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“The pine fought the storm and broke.
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ABSTRACT

Starting from Scott’s recent work on Logarithmic Topological Quantum Field
Theories (LogTQFTs, [72]), we will show that the Euler characteristic of a manifold
with boundary is another instance of a topological invariant arising as a character of
a LogTQFT. Along the way, we will prove a classification theorem for 2-dimensional
LogTQFTs and study the additivity (with respect to gluing) of the index of Dirac
operators from the point of view of the boundary integrals.

In Part II, we will generalize the ideas and concepts in Part I and introduce
Higher LogTQFTs, which will be defined as log-functors on subcategories of Cob,,,
the category of m-dimensional cobordisms. Such log-functors take values in the
cyclic homology of a representation of Cob,, and will be, in most cases, obtained
by composition with Chern characters. This generalization appears natural in the
light of the functorial construction of a LogTQFT and provides a tool to capture
finer additive invariants of manifolds which arise from the presence of additional
data, such as a fibering of the manifold or a group action on a covering. The family
and Novikov signatures will be shown to be two key examples of characters of higher
logTQFTs and their additive nature will arise as a consequence of this.

Finally, in Part II1, we will define a new log-structure called residue analytic tor-
sion, in analogy with Ray-Singer analytic torsion, and introduced for the first time
by Scott in his last work, [72]. It is defined via Wodzicki residue trace, hence the
name. We will show a classification theorem for residue torsion on manifolds (with
and without boundary) and relate this results to Index Theory and LogTQFTs.
Moreover, it will also be possible to extend such torsion to fibre bundles and char-

acterize it in terms of Higher LogTQFTs, in the spirit of Part II.
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Introduction

The study presented in this thesis originated from the construction and investi-
gation of a new algebraic theory, or categorification, of logarithmic representations
and their log-determinant characters contained in [72], after the analysis and obser-
vations of [73]. This is our starting point: [72] and its key definition of log-functors,
i.e. simplicial maps between (suitably defined) simplicial sets with a log-additive
property. There, some fundamental examples are investigated, among which the
representation of the topological signature as the log-determinant of a LogTQFT.
Our goal here is to add new examples and extend the general theory.

The purpose of defining such categorical logarithms is mainly to capture those
manifold invariants that behave additively with respect to gluing of manifolds along
a common boundary component. As such, these invariants can be seen as semi-

classical, as they can be located between classical bordism invariants (genera)

w8 — R,

i.e. ring homomorphisms on the Thom ring €, of bordism classes of closed mani-

folds, and quantum bordism invariants (TQFT's)

7 : Cob,, — Vecty,

i.e. symmetric monoidal functors from the category of n-dimensional cobordisms
Cob,, to the category of vector spaces.
In this introduction, we present the structure of our exposition and report the

main results.

Chapter 0:

We start with an introductory chapter, whose main purpose is to set the no-
tation and recall some standard results. There and for the rest of the exposition,
we will consider compact C'*°-manifolds X (which will be simply called manifolds),
possibly with non-empty smooth boundary Y := 0X and a collar neighbourhood

8
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U :=[0,1) x Y with product structure
gl)é =dt? + g7, ¢~ Riemannian metric for X,

where coordinates © = (¢,y) are chosen in such a way that y € Y and ¢ € [0,1)
corresponds to an inward-pointing normal direction. For £ — X a Hermitian
vector bundle, C*°(X, E) will denote the space of smooth sections and H*(X, E)
the associated Sobolev space. Sections s € C*°(U, E|yy) restrict to the boundary

via a continuous operator
v H(X,E) = H (Y, E'),  (v5)(y) ==5(0,y), E = Ey,

which will be used to study boundary value problems. ¥#(X, E) := J U™ X, E)

mez
will denote the algebra of integer order classical pseudodifferential operators (clas-
sical 1dos), and W~°(X, E) := [, cg V" (X, E) the ideal of smoothing 1dos, i.e.
those A whose Schwartz kernel k“(z,y) is smooth. We recall in this context that
U~°(X, E) has a (projectively) unique trace, called classical, defined by the inte-
gral Tr(A) := [ tr k4 (z,z)dx.

We will mainly consider the bundle of differential forms A(X) — X, with sec-
tions Q(X) := C*(X,A(X)). When Y # 0, the restriction yw € C*°(Y, A*(X),y)

decomposes as
Y = w; +dt Awa, w1 € QF(Y), wy € QFH(Y),

and defines the two orthogonal projections Ryw = w; and Ayw = ws. They
commute with the exterior derivative d and codifferential §, respectively, and refine

the complexes (QF(X),d) and (QF(X),d) to
di : QU (X) — Q5FL(X) and o QEFH(X) — Q8 (X)),

where Q% (X) = {w € QF(X)| Ryw = 0} and Q% (X) = {w € Q¥(X)| Ayw = 0},
i.e. QF(X) with relative, resp. absolute, boundary conditions. Let HE (X, C) and
HY(X,C) be the cohomology of (2% (X),d) and (2% (X),d), respectively. Then,
by de Rham theorem (§4.1, [23]),

HM(X,Y) = HRp(X,C)  and  H*(X)= Hi(X,0),

and the Euler characteristic and relative Euler characteristic can be respectively

defined as
X(X) =Y (-1)Fdim HY(X,C) and x(X,Y)=> (-1)"dim H(X,C).
k=0 k=0
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The end of the chapter recalls the relationship x(X) = x(X,Y) + x(Y) and the

quasi-additivity of the Euler characteristic:
X(X1 UN XQ) :X(X1)+X(X2)7X(N), NS: 6X1 ﬂaXz,

which is proper additivity when X5, X5 have even dimension, as in this case x(N) = 0.

Chapter 1:

Having set the basic analytical and topological notations, in Chapter 1 we es-
tablish definitions and properties of log, trace, and det. Thus, a logarithmic repre-
sentation of a semigroup S in an algebra 7 is a homomorphism log : S — T /[T, T]
with a log-additive property logab = loga + logb; a trace is a homomorphism of
groups 7 : (T,4) — (U,+) such that [T, T]| C ker(r); and a determinant is the
composition det,. := e o7 olog, where e : (U,+,-) = (V,+,-) is an exponential
map, i.e. a homomorphism of unital rings such that e(a + b) = e(a) - e(b). In
particular, the term log-determinant (or log-character) will stand for a composi-
tion 7 olog : & — U. In this generic context, we prove some equivalent criteria for
the uniqueness of trace, log, and det (Lemmas 1.2.4, 1.2.5, and 1.2.6). Then we
recall two known examples of log-structures: the global logarithm on GL(n,C) and
the index of a Fredholm operator A € Fred(H) on a Hilbert space H. The lat-
ter can, in fact, be obtained from a logarithm log : Fred(H) — F(H) defined as
log A := [A, P], for P any parametrix and F(H) is the ideal of finite rank operators,
by composition with the classical trace Tr on F(H).

The rest of Chapter 1 is then devoted to the presentation of log-functors and
is a summery of the core of [72]. In order to define log-functors, the starting point
is a monoidal product representation (Definition 1.4.13) of a symmetric monoidal
category (C,®), which is defined to be a functor F : C — B, B an additive

category, together with insertion transformations, i.e. morphisms
Neyc: F(c) > F(c®y), ¢y € obj(C)

that are compatible with ®, i.e. Ngygy)C = Ngy (c®Y) 0 Ngyc, and are compatible
with commutation, i.e. gy C = le(c @Y @ Y) 0 Ngyey)c. Here, p,(z) is a
canonical isomorphism F(z) — F(2,), where 2, := Zyq) ® -+ ® Zg(p), i.e. the
object x = 1 ® -+ ® x,, € obj(C) after the action of a permutation o € S,.
Insertion morphisms 7g, intertwine with permutation isomorphisms p,(z), thus
combining into more elaborated insertion morphisms, denoted n’;, which are used

to define a presimplicial structure on the image F(C) (which is the reason why we
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need monoidal product representations). Specifically, if obj(CP) denote the set of
p-tuples £o ® - - - ®@x,_1 of objects of C, then such presimplicial structure is defined
by p-simplices

Ap={(&z0,...,2p—1) | EEF(20® - Q@xp_1),z; €0bj(C)} C 0bj(B) x obj(CP).

degeneracy maps si(w) : A, = Apiq

Sk(W)(€7.’170, s Jmpfl) = (777]2(5)71.03 vy Tp—1, W, Ty - - - >xp71)

(it is presimplicial exactly because face maps may not be available).
Once a monoidal product representation is chosen, we can define the key object

of our study (Definition 1.4.28):

DEFINITION. Let (C,®) be a symmetric monoidal category and F' : C — Ring

a monoidal product representation. Then a log-functor is a presimplicial map

log : NC — F(C)/|F(C), F(C)],

Flr®y)
[Fz®vy), Flz®y)]’

such that if & € mor(z,y) and 8 € mor(y, z), then

log,e, mor(x,y) — a > log,g, @, T,y € obj(C)

ﬁy (1Og;c®z ﬂ © Oé) = 77®Z (logx®y Oé) + 7796® (logy®z /B)

inFlzye:z)/[Fey®z2),FzyR 2)].

It is then clear why we need insertion maps: each logarithm lives in a different
space, hence log, ., o and log, . 3 can be added together only if represented into
a common space F(x®y®z). The object N'C is the nerve of C, a presimplicial set
naturally obtained from C as follows: the space of p-simplices N,,C is composed by
p-tuples of morphisms (o, ...,op-1), @; € mor(z;,z;41) with j € {0,...,p—1},

and the degeneracy maps s; : N);C — N, 11 C are defined as:
Sj(Olo, e O, O, .., ap_l) = (O(o, ey Oéj_l,idwj,()éj, ceey O[p_l),

id; : x; — x; the identity. F/(C)/[F(C), F'(C)] is an an abelian category induced
by the canonical projection 7 : R — R/[R, R], R aring, and inherits a presimplicial
structure from F(C). In particular, when C = Cob,, a log-functor is called a
Logarithmic Topological Quantum Field Theory (LogTQFT for short) of dimension
n, in analogy with a TQFT. It is important, though, to remark that a LogTQFT
is not a symmetric monoidal functor, but a functor co-categories. However, it can

be used to define one, at least in a weak sense:
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LEMMA. Let F' : Cob, — Ring be an unoriented monoidal product rep-
resentation (i.e. F(M) = F(M~), where M~ means that the opposite orienta-
tion is considered) with trace 7. : enda(a.) — enda(l), defining a LogTQFT
log : NCob,, — F(Cob,)/[F(Cob,), F(Cob,)]. If e:enda(l) = F is an ex-
ponential map into a field, then there exists a scalar-valued TQFT Zoq - de-
fined as Ziogr (M) = F for M € obj(Cob,,) and Ziog (W) = e(r(logW)) for
W € mor(Cob,,).

As stated in the Lemma, the conversion from a LogTQFT to a TQFT requires
a categorical trace 7, i.e. there exist ¢ € obj(C) for which we have a ring homomor-
phism 7. : F'(¢) — end(1) such that the trace property holds: if « € mor(F(c), F(¢')),
B € mor(F(c'),F(c)) such that S o« € end(F(c)) and ao 8 € end(F(¢')), then
Te(Boa) = 7o(ao B). We will need to require traces to be F-compatible, i.e.
Ve € obj(C), 7. satisfies Tegy © Ngyc = T, and 7., o ps(x) = 7. It will follow
that 7. factors though m. : F(¢) — F(c)/[F(c), F(c)], i.e. T = T. o m.. Moreover,
the trace 7 on F(C)/[F(C), F(C)] satisfies the analogous compatibility condition
Teoy © NeyC = Te-

As we will see clearly in the next Chapter 2, traces will yield manifold invariants
as log-determinants of LogTQFTs. In fact, the 7-character of a LogTQFT defines
a log-determinant functor representation of Cob,,, i.e. Tasun 0 logysa W, which

will be independent of insertion maps:
Tarune (10g a0 W) = Tarunarunt (ar 108 pp g W).
Additivity follows from log-additivity:
7(log Ba) = T(log o) + 7(log B), a € mor(c, '), B € mor(c, ).

Finally, we conclude the chapter with a classification result we were able to
prove for LogTQFT of dimension 2, which we called Unoriented Logarithm Theo-
rem for Orientable Surfaces (Corollary 1.4.42). Here, unoriented LogTQFT means
logsun W = log s ar W, iee. the logarithm is invariant under change of orien-
tation. The theorem shows that a 2-dimensional LogTQFT is fully characterized
by its definition on the disc:

THEOREM. Let F': Cob; — Ring be an unoriented monoidal product repre-
sentation and let log : NCoby — F(Cobs)/[F(Cobs), F(Coby)| be an unoriented

LogTQFT. Let X, ;. denote an orientable, compact, and connected surface of genus
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g, whose boundary 9%, ; has k connected components, i.e. 93, = | |, SL. Then,

Vg,k € N:
10g|_|k St i‘g,k = X(Eg,k) : ﬁl—lf;ll S1 logsl E,

where x(2,.x) = x(24)—k is the Euler characteristic of £, ;, and x(3,) is the closed

surface ¥, obtained from X, ;, by gluing k discs along the boundary components.

Chapter 2:

In this chapter, we prove that the Euler characteristic of an even dimensional
manifold can be viewed as a log-determinant of a LogTQFT. Since the result
is based on the index of a Dirac operator with boundary conditions, we started
the section by recalling the main ingredients of Elliptic Boundary Value Problems
(EBVPs), which we briefly summarize here. The Dirac operator we will be working

with is the de Rham operator
0:=(d+6)": Q7 (X) = Q (X)

on X, considered with non-empty boundary Y, and relative to a Zs-grading of
Q(X) into even and odd order smooth forms.

The crucial observation is that, if ¥ = @, then (d + §)* is Fredholm and
ind(d+6)" = x(X). When Y # (), then a similar result holds but we need suitable
boundary conditions. A natural class of boundary conditions is represented by
the APS (4 dodifferential) projections, Ix>q : L*(YV,A(X)y) = Va4 = Drsa Vs
a € R. Here, V) is the A-eigenspace of an elliptic self-adjoint operator B on Y
which originates from the decomposition of 8 into o(9; + B) on a neighbourhood U
of Y. o := ¢(dt) is the Clifford multiplication associated to the normal coordinate
t and, by assuming a product structure, B is independent of ¢ and corresponds to
the restriction of d to Y.

APS projections are not the main focus here (they are in [72], where they
are needed to show that the topological signature of X is the trace-character of
a LogTQFT), but they are close to a key ingredient for EBVPs: the Calderon
projection C € WYY, A*(X)y), which is defined in the following way. Our bundle
A(X) and Dirac operator 0 are assumed to be the restriction to X of a bundle
A(X) and Dirac operator d over a closed (i.e. without boundary) manifold X, into
which X embeds, such that 0 is invertible (this can always be obtained by taking the
‘double’ of X). Then the Calderén projection C is defined as the operator 77“5_15*0,
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where r is the restriction to X and 7 is the restriction operator from X toY. It is
the projection onto the space of Cauchy data, i.e. the restriction to Y of kerd. All
boundary conditions that are well-posed in the sense of EBVPs (Definition 2.2.2)
will be of the form Pyw = 0, for P a smooth perturbation of C, i.e. a projection
P € UO(Y,A*(X))y) such that P = C + S, with S € ¥~>°(Y,A"(X)y). For
instance, C — II>, € ¥~(Y,A*(X))y) when a product structure is assumed.

Our interest in EBVPs lies in the fact that for such well-posed boundary
conditions the realization Jp, i.e. the unbounded operator acting as 0 on the
space {w € H!QF(X)|Pyw = 0}, is Fredholm and its index equals the one of an-
other Fredholm operator: the Toeplitz-type operator PC : ranC 2 ranP. Hence,
ind(dp) = ind(PC) and the information is concentrated on the boundary. It is this
boundary dependence that we look for when searching for a LogTQFT.

Another fundamental property of the index is quasi-additivity, another feature
that could arise from a LogTQFT. In fact, if two n-dimensional manifolds X; with
boundary Y; 1 UY;, i = 1,2 are glued along the common boundary Y7 into the
manifold X = X; Uy, X», then:

(%) ind 0p = ind 01p, + ind O2p, +ind Q

where Q is a Fredholm operator on the boundary component Y7, and 0p,0;p,
are realization of the restrictions of 0 to X and X; with respect to well-posed
boundary conditions. Since formula (x) is usually found in the literature for X a
closed manifold, we proved it but from the point of view of Calderén projections
(Theorem 2.4.15). To our knowledge, such an approach had not been previously
investigated. Formula (%) becomes a proper additivity in some cases, for example
when we consider only relative boundary conditions (the operator R described in
Chapter 0 that selects the tangential component of the decomposition of a smooth
form to the boundary). In this case, indQ = x(Y1), which vanishes if n is even.
Finally, ind(PC) can be seen as a trace-character. In fact, well-posedness yields
ind(PC) = Tr(C — P) (lemma 3.8, [72]).

Thus, we define an even dimensional LogTQFT as follows. First, we consider
the representation F_, : Coba, — C-Alg defined as F_,(M) := U= (M, AT (M)),
which is unoriented and has a trace Trys : F_oo(M) — C. Then, we define a log-
functor log* : N'Cobg,, — F_(Cobay,)/[F-(Cobay,), F—(Coba,)] by setting

F_ oo (Mo U M)
F_oo(Mo U My), F_oo(My U My)]’

1og X ne, (W) == marunr, © k4(Cw — Row) € [
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with W € morcob,,, (Mo, M1), k4 : F_oo(OW) — F_o (Mo U M) a natural isomor-

phism, and maz,unr, the projection to the quotient. Its Tr-character is
TrMou]wl (IOgﬁouMl (W)) =Tr (CW - Raw)) = 1nd37g = X(X, Y)

and additivity follows from the additivity of the relative Euler characteristic in even
dimension (Theorem 2.5.5). In conclusion, we remark the consistency of this result
with the Unoriented Logarithm Theorem for Orientable Surfaces. This concludes

Chapter 1 and the first part of the thesis.

Chapter 3:

This is the first chapter of the second part of the thesis, where we extend by
functoriality the definition and properties of LogTQFTs and their trace-characters.
In fact, the category F(C)/[F(C), F(C)] has a presimplicial structure inherited
from F(C) by composition with the covariant functor II induced by the projection
onto the quotient 7. : F(c) — F(c)/[F(c), F(c)]; the latter is where a logarithm
log, « lives. Here, the fundamental observation is that F(c)/[F(c), F(c)] corre-
sponds to HCy(F'(c)), i.e. the cyclic homology group of F'(c) of order zero, and the
functor II is actually the cyclic homology functor HC).

Therefore, the chapter starts with a condensed survey of the main definitions of
cyclic homology and cohomology. For A an associative R-algebra, R a commutative
ring, the cyclic homology of A, HC.(A) := @,,5, HCn(A), can be defined as the
homology of Connes complex (C2(A), b), where C))(A) := %, i.e. the cokernel
of the action of 1—t, onto A®"*! := A®---®A (t, is the generator of Z/(n+1)Z),
and b is the Hochschild boundary map, i.e. the R-linear map

n—1

bu(ag®@ a1 ® -+ ®ay) =Y (—1)"(ap @+ @ ;641 @+ @ ay)
1=0

+(-D)™"(anao ® a1 ® +++ @ ap_1).

If f: A— Bis amorphism of R-algebras, then f, : HC,,(f) : HC.(A) — HC.(B)
is a morphism of R-modules. Therefore HC), is a functor from R-Alg, the category
of R-algebras, to R-Mod, the category of R-modules.

If we allow a monoidal product representation F' to take values in R-Alg, i.e.
F(c) is an R-algebra, then we can consider all the cyclic homology of F(c), not
just HCo(F'(c)). Therefore, by composition with the functors HC,,, we obtain new
presimplicial sets HC,,(F'(C)) (Lemma 3.1.8), which can be used to define higher

log-functors:
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DEFINITION. A higher logarithmic functor of order n is a presimplicial log-

additive map log,; : NC — HC,(F(C)), i.e. a simplicial system of maps
108, 20y : MOr(2,y) = HCL(F (2 ®Y)), > logy.ay® =,y € obj(C)
such that if & € mor(x,y) and 8 € mor(y, z), then
My (1081 202 B0 @) = Ne: (108, 20y @) + Tz (108, ye- B) € HOW(F(x @ y ® 2)).

All the other properties of logarithms, e.g. the logarithm of an idempotent
object is trivial, follow from the case of order 0. Clearly, for C C Cob,, a higher
log-functor will be called higher logarithmic Topological Quantum Field Theory of
dimension n. In Chapter 4 and Chapter 5 we will analyse two instances of higher
LogTQFTs: a Logarithmic Family Quantum Field Theory (LogFQFT, i.e. when
C = FCob,,(B), the category of fibre bundles over the base space B) and a Loga-
rithmic Homotopy Quantum Field Theory (LogHQFT, i.e. when C = HCob,,(X),
the category of homotopy classes of X-cobordisms, i.e. maps from a cobordism to
a target space X).

Higher log-functors call for higher traces. Here, the idea to remember is that
the R-traces on an R-algebra A are homomorphisms HCy(A) — R. Therefore,
higher traces will be homomorphisms HC,,(A) — R. The space of such ho-
momorphisms, Hom(HC,,(A), R), is in relationship with the cyclic cohomology
HC*(A) = D,,5o HC™(A), of which we recalled the definition: it is the homology
of the complex (C}¥(A),3), where CY(A) is the sub-module of linear functionals
[ € Hom(A®" " R) such that f(ag®@ -+ ®a,) = (=1)"f(an @ ag ® -+ @ an_1),
and B : OF(A) — CYT(A) is

n

B(f)ao® - @ ant1) 522(—1)if(a0 @ ®ajai41 @ @ ay)
i=0

+(=1)" fans1a0 ® a1 @ -+ @ ap).
Kronecker pairing HC™(A) x HC,,(A) — R defines a map
HC"(A) — Hom(HC,,(A), R),

which is an isomorphisms when R is a field. Therefore, by pairing with cyclic
cohomology we could generalize the concept of monoidal product representation,
categorical trace and log-determinant functor (Definition 3.1.13 and following). The
latter will generalize to higher log-determinants and some manifold invariants, such

as Novikov’s higher signatures, will be described as such (Chapter 5).
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However, passing to cyclic homology is not the only ‘abelianization’ method.
In fact, for a ring R there exists also a projection onto its Grothendieck group
Ko(R), which factors the ‘universal’ trace R — R/[R, R], and a trace morphism
7 : Ko(R) — [TRM’ called Hattori-Stallings trace map, which turns out to be a
Chern character. Therefore, we showed that in some circumstances a higher log-
functor will arise from a wuniversal log-functor. In order to give its definition, and
show its well-posedness, we recalled the construction of the Grothendieck group of
a ring R, which in practice defines a covariant functor K : Ring -+ AbGrp. By
functoriality, the presimplicial structure of F'(C) pushes down to Ko (F(C)), which

becomes the desired target space for:

DEFINITION. A wuniversal logarithmic functor is a presimplicial log-additive

map u-log : NC — Ko(F(C*)), i.e. a simplicial system of maps
u-10g,, : mor(z,y) = Ko(F(z®y)), aw u-log,s, o, z,y € obj(C)
such that if & € mor(z,y) and 8 € mor(y, z), then
7y (11085, B0 ) = e (11089 @) + T (u- 0, B) € Ko(Flz @y ® 2).

Clearly, if C C Cob,,, then we call it a universal Logarithmic Quantum Field
Theory of dimension 7.

A universal log-functor yields a higher log-functor when composed with a suit-
able Chern character ch,, : Ko(A) — HC3,(A), which in turns can be considered
as a trace , i.e. an homomorphism on the abelianization of A taking values into
an abelian group. In fact, the Chern character is a natural transformation of func-
tors Ko — HC,, which can be defined as ch,([e]) := tr(c(e)) in its full generality,
where A is a (non necessarily commutative) R-algebra, tr : M, (A)®" — A®™ is the

generalized trace map, and
c(€) == (Yns Zns Yn—1, Zn—1s - - -, Y1) € M (A" T @ M, (A" @ - & M, (A),

with y; := (—1)"CLe®2 41 and 2 = (—1)i_1(22(—2!))!e®2i. We remark in that con-
text that this definition reduces to the classical Chern character a la Chern- Weil
when A is commutative. In particular, if A = C*°(B), B smooth manifold,
then Ko(C>(B)) = K°(B), the topological K-theory, HC,(C*(B)) = H*(B,C)
by de Rham Theorem and ch, is identified with the usual ring homomorphism
K°B) - H*(B,C).

In conclusion, we remarked that an algebra A must have some additional struc-

ture for its cyclic homology (and a Chern character) to be interesting. For instance,
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the cyclic homology and cohomology of a C*-algebra can be quite poor: for exam-
ple, HC"(C(M)) = HC°(C(M)) if n is even and HC™(C'(M)) = 0 when n is odd.
This will motivate some of the choices of Chapters 4 and 5 (i.e. the smoothing of

the index).

Chapter 4:

Here we generalize to fibre bundles, i.e. surjective surjections of manifolds
x5 B, the result of [72] for the topological signature. We begin by recalling the
basic definitions for fibre bundles and for smooth families of vector bundles £ — &
(such as the wertical cotangent bundle Ty X := |J,cp Ty X of a fibre bundle). In
particular, &€ — X corresponds to an infinite-dimensional smooth Fréchet bundle
m.(€) — B with fibre 7.(F) := m.(E|x,) = C*(Xs, E|x,)- Its space of sections,
C>®(B,m(£)), corresponds to C*(X,€), a C*°(B)-module, with which we will

work in general. C*° (B, m.(€)) generalizes to
AF(B,m,(&)) := C®(X,7*A*(B) ® &),

the de Rham complex of smooth k-forms on B with values in 7.(£). Analogously,
for two smooth families & 5 X , F L X there is a well defined smooth family
of vector bundles ¥ (X;E, F) — B with fibre (X, E, F) := U™ (Xy; Ep, Fp).
Hence, a smooth family of 1dos of order m (or vertical 1¥do) associated to a fibre
bundle X is a smooth section 7 € C°(B, V™ (X; &, F)) = ¥ (X;E,F) and its
symbol’s domain is T} X. We will sometimes write 7 = (T})secp because locally
every vertical ¢do is of the form T, : C*(Xy, E|x,) — C*(Xy, Fx,). Clearly,
vertical idos are the zeroth order space of a de Rham complex of do-valued
smooth B-forms A(B,¥™(X; &, F)). For our goal, let us consider families of Dirac
operators 2 = (0p)pen € Wiy (X, E) on fibre bundles with even dimensional fibres
(a vertical metric is assumed).

If Y := 00X = 0, then 2 is Fredholm and there is a well defined index class
ind? € K°(B). Otherwise, if Y # (), we assume a product structure near ), so
that we have the decomposition %, = T (0; + Zy). Then the main ingredients of
EBVPs are well-defined in this family case as well and yield a family of Calderén
projections & € \Ifgert(y,é]y), which is one instance of well-posed boundary con-
ditions, in this case represented by spectral sections of 2y, ie. 2 € VO . Y, &y)

such that P, is a finite rank perturbation of the APS projection II;, := II>¢ for

each b € B. Then, with spectral sections we basically have the same results of
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EBVPs for the single operator case, and the realization Z4 has a well-defined in-
dex class; in particular, indZ2% = ind2¢ = [¢ — 2] € K°(B) and quasi-additivity
with respect to gluing of fibre bundles hold. Notice that spectral sections exists if
and only if ind2y = 0, which is the case by cobordisms invariance.

Therefore, we can define a LogFQFT, i.e. a higher LogTQFT, as follows. We
consider the category FCob,,(B) C Cob,, of cobordims fibered over B with fibre
dimension n (an analogous category is used to define Fibered QFTs in [80]) and
the representation F.ox () := U X (Y, A ())), with Az(Y) := A(T;Y) — Y the
bundle of vertical forms. For X € morgceb,, (5)(Mo, M1), we consider its family
signature operator 2°'8", together with a particular kind of spectral section &
called symmetric. Symmetric spectral sections were defined by [43], upon meeting
some sufficient condition, and are what is needed to have a homotopy invariant index
class ind25#". Then we define a universal LogTQFT u-log®®" : NFCob,(B) —
Ko(Fpers (FCob, (B))) ® Q by setting

w1038, X 1= Grmounty (16— ) € Ko(Frey (Mo UM1) ©Q,

with éf’ﬁ MouM, the canonical isomorphism Ko (F, o (0X)) =2 Ko(Foent (MoUM,)).
Since Z is symmetric, log-additivity follows in Ko (Fyeer (Mo U M; UM3)) @ Q

~ Si ~ Sig Si
My log/\l/ig(leJMz A UX, = Mo log,/\l/l[jlu/\/ll X+ T)MO IOgJ\I/lglnuM2 Ao

Now, Fyt (M) is shown to be Morita equivalent to C°°(M). Therefore,
Ko(F o0 (M)) = K°(B) and the Chern character ch,, which in this case corre-

sponds to the classical one K°(B) — H?*(B), yields the higher LogTQFT
O X = e (1 ToglE . ) = ch (16— ) € (),

which is equal to ch([¢ — &]) = ZdlmB 5Try/ 5 (RE — RY,), where Try g is
integration along the fibres and Rg are curvatures. In particular, for £k = 0 we
have the topological signature of the fibre X. In conclusion, we obtain higher traces
by pairing with cyclic cohomology. For instance, we can obtain the signature of the

total space X.

Chapter 5:

This chapter describes another higher LogTQFT, similar to the family one but
belonging to the noncommutative geometry setting. The category we are working
with is the one of homotopy cobordisms HCob,,(X) C Cob,,, i.e. maps r: M — X

and homotopy classes of maps of cobordisms between them, as described in [66].
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As anticipated, a higher log-functor representation of this category can be called
LogHQFT, from Homotopy Quantum Field Theory (which indeed can induce, as
much as a LogTQFT can induce a TQFT). This is the category to which a Galois
T'-covering M — M belongs. Thus, we start the chapter by recalling that a covering
is called Galois if T' is discrete and finitely presented and acts on the fibres freely
and transitively. Such coverings are principal I'-bundle, thus isomorphism classes
are in bijective correspondence with homotopy classes of continuous maps into the
classifying space of T, i.e. 7: M — BT.

If 0 is a Dirac operator on M, then we recall that it is possible to associate to a
Galois covering r : M — BT a twisted Dirac %, in a standard way. Such Dirac
operator falls into the Mishchenko-Fomenko ydodifferential calculus: in fact, it is a
CT-linear operator on the Hilbert module Hé:F(M, E®YV), with C;T the reduced
(noncommutative) C*-algebra associated to I' and V a flat bundle of coefficients
associated to the covering. Definitions and a description of the construction are
given in the section.

Again, let us restrict to the case dim M even. If OM = (), then P, has a well
defined index class in Ky(C;T); otherwise, once again we must impose boundary
conditions via spectral sections. In fact, if OM # (), suitably defined spectral
sections exist by cobordism invariance and define an index class ind(Z(y,,y, &) €
Ko(CyT). However, in order to have interesting cyclic homology and a ‘good’ Chern
character, we need to restrict to a smooth subalgebra B, i.e. a subalgebra of C}T'
which is dense and closed under holomorphic functional calculus. This process,
called smoothing of the index, in fact does not change the K-theory, since for a
subalgebra with this properties Ko(CT") = Ko(B). But now, for a spectral section
to be chosen in the proper algebra V% (OM, (E ® V)jom), the group I' must have
some additional structure. It will suffice that I is virtually nilpotent, i.e. it contains
a nilpotent subgroup of finite index, which we will assume from this moment on.

In this Hilbert module context, though, there is a nuisance to cope with: a
formula ind(Z (s, &) = indP€ is yet to be proved, even if the existance of a
Calderén projection has been confirmed ([1]). Hopefully, the information carried
by the index still comes from the boundary, as in the classical case.

Therefore, we define a universal LogTQFT in a way similar to the one of
Chapter 4. We consider the a representation F. > (M,r) := V> (M,A(M) ® B),
(M, r) € obj(HCoby, (BT')), and the twisted signature operator QZE% associated

to (W, F) € moruacob,, ((Mo, 7o), (M1,71)). We will need to consider conditions
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similar to the one of the family case in order to have symmetric spectral sections
2 € Y%, which will yield an homotopy invariant index class. Thus, we define

u-log™8" : NHCob,,(BT) — Ko(Fp°°(HCob,,(BT))) as

Sign .
u- log(féoﬂ”o)u(Ml,n)(VV’ F) = ¢ﬁ1(M077'0)|—|(M177'1)(lnd(g(W,F)7 9))

and since Ko(Fp > ((Mo,ro) U (Mi,71))) = Ko(B) by Morita equivalence, we can
consider the Chern character ch, : Ko(B) = HC5.(B) and obtain a LogHQFT by

composition:

1og§;§g,m)u(Mm)(vm F) = ch. (ind(Zgw. ry, 2)) € HCy.(B).

Again, log-additivity follows from index additivity with respect to gluing when
symmetric spectral sections are considered (a feature that still holds in this setting).
Finally, pairing with cyclic cohomology will define higher traces which will yield
Nowikov higher signatures. These scalars, in this case homotopy invariants, are
defined in the following way: since I is virtually nilpotent, for [¢] € H*(T', C) there
exists an associated ¢. € HC*(B); then a higher signature is the quantity:

Sign(W, F; [c]) :=(ch.(ind(Z(w,r), 2)), pe)
Sign —
:T(CMOUM1,81USQ) (1Og(1\§0UM1781u52)(W’T>) .

Their additive property will clearly follow as a consequence of log-additivity.

Chapter 6:

This last chapter forms a separate Part by itself. Although related to the
leitmotif of Part I and Part II, it is mostly focused on torsion invariants of man-
ifolds. In some cases, it will be possible to characterize them as trace-characters
of LogTQFT. The main object of study will be the residue analytic torsion of a
manifold X (with or without boundary). Its construction originates from observ-
ing that the analytic torsion, which is really the analytic ‘twin’ of the Reidemeister
torsion, can equivalently be described as a quasi-trace-character. In order to define
our object, and to make these statements more precise, we recall at the beginning
of the chapter the main definitions and properties of Reidemeister torsion (from
now on R-torsion) and analytic torsion.

For the R-torsion, the starting point is a C'-triangulation of X, i.e. a CW
complex (which we can call with the same letter) X = (J'_,Ue", ¢ C X an

r-cell, with universal cover X = Ugem x)UrmoUgé™. Let X = J,, Ue" be
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the r-skeleton of X, with induced cover X™. Then, the relative homology mod-
ule Cr(X) := H, (X, X"=1) defines a chain complex of finitely generated free
R[7m1 (X )]-modules, where R[7(X)] is the group ring of finite formal sums ", axgx,
for a; € R and g € m(X). For the R-torsion to be a topological invariant (i.e.
invariant modulo homeomorphisms), the complex C*()? ) should be acyclic, i.e.
its homology should be trivial. Since it is not the case, we can fix this by ten-
soring with RY, which can be seen as a R[r;(X)]-module via a homomorphism
p: m(X) = O(N), called orthogonal representation. The new complex of finite
dimensional vector spaces Cr.(X, p) := RY @gjr, (x)] C,(X) can be made acyclic for
suitable choices of p. Such chain complex has a boundary operator d, induced by
the natural one of the CW complex, which can be represented by a real matrix
after choosing a basis for C,.(X, p). Therefore, the (logarithm of the) R-torsion of
X can be defined in this context as the scalar quantity:
1
log7x(p) = = Z(—l)rﬂrlogdet AN

2 r=0

where Af = d, . dy | +dd,. : C.(X,p) = Cp(X,p) is called the combinatorial
Laplacian, d* being the transpose of d. We notice that it is well-defined, as acyclicity
of Ci(X,p) makes A¢ invertible. Now, logdet AS can be expressed in terms of
CS(s), the zeta function of AS. This can be defined as the meromorphic extension
of >°y.50A; %, Ai the eigenvalues of Af, which is holomorphic at s = 0. Then,
logdet AS = —-¢¢(0) and log Tx (p) = 5 Y1 (—1)"r=£CE(0).

This characterization of R-torsion was the starting point for Ray and Singer,
[65], to define analytic torsion. In fact, out of the metric of a closed manifold
X we can define the (twisted) Hodge-Laplacian Ay : QF(X,E,) — QF(X,E,),
where E, is a flat bundle associated to p, which can be used to make Q(X, E,)
acyclic. Since Ay is elliptic and self-adjoint on a closed manifold, it has only
countably many positive eigenvalues and we can consider the sum ) a0 - of
complex powers of its eigenvalues, as for the combinatorial Laplacian. Then, its
meromorphic extension, the zeta function (x(s) := ((Ay, s), is holomorphic at s = 0

and Ray and Singer defined the (logarithm of the) analytic torsion as:

n

log Tx () = 5 (1) k-1 (0).
k=0

Along the way, they obtained a regularized determinant of Ay, the (-determinant

dete Ay := exp(—£,(0)), yielding log Tx (p) = 3 Sp_o(—1)* 1k log dete Ay.
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Around 1980, Cheeger and Miiller separately proved that R-torsion and analytic
torsion of a closed manifold coincide, and indeed already Ray and Singer proved
that they share similar properties, e.g. they are both trivial on even-dimensional
manifolds, and T'x(p) is a smooth invariant for Q(X, F) acyclic. Moreover, for a
path of metrics u +— ¢g* (u) and x, = *;(u) the Hodge operator associated to g (u),

n

d d 1 .
7o o8 7x(p) = 2 -log Tx (p) = 5};)(71)’6 6 Oy, Ok =y

Our starting point to define residue torsions is the observation that log det A§ =

trlog Af, where, by holomorphic functional calculus,

7

log A¢ := Eélog)\ (A —N)ta),

¢ a keyhole path enclosing spec(Af). Thus, log 7x(p) becomes a tr-character of

the logarithm $ 7' (—1)""'klog A§. In a similar way, we have

™

log Ay = 21/ log A (Ay, — A)~LdA
€

and we can show that logdets Ay, = TR¢log Ay, where TR is the Kontsevich-
Vishik quasi-trace, the extension of the classical trace to U? with respect to the
complex power gauging. Therefore, the analytic torsion is the TRs-character of a
torsion logarithm Tx (p) = 3 @)_,(—1) T klog Ay € U=S0(X,A(X) ® E,).

Therefore we can consider a generalized torsion logarithm

)= g DT g b 9= Gl ) €

and investigate other possible invariants of X originating as its trace-characters.
Now, every trace functional 7 : ¥<0(X, F) — C must be a linear combination of
a leading symbol trace T,0(A), defined from the trace of the leading term of the
asymptotic expansion of the symbol, tr o (z, &) € C®(S*X), via pairing with a
distribution u € D'(S*X), and Wodzicki’s residue trace

— oA
res(A) T A <~/|'§|—1 tr 7d1mX(1’7£) ng) dl’,

which originates from the —n term in the asymptotic expansion of the symbol (and
is the unique trace on the algebra W*(X, F)). Therefore, we consider these two
traces and study the associated trace-characters.

Composing Ti(p) with the leading symbol trace yields the exotic analytic

torsion log Tx*®""(p) == 3 33 (—=1)**1 By 9., log A, which however turns out
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to be identically zero for each 3 € R"™! and u € D’(S*X). On the other hand, the
residue analytic torsion

1 n
log Tres’B =3 Z 118, reslog Ay
k=0

turns out to be more interesting and a smooth invariant for specific values of 5. In
fact, by considering the derivative d% log T;(es’ﬁ (p) with respect to a smooth family

of metrics u € R — g (u), and exploiting Scott’s formula
1 .
(%) —gtes log A = (x(0) + dimker Ay,
we proved the following classification theorem (Theorem 6.2.28):

THEOREM. If n is odd, then logT%™?(p) = 0 V5 € R, If n is even,

log T)r(es’ﬂ (p) is a smooth invariant if and only if 3 equals:

The corresponding residue analytic torsions are equal, respectively, to the Euler

characteristic x and the derived Euler characteristics x':
log T*Y(p) = x(X, E,) and log T\ (p) = X' (X, E,).

In particular, for a smooth path of metrics © € R — gx (u) we have:

1 res w

d 1 1)k
= ogT 52 res(ag),

and even if it vanishes, it analogous to the derivative of the analytic torsion.

The derived Euler characteristic x/(X) := Y_;_,(—1)*k dim H*(X) is another
topological invariant and equals 4x(X) when n = dim X is even. Therefore, in
conclusion log Ty 5B (p) is a smooth invariant if and only if it is a homotopy invari-
ant, in which case coincides with either x(X) or §x(X). This also yields that the
torsion logarithms ']I%( (p) and T%(p) are also invariants of X. Finally, using (x*)

again, and a strategy similar to [65], we showed that a generalized analytic torsion
1 n
log TB 5 Z k+15k log det¢ Ay,

is a smooth invariant if and only if 8 is again equal to 1 or w.
LogTQFT can provide a functorial setting also for torsion invariants, in the

following way. The representation Fz(M) := WZ(M,A(M)), M € obj(Cob,) is
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unoriented and, as we said, has a trace: the noncommutative residue res. Thus, for

X € mor(My, M), 9X =Y, UY7, we can define a LogTQFT by setting

n n
logzﬁwou]\/[1 X = Taroun, © Ky (; @(_1)kﬁk log Ak y, @ % @(—1)’“‘“/3}@ log Ak,y1> ,
k=0 k=0
with character, for § = w, res (logy; a, X) = X' (M1) — x'(Mo). In this case,
log-additivity is straightforward. Additionally, if we restrict to the category of
h-cobordisms h-Cob,,, where the objects are deformation retracts of the cobor-
disms, we can characterize the analytic torsion as the TR¢-character of the same
LogTQFT. The res-character in this context is, by homotopy invariance, trivial.
The same results can actually be reproduced for a fibre bundle with closed
fibre X %% B. On the one hand, the de Rham operator d¥ + §¥ associated to
the total space X is a superconnection adapted to a family of de Rham operators
(d*X» 4+ 6%*)pep. On the other hand, the Laplacian A%, i.e. the curvature of the
superconnection, is adapted to a family of Laplacians (AXt)ycp. Since logarithm
and residue torsion are well-defined for families of differential operators and super-
connection, with suitable generalizations, we were able to define a family torsion

logarithm and family residue analytic torsion

dim X
1
Ty = 5 2. (“D"5y reslog AYY € H'(B,R)
k=0

and show that the same result of the single operator case holds also for fibre bundles.
The difference here is that ﬁfs’ﬁ for 8 = 1, resp. B = w, equals x(X), resp.
wx(X), where X is the fibre, since the cohomology bundle H(X, E) — B is
flat. Here, we also use the family torsion logarithm to define a ‘simple’ LogFQFT.

We conclude the chapter with the appropriate generalization to a manifold X
with boundary Y. Since the analytic torsion is defined in terms of the eigenvalues
of the Laplacian Ay on k-forms, we need self-adjoint boundary conditions, which
are once again represented by the relative (or the absolute) ones. For instance,
Ay r stands for the Laplacian on QF(X, E,) with relative boundary conditions,
ie. Ryw = 0 and Rydw = 0. When such boundary conditions are imposed,
the Laplacian has a spectrum of discrete non-negative eigenvalues accumulating at
infinity, as in the case Y = (). Therefore, one can define a logarithm

i

log Aj g := lim 27/ log \\™° (Ag.p — \)td),
s €

N0 27
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([22]) and a reslog Ay & via the generalization to Boutet de Monvel operators of the
residue trace ([21]). Thanks to this, we obtain a relative residue analytic torsion
1 n
log T (p) = 5 D (=1)"*" By reslog A .

2
k=0

We are then able to generalize the classification theorem of the closed case:

THEOREM. Let X be an oriented manifold with boundary Y. Then log T;(e)séﬁ (p)
is a smooth invariant if and only if 8 = 1 or § = w. The corresponding residue
analytic torsions are:
log T (p) = X(X,Y, E,)  and  log TR (p) = Xp(X.Y. ) + Y _(~1)*kGer (0).
k=0
In particular, for a smooth path of metrics [0,1] > u ~ ¢~ (u) for which the normal

direction to the boundary is the same, we have:

z:(—l)’“'H res Q.
k=0

[N

d res,w
Ju log Txe,s7€(P) =

We remark that the term Y, _,(—1)*k(x = (0) does not vanish as in the closed
manifold case (some examples are provided), but > _,(—1)*¢x = (s) is zero also in
this case and is responsible for the equality log T;f%(p) = x(X,Y, E,). The proof
is analogous to the closed case and uses a generalization of Scott’s formula (xx)
to the boundary case, found in [27]. We conclude this final chapter by showing
quasi-additivity of the residue torsion (Theorem 6.5.17):

T T T 1 T 1
log T (p) = log TXR (p) +10g TRYR (p) + 1og Ty () + Sx(Y)

and remark that y/(X) = x/'(X,Y) 4+ x/'(Y) + 1 x(Y) if dim X is odd, but not when

it is even (a counterexample will be provided).



Acknowledgements

I would like to express my gratitude to the many people that have supported
me during this long period. First of all, to my supervisor Prof. Simon Scott, who
suggested this topic and supported me with enlightening and friendly discussions.

Furthermore, to my family, especially to my father, to my mother, to Federico,
to Benedetta, and to Lila, and to my ‘extended’ families of Judo and Ichi Gi Do
Bujutsu. To all of them, I owe endless patience, and love, in different measures,
which supported my heart, my mind and my body in this challenge.

Last, but not least, I would like to thank my friends and colleagues Tobias
Hartung, Francesca Tripaldi, and Riccardo J. Buonocore for sharing this time and
common effort, for the many discussions and for the mutual help.

To all these people, I owe everything good in this thesis.

27



CHAPTER 0

Background

In this introductory chapter, we set the notation and recall some standard
results that will be given for granted in the sequel. The first section recalls the
basic set up we will be working with. In the second one, we set the notation for
pseudodifferential operators and their symbols. In the third one, we describe the
decomposition of a smooth form, over the boundary of a manifold, into a tangential
and a normal component. Finally, the fourth section recalls the Euler characteristic

of a manifold and its properties.

0.1. Riemannian manifolds with boundary and restriction of sections

Let X be an n-dimensional manifold, i.e. from now on a compact C'*°-manifold,
possibly with non-empty smooth boundary Y := 0X. If Y = (), we will say that
X is closed. If X is also oriented, then Y inherits a coherent orientation from X.
When X is considered with the opposite orientation, we will write X —. For z € X,
let T, X and T X denote the tangent and cotangent spaces of X at z, respectively,
and TX and T*X its tangent and cotangent bundles. For standard definitions
about differentiable manifolds with boundary we refer to [16] and [68].

For c € Ry = {zx € R| 2 > 0}, let U := [0,¢) x Y be a collar neighborhood' of
Y, where coordinates x = (t,y) are chosen in such a way that y € Y and ¢ € [0, ¢)
corresponds to an inward normal covariant derivative, denoted by 0;. D; will stand
for —i0; as usual in the context of microlocal analysis, where i := /—1.

Let g% denote a choice of Riemannian metric for X, and v(z)dx the associated
volume element. The boundary Y inherits a metric g* with associated volume
element v(0,y)dy. We will consider a product stucture near the boundary (see for

instance [25]), i.e. on U:
(0.1.1) g¥ =dt* +¢¥ and v(z)dr = v(0,y)dydt.

Let E 5 X be a Hermitian vector bundle over X of rank N. We will denote

by V¥ its connection, by C*°(X, E) the space of smooth sections of E, and by

'Which always exists, see for instance Theorem (1.2), [16].
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H*(X,E) the associated Sobolev space, i.e. its Hilbert space completion with
respect to the measure (1+[£|?)2d¢ (see for instance §11 of [10] for a presentation).

H(X,E) := L?(X, E) has inner product defined by the metric on X:
(s1,52) ::/ 9z (s1(x), s2(x)) v(z)dx for s1,s9 € C°(X, E).
s

By D'(X, E) we will denote the space of distributions C*°(X, E) — C.
Let &' := E|y = |_|er E, be the restriction of E to the boundary. Then by

U

product structure Ejy = ¢*E’, where ¢* is the pull-back of the natural embedding
t 'Y — U. The restriction to the boundary Y defines a continuous trace map

v : C®(U, Ejy) — C®(Y, E'):

(0.1.2) sy (y) = (vs)(y) == s(0,y),  s€C™(U, Ep),

which extends to a continuous and uniformly bounded operator (Corollary 11, [10]):
v:H*(X,E) —» H* (Y, E'), for s> %

We remark that the definition of « can be extended to all s € R.

ExampLe 0.1.1 (§1.1, [68]). The restriction TX|y = [J,ey Ty X of TX to
Y is a classical example of restriction of a vector bundle to the boundary. If
¢ 'Y < X is the natural embedding, then d,. : T,Y — T, X is injective Vy € Y
and TY is a 1-codimensional sub-bundle of T'X|y. In fact, by product structure
TX)y =TY @R and dv induces a natural inclusions of the space of vector fields
L(TY) == C®(Y,TY) into ['(TX}y) := C®(Y,TX)y). Moreover, the pull-back
o T(TX) - T(TY) is surjective.

We will assume familiarity with the concept of gluing of manifolds along dif-
feomorphic connected components of their boundaries. For example, if Y; := 0X;,
i =1,2,and ¢ : 1 = Y5 is a diffeomorphism, then we write X; Uy X2 for the
closed manifold defined by the gluing. The operation can easily be generalized to
some connected components of the boundaries Y7 and Y;. Here we only recall the
Uniqueness of Gluing Theorem, i.e. different collar neighborhoods of the bound-
aries yield different but diffeomorphic manifolds. The main reference in this case is
[31], Chapter 8, §2.

We will assume that X is embedded in a closed n-dimensional manifold X , such
that Y is smoothly embedded in X. Then Y has a symmetric tubular neighborhood
U in X such that = = (t,y), with |¢| < ¢(y) and ¢(y) € RT (§7, [25]). For example,
X could be the closed double X U X1, where X; = X or X; = X~ (in case we
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consider oriented manifolds). Its construction is explained in §9, [10]. Likewise, the
vector bundle E can be considered to be the restriction to X of a bundle E — X
of rank N. As for (0.1.2), the restriction 5 : C°(X, E) — C>(Y, E') extends to a
continuous and uniformly bounded operator

o ey 1
Y:H*(X,E)— H* 2 (Y,E'), for s> 3,

which has adjoint 3* : H—5+2(Y, E') — H(X, E), (7 ¢)(y, t) := ¢(y) @ 8(t), with
d the delta distribution supported in Y (see §1.3, [26]).

0.2. Classical pseudodifferential operators and traces

Here, we only mention some basic definitions of classical pseudodifferential
operators on closed manifolds and manifolds with boundary for the sake of notation.
For a complete exposition, we refer to [32], [79], and [81] for closed manifolds, and

[26] for manifolds with boundary.

Let X be closed and m € C. For a local trivialization (V,¢), let us de-
note by S™ := S™(V x R",End(C")) the space of symbols of order m; as usual,
ST = MNker S* denotes the ideal of smoothing symbols. For the space of classical
symbols of order m, i.e. a(x,&) € S™ such that:

a(2,6) = > am_j(z,€) €S™/S™ and
Jj=0

am—j(2,1€) = 1" T ap_j(x,€) for t>1,]¢) =1,

we will write CS"™ := CS™(V x R",End(C)"). Notice that CS :=J,,cc CS™ is not
a linear space , but CS% := Usez CS* is a Fréchet algebra (§1.5.2, [75]).

Let ¥(X,FE):=U
rential operators (from now on classical ¢ dos), i.e. A: C®(X,E) —» C>®(X,E)is a
ydo such that o4 (z, &) € CS™, where o4 (z, &) ~ 2i50 oA (x,€) is the symbol of

m—j

mec ¥ (X, E) denote the semigroup of classical pseudodiffe-

A and therefore o7 (z,¢) denotes its principal (or leading) symbol. As for symbols,
(X, E) is only a semigroup; however, ¥%(X, E) := [J, o, V*(X, E) is a Fréchet
algebra (§1.5.4, [75]).

Let A € U™ (X, E); then A is elliptic if its principal symbol o7 is an invertible
section, i.e. o/ (x,&) € End(CY) is invertible for each (z,£) € T*X \ 0 (§1.5.3.1,
[75]). This equivalently means that there exists p € S~ such that po? — I and
op — I belong to S™°° (§18.1, [32]). Vgy(X, E) := U, ,cc Y5 (X, E) denotes the

space of elliptic v»dos and is a sub-semigroup of ¥(X, E). In particular, V2(X, E)
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is the smallest algebra containing all elliptic differential operators and their para-
metrices (§1.1.8, [75]).

Let A € U™(X,FE), m € Z. Then A is odd-class if in any local trivialization
o (@,8) = (=1)"opm_;(x,—€), j > 0. In this case we write A € V(XS E)
and \I/(Zil)(X, E) = Unez \IJE’LI)(X, E) is a subalgebra of UZ(X, E) containing
differential operators and smoothing v dos (§7, [39]).

In particular, a ¢do A is called smoothing if o4 € S™>°. In this case, we
write A € V(X E) := (,,cr V"(X, E) and V(X E) is a Fréchet algebra.

In particular, A is characterized by a smooth Schwartz kernel
kA (z,y) € C=(X x X, m{(E) @ 75(E)")

(7} (F) ® w5(E)* is the vector bundle with fibre Hom(E,, E;) at (z,y) € X x X;
§1.1.7, [75]). There is a (projectively) unique trace on UV~°(X, E), the classical
trace (§4.3.2, [75]):

(0.2.1) Tr: U~°(X,E) = C, Tr(A) := / tr k2 (2, 2)v(x)dz.
X

where tr is the matrix trace on End(CY).

If X is an n-manifold with non-empty boundary Y, let X be a closed n-manifold
such that X — X smoothly and F = E|X for a Hermitian vector bundle E — X
of rank N, as in §0.1. Then the classical ¢dos ¥ (X, E) are defined from ¥(X, E)
by truncation as follows. Let us consider the natural operators (§11, [10]):

o restriction: rt i HY(X,E) — HS(X,E), us u)x, Vs >0,
e extension by zero: et : L2(X,E) — L*(X, E),
etulz) = u(z) ifze 257
0 ifzeX\X;

Then r* and et are mutually L2-adjoint, i.e. for u € L%(X, E) and v € L2(X, E):
<e+u7v>)~( = /~ 93 (e+u,v) v(Z)dx = / Ju (u,v|X) v(z)dr +0 = (u, 7 v)x.
X X

Thus, A € U™(X, E) is defined as A := r+Aet for A € (X, E). For A to be
regular over the boundary (§1.2, [26]), we must assume a transmission property,

i.e. in a collar neighbourhood of Y, for (¢,7) € T*R,
(0.2.2) DEDgo_(0,y, —7,0) = ™ m=leD DI DEGA  (0,y,7,0).

Then A: H*(X,E) - H*"™(X,E), s > 0, will be continuous. In particular, if A
is considered together with a boundary operator T : C*°(X,E) — C*>(Y,E'), i.e.
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a trace (§1.2, [26]), a singular Green operator G, a Poisson operator K, and a 1do

over the boundary S, then the matrix:
C*(X,E) C>(X,F)

o - &
C=(Y, E) C=(Y, F')

A+G K
T S

belongs to the Boutet de Monwvel calculus or calculus of Pseudodifferential boundary
operators (¢dbo). These operators in fact form an algebra which encompasses
the calculus of elliptic differential boundary problems and their solution operators.
Since we will not work with such algebra in general, we will not report the details
of each of the aforementioned operators. We only want to remark that such an
algebra can be seen as a good extension of the algerba of classical ¥dos on closed
manifolds, at least with respect to the residue trace (see Chapter 6), which in fact
is generalized to the Boutet de Monvel algebra and is the unique trace there. We

refer to [26] for further details on Boutet de Monvel calculus.

0.3. Decomposition of differential forms near the boundary

The main references in this section will be [23] and [68]. We will denote the
vector bundle of differential forms on X of degree k by A*(X) := A¥(T*X), and the
space of smooth k-forms by QF(X) := C>®(X,A¥(X)), k € {0,...,n = dim X }. We
recall that A*(X), and hence Q*(X), are both graded, i.e. A(X) := @;_,A*(X)
and Q(X) := @j_, 2" (X). Together with the exterior derivative di := djgr(x),
(Q%(X),dy,) will be called de Rham complex.

Let H*(X,C) denote de Rham cohomology? and #; : QF(X) — Q" *(X)
the Hodge operator, arising from the metric on X. Since #,_p*, = (—1)¥"=F),
then *,;1 = (—1)’“(”_’“)*”,;@. When X is closed, *; yields Poincaré Duality, i.e.

H¥(X,C) = H"*(X,C) (§3.3, [29]). We also recall that ;, turns Q¥(X) into a

1%

Hilbert space via the inner product {«, 8) := fX a A *f and provides an adjoint for

dy, i.e. the codifferential & : Q*T1(X) — QF(X),

61@ = (_1)n(k+1)+1 *n—k dn,(kJrl) K+1 -

The operator d + 0 : Q(X) — Q(X) is a first order differential operator, called de

Rham operator.

2We have considered de Rham cohomology with complex coefficients, which is equivalent to
de Rham cohomology with coefficients in any other field of characteristic zero by the Universal

Coefficient Theorem (§3.1, [29]).
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DEFINITION 0.3.1 (Definition 1.2.2, [68]). The Hodge-Laplacian (or Laplace-de
Rham operator) is the map A : Q(X) — Q(X) defined as A := dé + 6d = (d + 6)?.

In particular, on smooth k-forms:
Ak = A‘Qk(x) = dk,15k71 + 6kdk : Qk(X) — Qk(X)
Both d + 6 and A are self-adjoint elliptic differential operators on X closed.

When Y = 0X # 0, we write QF(X)y = C*°(Y,A*(X)y) for the space of
restrictions to the boundary w)y = yw of smooth k-forms w € O%(X). By product
structure (0.1.1) on a collar neighbourhood U £ [0,¢) x Y, we have the orthogonal

decomposition:
(0.3.1) Wy = wi +dt Awa,

where w1 € C*([0,¢)) ® Q*(Y) and wy € C°°([0,¢)) ® Q*~1(Y), which corresponds
to the decomposition A(X)y = A(Y) @ A(Y) into the +1-eigenspaces of the self-
adjoint idempotent a(yw) = w; — dt A we (§4.1, [23]). In this way, we can define

the following fundamental boundary operators:

DEFINITION 0.3.2 (§1.2, [68]). Consider the orthogonal decomposition of yw
as in (0.3.1). Then the differential forms w; € Q*(Y) and wy € QF~1(Y) are called
tangential and normal components of yw. Moreover, this decomposition defines

the orthogonal (complementary) projections
R:QX)y = Q((Y) A QX)) y = Q)
Wy = W1 Wy = Wa.
As in Example 0.1.1, the natural embedding ¢ : Y < X defines by pull-back the
surjection ¢* : Q(X) — Q(Y). Since Ry = *, the projection R does not depend on
the metric g%X. On the other hand, A does, since it depends on a choice of normal

tangent vector to the boundary (§4.1, [23], and §1.2, [68]).

PROPOSITION 0.3.3 (1.2.6, [68]). R and A are Hodge adjoint to each other, i.e.

*R = Ax. Moreover, R is d-invariant, while A is d-invariant, i.e.:
R(dw) = d(Rw) and A(dw) = §(Aw).

REMARK 0.3.4. Because of Proposition 0.3.3, the complexes (2¥(X),d) and
(2%(X),§) can be refined to the complexes

di « U (X) — QX)) and o QX)) — Q5 (X)),
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where Q% (X) = {w € OF(X)| Ryw = 0} and Q5 (X) = {w € Q¥(X)| Ayw = 0}.
In this case we say that (Q%(X),d) (vesp. (2%(X),d)) corresponds to (Q2%(X),d)
with relative (resp. absolute) boundary conditions (§2.6, [68]).

REMARK 0.3.5. All the above can be generalize to smooth forms with coeffi-
cients in a flat® vector bundle E — X with rank N and connection V. In fact,
all the previous definitions and results carry over to the twisted de Rham complex
(X, E),d?), where Q(X, E) := C*(X, A(X)®F) and d¥ is the exterior covariant
derivative d¥ : Q(X, E) — Q(X, E), defined as d¥ (w®s) = dw®s+ (1) w@ Vs,
for w € QF(X) and s € C®(X, E).

0.4. Euler characteristic

Here, we recall the main definition and properties of the Euler characteristic.
The main reference for simplicial homology and cohomology will be [29] and [58].
Let K be a simplicial complex, with subcomplex L C K. We denote their
simplicial cohomology and relative cohomology groups of order k by H*(K), H*(L),
and H*(K, L), respectively. Then the Euler characteristic of K and L are the

integers:
x(K) = zn:(—nk dimH*(K) and x(L)= i(—m’f dim H* (L),
k=0 k=0

while x(K,L) = Y, _,(—1)*dim H*(K, L) is the Euler characteristic of the pair
(K, L), i.e. the relative Euler characteristic of the pair.

Let X be an n-manifold with boundary Y, possibly non-empty. It is well
known that X admits a C'-triangulation K, i.e. a simplicial complex, with a
sub-triangulation L for Y (see [59]). Then, since simplicial homology is invariant
under subdivision (Theorem 17.2, [58]), the Euler characteristic of X is invariantly
defined as x(X) := x(K). Analogously, x(Y) := x(L), and x(X,Y) := x(K, L) is
the Euler characteristic of X relative to the boundary Y. They all are homotopy
invariants of X, since they are defined at the level of cohomology.

There is a split short exact sequence 0 — C(L) — C(K) — C(K,L) — 0
associated to the pair (K, L), which yields a long exact sequence (Theorem 43.1,
[58]) -+ — HFYL) — HF(K, L) — HF(K) — H*(L) — - -+ and the identity:

(0.4.1) X(X) = x(X,Y) + x(Y).

3That is, (VF)2 = 0, i.e. the curvature tensor vanishes.
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The Euler characteristic of a closed manifold can also be expressed in terms
of its de Rham cohomology. In fact, by the de Rham Theorem (Chapter 5, [84]),
H*(X) = H*(X,C); thus x(X) = > p_,(—1)"dim H*(X, C).

REMARK 0.4.1. By Poincaré Duality, x(X) = 0 if n = dim X is odd. Therefore
(0.4.1) yields x(X) = x(X,Y) when n = dim X is even.

If Y # (), then x(X) and x(X,Y) can be represented in terms of H% (X, C) and
HY(X,C), i.e. the cohomology of (% (X),d) and (Q%(X),6), respectively, with

complex coefficients. In fact, from §4.1, [23], we know that
HM(X,Y) = HE(X,C) and HM(X) = HY(X,C).

Thence, x(X) = > p_o(—1)Fdim H%(X,C) and x(X,Y) = > ;_,(—1)F dim HE (X, C).
The Hodge operator * induces Poincaré Duality for manifolds with boundary,
HE(X,C) = H3%(X,C) (Corollary 2.6.2, [68]), which yields x(X) = (—1)"x(X,Y).

Hence, in conclusion:

LeMMA 0.4.2 (4.1.5, [23]).

XY if n even,
(0.4.2) wxy = Y

—X(X,Y) = 1x(Y) ifn odd.

Finally, Mayer-Vietoris Theorem (§3.1, [29]) provides a quasi-additive formula
when two manifolds are glued along diffeomorphic components of their boundaries,
ie. if X;, ¢ = 1,2, is an n-dimensional manifold with connected component of the
boundary Y; C 0X; and Y} LA Ys, then x (X7 Uy Xo) = x(X1) + x(X2) — x(Y1),

which translates into:
(0.4.3) X(X1 Uy Xo) = x(X1) + x(X2) if n=dimX; is even.

Notice that x (Y1) = x(Y2) and x(X1Ug X2) does not depend on ¢, i.e. it is cut-and-
paste invariant (Chapter 1, [36]). Also, Lemma 0.4.2 yields, for X := X; Uy Xo,
X(X,0X) = x(X1,0X1) + x(X2,0X32) + x(Y1) and

(0.4.4) X(X,0X) = x(X1,0X1) + x(X2,0X2) if n =dim X; is even.

REMARK 0.4.3. In the context of Remark 0.3.5, k-forms have coefficients in
the fibre of a flat vector bundle E. Thus, de Rham Theorem generalizes to this
context, yielding H*(X,Y, E) =2 Hk (X, E) and H*(X,F) = HY(X,E). Now, if C
be a chain complex of free abelian groups with homology groups H;(C'), then the
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cohomology groups H*(C;G) of the cochain complex Hom(H(C),G) satisfy the

split exact sequence:
0 — Ext(Hp_1(C),G) — H*(C; G) — Hom(H,(C),G) — 0,

(Universal Coefficient Theorem; 3.2, [29]). Then, since G = E is (locally) a vector
space and Hy(C) = Hi(X) are free groups, Ext(Hy(X),E) = 0 (see |29]) and
H*(X, E) = Hom(Hi(X), E). Therefore, dim H* (X, E) = dim H;(X) - dim E.

Therefore, if we define:

n n

X(Xa E) = Z(fl)kdlm HZZ(X,E), X(X7Y7E) = Z(il)k dlme,kz(X, E)a
k=0 k=0
n—1
and x(Y,E) = > (~1)Fdim H*(Y, B),
k=0

we can conclude x(X, FE) = x(X) - rk(E) and similarly for x(X,Y, E) and x(Y, E).
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CHAPTER 1

Logarithmic structures and LogTQFT

In this chapter we recall the definitions of logarithmic representations, traces
and determinants and provide some classical examples of logarithms (the local and
global logarithm on GL(n, C) and the Fredholm index). As part of this introduction,
we prove some general equivalent conditions for the uniqueness of log, trace and
det.

Then, we will present the main object of this work: the logarithmic represen-
tation of a symmetric monoidal categoy C, or log-functor (§1.4), which is called
LogTQFT if C = Cob,, the catory of n-dimensional cobordisms. This categori-
cal construction requires some preparation, which we summarize from [72], where
log-functors appeared for the first time.

At the end of the chapter we state and prove a new result for 2-dimensional
unoriented LogTQFTs, which classifies them in terms of the logarithmic represen-

tation of the unit disc and the Euler characteristic of the cobordisms.

1.1. Logarithms and log-determinants structures

The following definitions can be found in §4.1, [73].

DEFINITION 1.1.1. Let & be a topological semigroup and 7 a unital locally
convex topological algebra. Then a (global) logarithmic representation (or simply

logarithm) of S is a homomorphism:

(7,4)
7,71

satisfying, for every a,b € S, a log-additive property log ab = log a +log b, meaning;:

log:S — a—loga

N
(1.1.1) logab —loga — logb = Z[ci,cg] €[T,T] forsome ¢;,c, €T,
i=1
where [¢;, ¢}] := ¢;c} — cie; is the commutator of ¢; and ¢; and [T, T] is the subgroup

of (T,4+) of finite sums of commutators.

REMARK 1.1.2. A logarithm is local if, for each a € S, it is only defined for an
open neighbourhood U of a, i.e. log;, : Y — T such that for any a,b € S there exist

38
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neighbourhoods U, V, W such that log,,, ab — log;, a — log,, b € [T, T]. In this case,

log;, is called a branch of the log. An example will be given in §1.3.1.

Thus, there exists an abelian group of logarithm representations of S into 7,

Log(S,T) := Hom (S, ([;::;:])> )

REMARK 1.1.3. By (1.1.1), if p € S is idempotent, i.e. p?> = p, then logp = 0.

In particular, if S is a monoid with unit ¢, then log: = 0. All other standard

properties of the logarithm naturally follow ([73]).

DEFINITION 1.1.4. A homomorphism of groups 7 : (T,+) — (U, +) is said to
be a trace on T if it vanishes on commutators: 7([c,é]) = 0, i.e. [T,T] C ker(7).

The abelian group of traces is denoted by
Trace(T,U) := Hom (T /[T, T],U).

DEFINITION 1.1.5. A log-determinant (or log-character, or T-character) is the

composition 7 olog : § — U of a logarithmic representation of S with a trace .
By the linearity of 7 and (1.1.1) we have the additive property of log-characters:
7(log ab) = 7(loga) + 7(logb) Va,b € S.

DEFINITION 1.1.6. If e : (U,+,-) — (V,+,-) is an exponential map, i.e. a
homomorphism of unital rings such that e(a + b) = e(a) - e(b), then the triple
(log, T,e) is called a determinant structure and a determinant associated to the

triple is defined by the composition
det,.:=eoTolog.
It follows that a determinant functional has a natural multiplicative property:

det ab=det a-det b Va,b e S.

1.2. Uniqueness of logarithm, trace and determinant

Here, we present the proofs of three similar lemmas about equivalent conditions
for the uniqueness of logarithm, trace and determinant. The main technical result

we need is the Snake’s Lemma:

THEOREM 1.2.1 (§VIIL4, [50]). In an abelian category', let us consider the
following morphism of short exact sequences, i.e. the triple of morphisms (f, g, h)

such that the following diagram commutes:

ISuch as Ab, the category of abelian groups and group homomorphisms.
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0 A B C 0
f g ‘ h
0 A" g — 0

Then there is a morphism ¢ : ker(h) — coker(f) such that the following sequence

is exact:
(1.2.1) 0 — ker(f) — ker(g) — ker(h) RN coker(f) — coker(g) — coker(h) — 0.

REMARK 1.2.2. Notation here will try to be consistent with the common use
of additive notation for abelian groups and multiplicative notation for non-abelian
groups. Thus the unit elements will be respectively denoted by 0z (or just 0) when

(B,+) is abelian and 1¢ (or just 1) for (G, -) non-abelian.

REMARK 1.2.3. From now on, let R be a commutative unital ring and denote
by R* the subring of units of R. Notice that a trace on an R-module is in particular

an R-linear homomorphism.

LEMMA 1.2.4 (Uniqueness of trace). Let B be a ring and an R-module and let

7:(B,4+) — R be a trace. Consider the commutative diagram:

0 [B,B] —— B —"— o ———0
7 id T
0 — ker(r) —— B———R 0.

Then the following are equivalent:
(1) [B?B] ™5 (R, +) is an isomorphism of abelian groups;
(2) ker(r) = [B, B];
(3) if £ € B with 7(£) € R*, then Vf € B we can write:

B=r(B)T(E) e+ > [6;,0]]
j=1

for some §;, 6; € B depending on 5 and ¢&;
(4) 7 is projectively unique, i.e. for any other trace 7 : B — R there exist
r € R such that 7 =7 - 1;

(5) Trace(B,R) = (R,+).

LEMMA 1.2.5 (Uniqueness of logarithm). Let G be a group and consider its com-
mutator subgroup G’ = {ghg~'h~! | g,h € G}. For B an R-module, let log : G — B

be a logarithm and consider the commutative diagram:
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i ™
1 G G g 1
7 id Tlog
log B

1 — ker(log) — a2, 5]

Then the following are equivalent:

(1) % e ﬁ is an isomorphism of abelian groups and the short exact
sequence1—>G’—>G—>g—>1155plit J':%—)G;

(2) ker(log) = G’ and 1 — ker(log) — G g ﬁ — 1 is a split short exact
sequence J : T{BB] - G

(3) for a given splitting J : ﬁ — G of log, any g € G can be written:

g = I {lx, 1.} - J(log g)
for some I, !}, € G depending on g and J, where {l1,l2} = lllglfllgl
Then log is the unique logarithm split by J.

LEMMA 1.2.6 (Uniqueness of determinant). Let G be a group and G’ its com-

mutator subgroup as in Lemma 1.2.5. Let det : G — R* be a determinant and

consider the commutative diagram:

1 ¢— T &
i id Tdet
i det
1 —— ker(det) —— G R* 1.

Then the following are equivalent:

(1) % gt [B’?B] is an isomorphism of abelian groups and the short exact
sequence1%G’%G%%%lissplitj’:%%(};

(2) ker(det) = G’ and the short exact sequence 1 — ker(det) — G R 1

is split j : R* — G;
(3) for a splitting j : R* — G of det any g € G can be written:

g9 = Wy {h, hi} - j(det g)
for some hy, hj, € G depending on g and j.
Then det is the unique determinant split by j.

REMARK 1.2.7. A priori, the homomorphisms of groups log, 7 and det are not

required to be surjective, hence the second row of the diagrams need not be exact.
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But the R-linearity hypothesis for 7 and the split hypothesis for log and det, or
assuming meg and mqet invertible, will provide exactedness for the second row.
Moreover, we must notice that, except for the case of the trace, our commutative
diagrams belong to Grp, the category of groups and homomorphisms of groups,
which is not abelian or even additive. However, the morphisms involved are the

inclusions 7 and identity id, for which kernels and cokernels are defined and trivial:
ker(i : G' — kerlog) = ker(id : G — G) = coker(id) = {1},

(likewise for the determinant), and the subgroup G’ is normal in G. Therefore,
d : ker(h) — coker(f) of Theorem 1.2.1 exists and is well-defined also in these
cases. In fact, let us consider log (for det the proof works in the same way) and
let z € kermg; since w is surjective, 3 y € G such that n(y) = z (specifically,
z = yG'). The identity pushes down y to itself and since the diagram commute, i.e.
log o id = meg 0 m, we have log(y) = Mg © T(Y) = Tog(2) = 1, s0 y € kerlog < G.
Let 7 : kerlog — coker(i), with ¢ : G’ — kerlog. By definition of §, §z = g/ o
i~toidon 1(2) = e (y) = yG' and if z € 77 1(2), i.e. G’ = 2z = yG’, we obtain
0xG' = xG'. Hence § is independent of the choice of representative of yG’ and is

the identity, and (1.2.1) is exact if and only if 7, is an isomorphism.

ProOOF OF LEMMA 1.2.4. Clearly, ker(i) = ker(id) = coker(id) = {0}, where
i : [B,B] — ker7. Moreover, 7 is surjective because R-linear (see Remark 1.2.8),
hence 7, is surjective as well (by commutativity of the diagram) and coker(rw,) = {0}.

Since the category of R-modules is abelian, Theorem 1.2.1 applies and
0— 0 — 0 — ker(r,) > coker(i) — 0 — 0 — 0

is exact, where i : [B, B] — ker(r) and coker (i) := ker(r)/[B, B]. Hence § is an
isomorphism.

(1) & (2) 7, isomorphism < ker(7,) = {0} < coker(7) 2 {0} & ker(7) = [B, B].

(2) = (3) If ker(r) = [B,B] and £ € B such that 7({) € R*, then V5 € B
— 7(B)7(€§)7'¢ € ker(r). Hence there exist d;,07 € B, 1 < j < n, such that
T (B)r(€) 1 = X 16 ).

(3) = (4) If 7 : B — R is another trace, then [B, B] C ker(7) and therefore
B)7(©)71¢ + Xj1[05,07]) = T(B)7(§)IF(§). Hence 7 = 7 -7 with

B
B

pull
=
I
N
2



1.2. UNIQUENESS OF LOGARITHM, TRACE AND DETERMINANT 43

(4) = (5) Since for any other trace 7 we have 7 = 7 - r, with r = 7(£)717(¢),
this defines a homomorphism 7 — r which is clearly one-to-one and onto. Hence
Trace(B, R) = (R, +).

(5) = (2) Since Trace(B, R) = (R,+), then dimHom(B/[B,B],R) = 1. As
Hom(B/[B, B],R) is the dual of B/[B,B], then dim B/[B,B] = 1. Therefore
B/|B,B] = (R,+). Let t be the generator of Trace(B, R). Then V7 € Trace(B, R)
3 s € R such that 7 = t - s, therefore ker(7) = ker(t). Let us suppose that [B, B]
is a proper subgroup of ker(t). Then B/ker(t) is a proper subgroup of B/[B, B].
Therefore, since B/ker(t) cannot be trivial, as t is not, it must be 1-dimensional
as well, and therefore ker(t) = [B, B.

]

Proor or LEMMA 1.2.5. (1) = (3) Since mog is surjective, so is log = megom
and the second row is exact. Since the first row is right split J' : G/G’ — G, i.e.
7o J' =idg/qr, then the second row is right split as well, J : B/[B,B] — G. In

fact, if we define J := J' o 7'('1;;, then:
logoJ = megomoJ' o 771;; = TMog © idg G/ © 771?); = idp(B,B)-

Since the first row is exact, we can write G = G’ - J'(G/G") = G’ - J(mog(G/G")),
i.e. each g € G can be written as the product of an element ¢’ € G’, which is a finite

product of commutators, and one h € J'(G/G’) = J o moe(G/G') = J(B/|B, B]):
g = Hk{hk,h;c} . J/ o 7T(h) = Hk{hk,h%} . Joﬂlog o 7T(h) = Hk{hk,h%} . J(log h)

Clearly log g = log h, hence statement 3 holds.
(3) = (2) If the second row is split, then log is surjective and J injective and
the sequence is exact. As B/[B, B] is abelian, its unit is denoted 0, while the unit

of (G,-) is denoted 1 (See Remark 1.2.2). Hence, if g € ker log then:
9 ={l, U} - J(log g) = We{li, Ui} - J(0) = T {l, U } - 1 = Thie{l, I3} € G-

(2) = (1) By definition of split, logo.J = idp/,p, g}, hence log is surjective and
the row is exact. From Remark 1.2.7, 6 : ker moy — kerlog /G’ is the identity, so if
kerlog = G’, then ker(mqg) = {1}. Also, since log = mos o 7 and log is surjective,
then g surjective, too, i.e. mog is an isomorphism. Finally, if J: B/[B,B] — G
is a right split for the second row, then J' := J o mq, defines a right split for the

first row.
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We now show that there is a unique log split by J if one of this equivalent condi-
tions is satisfied. Let IONg be another logarithm split by J, i.e. loAé oJ = idp,B,BI-
Hence 1A07g vanishes on products of commutators, thus from (3) we have that Vg € G
lg/g(g) = 1()/v((g(1'1k{l;€7 .} - J(logg)) = lgé; o J olog g = log g, hence uniqueness.

U

PrOOF OF LEMMA 1.2.6. The proof is very similar to the previous one for log,
so we will give a brief sketch.

(1) = (3) If myet is surjective, so is det = mger © 7, hence the second row is
exact. If the first row is also right split j/ : G/G' — G, then so is the second
row via j := j' o 7rd_;E : R* — G. Since the first row is exact, we can write
G =G j(G/G) =G - j(raet(G/G")) and every g € G can be written as the
product of an element ¢’ € G’ and h € j/(G/G’") = j o maet (G/G') = j(R*), which
yields g = g {hx, b} - j(det g).

(3) = (2) If the second row is split, then det is surjective, j is injective, and
the sequence is exact. By the decomposition of g € G we have that if g € ker det
then g = I {hy, h}} - j(det g) = Ty {hg, by} - j(1g-) = Hp{he, by} - 1a € G'.

(2) = (1) As for (1) = (3), the splitting of the second row yields the split-
ting of the first, and since det is surjective, so is mqet. Also, from Remark 1.2.7,
d : ker(mget) — ker(det)/G’ is the identity, thus ker(det) = G’ yields ker(mqet) = {1}.

Hence uniqueness follows by the same argument used for the logarithm.

O

REMARK 1.2.8. The hypothesis of 7 R-linear assures that 7 is surjective: in
fact, for £ € B such that 7(¢) € R*, 7(ar(§)7!- &) = ar(é)"'7(¢) = a Va € R.
Thus the corresponding sequences is exact. It also assures the lower sequence to
split: in fact, we can define K : R — B with K(r) = r7(£)~!¢, which is injective,
such that 7o K =idgr. As in the proof of Lemma 1.2.5, the composition K o 7,

makes the upper exact sequence split.

1.3. Some examples of log-structures

As two fundamental examples of log-structures and log-characters, we present
the classical logarithm with its generalisation to a global logarithm on the universal
cover of the Lie group GL(n,C) and the index of Fredholm operators on a separable

Hilbert space.
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1.3.1. The local and global logarithm on GL(n,C). It is well-known that
the complex logarithm is not holomorphic on C* := C\ {0}, but is so with respect
to a compler cut Ry = {w € C| w = re?, r > 0}, # € R, in which case it is called a
branch log, : C\ Ry — C. However, a global holomorphic logarithm can be defined
on the universal cover of C*, U := {7y | v:[0,1] = C*,~(0) = 1}/~ (where ~ is the
homotopy equivalence relative to {0,1}). In fact (§1.6.20, [75]), if we parametrize
U as (r,p) € (0,00) x R, we can define log(r, ¢) := logr + i and log-additivity
follows from the natural product on U, inherited from C. Such log : Y — C* is
a global section of the (line) bundle associated to U — C* via the representation

p:m(C*) =2 Z — EndC = C, p(m)(A) = A —i2mm:
L:=UxzC={[(lz,0), Al | ((Iz], ), \) ~ (2], ) - m, p(m) "I \), m € Z}.
In other words, log is a holomorphic Z-equivariant function on U, i.e.
log((r, ¢) - m) = p(m) ™" (log(r, ¢)),

with (r, ) -m = (r, o + 2rm) the natural right action of Z on U; the branches log,
are, instead, local sections of U.
In a similar way, holomorphic functional calculus can define a logarithm for

GL(n,C) only locally, i.e. as a branch:
(1.3.1) logy A := L/ logg A (A — AI)"tdA,
2w %o

for an annulus %y centred at 0, enclosing spec(A) and cut by Ry (i.e. a Laurent
loop as in §6.2.2). In fact, (1.3.1) is local as it defines a map log, : Usp — EndC",

where

Up = {C € GL(n,C)|3e > 0 s.t. ||[A—C| <e, spec(C) C C\ Ry}.
The branches satisfy
(1.3.2) loggyomm A =1logg A +i2mrmli,

and logy A = log,, A+i2m Iy, if [§ — ¢| < 27, where ITp , = 5= ff‘e,¢ (A=XI)~" dA
is the projection onto the direct sum of the eigenspaces of A corresponding to
those eigenvalues inside the contour I'p ,,, which is the portion of annulus enclosing
spec(A) cut by Ry and R,. The log-additivity is a consequence of the Campbell-
Hausdorff formula (§2.4, [75]):

logg AB —log,, A —log,, B € [End(C"), End(C")] + P(End(C")),

with P(End(C"™)) the vector space of finite sums of projectors in End(C").
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Since 71 (GL(n,C)) = Z as in the one dimensional case, we can once again

consider the universal cover:
un = {ry ‘ v [Oa 1] — GL(’I’L,(C),’)/(O) = I}/Na

a principal Z-bundle over GL(n,C), and identify an element [y] € U,, v(1) = A4,
with the pair (A, ). With the representation p : Z — End(End(C")) defined as

p(m)(A) = A —i2rml, we can then form the associated vector bundle:
Vo i=Un %, End(C") = {[(A,0), L] | (A,¢),L) ~ ((A,¢) ~m,p(m)_1L), m € L},

where (A,¢) -m = (A,¢ + 2mm). Then logy A € End(C") is a local section of
U, — GL(n,C), while a global logarithm log : U,, — End(C™) can be defined as

log(4, ¢) = /0 y(t) " dy (), [v] = (4, ).

In fact, locally, [ v(t)"'dy(t) = [, dlogs~(t) = logy A, and by (1.3.2) we obtain

the Z-equivariance of such log:
log((A,0) - m) = log(A, 0 + 2wm) = logy, o, A = logyg A+ i2rmI = p(m)~ ' (log(4, 9)).

1.3.2. The index of Fredholm operators. The algebra B(H) of bounded
linear operators on a separable Hilbert space H has a unique trace if and only
if dim H < oo, and has no trace when dim H = oo (§1.3, [75]). However, B(H)

contains a tower of proper ideals that admit traces, the Schatten ideals:
F(H):=C C---CCyC - CCx:=C(H),

where F(H) = {A € B(H)| dim RanA < oo} is the ideal of finite rank operators,
while C(H), its closure in the norm topology, is the (maximal) ideal of compact
operators. In particular, F(H) has a (unique) trace analogous to the classical trace

on endomorphisms of finite-dimensional Hilbert spaces, still called classical, i.e.

TrA = 3777 (Aej, e;), with {e;};en any orthonormal basis of H (§1.3, [75]).

DEFINITION 1.3.1 (From §2.2 and §2.8, [75]). A € B(H) is a Fredholm operator
if and only if there exists P € B(H) such that AP — I,PA—1 € F(H). The
space of Fredholm operators is a multiplicative semigroup denoted by Fred(H).
Equivalently, A € Fred(H) if and only if ran(A4) and ran(A*) are closed and
dimker(A), dimker(A*) < co. Clearly, if A € Fred(H) then P, A* € Fred(H).

DEFINITION 1.3.2. The Fredholm index of A € Fred(H) is defined as:

ind(A) := dimker(A) — dim coker(A) = dimker(A) — dimker(A*) € Z
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It is well-known that the index is log-additive with respect to the composition
of Fredholm operators, i.e. ind(AB) = ind(A) + ind(B). We can see that such
log-additivity arises as a consequence of the log-additivity of a suitable logarithm
defined on Fred(H).

First of all, a good candidate for a logarithm on Fred(H) is the commutator
[A, P], P a parametrix of A € Fred(H). In fact, the dependence on P of [A, P] lies

in the commutator subgroup:

PRrROPOSITION 1.3.3 (§2.2.2, [75]). If A € Fred(H) and P, P, two parametrices
for A, then [A,P] — [A, P'] € [F(H),F(H)], ie. n([A,P]) = w([A, P’]), where
n:F(H)— F(H)/[F(H),F(H)] is the canonical projection.

Moreover, by the uniqueness of Tr and the first isomorphism theorem, there ex-
ists an isomorphism Tr : F(H)/[F(H), F(H)] — C such that Tr = Tror. Therefore,
for Fr(H) := F(H)/|F(H),F(H)], we can define a logarithm log : Fred(H) — Fr(H)
as log A := w([A, P]). In fact, it is proved in §2.2.2, [75], that it satisfies:

log AB = log A + log B, VA, B € Fred(H),
and that ind(A) = Tr (log A).

REMARK 1.3.4. The same considerations carry over to elliptic 1»dos on a closed

manifold X. If A € ¥, (X, E), then (Theorem 19.2.3, [32]):

i) A is a Fredholm operator H*(X,FE) - H™ *(X, E);

ii) ker(A) C C*°(X, E) (in particular, ker(A) is independent of s);

iii) ran(A4) = ker(A*)1, with A* € V(X E).
Thus, ind(A) is independent of s and there exists P € W ["(X, E) such that AP — I
and PA — I belong to U~°°(X, E). Hence, [A, P] is independent of P and is trace
class with respect to the classical trace Tr of smoothing ¢dos (0.2.1). From §2.8,
[75], P can be chosen in such a way that AP—1I = —Pier(a+) and PA—I = — Py ()
and a logarithm is defined as:

U (X, E)
(U= (X, E), ¥==(X, E)]’

log : Upn (X, E) — < ﬁ) ., A— (A P]).

Hence, ind(A) = Tr(Peer(a)) — Tr(Peer(asy) = Tr ([A, P]), where Tr = Tr o 7 and
Tr: U=°(X,E)/[V~°(X,E),¥~>°(X, E)] > C.
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1.4. Logarithms on Categories and Cobordism

We recall that manifold will always stand for smooth and compact manifold
(80.1). In order to define log-functors, let us recall the definition of symmetric

monoidal categories and functors.

1.4.1. Cobordism categories.

THEOREM 1.4.1 ((1.2), [16]). For any manifold W there exists an open collar
neighbourhood U C W of M = OW and a diffeomorphism h : U — M x [0,1) such
that h(m) = (m,0), Vm € M.

Let n € N, and let W; and W5 be two n-dimensional manifolds such that
oWy = My U My, and OWy = M{ U M,. If f: My — M is a diffeomorphism, then
we can glue W7 and W, together into a (topological) manifold W = Wi Uy Whs.
Since a smooth structure cannot be determined by the smooth structures of W; and
W, alone, we need to choose collar neighbourhood for M; and for M. In this way,
W can become a (smooth) manifold with boundary OW = My U Ms. Its smooth

structure does depend on the choice of collar neighbourhoods, but:

THEOREM 1.4.2 (Theorem 6.3, [57]; Example 1.2.11, [48]). All smooth struc-
tures on W obtained by gluing with respect to a choice of collar neighbourhood
for My and Mj are diffeomorphic. Hence, gluing of manifolds is associative up to

diffeomorphism.

DEFINITION 1.4.3 (§1, [48]). Let Cob? denote the category of unoriented
cobordisms: its objects are closed (n — 1)-dimensional manifolds and its morphisms
are cobordisms, i.e. equivalence classes of n-dimensional manifolds with boundary.
Precisely, if My, My € obj(Cob?), then W € mor(M;, M,) is the set af all mani-
folds W whose boundary 0W is diffeomorphic to M; U M> via a diffeomorphism
kow : OW — Mj U My and such that /@5‘,1‘/, o Koy : OW — OW' can be extended to
a diffeomorphism W — W', if W’ is another such manifold. Analogously, the cat-
egory of (oriented) cobordisms Cob, := CobS? is defined as Cob?, but this time
objects and morphisms are oriented manifolds and the diffeomorphisms are orien-
tation preserving, i.e. for W € mor(M;, My) and W € W, kg is an orientation

preserving diffeomorphisms from oW to M; U M.

Let W € mor(Mi, My) and W/ € mor(My, M3), i.e. OW = X~ UY and
OW' = Y~ Z such that there exist diffeomorphisms ky : X = Mi, ky : Y — Mo,
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Ko Y — My, and k, : Z = M3. If ¢ := /@};1 © Ky, then composition of morphisms

is defined by gluing with respect to ¢:
WUy W =W Uy W =: W oW € mor(My, Ms).

The identity morphism associated to M € obj(Cob,,) is the equivalence class of

the cylinder: M x [0, 1] € mor(M, M). Clearly, 9(M x [0,1]) = M~ U M.

1.4.2. Symmetric monoidal categories and TQFT. The following defi-

nitions are taken from §2, [72], unless stated otherwise.

DEFINITION 1.4.4. Let C be a (small) category endowed with a bifunctor

® : C x C — C and unit object 1¢ € obj(C) such that, for ¢, ¢/, ¢’ € obj(C):
c®@lg=c and c(ded)2(cad)ad,

where = means a coherence isomorphism. Then C is called monoidal category and

® monoidal product. If also:
(1.4.1) cod2d®ec,
then C is called symmetric monoidal category and ® symmetric monoidal product.

EXAMPLE 1.4.5. Cob? and Cob,, are symmetric monoidal categories with
symmetric monoidal product ® := L, the disjoint union. The unit object is the

empty manifold @, considered as a closed (n — 1)-dimensional manifold.

EXAMPLE 1.4.6 (Category of R-modules). For a commutative ring R, let R-Mod
be the category with R-modules as objects and module morphisms between them.
It is a symmetric monoidal category with product defined by the tensor product
over R. The unit object is clearly the ring R itself. In particular, if R = F is a
field, then F-Mod =: Vecty, the category of vector spaces over F.

REMARK 1.4.7. Since any two associativity bracketing of z; ® -+ ® x,, for
x; € obj(C), coincide modulo coherence isomorphisms, we can simply write in
general z:=1z1 ®---®@x,. By (1.4.1), Ve, € obj(C) there exist braiding iso-
morphisms b, 1 c®c — ¢ ® ¢, b;i, = berc, which extend to isomorphisms

50(1) 10 = To = 2y1) ® -+ ® Ty(p) for any permutation o € Sy,.

DEFINITION 1.4.8. Let C be a monoidal category. Then a functor ¥': C — B
is called strict if F(21 ®---®x,,) is independent of the associativity bracketing and

all the coherence isomorphisms are mapped into the identity in B.



1.4. LOGARITHMS ON CATEGORIES AND COBORDISM 50

LEMMA 1.4.9 (Lemma 2.1, [72]). Let 0 € S,, and s,(z) : © — z, be as in

Remark 1.4.7. There exists a canonical isomorphism
po(z) := F(s5(x)) : F(z) = F(z0),
independent of associativity bracketing of x and ., such that:
Horoo (T) = por (T4) © o ().

DEFINITION 1.4.10 (§1.1, [48]). Let (C,®c), (B, ®B) be two symmetric monoidal

categories. Then a functor F': (C,®c) — (B, ®p) is symmetric monoidal if:
F(lg) 21 and F(c®cd)2F(c)®p F(d), Ve, d € obj(C).

Symmetric monoidal categories and functors are the necessary ingredients for

the functorial definition of Topological Quantum Field Theories ([2]):

DEFINITION 1.4.11 (Definition 1.1.5, [48]). A Topological Quantum Field The-

ory of dimension n is a symmetric monoidal functor
Z : Cob,, — Vecty.

Unfolding the definition, if W € mor(M;, Ms), then Z(W) is a linear map
between the vector spaces Z(M;) and Z(Ms), i.e.

Z(W) € mor(Z(M,), Z(Ms)) = Z(M,)* @ Z(My),

with Z(My)* the dual of Z(M;). By Proposition 1.1.8, [48], Z(M;y)* = Z(M7),
so ZW) € Z(M]) ® Z(My) = Z(M; U M,), as Z is a symmetric monoidal
functor. Hence Z(W) € Z(0W) and, if OW = ), then Z(W) € F and thus a TQFT
assigns a numerical smooth invariant to a closed n-dimensional manifold W. In
fact, W can be seen as a bordism from ) to itself, i.e. W € mor(), ). Hence

Z(W) € mor(F,F) = F. We remark that if W is a homeomorphism class, or a

homotopy class, then Z(W) represents topological or homotopy invariant.

1.4.3. Logarithms, traces and categories. For proofs, comments, and fur-
ther examples we redirect to §2, [72], from which the definitions and results of this

paragraph are taken, unless otherwise stated.

DEFINITION 1.4.12. The symmetric monoidal bifunctor ® naturally defines

(non-monoidal) product functors Yy € obj(C) which are respectively the right and
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left multiplication mg,, mys : C — C, i.e. Ve,y € obj(C), ¥y € mor(C) and
ty € mor(y,y) the identity morphism associated to y, then

myec =y ® cand myg(y) =1, ®7y,  mgyc=c®y and mgy(7) =7 ty.

DEFINITION 1.4.13 (Monoidal product representation). Let C* be a groupoid
obtained from C by considering only a specific subclass of its isomorphisms, con-
taining all the coherence isomorphisms and permutations s,. Let B be an additive
category. Then, a functor F' : C* — B is called monoidal product representation
(of the reduced category C*) into B if F is strict and V y € obj(C) there exist a

natural transformation, called insertion transformation
Ney i F'—= Fgy := Fomgy,  ngyc: F(c) = Flc®y),
such that, Ve, ', y,y" € obj(C), n is:
e compatible with ®:
Ne(yey)C = Nay (c®Y) ongyc  and
e compatible with the braidings b, . :
Ne(y@y)C = Ho(c @Y @ Y) 0 Ngyay)C:

with o a permutation that swaps y and 3’ and fixes c.

The morphisms ngyc are called insertion morphisms.

DEFINITION 1.4.14. A monoidal product representation is injective if ngyc is
left-invertible Ve, y € obj(C), i.e. there exists dg,c € mor(F(c®y), F(c)), compat-

ible with ®, such that dg,c o ngy,c = tp). dgyc is called ejection morphisms.

REMARK 1.4.15. Insertion maps intertwine with the permutation isomorphisms

(Lemma 2.4, [72]):

77®y(x0) 0 g (T) = pog1(T @ y) o 77®y(x)~

Thus, by combining insertion maps and permutation isomorphisms we obtain more

general insertion maps:
(@) Fa1® @ay) > Fla1® - Qup 1 QY@ 1 @ -+ @ 2
7]5(1") = Mo it ([E Y y) © n@y(z)7

with o ny1 € Sp41 the permutation that moves y in the kM position. Analogously,
we can generalise the ejection morphisms in a similar fashion and obtain 5(%y (z),

which commute nicely with 7} (z) (Lemma 2.5, [72]).
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REMARK 1.4.16. Let obj(CP) denote the set of p-tuples zp @ -+ ® x,—1 of
objects of C. Then, we obtain a simplicial structure for F(C*), with p-simplices

A, C obj(B) x obj(CP):
Ap ={(x0,...,2p-1) | E€EF(20® - @ xp_1),2; € 0bj(C)}.

Face maps dj : A, — A,_1 and degeneracy maps si(w) : A, — A, 41 are respec-

tively defined as:

dk(gax07 s 737])—1) = (5;1(&),%’0, sy Lh—15Th+41,y- - - 71‘])—1) and
Sk(w)(§7x07 ) 7xp71) = (775;(5)751:07 sy =1, Wy Ty - - - 7xp71)'

In particular, if only degeneracy maps are available, the structure is called presim-

plicial.

1.4.4. Tracial monoidal product representation. The following defini-

tions are taken from §2.1, [72].

REMARK 1.4.17. If R is a ring, then the canonical projection 7 : R — R/[R, R]
defines a quotient functor from the category of rings into the category of abelian

groups, i.e.
(1.4.2) IT: Ring — Ring/[Ring, Ring] C Ab

REMARK 1.4.18. If (A,+) is an additive category and a € obj(A), then
enda (a) := mora(a,a) is a ring, the product being the composition. In partic-
ualr, if A = R-Mod, then R-linearity of the morphisms yields that enda (a) is an
R-algebra.

DEFINITION 1.4.19. A monoidal product representation F': C — Ring of a
symmetric monoidal category C is said to be pretracial with respect to an additive
category A if:

o Yc € 0bj(C) 3! a. € obj(A) such that F(c) = enda (ac);
® 7)gyc are ring homomorphisms;
® /i, c are ring isomorphisms.
Then we will write F': C* — Ringa 44. Moreover, if dg,c preserves commutators,

ie. dgyc([F(c®y), Flc®y)]) C [F(c), F(c)], then F is called injective.

LEMMA 1.4.20. Let F' : C* — Ringayq be a pretracial monoidal product

representation. Then by compositon with (1.4.2), the functor

Fp=:1oF:C* — Fy(C*) := F(C*)/[F(C*), F(C*)] C Ab



1.4. LOGARITHMS ON CATEGORIES AND COBORDISM 53

is a monoidal product representation with insertion homomorphisms

o F(e) Flc®y)
19 R (), Fle)]  [Fleay), Flc@y)]

and (Fp(C*), ﬁ];) inherits the structure of a presimplicial set.

DEFINITION 1.4.21. A symmetric monoidal category C has a categorical trace
7 if there exist elements ¢ € obj(C) for which we have a non-empty subclass
endg(c) C endce(c) and a map 7. : endg(c) — ende(le) such that the follow-
ing trace property holds: Va € mor(c, '), 5 € mor(c/, ¢) such that 5o« € endg(c)

and a0 8 € endg(¢),
Te(Boa)=T1s(aof).
Elements « € endGe are said to be 7-trace class.

EXAMPLE 1.4.22. R-Mod of Example 1.4.6 is trace class, since M., x»(R), the
algebra of matrices with R coefficients, has a (classical) trace. More interestingly,
Cob,, is trace class, with trace sending W € mor(M, M) to the closed n-manifold

obtained by gluing the boundary together.

DEFINITION 1.4.23. A pretracial monoidal product representation of C, F' :
C* — Ringy 4q, is called tracial if the background additive category A has an F-
compatible trace 7, i.e. the ring homomorphisms 7. : F(c) = enda (a.) — enda (1)

satisfy Tegy 0 Neyc = Te and 74, © py () = 75

REMARK 1.4.24. In a tracial monoidal product representation, 7. factors though
7. : F(¢) = F(¢)/[F(c), F(c)], i.e. 7. =T.0m.. Moreover, the trace 7 on F11(C*)

satisfies an analogous compatibility condition:
%’c®y ] 77@:[/0 = 5:0

1.4.5. Logarithmic functors. The following definitions are taken from §2.2,

[72]. Specific references are provided when needed.

DEFINITION 1.4.25. The nerve N'C of a category C is a simplicial set with

p-simplices defined as p-tuples of morphisms:
(ag, ..., 0p-1), a; € mor(zj,xj41), j €{0,...,p—1}.

The set of all p-simplices is denoted by A, C, and face maps d; : N,C — N,_;C

and degeneracy maps s; : N;;C — N, 41 C are respectively defined as:

dj(a,...,05-1,05,...,0p_1) == (0g,...,q; 00;5_1,...,0p_1) and



1.4. LOGARITHMS ON CATEGORIES AND COBORDISM 54
Sj(Oéo, cey O 1, Oy .., Oép_l) = (050, cee Oy, ij,Oéj, e 7Ozp_1).
ExampLE 1.4.26. NyC = obj(C) and N;C = mor(C).

REMARK 1.4.27. We recall that, if (X, d;, s;) and (Y, dj, s) are simplicial sets,
a simplicial map f : X — Y consists of a family of maps that commute with the

face and degeneracy maps, i.e. f, : A, — A} such that

(1.4.3) ford; =dif and fosi = i fo-1.

If Y is only presimplicial, i.e. there are no face maps d}, then f : (X, d;, s;) — (Y, s})
is said to be a presimplicial map if s} f,_1d; = f,, which implies (1.4.3) when f is

simplicial.
As (FH(C*), ﬁ’;) is a presimplicial set by Lemma 1.4.20, we can finally define:

DEFINITION 1.4.28 (Definition 2.13, [72]). Let (C, ®) be a symmetric monoidal
category and F' : C* — Ringygq @ pretracial monoidal product representation.

Then a logarithmic functor, or log-functor, is a presimplicial log-additive map
log : (Ncad_]vsj) — (FH(C*)’ﬁj) )

which is said to define a logarithmic representation of C. In other words, a log-

functor is a simplicial system on N;C of maps

F(z®vy)
[F(r®y), Flz®y)]’

log, g, : mor(z,y) — arrlog,q, a, x,y €0bj(C)\ lc

such that if & € mor(x,y) and 8 € mor(y, z), then
(1.4.4) 108, 9y0: (@, B) = Ngz(108,, @) + Nee(log,s. B)
nFlzye:z2)/[Fley® z), F(r ® y ® z)], that is

10g,0ye: (@, B) = N9 (1085, @) + Nue (108, B) i: [vj,v;] € Flz @y ® 2).

On the other hand, since

Flzoy® z)
Flzy®z2),Flzoy®:z2)]

1ng®y®z (av B) = ﬁy(lng@z Bo O‘) € [

(1.4.4) is equivalent to:

(145) ﬁy (logaz®z ﬁ © Oé) = ﬁ@z (logm®y a) + ﬁr® (logy®z ﬂ)
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REMARK 1.4.29. In Definition 1.4.28 it is enough to specify the maps on N;C
and it suffices to define (1.4.5) (Lemma 2.16, [72]), since all the other simplicial
maps, ie. those on N,C, p > 1, depend on those on N;C. Moreover, from
the definition one has all the other properties of logarithms, e.g. the log of an

idempotent object is trivial. For a complete description, see Lemma 2.18, [72].

DEFINITION 1.4.30. Let F be a tracial monoidal product representation of a
symmetric monoidal category C, with 7 the trace. Then the 7-character of the log-

functor defines a log-determinant functor representation of C, i.e. Vo € morg(c,¢'):
T(log ) := Teger 0l0g g o € enda (1).

REMARK 1.4.31. By Remark 1.4.24, we have that the log-determinant repre-

sentation is independent of insertion maps (of any order: see Lemma 2.19, [72]):

(1.4.6) Tewe (108ege @) = Tewe oy (108cger gy @)

Hence a log-determinant is independent of where it is computed (Lemma 2.20, [72]):
T(log fa) = T(log ) + 7(log B), a € mor(c, '), 8 € mor(c, ).

REMARK 1.4.32. A log-functor can be extended to elements § € morc(1,1).
In fact, after choosing a € morc(1,z) and § € morc(z, 1) such that z # 1 and

6 = B oa, we can define:

. Flozo1) _ F(2)
log 0 :=logg:1 (@, f) € Fle:01),Flezel)] [F),FE)]

It depends on § and z, but by Lemma 2.19, [72], not on « or 8. Moreover, if a

categorical trace 7 is defined, then the corresponding log-determinant

7(log, 6) = 7(log, o) + T(log, )

depends only on §, by Lemma 2.20, [72].

1.4.6. Logarithmic Topological Quantum Field Theories. The follow-
ing definitions are taken from §2-§3, [72]. Specific references are provided when

needed.

DEFINITION 1.4.33. Let M := M, U---LM, € obj(Cob?), where M, may also
be disconnected. If we write M~ for M with some of its connected components
chosen with opposite orientation, then a pretracial monoidal product representation

F : Cob;, — Ringp 44 is called unoriented if F(M~) = F(M).
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DEFINITION 1.4.34. Let F : Cob, — Ringaaq be an unoriented pretracial
monoidal product representation. Then a Logarithmic Topological Quantum Field

Theory relative to F' of dimension n, or LogTQFT, is a log-functor
log : (N Cob,,,d;, s;) — (Fi(Coby,),7t.) .
By definition, this is a simplicial system of logarithms
log s, ias, + mor(My, My) — Frp(My U My)
and a logarithm logy, a7, W € F(My U Ms) = F(M; U M) is identified to an

element logg,, W € Fri(OW), since F(OW) = F(M; Ul My).

REMARK 1.4.35. Even in the case that F is unoriented, logs,,, W could depend
on the orientation of W. Therefore, in the case that loggy, W = loggy,~ W for all
W, the LogTQFT is called unoriented. An example is provided by the (relative)
Euler characteristic (see Chapter 2), while the topological signature is an example

of a log-character of a LogTQFT that is not unoriented.

PROPOSITION 1.4.36 (Proposition 2.18, [72]). Let Cpy = M x [0,1] be the

cobordism class of the cylinder. Then

and if F is injective, then logy; 3 Car = 0 in Fi(M U M).
A LogTQFT can define a TQFT, at least in a week sense:

LEMMA 1.4.37 (Lemma 3.4, [72]). Let F : Cob,, — Ring 44 be an unoriented
tracial monoidal product representation with trace 7. : enda(a.) — enda (1) and
let log : N'Cob,, — Fp(Cob},) be a LogTQFT relative to F' of dimension n. If
€ : enda (1) — F is an exponential map into a field, then there exists a scalar-valued

symmetric monoidal functor Ziog 7, i.e. a TQFT, defined as follows:
ZlogyTxf(M) =F and Zlog,r,e(W> = 6(7’(10g W))

The following fundamental example of unoriented tracial monoidal product

representation can be found in §2.1.2, [72], and will be useful in the next chapters.

ExampLE 1.4.38. Let C-Alg is the category of C-algebras and consider the
strict functor F_ : Cob,, — C-Alg defined as:

M € 0bj(Cob,,) — F_oo(M) := U~°(M, E),
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for E — M some vector bundle. It comes with insertion maps:
NN :=NuN : Fooo(M) = F_oo(Mpy) NN (T) =g oT oiy,

where M := My U---UM;, My := MyU---UNU---UM,;, and j§ : QM) — Q(My)
and i, : Q(My) — Q(M) are the pull-backs of the projection jy : My — M and
the inclusion iy : M < My, respectively. Hence F_., is pretracial, but not

injective, and pushes down to:
F_oon: Cob; — F_o, n(Cob;,)

with insertion maps

F—OC(M) F_OO(MN)

v (M) : [Foc (M), Foc(M)] " [Foc (M), Foo (M)

Let Trps : Foo(M) — C the classical trace on smoothing ¢dos (0.2.1). Since Trj,
is the unique trace on F_.(M) (Lemma 2.10, [72]), by Lemma 1.2.4 there exists
Tro : Tpm (F_ oo (M)) 5 C such that:

(1.4.7) Trps = Tras 0w, Tryr = Tryy oy and ﬁM:ﬁMoﬁN.
Hence (F_,Tr) is a tracial monoidal product representation.

LEMMA 1.4.39 (Lemma 2.12, [72]).
e (F_,Tr) is an unoriented tracial monoidal product representation;
e a diffeomorphism ¢ : M — N, M, N € obj(Cob,,), induces a canonical

continuous isomorphism of algebras:
(1.4.8) Op 1 F_oo(M) = F_oo(N) such that Trps = Try o ¢y;

e ¢ pushes-down to a canonical linear isomorphism of complex lines:

F_oo(M) . F_oo(N)
Fooo(M), Fooo(M)]  [F_oo(N), F_oo(N)]

(149) 19M,N : [
which is independent of the initial ¢.

1.4.7. The Unoriented Logarithm Theorem for Surfaces. We conclude
this chapter with a novel result for LogTQFTs of dimension 2, i.e. on compact
oriented surfaces. We shall see that an unoriented LogTQFT is characterised by its
definition on the unit disc D. First, we prove it for closed compact surfaces. The

general case will follow as a Corollary.
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THEOREM 1.4.40. Let F : Cob; — Ring be an injective and unoriented
monoidal product representation and let log : NCobs — (Fj(Cobj),7) be an
unoriented LogTQFT. Let ¥, denote an orientable, closed and connected surface
of genus g and x(X4) = 2 — 2g its Euler characteristic. Then, if D denotes the unit

disc,
logg: 2o = x(%o) - logg1 D for g =0,
loggist 21 = X(Z1) - i1 loggi D for g =1 and
loggis1ust Bg = X(24) - Nisiust loggr D, for any g > 1.

ProOF. We start with some observations. If we consider the unit disc D to
be a morphism () — S, then D~ : S' — . Thus since F and log are unoriented,
loggi D = logg: D~ € F(S') := F(S)/[F(S), F(S)]. In the same way, we can see
the pair of pants to be a morphism P : S* — S' U S'. Hence P~ : St U St — St
and logg1 51,51 P = loggi 51,51 P~ € Fe(STU ST U SY).

FIGURE 1. The pair of pants.

Finally, let us consider the cylinder C = S! x [0,1] : S' — S*. On the one
hand, C corresponds to a map C : 0 — S~ U SL, but both surfaces are dif-
feomorphic, so they are accounted for in the same cobordism C. On the other
hand, C~ : S'7 — S'7 is diffeomorphic to C~ : S U S'™ — 0, thus they de-
fine the same cobordims and since log is unoriented and F' injective, we conclude
loggi 51 C~ =loggi 1 C =0 € F(S*USh).

Now, since ¥, € morcon, (0, 0), its logarithm must be defined relative to a

choice of embedded closed curve S € obj(Cobs):
logg 5, = logs(0 % S 5 0) € F.(S)

and depends on S, but not on the particular «, 8 used (Remark 1.4.32). Soif g = 0,
Yo = S? is the 2-sphere and the easiest choice for S is the unit circle S*. Hence

logg: S2 = logg: (0 B g1 Dy ) and by (1.4.5)

logg: (0 B g1 Dy ) = logg: D + logg: D~ =2 -logg: D = x(Xo) - logg: D.
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FIGURE 2. Dual interpretation of C.

O

FIGURE 3. S2 as D Ug:1 D—.

Analogously, let g = 1, so $; = T2 is the 2-torus. Then we can split it into two

cylinders, ) Q9 st and STUST S (), and obtain:

loggi g1 T2 = loggi 51 C +loggi g1 C~ = 0= x(T?) - 7js1 logg: D.

©

FIGURE 4. T2 as C Ugi g1 C~.

In general, let 3, be any closed and connected surface with g > 1. Then we

)
can split @ =% () into 2g pair of pants and 2 discs:

035 B siust D gt Bglyst P gt B Py gt Bl g1 Py g1 Dy

29

Since OP = S*~ LS'US!, it suffices to embed all logarithms into F, (S* U S L S1).

Hence:
10gs1510,51 B9 = 10gg1 1,6 (0 2 S 5 stust S B gtyst B 51t By

(1.4.10) = 2fs151 loggr D + 2g - loggi jg1,51 P.
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FIGURE 5. 3, for g = 2.

Since the cylinder can be split into a disc and a pair of pants:

1S st =g B st Bglyst

FIGURE 6. DUg1 P =C.

we have that 0 = 751 log g1, ;g1 C = 7151 loggr D+loggi g1, P, which yields
loggi,g1,51 P = —Ts1us1 loggi D and (1.4.10) becomes
10g51us1|_|51 ig = (2 — Qg) 7731,_,51 10g31 D= X(Eg) . ﬁslusl logsl D.

O

REMARK 1.4.41. The injectivity hypothesis for F' (Proposition 1.4.36) can be
safely relaxed. In that case we obtain 771 loggi g1 31 = X(Z1)-Tis151 loggr D(= 0).

COROLLARY 1.4.42 (Unoriented Logarithm Theorem for Orientable Surfaces).
Let F': Cob; — Ring be an injective and unoriented monoidal product represen-
tation and let log : N'Coby — (F11(Cob3),77) be an unoriented LogTQFT. Let X
denote an orientable, compact, and connected surface of genus g, whose boundary

0%, 1 has k connected components, i.e. 98, = | |, S*. Then, Vg, k € N:
(1411) loguk S1 ig,k = X(Eg,k) . ﬁUf;f S1 10g51 E,

where x(2,.x) = x(2£4)—k is the Euler characteristic of £, 5, and x(3,) is the closed

surface ¥, obtained from X, ;, by gluing k discs along the boundary components.
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PRrROOF. We prove the statement by induction on k. If £ = 0, then the state-
ment corresponds to Theorem 1.4.40, so let us assume the statement true for k£ < n.
Since the surface ¥, has boundary 0%,, = |], S! and defines a cobordism

L, S? o 0, it can be decomposed as | |, S* Yot g1 B 0. Thus, by (1.4.5):

Msilog | g1 ¥gn =log g1 Xgn+1+ 7y, 51 logg: D.

Thence, by inductive hypothesis:

1Og|_|n+1 $1 gnt1 = N5t 10g|_|n s18gn — 77|_|;‘:1 s1loggi D
= X(Eg,n) : ﬁslﬁl_lz-‘;f g1 logg: D — 77|_|;":1 51 loggn D
= (x(Zg) = n) My, s1loggr D — 7 jr_ 51 loggs D
=(x(Zg) = (n+1))- ﬁ|_|§:1 g1logg: D,

where 7751 ﬁl.l;’;f 51 = ?]Ll;bzl Sl
O

REMARK 1.4.43. Let F : Cob] — Ring be an injective and unoriented
monoidal product representation and let log : AN’'Cob; — (Fu(Coby),7) be an
unoriented LogTQFT of dimension 1. Then M € objCob, ) is a collection of points
and W € mor(M;, M>) is a disjoint union of line segments L = {pt} x [0, 1]. Hence,
by the same approach of Theorem 1.4.40, every unoriented LogTQFT is trivial and
in particular log ST = 0. This, together with an exponential map e : enda(l) —» F,
can give rise to a (rather trivial) 1-dimensional TQFT as described in Lemma 1.4.37,
where Ziog (W) = 1 € F. In particular, this gives Ziog r(S*) = 1, which thus
retrieves the dimension of the vector space assigned to a point (which is F itself), as
prescribed by Lurie in Example 1.1.9 of [48]. Less trivial TQFTs can be obtained
dropping the unoriented hypothesis.



CHAPTER 2

Dirac operators and Logarithms

In this chapter we will show how the relative (or absolute) Euler characteristic
of an even dimensional manifold with boundary can be realised as a log-determinant
of a LogTQFT. The idea is similar to the proof of the same fact for the topological
signature (done in [72]) and relies on index theory of Elliptic Boundary Value
Problems.

Since Index Theory will have a key role also in Part II (with appropriate gen-
eralizations), we will recall the main definitions, such as the realization of Dirac
operator with respect to well-posed boundary conditions, the APS Index Theorem
and the quasi-additive formula of the index. In particular, we will prove this for-
mula again, but from the point of view of Calderén projectors. To our knowledge,

this has not been done.

2.1. Dirac operators

Let E — X be a complex vector bundle, with X an n-dimensional manifold
with (possibly empty) boundary Y := dX. The following definitions are taken from
§3, §8, and §14, [10]. Specific references are provided when needed.

DEFINITION 2.1.1. A Dirac-type operator is a first order differential operator
D : C®(X,E) - C*™(X,E) such that the principal symbol of D? defines the
Riemannian metric, i.c 0P (z,¢) = doij=1 g% (z)&:&;. D? is called Dirac Laplacian.
In addition, let E — X be a Clifford bundle, ¢ : C*(X, TX® F) - C*(X, E)
be the left Clifford multiplication and J : C®(X, T*X ® FE) — C*(X,TX Q@ E) the
isomorphisms between vector and covector fields. Then the first order differential

operator
di=coJoVE:C®(X,E)— C™(X,E)

is called generalised Dirac operator. O and 0° are elliptic with principal symbols

(Lemma 3.3, [10]):
0%(z,6) =ic(¢) : By —» B, and o9 (z,&) = ||€|%] : By — E,.

62
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Moreover, if VF is compatible! with the Clifford module structure of E we call d a

(compatible) Dirac operator.

ExXAMPLE 2.1.2. The de Rham operator d + 6 : Q(X) — Q(X) in §0.3 is a
compatible Dirac operator with (d + 6)2 = A, i.e. the Hodge-Laplacian (Definition
0.3.1). Since c(§) = ext(§) — int(§) when EF = A(X), i.e. the difference between
exterior and interior multiplication, we have 097 (z,€) = ic(¢) = i(ext(¢) —int(€))

(Lemma 1.5.3, [23]).

THEOREM 2.1.3. Dirac operators satisfy:
i) the Unique Continuation Property:

‘If a solution s of ds = 0 vanishes in an open subset of X, then s =0 on

the whole connected component of X’;

ii) Green’s formula:
(0s1, 82y x — (s1,082)x = —(07ys1,7s2)y, 1,52 € CP(X,E).

with o = ¢(dt) : Ejy — Ejy the Clifford multiplication by the inward unit
normal. In particular, 0 is formally self-adjoint in the interior of X, i.e.
(0s1, 82)x = (s1,089)x if 81,89 € C®°(X, E) with support disjoint from
Y.

REMARK 2.1.4. 0 : E|y — E|y, called Green’s form of 0, is constant in ¢ and

is skew-adjoint, i.e. 0* =071 = —0.

REMARK 2.1.5 (83, [25]). Any first order elliptic differential operator can be
represented on a collar neighbourhood U of Y as ¥(0; + B;), where ¥ is an iso-
morphism of vector spaces. In particular, in the case of a Dirac operator, when a

product structure near Y is assumed, we have:
6‘[] = 0'(875 + B),

i.e. X = o and B; = B, which is a first order self-adjoint elliptic differential operator

of C*>(Y, E’) independent of ¢. Also, B and o anticommute, i.e. Bo = —oB.

EXAMPLE 2.1.6. Let us consider the de Rham operator d + § (Example 2.1.2)
and w € Q%(X) on a collar neighbourhood U 2 [0,¢) x Y. Since w)yy = wy + dt Aws

IDefinition 2.3, [10].
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by (0.3.1), we have:

d¥ 0
dk(wl + dt A LUQ) = dlf/wl + dt A (3tw1 — dlf/_lua) — dk = Y b1
o, —db

with respect to the decomposition
QX)) = (C*([0,¢)) ® Q*(Y)) & (dt ® C*°([0,¢)) ® Q"1 (Y)) .

Analogously, since 6% acts in a similar fashion on w);; € %(X)7, we have (Lemma
3.1, [38)):

B

dy +96 0 0 -1
(d+0)y =0 O +ot v , where o =
0 —dy — dy 1 0

and dy,dy : Q) — Q(Y). This can be obtained on a symbol level as follows.

Let {eg,...,en—1} be an orthonormal basis for T*X near Y with ¢y = dt, i.e.
T*X 32¢= Z;L:_(} ¢jej and 0@t9(z,€) = ic(€) = 227:—01 &;c(ej). Then:
n—1 n—1
a@%9(0,y; Dy, ¢) = iDyc(eg) + i Z ¢jc(e;) = Orc(eg) + i Z ¢icley)
j=1 j=1

=0 (9 + 0 'o™(0,4:0,¢)) = o (0 + b(y,()),

with b(y, ¢) := ¢5(0,;0,¢). In particular, b(y, ¢) has no purely immaginary eigen-
values (Lemma 1.9.4, [23]).

REMARK 2.1.7. Since B is an elliptic self-adjoint operator on the closed mani-
fold Y, it is well known that its spectrum is a discrete set of real eigenvalues with
finite multiplicity and approaching +oc0. Let V\ C L%(Y, E’) denote the eigenspace
of B associated to the eigenvalue A. On the one hand, if IT, : L?(Y, E') — L*(Y, E')
denotes the orthogonal projection into V), we have that 1Ty € ¥~°°(Y, E’) (as it is
finite rank). On the other, the orthogonal projection II>, onto Vs, := @/\Za Vy is
in U9(Y, E'), and so are II~,, II<,, and I, (Proposition 14.2, [10]).

2.2. Boundary value problems for Dirac operators

The following definitions and results are mainly taken from §18, [10], and §3,
[25], unless otherwise stated.
Some topological invariants of closed manifolds can be obtained as the index

of Dirac operators:
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ExampLE 2.2.1. Let X be a closed 2n-dimensional manifold. Then by the
Atiyah-Singer Index Theorem x(X) = ind(d + 6)* (§1.5, [23]), where (d + )"
is the de Rham operator acting on AT (X) := @?:0 A% (X), obtained from the
Zo-grading A(X) = AT(X)® A~ (X), with A~ (X) := @?;01 A?H1(X). A different
Zs-grading of A(X) yields a different invariant: in fact, if we consider the grading
arising from the Hodge operator, then ind(d+46)* = ¢(X), the topological signature
of X (see Proposition 3.61, [8]).

When X has a non-empty boundary Y, a Dirac operator d on X becomes
Fredholm when suitable boundary conditions are imposed. We recall from §0.2
that X is considered embedded into a closed manifold X and that E = E‘ x, for
E — X a Hermitian vector bundle. In analogy with the maps defined in §0.1 and

§0.2, we consider X_ := X \ X, i.e. the closure of X \ X, and E_ := E‘X_. Thus

we have:
r~H(X,E) - H*(X_,E_), e :L*X_,E_)— L*(X,E),
v tHY(X_,E_) — H 3 (Y,E').

Let X, := X, Fy := E, and v© := 7. Recall that a pseudodifferential opera-
tor Dy : C®(Xy,FEy) — C®°(X4, FEy) is the truncation of a pseudodifferential

operator D on X to X4, i.e. Dy :=rtDe?.

DEFINITION 2.2.2. Let N4 (y, ¢) be the spaces of boundary values of the bounded
solutions of ¢9(y, 0, ¢, D;)z(t) = 0 on R* i.e.

(2.2.1) Ni(y,¢) == {2(0)] 6°(0,y, Dy, )z(t) = 0, z(t) = 0 as t — Fo0}.

Then P € WO(Y, E') is said to be a well-posed boundary condition for 9 if the

following two conditions are both fulfilled:

i) the extension P*® : H*(Y, E') — H*(Y, E’) has closed range for each s € R;
ii) for each (y,¢) such that ¢ € T*Y and (| = 1, 07 (y,¢) maps N, (y,()
injectively onto its range, i.e. o (y, Oy (w.0) F Ny, ¢) — ran(o” (y,())

is an isomorphism.

REMARK 2.2.3 (§3.6, [6]; Remark 18.2, [10]; §3, [25]). We note that in the
literature if, for all y € Y and [¢| = 1, 7 (y,{)|n, (y,¢) 8 injective from N, (y,¢) to
ran(o” (y,()), then the pair (3, Pv) is called injectively elliptic. If also o (y, OV (,0)
is surjective from N, (y,() to ran(o” (y,¢)) and there exists a sub-bundle V C E’
such that ran(o” (y,()) = V,, then the pair (3,P~) is called surjectively elliptic.
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Boundary conditions that are both injective and surjectivene are called local bound-
ary conditions ([10]) or properly elliptic ([25]). This implies dim N (y,¢) = 3N,
as for relative and absolute boundary conditions R and A.

Finally, although the terms well-posed and elliptic (as used in [10]) for these
boundary conditions are used interchangeably, the latter can be confused with the
standard terminology for ‘elliptic’ (which does not satisfy Definition 2.2.2). Hence,
as in [25], we will adopt the term well-posed. A detailed explanation can be found

in [25], §3.

DEFINITION 2.2.4. Let P € VO(Y, E’) satisfy Definition 2.2.2. Then a realiza-

tion of 0 is an unbounded operator
dp : dom(dp) — L*(X, E), dom(dp) = {u € H'(X,E) | Pyu = 0}.

It is well known (Proposition 18.11, [10]) that P € ¥°(Y, E’) can be considered
to be a non-trivial pseudodifferential projection, i.e. P? = P, and is orthogonal if

P =P.

DEFINITION 2.2.5. Let P € WO(Y, E’) be a projection and set p(y, ¢) := o (y, ().
Then the Grassmannian of pseudodifferential projections with principal symbol p

is the topological set:
G, :={Q eV (Y,E')| Q* = Q and 02 = p}.

Let P € UO(Y, E') be such that i) of Definition 2.2.2 is satisfied. Then the or-
thogonal L2-projection Zp onto ran(P) C L?(Y, E') is a pseudodifferential operator
(Theorem 18.5, [10]).

PROPOSITION 2.2.6 ([10]). Let P, Py, Ps,P3 € G,. Then:

i) PoPy :ran(Py) — ran(Ps) is Fredholm (note at page 119);
ind(P1P2) + ind(P2P3) = ind(P1P3) (Proposition 15.15);
ind(PZp) = ind(ZpP) = 0 (Lemma 15.11);

iv) ind (PyPs) = ind (P5-Pyi"), where P+ :=1 — P.

11

)
)
iii)
)
REMARK 2.2.7. Part iii) of Proposition 2.2.6 means that P and Zp belong to

the same connected component of G,.

The following theorem defines a special type of well-posed boundary conditions,
which will be fundamental in the sequel. It needs the existance of an invertible

Dirac operator 0 on the closed manifold X , which can be obtained for instance
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by constructing the closed double of X. We refer to Theorem 9.1 of [10] for a

description of such construction.

THEOREM 2.2.8 (Theorem 7.1, [25]). Let d : C*°(X,E) — C*(X,FE) be a

Dirac operator and consider the spaces of null-solutions of 0

Zi = {u € H‘S(Xi,Ei) | Ou =0 on Xi}

1

and Cauchy data of null-solutions of &, N§ :=~*Z3 C H*~2(Y, E’). Then:

9

i) the spaces Ni are complementing subspaces of HS*%(Y, E'), ie.
H*"3(Y,E') = N; UN® and N5 N N* = {0};

ii) there exist operators K* := +r¥013%¢ : H 2 (Y, E') — H*(X4, Ey),
called Poisson operators, whose range is equal to Z§ and IC‘iNi ' N§ — Z3
are isomorphisms, i.e. Poisson operators are a left inverse of v* on AR

iii) there exist pseudodifferential projections
Ct =Bt HTR(Y B - HTE5 (Y, E),

called Calderdn projectors, whose range is equal to Ni (along N2), i.e.

CT+C~ =171 and CECT =0.

REMARK 2.2.9. C* are projections because K7 is a left inverse for y* on Z3
(|26]), ie. (CF)? = yEKFyELE = 42K* = C*. Also, although C* are not
orthogonal a priori, they can be considered to be so by iii) of Proposition 2.2.6.

Finally, by Unique Continuation Property (Theorem 2.1.3) there are no non-
trivial solutions of ds = 0 with support all contained in X (Remark 12.2, [10]).

REMARK 2.2.10. Since the symbols aci(y,g“) are the orthogonal projections
onto Ny (y, (), i.e. (2.2.1), N4 (y,¢) and N_(y, () are orthogonal complements and
ranc®’ 2 rano”® for every well-posed boundary condition P by part ii) of Definition
2.2.2.

Moreover, N4 (y, () correspond to the generalised eigenspaces associated with
the positive, respectively negative, eigenvalues of ¢5(y,(¢), and thence oci(y,C)
coincide with the principal symbol of the spectral projections of Remark 2.1.7, i.e.

+ _ .
o¢" = ogllz0 = gl>0 and o€ = gll<o = gll<o Since ¢'20 = gl=a for all ¢ € R,

this shows that the symbols are independent of a.

Since [I>4, 154 € G, c+ and <, 154 € G -, then the differences are compact
operators, i.e. C* —1Il>, € "1V, E') and C~ —Il<, € U=}V, E'), Va € R. In the

case of compact manifolds, this can be improved:
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PROPOSITION 2.2.11 (Proposition 2.2, [71]). If X is compact with product
metric near Y, then C* — s, € U=°°(Y,E’) and C~ — I, € U~2(Y, E).

DEFINITION 2.2.12. Let P € ¥O(Y, E’) be a well-posed boundary condition.
Then the operator PC* : ran(C™) — ran(P) is called the boundary integral associ-

ated to Ox.

THEOREM 2.2.13. Let P € W°(Y, E’) be an well-posed boundary condition and
let Zpe+ denote the orthogonal projections of L2(Y, E') onto ran(PC*) and Z¢+ p-
denote the one onto ran(CTP*). Then:
i) Zpe+ € Gor and Lot g- € G o+
ii) PCT :ran(Ct) — ran(P) is Fredholm and

(2.2.2) ind(PCT) = ind(Ze+p-CT) — ind(Zpe+ Ip);
iii) dp is Fredholm operator and:
(2.2.3) ind(dp) = ind(PCT).
2.3. The additivity of the index on a partitioned closed manifold

Let 0; : C*(X;, E;) — C®(X,, E;), i = 1,2, be two Dirac operators over X;,
such that 0X; = 90X, =Y.

DEFINITION 2.3.1 (§23, [10]). 0; and 02 are consistent if in a collar neighbour-

hood of 9X; = 0X2 =Y they can be represented in the following form:
01 =00 +B) Jy =01 (&, — 060_1) , t=—v.

REMARK 2.3.2. For example, if 0 is a Dirac operator on a closed manifold X
that we partition with respect to a 1-codimensional submanifold Y into X; Uy Xo,
then O restricts to two consistent Dirac operators 0; := 0x, -

In fact, cBo~! corresponds to the boundary Dirac operator when Y has oppo-
site orientation and 95 is formally equal to 87 close to Y. Thus, via gluing (Chapter
9, [10]), we obtain the Dirac operator d on the manifold X = X; Uy Xs, which

restricts to 0; over X;, i = 1,2.

Formula (2.2.3) shows that for the realization of a Dirac operator on a manifold
X, the data related to the index are encoded in the boundary. Therefore, when X
is closed, one can obtain the value of the index of an associated Dirac operator via
a choice of 1-codimensional splitting embedded submanifold. In other words, for a

closed submanifold Y — X we obtain a splitting X = X; Uy X5, where X; C X
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i =1,2, has Y as a common boundary (with reverse orientation in one case). Let
0: C®(X,E) - C*(X,FE) be a Dirac operator on X, restricting to 9; on X,
i =1,2. If we assume a bicollar neighbourhood for Y, with product structure, we

have:

THEOREM 2.3.3 (24.1, [10]). Let C; := C;" be the Calder6n projectors associ-
ated to 9;, i = 1,2. Then:

(2.3.1) ind(d) = ind (C3C1) .

Clearly, formula (2.3.1) has a obvious similarity with what stated in Remark

1.4.32. It yields the following:

COROLLARY 2.3.4. Let P,Q € G c,. Then:
(2.3.2) ind(d) —ind (QP) = ind (3;,p) + ind (Jg,0+) = ind (PCy) +ind (Q*Cs).

In general, ind (QP) # 0 and we do not have strict additivity. However, by
Proposition 2.2.6, it can be possible to change the boundary conditions P and Q

so that the extra term will vanish.

EXAMPLE 2.3.5. Let Or; denote the realization of a Dirac operator 0 over X with
APS boundary conditions, i.e. with II := II>( from Remark 2.1.7. Let w denote the
index density, n(B) := 7(0, B) be the eta invariant of B, and set h(B) := dim ker(B).
Then the Atiyah-Patodi-Singer Index Theorem ([4]) shows that:

(2.3.3) ind(@y) = /X w— MB) HRA)

2
Let 9, : C*°(X;, E;) — C>=(X;, E;) be two consistent Dirac operators over X;, such
that 0X; = 0X2 =Y, and set II; for the pseudodifferential projection II> for d;.
Then (Proposition 23.2, [10]):

ind(0) = ind(01,11) + ind(d2,11) + h(B)

where we set O, 1 := 0;,- Hence additivity holds if and only if A(B) = 0. By
ii) of Proposition 2.2.6 and equality (2.2.3), for another P € G_.+ we have the

Agranovic-Dynin formula:
(2.3.4) ind(0p) = ind(d11) + ind(PII).

If ker(B) # {0}, then there always exists a unitary involution 7 : ker(B) — ker(B),
determined by the Dirac operator 0 and anticommuting with o, i.e. o7 = —70

(Proposition 4.26, [56]). The +1-eigenspaces of 7, Ly := ker(7Fid), are Lagrangian



2.4. THE ADDITIVITY OF THE INDEX FOR MANIFOLDS WITH BOUNDARY 70

subspaces® of ker(B), i.e. Ly = oLz and ker(B) = Ly @ L_. In particular,
h(B) = dimker(B) € 2N.
Let ©. the orthogonal projections of L?(Y, E’) onto L. Hence, O are finite

rank projections and define the generalized APS boundary conditions:
PLi=T0+0L €G c+ and  PZi=I+6s €G-
In particular, they are well-posed and
ind(PEI : ran(IT) — ran(PE) =
= dim(ran (1) N ran(PE)*) — dim(ran(IT)* Nran(PL))

= dim(ran(IT) Nran(PT)) — dim(ran(T.o) Nran(PI))

=0

=dim(Ly) =dim(Ly) = %dim ker(B) = %h(B)

Analogously, ind(P£Il<g) = 1h(B) and, in conclusion, if ; + denote the realiza-
tions of 9; with respect to either one of the generalized APS boundary conditions,
we have by (2.3.4)
1
ind(@:.+) = ind @) + ind(PETD) = [ i~ (B
X

and ind(d) = ind(87) + ind(57).

REMARK 2.3.6. When 0 is the signature operator, the above example is used
to show that the topological signature of a manifold can be realised as the trace

character of a logTQFT. See [72] for further details on this.

2.4. The additivity of the index for manifolds with boundary

ExXAMPLE 2.4.1. We continue Example 2.3.5 by considering this time two man-
ifolds X;, ¢ = 1,2, such that 0X; = Y,_, UY; and at least one between Y and Y5
is non-empty. If the two Dirac operators 3; : C*°(X;, E;) — C*>°(X,, E;) are con-
sistent in a collar neighbourhood of Y7, then we can glue them together into a
Dirac operator 8 : C*° (X, FE) — C*°(X, E) over X = X; Uy, X5, which has non-
empty boundary 0X =Y, UYs. If B; := B}y,, then Bjpx, = oByo™! @ By and

Biox, = oB1o~ ! @ By. Therefore, it si well known that:
nBlax,) = —n(Bo) +n(B1) and  n(Bjax,) = —n(B1) +n(Bz)

?Definition: L, is the space of all limiting values of L2-extended sections u of E satisfying

d;u = 0.
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and by the Atiyah-Patodi-Singer Index Theorem:
7’](0’800'_1 &) Bl) + h(UB()O'_l D Bl)

ind(61~n) + ind(ag’n) = / w1 —

X 2

n(oBio~r @ By) + h(oBio~! @ By)
+/X2 wo — 5
YR RETLAELLS
e 2 2

—n(B1) + h(B1)  n(Bz) + h(B2)
- /X2 2 2 - 2

—n(Bo) + h(Bo)  n(Bz) + h(Bs)

:/Xw_ 02 o) 22 2) _ By

ind(0n) + dimker(B;),

Let ©F : L2(Y1, E}) — L?(Y1, E}) be the orthogonal projection onto the Lagrangian
subspaces L of ker(B;), and II; denote the APS projection corresponding to Bj.

Then suitable conditions on X; and X, are, respectively,

11 0 i <o+ OF 0
0,<0 and 733: _ 1,<0 1

P =
0 Iiso+67 0 Iz >0

In fact, if we denote O+ the realization of 0; with such generalized APS con-

ditions, we obtain

ind(d,:) = / oy Z(B0) + dimker(Bo) _ n(By)
! X, 2 2
ind(0,+) = / we — n(Bz) + dim ker(Bs) N n(Bl)’
X, 2 2
and thus:
ind(@p+ ) +ind(@ps ) = / " —n(60>2+ n(B2)  h(By) —g hB2) _ o).
1 2 X

This example is just an instance of the general fact that formula (2.3.2) holds
also when gluing is performed with respect to a proper subset of the connected
components of the boundary (Remark 8.20, [7]). In that case, one imposes generic

well-posed boundary conditions of the form:

P 0
0 P

P:

on the remaining boundary components.
Here, we will prove this additive formula but from the point of view of the
Calderén projectors and boundary integrals. It is clear that this is just an equivalent

formulation of what has just been stated.
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For a general approach to gluing, let us consider a manifold X with bound-
ary Y := ||\, Vi, for k € N. Hence E' = @), El, with E/ := Epy,, and
H:(Y,E') = @fzo H*(Y;, El). For U; := [0, ¢;) XY} a collar neighbourhood of 3, the
set U = [0,max;¢;] x Y D Ll?:o U; is a collar neighbourhood of Y. Then the prod-
uct structure near the boundary implies 0|y, = 0i(0y, + B;), with o; : Ejy, = Ey,
the Clifford multiplication by unit inward normal vector to Y; and B; := B}y, the
restriction to Y;.

First of all, Theorem 11.4 and Corollary 11.8 of [10] can be reformulated for

every l-codimensional embedded submanifold in X:

THEOREM 2.4.2. Vs > £ and Vi € {0,...,k}, the restriction to the boundary

component Y; defines continuous and uniformly bounded trace maps
v HY(X,E) = H* 2 (Y, E))  and 7 : HY(X,E) > H*"*(Y;, EJ).
In particular, 7; are adjointable.

In this context, Green’s formula becomes, for s1,s5 € C° (X, E):

(Os1,82)x — (51,082)x = */ (oyu, yv)yv(y)dy

Y
k k
== Z/ (giviu, yiv)yo(y)dy = — Z(Ui%%%@m
i=0 /Y i=0

since the restrictions v and 75 can be represented as column vectors, and o, 9y and

II> as diagonal matrices:

Yo 5
§ = H*(X,E) > P H*(V;,E))
i=0
Yk
o ) . Iy >0
o= PE -PE, =
i=0 i=0
o Iy, >0
6|U0 k k
6|U: @COO(UZ,EH]L)—)@COO(U“E”L)
i=0 i=0

6\Uk
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Poisson operator and Calder6én projector

K:@f  H (Y, E)) - H*(X,E) K:=Kt=r0"5

C: @i H 2 (Vi B) = Do H* (Vi )
can be represented in the following way:

go 0

K=rd"Gg,...,730) = (ro—'5; 00, ..

. \F .
C= ('71’7“6 1'7]‘03‘) o ('Yilcj)i,j:o =

i,j=

T

since ¥* = (5, .. ., V%),

C:=Ct=9K

. ,r%‘lﬁl:ak) = (Ko, ...

k
(Ci7j)i7j:0 )

73

aICk‘)7

REMARK 2.4.3. We have already seen in Remark 2.2.9 that C? = C because K

is a left inverse of «. Similarly, in this case we have Zf:o Kiviu = u for u € Z*,

and C2 = C as a consequence. In fact, let v € Z!, w € L(X,E) and v = (3~ 1)*ew.

Hence v € H'(X, E) and by Green’s Formula:

—(u,w) = (Du, rv)x — (u, ro*v)x = (Ou, rv)x — (u, drv)x
k k
== Z(Uﬂiuﬁﬂ@m = - Z(Ui%‘uﬁtii
i=0 i=0
k N koo
== (o (07 ew)g = =) (r0"'Ffoiiu, w)x
i=0 i=0
k k
= _<Z ICi'Yiuaw>X - ZI@%‘U =uez%
=0 =0
Therefore

k

k k
C* = (Zc@lcl,ﬂ) = (chzwcj)
=0 i,j=0 i,j=0

=0
k

k
= (%(Z /Cm)’Cj> = (1K)} = =
=0

4,7=0

ExaMPLE 244. f Y =Yy, U Y7:

Y0 Sl e og O
C= ro! (%,71)
! 0 o1

k

C.
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’}/07"8_1?6(0'0 707‘5_1?{01 (/’070 0071

711"5*1%“00 ’)/17'671?;01 Cl,O 0171

LEMMA 2.4.5. Let u € C*°(X, E) such that du = 0 and assume that there exists
i € {0,...,k} such that y,u = 0. Then v = 0 on X and therefore Vi € {0,...,k}

Yiu = 0.

Proor. The argument in Lemma 2.3, [71], works equally well for manifolds
with boundary with multiple connected components. Fix i € {0,...,k} and let ;
denote 9 restricted to C°(X, E) := {u € C*(X, E) | v;u = 0}. By the product
structure near Y;, u(t,y) = >, ux(t)va(y) in U;. Since 8;u = 0, ux(t) = e *u,(0).
Hence u = 0 on U; because uy(0) = 0. By Unique Continuation Property the claim
follows.

O

COROLLARY 2.4.6. Let u,v € C*°(X, E) such that du = Ov = 0 and assume
that 3i € {0,...,k} such that v;u = v;v. Then u = v on X and therefore v;u = ;v
Vi e {0,...,k}.

COROLLARY 2.4.7. ~; : ker 0 — ~; ker 0 is bijective.

PRrROOF. Direct consequence of Corollary 2.4.6.

ProrosiTION 2.4.8. C; ; = fyir%*%*crj is smoothing for i # j.

PRrROOF. Let & € COO(YJ-,E}), 1 € {0,...,k}. By pseudolocality of o1 ([10]),
the singular support of 770§ is contained in Yj; hence, r%‘lﬁjajf is C* outside
Y;, which implies that C; ; = yir%'_lﬁ;aj is smoothing for i # j.

O

COROLLARY 2.4.9. For each i € {0,...,k}, C;; is a projection modulo smooth-

ing operators, i.e. C7; — C;; € U~°(Y;, E}).

PROOF. Since C? = C (Remark 2.4.3), we have:

k
Cii=(C%ii = Ci;Cii=Cli+ Y Ci;Cii
j=0 j#i
Then the claim follows by Proposition 2.4.8.
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THEOREM 2.4.10. If X is compact with product metric near the boundary,

then Hi,20 — Ci,i € \I’_OO(YZ,EZ/) Vi € {O, .. ,k}

Proor. For all ¢ € {0,...,1}, C;; is a pseudodifferential operator with the
same principal symbol of II; ¢, hence II; 5o — C;; € ¥~1(Y;, E!) in general. In
particular, since X is compact with product metric, by Proposition 2.2.11 we have
II>o — C € ¥~°(Y, E'); thus, the diagonal components of C differ from those of
II>¢ by a smoothing operator.

O

COROLLARY 2.4.11. Let Y, denote Y; with opposite orientation and 5” be

the Calderén projector defined for Y;™. If Il — C € U~°°(Y, E’), then
Cii+Cii— €UV, E)).

Proor. Let IIT, denote the projection onto the non-negative eigenspace of B
when the orientation of Y; is reversed. Then II; ., = II; <o and, since II; >0 —C; ; €

U=>°(Y;, E}), we have that II; <o — C;; € =°°(Y;, E}). Therefore,
V=Y, E}) 3 Cii + 5” =1 >0 —1li<o=Ci,i +C;; — 1 — 1.

Hence the statement, since II; o is finite rank.

O

LEMMA 2.4.12. Let C := C* be the Calderén projector for a Dirac operator
0: C®X,E) » C®(X,FE) and assume Y := |_|f:0Yi, for k € N. Then there
exists an orthogonal projection Z¢ onto ran(C) that is diagonal with respect to the
Boundary decomposition and such that Z¢ and C belong to the same connected

component of G ec.

Proor. Without loss of generality, by ii) of Proposition 2.2.6, we can assume
C =C*. Hence, C;; = C;:i and C; ; =C;

7i» 0 =0,1. Consider the operator:

Since C; ; are smoothing, C it is a smooth perturbation of C and thus is a well-
posed boundary condition. As such, its range is closed for every s. In particular,

its range is ran(C) = Gaf:o ran(C; ;), from which we conclude that C; ; € VO(Y;, EY)

has closed range. Let Z;,; denote the L?-orthogonal projection onto ran(C;;). By
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Theorem 18.5, [10], Z;; € ¥°(Y;, E}) and the operator I := @'_, Z;; € (Y, E')
is a projection, and by ii) of Proposition 2.2.6, ind(dz) = ind(dz. ).

Finally, as C = C+ S for S € U—°(Y, '), the Fredholm operator CCis a
compact perturbation of CC, thence ind(CC) = ind(CC) = 0 and:

ind(Z¢C) = ind(dz,) = ind(Jz) = ind(CC) = 0.
[

REMARK 2.4.13. By Lemma 2.4.12, we can always consider the Calderdn to be
diagonal with respect to the boundary decomposition. In other words, the index

and its additivity depend only on the diagonal components of the operator.

2.4.1. An additive formula for manifolds with boundary. Let us go
back to the Example 2.4.1 and consider two oriented manifolds X;, ¢ = 1,2, such
that 0X; =Y, UY; and at least one between Yy and Y5 is non-empty. Let 9; be
the Dirac operators associated to the Clifford module bundles E; — X; such that
they are consistent in a collar neighbourhood of Y7, and let 0 the Dirac operator
associated to X = X; Uy, Xy via gluing.

In order to define the Calderén projectors, we only need that each of the man-
ifolds involved embeds smoothly into a closed manifold. We can therefore consider
as a common closed manifold, the closed double X of X ; thus, X; embeds smoothly
in X, for ¢ = 1,2, and so does X in X (Figure 1).

Let O be the invertible double of d and E the double Clifford module bundle.
Then  is an invertible extension to X of 0, 01, and 0. Therefore, by Theorem 2.2.8,
it is used to define the Poisson operators and Calderon projectors relative to X, X3
and X, respectively. We consider restriction maps rii : HS()Z', E) — H* (Xii, Ezi),

with i = 1,2 and X, := X;, and trace maps:
v HY(XT,ET) — H 73 (Yo, BY),  ~5 + H (X5, By) — H*%(Ya, BY),
¥ HN X EY) » H 2 (Y, By, yp : HY(XS Bf) — H 3 (V, BY).

:F
. Yi—1 . .
As we have seen, we can write v, + = li with respect to the decomposition

Vi
HA(0X;, Blox,) = H*(Yi-1, EL_,) & HO(Y;, EL).
THEOREM 2.4.14. The following operator over H5~z(Yy, E}):
(2.4.1) Vo 5oy + i 0 Wiy — 1

is smoothing.
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YT %

Yy v,

Yy Y

FIGURE 1. The double X of X = X; Uy, Xs.

PRrROOF. Let CljE be the Calderén projectors associated to Xi:
CE : o4 (Yo, By) & H b (Vi, ) = H* (Yo, B & H*~ 4 (i, ).

Set rt := rf and let 7~ : H%(X,E) — H*(X_,E_) the restriction to X_ :=
X\ X; and E_ := E‘Xf. Then we have:

+ & L1 ew o~ 7§Ti571780() WSFTiE;flﬁikﬁ
i = r=0" " (Y00, V101) = PN £ oA e
Yi Y rE0T Y500 Y 0 Y o1
Therefore, by the following equalities:
Nrt=vrls  wWr =%, Wrt=yArl. owr =wrg,
. + . + ..
we can write C;- in terms of r;- as:
n Yo ri0 500 i 0 Aoy Coo Cor
e = R = PO ++F—1xx - P
Y0 Y500 Y Ti0 Ao Clo Ch
- — W0 Ago0 g0 Ao | [ Coo Co
1= — N—1x* — N—1~x B — —
N30 500 s 0 Ao Cio Cn

Let ¢; € HS*%(YJ-,Eé), j =0, 1. Then, since C;” + C; = I, we obtain:

(Cao + Coo — Do + (Cgy + Cor) o1 =0

(Cfo + Cio)wo + (Ci +Ciy — D1 = 0.
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Now, Cﬁ are smoothing operators when j # k; thus we conclude that C;-rj +Cj; -1
are smoothing operators.

O

Let C; :=C{, C3 := C5 and C := C* be Calderén projectors for d;, Jo and O

respectively:

Ci:H* (Yo, Ely,) @ H 2 (Y1, Epy,) = H* (Yo, Epy,) ® H* " 2(Y1, Ejy, )
Co :H* "2 (Y1, Eyy,) @ H*"%(Ya, Eyy,) — H* "2 (Y1, Ely,) & H*"% (Y2, By,

C:H*"3(Yy,Epy,) ® H* 3 (Y2, Ejy,) = H* 3 (Yy, Ey,) ® H* ™2 (Ya, Epy,).

Therefore, they are defined as:

c Yo rio g0 vy ri 0 Ao Coo Con
1= _ - =

Yo 500 A 07500 Cio Cin
o — VT30 Afor A 30 00 D1y Dip
) = - ~

Ym0 3o 330 50, Dy1 Dap
c_ Yo 0 3500 v T 0 1502 Coo &0

Yo 500 va s 0 500 &0 Daa

where C; ; 1= C;'j, i,j € {0,1} as in the proof of Theorem 2.4.14, and Dy ; = Cy

by inspection.

THEOREM 2.4.15. Let P;, P2, and P be well-posed boundary conditions re-

spectively for 01, 02, and 0, such that:

Poo P Pii P Poo P
P, = 0,0 0,1 Py = 1,1 1,2 Cand P = 0,0 0,2

Piro Pia Pai Paa Pao Pooa
ind(PC) = ind(P1Cy) + ind(P2Cs) + ind (Pl,lﬁil) .

ProOOF. P1C; is Fredholm and a smooth perturbation of a diagonal operator:

P0,0Co,0 +Po,1C1,0  Po,0Co,1 + Po,1C1,1

PiCy =
P1,0Co,0 +P1,1C1,1 P1,0Co1 +P1,1Cia
[ Po,0Coy0 0 N Po,1C1,0 P0,0Co,1 + Po,1Ci1
0 P11C11 P1,0Co,0 +P1,1C11 P1,0Co,1
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Therefore,
. . Po,0C0,0 0 ) .
1nd(P101) =ind = 1nd(77070C0,0) + 1nd(P1’1C171).
0 P1,1Ci1
Analogously,
ind(PQCQ) = ind(,ﬁLlDl,l) + ind(PQ,QDQ’Q)
1nd(PC) = ind('Po)QCoyo) + ind(P2,2D2,2)a
thus

(2.4.2) ind(P1C1) + ind(P2Cz) — ind(PC) = ind(Py 1C1.1) + ind(Py 1Dy 1 ).

Now, by iv) of Proposition 2.2.6, ind(?sLlDl_,l) = ind(Dflﬁfjl), and since
Ci,1 + D11 — I is smoothing by Theorem 2.4.14, we obtain

ind(Di, Piy) = ind(C11Piy).
Thus (2.4.2) becomes:
ind(P;Cy) + ind(P2Cy) — ind(PC) = ind(Py,1C11) + ind(C1,1Piy) = ind (P11 Piy).
O

REMARK 2.4.16. For example, if we consider de Rham operators 0 := (d +§)*

with relative boundary conditions on the boundaries, we have:
ind(RC) = ind(RCy) + ind(RCs) + ind(Ry, Ry, ).

Since ind(Ry; Ry,) = x(Y1), the above formula reduces to

(2.4.3) ind(RC) = ind(RC1) + ind(RCs).

if n is even.

2.4.2. Index and trace class operators. When the boundary conditions

are trace class operators, the index can be interpreted in terms of the trace.

LEMMA 2.4.17 (Lemma 3.8, [72]). Let H = H; & H_ be a polarized Hilbert
space, with H infinite-dimensional, and let II. denote the orthogonal projections
onto Hy. Let Py, P, be projections on H such that P; — Il is trace-class on H,
i = 0,1. Then Py — Py is trace-class on H and PPy : ran(Py) — ran(P;) is a

Fredholm operator, and the index satisfies:

(244) 1nd(P1P0) = T\I‘H(Po — Pl)
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REMARK 2.4.18. Equality (2.4.4) applies to projections Py, P; € WO(Y, E’)
such that Py —Py € V=(Y, '), with Tryg = Trg—o(y,p) =: Tr the classical trace

of smoothing pseudodifferential operators:
(2.4.5) ind(P1Py) = Tr(Py — P1).
In particular, if @ € ker(Tr) = [T (Y, E'), ¥ ~°(Y, E')],
ind(P1Py) = Te(Py — P14+ Q) = ind(P1(Po + Q)) = ind((P1 — Q)Po),

i.e. index is stable with respect to commutators of smoothing pseudodifferential

operators.

REMARK 2.4.19 (From Remark 18.17, [10]). Let P € ¥°(Y, E’) be a well-posed
boundary condition. Then C* — Z¢+p« and Zp — Zpe+ are smoothing pseudodiffe-
rential operators.

In fact, since ran(Ze+p+) = ran(CTP*) = (ker((CTP*)*))* = (ker(PC*))*L, we
have the orthogonal decomposition ran(Ct) = ran(C*P*) @ ker(PC"). Therefore
CT — Z¢+p is the orthogonal projection onto ker(PC*), which is finite dimensional
since PC™T is Fredholm. Hence C* — Zy+ p- is a finite rank operator, and as such it

is smoothing. Analogously for Zp — Zpe+, since ran(Zp) = ran(PC™T) @ ker(CTP*).

THEOREM 2.4.20. Let P € ¥O(Y, E’) be a well-posed boundary condition and
¢ : L2(Y,E') — L3*(Y,E’) an isomorphism extending ran(CTQ*) = ran(QCY).
Then:

(2.4.6) ind(PCH) =Te(CT —Ip),  Ip:=¢ 'Ipe.
PROOF. Set C :=C™T. From (2.2.2) and (2.4.5), we have:
1nd('PC) = TI“(C - ICP*) — Tr(I'p - Ipc)

Now, recall that Qj,an(co-) : ran(CQ*) 5 ran(QC) for a general well-posed bound-
ary condition Q@ (Proposition 18.16, [10]). Let ¢ be an isomorphism extending
ran(CQ*) = ran(QC). Then, Zep+ = ¢~ 'Zpcp and by the invariance of the trace:
1nd(77C) = TI'(C - ICP*) — TI‘(IP - Ipc)
= Tr(C — Zep+) — Te(p™ ' Tpy — ¢~ ' Ipey)

= Te(C — Zep — ¢ 'Tpp+ ¢ 'Tpep) = Te(C — ¢~ ' Ipy).
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2.5. LogTQFT formulation of the Euler Characteristic

As for the topological signature in [72], we can define a log-functor on the
category of even dimensional bordisms Cobsg,, whose log-determinant will be the
relative Euler characteristic of the cobordism.

Let X be a 2n-dimensional oriented manifold with boundary Y and let us
consider the de Rham operator 0 := d + ¢ : Q(X) — Q(X) of Example 2.1.2, i.e.
E=A(X) and B/ = A(X)y.

Let us set L2Q(X) := L?(X,A(X)) and H*Q(X) := H*(X,A(X)), and consider
relative and absolute boundary conditions for 0, i.e. the orthogonal projections

R, A€ VOA(X)y = ¥O(Y,A(X)y) of Definition 0.3.2:

R:QUX)y = QY) A QX )y — Q)
W|y = W1 Wy = Wo.
Consider s1,s2 € 2(X) such that Rvys; = 0 or Ays; = 0. Then, by Green’s

formula, R and A are self-adjoint boundary conditions for 0, i.e.:

(0s1,52) — (s1,082) = —(0ys1,752) = 0.

Therefore, if we want a non-vanishing index, we need to consider a Zs-grading of
Q(X). Let the grading be the one of Example 2.2.1, and consider the associated

Dirac operator 8% := Jjg+ (x), i.e.
F=d+0)": QT (X) = Q (X)) QF :=C>®(X, AT (X)).
We remark that 07 is not self-adjoint, but (9+)* =9~.

PRrROPOSITION 2.5.1. Relative and absolute boundary conditions R, .A are well-

posed boundary condition for the de Rham operator 9.

PrOOF. R and A are truly orthogonal projection at the bundle level, thus
independent of (y, (), and their ranges are closed for each s € R, since one pro-
jection is the complement of the other. Moreover, Lemma 4.1.1, [23], shows that
R : Ni(y,¢) = ran(R) = AT(Y) and A : Ni(y,() — ran(A) = A~ (Y) are

isomorphisms. O

REMARK 2.5.2. In particular, R and A are local well-posed boundary conditions
(Example 3.19, [?baBa]). This places the complex d+§ : Q(X) — Q(X) in a rather
special situation, since there are no local well-posed conditions for the other classical
elliptic complexes: the signature, the spin and the Dolbeaux complex (Lemma 4.1.6,

[23]).
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The realization of 0" with respect to relative boundary conditions,
0% :dom (05) — L*Q~ (X)
dom (3%) = {w € H'QT(X) | Ryw = 0}

which is a Fredholm operator by Theorem 2.2.3.

LEMMA 2.5.3. For ker 0% = {w € H'QF(X)| 0w = 0, Ryw = 0}, we have:
i) kerdf;, = @) _, ker 02 (Lemma 4.1.2, [23]);
ii) for HJ(X) the relative de Rham cohomology of §0.4, (Corollary 2.6.2,
[68]):

(2.5.1) ker 0% = HE (X).
PROPOSITION 2.5.4. Let C := C* denote the Calderén projector for 3+. Then:
Tr(C —R) = x(X,Y).

PrOOF. We only have to combine all the previous results together. By §0.4,
the relative Euler characteristic can be defined as x(X,Y) = Y, (—1)* dim H (X).

Hence,
2n
XX Y) P2V ST 1)k dimker 8 = inddg 2V ind(re) P2 Tr(e - R).
k=0

O

We finally have all the ingredient to define a LogTQF T associated to the relative
Euler characteristic. Let us consider the strict functor F_., : Cobj,, — C-Alg of

Example 1.4.38, i.e.
F_oo(Y) = U°(Y,A(X)y) Y € obj(Coby3,) such that ¥V = 9X.

By Lemma 1.4.39, (F_.,, Tr), with Tr the classical trace, is an unoriented tracial
monoidal representation.

Let W be a representative of a morphism W € MOT Gob,,, (Mo, M1), where My,
M; are not both empty. As we have seen in the Example 1.4.5, it comes with
an orientation-preserving diffeomorphism « : OW — M, U M; that induces the
isomorphism 4 : F_ oo (OW) — F_oo (Mo U M;), by Lemma 1.4.39. Consider the
following simplicial map:

logX : NCobs,, — F_ n(Cobs,)

(2.5.2)

10gY . nr, (W) = Tagouas, © k(Cw — Row) € Fooo (Mo U M)
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THEOREM 2.5.5. (2.5.2) defines a LogTQFT. In other words, for X = X; Uy X,
with 0X; = M,_, UM, and f a diffeomorphism used for the gluing, (1.4.4) holds,
i.e. in F—oo,H(MO L M1 L MQ)

(2.5.3) Tty 10837, g, (X) = Tz, 1080, (K1) + T, Logly, i, (X2)

ProoF. First of all, assume X = X; Uy, Xo, i.e. f is the identity and X; and
X5 have a common boundary. Then, by (2.5.6) and (1.4.7), we have that:

ind(RoxCx) = Traruns, (1083700, (X)) = Traruas, it (fias 1083, uar, (X))
ind(Rox,Cx,) = Trasuns oty (7ar, 108Xy, pr, (X1)) and

ind(Rox,Cx,) = Trarunnungs (ay 108}, s, (X2)) -

Therefore, by (2.4.3) and linearity of the trace:

Trarounsung, (ﬁM1 IOgi\(/[DuMz (Y) - 771\/[2 logi\(/lou]\/ll (Yl) - ﬁMo 1Og3\<41|_|M2 (y2)) =0.

Since Tr is an isomorphism onto C, we obtain, in F_ (Mo U M; U Ms),

T, 108370 g, (X) = T, 108y g, (X1) = Ty 1084, ar, (X2) = 0.

Let now assume 0X; =Y, UY7, 0X; = 171_I_JYQ, and f: Y] — 171 a diffeomorphism.
Let X; := XUy X5 be the resulting glued manifold. In a collar neighborhood of Y;
and }71 the respective Dirac operators are compatible by local invariance of smooth
forms with respect to diffeomorphisms. Hence, we can define a Dirac operator on
X and by Theorem 25.4 of [10] the additive formula for the index is the same.

O

PROPOSITION 2.5.6. The logarithm defined in (2.5.2) depends only on the ori-

ented bordism class W and has log-determinant,
TrMo'—’Ml (log}/IoI_IMl (W)) = X(VV’ GW)

ProOF. Form Proposition 2.5.4, x (W, 9W) = Traw (CW — ﬁaw). Thence:

(1.4.

8
Trow (Cw — Row) ) Traouns, (K¢ (Cw — Row))

1.4.7) ——
LD Fapuan (Tarun, (ks (Cw — Row)))

(2.5.2) ~ —
=" Traouns, (IngMouMl(W))-
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Let W, W' € W, thus x(W,0W) = x(W',0W') and

Trarouns, (1Og3\</[0uM1 (W) - log;(/[DuMl (W)) =0,

Le. logyy g, (W) —loghy ay, W) = 0 in F_ o 1(Mo U My).
O

COROLLARY 2.5.7. The relative Euler characteristic is additive with respect to

composition of cobordisms, i.e. identity (0.4.4)
X(X,0X) = x(X1,0X1) + x(X2,0X5).
PROPOSITION 2.5.8. (2.5.2) is unoriented.
ProOF. Since x(W,0W) = x(W—,0W ™) and F_ is unoriented, then:

TnguMl (logﬁouMl (W)) = TI'M0|_|M1 (log%/[guMl (W))

Hence, we conclude as in the proof of Proposition 2.5.6.

O

REMARK 2.5.9. By Corollary 1.4.42, (2.5.2) on Cobs needs only to be defined
on D. In fact, as ﬁ(loggl D) = x(D,S") = x(D) = 1, for all other compact
surfaces we obtain:

Tr (logk, To) = x(Zo) - Tr (log¥, D) = x(Zo),

Tr (IOggluslusl ig) = X(Zg) and Tr (IOngk S1 ig,k') = X(Eg) —k= X(Eg,k)a

i.e. the results are consistent.

Let us go back to the setting of Theorem 2.5.5. If Y; = Y5 = ), we have that
X = Xj Uy, Xy is closed and we do not have a boundary to associate boundary

conditions to. Then we extend the definition of (2.5.2) to this case by setting:
logﬁ\%1 (X) := 7, 0 Ky (C1 — CQL)) € F_oon(My), where C;:= C;g
PROPOSITION 2.5.10. Trpy, (log};, (X)) = x(X).
PROOF.
ﬁMl (log’f,1 (Y)) = ﬁMl (7TM1 o Ky (C1 — Cj)) = Trpy (Hu (C1 — Cj‘))

= Try, (G — C3) = ind (C+¢1) P2V ind(5]) = x(X).



2.5. LOGTQFT FORMULATION OF THE EULER CHARACTERISTIC 85

REMARK 2.5.11. Since the dimension is even, then x(X,Y) = x(X) and we
could have defined an equivalent LogTQFT through absolute boundary conditions.
Also, as R is independent of the metric g% (§0.4), x(X,Y) is independent of the

metric.



Part 2

Higher LogTQFTs



CHAPTER 3

Higher log-functors and cyclic homology

Let R be an associative ring. From Remark 1.4.17, the projection R — ﬁ
defines a functor II : Ring — [Rifgi% C Ab. In fact, II corresponds to the
functor from the category of rings into the category of abelian groups that associates
a ring to its first cyclic homology group.

Here we briefly present cyclic homology and cohomology in order to extend the

concepts of tracial monoidal product representations, log-functors and logTQFTs.

3.1. Cyclic (co)homology and higher log-functors

Let R be a commutative ring and A be an (associative) R-algebra. We can

define an action of the cyclic group Z/(n + 1)Z on the (n 4 1)-fold tensor product
AP =A@ @ A

in the following way. If t,, : A®"H1 — A®"+1 is the generator of Z/(n + 1)Z, then

on the generators of A®"+!
th(ao® - ®ay) = (-1)"(an ®ay @ @ ap_1).

DEFINITION 3.1.1 (Definition 2.1.4, [46]). The Hochschild boundary map is the
R-linear map b,, : A"t — A®" such that:

n—1
bplag® a1 ® -+ ® ay) := Z(—l)i(ao ®- - ® a1 Q- Qap)
i=0

+(=1)"(anag ® a1 @ -+ @ ap_1).

A®n+1
im(1—t,)’

IfC)A) =

is the so-called Connes’ complex.

then b,, restricts to C;(A) (Lemma 2.1.1, [46]) and (C(A), b)

DEFINITION 3.1.2 (§2.1, [46]). Cyclic homology is the homology of Connes’
complex'. We denote the n*® cyclic homology group by HC,(A), and we set

HCL(A) == @20 HCu (A).

LThere are several but equivalent definitions of cyclic homology. See Theorem 2.1.5, [46].

87
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REMARK 3.1.3 (§2.1, [46]). If f : A — B is a morphism of R-algebras, then
fe : HC,(f) : HC.(A) — HC.(B) is a morphism of R-modules. Therefore HC,, is
a functor from R-Alg, the category of R-algebras, to R-Mod.

EXAMPLE 3.1.4 (§2.1.12, [46]). For any ring R, ﬁ >~ HCy(R). In particular,
if R is commutative, then R = HCy(R).

DEFINITION 3.1.5 (2.2.13, [46]). Let 62(./4) be the quotient of C(A) by
the sub-module generated by those ay ® - - ® a, such that a; = 1 for some

i€{0,1,...,n}. Then (Ci(A),b) is a well-defined complex called reduced Connes’
complex; its homology is called reduced cyclic homology and is denoted by HC,(A).

DEFINITION 3.1.6. A pretracial monoidal product representation of a sym-
metric monoidal category C, F': C* — Ringpqq, is said to be higher pretracial
if in particular it is a monoidal product representation F' : C* — R-Alg, i.e.
Ve € 0bj(C), F(c) are R-algebras, ng,c are R-algebra homomorphisms and p,c are

R-algebra isomorphisms.

EXAMPLE 3.1.7. The category of R-modules R-Mod is (pre)additive, which im-
plies by definition that its endomorphism sets are rings, with multiplication defined
as composition of endomorphisms. In fact, if x € obj(R-Mod), then end g.noda () is
an R-algebras and a pretracial monoidal product representation F': C — Ringa 4q

with respect to A = R-Mod is a higher pretracial monoidal product representation.

LEmMA 3.1.8. Let F': C* — R-Alg be a higher pretracial monoidal product
representation. Then by composition with the n'® cyclic homology functor HC,,

from Remark 3.1.3,
HC,oF:C*— HC,(F(C*)) C Ab.
is a monoidal product representation with insertion homomorphisms
Ney¢ = HCn(ngyc) : HOW(F(c)) = HCW(F(c @ y))
and (HC,(F(C")), 17’;) inherits the structure of a presimplicial set.

PRrROOF. The proof of Lemma 1.4.20 is based on the fact that HCy = II is

a covariant functor. Therefore, the same argument works for the functors HC,,,
n > 0.

O
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Higher traces of order n on an R-algebra A can be defined as homomorphisms
from HC,(A) to R, i.e. HTracep, (A, R) := Hom(HC,(A), R). We can obtain
higher traces via cyclic cohomology in the following way.

First of all, let us consider the module C}(A) of cyclic cochains, i.e. the sub-
module of C"(A) := Hom(A®" ! R) of linear functionals f € C™(A) such that
flag®@ - ®ap) = (-1)"flan,Rag @ R an_1).

DEFINITION 3.1.9 (2.4.2, [46]). The homology of the complex (C%(.A), ), with
B:CYA) — O A) defined as:

n

B(fag @+ @ anyi1) ZZZ(—I)if(ao ® - ® a1 Q- ®ap)
=0

+(—=1)" ' fans1a0 ® a1 @ -+ @ ay),

is called cyclic cohomology and denoted by HC*(A). If we restrict to those func-
tionals f € C}(A) such that f(ap®---®ay,) =0if a; = 1 for some i € {0,1,...,n},
then we obtain a subcomplex (C'y (A), 3) whose homology HC'" (A) is called reduced
cyclic cohomology (§8.3, [45]).

There is a Kroneker product pairing between cyclic homology and cohomology:
(,): HC"(A) x HC,(A) — R.

This pairing defines a map HC"(A) — Hom(HC,,(A), R) = HTrace(A, R), which

can be an isomorphism, for example when R is a field (Remark 2.4.8, [46]).

ExAaMPLE 3.1.10 (§1.2.1, [75]). If A is a unital C-algebra, we can identify
HC(A) = Hom(HCy(A, C)) = Trace(A, C).

REMARK 3.1.11. If the unital R-algebra A is also Fréchet? and locally convex,
then we can define topological cyclic homology, by considering completed projective
tensor products (§8.6, [45]), and topological cyclic cohomology, by considering only

continuous linear functionals.

EXAMPLE 3.1.12 (§8.7, [45]). C*-algebras are Fréchet algebras. For example,
so are C(M), C>*(M), and C*°(M, E). These ones are also locally convex.

Therefore, we can generalize Definition 1.4.21 to the following:

2An R-algebra is called Fréchet if it is a topological vector space for which the product is

continuous.
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DEFINITION 3.1.13. A symmetric monoidal category C has a categorical higher
trace T of order n € N if there exist elements ¢ € obj(C) for which we have a
non-empty subclass endg(c) C ende(c) and a map 7, : endg(c) — ende (1) such

that it pushes down to a map 7. : HC, (endg(c)) — ende(1c).

ExaMpPLE 3.1.14. By pairing with cyclic cohomology, R-Mod is a symmet-
ric monoidal category with categorical higher traces. For example, a higher trace
of order 1 7, : end(c) — end(R) = R is a group homomorphism that restricts
to 7. : HCi(end(c)) — R. In other words, it must be a R-linear morphism
whose restriction to kerb; = {a ® b € C(end(c)) | ab — ba = 0} vanishes on

imby = {ab®c—a®bc+ca®b|a®b®ce Ci(end(c))} C kerby, i.e.:
Te(ab) @ To(c) — Te(a) @ To(be) + Te(ca) @ T.(b) =0 Ya®@b® c € Cy(end(c)).
Following Definition 1.4.23, we have:

DEeFINITION 3.1.15. If in addition the background additive category A has a
higher F-compatible trace T of order n, i.e. V¢ € obj(C), the ring homomorphism

Te : Fe:=end} (a.) — enda (1) satisfies:

(3.1.1) Tegy © NeyC = Te and Tegy O flgy = Te-
then F': C* — R-Alg is called higher tracial monoidal product representation of C

of order n.

REMARK 3.1.16. In analogy with Remark 1.4.24, from Definition 3.1.13 we
have that the identities (3.1.1) push down to:

Teay © HCy(Ngyc) = Te and Tegy 0 HCp (Hgy) = Te.

DEFINITION 3.1.17. Let (C, ®) be a symmetric monoidal category. Recall that
HC,(F(C*)) has a presimplicial set structure defined by the monoidal product rep-
resentation (Lemma 3.1.8), for F': C* — R-Alg a strict higher pretracial monoidal
product representation. Then a higher logarithmic functor of order n, or higher

log-functor of order n, is a pre-simplicial log-additive map
logp,) : (N'C,dj, s;) = (HCW(F(C*)), ),

and is said to define a higher logarithmic representation of C. In other words, a

higher log-functor is a simplicial system on N;C of maps

108 (] z@y mor(z,y) = HC,(F(z ®y)), ar— 108 () 2y @ T,Y € obj(C)\ 1¢
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such that if & € mor(x,y) and 8 € mor(y, z), then

10g[n],w®y®z (Oé, B) = ﬁy(log[n],w@)z ﬁ 0 Oé)

= ﬁ@z (log[n],z®y a) + ﬁz® (log[n],y®z 5) € ch(F((E ® Yy & Z))

REMARK 3.1.18. Again, it is enough to specify the maps on N1C, i.e. to define
10g[,), sy ON mor(z,y) for each z,y € obj(C). Moreover, from the definition one
has again all the other properties of logarithms, e.g. the logarithm of an idempotent

object is trivial.

ExAMPLE 3.1.19. A log-functor is therefore a higher logarithmic functor of
order 0. An example of higher logarithm of order 1, i.e. a logarithm in HC; can be
the following. Let Gly(.A) be the group of invertible elements of an algebra A and
let a € Gl1(A). If we set log;jja:=a™' ®@a, then bi(a™' ®a) =a'a—aa™" =0

and

logjyyab = b la ' @ab
=p

=t '@atlab—abb '@a ' +b e ' @ab—b'Qa tab+abb @ a7t

=b'@b—aal+p=bt@b+a ' @a+p
= logpyy a + logp; b+ p,
where p € imby and a ' ® a = —a ® ™! in C}(Gl1(A)). Hence, in HCy(GI1(A))

logyy; ab = logpyy a + logy) b.

DEFINITION 3.1.20. Let F be a higher tracial monoidal product representation
of a symmetric monoidal category C, with 7 a higher trace of order n. Then the
higher 7-character of the log-functor defines a higher log-determinant functor rep-
resentation of C of order n. For ¢ € obj(C), let 7. push down to 7. on HC,,(F(c))
(Remark 3.1.16). Then V « € morc(c,c’) the log-determinant functor representa-

tion is defined as T(log @) 1= Teger 0108}, cg @ € enda(1).

REMARK 3.1.21. With the obvious generalizations of Lemma 2.19 and Lemma
2.20, [72], we have once again that the log-determinant representation is indepen-

dent of the insertion maps (of any order):
(312) ?C®C’(10g[n],c®c’ 0[) = ?C®C’®y (log[n],c®c’®y Ol),
and that a log-determinant is independent of where it is computed:

7(log Ba) = 7(log @) + 7(log 3), a € mor(c, ), B €mor(d,”).
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Also, as in Remark 1.4.32, a higher log-functor can be extended to elements § €
morc(1,1). In fact, after choosing o € morc(1,2) and 8 € morc(z,1) such that

0 =foaand z # 1, we can define:
1og[n],z 0= 10g[n],1®z®1 (avﬂ) € HC"(F(I ®z® 1))

Again, it depends on 0 and z (not on « and $), and if a categorical trace 7 is
defined, the corresponding log-determinant 7(log, ) = 7(log ) + 7(log 8) depends

only on 4.

Finally, we define higher LogTQFTs. Non trivial higher LogTQFTs arise when
the cobordisms have extra structure defined on them, i.e. on specific subcategories

C c Cob,,.

DEFINITION 3.1.22. Let F' : C* — R-Alg be an unoriented higher pretracial

monoidal product representation of a subcategory C C Cob,,. Then
(3.1.3) logy,,) : NC — HC,(F(CY))

is called higher logarithmic Topological Quantum Field Theory relative to F of
dimension m and order n, or higher LogTQFT.

(3.1.3) corresponds to a simplicial system
108 (), A U0t morc (M, Ms) — HC,(F(M; U Ms))

and a logarithm log,;,,p,, W is identified as an element logyy, W € HC,(F(0W)),
since F(OW) = F(M; U My). Also, for Cpy = M x[0,1], then the proof of
MmlogyumCu =0 € Fn(M U MU M) extends to HC.(F(M UM U M)) in

a straightforward way.

REMARK 3.1.23. In the following chapters, we will see examples of two higher
LogTQFTs, i.e. Logarithmic Fibred QFT (LogFQFT) and Logarithmic Homotopy
QFT (LogHQFT), respectively defined when C = FCob,,(B), the category of
cobordisms fibred over a manifold B, or C = HCob,,,(B), the category of homotopy

classes of continuous maps into a path connected space B.

3.2. Universal log-functors

In addition to the canonical projection 7w : R — R/[R, R|, we also have the
projection onto the algebraic K-theory group Ky(R), which corresponds to a func-

tor Ky : Ring — AbGrp. Since Ky(R) has the universal property (Definition



3.2. UNIVERSAL LOG-FUNCTORS 93

3.2.2), there exists a unique abelian group homomorphism 7 : Ky(R) — R R] called
Hattori-Stallings trace map (§2, Chapter II, [86], and §8.5.1, [46]) that factorizes
m, i.e. the diagram
M, (R) —— Ko(R
\ l
[R R]
commutes, where M, (R) is the associative ring of r x r-matrices with entries in the

ring R. Here, the horizontal map is the monoidal map in Definition 3.2.2.

EXAMPLE 3.2.1 (2.5.4, [86]). If R = C and n = 1, then 7 is the identity and
the Hattori-Stallings trace 7 corresponds to the natural inclusion of Ky(C) 2 Z in

C.

Therefore, the idea is to define LogTQFT at the level of K-theory, thus refining
the definition of higher LogTQFT. We begin with some standard definition about
algebraic K-theory.

3.2.1. Algebraic K-theory and log-funtors. The definitions and results of
this paragraph on algebraic K-theory are taken from Chapter II, [86]. We remark
that the contruction is algebraic and applies to rings, but we will restrict our work
to Banach algebras, and therefore the K-theory that will arise will be operator

K-theory.

DEFINITION 3.2.2. Let M be an abelian monoid. The abelian group completion
of M is an abelian group, denoted M ~!M, with a monoid map [] : M — M~ M
with a universal property, i.e. if A is an abelian group and f : M — A a monoid

map, then there exists a unique group homomorphism ]7: M~'M — A such that

f=Toll.

PROPOSITION 3.2.3. The group completion M ~'M of an abelian monoid M

has the following characterizing properties:

i) M=*M ={[m] —[n] | myn € M};

ii) [m] = [n] in M~1M if and only if m + p = n + p, for some p € M;

iii) the monoid map (m,n) + [m] — [n] is surjective;

i) M
i)
i)
) M

iv) M 1M is the set-theoretic quotient of M x M by the equivalence relation

generated from (m,n) ~ (m + p,n + p).
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DEFINITION 3.2.4. Let P(R) denote the set of isomorphism classes of finitely
generated projective (left) R-modules®. Then (P(R),®) is an abelian monoid with
identity Or. Hence, the Grothendieck group of a ring R is the abelian group com-

pletion Ko(R) := P(R)"'P(R). In particular, for r,s € P(R), [r] + [s] := [r @ s].

REMARK 3.2.5. If R is commutative, then P(R) is a commutative semiring with
product ®g. Consequently, Ko(R) is a commutative ring with multiplicative unit
1 = [R]. Hence, Ky is a functor from (semi)rings to rings, and from commutative
rings to commutative rings, and in particular Ky can be seen as a functor from

Ring to AbGrp (§8.2, [46]). In particular, for any field F we have Ky (F) = Z.

ExamPLE 3.2.6 (Grothendieck group of vector bundles). Let X be a topological
paracompact space. The space of isomorphism classes [E] of complex vector bundles
E over X is a commutative semiring and generates an abelian group K°(X) via
the relation [E] + [F] ~ [E @ F], ® the Whitney sum. Then K°(X) is called
the Grothendieck group of vector bundles over X. Since the space of (continuous)
sections of a vector bundle £ — X is a finitely generated projective C(X)-module,

the Serre-Swan Theorem yields (§8.2.5, [46]):
KO(X) = Ko(C(X)).

Notice that Ky is covariant in C(X) and thus K is contravariant in X. In par-
ticular, if X is a smooth manifold, then the space of smooth sections of a vector

bundle is a finitely generated projective C°°(X)-module and we have
Ko(C(X)) = Ko(C™(X)).

As we will mention in §3.2.2, choosing C*°(X), i.e. a ‘smoothing’ of the algebra
C(X), will allow the construction of another fundamental ingredient: the Chern

character.

From now on, let A be a unital R-algebra. Since HC,,(.A) is an abelian group,
we can consider the functor A — HC,(A) as a universal trace (thus generalizing
the universal trace 7 : A — ﬁ) and Ky(A) can be seen as an ‘abelianization’ of
A, since it can be considered as a functor Ring — AbGrp (Remark 3.2.5). With
the help of Ky, we can refine the definition of higher log-functor to a ‘universal’
one.

3A finite dimensional free module over R is a (left) R-module that is isomorphic to R™
for some n € N. A finitely generated projective module over R is a direct summand of a finite

dimensional free module, ([46]).
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LEMMA 3.2.7. Let F : C* — Ring,4q be a pretracial monoidal product rep-

resentation. Then by composition with K : Ring — AbGrp,
Koo F:C* — Ko(F(C*)) C AbGrp
is a monoidal product representation with insertion homomorphisms
Ney¢ = Ko(neyc) : Ko(F(c)) = Ko(F(c®y))
and (Ko(F(C*)), 77’;) inherits the structure of a presimplicial set.

PROOF. The result follows once more by functoriality of K.

O

DEFINITION 3.2.8. Let (C, ®) be a symmetric monoidal category and F' : C* —
Ring s 4q a pretracial monoidal product representation. Recall that Ky(F(C*))
has a presimplicial set structure defined by the monoidal product representation
(Lemma 3.2.7). Then a universal logarithmic functor, or universal log-functor, is a

presimplicial log-additive map
u-log : (NC,dj,s;) = (Ko(F(C*)),7),

which is said to define a logarithmic representation of C. In other words, a universal

log-functor is a simplicial system on N;C of maps
u-log, o, : mor(z,y) — Ko(F(z ®y)), o u-log,g,a, x,y€obj(C)\ lc
such that if & € mor(x,y) and 8 € mor(y, z), then (modulo torsion in general)

u- 10gz®y®z (0[, B) = ﬁy (u_ 10gz®z B o O[)

= ﬁ@z(u_ logx@)y OZ) + ﬁﬁh’@(u_ 10gy®z /B) € KO(F(J: VYR Z))

If F(¢) = Ais an algebra, than the universal log-functor can yield a higher log-
functor when composed with a suitable Chern character Ko(A) — HC.(A), which
in turns can be considered as a trace , i.e. an homomorphism on the abelianization

of A taking values into an abelian group.

3.2.2. Chern characters from the algebraic point of view. The Chern
character of a vector bundle on a manifold is a very well known object used to
compute K-theoretical invariants of manifolds via mapping them into de Rham
cohomology. However, its construction is way more general. Here, for the sake of
completeness, we recall the (non-commutative) formulation of the Chern character,

as a group homomorphism ch,, : Ky — HC5,,, which can be found in §8, [46].
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An isomorphism class of finitely generated projective R-modules can be asso-

ciated to an idempotent element e of the matrix algebra M, (A). Let us define
C(e) = (yn7 ZnyYn—152n—1y-- -, yl) € MT(A)®2H+1 S7] MT(A)®2TL D---D MT(A),

where y; 1= (—1)1‘%6‘3’%‘“1 and z; := (—1)"7! %?)' e®2i,

THEOREM 3.2.9 (8.3.2, 8.3.4, [46]). Let A be a unital R-algebra (not necessarily
commutative), with R a commutative ring. Let tr : M, (A)®" — A®™ be the
generalized trace map (§1.2.1, [46]). Then for any n € N there are well-defined

maps, functorial in A:

chy, : Ko(A) = HCy,(A), chy([e]) :=tr(c(e)).

Hence, ch is a natural transformation Ky — HC, and a universal (higher)
trace, taking values in the abelian groups defined as cyclic homology of the algebra.
It vanishes on higher commutators (as much as the Hattori-Stallings trace vanishes

on simple commutators [r, s]).

REMARK 3.2.10 (§8.2.6, [46]). This general definition reduces to the classical
Chern character @ la Chern-Weil (i.e. defined via (super-)connections, §8.1.1, [46])
when A is commutative. In particular, if R=C and A = C*(B), B smooth
manifold, i.e. in the case of fibre bundles, then Ky(C*(B)) = K°(B) (Example
3.2.6), HC.(C*(B)) = H*(B,C) (by de Rham Theorem) and ch is identified with
the usual ring homomorphism K°(B) — H*(B,C).

EXAMPLE 3.2.11 (8.3.6, [46]). For n =0, chg : Ko(A) — ﬁ is just induced
by the trace of e. If in particular A is a field, then Ky(A) = Z and ch is isomorphic
to the inclusion Z — A. In fact, chg : Ko(A) — HCy(.A) corresonds to the Hattori-

Stallings trace 7 : Ko(A) — ﬁ (Proposition 8.5.3, [46]).

REMARK 3.2.12. The Chern character is a natural transformation of the func-
tors Ko — HC,. Assuch, it relates in a canonical way the insertion morphisms 7; of
(Ko(F(C*)),n;) to the insertion morphisms %j of (HC’*(F(C*)),%), ie. choij=1
and thus it is possible to obtain a higher LogTQFT from a universal LogTQFT in

a canonical way.

REMARK 3.2.13 (§8.7, [45]). Sometimes, one must require additional struc-

ture for the algebra in order to have an interesting Chern character. In fact, the
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topological cyclic homology and cohomology of a C*-algebra can be quite poor.
For instance, for a manifold M, HC™(C(M)) = HCY(C(M)) if n is even and
HC™(C(M)) = 0 when n is odd. Therefore, when dealing with a C*-algebra A,
it is usually better to consider a smooth subalgebra B C A, i.e. a Fréchet lo-
cally convex dense subalgebra closed under holomorphic functional calculus, such
as C*°(M) Cc C(M), in order to have an interesting cyclic homology and thus an
interesting Chern character. This choice does not alter the K-theory involved, since

there exists a canonical isomorphism identifying Ko (B) = K((A).
3.2.3. Morita Equivalence.

DEFINITION 3.2.14 (Definition 1.2.5, [46]). Two unital R-algebras A and B are
called Morita equivalent if there is an A-B-bimodule P, an B-A-bimodule @, an
isomorphism of A-bimodules u : P ®g Q@ = A and an isomorphism of B-bimodules

v: Q4P =B

THEOREM 3.2.15 (2.2.9 & 2.4.6, [46]). Let A and B two Morita equivalent
unital or H-unital® R-algebras. Then there exist canonical isomorphisms such that

HC,(A) = HC,(B) and HC*(A) = HC*(B).

EXAMPLE 3.2.16. We have already seen that the tracial monoidal product
representation F_o, : Cob;, — C-Alg, F_ (M) = U~°(M,E) allows us to
define a LogTQFT log,, W := m.(k4(C — P)) € Lo F_ (M) with trace charac-
ter Tr(log,, W) = ind(PC) € Z. But we also have that [C — P] = ind(PC) €
Z = Ky(C). In fact, ¥=°°(M, E) is a C*-algebra, and as such it is H-unital (see
for instance [87]). In particular, by Schwarz’s Kernel Theorem, U~>°(M, E) =
C>®(M x M,End(E)), and hence it is Morita equivalent® to End(E) = End(C"),
which in turn is Morita equivalent to C. Therefore Ko(F_o(M)) = Ko(C) = Z,

canonically, and we can define a universal LogTQFT as l/(STg uW = [C — P], whose

log-character ’7'(10/% uW) € C is obtained via T = chy, the Hattori-Stallings trace.

REMARK 3.2.17. Morita equivalence provides an alternative proof that:

F_oo(M)

HG(™ (M, B)) = 3y, Fooc (30)

=C

which is shown in Lemma 2.3, [72], via the unique (classical) trace Tr on smoothing

pseudodifferential operators.

4 Homologically unital. For a definition, see [87]. For example, all C*-algebras are H-unital.

5See §1, [51].



CHAPTER 4

LogTQFT for families

In this chapter we extend the results of [72] on topological signature and
LogTQFT to the family signature and LogFQFT. The key point is represented
by the fact that EBVPs have a family counterpart, made of families of realizations,
which have a well defined index, now as a class in K°(B).

Boundary conditions are represented by spectral sections, among which we need,
for the family signature, symmetric ones ([42]), which will provide a homotopy
invariant index. They extend to families the concept of generalized APS condition

that we mentioned in Chapter 2.

4.1. Fibre bundles and their bordism groups

Let X — X 5 B denote a fibre bundle, i.e. a smooth surjective surjection®
onto a closed manifold B. We will call X the total space, B the base, and X the
fibre of the fibre bundle. When X is closed, the structure group of the fibre bundle
is Diff(X), the group of diffeomorphisms of the fibre X, while if Y := 0X # ) then
the structure group of X — X — B is Diff(X,Y"), the group of diffeomorphisms of
X that leave the boundary Y invariant (§3, [13]).

We will be interested in families of cobordisms, i.e. fibred cobordisms, and
therefore we investigate the relationship between fibre bundles with closed fibre

and those whose fibre has a boundary.

PROPOSITION 4.1.1. Let X — X = B be a fibre bundle and ¥ := X # (.
Then there exists a fibre bundle Y — Y % B such that Y =0X and Ty = p-

Proor. Consider the structure group Diff(X,Y’). Then, by composing with
the inclusion Y < X, we obtain well defined transition maps for Y, which in turns
define the bundle Y < Y 5 B with the desired properties.

O

REMARK 4.1.2. The converse of Propositions 4.1.1 needs not to be true and a

counterexample is provided at the beginning of [17]. In fact, if Y < ¥ 5 Bis a

IEquivalently, we refer to Definition 1.1, (8]

98
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fibre bundle and Y = 90X, then it is not necessarily true that there exists a fibre
bundle with fibre X such that ) is its boundary. This is because Diff(Y") needs not
to refine to those diffeomorphisms that extend to X and leave Y invariant.

Hence, it is not enough to assume that our fibre bundle has a bording fibre for
the total space ) to bord. Unfortunately, even when there exists a manifold X such
that X = ), it is not straightforward that X is a fibre bundle, at least on the same
base space. In fact, let S be the unit circle considered as a fibre bundle over itself,
the fibre being a point and the bundle map being the identity. Clearly, S* bounds
the unit disc D, but D is not a fibre bundle over S!, as its Euler characteristic
does not vanish modulo 2 (see [17] for the use of the mod 2 Euler characteristic in
determining those manifolds that can be fibred over S'). Equivalently, there are

no continuous functions D — S! that are the identity on S' = dD.

Let X; — X; B B, i = 1,2, be two fibre bundles over B. A fibre bundle
morphism is a smooth map ¢ : X1 — X, such that m; = w3 0 . Moreover, if ¢ is a

diffeomorphism, then it is called a fibre bundle isomorphism.

REMARK 4.1.3 (Chapter 2, [33]). Since o(r; (b)) C 75 *(b) Vb € B, then the
fibres are automatically preserved when ¢ is a fibre bundle isomorphism, i.e. ¢

restricts to a diffeomorphism X; — Xo.

DEFINITION 4.1.4. We denote by FDiff (B) the category of fibre bundles over
B as objects and fibre bundle isomorphisms as arrows. When endowed with dis-
joint union of Definition 4.1.9, it becomes a symmetric monoidal category and a
subcategory of Diff ({pt}) =: Diff, the category of manifolds and diffeomorphisms
between them. Let it be denoted FDiff,, (B) when the total space has dimension
n. Again, FDIiff,,(B) is a symmetric monoidal category when considered together

with disjoint union.

Let X <> X 5 B a fibre bundle with boundary bundle ¥ < ¥ ™ B, and
let ' := Ej be a smooth vector bundle over X = Xj, b € B. For E' := E}y, let
Diff(X, E; E’) denote the subgroup of Diff(E) of diffeomorphisms mapping linearly
fibres into fibres and preserving E’. When ) = (), we denote it by Diff( X, F). Then
Diff(X, E; E’), respectively Diff(X, F), is a topological group and a subgroup of
Diff(E) ((1.1) in [5], and §3 in [13]).

DEFINITION 4.1.5 (§2.1, [69]). A smooth family of vector bundles associated to
X < X 5 Bis a finite rank smooth vector bundle £ % X. Hence, the composition

& ™ B is a fibre bundle with fibre Ej, := E)x, and structure group Diff(X, E; E').
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EXAMPLE 4.1.6 (§2.1, [69]). Fundamental examples of smooth families of vector
bundles are the tangent and cotangent bundles of X < X 5 B, ie. TX and T*X,
respectively. In the sequel, we will consider the vertical tangent bundle, i.e. the
sub-bundle T(X/B) := T X := Jycp TpX of TX. Likewise, we have the dual
vertical bundle T*(X'/B) := Ty X := J,c 5 Ty X of vertical differential 1-forms and
the pull-back bundles #*T'B and 7n*T™*B from the base.

REMARK 4.1.7 (§2.1, [69]). If E — & — B is a family of vector bundles, then
there is an infinite-dimensional smooth Fréchet bundle 7. (E) — 7. (£) — B asso-
ciated to it, with fibre 7. (F) = m.(Ep) = C®(Xy, Ep), Vb € B. The space of
sections of 7, (&) is C*°(B, m.(£)) and corresponds to C*° (X, £), a C°°(B)-module.
In practice, one works with the right hand side.

In general, we have the de Rham complex of smooth forms on B with values

in 7,(€), i.e. the graded algebra A(B,m.(£)) = zi:r%X Ak (B, m,(E)) where:
A (B, 7. () := C=(X, 7" A*(B) @ €).

REMARK 4.1.8. Let dm : TX — T B be the differential of 7. Then T, X = ker dr

and it fits in the short exact sequence:
0—kermy, — TX — 7*TB — 0,

where 7*T' B is the pull-back bundle of TB — B. Then a connection corresponds
to a splitting of the sequence and therefore to a sub-bundle Ty X = 7*T B which

complements T, X, i.e.
TX 2T, XOTygX 2T, X ©n*TB.

From now on, X — X = B will also be denoted (X, 7), if we do not need to

specify the fibre.

DEFINITION 4.1.9. Let (X, 7) and (W, p) be fibre bundles over B and fibres X
and W, respectively. Then we define:

i) inverse orientation as the fibre bundle (X, 7)™ := (X, ) with fibre X
ii) disjoint union as the fibre bundle (X, 7) U (W, p) := (X UW, 7 U p) with
fibre X LI W, where:

(mUp)x =mand (7 Up)p = p.
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REMARK 4.1.10 ([66]). (X, 7), (X U0, 7) and (I U X, 7) are not identified, but

naturally diffeomorphic via the diffeomorphisms:
Iy : (XUD ) = (X,7m) and 7 m: (DUA, 1) = (X, 7).
DEFINITION 4.1.11. Let Y < Y = B be a fibre bundle with Y closed. Then:
(¥, ) bords <= there exists (X, p) such that 0X =Y and p|y = .

Hence (Vi,m;), i = 1,2, are bordant if and only if (Y, U Vo, m U m2) bords. If
(Y U Vs, m Umg) bords (X, p), then the latter is called fibred cobordism from
(V1,m1) to (Y2, ma).

Then one can show as for the single manifold case that:
PROPOSITION 4.1.12. Bordism of fibre bundles is an equivalence relation.

In the spirit of [16], [V, 7] will denote the bordism class of a fibre bundle (Y, 7),
in the sense of Definition 4.1.11. Then

0, (B) :={[Y, 7] | (¥,7) has closed n-dimensional fiber}

is an abelian group, the addition being [V, 7] + [Va, m2] := [V1 U V2, 11 Uma]. We
will call it fibred n-bordism group of B. Finally, Q.(B) = ,, 2,(B) is a graded

module over the Thom ring, with product:
(4.1.1) Y, 7][2] ==Y x Z, ],

where [Z] € Q, and Y x Z 2 B is the fibre bundle with 7(y, z) = 7(y) Yy € Y,
Vz € Z and fibre Y x Z. If orientation is neglected, then we obtain IM,(B), the
group of equivalence classes [V, ]2 of unoriented fibre bundles (Y, ) (the 2 clarly
stands for the coefficient ring Z5), and the graded 9N,-module N, (B) = @,, N, (B).
We remark that the difference between our case and [16] lies in the refinement to

fibre bundles.

4.2. Families of logTQFTs

We can define composition of fibred cobordisms by fibrewise gluing. To this

purpose, we need a ‘fibred’ version of the Smooth Collaring Theorem:

PROPOSITION 4.2.1 (Proposition 4.1, [13]). Let Y < Y — B be the boundary
of X — X — B and U be a sub-bundle of X with the open set U C X as fibre
and structure group Diff(U,Y), U being the closure of U. Then there exists a fibre
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bundle isomorphism @ : [0,1) x Y — U which restricts to a collar neighbourhood

of the boundary on each fibre.

From Definition 4.1.4, we have the symmetric monoidal category of fibre bun-
dles over B and fibre bundles isomorphisms FDiff(B) = |J,, FDiff,,(B). We as-
sume from now on oriented fibres and fibrewise orientation preserving diffeomor-
phisms. As we said, we can glue fibre bundles together into a new fibre bundle
whose smooth structure depends on the choice of smooth collar. Hence, gluing is

associative modulo fibre bundle isomorphism, as for the ‘single’ cobordism case.

DEFINITION 4.2.2. Fibre bundles with (n — 1)-dimensional closed fibre and
fibred cobordisms between them define the category (enriched over categories)
FCob,,(B) of cobordims fibred over B with fibre dimension n. Together with
disjoint union, it is a symmetric monoidal category whose objects are fibre bundles
over B with (n—1)-dimensional closed fibre and whose morphisms are (compositions

of) fibred cobordisms over B and oriented fibre bundle isomorphisms.

REMARK 4.2.3. Once gluing is defined, FCob, (B) is defined as in [80] for
the Riemannian (co)bordism category (the latter is more complicated because the
Riemannian structure is prescribed before hand and two fibered manifolds can
be glued only if their metrics coincide in a collar neighborhood of the common
boundary). In fact, it arises as a category internal to the 2-category of symmetric
monoidal categories, as Cob,,. Since we do not aim at a precise description of
such categories, we simply refer to [80] for the definition of categories internal
to the category of strict symmetric monoidal categories and for the commuting
diagrams they satisfy. Equivalently, FCob,,(B) can be obtained by the construction
described in [66] for HCob,, (B), the category of homotopy cobordisms (which will
be described briefly in Chapter 5), which is still based on the concept of categories

enriched over categories.

In a similar fashion, we can consider the category of vector bundles over B,
where the fibers are vector spaces over a field F, and vector bundles morphisms
between them Vecty(B) (as Definition 2.47, [80], where the vector bundles are

also topological). Then, reading off Definition 2.48 of [80] in our setting, we have:

DEFINITION 4.2.4. A Fibered Topological Quantum Field Theory (FQFT) of

dimension m over B is a symmetric monoidal functor:

Z : FCob,,(B) — Vecty(B).
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Since FCob,,,(B) C FCob,,({pt}) = Cob,,, it can also be used to define a
special kind of higher LogTQFT:

DEFINITION 4.2.5. A family of LogTQFTs of dimension m, or LogFQFT, is a
higher log-functor over FCob,, (B), i.e.:

log : NFCob,,(B) — HC,(F(FCob,(B)*)).
4.3. Families of Dirac operators and boundary value problems

As in §0.2, let ¥™(X; E, F) denote the space of classical pseudodifferential
operators A : C*(X,E) — C*(X, F) of order m and let CS™(X; E, F) be the space
of classical symbols. Let o : U™ (X; E, F) — CS™(X; E, F) be the symbol map.

ProPOSITION 4.3.1 (81, [5]). For &£, F two smooth vector bundles over X', with
fibres E' and F, respectively, there is a well defined smooth family of vector bundles
U™ (X;E, F) — B with fibre ¥ (X; E, F) := U™ (X,; E}, F},) and structure group
Diff(E, F'; X), the subgroup of Diff(E @ F; X) of diffeomorphisms mapping F to E
and F' to F.

Also, since o is invariant under the action of Diff(E, F'; X), there is a symbol
bundle CS™(X; E, F) — CS™(X;&,F) — B, with structure group Diff(F, F'; X).
Thus, in every local trivialization a continuous section of CS™(X; &, F) is a family
of symbols in CS™(X; E, F), which is called a wvertical symbol, since its cotangent

variable belongs to the cotangent bundle along the fibres T*(X'/B).

DEFINITION 4.3.2 (§1, [5]). A smooth family of 1¥dos of order m associated to
a fibre bundle X is a smooth section T € C*°(B,¥™(X;&,F)). Concretely (see
[69]), it consists of a classical ¢»do T : C*°(X,E) — C>(X,F) with Schwarz kernel
kT € D'(X X, X, FKRE*), such that in any local trivialization x7 is an oscillatory
integral whose symbol is a vertical symbol. T will also be called wvertical ¥do, and

we will write

\I/m

vert

(X;€,F) = C>(B,¥"™(X; €, F))
for the algebra of vertical v»dos. T may sometimes be denoted® by T = (T})pep. If

T, is elliptic Vb € B, then T is called elliptic.

EXAMPLE 4.3.3 ([5]). When X =B x X, =B x Eand F =B x F, then T
is just a continuous map B — U™ (X; E, F). All continuous families are locally of

this form.

°In fact, in a local trivialization 7 is identified with T} : C°° (X, Ep) — C° (X, Fp).
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Ify = 0X # (,i.e. X —< X — B has a boundary Y — )Y — B, then
T e U™ (X;&,F) is defined as T := r™Tet, where:

e X —+ X % Bis a fibre bundle with closed fibre such that X ¢ X and
Tx = T;

o & ,j-: — B are smooth families of vector bundles such that £ = g‘ x and
F = Fa;

o 1T C®(X,F) = C®(X,F) and et : C®°(X\V,E) = C®(X,€);

o T U™ (X;E F);

e T satisfies transmission conditions at the boundary fibre bundle (see

Chapter 0 and [69] for more on this).

REMARK 4.3.4 (§1, [62]). Following Remark 4.1.7, there is complex of smooth
forms on B with values in U™ (X; &, F),

A(B,9™(X;E,F)),

i.e. the algebra of vertical classical pseudodifferential operators with differential
form coefficients. If Q € A(B,¥™(X; &, F)), then its form degree zero component
Qo] € A%(B,U™(X; €, F)) is a vertical ¢do; in fact,

AY(B, 7, (6)) = C®(X,7*A°(B) ® £) = C®(X,E) = C®(B, m.(£)).
Thence, A°(B,V™(X;&,F)) = ¥m (X;€,F) and Q € V7 (X;&, F) if and only

vert vert
if @ = Qg

DEFINITION 4.3.5 (Definition 1, [62]). @ € A(B,¥™(M,¢E)) is elliptic, resp.
admissible?, resp. invertible, if Qo),» is elliptic, resp. admissible, resp. invertible,

Vb € B.

If 7 ewm (X;&,F) is elliptic and X = (), then each o1* is invertible outside

the zero section and hence each Ty, is Fredholm. Hence, by Proposition 2.2 of [5],

there exist k sections wy, ..., w, € C°(X,F) such that the map
R R k
T:C®X,E)OCr - C®(X,F),  Ty(u, .., M) = Th(u) + Y w;(b),
i=1

is surjective Vb € B. This implies that the vector spaces ker(ﬁ) then form a vector
bundle ker(7) over B and that the element [ker(7)] — [B x C¥] € K9(B) does not

depend on the choice of the sections w;. This yields the following:

3That is, there exists a spectral cut 6 for the operator, i.e. its spectrum is not dense.
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DEFINITION 4.3.6 ((2.3), [5]). The index of the elliptic family 7T is defined as:
ind(7) := [ker 7] — [B x C*] € K°(B).

If in addition dimker(7}) is locally constant, then the families (ker(7}))sep and
(coker(Tp))pep form the vector bundles ker(7) and coker(7") over B and the index
of T can be defined as ind(7) = [ker(T)] — [coker(T)] € K°(B).

REMARK 4.3.7 (§2, [5]). ind7 € K°(B) is a homotopy invariant and depends

only on the homotopy class of o7 .

EXAMPLE 4.3.8 (§4, [3]). Let 258" := {8;'®"},c s be a smooth family of signa-
ture operators, i.e. 5§’ign s QT (Xp) — Q7 (Xp) (where clearly the splitting is induced
by the family of Hodge operators). If 9X = (), then ker(%ifign) has constant dimen-
sion and ind(2%8%) = [ker(2°")] — [coker(2°#8")] € K°(B). By Atiyah-Singer
Family Index Theorem, its Chern character is

ch(ind(2)) = /X | UE) 1 (B),

where the map fX/B : H*(X) — H* "™(B) is the integration along the fiber (or
Gysin map, Definition 1.5.10, [75] - see Proposition 6.14.1, [11] for the definition

on cohomology). Here, n = dim X.

Analogously, we obtain a smooth family of signature operators when 90X # (),
but in order to have a well-defined virtual index bundle, one has to impose suitable
boundary conditions. Hopefully, the technology of Chapter 2 generalizes to the case
of fibre bundles in a natural way.

Let us consider X = B with oriented even-dimensional fibre X and boundary
Y =Y ™, B. We consider a Riemannian metric g%/? on T(X/B), thus inducing
a metric ¢g”/B on T()/B), such that it is of product form on a collar fibration
U — B (which exists by Proposition 4.2.1), i.e. gll)j/B =dt> 4+ ¢gY/B. Let £ — X be
a family of Clifford bundles with metric ¢¢ and unitary connection V¢ such that
g‘gu and V‘EA are both independent of ¢, the normal coordinate. In this way, we
obtain a family 2 = (0p)pep € Vi (X, &) of Dirac operators.

The fibrewise restriction defines a global trace map v : C*°(X, &) — C*°(),&’)
corresponding to the restriction v : C*(B,7*(£)) — C*(B,7n*(£’)). Hence, by
product structure, £y = v*E" and C>(U, Ey) = C([0,1)) ® C*(Y, &), for U a
fibred neighbourhood of the boundary bundle ). There, a family of Dirac operators
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2 decomposes as
(4.3.1) Dy =" (0 + Py),

where 2y € Wl (),&’) is a family of Dirac operators associated to the boundary
fibration, and T € C*°(),End(£’)) is a bundle isomorphism given by the fibrewise
Clifford product by the inward unit normal to Y.

Let 7 : C®(X,E) — C=(X,&) be an invertible family such that é‘x = 9.
Then we can define a vertical Poisson operator % : C*°(Y,&') — C*°(X,€) and
a vertical Calderén projector ¢ = y.# € WY . (V,€’) in the expected way. In
fact, ker 7 = {s € C®(X,€)| Zs = 0in X \ Y} and ran¥ = yker &, the space
of wvertical Cauchy data, are well defined smooth bundles (Proposition 2.1, [70]).
Also, by fibrewise Unique Continuation, v : ker 2 = ran? is an isomorphism, with
the vertical Poisson operator ¢ as a left inverse.

Unfortunately, (IT>05)sep defines a smooth family if and only if dim ker(2y),
is constant over B. Therefore, boundary conditions for families requires the more

general notion of spectral section.

DEFINITION 4.3.9 (Definition 2.1, [19]). A spectral section & of Dy is a smooth
family (Py)pen € Wt (Y, E’) of self-adjoint pseudodifferential projections of degree
zero such that P, is a finite rank perturbation of Il := II> ; for each b € B. In
particular, all spectral section have the same principal symbol.

A generalized spectral section® & of 9y is a smooth family (Py)pep € WO, (V, &)
of self-adjoint pseudodifferential projections such that its principal symbol is the

same as that of a spectral section of of Zy.

REMARK 4.3.10. The family of Calderén projectors € defined above is a gen-
eralized spectral section of 2y (as pointed out in [19]), but is a classical spectral
section if IT, — C is a finite rank perturbation, e.g. when the fibre X is compact

and has a product structure near the boundary.

THEOREM 4.3.11 ([19]). Let &2, € W9 _ (V,€&'), i = 1,2,3, be generalized

vert

spectral sections of Zy. Then P25 P = (PoyPiyp : ran(Pry) — ran(Pay))pep is
Fredholm, ind(£, 2,) = [P, — P5] € K°(B), and

[@1 — 92] + [ﬁg — @3] = [@1 — yg]

Tt is called Grassmannian section in [70].
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REMARK 4.3.12 ([70]). Since ran??; = C*°(B,W,), where W; — B has fibre
Wy, = ranP,, 5% can be seen as an operator C° (B, W;) — C(B, W).

THEOREM 4.3.13 (Proposition 1, [52]). Let T € U7 (), E’) a family of elliptic

vert

operators over B. Then there exist spectral sections for 7 if and only if ind(7") = 0.

REMARK 4.3.14 (§1, [19]). Zy in (4.3.1) is elliptic and ind(Zy) = 0 by cobor-

dism invariance, thus there exist spectral sections for 2y

DEFINITION 4.3.15 (§3.2, [69]). A smooth family of well-posed boundary con-

ditions is a smooth perturbation of the family of Calderén projectors:

P=C+7cW, . (VE), S ew; 2V, E).

vert

Let 2% denote the smooth family of well posed boundary problems. As for
the classical case, the existence of the Poisson operator reduces the construction of
a vertical parametrix for Z4 to the construction of a parametrix for the operator

PE€ on boundary sections. Therefore:

THEOREM 4.3.16. Let 2 be a family of Dirac operators associated to the family
of Clifford bundles £ — X over B. Let Y = 0X and £ € ¥, (),£’) be a family

vert

of well-posed boundary conditions. Then:

i) there exists a well-defined virtual bundle IndexZ4 € K°(B) such that
IndexZ45 = Index(2%) (Theorem 2.14, [19]);
i) if 22y, Py € WO . (V,E) are two well-posed boundary conditions (Theo-

vert

rem 2.13, [19]):
(432) ind(@l, 321) - ind(@l, 322) = [:@2 - 91]

Let X; — X; =% B be two even-dimensional fibre bundles with common
boundary fibre bundle Y — Y — B. After choosing a collar neighbourhoods
U, —U; % Bin X; for Y, we can glue them into a fibre bundle X — X 2 B with
closed fibre X := X; Uy X5. As in the single operator case, if Z; is a family of com-
patible Dirac operators associated to X, we obtain a Dirac operator 2 associated

to X.

THEOREM 4.3.17 (Theorem 2.10, [19]). Let €, := ;" be the family of Calderén
projectors for %;, i = 1,2. Then ind? = ind(€5-61) = [61 —€5"]. As a consequence
(Theorem 1.1, [19]), for &2, &5 two families of generalized spectral sections for )
as boundary of X7,

ind? = ind%,», + nd% g1 + [P — P2] € K°(B).
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REMARK 4.3.18. As for the classical case, (4.3.2) shows that in general the
index is not an invariant, as it depends on the spectral section. But like in the
classical case, one can use a specific subclass of boundary conditions (if such class
exists) in order to remove the dependance on the boundary projection. In fact,
as we needed generalised APS boundary conditions in order to split the the index
of the signature operator, now we need to use what has been defined in [42] as
symmetric spectral section. It corresponds to an additional assumption which the
signature operator hopefully satisfies. As for classical signature, special kind of

spectral sections are needed for gluing.

Let now X; < X; =% B have boundary fibrations Y,_, UY; — V,_, UY; — B,
i = 1,2. When glued along the common boundary Y7 — ); — B, the resulting
fibre bundle X — X — B, X = X7 U X5 has a non-empty boundary fibre bundle
YoUYs — YyUYs — B. By Lemma 2.4.12, we can consider diagonal vertical

Calderon operators and spectral sections & = {Pp }pep of the form:

Pyy 0

P = 9&0 ® P11 =
0 P11

PROPOSITION 4.3.19 (Additivity of the index class). In general:
(4.3.3) indZ4 = ind%, », +nd%s o, + (P11 — P11] € KO(B).
Proor.

ind%24 =[¢ — &) = [%0{-0 @ Cao — @d:o ® Pa 9]

= (o0 — Do) ® (62,2 — Pa2)] = —[G0.0 — Poo] + [Ga2 — P2].
Analogously:
nd 2 o, = —[%0.0 — Pool + €11 — P11, NP, = —[€11 — Pr1] + (620 — P,
Hence,

ind(21, 2) +ind(%y, P5) — ind(2, P) = [61.1 — P11] — [€11 — P14]
=[6¢11— P11] + [%1 — 611]

= [35/11 - P14] = ind(yl,hﬁl,l)
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4.4. The signature of a fibre bundle as a LogFQFT

Let us consider the strict functor F ¢ : FCob, (B)* — C-Alg defined as:

vert
Fv_e?to(y) = \Ij;e?ri(yvg)a

where &€ — ) is a family of vector bundles. As in Example 1.4.38, we can de-
fine as insertion maps the algebra morphisms n,zY : Foot (V) — Fe (Y U 2)
for Z € Obj(FCob,(B)) as nuzY(T) = j5 o T oi%, where jz : YUZ = Y
is the projection and iz : Y < Y U Z the inclusion. Consider the morphisms
MuzY = Ko(nuzY) : Ko(Foet (V) = Ko(Fyert (Y U 2)) induced by K by functo-
riality. Then, by Lemma 3.2.7, F ¥ is a non-injective higher pretracial monoidal

product representation and (Ko(F, o0 (FCob,,(B)*)),7F.) is a presimplicial set.
LEMMA 4.4.1. U_2X(V,€) and C°°(B) are Morita equivalent.

PRrROOF. This generalizes the fact that U~°°(Y, E) and C*°({point}) = C are
Morita equivalent (Example 3.2.16). In fact, U_7 (), £) is H-unital and, by Schwarz’s
Kernel Theorem, is naturally identified with C*° () x Y, £ K E*), which is a smooth
family of complex matrices parametrized by B. Hence, C*° (Y x Y, EKE*) is Morita
equivalent to End(C>(B)%), which is Morita equivalent to C°°(B).

(|

COROLLARY 4.4.2. Ko(F oo (V) =2 Ko(C*(B)) = Ko(Fyert (YUZ)) by canon-
ical isomorphisms. In particular, Ko(F,.o0 (V) & K°(B) and 7, are isomorphisms.

Moreover, a fibre bundle isomorphism ¢ : Y — Z induces a canonical con-

tinuous isomorphism of algebras ¢y : Fioif (V) = Fq

vert

+ (2) and pushes-down to a
canonical linear isomorphism qﬁﬁ t Ko(Fogrt (V) = Ko(Fyert (£)), hence indepen-

dent of the initial ¢.

PROOF. If ¢ is a fibre bundle isomorphism, it induces a bundle isomorphism
and continuous linear pull-back isomorphism between the corresponding spaces of
sections, which provides an isomorphism ¢y : Fi .77 (V) = Fyerp (£). The rest follows
by Lemma 4.4.1.

O

REMARK 4.4.3. F,¥ is unoriented. In fact, as ¥~°°(M, E) is unoriented (see

Lemma 1.4.39), so is F,,

vert (V). It is also tracial with the Chern character as a trace.

Consider a representative X — B, with 2m-dimensional fibre X, of a fibred

cobordism class in morgcob, (5)(Mo, Mi1). As usual, we consider a fibred collar
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near its boundary Y — Y — B € obj(FCob,(B)), with vertical product structure,
i.e. for the vertical metric g7 (*/5). Recall that after choosing a connection we can

decompose TX = T(X/B) ® T" X (Remark 4.1.8); this yields the decomposition
AX) = AT X) 2 A (X)@7*A(B), where A, (X):=AT"(X/B)).

Let £ — X be a smooth family of vector bundles which is flat along the fibres.
By Remark 4.1.7, the smooth sections of A;(X) ® € — X correspond to the smooth
sections of W :=m, (A (X)®E) — B, i.e.

Qert (X, E) 1= CP(X, Ar (X) @ E) = C°(B,W).

Recall that the fibre of W — B is Q(X, E). Then Qe (X, E) is a subspace of
the total space of smooth forms Q(X,€) := C°(X,A(X) ® &), corresponding to
sections that vanish under interior multiplication with horizontal vectors (§3, [9]).

Let d¥ = (dp)bep be the associated smooth family of exterior derivatives.
Since we assume a vertical Riemannian metric, we obtain a smooth family of Hodge
operators *M := (x;)pcp and an associated family of coderivatives §% := (§)pep in
the obvious way (see §3, [9], for a detailed description), thus obtaining the family
of Dirac operators Z = (dj + 6)pen € Vie (X, A (X) ® &) acting on the vertical

smooth differential forms.

DEFINITION 4.4.4. The operator 258", defined as the restriction of the fam-
ily 2 to AT(X) ® € of the Zs-grading induced by the fibrewise Hodge operator,
A (X) = AF(X) @ AL (X), is called (twisted) family signature operator.

Let us consider the restriction le,ig“, which is a twisted (odd) family signature
over the boundary. By cobordism invariance, ind@)S,ign = 0 and we have a non-
empty grassmannian of spectral sections (Remark 4.3.14).

Let (@ls,ign)2 = (Aiif“)be B be the (twisted) family of signature Laplacians.
Since we assumed that the fibre X is 2m-dimensional, the boundary Y = 0X has

dimension 2m — 1.

PROPOSITION 4.4.5 (Propositions 1.2 & 1.3, [42]). If ker(Af,ilgE,b), i.e. the space
of harmonic forms in degree m, has constant dimension with respect to b € B, then
there exist spectral sections, called symmetric®, such that for any two such sections

P2V (VA (V)®E),

vert

[Z-2]=0 in KYB)®Q.

SFor a detailed exposition and explanation of the name, see [42].
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Clearly, if K°(B) is torsion-free, then [#? — 2] = 0 in K°(B).

REMARK 4.4.6 ([43]). Symmetric spectral sections generalize the idea of gen-
eralized APS projections (which are subordinated to a Lagrangian subspace for the
signature operator on the boundary), which allowed an additivity formula. Im-
portantly, they provide a homotopy invariant index and Chern character, and the
homotopy invariance of the scalar signatures that may arise from them, such as the
signature of the total space of a fibre bundle (see Remark 4.4.12). This is related
to higher (Novikov) signatures, and therefore we will say more in the next Chapter.

The results there will be in fact analogous to the family case.

Let € :=%1 € U9

vert

(V,AT(Y) ® &) denote the family of Calderén projectors
associated to the family signature operator and & a symmetric spectral section.

We define a universal LogTQFT:

u-1log™®" : NFCob,, (B) — Ko(F,.5(FCob’.(B))) ® Q

vert
by setting u- IOgi-/(“g(?uml :mor(Mo, M1) = Ko(Foent (Mo U M1)) ®Q as
(44.1) w- 1Ogii/1g:uM1 X = (Eﬁ,MouMl ([(5 — f@]) € Ko(F\;ff(Mo U M1)) ®Q,
with %ﬁ,MouMl the canonical isomorphism Ko (Fyery (0X)) & Ko(Fperr (MoUMy)).

THEOREM 4.4.7. (4.4.1) defines a universal LogTQFT, i.e. with respect to
gluing along a common boundary, in Ko(F, e (Mo U M; U Ms)) ® Q we have:

v
~ 1 Sign X=7 1 Sign X ~ 1 Sign X.
MM U LOE A g imy 8 = TIM U108 A, L + Nmou-1ogyr A, A2

PROOF. The 7jrq, are isomorphisms into Ko(F, et (MoUM;UMs)) = K°(B),

v

where we have:
[cg_ 32} = [cfl — @1] + [%2 — <@2] S KO(B) ® Q.

from (4.3.3) and Proposition 4.4.5.
]

REMARK 4.4.8. If X is closed, ) codimension 1 closed sub-bundle such that

Y = M, then by Theorem 4.3.17:
u-loghf" X = g m (€1 — 65]) € Ko(Frey (M)).

Since F,ox (M) is equivalent to the commutative C*-algebra C*°(M), the

Chern character of §3.2.2 corresponds to the classical ch, : K°(B) — H**(B),

defined via a superconnection (Remark 3.2.10).
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DEFINITION 4.4.9 (Definition 1.37, [8], and §1.3, [70]). A superconnection on
W adapted to & € A°(B,End(W)) is an odd-parity first order differential operator
A on the graded complex A(B, W) such that A(w A s) = dw A s+ (—=1)“lw A A(s)
for w € Q(B) and s € A(B,W), and with Ay = &, where Ay is the component
of A which raises form degree by . The curvature of A is the even-parity element

A? of A(B,End(W)).

THEOREM 4.4.10 (Theorem 1.4, [70]). Let 2 € Wl . (X,€) be elliptic and
P ey

vert

(V,&’) be a spectral section. Then:

dim B

ch(ind?») = ch([¢ — Z]) = Z
k=0

1 *

w1 yys (R — Ri) € H(B),

where Ry := (22 -V . 3”)2 € A%(B,V9(Y,&")) is the curvature of the sub-bundle
ran(2).

REMARK 4.4.11. The theorem uses canonically defined superconnections A¢

and A . In particular, R%, = & and
Ch(lnd.@gﬂ)[o] = TI‘)}/B ((g — z@) S HO(B)

is constant over B and corresponds to the pointwise index ind(C, — Py) € Z, which

is 0(X), the signature of the fibre.

REMARK 4.4.12. Therefore, the signature of a fibre bundle X — B can arise
as a log-determinant of the higher LogTQFT ch(u- logii,lgrl X) € H**(B). In fact,
let L(B) € H*(B) denotes the Hirzebruch L-class of B and consider the Poincaré
dual of ch(u- logiif“ X), i.e. ch(u- logii/lgn X)N|[B] € H.(B), where [B] € Hgimp(B)

is the fundamental class of B. Then, by Kronecker pairing:
(L(B), ch(u-10g5%" X) N [B]) = (ch(u-log 3" X) A L(B), [B])
= (L(T,X) A7*L(B), [X]) = o(X).
It is a oriented homotopy invariant of the fibre bundle X, as so is the right-hand

side of (4.4.1), by results in [43] (Remark 4.4.6).

REMARK 4.4.13. These approach can be used for the family de Rham operator
with relative boundary conditions, thus generalizing the result of Chapter 2. How-
ever, the cohomology bundle is flat, hence all classes of ch(ind:@%R) vanish, except

for that of order zero, which corresponds to the Euler characteristic of the fibre.



CHAPTER 5

Other Higher LogTQFT

As for fibre bundles, one can define a log-functor for singular manifolds, i.e.
continuous maps M — B from a manifold M to a path connected space B. In
particular, we will consider the case that M — B is a Galois covering. This moves
the problem to the setting of non-commutative geometry and our attempt here is

to see higher Novikov signatures as log-characters of a higher LogTQFT.

5.1. Galois I'-coverings and LogHQFTs

DEFINITION 5.1.1. Let M be a manifold. A covering M — M is called Galois
(or regular or normal) if there exists a discrete and finitely presented group I" acting

freely and transitively on the fibres. In particular, it is a principal I'-bundle.
EXAMPLE 5.1.2. The universal cover is a Galois covering, where I = 7 (M).

REMARK 5.1.3. By the Classifying Theorem for Principal Bundles (Appendix
B, [40]), isomorphism classes of Galois covering are bijectively associated to homo-
topy classes of classifying maps r : M — BT, i.e. continuous maps with values in
the classifying space! of I', which is uniquely defined modulo homotopy. Therefore,
we will identify Galois coverings with the pair (M,r), which is the notation for a

singular manifold® ([16]).

DEFINITION 5.1.4 (Definition 5.1, [45]). Let (M,r) and (M’,s) be closed ori-
ented I'-coverings. They are oriented homotopy equivalent if there exists a oriented
homotopy equivalence h : M — M’ such that soh =~ r, i.e. soh and r are

homotopic.

DEFINITION 5.1.5 (Definition 5.2, [45]). Let OM,0M’ # () and such that

there exist orientation preserving diffeomorphisms ¢, : OM — OM’. Then two

N classifying space for a group I' is a connected topological space BI' together with a
principal I'-bundle ET' — BT such tha for any compact Hausdorff space X there is a bijective
correspondence between the equivalence classes of principal I'-bundles over X and the homotopy
classes of maps X — BT (Definition B.I, [40]).

20r a BT-manifold, as they are called in [66].

113
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I'-coverings r : MUy M' — BT and s : M Uy, M’ — BT are said to be cut-and-paste

equivalent if vy >~ s;py and rpp = S|

The above definition can be extended to M Uy, M’ when 9(M Uy M') # 0 for

homotopies relative to the boundary.

REMARK 5.1.6. Clearly two closed oriented Galois T'-coverings (M,r) and
(M, s) are diffeomorphic if there exists an orientation preserving diffeomorphism
¥ : M — M’ such that r = s o). In particular, a diffcomorphism must fix the
boundaries, i.e. Yjgp 1 OM = oM. Moreover, we can define the disjoint union
of T-coverings (over manifolds with or without boundary) and the covering with
inverse orientation as in Definition 4.1.9. Finally, (M, r), (M U®,r) and (§ U M, r)

are naturally diffeomorphic (Remark 4.1.10).

DEFINITION 5.1.7. An oriented Galois T'-covering (M, ) bords (or is a bound-
ary) if there exist an oriented manifold W such that M é OW , and a homotopy class
of continuous maps R : W — BT relative to the boundary such that Rjsy o1 = 7.
Therefore, two oriented Galois I'-coverings (M7, r1) and (Ma,r2) are bordant if and
only if (M; U My, Ury) bords (W, R), which is called BT'-cobordism, following
[66].

Let Diff (BT") be the category of oriented Galois I'-coverings and diffeomor-
phisms between them. When endowed with disjoint union of Definition 4.1.9, it

becomes a symmetric monoidal category and a subcategory of Diff.

DEFINITION 5.1.8. Consider two BI'-cobordisms (W, F') : (M, f1) — (Ma, f2)

and (W' F') : (M5, f5) — (Ms, f3) with diffeomorphic boundary components
b

(Ma, f2) = (Mj, f5). Then their composition is the BI'-cobordism (W U, W', G)

such that:
Flw) ifweW
G(w):=F - F'(w) =
Fl(w) ifweW.

If (M, f) is a closed oriented Galois I'-covering, then the identity for the composition
is the BT'-cobordism:

([0,1] x M, 1) : (M, f) = (M, f) with 1;(¢t,m) = f(m).

DEFINITION 5.1.9 (§1, [66]). (n — 1)-dimensional oriented Galois I'-coverings

and BT'-cobordisms define the category (enriched over categories) HCob,, (BI') of
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homotopy n-cobordism over BI'. Together with disjoint union, it is a symmetric
monoidal category whose objects are oriented Galois I'-coveringof dimension n — 1,
and whose morphisms are (compositions of) BT'-cobordisms and oriented Galois

I'-covering diffeomorphisms.

For a precise construction of HCob,,(X), X a path connected space, we re-
fer to the Appendix of [66]. We remark that it is constructed as a category en-
riched over categories (as FCob,, (X)), out of the category Diff (X). In particular,
HCob, (X) C Cob,,. Thus, once we choose a good monoidal product representa-

tion F', we can define a higher log-functor. In particular:

DEFINITION 5.1.10. A log-functor log : NHCob,,,(X) — HC,, (F(HCob,,(X)))
is called Logarithmic Homotopy Quantum Field Theory (LogHQFT) of dimension

m and order n.
As for TQFTs, LogHQFTs can define HQFTs, at least in a weak sense.

LEMMA 5.1.11. Let F : HCob;,(X) — Ringy4q be a pretracial monoidal
product representation and log : NHCob,,(X) — (HC,, (F(HCob,,(X))),7) an
associated LogHQFT. If € : end(1a) — R is an exponential map into a commutative
ring, then there exists a symmetric monoidal functor Zj,s - : HCob,,(X) — R-Mod,
i.e. a HQFT defined as:

Zlog,‘r,e(Mv f) =R Z('I/J) =R Zlog,'r,e(VVa F) = E(T(IOg(VVv F)))

ProoF. This follows directly from the definition and the log-additivity, as for
Lemma 1.4.37.
O

5.2. Dirac operators associated to Galois coverings

DEFINITION 5.2.1 (§7.1, [45]). Let B(¢2(T)) be the algebra of bounded opera-
tors of £2(I") and let CT" be the group ring of I'. Then its completion in B(¢?(T")) is
a unital C*-algebra called reduced group C*-algebra CT.

For M closed, let (M, r) be a Galois covering and 8 : C°(M, E) — C*>°(M, E)
be the Dirac operator associated to a Clifford module £ — M, with unitary con-
nection V. Since r : M — BT corresponds to a I-covering M % M (Remark
5.1.3), D can be lifted to a T-invariant operator 0 : COO(M, E) — COO(M, E), with
E = p*E a I'-equivariant bundle. Moreover, since I' acts on the right on C;T" by
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translation and on the left on M by deck transformation, we have an associated

bundle of finitely generated projective C*T'-modules (check):
V:=C'T xp M — M, with fibre CT.

Let us consider smooth sections s € C*°(M, E®V). Therefore, if h(,-) denotes
the Hermitian metric on E, there is a C}I'-valued inner product, which is defined

on an open neighbourhood U by:
(s1,82) 5:/ h(s1,s2) € C;T, 51,80 € C(U,(E®@V)p).
U

Hence C*(M,E®YV) is a left CT-module, and with such inner product it becomes
a pre-Hilbert C>I'-module:

DEFINITION 5.2.2 (15.1.1 & 15.1.5, [85]). Let B be a C* algebra. A pre-
Hilbert B-module is a right B-module H with a compatible C-vector space structure,
together with a B-inner product H x H — B, i.e a sesquilinear positive define form

that respects the module action. A Hilbert B-module is a pre-Hilbert module that
is complete with respect to the norm ||z|| := /||{x, z)||.

The Hilbert module completion of C*°(M, E® V) is denoted L. (M,E®V).

REMARK 5.2.3 (§7.3, [45]). As C/T x M — M has trivial flat connection,
V — M has a (non-trivial) flat connection VY. Hence E ® V — M has connection

VE @I+ 1® VY. This defines a C;T-linear Dirac operator ((7.1) in [45]):
D) : C¥(M,E®V) — C*(M,E®V).

REMARK 5.2.4 (§7.3, [45]). Since C*°(M,E ® V) can also be completed into
Sobolev CyT-modules HE.n(M, E ® V), D, extends to a bounded C;T-linear

operator:
Dty Heor (M, E®V) = LE.p(M,EQ V).

In particular, if E is Zs-graded:

0 Dirir
'@(M,T‘) — 9—"_ (07 )
(M,r)

with 90, 1 CF(M, E* @ V) = C*(M, ET @ V) C;T-linear.

EXAMPLE 5.2.5. The signature operator 0°8" : QF (M) — Q= (M) defines a
twisted signature operator @(S]E“T) on the twisted signature bundle AT (M)®V — M.
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For E, F vector bundles over M, set £ := F®V and F := F®). Then there is
a well-developed Mishchenko-Fomenko pseudodifferential calculus, [54]. The alge-
bra of ydodifferential C)I'-linear opertors \I’E;fr(M ; €, F) contains the subalgebra
of elliptic CyT-linear differential opertors, which we denote Diff¢..r(M; €, F), fol-
lowing [45]. Hence, Z0)¥",) belongs to Diffg..-(M; A(M)* @ V,A(M)~ ® V). In
particular, there exist parametrices for the operators in DiffE:F(M ;EF).

Finally, in this case as well there are decomposition formulae:
C®(M,&) =TI, ®Iy and C°(M,F) =I_ + Doary(I3),

with Z. finitely generated projective C*I'-modules. Note that the second decom-
position is not necessarily orthogonal, but %, induces an isomorphisms between

Ij_‘ and -@(M,r) (Ii‘)
DEFINITION 5.2.6. The index class of 2y, a la Mishchenko-Fomenko is:
ind(Z(a1.0)) = [Z4] — [T] € Ko(C,T),

REMARK 5.2.7. Let &2, be the orthogonal projection onto Z, and &_ be the
projection onto Z_ along Zar (Ij:) Then £, are smoothing pseudodifferential
operators of the Mishchenko-Fomenko pseudodifferential calculus and hence define
a smoothing perturbation #Z = —%_ 951, P+ of Diar -

Therefore, since ker(Z(s,,)) and coker(Z(as,,)) are not necessarily finitely gen-

erated projective modules,
ind(Zu,r)) = [ker(Z(ar,r) + R)] — [coker(Zar,ry + R)] € Ko(CFT),
independently of the perturbation Z.

Let now (M, r) be 2m-dimensional with non-empty boundary M and a prod-
uct type close to it. As for the closed case, given a Clifford bundle we can define a
twisted Dirac operator Znsr). Let Zonr,ry) : C(OM,E") — C(M,E") be the as-
sociated boundary Dirac operator, where 75 := |5y and ' := E|gps, corresponding
to the boundary operator for 0.

As for the family case, boundary conditions are realized via spectral sections,
which can be defined since we can use functional calculus in this context as well.
Let A be a unital C*-algebra and H a full Hilbert A-module. Let B(#) be the
algebra of bounded A-linear adjointable operators on H and KC(H) the ideal of such

operators that are also compact. If D is a densely defined unbounded self-adjoint
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A-linear regular operator on H, then continuous functional calculus on D is well

defined: for any f € C(R,C) such that 3lim;_, f(t) < 0o, f(D) is in B(H).

DEFINITION 5.2.8 (Definition 2.1, [41]). A spectral section for D is a self-adjoint
projection & € B(H) such that there exist smooth spectral cuts® x1, x2 such that
x2(t) =1 for t € supp(x1) and:

imy1(D) C im&Z? C imys(D).
A criterion for the existence of a spectral cut is the vanishing of the index.

THEOREM 5.2.9 (Theorem 2.2 and Proposition 2.8, [41]). There exists one

spectral section &2 for D, and hence infinitely many, if and only if ind(D) = 0 in
Ki(A).

REMARK 5.2.10. Z(on1,r,) is a densely defined unbounded self-adjoint C;T-
linear regular operator on LZ.(OM,E’) (Proposition 2.3, [41]). Moreover, Cobor-

dism Invariance holds also in the context of Galois coverings and thus we have:
ind(@(aMﬂ«a)) =0e€ K, (C:F)

Hence, there always exist spectral sections & € W, .(OM;&',E") for Dom,rs)
(Theorem 2.7 (1), [41]).

THEOREM 5.2.11 ([45]; 7.6, [41]). Let %5, a twisted Dirac operator associ-
ated to a Galois covering (M, r) with non-empty boundary. Let & € \I/%:F(GM; &£
be a spectral section for the boundary Dirac operator Z(sas,r,)- Then Py, with
domain C*(M,&; 2) = {s € C*(M,&)| Psjppr = 0} has a well defined index
ind(Zn1,ry, &) € Ko(C;T'), depending only on Z.

The classical index formulas hold also in this context.

THEOREM 5.2.12 (Theorem 6, [44]). Let &2, 2 € V2. (OM; &, E') be spectral

section for P(ans,r,). Then:
(521) ind(.@(MJ% P) — ind(.@(MJ.), Q) = [Q — P] S KQ(C:F)

THEOREM 5.2.13 (Theorem 8 & 9, [44]). If (M,r) is a Galois covering split
into two Galois coverings with boundary (M;,r;), where r; = |y, fori =1,2, by a

1-codimensional manifold N, then:
ind(.@(Mﬂ.)) = ind(.@(Ml,,.l), @) + ind(@(MQ,,.Q), QL) + [gZ — Q]

3A smooth spectral cut is a function x € C°°(R,[0,1]) such that for some real s; < s,

x(t) = 0if t < sy and x(t) = 1 if t > so (§2, [41]).
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COROLLARY 5.2.14. Let (M;,r;), i = 1,2, be Galois I'-coverings such that
OM; =Y;,_1 UY; and let (M = M; Uy, My, R), R = r1 - r9, be their composition.

We consider the following spectral sections for M, My, and Ms, respectively:

P 0 P 0 1-2 0
P — 0,0 7 gzl _ 0,0 : (@2 _ 1,1
0 32272 0 321,1 0 @2,2

Then:
ind(@(Mﬂ), P) = ind(g(Ml,n)a 1)+ ind(.@(M%w), Py) + [@171 — e@l,l].

REMARK 5.2.15. In the classical or family case, the proof can be based on the
fact that the index of the realization via a spectral section coincides with the K-
theory class of the difference between Calderon operator and the spectral section
itself. As a matter of fact, a Calder6n projector € exists also for these elliptic value
problems over C*-algebras, and is obtained essentially from the classical proof (see
[10]) by methods allowed for Hilber modules over a C*-agebra B (see [1]). However

it is still only conjectured that:
ind(Z ), &) = € — 7

On the other hand, given a spectral section &2, there is a well-defined Grassman-
nian G := {2 spectral section | £ — & compact}, whose connected components
are in bijective correspondance with the classes in Ky (B) via the map 2 — [# — 2]
(See [30]). Then, by (5.2.1) there exist a spectral section PGy corresponding to

the class ind(Z(as,ry, 2), ie. [P — P] = —ind(D(a1,r), P) € Ko(B), which yields:

ind(@(Mvr), @) = ind(.@(]\/jﬂa), gZ) + [@ - @] =0.

Therefore, ind(Z(as,), &) can be expressed as a class depending only on the spec-
tral sections, and in particular, the index depends on the boundary and the quasi-

additivity of Corollary 5.2.14 follows.

5.2.1. Smoothing of the algebra. From Remark 3.2.13, we know that in
order to have interesting topological cyclic homology (and Chern character), we
should consider a smooth subalgebra B C CI'. Such an algebra exists and can be

defined as follow:

DEFINITION 5.2.16 (§8.8, [45]). The Connes-Moscovici algebra is smooth and
defined as the subalgebra:

B:={T € C:T |Vk €N, §*(T) € B(t2(v))}
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where §(T) = [D,T], D being the unbounded operator on ¢2(T") defined for the
standard orthonormal basis (ey)er of ¢2(I") as De, = ||v|le,. Here, || - || is a word

metric on I'.

REMARK 5.2.17 (§8.8, [45]). Then there exists an isomorphism identifying
K.(B) with K.(C;T) and the image of ind(Z(as,,)) € K«(C;T') in K, (B) is said to
be the smoothing of the index class. In practice, we can achieve such smoothing
directly, i.e. by replacing C*T" by the smoothing subalgebra B in the construction
above. Set V*>° := B Xp M and €° := E ® VYV for a Hermitian Clifford module

E — M. Then we analogously define B-linear Dirac operator:
(5.2.2) Dty C®(M,EQV>®) = C*(M,F V),

that we still denote Zy,,)- Then it is possible to define a pseudodifferential calculus

as in §5.2, with C'T replaced by B.

When restricting to a smooth subalgebra, some extra care has to be used for
the spectral sections, since it is not at all obvious that a spectral section could be

chosen in W% (9M,E"). However, this is possible for the following class of groups.

DEFINITION 5.2.18 (§8.11, [45]). I is called virtually nilpotent if it contains a
nilpotent subgroup of finite index. Then I" is of polynomial growth with respect to

a (and thus any) word metric and the smooth subalgebra in this case corresponds

to {f:T = C| sup,cr (L4 7)™ [f(7)],Vn € N}.

THEOREM 5.2.19 (Theorem 2.7, [41]). Let I' be virtually nilpotent. Then a
spectral section & € WY,.(OM,E’) can be chosen in W% (OM,E').

In particular, the spectral section can be chosen to be symmetric if the assump-
tion is satisfied. As a consequence, there is a well defined index class ind(Z (s, &) €

Ky(B) 2 Ko(C:T') (Theorem 7.6, [41]).
5.3. Novikov’s higher signatures as characters of a LogHQFT

DEFINITION 5.3.1 (§8.11, [45]). Let T be finitely generated. We say that I' has
the extension property if there exists a smooth subalgebra B C C;T" such that every
[c] € H*(BT,C) defines a cyclic cocycle . € HC*(CT') which also extends to a

continuous cyclic cocycle in HC*(B).

REMARK 5.3.2. Virtually nilpotent groups have the extension property. We
have already seen that they are important for having well-defined spectral sections

in U%, hence we will consider I to be virtually nilpotent from now on.
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Let I" be a virtually nilpotent group and B the smooth subalgebra of CI'. We
consider the strict functor Fi. > : HCob,, (BT')* — C-Alg defined as:

Fr®(M,r) = Ug®(M,A(M)®B)  V(M,r) € obj(HCob, (BT)).

As in §4.4, we can define as insertion maps the algebra morphisms 7y, (M,7) :

Fro(M,r)) — Fr°((M,r)U(N,s)) as:
NNs) (M, r) () =jiyg oA oilng,  F€FT((M,r)),

where j(y5) : (M,r)U(N,s) = (M,r) and iy ) : (M,r) < (M,r) (N, s) are the
projection and the inclusion, respectively. If 7y ) := Ko(n(,s)), then by Lemma
3.2.7 we have once again that Fr > is a a non-injective higher pretracial monoidal
product representation and (Ko(Fy °°(HCob,(B)*)),7l.) is a presimplicial set.
Clearly, F.°°(M,r) is unoriented (as F~>°(M) and F ' (M)).

vert

LEMMA 5.3.3. ¥;°°(M, E ® B) and B are Morita equivalent.

Proor. This is analogous to Example 3.2.16 and Lemma 4.4.1. In fact, by
Schwarz Kernel Theorem, Wz (M, E ® B) is locally given by smooth functions in
the matrix algebra My(B).

O

COROLLARY 5.3.4. Ko(FF>((M,r)) = Ko(B) & Ko(Fg > ((M,r) U (N,s))).
In particular, 7% are isomorphisms.

Moreover, a diffeomorphism ¢ : (M,r) — (NN, s) induces a canonical contin-
uous isomorphism of algebras ¢y : Fp.*°(M,r) — F*°(N,s) and pushes-down
to a canonical linear isomorphism (fbvu s Ko(FR (M, r)) — Ko(Fg > (N, s)), hence

independent of the initial ¢.

ProoF. This follows because isomorphic algebras are in particular Morita
equivalent.

d

Consider (M,r) of dimension 2m and the twisted signature operator @(S ]E’r;)
associated to it. In order to obtain homotopy invariant index and Chern classes,
we need symmetric spectral section for @(S{;%\; riont)? like in the family case. Their

existance, in this case, requires the following assumption (Assumption (H2), [42]):

DEFINITION 5.3.5 (Middle-degree assumption). Let dim M = 2m. If d is the

de Rham differential on OM , endowed with a I'-invariant metric, then we assume
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that dd* + d*d acting on LQ(W,Am(éj\//[))/ker(d) has a gap at zero, i.e.
spec(dd* + d*d) N (—0,d) = {0}.

REMARK 5.3.6. The middle degree assumption is analogous to the condition

that ker(AiifI}l,b) has constant dimension with respect to b € B (Proposition 4.4.5).

PROPOSITION 5.3.7 (Proposition 4.4, [42]). Let us assume Definition 5.3.5.

Then there exist symmetric spectral sections, such that for any two such sections

P,2 € V.. (0M,E),
[P - 9]=0 in Ko(C'T)C.

Let & be a symmetric spectral section and define the following universal

LogTQFT:
u-1og™8" : NHCob,,(BT) — Ko(Fy *°(HCob,,(BT')*)) ® C
by setting as a map on 1-simplices:

u-logl ¥y O((Mo, 7o), (Ma, 1)) — Ko(Fi > ((Mo, o) U (My,71))) ® C

(531) U- log?li\gl(rj,To)l_l(Ml,h)(W F) = ¢ﬁ,(M0,TO)U(M1,T1) (lnd(-@(W,F)a y)) 3

With G (ay o))+ Ko (Fp ™ (OW)) @ C = Ko(Fy ™ (Mo, 7o) U (My,71))) © C

the canonical isomorphism.
THEOREM 5.3.8. With respect to gluing, we have :

~ Sign
Ty, ) U VO8N ) () (WS F) =

Sign
0,70

~ ~ Sign
= n(M27T2)u_ log(M )L’(Ml,’l‘l)(W17 Fl) + /r](MovTO)u_ log(l\i,rl)u(Mg,rg)(WZ’ F2)

in Ko(Fp (Mo, ro)U(My,71)U(Ma,72)))®C. Therefore (5.3.1) defines a universal
LogTQFT.

ProoF. The 7y, r,) are isomorphisms into
Ko(Fr ™ (Mo, ro) U (M1, 1) U (M2,72))) ® C = Ko(B) ® C,

where Corollary 5.2.14 holds.
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COROLLARY 5.3.9. By composition with ch, : K¢(B) — HCs.(B) we obtain
the following LogHQFT:

log™'8" : NHCob,,(BT) — HCy.(Fp °°(HCob,, (BT)"))

Sign .
IOg(J\gomo)u(Ml,n)(W F) :=ch, (1nd(.@(W7F)7 9)) )

REMARK 5.3.10. ch,(ind(Z(yr,r), &) actually belongs to H, (B) (Theorem 6.3,
[42]), the noncommutative topological de Rham homology of B. However, this is
contained in the cyclic homology of B. We refer to the paragraphs §8.4 — §8.7 of
[45] for the definition of noncommutative topological de Rham homology and its

relationship with cyclic homology.

For [c] € H*(T,C), let p. € HC*(B) be its associated cyclic cocycle. From §3.1
we know that a higher trace 7¢ : HC,(B) — C can be defined by Kronecker pairing
with ..

PROPOSITION 5.3.11. The right-hand side of (5.3.1) depends only on the ori-
ented homotopy class (W, F'). Also, it has log-character:

c Sign .
T(MoUMi,s1Us2) (10g(1\§[0|_|M1,51|_|32)(W’ r)) = Sign(W,r; c),

where Sign(W,r;c) is a Novikov’s higher signature. Log-additivity clearly yields

additivity of Novikov’s higher signatures.

PRrROOF. By definition of higher trace:
(5.3.2)
c Sign : ign .
T(MOUMlaSIUSZ) (log(l\glouMl,muSz)(m T)) - <Ch(1nd(@$ ¢ ’ f@))’ ('DC> = Slgn(VV’ L C)?

which is the definition of the Novikov signature associated to c.

The first statement is a consequence of the fact that Novikov signatures are
homotopy invariants when I' is nilpotent and the middle-degree assumption (Defi-
nition 5.3.5) holds.

O

Indeed, (5.3.2) is the definition of higher signatures for a manifold with bound-

ary. The closed case is very similar:

DEFINITION 5.3.12 (§5.2, [45]). The Novikov’s higher signature of (M,r) €
obj(HCob,,(BT")) associated to [¢] € H*(BT,R) is:

sign(M, s [d]) == /M [L(M)) A (] = (L(M) Ur*[d], [M]).
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REMARK 5.3.13. If dim M = 4k and [c] = 1 we obtain

(5.3.3) sign(M,r; 1) := (L(M), [M]) := /M L(M)=0(M)€Z,

i.e. the topological signature of M.
. Sign A7 : ign

Thus, if ¢ = 1, then T(1M0|_|M1781|_|82) (log(ﬁouMl’slusg)(W,r)) = (ch(ind(2%8", 2)), 1) =:

Sign(W, r;1) = a(W).



Part 3

Logarithms and torsion invariants



CHAPTER 6

Torsion invariants

In this chapter we will study an exotic torsion invariant of manifolds, which
we defined via the residue trace. It is similar in nature to the analytic torsion and
as such is a generalized log-determinant that can be represented in the functorial
framework of LogTQFTs.

We start with a survey of Reidemeister and analytic torsion, since their con-
struction will highlight the steps that led us to define exotic torsions. We will
represent the analytic torsion as a trace-character of a torsion logarithm and will
be able to define a residue torsion by composition with the residue trace. We
will generalize our results to fibre bundles (with closed fibre), and manifolds with
boundary and relative/absolute boundary conditions.

Along the way, we will study a topological invariant called secondary Euler

characteristic, that arises from the definition of residue torsion.

6.1. Reidemeister Torsion

6.1.1. The Torsion of a Matrix. The definitions and results in this section
are taken from [15], unless otherwise stated.

Let GL,(R) be the n** general linear group with coefficients in a ring R with
unit 1p and, for i # j, let E}'; be the n x n matrix with coefficient e;; = 1z and

Op elsewhere.

DEFINITION 6.1.1. Let I™ be the n x n identity matrix and ¢ € R. Then

matrices of the form I" + cE}';, for some n € N, are called elementary.

REMARK 6.1.2. Let E(R) be the subgroup of GL(R) = ligGLn(R) gener-
ated by the elementary matrices. Then E(R) < GL(R) (i.e. is normal) and it
coincides with the commutator subgroup GL(R)" = [GL(R),GL(R)] (defined in
Lemma 1.2.5).

REMARK 6.1.3. Let us consider the quotient group GL(R)/E(R), which is
defined by similarity, i.e.
‘A ~ B if and only if there exist Ey, F2 € E(R) such that A = E1BE,’.

126
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Then, for every normal subgroup E(R) < H < GL(R), the quotient GL(R)/H 1is

abelian.

For R* the subring of units, let G < R*, i.e. a subgroup, and ¢ € G. We
consider the diagonal matrices of the form I™ + (c — 1g)E}; with 1 <i < n, i.e.
diagonal matrices with 1x entries everywhere but in the (4, 7)-position, which is c.

Let Eq¢(R) < GL(R) be the subgroup generated by such matrices and E(R).

DEFINITION 6.1.4. If 7¢ : GL(R) — Kg(R) denotes the canonical projection
onto the quotient Kg(R) := GL(R)/Eg(R), then the torsion of the matriz A is
the class 7¢(A).

EXAMPLE 6.1.5 (§2, |53]). If G = {1}, K1(R) := GL(R)/E(R) is called White-
head group of R, while K1(R) := Kg(R) for G = {—1,1} is called reduced White-
head group of R.

If we assume R commutative, then we can represent the torsion in terms of
the determinant det : GL(R) — R* as follows. Recall that the determinant is a
surjective homomorphism with kernel SL(R) := {A € GL(R)| det(A) = 1}.

PROPOSITION 6.1.6. Let R be commutative, G < R*, and SKg(R) := 7¢(SL(R)).

Then there is a short exact sequence:

0 —s SKo(R) — Ko(R) % R* /G — 0

which is split s : R*/G — Kg(R), where s(rG) = 7¢(r).

COROLLARY 6.1.7. If R is a field, then det : Kg(R) — R*/G is an isomorphism
and the torsion 7¢ : GL(R) — K¢(R) can be identified with the matrix determinant

modulo G.

EXAMPLE 6.1.8. Let R = R and G = {—1,1}. Then 7(A4) € K;(R) can be
identified with |det(A4)| and K;(R) = R™.

REMARK 6.1.9. Unlike in [15] and [53], which use an additive notation, we will

keep the multiplicative one'

, as in [59], since we will define Reidemeister torsion in
terms of the determinant. An additive formalism will naturally arise though com-

position with the real logarithm. Therefore, we will write 7¢(AB) = 7¢(A)7¢(B).

1Usually, the notation is additive when working with abelian groups.
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6.1.2. The Reidemeister torsion of a chain complex.
REMARK 6.1.10. From now on, we will assume that —1z € G < R*.

DEFINITION 6.1.11 (§12, [15]). Let f : V — W be an isomorphism of finitely
generated free R-modules, for R a commutative ring. Let v and w be bases for
V and W, respectively, and let Ay denote the (invertible) matrix associated to f.
Then the torsion of f: V — W is 7¢(f) = 7a(4y).

REMARK 6.1.12 (§2, [53]). 7¢(f) of Definition 6.1.4 does depend on the chosen

bases.

Since f : V — W is a short exact sequence, one can generalize the previous
definition to chain complexes. Thus, let us consider a (finite) chain complex of

based finitely generated free R-modules:
C:0—Cy -5 Lo So S0 -% 0y —o.

Set Z, := ker(d : C, — C,_1) and B, := ran(d : Cr,y1 — C;), so that
H,.(C) = Z,./B, will denote the homology R-modules of (C,d).

DEFINITION 6.1.13 ([64]). A chain complex (C,d) is called acyclic if ¥r > 0

H,.(C) =0, i.e. the sequence is exact.

PROPOSITION 6.1.14 ((13.1), [15]). If (C,d) is acyclic, then there exists a
degree-one module homomorphism ¢ : C' — C, i.e. a collection of homomorphisms
0 : C,. — Cry1, such that éd+ déd = 1¢, the identity chain map. For any such 4, we
have dd|p, _, =id and thus C;. = B, ® 0B, _1, Vr > 0.

REMARK 6.1.15 ([64]). The chain map d : C' — C of Proposition 6.1.14 is called
chain contraction and is a chain homotopy between 1o and the zero chain map
Oc : €' — C. Moreover, the previous Proposition yields that d;sp, _, : 0B,—1 — Br—1

is an isomorphism.

LEMMA 6.1.16 (Lemma 3, [64]). Let (C,d) be an acyclic R-module chain com-

plex and § : C' — C' a chain contraction. Then the R-module morphism:
(d + 6)|Codd : Cvodd — Ceven

is an isomorphism, where Cpqq = C1 @ C3® ... and Ceyen = Co D Co P .. ..
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PROPOSITION 6.1.17 ((14,2), [15]). (C,d) and the ‘wrapped up’ exact complex:
C":0 — Cota 3 Coven — 0
are stably equivalent, i.e. C' and C’ are isomorphic modulo trivial complexes?.
This latter result motivates the following;:

DEFINITION 6.1.18 (§15, [15]). Let (C,d) be an acyclic R-module chain com-
plex. Then the torsion of C is defined as 7¢(C) := 7¢((d + 6)¢,,,) € Kc(R?) and

odd)

is independent of the chain contraction § ((15.3), [15]).

REMARK 6.1.19. As anticipated in Remark 6.1.21, 75 (C) depends on a choice
of basis for C. Let ¢, be a basis for C,; then c,qq = >0 €241+ Ceven = D ;>0 a5
and ¢ = P j>0C; are bases for Coqq, Ceven, and C, respectively, with respect to
which the isomorphism (d+5)lcodd : Coqda — Ceven can be represented by the

non-singular square matrix (denoted with the same symbol):

d+6 =
(@4 0)1Cuc 06 d

PROPOSITION 6.1.20 ((15.1), [15]). With respect to a basis ¢ for C, we have
76((d+0)0,00.0) = Ta((d+0) ¢ Bins

even

If ¢/. be another basis for C,, let (c]./c,) represent the matrix of the change of

basis ¢, — c.. Thence,
(c:)dd/codd) = @(Clzj+1/c2j+1) and (c/even/ceven) = @(Clzj/czj)-
j=0 Jj=0
PROPOSITION 6.1.21. Let ¢, ¢’ be two arbitrary bases for the acyclic R-module

chain complex (C,d). Then, for 7¢(C,c) := 7¢((d + §),¢

oddvc)'

76(C, ) = 76(C,c) - H ra(ey )"

r>0

In general, for a short exact sequence of chain complexes, the torsion is multi-

plicative:

2These are complexes whose boundary map can be represented by the identity matrix for a

particular choice of basis. See §14, [15], for a detailed presentation.
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THEOREM 6.1.22 (Theorem 3.1, [53]). Let 0 - C' — C — C” — 0 be a short
exact sequence of (finite) chain complexes of finitely generated free R-modules. Let
¢, c, and ¢” be bases for C, C’, and C”, respectively, such that the matrix of change
of basis (¢'¢’/c) belongs to Eg(R), and let H denote the exact homology sequence
of the homology groups of C’, C', and C”. Then:

TG(C) = T(;(C/)TG(C”)TG(H).
In particular, if they are all acyclic®, 7¢(C) = 7¢(C") 7 (C").

DEFINITION 6.1.23. Let F be a field and G = {—1,1}. Then the torsion
7(C,c) == 176(C,c) € K1(F) of an acyclic F-module chain complex C is called

Reidemeister-Franz torsion (or R-torsion) of C.

REMARK 6.1.24 (§18, [15]). In general, the R-torsion arises after a suitable
change of rings. In fact, for p : R — S a change of rings such that p(G) < G, for
—1 € G' < S*, one obtains a new complex C, out of C, which can be acyclic even

if C' is not, and a new algebraic invariant: the torsion 7/ (C,) € K¢/ (S5).

REMARK 6.1.25. By Corollary 6.1.7, R-torsion can equivalently be defined as

the determinant:
7(C,c) :=det(d+ 6 : Coaqa = Ceven) € F,  for ¢ a basis of C.

DEFINITION 6.1.26 (Definition 14, [64]). Let B, be free for each r > 0, and b,
a basis. An internal basis of C is a basis obtained extending b, to the whole C,. via

the isomorphism dsp,_, : 0B,_1 — B,_1 of Remark 6.1.15.

ProrosiTION 6.1.27 (§3, [53]). For b = €P,((br,db,—1) an internal basis,
7(C,b) =1 and:

(6.1.1) 76(C,¢) = [[ ra(br, 6br—1/e,) V"

r>0

In particular, 7¢(C, ¢) does not depend on the particular internal basis b chosen.

REMARK 6.1.28 (8§, [53]). Milnor defines torsion exactly as (6.1.1) and in this
way, he can define torsion for stably free modules B, and for a non-acyclic chain

complex (C,d). In fact, if h, is a basis for H,(C), then b,, h, and b,_; form a

31t actually suffices that C and one between C’ and C” are acyclic.



6.1. REIDEMEISTER TORSION 131

basis for C,. If we denote the matrix of change of basis with (b, h., 6b._1/c,), then
Milnor’s definition of torsion for non-acyclic complexes is:
7a(Cye,h) = [ [ 7a(brs b, b1 /c,) V",
r>0

which depends on the bases c and h = @7’20 hy.

REMARK 6.1.29. If we combine Corollary 6.1.7 and Example 6.1.8, we obtain
Ray and Singer’s definition of R-torsion of an acyclic complex in [65]:
7(C,¢) = [ ] | det(br, dby—1/c,)| V" € RT,
r>0

and therefore, log 7(C,c) = > - (=1)"log | det(b, db,—1/c,)|-

6.1.3. Reidemeister torsion of manifolds. Given a CW-complex, one can
associate to it an acyclic chain complex and hence an R-torsion, which represents
a secondary topological invariant of the CW-complex, i.e. a topological invariant
defined at the level of the chain complex, which can therefore distinguish between
spaces with same homology and fundamental groups (such as Lens spaces, [67]).

First, let us see how to define the R-torsion of a finite and connected CW-
complex X = |J'_,Je", with ¢" C X an r-cell, as shown in [64] and [65]. Let
X = Ugem (x) Ur_oUgé" be the universal cover of X, where ¢€” is a lift of the cell

e” and m(X) is acting on X as deck transformation group, i.e.
(X)) x X = X; (g,2) — ga.

Let X(") = Ujgr Je" be the r-skeleton of X, with preferred basis given by the
cells of X and induced cover X (), and consider the relative homology modules
Cr(X) = H. (X" X"} and the group ring R[m (X)] of finite formal sums
>k gk, for ag, € R and g, € m(X). Then C’T()?) is a based finitely generated
free R[m;(X)]-module generated by the e” cells, and fits into the cellular chain
complex

C(X): Cu(X) S 0y (X) S

where d is the boundary operator induced by the natural boundary operator of the
CW-complex. With respect to a preferred basis, d is represented by a matrix with
R[m (X)] entries.

However, this construction does not provide an acyclic complex, as

Hy(C(X)) = Ho(X) = R. Therefore, as suggested in Remark 6.1.24, we can con-

sider a representation of m1(X), i.e. a group homomorphism p : m(X) — O(N),
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such that we can construct a new complex which is also acyclic. We remark here
that, since p takes values in O(N), this will remove every possible ambiguity in
the definition of the R-torsion (see [59], for instance, for a general treatment of
ambiguities of the definition of R-torsion). A representation p extends to a ring
homomorphism for R[7;(X)], thus making R™ into a right R[m;(X)]-module. The
associated new complex, denoted (C(X,p),d), is defined as the chain complex of

finitely generated free modules
(6.1.2) Cr(X, p) i=RY @gpr, (x)) Cr(X).

Moreover, a preferred basis of C.,.(X, p) is realised by the equivalence class of
(€",v) modulo the relation (€",v) ~ (g-é", p(¢g~1)v), with v € RY and g € m(X).
The boundary operator d is the one induced on the equivalence classes by the one

on C(X), i.e. dé",v] = [de”,v] (see §5.3.1, [67]).

DEFINITION 6.1.30 (Definition 1.3, [65]). Let p : m1(X) — O(N) be a ring
homomorphism such that C(X, p) is acyclic. Then the Reidemeister torsion of X
is defined as 7x(p) := 7(C(X,p)). Here, the dependence on a preferred basis is

omitted from the notation.

With respect to a basis for each C,.(X, p), d,- : C.(X, p) = Cr_1(X, p) is repre-
sented by a real matrix. Let d : C,_1(X, p) = C,(X, p) be its transpose.

DEFINITION 6.1.31 (§1, [65]). The matrix A :=d,df , + d;d,, which acts

rrs

on C.(X, p), is called the combinatorial Laplacian.

PROPOSITION 6.1.32 (Proposition 1.7, [65]). Let 7x(p) be the R-torsion of a
finite CW-complex X = (JI'_,Je", with p: m(X) — O(N) an acyclic representa-
tion. Then:

n

1
6.1.3 logtx(p) = = —1)" 1 log det AC.
2 T
r=0

REMARK 6.1.33. Let \; be an eigenvalue of A¢, which is positive since A¢ is
positive definite (see the proof of Proposition 1.7, [65]). Then the sum ) o A;"",
s € C, is holomorphic for R(s) large enough and defines a spectral zeta function for

AY as the meromorphic extension

C,C(S) = C(Af,s) — Z Ai—s|mer.

Ai>0
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In particular, 5(s) is holomorphic at s = 0 and:
d c c
(6.1.4) %Cr(s)h:o = —g:log A = —logl:IAi = —logdet Af.

Hence, (6.1.3) can be equivalently written:

n

Sy S,

r=0

1
(6.1.5) log7x(p) = 3
LEMMA 6.1.34 (Combinatorial invariance of R-torsion; Lemma 7.1, [563]). 7x (p)

is invariant under subdivision of X. Hence, it is a combinatorial invariant of X.

THEOREM 6.1.35 (Topological invariance of R-torsion; [14]). Let f: X; — X5

be a homeomorphism of CW-complexes. Then 7x, (pfs) = 7x, (p)-

Finally, let M be an n-dimensional manifold with possibly OM ## (). Then M

admits a C'-triangulation X and thus:

DEFINITION 6.1.36 (§9, [53]). Let M be a manifold with C'-triangulation X.
Then the R-torsion of M is the scalar 7as(p) := 7x(p).

REMARK 6.1.37. 7)/(p) does not depend on the Cl-triangulation of M, but
only on the manifold M and the representation p (Lemma 9.1, [563]). In particular,
from Theorem 6.1.35 we have that the R-torsion is a topological invariant of a

manifold.

THEOREM 6.1.38 (86, [55]). Let M be a closed oriented manifold, dim M =n
even. Then log mps(p) = 0.

Let now Y C X be a subcomplex. The construction for X applies now also
to the pair (X,Y) (see §8 in [53]), thus there exists a chain complex of finitely
generated free R[ry(X)]-modules C(X,Y), with X 2 X the universal cover and
Y = p~1(Y). We observe that the inclusion ¢ : Y < X defines an homomorphism
ts 2 m(Y) — m1(X), which yields a representation for (YY) once it is composed
with p : m(X) — O(N). Thence it is possible to define a relative chain complex
(C(X,Y,p),d), where C.(X,Y, p) is as in (6.1.2). See [82] for a detailed construc-

tion.

DEFINITION 6.1.39. Let p : m(X) — O(N) be a ring homomorphism such
that C'(X,Y, p) is acyclic. Then the R-torsion of the CW-pair (X,Y") is defined as
Xy (p) = T(C(X,Y, p)).
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As a consequence of Theorem 6.1.22, the three R-torsions 7x (p), 7x,y (p) and

Ty (p o t,) relate through the following result:
THEOREM 6.1.40 (0.2.2, [82]). 7x(p) = 7x,v(p) - Ty (po ts).

It is therefore natural to extend the definition of relative R-torsion to manifolds

with boundary:

DEFINITION 6.1.41 (89, [53]). Let M be a manifold with non-empty boundary
OM, and (X,Y) a CW-triangulation such that Y is a triangulation of 9M. Then

the relative R-torsion of M is Tar a0 (p) == Tx,v (p).

REMARK 6.1.42 (Remarks 2.12 & 2.62, [59]). If OM # 0, then 7p;(p) is called
absolute R-torsion of M. Moreover, Lemma 6.1.34 holds generally for CW-pairs
(X,Y), |53]. Thus 7x,y (p) is invariant under subdivision and Tas,0a (p) is indepen-
dent of the triangulation (X,Y). In fact, Tar,0n(p) is @ smooth invariant, but not

a topological invariant, in general.

We conclude with a gluing formulas for the R-torsion of CW-pairs, which is a

direct consequence of Theorem 6.1.22:

THEOREM 6.1.43 (Gluing of relative R-torsion; Proposition 1.5, [83]). Let
(X, Y:), i = 1,2, be two CW-pairs such that X := X; U X5 and N := X; N Xy,
with NNY; =0 Vi = 1,2. Then, for . : N — X, ¢; : X; — X the natural inclusions:

Tx,viuvs (P) = T, viun (Pt1) - Txo, voun (pla) - T (pLs)-
Combined with Theorem 6.1.40, we obtain:

COROLLARY 6.1.44 (Gluing of absolute R-torsion; Proposition 0.2.3, [82]). Let
X;, 1 = 1,2, be two CW-complexes such that X := X; U X5 and N := X1 N Xo.

Then, for . : N = X, ¢; : X; — X the natural inclusions, we have:
mx(p) = 7x, (pr1s) - Ty (pras) - T (pre) 7
6.2. Analytic and Residue Torsion of a closed manifold

6.2.1. Analytic Torsion. The spectral zeta function definition of the R-
torsion (6.1.5) motivated Ray and Singer to define in [65] an analytic counterpart
as follows.

Let X be a closed oriented manifold and p : m(X) — O(N) an orthogo-

nal representation. For E, := X x » CN the principal (flat) bundle associated
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to p, let Q(X,E,) be the twisted de Rham bundle with coefficients in E, and
Ay Q¥(X,E,) — QF(X, E,) the Laplacian on twisted k-forms, as usual.

REMARK 6.2.1 ([55]). By Hodge Theorem, Ay has real non-negative eigenval-
ues with finite multiplicity, which accumulate at infinity, and ker(Az) = H*(X),
thus Ay, is strictly positive if and only if Q(X, E,) is acyclic. Let A; be an eigenvalue
of Ay and consider the sum >, (A7, s € C as in Remark 6.1.33. Such sum is
holomorphic for R(s) > 3 dim X and defines a spectral zeta function for Ay as the
meromorphic extension (, ,(s) := ((Ag,s) = >_y 5o A; °[™", which is holomorphic

at s =0.

DEFINITION 6.2.2 (Definition 1.6, [65]). Let X be a closed manifold and let
p:m(X) = O(N) be an orthogonal representation. Then the analytic torsion of

X is the scalar:
- kd
_ k
Tx(p) = klzloeXP <(1) 2dka’p(0)> )
ie. logTx(p) = %ZZ:O<_1)kkdiS<k,p(o)‘

REMARK 6.2.3 (§1, [65]). Let dete Ag := e %) be the zeta determinant
of Ag, a regularized extension of the determinant of a matrix. Then the analytic

torsion can be equivalently written as:

[N

(6.2.1) logTx (p) = Z(—l)’”lklogdetCAk.
k=0

We remark the similarity with Proposition 6.1.32.
In some cases, the analytic torsion is a smooth invariant:

THEOREM 6.2.4 (Theorem 2.1, [65]). Let X be a closed oriented Riemannian
manifold and p : m(X) — O(N) an orthogonal representation. If Q(X,E,) is

acyclic, then T'x (p) is independent of the choice of Riemannian metric on X.

One may wonder why Definition 6.2.2 involves the weight k, or similarly, why
we do not consider a torsion of the form log T (p) = 2 S°7_ (—1)*logdet; Ay,
in analogy with the Euler characteristic. The reason is that such unweighed version

is trivial, as the following results show.

REMARK 6.2.5 (§5.3.2, [67]). For each k =0,...,n, A¥ and A"~* are isospec-

tral, i.e. they have the same eigenvalues, since **A* = A"~*x¥_ Therefore, Vs € C,
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we obtain Poincaré Duality, i.e.
(6.2.2) Chop(8) = Cn—t,p(5),
which yields:

PROPOSITION 6.2.6.
i) neven: £330 (=1)F Crp(s) = Xpo(=1)FE G p(s),
if) 7 odd: Sp_o(=1)F Gep(s) =0

PROOF. i) If n is even, then (—1)""% = (—1)* and:

(—1)Fhs ““)Z DFhCarp(s) = S (—1)"F(n = k)G p(s)

M=

k=0 k=0
=> (=DM = k) p(s) = ”Z V¥ Chp(5) = Y (= 1) kG o (5)-
k=0 k=0
ii) If n is odd, then (—1)"% = —(—1)¥ and:
ST Gop(9) OZT ST DF Guminls) = S0 F Gpls) = = S (=1)F Gpls)-
k=0 k=0 k=0 k=0

O

THEOREM 6.2.7 (2.3, [65]). Let X be a closed oriented manifold and p an
orthogonal representation, not necessarily acyclic. If dim X = n is even, then
Sr_o(=1)*k ¢k p(s) = 0 for each s € C. In particular, logTx(p) = 0 in even

dimension.
By Proposition 6.2.6, we conclude:

COROLLARY 6.2.8. If dim X = n is even, then also > ;_(—1) (x,(s) = 0

Hence this is true Vn € N.

REMARK 6.2.9 (§5.3.2, [67]). Since x(X) = 0 when X closed and odd-dimensional,
the analytic torsion represents a complementary invariant for closed manifolds, able
to distinguish between manifolds when the Euler characteristic cannot. In partic-
ular, given the relationship between x and Index Theory, we can see that analytic
torsion (and R-torsion as well) provides information when Index Theory fails to do

SO.

Although Ray and Singer in [65] could prove that analytic and R-torsion of
closed oriented manifolds share important properties, they could only conjecture
their equivalence. The conjecture was set for the affirmative by Cheeger and Miiller,

independently, around 1980:
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THEOREM 6.2.10 (Theorem 10.22, [55]). Let X be a closed oriented manifold.
Then Tx (p) = 7x(p)-

Finally, also in the light of Remark 6.1.28, we can also define R-torsion and
analytic torsion for non-acyclic representations of X. However, in this case we have
dependence on the Riemannian metric g of X. This is true also for manifolds with

boundary, but we postpone the full statement of the theorem to the next section.

THEOREM 6.2.11 (Theorem 7.6, [65]). Let u € R +— g (u) be a smooth path

of metrics®. If C,.(X, p) is not acyclic, then:

n

Z(_l)k tr ak\kemk

k=0

d d
(6.2.3) T logTx(p) = T logTx (p) =

DO =

where ay, = ;" ¥, : QF(X,E,) — QF(X, E,).

We conclude this section by introducing another homotopy invariant which will

appear in the next paragraphs.

DEFINITION 6.2.12 (§1, [63]). The integer x'(X) defined as:

Y (X) = zn:(q)kkbk, b, = dim H*(X)
k=0

is called secondary (or derived) Euler characteristic of X.

REMARK 6.2.13. We remark that the above definition differs from the one in
[63] by a sign and that the secondary Euler characteristic is the first of a sequence
of homotopy invariants for (not necessarily closed) manifolds X called higher Euler

characteristics:

(6.2.4) Xj(X) =) (DR | by

with clearly xo(X) = x(X) and x1(X) = —x/(X). It is interesting to note that
(6.2.4) is not the only natural generalization of x(X) and x'(X). x/(X) in partic-
ular has appeared recently in many fields; for instance, it is a term of the family
analytic torsion studied in [9]. For more properties and references on higher Euler

characteristics, we refer to [63].
PROPOSITION 6.2.14. Let X be a closed n-dimensional manifold. Then:
X' (X)(1+ (=1)") = nx(X).

4Which exists since the space of Riemannian metrics on X is convex, [55].
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PrOOF. By Poincaré duality:

= (=1)*kby, = Z( 1)kkbn,k_2( D" F(n — k)by,
= (=1)"n > (=1)%b + (=1)"~ 12 ¥ kby
k=0

COROLLARY 6.2.15. If n is even, then x'(X) = §x(X).

REMARK 6.2.16. Corollary 6.2.15 shows that if x(X) does not vanish, then
X' (X)) does not really provide new information. However, x’'(X) provides informa-
tion on X when n is odd and, in general, x;(X) is the first nontrivial homotopy

invariant when x;(X) vanish for each k < j.

6.2.2. Exotic torsions of closed manifolds. We recall from Chapter 1 that
a determinant is a homomorphism det, = € o 7 olog, where ¢ : T — S is an
exponential map. If in addition € has a left inverse, i.e. a (possibly different)

logarithm map loAé :S — T, then:
f()vg o det; . =T1olog.

With this in mind, we will re-write analytic and R-torsion in terms of the

composition of logarithm and trace, i.e. as log-determinants.

PROPOSITION 6.2.17. Let X be a closed oriented manifold and p an orthogonal

acyclic representation. Then:
1 n
log 7x (p =3 Z DEFE trlog AS.

Proor. Since the combinatorial Laplacian A, for an acyclic complex is a pos-
itive definite square matrix, by holomorphic functional calculus (see §1.3.1) we can

define its logarithm as:
(6.2.5) log A§ := i/ log A (A — \)~ld,
2 <€

where ¢ is a closed loop around the spectrum of A§. Thus, its eigenvalues are of
the form log A;, for A; > 0 an eigenvalues of Af. Therefore, (6.1.4) implies that
log det A} = trlog Af and by Proposition 6.1.32 the statement follows.

O
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REMARK 6.2.18. If A} in not positive definite but only semi-definite, i.e. the
complex is not acyclic, then the statement holds for the positive eigenvalues, i.e.
for det(A§ + IIx), with II; the orthogonal projection onto ker Af, by a standard

regularization argument.

In a similar way, let us consider Ay, the restriction to k-forms of the Lapla-
cian A: Q(X,E,) = Q(X, E,) in §6.2.1. Since it is elliptic with non-negative real
eigenvalues, it is admissible and for € a Leurent loop ((2.6) in [22], and §2 in [78]),

ie.
(6.2.6) € :={re™ oo >r>roU{ree’| m>0> -} U{re™| ry <r < oo},

by holomorphic functional calculus ([76]),

(6.2.7) At = —— [ ATH(AL = A)7ldA,

is a holomorphic family for R(s) > 0, which is trace class if in particular £(s) > 2

27
and defines a logarithm as log Ay := —d%lszoA,;S, ie.

i i
6.2.8) logAr = lim — [ A% logMAr — N tdh = — [ log A (A — M) L.
(6:28) tog A = lim 5 [ X logA(Ax =) 71ah = o [ loma (A=)

As shown in [76], the trace Tr(A;®) = [, k¢ (z,2)dz extends meromorphi-
cally to C and such extension coincides to the spectral zeta function defined in
Remark 6.2.1, i.e. (,W(s) = Tr(A,*)|™", which is holomorphic at s = 0; there, its

derivative is:

d —S8) |mer H d —S§\ |mer
Tr(A,; 7)™ = lim Tr(—A, %)™ = =TR¢(log Ag),

d
%Ck”’(o) " ds|s=0 SN0 ds

where TR, is the zeta quasi-trace, the extension of the classical trace to U? with
respect to the complex power gauging. We refer to [39], and §1.5.6-§1.5.7 of [75],
for a general description of the extension of the classical trace to elliptic pseudodif-
ferential operator of any order via complex gauging.

Therefore, logdet; Ay = —(j, ,(0) = TR¢(log Ag) and in conclusion we obtain:

PROPOSITION 6.2.19. Let X be a closed oriented manifold and p an orthogonal

representation. Then:

N | =

log Tx (p) = = > _(=1)*"k TR (log Ay).
k=0
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REMARK 6.2.20 (Lemma 1.10.1, [23]). Since \™* = 7 i~ t°le™Mdt by
Mellin transform and A, is positive definite (in the case at hand), (i ,(s) is equiv-
alently defined as (the meromorphic extension of):

F(ls)/ooo 571 Tr(e t2%)dt,
where e?2* is the heat semigroup associated to Ay, and I'(s) is the gamma function.
Moreover, if A € U(X,A*(X)® E,), a (generalized) zeta function is defined as

(629) C(AyAkI7S) = TI‘(AA,;SNmer — 1—\(1)/ t871 T\I,(AeftAk)dﬂmer.
$) Jo

Consequently, we can consider a pre-existing torsion element, defined at the

operator level:

DEFINITION 6.2.21. We define the torsion logarithm to be the operator:

P n LX,AMX) @ E,)
Tx(p) := 3 @(‘Dka log A, € @ 0,1 & ~ 0,1 . A )
k=0 k=0 [\I/log (X7 A (X) ® Ep)v \IJldg (X’ A (X) ® EP)]
where \Pﬁ;gl are the log-classical® ydos of order 0 and log-degree 1.

In general, given an (n + 1)-tuple 8 = (B, ..., 3,) € R"*1 a chain complex
C and a log operator log : Dy — log Dy € Ay for R-modules Ay, with Dy chain
maps, we can define a generalized torsion logarithm as

1900 = L D15 sy € P 2
k=0 a0 Ak Al

Then, given the regularized zeta-trace TR¢ : ¥%(X, A(X) ® E,) — C, Defini-
tion 6.2.21 yields logTx (p) = TR¢ o Ty (p), i.e. a sum of log-determinants, and
Ty (p) = exp (TR:(Tx(p))), i.e. a product of generalized determinants.

Therefore, we are going to investigate the effect of composing with other traces
for USO(X, A(X)®QE,) := Upn<o Y™(X, A(X)®E,), as different trace evaluations of
T ¢ (p) may generate different log-determinants of A and possibly different invariants
for X. To this purpose, let us recall that the leading symbol o? of B € U™ (X, E)
is a globally defined section over the co-sphere bundle S*X — X. Then:

DEFINITION 6.2.22 (§1.5.8.3, [75]). The leading symbol trace is the linear map
70 : USO(X, E) = C(S*X) defined as m0(A)(z, &) = tr o4(z,&).

REMARK 6.2.23 (§1.5.8.3, [75]). For v € D'(S*X) any distribution, then
Tu0 : USO(X, E) — C, defined as 7, 0(A) = u(9(A)), is a scalar trace.

5For the generalization of classical ¥dos to log-classical 1¥dos of order m and log-degree k we

refer to §2.6.1.2 of [75].
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We investigate the nature of the log-determinant arising with respect to this

trace and define:

DEFINITION 6.2.24. The (exotic) analytic leading symbol torsion T;ad’ﬁ’u(p)
associated to u € D'(S*X) is the character of Ty (p) with respect to a scalar

leading symbol trace®, i.e.

n

u 1 n
log T (p) 1= 10.u(T% (p)) = 5 Y _(~1)" "' Bi 70w log Ay, V5 € R
k=0

As it turns out, such torsion invariants vanish identically:

THEOREM 6.2.25. Let X be a closed oriented n-dimensional manifold. Then
log TR0 (p) = 0 VB € R and u € D'(S*X).

PROOF. Let o8 Ak (g, ¢) and o2 (x,€) denote the principal symbols of log Ay,

and Ay, respectively. Then by Proposition 2 of [61]:

o B2 (2, €) = 2log [¢|T + log 02" (z,

3
A

: Ay _ 2 Ay £ 1€l 2 _ 0N
Since 05 *(x,&) = |£|*I, we have that logoy™(z, \E\) =log () 1=0; thus,

T0(Ag)(z, &) =2log|¢] trI =0 as (x,€) € S*X.
([

The leading symbol trace is only one of the two independent traces on ¥<°(X, E).
In fact, every trace on ¥=C(X, E) is a linear combination of the leading symbol trace

and the residue trace (§2.7.4, [75]):

DEFINITION 6.2.26 (§1.5.4, [75]). The residue trace is a continuous functional

res : VZ(X,A(X) ® E,) — C defined as

= I'O'A . i i
mM%—L(LJt dmﬂ,aaﬁd

It is the unique trace on classical pseudodifferential operators ¥%(X, F) and is

(roughly) complementary to TR¢.

Hence, in this context, the residue trace becomes the unique trace at hand and

we can use it to define:

0,1

61n practice, it’s extension to \Iflog.



6.2. ANALYTIC AND RESIDUE TORSION OF A CLOSED MANIFOLD 142

DEFINITION 6.2.27. The (exotic) analytic residue torsion Ti*" (p) is the char-

acter of Ty (p) with respect to the residue trace, i.e.

I 1 = n
log T (p) := res(T% (p)) = 3 > (~1)F1By reslog Ay, VB € R
k=0

It is, as we shall see, an invariant for X of a complementary behaviour with

respect to the classical analytic torsion.

THEOREM 6.2.28. Let X be a closed oriented n-dimensional manifold and

p:m(X) —= O(N) an orthogonal representation (not necessarily acyclic). Then:
(i) if n is odd, log T (p) = 0 V3 € R,

(ii) if n is even, log T>" (p) is a smooth invariant if 8 equals:
(6.2.10) 1:=(,...,1) or w:=(0,1,...,n).

The corresponding residue analytic torsions are equal, respectively, to the
Euler characteristic x and the derived Euler characteristics x’ (Definition

6.2.12):
log T3¢ (p) := log T (p) = X(X, B,) = x(X)rk(E,)  and
(6.2.11)  logTx*(p) :=log Ty *(p) = X'(X, E,) = X' (X)rk(E,).
Finally, for a smooth path of metrics u € R — gx(u) we have:

res

(6.2.12) log T

l\.’)\»—~
=
+
—
]
@
[/J
w
\_/

du
i.e. it is a smooth invariant (and even if it vanishes, it has the same form

of (6.2.3)).

PRrROOF. (i) Let n be odd. Since differential operators and their inverses are
odd-class” by Lemma 7.1, [39], so are Ay — Al and (A —AI)~!, with A ¢ spec(Ay).
Moreover, as the symbol of log Ay, € U°(X, A(X) ® E,) has asymptotic expansion:

OBk (2, 8) ~ D B 5)_2log\g|+z /log)\aAk V7 (@, 6) dx

>0 j>2

we have 08¢ 2 (1, ¢) = 3= [, log A o8 )_1(35,5) d)\, which is odd in ¢ because

n is odd, i.e.:

w6 = - [ g oG g ar =
71—

TSee §0.2.
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= g g (0, 6) r = o ),
T Je

We remark that, generally, the various homogeneous terms U;»OgAk (z,€) do not
define a global density on X, while alfff A’“(sr:, £) does, as observed by Okikiolu in
[60]. Therefore®, Jiej=r tr o8 2% (1 €) deS = 0 and reslog Ay, = 0, which clearly

yields log T;(es’ﬁ (p) = 0 for each B € R*+1,

(ii) Let now n be even and u € R + g% (u) be a smooth path of metrics. Since
log T)rfs’ﬁ (p) is a smooth invariant if and only if it is independent of the Riemannian
metric gx, i.e. %logT)r(es’B(p) = 0, we need to compute %res log Ar. We know
that the Hodge operator depends smoothly on the metric gx, so *, = %, (u) is
a smooth family for each k and A; = Ag(u) is an admissible smooth family of
constant order.

Since #; " = (=1)%%,_, and L (x; ") = 2 (id) = 0,

_ 1 d . _ 1.
0= @(*kl) * k! 7 k) = i *ol g TR g
and if we set ay := ' &, = — &, x 1 AR(X E,) — AF(X, E,), we have:

X d d
6.2.13 Ap = —Ar = —(0d di— 105
( ) k= Bk du(kk+k1k1)
= —ay0pdy + Opop1dy — dg—100—10k—1 + dp—10k—100;,

as in the proof of Theorem 2.1, [65]. Notice the difference in sign due to our
definition of Laplacian.

As all Aj have spectrum on the non-negative real axis, we can consider a
Laurent loop % independent of u, thus defininig a differentiable family log Ay, of

constant order 0. Hence, by Proposition 7 of [61], we have:
d d
e log A}, = res (du log Ak> .

Let II; be the orthogonal projection onto ker Ay = H*(X); as H*(X) is an homo-
topy invariant, Il is a finite rank operator that does not dependent on the metric
and Ay + Il are a differentiable family of invertible operators of constant order.

This yields L (A, +1I;,) = Ay,

U

8Clearly, if f is an odd function on RN, N odd, and SNV ~1 is the (N — 1)-dimensional sphere

/SN_I f(@)dsS = = /S oy Jew)deSs = = /S L J@)dsS.
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Since spec(A, +1IIj) = spec(A,) \ {0}, log(A, +1II;) and log A, can be defined

for the same contour ¥ and

log A —log(Ag + 1) =

o ™

/log)\(Ak— A 1dA—21/ log \(Ay, + I, — A)~1dA
€

= —/ log A\[(Ar = A) 7 = (A + 11, — )71 dA.
Since (A, — N7t = (A + I — N7t = (A, + I — )7 HI(A, — )Y, we can
conclude that

log A, —log(A, +1I;) € UT°(X,A(X) ® E,).

In particular,

d

d

Since the residue trace vanishes on ¥~°°(X,A(X) ® E,), we have
res ilo A, | =res i10 (A + )
du B7F) T du Bk M)
By Lemma 1, [61], we also have:
d .
—log(A, + 1) = Ay (A + 1)+ S € WYX, AT* X ® E,),

du

where S is a sum of commutators. Hence, in conclusion:
%res log Ay, = res <CZL log(A, + Hk)> = res (Ak(Ak + Hk)_l) = res ((Ak + Hk)_lAk) .
We remark that Py := (A, 4 II) ! is a parametrix for A, since:

I = Py(A, +10;) = PuA, + PpIl,,  where  PuIl, € V(X A(X) ® E,).

For the sake of notation, we will only write ¥~°° from now on. By (6.2.13) and the

linearity of res, we write:
reS(PkAk) = —reS(PkO{k(Skdk) + res(Pkékak+1dk)

@ @

—res(Predy_ 0y _10p, ) +res(Prdy_10;_10y)

® @

The following identities for the Laplacian:

(6214) dk)Ak; = Ak-i,—]_dk 6]@—1Ak; = Ak)—l(sk—l

hold also for the parametrix Py. In fact, since A, P, — 1 € ¥~°°, we have that both
dp Ay Py —di and Ay | Py1dy —dj are smoothing. So after subtracting these terms,

by (6.2.14) we obtain Ak+1(dkpk — Pk+1dk) € U~°°, Hence di P, — Pk+1dk ISh A
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and 0y 1Py — Py_10,_1 € ¥~°° can be proved in the same way. These two identities

can be used to rearrange @ and @:
@ = —res(Pray0,dy) = —res(0,dy, Pray,) = —res(0y, Pe1diay,)
= —res(Py0,dyy,)
@ = —res(Ppdy_10_10p_1) = —1es(6_y Prdy_y0_1)
= —res(Py_16,_1dy_10_1)
On the other hand, since o, — PyA oy, € ¥~°°, we can decompose:
— PuS,dpoy, — Prdy_10),_ja, € U™
and use this to rearrange @ and @:
@ = res(Pyogapt1dy) = res(di Prdrags1) = res(Pypr1didpagr1)
=res(oy ) — 18(Pht10p 1y Qpyy)
@ =res(Pyd_10,_1y,) = res(ax) — res(Prddiay)
Now, for 7, := res(Pyd,d, ;) we can write:

@ = Yk @ = res(ak_H) = Ve+1> @ = —Y—1, and @ = res(ax) — Yy,

thus obtaining:

res(PpAy) = res(ay) +res(ag1) = Vo1 — 27 — Vo1
Note that res(ay) = 0, since ay, € End(A*(M, E,)), and 7y = res(ayp). Then:

d res,
Q@IOgTXBSﬂ(p) =

n

=D (=DM B reslog Ay =D (=) By res(Pedy)

k=0

k=0
Z 1R By res(ax) + Z(—l)kH Br res(ayqq)
k=0

k=0

3

n n

=2 (D" By = D (DM B v — D (D B ey

k=0 k=0 k=0

n
= —Bo res(ap) + Z D** (B — Br—1) res(ay)
k=1

E\%s

n n—1
(1" B i + Z(*l)kJrl Br—1 1 + Z(*l)kﬂ Brt1 M

i
o

|
M:

(=1)**(Br = Br-1) res( +Z DR (Brer = 28k + Br—1) %

ol
Il
<]
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where we can require S_1; = 0 since vy, = 0.

At this point, we seek those 3 € R"*! such that By 1 — 28x + Br_1 = 0, i.e
a solution of the recurrence equation Sipy+1 = 28 — Br—1. As the characteristic
polynomial is 22 — 2z + 1, a general solution must be a linear combination of the

two independent solutions By = 1 and S = k, for each £k =0,...,n, i.e:
1=(1,...,1) or w=(0,1,...,n).

Hence, for 3 =1 or 3 = w, we can conclude % log T;}S’ﬁ(p) = 0 and log T)r(esﬁ(p)
does not depend on the Riemannian metric.

Now, from Theorem 1.8 of [74], we have:
(6.2.15) —%res log A, = (k,p(0) + dimker(A,),
which allows us to write:
log T)r(es,ﬂ(p) _ Z( )* BrCi.p(0) + zn: )k By, dim ker(A,).
k=0

Thus, if 8 =1,

n n

log TR ( Z V¥, (0 z:(—l)’C dimker(A,) =0+ x(X, E,)

k=0 k=0
by Corollary 6.2.8, while if § = w, since n is even,
log 7™ (p) = > (=1)Fk ¢p(0) + > (—1)*k dimker(A,) =0+ x'(X, E,)
k=0 k=0

by Theorem 6.2.7.
O

COROLLARY 6.2.29. If 3 = 1 or § = w then log T%>”(p) is a smooth invariant.

In fact,
log Tx"(p) = X(X,E,)  and  logTx™(p) = gx(X, E,).

REMARK 6.2.30. The res-log of a generalized Laplacian is linked to the index

of the associated Dirac operator. In fact, by (6.2.15), we can write

ind(d + 6)" = = (reslog(d + &) (d+ 0)~ —reslog(d+ 6)(d+6)™).

DO =

This can be accounted for the fact that the behaviour of the residue torsion is

complementary to the one of the analytic torsion, as Theorem 6.2.28 showed.
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REMARK 6.2.31. Equivalently, since ((0) = — dim H*(X) when dim X is odd
(Theorem 7.6, [55]), part (i) follows directly from Scott’s formula (6.2.15), which
could also be used to prove part (ii), together with an approach similar to the one

of Theorem 2.1 in [65]. Indeed, we can express the residue torsion as:

n

log T™" (p) = Z( 1)*Br. Cr.p(0 Z VeBy, dimker(A,)

k=0
and calculate - log T5¢™ P(p) in this case. As ker(A,) 2 H*(X), it is independent

of the metric and we have:
d d <
v 1 res ﬁ el
T = 2o > (=1 Bk G (0).
k=0
We can therefore evaluate for s = 0 the derivative with respect to u of the mero-

morphic extension of

n

f(u7s) — Z(—l)kﬂk FL /oo ts—lTr(e—tAk(u))dt7

k=0 (s) Jo
which is well-known to be analytic at s = 0. Then the statement will follow from,
Log TR (p) = 2 f(u,0).
By the proof of Theorem 2.1, [65], we can differentiate under the integral sign,

thus obtaining:

n o) a
(6.2.16) / —Tr(e W) gt
kzzo (s) Jo 5‘u (e )
= 1 [>*.0 .
— s 5 ——Tr (e tAWA dt
20 ), () dt.

s ZTr (e %) = —t Tr (e_tA’fAk). By (6.2.13), (6.2.14), and the traciality of

Tr, we can write:
Tr (725 Ay) = ~Tr (¢7*2%8da) + Tr (724 dda) = Tr (724 3da) + Tr (¢~A+dda) .
If we set, ¢y, := Tr (e"*A%dda) and 6 := Tr (e~*4+6da), then

Tr (eftA’“Ak) = Pr+1 — Ok + o — Ok—1

and we can rewrite (6.2.16) as

%f(u, 5) = 1“(13)/0 t° ;}(*1)“1& (Pr41 — Ok + o — O —1) dt.

By standard manipulations, we have:

n n—1

D DB (prn = Ok + o = Or1) = D (=D (B = Br-1)er + (Brar — Br)00]

k=0 k=1
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+(Bo = B)00 + (—1)"(Bu1 — Bu)pn = ()

since g = 0, = 0. If we also set 9, := Tr (e‘tAkAkoa) = i +0k, i.e. Oy =V —pr,

we can write:

®

(=) (2Bk — Bo—1 — Brs1)en + Z(*l)kﬂ(ﬂkﬂ = Br)Tr (e~ "2+ Aga)

k=0

(1R 28k = Bro1 = By )k + Y (= 1) By — ,Bk)%Tr (e a).

k=0

M- I1-

~
Il
-

Hence, (6.2.16) becomes

Sl (0:5) = YD B =28+ ) [

= )
@

EY D - B [T e ar
k=0 0

©)

On the one hand, via integration by parts, @ becomes

Z(—l)k+1(5k+1 — Br) /OO 7 (e a) dt = Z(_l)k+l(ﬁk+l — Br)sC(a, Ay, 5).

k=0 I'(s) Jo k=0

Since res(a) = 0, ((a, Ag, s) is regular at s = 0 and s¢(«, Ag, s) vanishes there;

thus @ =0.

On the other hand,

1 oo 1 [eS) - F(S " 1) B
R s = ST tA — 2T AA 1 A
(s) /0 t*prdt ) /0 t*Tr (e déar) dt O C(A, "dda, Ay, 5)

= sC(A} 'dda, Ay, 5), [(s+1) = s(s),
is holomorphic at s = 0 and lim,_,q s(j(A;ldéa, Ay, s) = %res(A;ldda). Therefore,
for s =0, @ vanishes if Bxy+1 — 28k + Bk—1 = 0, which has solutions (6.2.10) as in
the proof of Theorem 6.2.28. Thus, - log T>" (p) = 2 f(u,0) = 0 for (6.2.10).
Finally, (6.2.12) can be retrieved from @ in the following way. In fact,

limg 0 sC (o, Ak, s) = ires(ay) and for 3 = w we have:

d 0 1 &

TR T () = = f(1,0) = 5 (1) res(a).
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An application of the same technique yields a motivation for the weights in the
definition of the analytic torsion. In fact, by Definition 6.2.21, we could study a

more general analytic torsion,
1 n
log T (p =3 Z_: 1)5+18, logdetc Ay, B € R,

and find the weights 3 that correspond to a smooth invariant of X, in analogy with
Theorem 6.2.28. In fact, (6.2.15) can be accounted for the underlying similarity of

the results for analytic and residue analytic torsions.

THEOREM 6.2.32. Let X be a closed oriented n-dimensional manifold, with n
odd and p: m1(X) — O(N) an acyclic orthogonal representation. Then the gener-

alized analytic torsion log T)ﬁ((p) is a smooth invariant if 8 equals:
(6.2.17) 1=(1,...,1) or w=(0,1,...,n).
If 5 =1 we have that the log T)l}(p) vanishes identically.

Proor. The proof is a generalization of the proof of Theorem 2.1, [65], and
Remark 6.2.31. Set

u, s) : %Z Bk/ 51T (e 4% dt, R(s) > 0.
k=0

Then f(u,0) = logT% (p) and for R(s) large:
9 I /oos —tAx A
(6.2.18) - flus) = 5 D (~D)MB em (e Ak) dt.

2
k=0

If we set ¢y, := Tr (e~*A*dda) and 6 := Tr (e '**dda) as in Remark 6.2.31, then

by the same manipulation we obtain

(%f(“? s) = %/0 ¢ ;( D)*(Brt1 — 2Bk + Be—1)prdt
®
+ % (=1)*(Brs1 — Br) /000 tS%Tr (e a) dt.

k=0

©)

By integration by parts, @ becomes

n 00
g Z k+1 ﬂk+1 — ﬂk)/o ts_lTI“ (e_tAkOé) dt.

k=0

=:g(u,s)
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and since g(u, s) has no pole at s = 0 (Theorem 2.1, |65]), @:0 at s =0. On the
other hand,

/ t°Tr (efm’“déoz) dt =T(s + 1)Tr(AL AL dsa) ™" =T(s + 1)¢(A} 'dda, Ay, s)
0

is holomorphic at s = 0, since res(A; 'dda) = 0 as A, 'dda is odd class (as in the

proof of (i) of Theorem 6.2.28). Therefore, for s = 0,
1 n
(D=5 DD Brer = 285 + Br-1)C(A b, A, 0) = 0
k=1

if Br11 — 28k + Br—1 = 0, which has solutions (6.2.10) as in the proof of Theorem
6.2.28. Thus, L log T (p) = 2 f(u,0) = 0 when (6.2.10) hold.
The fact that log T)l; (p) = 0 follows from Proposition 6.2.6.

O

COROLLARY 6.2.33. Let X be closed and let T (p) = 3 @} _,(~1)*+'8), log Ay,
be its logarithmic torsion, for a choice of orthogonal representation p. If n is even,
non-trivial torsion invariants are the e residue torsions for 5 = 1 or § = w and

coincide with the classical or derived Euler characteristics:

T w n n res,l
log T3 (p)' = res(T;(p) = X/ (X, Bp) = 5X(X, E,) = 5 log T} L(p),

while if n is odd, a non-trivial torsion invariant is the analytic torsion for 8 = w

and coincides with the R-torsion:

TR¢(T;(p)) = log Tx (p) = log 7x (p)-

COROLLARY 6.2.34. The class of the logarithmic torsion Ti (p) € WL /[WE W]
for 5 = 1 or § = w does not depend on the metric and therefore is a smooth

invariant of X.

PrOOF. Theorem 6.2.28 shows that the residue torsion is a smooth invariant if
B =1or 3 =w. Since res is the unique trace for ¥% := VZ(X, A(X) ® E,) (§1.5.4,
[75]), it pushes down to an isomorphism res : UZ/[U% ¥%] = C by Lemma 1.2.4.
Hence,

d__ d ) d
s (5T 0)) = o (Th()) = 2108 T3 6) =0 = ZLTi(p) =0
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6.3. Torsion as a LogTQFT
Theorem 6.2.28 can be used to define a LogTQFT. Let us consider
Fy : Cob!, — C-Alg, M s Fy(M) := O%(M, A(M)).

Then F7 is a strict pretracial monoidal product representation (see (2.24) of §2.1,
[72], for the proof). Thus, for X € mor(My, M;), X =Y, UY, we can define a
simplicial map log : NCob,, — F7 1(Cob,,) as

(6.3.1)

15 15
logpryung, X = Tageuin, © Ky (2 @(_1)k5k log Agy, ® 5 @(‘Dkﬂﬂk log Ak,h) )
k=0 k=0

with T MouUM, O Ky - F(YOI_IYl) — F(M()UMl)/[F(MouMl),F(M()UMl)] as usual.

Then, with respect to the residue trace, we obtain as character:

— 1« 1 ¢
res (IOg[ziv[(,uMl X) =—3 Z(fl)kﬂﬁk reslog Ak v, + 5 Z(fl)kﬂﬁk reslog Ay,
k=0 k=0

(6.3.2) —log Ty + log Ty™".

THEOREM 6.3.1. (6.3.1) is a LogTQFT.

PRrROOF. We only have to check log-additivity, which follows in a straightfor-
ward way from the additivity of res (log@,ol_I My Y) and the fact that res is the
unique trace for %, The additivity of res <log§40|_| My Y) is also straightforward
thanks to the strategic choice of the sign.

O

REMARK 6.3.2. res (logjﬁwouM1 Y) is non trivial only if n is odd (and hence
dim is even). Also, the log-determinants (6.3.2) equal the homotopy invariants

X(My) — x(My) if B=1or xX'(My) —x' (M) if 8 = w.

If we restrict to the category of h-cobordisms h-Cob,,, then we can consider
the character arising from the zeta trace. By h-Cob,, we mean a category whose
objects are obj(Cob,) and whose morphisms W € mors.cob, (Mo, M), called
an h-cobordism, are cobordisms W € morcop, (Mo, M7) for which the inclusions
i : M; — W are homotopy equivalences (or, equivalently, such that M, are defor-

mation retracts of W).

REMARK 6.3.3. If we want to obtain smooth invariants, we will need acyclicity.
Thus, the objects should be considered a pairs (M, p) where p : 7 (M) — O(N)

is an acyclic representation (generating the flat associate bundle E,). In this way,
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m (W) = m(My) = m(My) =: m and for every composable h-cobordism we will
have the same orthogonal representation p : 71 — O(N) (and thus the same coeffi-

cient bundle E,) to consider.

Therefore, let us consider a log-functor defined as (6.3.1), but now restricted
to h-Cob,,, i.e. log : Nh-Cob,, — Fy11(h-Cob;). Then, with respect to the zeta

trace, we obtain as character:

TR¢ (10g§40|_|M1 Y) == (=118, TR¢log Ay.y,

|~
(-

b
Sl
o

3

+ (—1)k+1ﬁk TRC 10gAk,y1

N | =

k

=—log Ty, (p) +log Ty, (p),

Il
o

which is, for 8 = w, the difference of the analytic torsions of the boundary compo-
nents. The latter coincides, for n even, with logdet 7W®(X), where 7W2(X) is the

Whitehead torsion of X (see §3.4, [72] for details).

REMARK 6.3.4. When restricted to h-Cob,,, the character res (logf\%l_”w1 Y)
is always trivial for § = 1 or 8 = w. In fact, it would depend on the difference
x(Mi) — x(Mp), which is always vanishing when M, and M; are homotopically

equivalent.

6.4. Residue Analytic Torsion for families

We recall from §4.4 that if M — M — B is a smooth fibre bundle with
closed fibre M = M, b € B, and £ — M is a family of vector bundles with flat
connection V¢, we have a natural family of de Rham operators 2 = dM 4 §M
acting on Qyer (M, E) = C®°(B, W) (recall that W := 7, (A (M) ® £) — B) and a
family of Hodge Laplacians AM := (dM + 6M)2 € U2 _ (M, A (M) ® E).

Together with the families of exterior derivatives and coderivatives, we also have

the natural exterior derivative over the total space M, d™ : Q(M, ) — Q(M, E).

PROPOSITION 6.4.1 (Proposition 3.4, [9]). d™ is a flat superconnection of total

degree 1 on Ay (M) ® & such that
(6.4.1) dM=dM + VW +ip,

where ir € Q%(B,Hom(W*,W*~1)) is a 2-form (which depends on the curvature
T of the fibre bundle).
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The family of Hodge operators defining 6™ also defines an adjoint supercon-

nection
(6.4.2) M =M (V)" —TA-

(Proposition 3.7, [9]). Together with d*, we obtain the superconnection d™+5™ €
A(B, U1 (M, A (M) ®E)) (Proposition 3.9, [9]) adapted to the family of de Rham
operators dM + 6™ (Definition 4, [62]). In the same way, the Laplacian over M,
AM = gM 4 M QM E) — UM, E), is adapted to the family of Laplacians
AM  Quert (M, E) = Qyert (M, E).

Let H*(M, E), = @™ H(My, E) be the cohomology of (M, Ey), dy).
It is the fibre of a Z-graded vector bundle H*(M, E)) — B, the cohomology bundle
of W — B (Definition 3.13, [9]). Since &€ — M is flat, the Chern character of
H*(M,E), ch(H*(M,E)) € H*(B,R), actually corresponds to rk(&)x(M) € Z.
By Hodge Theory,

I?[*U\f7 E)b = ker(db + (51,) = ker(Ab),

which assures the existence of Z-graded vector bundles ker(d™ + §™) — B and
ker(AM) — B, with H*(M, E) = ker(d™ + §M) = ker(AM). Let 115~ denote the
projection of Qe (M, E) onto H*(M, E).

REMARK 6.4.2. For Q € A(B,¥™(M,¢)) there is a natural notion of classical
symbol (with differential form coefficients) and, when Q is invertible and admissible
with spectral cut 6 (Definition 4.3.5), one can define complex powers and logarithms

as for the single operator case:

i) Qp° =3 [, A% (Q = A)7tdA € A(B,¥(M,€)) (Lemma 1, [62]);
i) logy Q = |, _,Qj and (logy Q)po) = logy Qo) € YVer (M, €) (Lemma 2,
[62]).

If Q is not invertible, then Q + Ilg, is so, where llg is the orthogonal pro-
jection onto ker Qjo, which is a well-defined vector bundle over B if we assume

dim ker(Qjo))» constant. In this case, log Q :=logy(Q + Ilg, ).

REMARK 6.4.3. For a family of ¢do-valued forms Q € A(B,¥™(M,¢)) it is
possible also to define a Wodzicki residue trace and a zeta-trace in a natural way
(83, [62]). In particular, there exists a well-defined residue trace density res,(Q) €

C*®(M,7*A(B)) (which is defined in analogy to the single operator case), and via
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integration along the fibre a residue trace:
res(Q) := / res; (Q)dzr € Q*(B).
M/B
If also Q = Zgi’%B Q) € A(B,¥™(M,&)) satisfies ordQjy) = ¢o > 0 and
(6.4.3) q < qo Vk=0,...,dim B, qr, := ordQp,
then a res-logarithm can be defined (§3, [62]):

reslog Q := res; (log Q)dx € Q" (B).
M/B
THEOREM 6.4.4 (From Theorem 3, [62]). Let Q € A(B,¥™(M,E)) be admis-
sible and satisfy (6.4.3). Assume also that ker Q) — B is a well-defined vector
bundle and consider R € A(B, ¥ (M, £)) such that Ry is a differential operator
for each k. Then:

1
—q—res (Rlog Q) = ¢(R, Q,0)[™" + tr (RIker Q[o]) € Q*(B).
0

REMARK 6.4.5 (§4, [62]). A (-regularization is clearly well-defined also in this

family setting, hence giving rise to a meromorphic map ¢(R, Q,0)|™"

. Moreover,
as for the single operator case, ¢, res and TR for families are related by the same

formulas.
This applies to superconnections, thus yielding:

THEOREM 6.4.6 (From Theorem 4, [62]). Let Q be a superconnection adapted
to a smooth family of formally self-adjoint elliptic pseudodifferential operators
P = Qj € AY(B, ¥ (M, E)) satisfying (6.4.3). Assume also that ker Qi) — B
is a well-defined vector bundle. Then:

1 mer *
o (Q*log Q%) = ¢(Q%%, Q%,0)[™" + tr (Q* ker o)) € *(B)

is closed and ¢(Q%, Q2,0)|™ is exact. Therefore:
1
o (Q*log Q%) = tr (Q**ker o) € H*(B,R)
0
COROLLARY 6.4.7. —ﬁres log Q* = tr (Mker 0,y ) € Z

PROOF. As ker Qgq) — B is assumed to be a well-defined vector bundle, the

function b — tr (err Q[U],b) is locally constant.
O
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DEFINITION 6.4.8. Given an (n + 1)-tuple 8 = (Bo,...,B,) € R""!, we define

the family torsion logarithm to be the operator:
1 dim M
TM =5 Z (_1)k+1ﬁk IOg A-I/cvl € A(Bv \IJZ(M’(‘:))

2
k=0

The family analytic residue torsion ﬂﬁs’ﬁ is the class in H*(B,R) of the character

of T,, with respect to the residue trace, i.e.

dim M
TP = res T = 5 Z (—1)** 18 reslog A € H*(B,R).
k=0

THEOREM 6.4.9. Let M — B be a fibre bundle with closed oriented n-dimensional
fibre M and & — X flat Hermitian vector bundle. Then:
i) if n is odd, ﬂﬁs’ﬁ =0VB e R,

ii) if n is even, .7, /fjs’ﬁ is a smooth invariant if 5 equals:
(6.4.4) 1=(1,...,1) or w=(0,1,...,n).

The corresponding family residue analytic torsions are the Euler charac-

teristic and derived Euler characteristic of the fiber:
Tot = x(X, E) and T =X(X, B).

Finally, for a smooth path of vertical metrics u — g™/5(u) we have

n

d res,w 1 k+1
— T () =3 Z(—l) resA\, A = (agp)ves-
du 2 — RZ,_JO

Proo¥. (i) By (6.4.1) and (6.4.2), d™ + 6™ satisfies (6.4.3) and is a smooth
form with differential operator coefficients. Then log AM—~log AM € A(B,V%*(M,&))
(Lemma 2, [62]), and hence log AM, is a sum of forms whose coefficients are log-
arithms of differential operator, hence odd-class and thus the integration of the
fibre of its residue density vanishes in odd (fibre) dimension, as in the proof of (i)
Theorem 6.2.28.

(ii) If n is even, then the proof works as for the single operator case, fiberwise.
In fact, the change in the metric generates the vertical multiplication operator Ay
for which the family Wodzicki residue vanishes, as explained in §3 of [62].

O

REMARK 6.4.10. As for the single manifold case, we can define a LogTQFT

(this time a higher one) from the family residue torsion:

log : NFCob,(B) — HC, (F(FCob))
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with log g, g, W = 9;22’5 - 9;2?6 € H°(B). Its properties are easy to check
and it represents a rather simple higher LogTQFT, as its higher order terms are all

Zero.

6.5. Manifolds with boundary

6.5.1. Analytic Torsion of manifolds with boundary. When X has a

non-empty boundary Y, Green’s formula yields:

(6.5.1)
<Aw,9>X:(w7A9)X+/w/\*d9—/9/\*dw—|—/6w/\*9—/50/\*w,
% % Y Y

for w,0 € Q(X,E,) ((2-8), [18]). Hence, A : Q(X,E,) — Q(X, E,) becomes self-

adjoint when relative or absolute boundary conditions are imposed.

DEFINITION 6.5.1 (§2.1, [18]). Relative and absolute boundary conditions, re-

spectively, for A = dé + dd are defined as:

Ryw =0 Avyw =0
Relative: Absolute:

Ry(d+ §)w = Rydw =0 Avy(d+ 0)w = Aydw =0

Its realization Ag is the L2-closure of an unbounded operator acting like A and
with domain {w € Q(X,E,)Ryw = 0,Rydw = 0}. When absolute boundary

conditions will be considered, then we will write A 4.

REMARK 6.5.2 (§7, [12]). Relative, resp. absolute, boundary conditions are

equivalent to:

Ryw =0 Ayw =0
Relative: Absolute:

Avyoiw =0 Ryow = 0,
i.e. are mormal (according to the terminology in §3.3, [26]). For second order

operators, this stands for boundary conditions of the form

T,
7= """ |:c®X, E) = 0, E)® C=(Y,E), with
Ty

To=so(y)y+1T, and T =s1(y)y0 + S1,07+ 17,

with so(y) and s1 (y) surjective endomorphisms. For example, so(y) = R, s1(y) = A,

and T} = S1,0 = T = 0 for relative boundary conditions.

With relative, resp. absolute, boundary conditions, (6.5.1) yields that A be-

comes self-adjoint. Therefore the realization Ay z, resp. Ay 4 has a discrete set
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of non-negative eigenvalues accumulating at infinity and a corresponding orthonor-
mal basis of eigenvalues for L?(X, F), which satisfy the boundary conditions (for
instance, by Lemma 1.9.1, [23]).

Each Ay p has R™ as a ray of minimal growth, i.e. § = 7 is an Agmon angle

for Ay p. Therefore, for £(s) > 0 and % the Laurent Loop (6.2.6),

AL = — )\ * (App — N7l

B o
is a holomorphic family ([77], [78]), and is trace class for R(s) > n/2 ([77]). There-
fore, if Tr is the classical trace, Tr(A, %) is holomorphic for %(s) > n/2 and by
linearity of Tr:

d d .,
gTr(Ak B) = Tr(dsAka) for R(s) > n/2.

Tr(A,3) and Tr( ;AL 5) can be extended meromorphically and are holomorphic
at s = 0 (by expansion (1.12), [28]). Therefore, if we define the zeta function to be

the meromorphic extension (i 5(s) := Tr(A, 3)|™", we obtain

d d

%Ck’B(S) = T‘r(dSA;B”mer _ —Tr(log Ak,B . A];SB)Vnerv

where:

log Ay :hm—/ log \\™° (Ag.p — \) " tdA
%

s\0 27

has been defined by Grubb and Gaarde, (2.5) in [22]. Therefore by [28] we can

conclude:
LEMMA 6.5.3.
d
(652) %CAMB(O) = 7TR<(10g Ak,B);

for TR, the generalization of the (-trace to Boutet de Monvel calculus, discussed

in [28].

REMARK 6.5.4 (§2.2, [18]; §7, [65]). The spectral zeta function of Ay 5, with
B either R or A, is also equivalently defined as:

Cr,8(8) == ((Ap,, s Z)\ f = -/000 57 Tr (etA’é(I—Hk)) dt

for \ ¢ spec(Ag), e!A#5 the heat operator associated to A g, and IIj, the orthog-
onal projection onto the generalized ker(Ay 5). The generalization to (A, Ak 5, s)

is straightforward.
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LEMMA 6.5.5.

n

(6.5.3)
k=0

> (D kGr(s) =

n

k=0

158

(=)™ (= 1)FkG.a(s)-

ProoF. Since Ay r, resp. Ay 4 has a discrete set of non-negative eigenvalues
accumulating at infinity, the proof follows the one in the closed case, i.e. the proof

of Theorem 2.3, [65]. Let A # 0 an eigenvalue for Ay g and denote by
Err(\) = {w e (X, E,)| Aw = \w, Ryw = Rydw = 0}
the associated eigenspace. Then:
AL\ = = léd
R P

and  AY(N)

are orthogonal projections of & r(A) onto Frr(A) = {w € Er(N)| dw = 0}

and Gy r(A) = {w € & r(N)| dw = 0}, respectively. Also, by construction,
AL (X)) + Al(XN) = 1. Since the map %d is an isomorphism with inverse %5, we

conclude G g (A) = Fiy1,=(A) and thence:

9k,R(A) = |G, RN = [Frt1,R (N = fir1,r(A).
Therefore:
Ger(s) =D AT [Er N =D A (frr(N) + frrr.r(V)
A#£0 A#£0
e Z A8 gk 73 + gk_l,n()\)) and
A#£0
n n—1

D (=DFkGr(s) Z I A fer(V) = =D (=DFY A ger(N)
k=0 k=1 A#£0 k=0 A#£0

By Proposition 0.3.3, ¥R = Ax, which yields Fj z(A) = Gp—k,4(A) and there-

fore fk}R()\) = gn,k,A()\) and

(6.5.4) Ce,R(8) = Cuei,A(S).
In conclusion:
n n—1 n
S DFERGR(s) == (DF DI A ger(N) =D (—DF I AT fir (M)
k=0 k=0 220 k=1 220
C Y A g kA = 3D ST A g A ()
k=1 AF#£0 k=0 AF#£0
1 ST A g a() = (1) S (- 1)PEG A(S)
k=0 A0 k=0

O
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REMARK 6.5.6. It came to our attention that (6.5.3) had been proven by W.
Liick, [47], Proposition 2.10 (unsurprisingly called Poincaré duality for analytic
torsion). We stress the fact that the approach is very similar and is based on the
proof of Theorem 2.3, [65]. This latter result can be obtained as a corollary for n

even and Y = (), since in this case (x () = (x,4(s) = (x(s), tautologically.

COROLLARY 6.5.7.

n n

> (=1 Cr(s (=1)FCk,a(s) = 0.
k=0 k=0
PROOF. Since Cx r(8) =k, 4(s), from (6.5.3) we have:

n

0="> (-1)*kCer(s) + (-1)"

k=0

(—1)"kCx,a(s)

n

2
k=0
> (D kGR () + (<" 3 (<) kG m(5)
k=0
2

k=0

n

DD kGr(s) + (1" Y (=1)"F(n = k)R (s)

k=0 k=0
= (—1)*kGr(s) + Z(—l)k(n — k)Cr,r(s)
k=0 k=0
=ny (=1)*Gr( "n Z )* k(s
k=0

O

REMARK 6.5.8. Unlike for even dimensional closed manifolds, > ,_,(—1)*k¢x = (s)
may not vanish in general, as we can see from the following examples.
Let X = [0,R] (i.e. n =1 and Y = {0} U {R}); the eigenvalue problem for

Ay = —9? with relative boundary conditions is just the harmonic oscillator with

Dirichlet boundary conditions. As it is well-known, its eigenvalues are A = ”;’52,

n € N, and therefore:

2s ) R25
C(LR(S) = 2ﬁ Z n- — 2ﬁCR(28),
n=1

where (g (s) is the Riemann zeta function. Consequently,

1
(6.5.4) 2s

S EGeAls) = ~Gals) 2 ~Gom(s) = 2w (29)

k=0

does not vanish identically and Zi:o(*l)kak,A(o) = —2(r(0) = 1.
Analogously, let now X be the cylinder [0, R] x S*, with = € [0, R] the normal
coordinate; hence, A = —9?2 + AS" and CGr(s) = Cor(s) + (.= (s) by Corollary
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6.5.7. Therefore,

2

Z(_l)kak,R(S) = —(,r(8) +20,r(s) = @.r(s) = Co,r(5) = Co,4(5) — Co,r(5)-

k=0
Since Ag with relative/absolute boundary conditions corresponds to the Laplacian
on functions with Dirichlet /Neumann conditions, we have (y_4(s)—Co,=r(s) = ng (s)

(§3.2,[37]). In particular, by an easy calculation one obtains that (5 (s) = 2(r(2s).

As in the closed manifold case, once a notion of zeta function holomorphic at

zero is established, one can define the analytic torsion.

DEFINITION 6.5.9 (7.2, [65]). Let X be a manifold with non-empty boundary
and p: 7 (X) — O(N) an orthogonal representation. Then the analytic torsion

with relative boundary conditions Tx r(p) of X is defined as:

log Tx = (p) = 3 Z(—l)kkd%é“m(o)-
k=0

The analytic torsion with absolute boundary conditions T'x, 4(p) is analogously

defined.
REMARK 6.5.10 ([18]). By (6.5.3), logTx.a(p) = (—=1)""tlog Tx = (p).
Vishik [83] generalized Cheeger-Miiller theorem to:

THEOREM 6.5.11 (1.4, [83]). X = X Uy, Xp and Y = 0X

x(Y) 2X(2Y)+X(Y1)

Tx(p) =2"7 7x(p) and log T'x,uy, x,(p) = 7x(p)-

6.5.2. Analytic Residue Torsion of manifolds with boundary. From

(6.5.2) we can rewrite the analytic torsion as:

n

1
log Tx 5(p) = 5 > (-1)*'ETR (log Agp), B=Ror A
k=0

Hence once again our analysis shifts to the more fundamental invariant:
1 n
52 (-1 klog Ay,
k=0

which now belongs to the Bouted de Monvel calculus (from [22]). There, the residue
trace has been exteded by work of Fedosov, Golse, Leichtnam, and Schrohe (we only
refer to [21] for the definition and a detailed exposition) and is the unique trace

of this algebra. Hence, we have a well-defined reslog Ay g, which we can use to
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define a (generalized) residue analytic torsion of X with either relative or absolute

boundary conditions:

1 n
(6.5.5) log T3 Pp) = =3 Z )58y, reslog Ay B,
k—0
where B stands for either R or A.

THEOREM 6.5.12. Let X be an oriented manifold with boundary Y. Then

log T)r(e’séﬁ (p) is a smooth invariant if 3 equals
1=(,...,1) or w=(0,1,...,n).

The corresponding residue analytic torsions are:
log Tx 5 (p) = xB(X,E,)  and  log T35 (p) = Xp(X, Ey) + > (—1)"k¢,5(0).
k=0

Finally, for a smooth path of metrics [0,1] > u +— ¢%(u) for which the normal
direction to the boundary is the same, we have:

n

E 1) res ay.

k=0

1 res w

%O

w\»—‘

PRrROOF. For the proof, we follow the idea of Remark 6.2.31, almost identically.
In fact, by [27], we have that:

1
(6.5.6) —gres log A g = Ck,5(0) + dimker Ay, g,

as relative/absolute boundary conditions are normal. The claim will follow as for
the closed case, since appropriate trace asymptotic expansions were established by
Grubb and Vishik.

By (6.5.6), we can re-write (6.5.5) as

n n

log T (p) = > (= 1) i Ce,p(0) + > (~1)* By, dimker Ay p.

k=0 k=0
Let [0,1] 2 u — ¢* (u) be a smooth path of metrics for which the normal direc-
tion to the boundary Y is the same and consider - log T)r?j’gﬁ (p). Since ker Ay p
is isomorphic to relative/absolute de Rham cohomology, it is independent of the
metric (see for instance the proof of Proposition 6.4, [65], or (2.5) in [83]) and the

derivative reduces to:

d res, d <
@1OgTX,Bﬁ(p) = Z(_l)kﬁk Cr,5(0).

k=0
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Therefore, without loss of generality in this context, we can consider Ay p to be
invertible. Again, (x,p(s) = ﬁfooo t5~1Tr(e~*%8(W)dt and we can study the

derivative at s = 0 of:

n

w.8) = 1)k L >~ s—1 eftAk.,B(u) )
)= 31" g A )it

By Theorem 6.1, [65], -2 Tr(e~*A*2) = —tTr((dad — dad + ads — add)e™t4r=)
and, by the proof of Proposition 2.15, [83], we can differentiate under the integral

sign, thus obtaining:

3f(uv S) =

_1\k 1 /0o S—li —tAk, B
5 (=D)*Br = ; t auTr(e )dt

I'(s)

L) / t*Tr((dad — dad + ads — add)e t2+8)dLt.
0

(=15 I'(s

M- I1-

El
I

0
Moreover, from Theorem 7.3 of [65], Tr(dade 'A+2) = Tr(adde™*A+-1.2) and
Tr(dade 2% B) = Tr(adse~**++1.8). Thus, if we set ) := Tr(adde ***B) and
o = Tr(addetA*B), we obtain:

9 - k+1 L A

%f(uﬂg) = kZ:O(—l) Br @/o t*(pr+1 — Ok + o1 — O—1)dt,
exactly as in Remark 6.2.31. Therefore, we have to face the same calculation for

the closed case, which we know yields:

*f u, ) / Z (Bra1 — 28 + Br—1)prdt

(1 Z " (Bt — ﬂk)/o tbjtT (ae=t2e5) dt
=0

’1

Cn

I
Ms

(*1)]6(516—&-1 — 206, + Bk_l)l—‘(ls)/o tSTI'(OLdéeftAka)dt

ko

3 =

1

- > s—1 —tAy,
F(s)/o t (ae "B)dt

(—=1)*(Brs1 — 2Bk + ﬂk—l)SC(Oédfsﬁ;;}g, Ay B,S)

(=D (Brs1 — Br)

-
M

0

|
M= iMﬁ i

+ 3 (D (Brar = Bi)sC(a, A, g, 5)-
k=0
By (1.14), [28]:
(40 = 3 (D s = 20+ farslandB )
43 S B — Biresa).

i
o
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Since oy, is the usual multiplication operator, res(«y) = 0, while the first term on
the right hand side vanishes if 8;+1 — 28k + Bk—1, as in the closed case. We remark

that for § = w we have, once again:

I w 1
log T{s () = 5 D (—1)** res(ay)

Therefore, if 5 =1,
log T (p) = > (—1)%¢5(0) + > (—1)" dimker(A, 5) =0+ x5(X, E,)
k=0 k=0

by Corollary 6.5.7, where xp(X, E,) is the relative/absolute Euler characteristic,
while if 5 = w,

n

(—=1)%k C,5(0) + ) (—1)Fkdimker(A; 5)

k=0

log TX 5" (p)

(=1)*k ¢G5 (0) + X5(X, B,),

M- I1-

S
I
<

where x'3(X, E,) is the relative/absolute derived Euler characteristic.

O

DEFINITION 6.5.13. The absolute and relative derived Euler characteristics are
the integers defined as:

n n

= (-D)fkdim H5(X) and  x/(X,Y):=) (~1)"kdim Hp(X).
k=0 k=0

By Poincaré Duality, we can obtain some straightforward identities, as follows.
THEOREM 6.5.14. x/(X) + (—1)"x'(X,Y) = nx(X).

PROOF. Let b¥ = dim H(X) and b% = dim HE(X); then b5 = biv " by

Poincaré Duality, and:

X(X) =D (=1Fkb = > (=DFkbg =Y (1) F(n - k)b
k=0 k=0 k=0
nZ ok, 4+ (—1)n ! Xn:(—l)kkb’fz
k=0

= (D"IN(XY) + (-1)"nx(X,Y) = (=)W (X,Y) + nx(X),

where the last equality holds because x(X) = (—1)"x(X,Y).
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COROLLARY 6.5.15. If n is odd, then:

X(X) =X (X, V) + X (V) 4 5x(Y).

PROOF. Since n is odd, n—1 is even and by Corollary 6.2.15 x'(Y) = 251 x(Y).
From x(X) = 2x(Y), we obtain x'(Y) = (n — 1)x(X). Hence, by the previous
theorem, 22/ (Y) = nx(X) = x'(X) = x'(X,Y).

O

REMARK 6.5.16. Interestingly enough, y/(X) = x/(X,Y)+x/'(Y)+2x(Y), does
not hold when n is even. To see this, let us consider X = D™ the n-dimensional disc.
Then H,(D",S"~1) = H,(S™) (at least for x > 0, which is good enough for x’) and
H.(D™) = H.({pt}) by homotopy equivalence. Therefore, x'(D") = x'({pt}) =0,
X' (D™, 5" 1) = x/(8™) = (—1)"n, and x(S™" ') =1+ (—1)""!, which do not fit in

the equation unless n is odd.
Finally, we have log-additivity of the the residue analytic torsion:

THEOREM 6.5.17. Let X := X7Uy X5 with 0X; =Y, UN and 0X, = N™UY,.
Then, for n = dim X:

TI‘ES

i) lo (p) = 5x(X,0X) and log Ty 3*(p) = 5x(X);

i) log T4 (p) — log Ty i (p) = log Ty “(p) + 5x(Y) = 5x(Y);

iii) log Ty 3" (p) = log T, '5(p) + log T, 7 (p) +log Ty~ (p) + 3x(¥);
iv) log T4 (p) = log T, 5 (p) +1og T, 5 (p) —log Ty (p) — 3x(Y)

PrOOF. It follows from Proposition 2.22 and 2.23, [83], after observing (6.5.6).
g

COROLLARY 6.5.18. For each n = dim X, > ;_,(—1)*k(xk = (0) is a topological
invariant. In paricular, if n = dim X is even, then the trace logarithm is additive,

i.e.
n n

D (=D)Fklog Af s =Y (—1)Fklog ALy + Z )Fklog A%,
k=0 k=0 k=0

(where B = R or B = A) in the Boutet de Monvel calculus, modulo smoothing

operators.

PRrROOF. Both statements follows directly from Theorem 6.5.17. In particular,
the second follows also because the residue trace is the unique trace in the Boutet

de Monvel calculus.
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REMARK 6.5.19. As for Corollary 6.5.15, we can conjecture that the formula

1
X' (X,0X) = x'(X1,0X1) + X' (X2,0X3) + X' (N) + ZX(V)

may hold for the odd-dimensional case, but not for the even dimensional one. In
fact, if we use the values of Remark 6.5.16 for the splitting of S™ along S™~!, we
can check that the formula holds if and only if n is odd.

Luckily, quasi-additivity holds for analytic torsion (Theorem 1.1, [83]):

log T'x,uy, X, (p) = log T'x, (p) + log T'x, (p) + log Ty, (p).

Hence for dim X; odd we have a proper gluing formula for the logarithm of the

analytic torsion:

IOnglUlez (P) = longl (P) + log TX2 (P)

This could be seen as the character of a LogTQFT, which we were not able to

identify at this stage. We will leave this for future work.



Concluding remarks

The categorification provided by log-functors can form a framework for the
study of manifold invariants. In fact, one of the goals of this thesis was to show
that such categorification can be generalized to fit more complicated structures and
delicate situations, such as invariants in the context of noncommutative geometry,
in the hope to understand better additive manifold invariants and possibly find
new ones by composition with other traces or quasi-traces (like the case of residue
analytic torsions).

As for further problems and projects arising from this research, there are several
ones that came to our attention and we would like to study for the future. Indeed,
there are other interesting extensions that could be investigated, such as a definition
of log-functors for (0o, n)-categories, which should lead to a conjectural logarith-
mic cobordism hypothesis, analogous to the Baez-Dolan cobordism hypothesis for
TQFTs ([48]). On (o0, 2)-categories, such log-functors should provide a functorial
setting for invariants of manifolds with corners. Moreover, it should be possible to
extend the Unoriented Logarithm Theorem (Corollary 1.4.42) to Cob,, for generic
n. We expect this to be possible by generalizing the proof with handlebody methods
for higher dimensional cobordisms.

On another side, the derived Euler characteristic is just one of a whole family
of higher Euler characteristics ([63]). Its presence in the context of residue torsion
suggests that there is more to investigate about the relationship between these Euler
characteristics and Deitmar’s higher analytic torsions ([20]). Also, as mentioned at
the end of Chapter 6, one can attempt to characterize (relative or absolute) residue
and analytic torsions for manifolds with boundary in terms of a LogTQFT. As a
matter of fact, they are generalized logarithms.

From the family point of view, we defined a family residue torsion via Pay-
cha and Scott’s generalization to families of the residue and classical trace ([62]).
Therefore, by using the (-trace for families, we could define a family analytic tor-
sion as the (quasi-)trace-character of the family torsion logarithm, which we expect

to be related to Bismut and Lott’s family analytic torsion ([9]).

166
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Also, the Whitehead torsion of a manifold can be seen as the trace-character of a
LogTQFT on the subcategory of h-cobordisms and corresponds to the Reidemeister
torsion of the boundary. Our aim in this area is to show a family version of this
result and prove that Igusa-Klein torsions ([24]) can be seen as characters of a
higher log-functor.

Finally, when we were working with index theory of Dirac operators on Hilbert
Modules over C*-algebras, we remarked that there is not much that we know about
the Calder6n projector in this setting. Hence, we would like to study the Calderén
defined in [1] and try to prove in this context the conjecture that the index of the
realization of an elliptic pseudodifferential operator with respect to the Calderén

projector vanishes.
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