FGFR1 by FGF2, for example, leads to the nuclear translocation of some of the FGFR1-

FGF2 complexes (Bryant & Stow, 2005), and this nuclear translocation has been shown 



 
 

232  
 

to be essential in allowing FGFR1’s full mitogenic effects to be expressed (Bossard et 

al., 2003). This concomitant nuclear and cytoplasmic localisation of the FGFR1 and 

FGFR3, thus, indicates that these receptors might signal through such a nuclear 

signalling pathway in the PC12 cells. Results showing FGFR4 not to be present in the 

PC12 cell line conflicts with previous studies which showed mRNA for FGFR1, 3, and 

4 to be present in PC12 cells (Foehr et al., 1998; Muller-Ostermeyer et al., 2001). As 

mentioned before, the phenotype of different PC12 cell sub-clones are known to vary 

considerably, and it is possible that the specific sub-clone used in this study had ceased 

to express FGFR4. Furthermore, the previous studies have only demonstrated FGFR4 

mRNA to be present in the PC12 cells, and results from this study are the first to 

characterise the localisation of the FGFR proteins in PC12 cells. Alternatively, this 

discrepancy could, thus, be due to FGFR4 mRNA being expressed but not translated in 

the PC12 cells.  

After ascertaining that the PC12 cell line used in this study did, indeed, express 

the FGFR1 and 3 proteins, experiments were subsequently carried out to confirm that 

the receptors are not only present but also functional and coupled to downstream 

intracellular signalling pathways. The FGF prototype, FGF2 has previously been shown 

to stimulate ERK1/2 phosphorylation in PC12 cells (Foehr et al., 1998; Kim et al., 

2003). The functionality of the FGF system was therefore tested by evaluating whether 

not only FGF20 but also FGF2 is able to stimulate ERK1/2 phosphorylation in the PC12 

cells. Additionally, NGF was also used in these experiments as an additional positive 

control, as PC12 cells are widely known to be responsive to NGF (Sabban, 1997; Spear 

et al., 1997; Wert & Palfrey, 2000b; Shimoke & Chiba, 2001; Kavanagh et al., 2006). 

Results from these ERK1/2 phosphorylation studies confirmed that the FGFRs in the 

PC12 cells were, indeed, functional, as both FGF2 and FGF20 stimulated an increase in 

ERK1/2 phosphorylation in the cells. Interestingly, a supra-maximal concentration of 

NGF was found to have a substantially greater potency at stimulating ERK1/2 

activation compared to a supra-maximal dose of FGF2 and FGF20. As previous studies 

have reported FGF2 to produce a similar degree of ERK1/2 activation in PC12 cells as 

seen in this study (Foehr et al., 1998; Muller-Ostermeyer et al., 2001), it appears that, at 

least in PC12 cells, the FGF system is more weakly linked to the ERK1/2 MAPK 

pathway compared to the NGF system. 
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5.5.2. FGF20 Protects PC12 Cells against 6OHDA Toxicity 

After confirming that the PC12 cells possessed functional FGFRs, a number of 

subsequent cell survival experiments were then carried out, firstly to demonstrate that 

FGF20 is, indeed, able to protect PC12 cells against 6OHDA toxicity, and secondly to 

try and identify the signalling mechanisms mediating FGF20’s protective effects. In the 

initial neuroprotection studies in which FGF20 was evaluated for its ability to protect 

PC12 cells against 6OHDA, FGF20 was found to concentration-dependently protect the 

PC12 cells against 6OHDA toxicity. A 10ng/ml concentration of FGF20 mediated a 

significant but sub-maximal protective effect against 6OHDA, while a maximal 

protective effect was produced by a 100ng/ml concentration of FGF20. Based on these 

results, a 200ng/ml supra-maximal concentration of FGF20 was used in all subsequent 

cell viability studies carried out to identify the signalling mechanisms mediating 

FGF20’s protective effects against 6OHDA. Moreover, in these initial neuroprotection 

experiments, a supra-maximal concentration of FGF20 was found to preserve PC12 cell 

viability at around ~20% higher levels compared the 6OHDA control group. 

Interestingly, the NGF positive control treatment had a much more potent 

neuroprotective effect, as NGF preserved cell viability at control levels, at levels around 

30% higher compared to the maximal effect achieved by FGF20. In later experiments, 

FGF20’s protective effects against 6OHDA toxicity was shown to be mediated by the 

ERK1/2 MAPK signalling pathway, and this difference in neuroprotective potency 

could, thus, be down to the fact that NGF has a substantially greater potency at 

stimulating ERK1/2 activation, as demonstrated by results from the phosphorylation 

experiments.      

 

5.5.3. FGF20’s Neuroprotective Effects in PC12 Cells against 6OHDA is Mediated 

through the FGFRs at the Receptor Level 

FGF20 appears to be a relatively non-selective agonist at its cognate receptors, the 

FGFRs, as FGF20 is able to stimulate mitogenesis through most of the FGFR subtypes 

(Zhang et al., 2006). There have, however, been no specific investigations, thus far, 

investigating whether FGF20 is capable of stimulating any biological effects by non-

selectively activating receptors other than the FGFRs. As most receptor agonists 

stimulate effects by non-selectively activating receptors that are not designated as their 

cognate receptor class, it is possible that FGF20’s protective effects might in full or in 
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part result from it non-selectively activating receptors other than the FGFRs. Thus, to 

confirm that FGF20’s neuroprotective effects are, indeed, mediated by the FGFRs, it 

was evaluated whether FGF20’s protective effects could be inhibited by the selective 

FGFR antagonist, PD173074. In these experiments, PD173074 concentration-

dependently inhibited FGF20’s neuroprotective effects against 6OHDA, with a 100nM 

concentration of PD173074 preventing a supra-maximal concentration of FGF20 from 

having a significant protective effect. These results indicate that FGF20’s protective 

effects are, indeed, being wholly mediated through an FGFR-dependent mechanism. 

However, although PD173074 is a relatively selective inhibitor at the FGFRs, it is also 

known to have antagonistic effects at the vascular epithelial growth factor receptor 2 

(VEGFR2) at concentrations of ~100nM. PC12 cells express the VEGFR2, and 

activation of this receptor has been shown to stimulate anti-apoptotic effects in PC12 

cells (Berger et al., 2006). The possibility that FGF20’s neuroprotective effects could be 

partially mediated through the VEGFR2 can, therefore, not be ruled out.  

Moreover, as PD173074 is a non-selective inhibitor of the FGFRs, it cannot be 

directly concluded from these results which specific FGFR subtype FGF20 is mediating 

its neuroprotective effects through. However, based on the immunohistochemical results 

showing the PC12 cell line to only express FGFR1 and 3, and also on previous findings 

showing FGFR2 mRNA not to be present in PC12 cells, it can be deduced that FGF20’s 

protective effects are most likely mediated through the FGFR1 and/or FGFR3 in the 

PC12 cells used in this study. To determine the extent to which FGF20 mediates its 

protective effects through activation of each the two FGFR receptor subtypes, further 

experiments with inhibitors selective for the FGFR1 and FGFR3 would be needed. This 

is, however, currently not possible, due to inhibitors selective for the latter receptors 

currently not being commercially available.        

 

5.5.4. FGF20’s Neuroprotective Effects in PC12 Cells against 6OHDA is Mediated 

through the ERK1/2 MAPK Pathway at the Intracellular Level 

After showing FGF20’s effects to be mediated by the FGFRs at the receptor level, 

experiments were carried out to investigate the signalling pathways mediating FGF20’s 

protective effects at an intracellular level. Activation of the FGFRs in PC12 cells have 

been shown to lead to the recruitment and activation of many of the classical RTK 

linked intracellular signalling pathways, including the PI3K, PKC, and various MAPK 

pathways (detailed in section 5.1.8). Of all these intracellular signalling pathways 
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recruited by FGFR activation, only the ERK1/2 MAPK and the PI3K pathways have, 

however, been implicated in mediating the pro-survival effects stimulated by FGFR 

activation in PC12 cells. As the ERK1/2 MAPK signalling pathway has most widely 

been reported to mediate the protective and/or pro-survival effects stimulated by FGFR 

activation, not only in PC12 cells, but also in many other tissues and animal models, 

experiments were carried out to investigate whether this pathway was mediating 

FGF20’s protective effects in the PC12 cells. To do this, it was evaluated if the selective 

MEK1/2 inhibitor, SL327 is able to inhibit FGF20’s neuroprotective effects against 

6OHDA toxicity in the PC12 cells. In these experiments, SL327 concentration-

dependently inhibited FGF20’s protective effects, with a 10µM concentration of SL327 

significantly inhibiting FGF20’s protective effects, and a 50µM concentration 

completely abolishing FGF20’s neuroprotective effects. The concentrations of SL327 

used in these experiments are consistent with that commonly used in the literature to 

selectively inhibit MEK1/2 (Caughlan et al., 2004; Chen-Roetling et al., 2009; Lee et 

al., 2010). These results, thus, show that FGF20’s neuroprotective effects in PC12 cells 

are mediated through the ERK1/2 MAPK pathway.  

The results showing FGF20 to protect against 6OHDA toxicity in PC12 cells are 

consistent with results from the Murase & McKay, 2006 study and from the VM 

neuroprotection experiments carried out in this thesis in Chapter 4 which showed 

FGF20 to protect dopamine neurones in VM embryonic cultures against 6ODHA 

toxicity. The magnitude of the maximal protective effect mediated by FGF20, however, 

differed substantially between the two culture systems. In the VM cultures, FGF20 - 

both in the VM study carried out in Chapter 4 and in the Murase & McKay, 2006 study 

– preserved TH+ cell numbers at control levels, whereas in the PC12 cells, FGF20 only 

preserved cell viability at around 70% compared to control, and at ~20% higher levels 

compared to the 6ODHA group. FGF20’s more pronounced neuroprotective potency in 

the VM culture system compared to the PC12 cells could be due to a number of reasons. 

One explanation for the difference could be that the FGFRs in the PC12 cells are less 

responsive than those present in the VM cultures. This is, however, unlikely to be the 

case, as the degree of ERK1/2 phosphorylation stimulated by FGF20 in VM cultures in 

the Murase & McKay, 2006 study appears to be equivalent to that observed in the PC12 

cells in this study. Another explanation might be that FGF20 stimulates the recruitment 

of a more limited number of pro-survival pathways in the PC12 cells compared to the 

VM cultures. Support for this possibility is provided by the fact that FGF20’s protective 
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effects on VM dopamine neurones were shown to be mediated through both the ERK1/2 

and the PI3K pathways (Murase & McKay, 2006), whereas in this study it appeared that 

FGF20’s protective effects were wholly mediated by the ERK1/2 signalling pathway. 

However, results from this study do not rule out the possibility that other signalling 

pathways are also involved in mediating the protective effects of FGF20 against 

6OHDA in the PC12 cells, as the role of other signalling pathways were not specifically 

investigated in this study. The latter explanation for the discrepancy in FGF20’s 

neuroprotective potency in the two culture systems could, therefore, only be considered 

plausible if results from further studies specifically demonstrate the PI3K or other 

pathways not to be involved in mediating FGF20’s protective effects in PC12 cells. In 

Chapter 2, FGFR1, 3, and 4 were shown to be abundantly localised in astrocytes within 

VM cultures, and the neuroprotective effects mediated by the FGFs have been 

demonstrated to be at least partially mediated by an astrocyte-dependent indirect 

mechanism (detailed in section 4.1.4). Therefore, if this is also the case with FGF20, 

the less potent neuroprotective effects observed in the PC12 cells could be due to the 

absence of astrocytes within the PC12 cells. 

The primary toxic events induced by 6OHDA in cells include increased ROS 

production, inactivation of endogenous anti-oxidant mechanisms, and inhibition of 

mitochondrial respiratory chain enzymes (detailed in section 3.1.1.4.3). These 6OHDA-

induced toxic events then in turn stimulate increased activity of pro-apoptotic signals 

and/or decreased activity of anti-apoptotic signals in the cells. The overall pro-apoptotic 

signalling environment in the cell then leads to the activation of caspase enzymes, 

which act to induce cell death through the controlled breakdown of the cell contents. It 

is, thus, possible for a neuroprotective treatment to protect against 6OHDA-induced cell 

death by inhibiting the primary toxic events induced by 6OHDA and/or by 

counteracting the pro-apoptotic signalling events that are triggered by the primary 

6OHDA-induced toxic events. In the first instance, a neuroprotective treatment can, for 

example, stimulate an upregulation of endogenous anti-oxidant systems within the cells, 

which then acts to reduce the toxic levels of ROS induced by 6OHDA to non-toxic 

levels, and by doing so it could prevent the ROS initiated activation pro-apoptotic 

signalling pathways. In the second instance, a neuroprotective treatment can, for 

example, prevent 6ODHA-induced apoptosis by upregulating anti-apoptotic signalling 

pathways and/or by downregulating pro-apoptotic pathways. Alternatively, a treatment 

could potentially also act further downstream of the apoptotic cascades, by inhibiting 
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the activation of caspase enzymes. As neuroprotective treatments, especially in the case 

of growth factors, are known to activate a number of different intracellular signalling 

pathways, it is likely that their neuroprotective effects are mediated through a number of 

different anti-apoptotic effector mechanisms. Recent results, however, indicate that 

ERK1/2-stimulated anti-apoptotic effects are not mediated by effector mechanisms that 

attenuate any of the primary toxic effects of 6OHDA, but rather through modulation of 

apoptotic signalling pathways downstream of the toxic events. No effector mechanisms 

targeting any of the primary 6OHDA-induced toxic events have, thus far, been 

identified to mediate the anti-apoptotic effects of ERK1/2 activation. There are, 

however, numerous reports, on the other hand, that have implicated a number of 

different effector mechanisms targeting apoptotic signalling pathways to be responsible 

for mediating the anti-apoptotic effects mediated by ERK1/2 activation (Lu & Xu, 

2006). The specific anti-apoptotic mechanism through which ERK1/2 mediates its pro-

survival effects, however, appears to be dependent on the specific experimental context. 

Some of the specific apoptotic mechanisms through which ERK1/2 brings about its pro-

survival effects have been shown to include inactivation of the pro-apoptotic bcl2 

family members, BAD and BIM, stimulation of the activity of the anti-apoptotic Bcl-2 

family member, Mc-1, inhibition of caspase activation, stimulation of the activity of the 

caspase inhibitor, C-flip, and upregulation and downregulation of the anti-apoptotic 

transcription factor, cAMP response element binding (CREB), and the pro-apoptotic 

transcription factor, STAT3/5, respectively (Lu & Xu, 2006). Furthermore, FGF20 has 

been shown to stimulate an upregulation of the anti-apoptotic protein BAD, and 

downregulation of the pro-apoptotic Bax protein in VM dopamine neurone cultures 

(Murase & McKay, 2006).  Based on these findings, it is, thus, likely that the ERK1/2-

dependent neuroprotective effects stimulated by FGF20 in the PC12 cells are also 

ultimately brought about by effector mechanisms modulating apoptotic signals as to 

favour cell survival.  

As the specific signalling pathways mediating the neuroprotective effects 

stimulated by FGFR activation could potentially become therapeutic targets for PD, 

further research is needed to identify the specific signalling pathways mediating the 

neuroprotective effects stimulated by the FGFs and other neurotrophins. In particular, 

there is a need for more research aimed at identifying the signalling pathways mediating 

the neuroprotective effects of the FGFs on dopamine neurones at the in vivo level, as 

most of the literature in this area is currently based on only in vitro findings. Moreover, 
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it is possible that superior neuroprotective effects might be achieved if two or more 

neurotrophins from different growth factor families are co-administered. And it is likely 

that such a neurotrophin combination therapy would have the greatest likelihood of 

having superior therapeutic effects if the different neurotrophins used all bring about 

their neuroprotective effects through differing intracellular mechanisms. The 

availability of extensive knowledge about the specific mechanisms mediating the 

neuroprotective effects of different neurotrophins would, thus, also allow for the 

selection of the most appropriate neurotrophin combinations to evaluate in 

neuroprotection studies.                              

 

5.5.5. The HSPG, Agrin potentiates FGF20 Stimulated ERK1/2 Activation, but it 

Fails to Potentiate FGF20’s Neuroprotective Effects against 6OHDA in PC12 Cells 

The HSPGs are known to play an important role in modulating FGFR signalling. The 

HSPG, agrin has previously been demonstrated to potentiate FGF2 stimulated ERK1/2 

activation and neurite outgrowth in PC12 cells (Kim et al., 2003). In the current study it 

was investigated whether agrin is also able to potentiate FGF20 stimulated ERK1/2 

activation in PC12 cells. Additionally, experiments were also carried out to evaluate if 

agrin is able to potentiate FGF20’s neuroprotective effects in the PC12 cells. Results 

from these experiments showed that agrin modulated FGF20’s ability to stimulate 

ERK1/2 activation in PC12 cells in an equivalent manner to that reported for FGF2 

(Kim et al., 2003). In this study, agrin did not stimulate any ERK1/2 activation when 

applied alone, but when concurrently applied with FGF20, it potentiated the magnitude 

of ERK1/2 activation stimulated by a sub-maximal but not a supra-maximal 

concentration of FGF20. Interestingly, agrin, however, failed to potentiate the 

neuroprotective effects mediated by both a sub and supra-maximal concentration of 

FGF20 in cell viability experiments.  In ERK1/2 phosphorylation experiments, a 

10ng/ml sub-maximal concentration of FGF20 failed to stimulate an increase in ERK1/2 

phosphorylation when applied alone. But when agrin was co-applied with the 10ng/ml 

concentration of FGF20, agrin potentiated the FGF20 stimulated ERK1/2 activation to 

levels equivalent to that observed with a supra-maximal FGF20 concentration. This 

potentiated FGF20 stimulated ERK1/2 activation, however, did not result in the sub-

maximal concentration of FGF20 producing a significantly greater degree of 

neuroprotection. This is surprising, as FGF20’s protective effects were completely 

inhibited when ERK1/2 signalling was blocked with SL327. One would, thus, have 
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expected the potentiated ERK1/2 activation to have resulted in the 10ng/ml FGF20 

concentration producing a significant protective effect when it was co-applied with 

agrin. A possible explanation for this could be that agrin mediates some additional 

pharmacological effects on the PC12 cells which act to inhibit FGF20’s neuroprotective 

effects, with these inhibitory effects being pronounced enough to counteract the 

increased protective effects which might result from its potentiating effects on FGF20 

stimulated ERK1/2 activation. Indeed, the results showing agrin to actually inhibit the 

neuroprotective effects mediated by the supra-maximal concentration of FGF20, 

provides strong evidence that this is indeed the case. Additionally, further support for 

this possibility is provided by results from two studies which showed heparin to inhibit 

the biological effects stimulated by FGF2. In one study, heparin inhibited FGF2’s 

ability to protect endothelial cells against hyperglycaemia-induced cell death (Han et 

al., 2005), while in another study heparin partially inhibited the neurotrophic effects 

mediated by a low concentration of FGF2 in PC12 cells (Neufeld et al., 1987).  

These results, however, do not rule out the possibility that FGF20’s protective 

effects could be potentiated by a different type of HSPG molecule. The modulating 

effects that HSPGs have on FGF signalling have been shown to be fairly complex. The 

heparin sulphate side chains of HSPGs consist of linear polysaccharide chains 

composed of repeating sulphated disaccharide units (Yanagishita & Hascall, 1992). The 

existence of several different disaccharide building blocks, with varying spatial 

sulphation patterns, gives rise to a large number of heparin sulphate polymer subtypes, 

and HSPG’s with different sulphation patterns have been shown to mediate different 

biological effects (detailed in section 5.1.6). It is, thus, possible that the specific 

sulphation pattern and/or chemical composition of agrin results in it being able to 

potentiate FGF20 stimulated ERK1/2 activation, but not FGF20’s neuroprotective 

effects against 6OHDA toxicity. A different HSPG with an alternative sulphation 

pattern and/or chemical structure might, thus, potentially be able to potentiate FGF20’s 

neuroprotective effects. Further studies are, therefore, needed to more thoroughly 

investigate the potential that HSPGs and HSPG-like molecules might have in 

potentiating the neuroprotective effects of FGF20. In Chapter 4, FGF20 was shown to 

protect nigrostriatal dopamine neurones in the 6OHDA rat model of PD. The magnitude 

of the neuroprotective effect mediated by FGF20 in this study was, however, only 

moderate. In the study, 6ODHA induced a reduction in striatal TH levels and nigral 

TH+ cell counts of ~54% and ~71%, respectively, in the vehicle treated rats, and the 
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highest and most effective dose of FGF20 tested preserved striatal TH levels and nigral 

TH+ cell counts at ~20% higher levels compared to the vehicle treated 6OHDA 

lesioned rats. The discovery of a specific HSPG with the ability to potentiate FGF20’s 

neuroprotective effects on dopamine neurones, would, thus, further increase FGF20’s 

therapeutic potential as a neuroprotective treatment in PD. Heparin is a highly sulphated 

glycosaminoglycan, and despite this molecule lacking the proteoglycan core that is 

present in HSPGs, it has been demonstrated to increase FGF2’s stability in solution 

(Caldwell et al., 2004), and also to potentiate a number of different biological effects 

stimulated by the FGFs, including neurite outgrowth and mitogenesis (Damon et al., 

1988; Caldwell & Svendsen, 1998). Importantly, heparin has specifically been shown to 

potentiate the pro-survival effects mediated by FGF2 in a number of different contexts 

(Unsicker et al., 1987; Sensenbrenner, 1993; Renaud et al., 1996; Bouleau et al., 2007). 

It would, thus, be worthwhile investigating whether heparin might be able to potentiate 

FGF20’s protective effects.  

 

5.5.6. Conclusion 

In chapter 4, FGF20 was shown to protect dopamine neurones against 6OHDA toxicity 

both, in vitro, in VM embryonic cultures, and also, in vivo, in the 6OHDA rat model of 

PD. In the current Chapter, cell viability studies were carried out in PC12 cells to try 

and identify the signalling pathways mediating FGF20’s neuroprotective effects against 

6ODHA toxicity.  Results from this study show for the first time that FGF20 is also able 

to protect PC12 cells against 6ODHA toxicity. Furthermore, FGF20’s neuroprotective 

effects against 6OHDA toxicity was found to be mediated by the FGFRs at the receptor 

level, and by the ERK1/2 MAPK pathway at the intracellular level in the PC12 cells. 

HSPGs play an important role in modulating the signalling and biological effects 

stimulated by the FGFs. In the current study it was evaluated whether the HSPG, agrin 

is able to modulate FGF20’s ability to stimulate ERK1/2 phosphorylation in PC12 cells 

and/or its ability to protect PC12 cells against 6OHDA toxicity.  In these studies, agrin 

was found to potentiate FGF20 stimulated ERK1/2 activation, but it failed to potentiate 

FGF20’s neuroprotective effects against 6OHDA in the PC12 cells. 
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6. General Conclusion 

There is currently an urgent clinical need for more effective treatments for the motor 

symptoms in PD. Since all of the currently available treatments for PD fail to slow 

down the ongoing nigrostriatal degeneration that occurs in PD, there is in particular a 

need for new neuroprotective treatments that are able to slow or halt disease progression 

by preventing the remaining functional nigrostriatal dopaminergic neurones in the PD 

brain from degenerating. Recent findings have demonstrated FGF20 to have 

neuroprotective effects on dopaminergic neurones, in vitro. These findings can be taken 

to suggest that FGF20 might have neuroprotective potential in PD, and the studies 

undertaken in this thesis aimed to further investigate FGF20’s neuroprotective potential. 

Two of the primary aims of this thesis were, firstly, to confirm FGF20’s previously 

reported in vitro neuroprotective effects, by testing if FGF20 was able to protect VM 

embryonic dopamine neurones against 6OHDA, and, secondly, to evaluate for the first 

time whether FGF20’s neuroprotective effects on dopamine neurones are also present in 

vivo, in the partially lesioned 6OHDA rat model of PD.  

Prior to carrying out the planned in vitro and in vivo neuroprotection studies 

with FGF20, it was important to ensure that FGF20’s receptors, the FGFRs were, 

indeed, present in both of the abovementioned model systems. Therefore, in Chapter 2, 

using immunohistochemistry, the colocalisation profiles of FGF20, and the FGFR1, 3, 

and 4 were characterised in detail in both VM cultures, and in the nigrostriatal tract of 

rats. Results from these studies demonstrated the FGFR1, 3, and 4 to be present 

abundantly within VM cultures and also throughout the nigrostriatal tract of the rat 

brain. In a previous study, FGFR2 has also been shown to be present in the SN and 

striatum, although it was found to be exclusively localised to astrocytes (Chadashvili & 

Peterson, 2006). The widespread presence of all 4 of the FGFRs within the nigrostriatal 

tract, and more particularly, the localisation of FGFR1, 3, and 4 to nigrostriatal 

dopamine neurones, provided a sound anatomical rationale for investigating the 

neuroprotective potential that pharmacological activation of the FGF system might have 

in PD. Furthermore, if the FGFs are protecting dopamine neurones by directly 

activating FGFRs on nigrostriatal dopamine neurones, the immunohistochemistry 

results indicated that targeting the FGF system at the level of the substantia nigra, rather 

than the striatum, is likely to have the greatest neuroprotective potential. This is as, at 

the nigral level, FGFR1, 3, and 4 were found to be present in TH+ nigrostriatal 
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dopamine neurones within the SNc. In the striatum, on the other hand, only FGFR1 co-

localised with striatal dopamine neurone terminals, and of all the TH+ striatal nerve 

terminals, only a subset appeared to be positive for FGFR1. 
In Chapter 3 of this thesis, experiments were carried out with the aim of 

establishing an appropriate partially lesioned 6OHDA rat model of PD, in which FGF20 

could be evaluated for its neuroprotective effects on dopamine neurones, in vivo. To 

accomplish this objective, 6OHDA dose-response experiments were carried out to 

identify an intra-nigrally delivered dose of 6OHDA that induces an ~60-80% partial 

nigrostriatal lesion. Full nigrostriatal 6OHDA lesions induce robust motor impairments 

in rats which can be easily measured by numerous behavioural tests of motor function. 

Partial 6OHDA-induced nigrostriatal lesions, on the other hand, produce more subtle 

motor deficits which can only be detected by a number of the more sensitive motor 

tests. Therefore, two drug-induced motor tests (apomorphine and amphetamine induced 

rotations) and two spontaneous motor tests (adjusted stepping test and cylinder test) 

were evaluated in the dose response experiments to identify tests that are capable of 

detecting motor deficits induced by a partial 6OHDA lesion.  In these studies, a 

6OHDA lesioning procedure that induces a negligible degree of non-specific 

nigrostriatal degeneration by itself was successfully developed. The use of an injection 

needle with the smallest possible gauge and also a physiological vehicle solution, in the 

lesioning procedure, was demonstrated to be essential in minimising non-specific 

nigrostriatal degeneration. Importantly, in the 6OHDA dose-response studies, a 4µg 

6OHDA dose was identified as producing an appropriate partial nigrostriatal 

dopaminergic lesion, while both a 6µg and an 8µg dose was found to induce an 

undesirable near complete lesion. Based on these results it was decided that, the ability 

of FGF20 to protect against a partial nigrostriatal lesion would be evaluated in rats that 

have received a 4µg intra-nigrally delivered dose of 6OHDA. Furthermore, the cylinder 

test and the amphetamine-induced rotational test were identified as being the only tests 

with the appropriate degree of sensitivity to allow them to be used to assess if FGF20 

improves the motor deficits induced by the partial nigrostriatal lesion. To successfully 

evaluate FGF20’s neuroprotective efficacy, in vivo, it was also essential that a 

biologically active dose of the growth factor was tested. By using phosho-ERK1/2 as a 

marker of FGF20 mediated FGFR1 activation, an attempt was made in Chapter 3 to 

identify a biologically active intra-nigrally delivered dose of FGF20, but, unfortunately, 

this study failed to successfully identify a biologically active dose. Therefore, it was 
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decided that a range of FGF20 doses based on findings from pilot studies previously 

conducted in this lab would be used in the in vivo neuroprotection study.   

In Chapter 4, studies were carried out to evaluate if FGF20 is able to protect 

dopamine neurones both in vitro and in vivo. FGF20 has previously been shown to 

protect dopamine neurones, in vitro, against a number of different insults, and the first 

objective of this Chapter was to confirm these findings by evaluating whether FGF20 

was able to protect VM dopamine neurones against 6OHDA toxicity. A VM embryonic 

dopamine neurone culture system was established, and neuroprotection experiments 

carried out with FGF20 in the VM cultures, and results from these experiments 

demonstrated FGF20 to protect VM dopaminergic neurones against 6OHDA toxicity, 

confirming the previously published findings. Thus far, there are no published studies 

that have investigated whether FGF20’s neuroprotective effects on dopamine neurones 

are also present, in vivo, in animal models of PD. Therefore, experiments were 

subsequently carried out to evaluate whether FGF20 has neuroprotective effects on 

dopamine neurones in the partial 6OHDA rat model of PD established within Chapter 3. 

In this study, FGF20 was continuously and chronically delivered to the SN of the 

6OHDA lesioned rats with the use of osmotic mini-pumps that were connected to 

chronically implanted supra-nigral cannulae. Results from the neuroprotection study 

shows for the first time that FGF20 is also able to protect dopamine neurones in the 

partially lesioned 6OHDA rat model of PD. Importantly, FGF20 not only protected 

nigrostriatal dopaminergic neurones against 6OHDA-induced degeneration, but it also 

preserved motor function to some degree in the 6OHDA lesioned rats. The FGF system 

plays an important physiological role in both the developing and the intact adult 

nigrostriatal dopaminergic system, and evidence from a number of studies has indicated 

that one of the main roles of the endogenous FGF system in the nigrostriatal tract is to 

stimulate and maintain the survival of dopamine neurones. In a separate in vivo study 

carried out in Chapter 4, it was evaluated if the endogenous FGF system does, indeed, 

play a role in protecting nigrostriatal dopamine neurones by evaluating whether chronic 

pharmacological inhibition of FGFR signaling potentiates 6OHDA-induced nigrostriatal 

dopamine neurone degeneration in the rat. Results from this study suggest that the 

endogenous FGF system might, indeed, play a protective role in the nigrostriatal tract, 

although further studies are needed to provide more conclusive evidence for this.  

After demonstrating FGF20 to protect dopamine neurones against 6OHDA 

toxicity both, in vitro and in vivo, further in vitro experiments with FGF20 were carried 
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out in Chapter 5, this time in PC12 cells, to investigate the signalling mechanisms 

mediating FGF20’s neuroprotective effects against 6OHDA toxicity. More specifically, 

experiments were carried out to determine if FGF20’s neuroprotective effects are, 

indeed, mediated by the FGFRs, and at the intracellular level, it was evaluated if 

FGF20’s neuroprotective effects are mediated by the ERK1/2 MAPK pathway. Results 

from these experiments reveal, for the first time, that FGF20 is able to protect PC12 

cells against 6ODHA toxicity. Furthermore, with the use of selective inhibitors, 

FGF20’s neuroprotective effects against 6OHDA toxicity were found to be mediated by 

the FGFRs at the receptor level, and by the ERK1/2 MAPK pathway at the intracellular 

level in the PC12 cells. The HSPGs play an important role in modulating FGF 

signaling, and the HSPG, agrin, when co-applied with FGF2, potentiates both FGF2-

stimulated ERK1/2 activation and neurite outgrowth in PC12 cells. In additional studies, 

experiments were carried out not only to evaluate whether agrin is able to potentiate 

FGF20 induced ERK1/2 activation, but also whether agrin is able modulate FGF20’s 

neuroprotective effects against 6OHDA toxicity in PC12 cells. In this study, agrin was 

found to potentiate FGF20 stimulated ERK1/2 activation, but it failed to potentiate 

FGF20’s neuroprotective effects against 6OHDA in the PC12 cells.  

Taken together, the findings presented in this thesis provide further support for 

the neuroprotective potential of FGF20 in PD. Together with findings from others 

showing several members of the FGF family to have neuroprotective effects on 

dopamine neurones in pre-clinical models of PD, these results also, more generally, 

provide further support for the FGFRs in the nigrostriatal tract being a promising 

neuroprotective therapeutic target in PD. Due to the technical difficulties in delivering 

growth factors to the brains of PD patients, the most effective way of utilising the FGF 

system to treat PD would, however, be to develop small molecule agonists targeting the 

FGFRs. For this reason, further research is needed to identify the specific FGFR 

subtype(s) that are responsible for mediating the neuroprotective effects of the FGFs, so 

that small molecule systemically active agonists selective for these receptors could be 

developed and assessed for their neuroprotective efficacy in future studies    
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