
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Higher logarithmic topological quantum field theories and the residue torsion of
manifolds

Salvatori, Niccolo

Awarding institution:
King's College London

Download date: 24. Dec. 2024



King's College London
Faculty of Natural and Mathematical Sciences

Department of Mathematics

Higher Logarithmic Topological

Quantum Field Theories and the

Residue Torsion of Manifolds

A thesis presented for the degree of

Doctor of Philosophy

Candidate Name: Niccolò Salvatori

Student Number: 1344043

Course: Pure Mathematics Research

Supervisor: Prof. Simon G. Scott

2nd Supervisor: Prof. Alexander Pushnitski

London, 2017





3

�The pine fought the storm and broke.

The willow yielded to the wind and snow and did not break.�

Kano Jigoro Shihan
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Abstract

Starting from Scott's recent work on Logarithmic Topological Quantum Field

Theories (LogTQFTs, [72]), we will show that the Euler characteristic of a manifold

with boundary is another instance of a topological invariant arising as a character of

a LogTQFT. Along the way, we will prove a classi�cation theorem for 2-dimensional

LogTQFTs and study the additivity (with respect to gluing) of the index of Dirac

operators from the point of view of the boundary integrals.

In Part II, we will generalize the ideas and concepts in Part I and introduce

Higher LogTQFTs, which will be de�ned as log-functors on subcategories of Cobn,

the category of n-dimensional cobordisms. Such log-functors take values in the

cyclic homology of a representation of Cobn and will be, in most cases, obtained

by composition with Chern characters. This generalization appears natural in the

light of the functorial construction of a LogTQFT and provides a tool to capture

�ner additive invariants of manifolds which arise from the presence of additional

data, such as a �bering of the manifold or a group action on a covering. The family

and Novikov signatures will be shown to be two key examples of characters of higher

logTQFTs and their additive nature will arise as a consequence of this.

Finally, in Part III, we will de�ne a new log-structure called residue analytic tor-

sion, in analogy with Ray-Singer analytic torsion, and introduced for the �rst time

by Scott in his last work, [72]. It is de�ned via Wodzicki residue trace, hence the

name. We will show a classi�cation theorem for residue torsion on manifolds (with

and without boundary) and relate this results to Index Theory and LogTQFTs.

Moreover, it will also be possible to extend such torsion to �bre bundles and char-

acterize it in terms of Higher LogTQFTs, in the spirit of Part II.
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Introduction

The study presented in this thesis originated from the construction and investi-

gation of a new algebraic theory, or categori�cation, of logarithmic representations

and their log-determinant characters contained in [72], after the analysis and obser-

vations of [73]. This is our starting point: [72] and its key de�nition of log-functors,

i.e. simplicial maps between (suitably de�ned) simplicial sets with a log-additive

property. There, some fundamental examples are investigated, among which the

representation of the topological signature as the log-determinant of a LogTQFT.

Our goal here is to add new examples and extend the general theory.

The purpose of de�ning such categorical logarithms is mainly to capture those

manifold invariants that behave additively with respect to gluing of manifolds along

a common boundary component. As such, these invariants can be seen as semi-

classical, as they can be located between classical bordism invariants (genera)

µ : Ω∗ → R,

i.e. ring homomorphisms on the Thom ring Ω∗ of bordism classes of closed mani-

folds, and quantum bordism invariants (TQFTs)

Z : Cobn → VectF,

i.e. symmetric monoidal functors from the category of n-dimensional cobordisms

Cobn to the category of vector spaces.

In this introduction, we present the structure of our exposition and report the

main results.

Chapter 0 :

We start with an introductory chapter, whose main purpose is to set the no-

tation and recall some standard results. There and for the rest of the exposition,

we will consider compact C∞-manifolds X (which will be simply called manifolds),

possibly with non-empty smooth boundary Y := ∂X and a collar neighbourhood

8
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U := [0, 1)× Y with product structure

gX|U = dt2 + gY , gX Riemannian metric for X,

where coordinates x = (t, y) are chosen in such a way that y ∈ Y and t ∈ [0, 1)

corresponds to an inward-pointing normal direction. For E → X a Hermitian

vector bundle, C∞(X,E) will denote the space of smooth sections and Hs(X,E)

the associated Sobolev space. Sections s ∈ C∞(U,E|U ) restrict to the boundary

via a continuous operator

γ : Hs(X,E)→ Hs− 1
2 (Y,E′), (γs)(y) := s(0, y), E′ := E|Y ,

which will be used to study boundary value problems. ΨZ(X,E) :=
⋃
m∈Z Ψm(X,E)

will denote the algebra of integer order classical pseudodi�erential operators (clas-

sical ψdos), and Ψ−∞(X,E) :=
⋂
m∈R Ψm(X,E) the ideal of smoothing ψdos, i.e.

those A whose Schwartz kernel kA(x, y) is smooth. We recall in this context that

Ψ−∞(X,E) has a (projectively) unique trace, called classical, de�ned by the inte-

gral Tr(A) :=
∫
X
tr kA(x, x)dx.

We will mainly consider the bundle of di�erential forms Λ(X)→ X, with sec-

tions Ω(X) := C∞(X,Λ(X)). When Y 6= ∅, the restriction γω ∈ C∞(Y,Λk(X)|Y )

decomposes as

γω = ω1 + dt ∧ ω2, ω1 ∈ Ωk(Y ), ω2 ∈ Ωk−1(Y ),

and de�nes the two orthogonal projections Rγω = ω1 and Aγω = ω2. They

commute with the exterior derivative d and codi�erential δ, respectively, and re�ne

the complexes (Ωk(X), d) and (Ωk(X), δ) to

dk : ΩkR(X)→ Ωk+1
R (X) and δk : Ωk+1

A (X)→ ΩkA(X),

where ΩkR(X) = {ω ∈ Ωk(X)| Rγω = 0} and ΩkA(X) = {ω ∈ Ωk(X)| Aγω = 0},

i.e. Ωk(X) with relative, resp. absolute, boundary conditions. Let Hk
R(X,C) and

Hk
A(X,C) be the cohomology of (ΩkR(X), d) and (ΩkA(X), δ), respectively. Then,

by de Rham theorem (�4.1, [23]),

Hk(X,Y ) ∼= Hk
R(X,C) and Hk(X) ∼= Hk

A(X,C),

and the Euler characteristic and relative Euler characteristic can be respectively

de�ned as

χ(X) =

n∑
k=0

(−1)k dim Hk
A(X,C) and χ(X,Y ) =

n∑
k=0

(−1)k dimHk
R(X,C).
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The end of the chapter recalls the relationship χ(X) = χ(X,Y ) + χ(Y ) and the

quasi-additivity of the Euler characteristic:

χ(X1 ∪N X2) = χ(X1) + χ(X2)− χ(N), N := ∂X1 ∩ ∂X2,

which is proper additivity whenX1, X2 have even dimension, as in this case χ(N) = 0.

Chapter 1 :

Having set the basic analytical and topological notations, in Chapter 1 we es-

tablish de�nitions and properties of log, trace, and det. Thus, a logarithmic repre-

sentation of a semigroup S in an algebra T is a homomorphism log : S → T /[T , T ]

with a log-additive property log ab = log a + log b; a trace is a homomorphism of

groups τ : (T ,+) → (U ,+) such that [T , T ] ⊂ ker(τ); and a determinant is the

composition detτ,e := e ◦ τ ◦ log, where e : (U ,+, ·) → (V,+, ·) is an exponential

map, i.e. a homomorphism of unital rings such that e(a + b) = e(a) · e(b). In

particular, the term log-determinant (or log-character) will stand for a composi-

tion τ ◦ log : S → U . In this generic context, we prove some equivalent criteria for

the uniqueness of trace, log, and det (Lemmas 1.2.4, 1.2.5, and 1.2.6). Then we

recall two known examples of log-structures: the global logarithm on GL(n,C) and

the index of a Fredholm operator A ∈ Fred(H) on a Hilbert space H. The lat-

ter can, in fact, be obtained from a logarithm log : Fred(H) → F(H) de�ned as

logA := [A,P ], for P any parametrix and F(H) is the ideal of �nite rank operators,

by composition with the classical trace Tr on F(H).

The rest of Chapter 1 is then devoted to the presentation of log-functors and

is a summery of the core of [72]. In order to de�ne log-functors, the starting point

is a monoidal product representation (De�nition 1.4.13) of a symmetric monoidal

category (C,⊗), which is de�ned to be a functor F : C → B, B an additive

category, together with insertion transformations, i.e. morphisms

η⊗yc : F (c)→ F (c⊗ y), c, y ∈ obj(C)

that are compatible with ⊗, i.e. η⊗(y⊗y′)c = η⊗y′(c⊗ y) ◦ η⊗yc, and are compatible

with commutation, i.e. η⊗(y⊗y′)c = µσ(c ⊗ y′ ⊗ y) ◦ η⊗(y⊗y′)c. Here, µσ(x) is a

canonical isomorphism F (x) → F (xσ), where xσ := xσ(1) ⊗ · · · ⊗ xσ(n), i.e. the

object x := x1 ⊗ · · · ⊗ xn ∈ obj(C) after the action of a permutation σ ∈ Sn.

Insertion morphisms η⊗y intertwine with permutation isomorphisms µσ(x), thus

combining into more elaborated insertion morphisms, denoted ηky , which are used

to de�ne a presimplicial structure on the image F (C) (which is the reason why we
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need monoidal product representations). Speci�cally, if obj(Cp) denote the set of

p-tuples x0⊗· · ·⊗xp−1 of objects of C, then such presimplicial structure is de�ned

by p-simplices

∆p = {(ξ, x0, . . . , xp−1) | ξ ∈ F (x0 ⊗ · · · ⊗ xp−1), xj ∈ obj(C)} ⊂ obj(B)× obj(Cp).

degeneracy maps sk(w) : ∆p → ∆p+1

sk(w)(ξ, x0, . . . , xp−1) := (ηkw(ξ), x0, . . . , xk−1, w, xk, . . . , xp−1)

(it is presimplicial exactly because face maps may not be available).

Once a monoidal product representation is chosen, we can de�ne the key object

of our study (De�nition 1.4.28):

Definition. Let (C,⊗) be a symmetric monoidal category and F : C→ Ring

a monoidal product representation. Then a log-functor is a presimplicial map

log : NC→ F (C)/[F (C), F (C)],

logx⊗y : mor(x, y)→ F (x⊗ y)

[F (x⊗ y), F (x⊗ y)]
, α 7→ logx⊗y α, x, y ∈ obj(C)

such that if α ∈ mor(x, y) and β ∈ mor(y, z), then

η̃y(logx⊗z β ◦ α) = η̃⊗z(logx⊗y α) + η̃x⊗(logy⊗z β)

in F (x⊗ y ⊗ z)/[F (x⊗ y ⊗ z), F (x⊗ y ⊗ z)].

It is then clear why we need insertion maps: each logarithm lives in a di�erent

space, hence logx⊗y α and logy⊗z β can be added together only if represented into

a common space F (x⊗y⊗z). The object NC is the nerve of C, a presimplicial set

naturally obtained from C as follows: the space of p-simplices NpC is composed by

p-tuples of morphisms (α0, . . . , αp−1), αj ∈ mor(xj , xj+1) with j ∈ {0, . . . , p − 1},

and the degeneracy maps sj : NpC→ Np+1C are de�ned as:

sj(α0, . . . , αj−1, αj , . . . , αp−1) := (α0, . . . , αj−1, idxj , αj , . . . , αp−1),

idxj : xj → xj the identity. F (C)/[F (C), F (C)] is an an abelian category induced

by the canonical projection π : R→ R/[R,R], R a ring, and inherits a presimplicial

structure from F (C). In particular, when C = Cobn a log-functor is called a

Logarithmic Topological Quantum Field Theory (LogTQFT for short) of dimension

n, in analogy with a TQFT. It is important, though, to remark that a LogTQFT

is not a symmetric monoidal functor, but a functor ∞-categories. However, it can

be used to de�ne one, at least in a weak sense:
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Lemma. Let F : Cobn → Ring be an unoriented monoidal product rep-

resentation (i.e. F (M) = F (M−), where M− means that the opposite orienta-

tion is considered) with trace τc : endA(ac) → endA(1), de�ning a LogTQFT

log : NCobn → F (Cobn)/[F (Cobn), F (Cobn)]. If ε : endA(1)→ F is an ex-

ponential map into a �eld, then there exists a scalar-valued TQFT Zlog,τ,ε de-

�ned as Zlog,τ,ε(M) = F for M ∈ obj(Cobn) and Zlog,τ,ε(W ) = ε(τ(logW )) for

W ∈ mor(Cobn).

As stated in the Lemma, the conversion from a LogTQFT to a TQFT requires

a categorical trace τ , i.e. there exist c ∈ obj(C) for which we have a ring homomor-

phism τc : F (c)→ end(1) such that the trace property holds: if α ∈ mor(F (c), F (c′)),

β ∈ mor(F (c′), F (c)) such that β ◦ α ∈ end(F (c)) and α ◦ β ∈ end(F (c′)), then

τc(β ◦ α) = τc′(α ◦ β). We will need to require traces to be F -compatible, i.e.

∀c ∈ obj(C), τc satis�es τc⊗y ◦ η⊗yc = τc and τxσ ◦ µσ(x) = τx. It will follow

that τc factors though πc : F (c) → F (c)/[F (c), F (c)], i.e. τc = τ̃c ◦ πc. Moreover,

the trace τ̃ on F (C)/[F (C), F (C)] satis�es the analogous compatibility condition

τ̃c⊗y ◦ η̃⊗yc = τ̃c.

As we will see clearly in the next Chapter 2, traces will yield manifold invariants

as log-determinants of LogTQFTs. In fact, the τ -character of a LogTQFT de�nes

a log-determinant functor representation of Cobn, i.e. τ̃MtM ′ ◦ logMtM ′W , which

will be independent of insertion maps:

τ̃MtM ′(logMtM ′W ) = τ̃MtM ′tM (ηM ′′ logMtM ′W ).

Additivity follows from log-additivity:

τ̃(log βα) = τ̃(logα) + τ̃(log β), α ∈ mor(c, c′), β ∈ mor(c′, c′′).

Finally, we conclude the chapter with a classi�cation result we were able to

prove for LogTQFT of dimension 2, which we called Unoriented Logarithm Theo-

rem for Orientable Surfaces (Corollary 1.4.42). Here, unoriented LogTQFT means

logMtM ′W = logMtM ′W
−, i.e. the logarithm is invariant under change of orien-

tation. The theorem shows that a 2-dimensional LogTQFT is fully characterized

by its de�nition on the disc:

Theorem. Let F : Cob2 → Ring be an unoriented monoidal product repre-

sentation and let log : NCob2 → F (Cob2)/[F (Cob2), F (Cob2)] be an unoriented

LogTQFT. Let Σg,k denote an orientable, compact, and connected surface of genus
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g, whose boundary ∂Σg,k has k connected components, i.e. ∂Σg,k ∼=
⊔
k S

1. Then,

∀g, k ∈ N:

log⊔
k S

1 Σg,k = χ(Σg,k) · η̃⊔k−1
j=1 S

1 logS1 D,

where χ(Σg,k) = χ(Σg)−k is the Euler characteristic of Σg,k and χ(Σg) is the closed

surface Σg obtained from Σg,k by gluing k discs along the boundary components.

Chapter 2 :

In this chapter, we prove that the Euler characteristic of an even dimensional

manifold can be viewed as a log-determinant of a LogTQFT. Since the result

is based on the index of a Dirac operator with boundary conditions, we started

the section by recalling the main ingredients of Elliptic Boundary Value Problems

(EBVPs), which we brie�y summarize here. The Dirac operator we will be working

with is the de Rham operator

ð := (d+ δ)+ : Ω+(X)→ Ω−(X)

on X, considered with non-empty boundary Y , and relative to a Z2-grading of

Ω(X) into even and odd order smooth forms.

The crucial observation is that, if Y = ∅, then (d + δ)+ is Fredholm and

ind(d+ δ)+ = χ(X). When Y 6= ∅, then a similar result holds but we need suitable

boundary conditions. A natural class of boundary conditions is represented by

the APS (ψdodi�erential) projections, Πλ≥a : L2(Y,Λ(X)|Y ) → V≥a :=
⊕

λ≥a Vλ,

a ∈ R. Here, Vλ is the λ-eigenspace of an elliptic self-adjoint operator B on Y

which originates from the decomposition of ð into σ(∂t +B) on a neighbourhood U

of Y . σ := c(dt) is the Cli�ord multiplication associated to the normal coordinate

t and, by assuming a product structure, B is independent of t and corresponds to

the restriction of ð to Y .

APS projections are not the main focus here (they are in [72], where they

are needed to show that the topological signature of X is the trace-character of

a LogTQFT), but they are close to a key ingredient for EBVPs: the Calderón

projection C ∈ Ψ0(Y,Λ+(X)|Y ), which is de�ned in the following way. Our bundle

Λ(X) and Dirac operator ð are assumed to be the restriction to X of a bundle

Λ(X̃) and Dirac operator ð̃ over a closed (i.e. without boundary) manifold X̃, into

whichX embeds, such that ð̃ is invertible (this can always be obtained by taking the

`double' ofX). Then the Calderón projection C is de�ned as the operator γrð̃−1γ̃∗σ,
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where r is the restriction to X and γ̃ is the restriction operator from X̃ to Y . It is

the projection onto the space of Cauchy data, i.e. the restriction to Y of ker ð. All

boundary conditions that are well-posed in the sense of EBVPs (De�nition 2.2.2)

will be of the form Pγω = 0, for P a smooth perturbation of C, i.e. a projection

P ∈ Ψ0(Y,Λ+(X)|Y ) such that P = C + S, with S ∈ Ψ−∞(Y,Λ+(X)|Y ). For

instance, C −Π≥a ∈ Ψ−∞(Y,Λ+(X)|Y ) when a product structure is assumed.

Our interest in EBVPs lies in the fact that for such well-posed boundary

conditions the realization ðP , i.e. the unbounded operator acting as ð on the

space {ω ∈ H1Ω+(X)|Pγω = 0}, is Fredholm and its index equals the one of an-

other Fredholm operator: the Toeplitz-type operator PC : ranC P→ ranP. Hence,

ind(ðP) = ind(PC) and the information is concentrated on the boundary. It is this

boundary dependence that we look for when searching for a LogTQFT.

Another fundamental property of the index is quasi-additivity, another feature

that could arise from a LogTQFT. In fact, if two n-dimensional manifolds Xi with

boundary Yi−1 t Yi, i = 1, 2 are glued along the common boundary Y1 into the

manifold X = X1 ∪Y1 X2, then:

ind ðP = ind ð1P1
+ ind ð2P2

+ ind Q(?)

where Q is a Fredholm operator on the boundary component Y1, and ðP ,ðiPi
are realization of the restrictions of ð to X and Xi with respect to well-posed

boundary conditions. Since formula (?) is usually found in the literature for X a

closed manifold, we proved it but from the point of view of Calderón projections

(Theorem 2.4.15). To our knowledge, such an approach had not been previously

investigated. Formula (?) becomes a proper additivity in some cases, for example

when we consider only relative boundary conditions (the operator R described in

Chapter 0 that selects the tangential component of the decomposition of a smooth

form to the boundary). In this case, indQ = χ(Y1), which vanishes if n is even.

Finally, ind(PC) can be seen as a trace-character. In fact, well-posedness yields

ind(PC) = Tr(C − P) (lemma 3.8, [72]).

Thus, we de�ne an even dimensional LogTQFT as follows. First, we consider

the representation F−∞ : Cob2n → C-Alg de�ned as F−∞(M) := Ψ−∞(M,Λ+(M)),

which is unoriented and has a trace TrM : F−∞(M) → C. Then, we de�ne a log-

functor logχ : NCob2n → F−∞(Cob2n)/[F−∞(Cob2n), F−∞(Cob2n)] by setting

logχM0tM1
(W ) := πM0tM1

◦ κ](CW −R∂W ) ∈ F−∞(M0 tM1)

[F−∞(M0 tM1), F−∞(M0 tM1)]
,
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withW ∈ morCob2m
(M0,M1), κ] : F−∞(∂W )→ F−∞(M0 tM1) a natural isomor-

phism, and πM0tM1
the projection to the quotient. Its Tr-character is

TrM0tM1

(
logχM0tM1

(W )
)

= Tr (CW −R∂W )) = indðR = χ(X,Y )

and additivity follows from the additivity of the relative Euler characteristic in even

dimension (Theorem 2.5.5). In conclusion, we remark the consistency of this result

with the Unoriented Logarithm Theorem for Orientable Surfaces. This concludes

Chapter 1 and the �rst part of the thesis.

Chapter 3 :

This is the �rst chapter of the second part of the thesis, where we extend by

functoriality the de�nition and properties of LogTQFTs and their trace-characters.

In fact, the category F (C)/[F (C), F (C)] has a presimplicial structure inherited

from F (C) by composition with the covariant functor Π induced by the projection

onto the quotient πc : F (c) → F (c)/[F (c), F (c)]; the latter is where a logarithm

logc α lives. Here, the fundamental observation is that F (c)/[F (c), F (c)] corre-

sponds to HC0(F (c)), i.e. the cyclic homology group of F (c) of order zero, and the

functor Π is actually the cyclic homology functor HC0.

Therefore, the chapter starts with a condensed survey of the main de�nitions of

cyclic homology and cohomology. For A an associative R-algebra, R a commutative

ring, the cyclic homology of A, HC∗(A) :=
⊕

n≥0HCn(A), can be de�ned as the

homology of Connes complex (Cλ∗ (A), b), where Cλn(A) := A⊗n+1

im(1−tn) , i.e. the cokernel

of the action of 1−tn onto A⊗n+1 := A⊗· · ·⊗A (tn is the generator of Z/(n+1)Z),

and b is the Hochschild boundary map, i.e. the R-linear map

bn(a0 ⊗ a1 ⊗ · · · ⊗ an) :=

n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)n(ana0 ⊗ a1 ⊗ · · · ⊗ an−1).

If f : A → B is a morphism of R-algebras, then f∗ : HCn(f) : HC∗(A)→ HC∗(B)

is a morphism of R-modules. Therefore HCn is a functor from R-Alg, the category

of R-algebras, to R-Mod, the category of R-modules.

If we allow a monoidal product representation F to take values in R-Alg, i.e.

F (c) is an R-algebra, then we can consider all the cyclic homology of F (c), not

just HC0(F (c)). Therefore, by composition with the functors HCn, we obtain new

presimplicial sets HCn(F (C)) (Lemma 3.1.8), which can be used to de�ne higher

log-functors:
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Definition. A higher logarithmic functor of order n is a presimplicial log-

additive map log[n] : NC→ HCn(F (C)), i.e. a simplicial system of maps

log[n],x⊗y : mor(x, y)→ HCn(F (x⊗ y)), α 7→ log[n],x⊗y α, x, y ∈ obj(C)

such that if α ∈ mor(x, y) and β ∈ mor(y, z), then

η̃y(log[n],x⊗z β ◦ α) = η̃⊗z(log[n],x⊗y α) + η̃x⊗(log[n],y⊗z β) ∈ HCn(F (x⊗ y ⊗ z)).

All the other properties of logarithms, e.g. the logarithm of an idempotent

object is trivial, follow from the case of order 0. Clearly, for C ⊆ Cobn a higher

log-functor will be called higher logarithmic Topological Quantum Field Theory of

dimension n. In Chapter 4 and Chapter 5 we will analyse two instances of higher

LogTQFTs: a Logarithmic Family Quantum Field Theory (LogFQFT, i.e. when

C = FCobn(B), the category of �bre bundles over the base space B) and a Loga-

rithmic Homotopy Quantum Field Theory (LogHQFT, i.e. when C = HCobn(X),

the category of homotopy classes of X-cobordisms, i.e. maps from a cobordism to

a target space X).

Higher log-functors call for higher traces. Here, the idea to remember is that

the R-traces on an R-algebra A are homomorphisms HC0(A) → R. Therefore,

higher traces will be homomorphisms HCn(A) → R. The space of such ho-

momorphisms, Hom(HCn(A), R), is in relationship with the cyclic cohomology

HC∗(A) :=
⊕

n≥0HC
n(A), of which we recalled the de�nition: it is the homology

of the complex (Cnλ (A), β), where Cnλ (A) is the sub-module of linear functionals

f ∈ Hom(A⊗n+1, R) such that f(a0 ⊗ · · · ⊗ an) = (−1)nf(an ⊗ a0 ⊗ · · · ⊗ an−1),

and β : Cnλ (A)→ Cn+1
λ (A) is

β(f)(a0 ⊗ · · · ⊗ an+1) :=

n∑
i=0

(−1)if(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)n+1f(an+1a0 ⊗ a1 ⊗ · · · ⊗ an).

Kronecker pairing HCn(A)×HCn(A)→ R de�nes a map

HCn(A)→ Hom(HCn(A), R),

which is an isomorphisms when R is a �eld. Therefore, by pairing with cyclic

cohomology we could generalize the concept of monoidal product representation,

categorical trace and log-determinant functor (De�nition 3.1.13 and following). The

latter will generalize to higher log-determinants and some manifold invariants, such

as Novikov's higher signatures, will be described as such (Chapter 5).
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However, passing to cyclic homology is not the only `abelianization' method.

In fact, for a ring R there exists also a projection onto its Grothendieck group

K0(R), which factors the `universal' trace R → R/[R,R], and a trace morphism

τ : K0(R) → R
[R,R] , called Hattori-Stallings trace map, which turns out to be a

Chern character. Therefore, we showed that in some circumstances a higher log-

functor will arise from a universal log-functor. In order to give its de�nition, and

show its well-posedness, we recalled the construction of the Grothendieck group of

a ring R, which in practice de�nes a covariant functor K0 : Ring → AbGrp. By

functoriality, the presimplicial structure of F (C) pushes down to K0(F (C)), which

becomes the desired target space for:

Definition. A universal logarithmic functor is a presimplicial log-additive

map u- log : NC→ K0(F (C∗)), i.e. a simplicial system of maps

u- logx⊗y : mor(x, y)→ K0(F (x⊗ y)), α 7→ u- logx⊗y α, x, y ∈ obj(C)

such that if α ∈ mor(x, y) and β ∈ mor(y, z), then

η̃y(u- logx⊗z β ◦ α) = η̃⊗z(u- logx⊗y α) + η̃x⊗(u- logy⊗z β) ∈ K0(F (x⊗ y ⊗ z)).

Clearly, if C ⊆ Cobn, then we call it a universal Logarithmic Quantum Field

Theory of dimension n.

A universal log-functor yields a higher log-functor when composed with a suit-

able Chern character chn : K0(A) → HC2n(A), which in turns can be considered

as a trace , i.e. an homomorphism on the abelianization of A taking values into

an abelian group. In fact, the Chern character is a natural transformation of func-

tors K0 → HC∗, which can be de�ned as chn([e]) := tr(c(e)) in its full generality,

where A is a (non necessarily commutative) R-algebra, tr : Mr(A)⊗n → A⊗n is the

generalized trace map, and

c(e) := (yn, zn, yn−1, zn−1, . . . , y1) ∈Mr(A)⊗2n+1 ⊕Mr(A)⊗2n ⊕ · · · ⊕Mr(A),

with yi := (−1)i (2i)!
i! e

⊗2i+1 and zi := (−1)i−1 (2i)!
2(i!)e

⊗2i. We remark in that con-

text that this de�nition reduces to the classical Chern character à la Chern-Weil

when A is commutative. In particular, if A = C∞(B), B smooth manifold,

then K0(C∞(B)) ∼= K0(B), the topological K-theory, HC∗(C
∞(B)) ∼= H∗(B,C)

by de Rham Theorem and ch∗ is identi�ed with the usual ring homomorphism

K0(B)→ H∗(B,C).

In conclusion, we remarked that an algebra A must have some additional struc-

ture for its cyclic homology (and a Chern character) to be interesting. For instance,
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the cyclic homology and cohomology of a C∗-algebra can be quite poor: for exam-

ple, HCn(C(M)) = HC0(C(M)) if n is even and HCn(C(M)) = 0 when n is odd.

This will motivate some of the choices of Chapters 4 and 5 (i.e. the smoothing of

the index).

Chapter 4 :

Here we generalize to �bre bundles, i.e. surjective surjections of manifolds

X X→ B, the result of [72] for the topological signature. We begin by recalling the

basic de�nitions for �bre bundles and for smooth families of vector bundles E → X

(such as the vertical cotangent bundle T ∗πX :=
⋃
b∈B T

∗
bX of a �bre bundle). In

particular, E → X corresponds to an in�nite-dimensional smooth Fréchet bundle

π∗(E) → B with �bre π∗(E) := π∗(E|Xb) = C∞(Xb, E|Xb). Its space of sections,

C∞(B, π∗(E)), corresponds to C∞(X , E), a C∞(B)-module, with which we will

work in general. C∞(B, π∗(E)) generalizes to

Ak(B, π∗(E)) := C∞(X , π∗Λk(B)⊗ E),

the de Rham complex of smooth k-forms on B with values in π∗(E). Analogously,

for two smooth families E E→ X , F F→ X there is a well de�ned smooth family

of vector bundles Ψm(X ; E ,F) → B with �bre Ψm(X;E,F ) := Ψm(Xb;Eb, Fb).

Hence, a smooth family of ψdos of order m (or vertical ψdo) associated to a �bre

bundle X is a smooth section T ∈ C∞(B,Ψm(X ; E ,F)) = Ψm
vert(X ; E ,F) and its

symbol's domain is T ∗πX . We will sometimes write T = (Tb)b∈B because locally

every vertical ψdo is of the form Tb : C∞(Xb, E|Xb) → C∞(Xb, F|Xb). Clearly,

vertical ψdos are the zeroth order space of a de Rham complex of ψdo-valued

smooth B-forms A(B,Ψm(X ; E ,F)). For our goal, let us consider families of Dirac

operators D = (ðb)b∈B ∈ Ψ1
vert(X , E) on �bre bundles with even dimensional �bres

(a vertical metric is assumed).

If Y := ∂X = ∅, then D is Fredholm and there is a well de�ned index class

indD ∈ K0(B). Otherwise, if Y 6= ∅, we assume a product structure near Y, so

that we have the decomposition D|U = Υ (∂t + DY). Then the main ingredients of

EBVPs are well-de�ned in this family case as well and yield a family of Calderón

projections C ∈ Ψ0
vert(Y, E|Y), which is one instance of well-posed boundary con-

ditions, in this case represented by spectral sections of DY , i.e. P ∈ Ψ0
vert(Y, E|Y)

such that Pb is a �nite rank perturbation of the APS projection Πb := Π≥0,b for

each b ∈ B. Then, with spectral sections we basically have the same results of
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EBVPs for the single operator case, and the realization DP has a well-de�ned in-

dex class; in particular, indDP = indPC = [C −P] ∈ K0(B) and quasi-additivity

with respect to gluing of �bre bundles hold. Notice that spectral sections exists if

and only if indDY = 0, which is the case by cobordisms invariance.

Therefore, we can de�ne a LogFQFT, i.e. a higher LogTQFT, as follows. We

consider the category FCobn(B) ⊂ Cobn of cobordims �bered over B with �bre

dimension n (an analogous category is used to de�ne Fibered QFTs in [80]) and

the representation F−∞vert (Y) := Ψ−∞vert(Y,Λπ(Y)), with Λπ(Y) := Λ(TπY) → Y the

bundle of vertical forms. For X ∈ morFCob2n(B)(M0,M1), we consider its family

signature operator DSign, together with a particular kind of spectral section P

called symmetric. Symmetric spectral sections were de�ned by [43], upon meeting

some su�cient condition, and are what is needed to have a homotopy invariant index

class indDSign
P . Then we de�ne a universal LogTQFT u- logSign : NFCobn(B) →

K0(F−∞vert (FCobn(B)))⊗Q by setting

u- logSignM0tM1
X := φ̃],M0tM1 ([C −P]) ∈ K0(F−∞vert (M0 tM1))⊗Q,

with φ̃],M0tM1 the canonical isomorphism K0(F−∞vert (∂X )) ∼= K0(F−∞vert (M0tM1)).

Since P is symmetric, log-additivity follows in K0(F−∞vert (M0 tM1 tM2))⊗Q

η̃M1
logSignM0tM2

X1 ∪ X2 = η̃M2
logSignM0tM1

X1 + η̃M0
logSignM1tM2

X2.

Now, F−∞vert (M) is shown to be Morita equivalent to C∞(M). Therefore,

K0(F−∞vert (M)) = K0(B) and the Chern character ch∗, which in this case corre-

sponds to the classical one K0(B)→ H2∗(B), yields the higher LogTQFT

logSignM0tM1
X = ch∗(u- logSignM0tM1

X ) = ch∗ ([C −P]) ∈ H2∗(B),

which is equal to ch([C − P]) =
∑dimB
k=0

1
k!TrY/B

(
RkC −RkP

)
, where TrY/B is

integration along the �bres and RP are curvatures. In particular, for k = 0 we

have the topological signature of the �bre X. In conclusion, we obtain higher traces

by pairing with cyclic cohomology. For instance, we can obtain the signature of the

total space X .

Chapter 5 :

This chapter describes another higher LogTQFT, similar to the family one but

belonging to the noncommutative geometry setting. The category we are working

with is the one of homotopy cobordisms HCobn(X) ⊂ Cobn, i.e. maps r : M → X

and homotopy classes of maps of cobordisms between them, as described in [66].
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As anticipated, a higher log-functor representation of this category can be called

LogHQFT, from Homotopy Quantum Field Theory (which indeed can induce, as

much as a LogTQFT can induce a TQFT). This is the category to which a Galois

Γ-covering M̃ →M belongs. Thus, we start the chapter by recalling that a covering

is called Galois if Γ is discrete and �nitely presented and acts on the �bres freely

and transitively. Such coverings are principal Γ-bundle, thus isomorphism classes

are in bijective correspondence with homotopy classes of continuous maps into the

classifying space of Γ, i.e. r : M → BΓ.

If ð is a Dirac operator onM , then we recall that it is possible to associate to a

Galois covering r : M → BΓ a twisted Dirac D(M,r) in a standard way. Such Dirac

operator falls into the Mishchenko-Fomenko ψdodi�erential calculus: in fact, it is a

C∗rΓ-linear operator on the Hilbert module H1
C∗rΓ(M,E ⊗V), with C∗rΓ the reduced

(noncommutative) C∗-algebra associated to Γ and V a �at bundle of coe�cients

associated to the covering. De�nitions and a description of the construction are

given in the section.

Again, let us restrict to the case dimM even. If ∂M = ∅, then D(M,r) has a well

de�ned index class in K0(C∗rΓ); otherwise, once again we must impose boundary

conditions via spectral sections. In fact, if ∂M 6= ∅, suitably de�ned spectral

sections exist by cobordism invariance and de�ne an index class ind(D(M,r),P) ∈

K0(C∗rΓ). However, in order to have interesting cyclic homology and a `good' Chern

character, we need to restrict to a smooth subalgebra B, i.e. a subalgebra of C∗rΓ

which is dense and closed under holomorphic functional calculus. This process,

called smoothing of the index, in fact does not change the K-theory, since for a

subalgebra with this properties K0(C∗rΓ) = K0(B). But now, for a spectral section

to be chosen in the proper algebra Ψ0
B(∂M, (E ⊗ V)|∂M ), the group Γ must have

some additional structure. It will su�ce that Γ is virtually nilpotent, i.e. it contains

a nilpotent subgroup of �nite index, which we will assume from this moment on.

In this Hilbert module context, though, there is a nuisance to cope with: a

formula ind(D(M,r),P) = indPC is yet to be proved, even if the existance of a

Calderón projection has been con�rmed ([1]). Hopefully, the information carried

by the index still comes from the boundary, as in the classical case.

Therefore, we de�ne a universal LogTQFT in a way similar to the one of

Chapter 4. We consider the a representation F−∞Γ (M, r) := Ψ−∞B (M,Λ(M) ⊗ B),

(M, r) ∈ obj(HCob2n(BΓ)), and the twisted signature operator DSign
(M,r) associated

to (W,F ) ∈ morHCob2n((M0, r0), (M1, r1)). We will need to consider conditions
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similar to the one of the family case in order to have symmetric spectral sections

P ∈ Ψ0
B, which will yield an homotopy invariant index class. Thus, we de�ne

u- logSign : NHCobn(BΓ)→ K0(F−∞Γ (HCobn(BΓ))) as

u- logSign(M0,r0)t(M1,r1)(W,F ) := φ̃],(M0,r0)t(M1,r1)(ind(D(W,F ),P))

and since K0(F−∞Γ ((M0, r0) t (M1, r1))) = K0(B) by Morita equivalence, we can

consider the Chern character ch∗ : K0(B) → HC2∗(B) and obtain a LogHQFT by

composition:

logSign(M0,r0)t(M1,r1)(W,F ) = ch∗(ind(D(W,F ),P)) ∈ HC2∗(B).

Again, log-additivity follows from index additivity with respect to gluing when

symmetric spectral sections are considered (a feature that still holds in this setting).

Finally, pairing with cyclic cohomology will de�ne higher traces which will yield

Novikov higher signatures. These scalars, in this case homotopy invariants, are

de�ned in the following way: since Γ is virtually nilpotent, for [c] ∈ H∗(Γ,C) there

exists an associated ϕc ∈ HC∗(B); then a higher signature is the quantity:

Sign(W,F ; [c]) :=〈ch∗(ind(D(W,F ),P)), ϕc〉

=τ c(M0tM1,s1ts2)

(
logSign(M0tM1,s1ts2)(W, r)

)
.

Their additive property will clearly follow as a consequence of log-additivity.

Chapter 6 :

This last chapter forms a separate Part by itself. Although related to the

leitmotif of Part I and Part II, it is mostly focused on torsion invariants of man-

ifolds. In some cases, it will be possible to characterize them as trace-characters

of LogTQFT. The main object of study will be the residue analytic torsion of a

manifold X (with or without boundary). Its construction originates from observ-

ing that the analytic torsion, which is really the analytic `twin' of the Reidemeister

torsion, can equivalently be described as a quasi-trace-character. In order to de�ne

our object, and to make these statements more precise, we recall at the beginning

of the chapter the main de�nitions and properties of Reidemeister torsion (from

now on R-torsion) and analytic torsion.

For the R-torsion, the starting point is a C1-triangulation of X, i.e. a CW

complex (which we can call with the same letter) X =
⋃n
r=0

⋃
er, er ⊂ X an

r-cell, with universal cover X̃ =
⋃
g∈π1(X)

⋃n
r=0

⋃
gẽr. Let X(r) =

⋃
j≤r

⋃
er be
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the r-skeleton of X, with induced cover X̃(r). Then, the relative homology mod-

ule Cr(X̃) := Hr(X̃
(r), X̃(r−1)) de�nes a chain complex of �nitely generated free

R[π1(X)]-modules, where R[π1(X)] is the group ring of �nite formal sums
∑
k αkgk,

for αk ∈ R and gk ∈ π1(X). For the R-torsion to be a topological invariant (i.e.

invariant modulo homeomorphisms), the complex C∗(X̃) should be acyclic, i.e.

its homology should be trivial. Since it is not the case, we can �x this by ten-

soring with RN , which can be seen as a R[π1(X)]-module via a homomorphism

ρ : π1(X) → O(N), called orthogonal representation. The new complex of �nite

dimensional vector spaces Cr(X, ρ) := RN ⊗R[π1(X)] Cr(X̃) can be made acyclic for

suitable choices of ρ. Such chain complex has a boundary operator d, induced by

the natural one of the CW complex, which can be represented by a real matrix

after choosing a basis for Cr(X, ρ). Therefore, the (logarithm of the) R-torsion of

X can be de�ned in this context as the scalar quantity:

log τX(ρ) =
1

2

n∑
r=0

(−1)r+1r log det ∆c
r,

where ∆c
r := dr+1d

∗
r+1 + d∗rdr : Cr(X, ρ) → Cr(X, ρ) is called the combinatorial

Laplacian, d∗ being the transpose of d. We notice that it is well-de�ned, as acyclicity

of C∗(X, ρ) makes ∆c
r invertible. Now, log det ∆c

r can be expressed in terms of

ζcr(s), the zeta function of ∆c
r. This can be de�ned as the meromorphic extension

of
∑
λi>0 λ

−s
i , λi the eigenvalues of ∆c

r, which is holomorphic at s = 0. Then,

log det ∆c
r = − d

dsζ
c
r(0) and log τX(ρ) = 1

2

∑n
r=0(−1)rr ddsζ

c
r(0).

This characterization of R-torsion was the starting point for Ray and Singer,

[65], to de�ne analytic torsion. In fact, out of the metric of a closed manifold

X we can de�ne the (twisted) Hodge-Laplacian ∆k : Ωk(X,Eρ) → Ωk(X,Eρ),

where Eρ is a �at bundle associated to ρ, which can be used to make Ω(X,Eρ)

acyclic. Since ∆k is elliptic and self-adjoint on a closed manifold, it has only

countably many positive eigenvalues and we can consider the sum
∑
λi>0 λ

−s
i of

complex powers of its eigenvalues, as for the combinatorial Laplacian. Then, its

meromorphic extension, the zeta function ζk(s) := ζ(∆k, s), is holomorphic at s = 0

and Ray and Singer de�ned the (logarithm of the) analytic torsion as:

log TX(ρ) =
1

2

n∑
k=0

(−1)kk
d

ds
ζk(0).

Along the way, they obtained a regularized determinant of ∆k, the ζ-determinant

detζ ∆k := exp(− d
dsζk(0)), yielding log TX(ρ) = 1

2

∑n
k=0(−1)k+1k log detζ ∆k.
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Around 1980, Cheeger and Müller separately proved that R-torsion and analytic

torsion of a closed manifold coincide, and indeed already Ray and Singer proved

that they share similar properties, e.g. they are both trivial on even-dimensional

manifolds, and TX(ρ) is a smooth invariant for Ω(X,E) acyclic. Moreover, for a

path of metrics u 7→ gX(u) and ∗k = ∗k(u) the Hodge operator associated to gX(u),

d

du
log τX(ρ) =

d

du
log TX(ρ) =

1

2

n∑
k=0

(−1)k tr αk|ker ∆k
, αk := ∗−1

k ∗̇k

Our starting point to de�ne residue torsions is the observation that log det ∆c
k =

tr log ∆c
k, where, by holomorphic functional calculus,

log ∆c
k :=

i

2π

∫
C

log λ (∆c
k − λ)−1dλ,

C a keyhole path enclosing spec(∆c
k). Thus, log τX(ρ) becomes a tr-character of

the logarithm 1
2

∑n
k=0(−1)k+1k log ∆c

k. In a similar way, we have

log ∆k =
i

2π

∫
C

log λ (∆k − λ)−1dλ

and we can show that log detζ ∆k = TRζ log ∆k, where TRζ is the Kontsevich-

Vishik quasi-trace, the extension of the classical trace to ΨZ with respect to the

complex power gauging. Therefore, the analytic torsion is the TRζ-character of a

torsion logarithm TX(ρ) = 1
2

⊕n
k=0(−1)k+1k log ∆k ∈ Ψ≤0(X,Λ(X)⊗ Eρ).

Therefore we can consider a generalized torsion logarithm

TβX(ρ) :=
1

2

n⊕
k=0

(−1)k+1βk log ∆k, β = (β0, . . . , βn) ∈ Rn+1

and investigate other possible invariants of X originating as its trace-characters.

Now, every trace functional τ : Ψ≤0(X,F ) → C must be a linear combination of

a leading symbol trace τu,0(A), de�ned from the trace of the leading term of the

asymptotic expansion of the symbol, tr σA(x, ξ) ∈ C∞(S∗X), via pairing with a

distribution u ∈ D′(S∗X), and Wodzicki's residue trace

res(A) :=

∫
X

(∫
|ξ|=1

tr σA− dimX(x, ξ) dξS

)
dx,

which originates from the −n term in the asymptotic expansion of the symbol (and

is the unique trace on the algebra ΨZ(X,F )). Therefore, we consider these two

traces and study the associated trace-characters.

Composing TβX(ρ) with the leading symbol trace yields the exotic analytic

torsion log T lead,β,uX (ρ) := 1
2

∑n
k=0(−1)k+1βk τ0,u log ∆k, which however turns out
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to be identically zero for each β ∈ Rn+1 and u ∈ D′(S∗X). On the other hand, the

residue analytic torsion

log T res,βX (ρ) =
1

2

n∑
k=0

(−1)k+1βk res log ∆k

turns out to be more interesting and a smooth invariant for speci�c values of β. In

fact, by considering the derivative d
du log T res,βX (ρ) with respect to a smooth family

of metrics u ∈ R→ gX(u), and exploiting Scott's formula

−1

2
res log ∆k = ζk(0) + dim ker ∆k,(??)

we proved the following classi�cation theorem (Theorem 6.2.28):

Theorem. If n is odd, then log T res,βX (ρ) = 0 ∀β ∈ Rn+1. If n is even,

log T res,βX (ρ) is a smooth invariant if and only if β equals:

1 := (1, . . . , 1) or ω := (0, 1, . . . , n).

The corresponding residue analytic torsions are equal, respectively, to the Euler

characteristic χ and the derived Euler characteristics χ′:

log T
res,1
X (ρ) = χ(X,Eρ) and log T

res,ω
X (ρ) = χ′(X,Eρ).

In particular, for a smooth path of metrics u ∈ R→ gX(u) we have:

d

du
log T

res,ω
X (ρ) =

1

2

n∑
k=0

(−1)k+1 res(αk)︸ ︷︷ ︸
=0

,

and even if it vanishes, it analogous to the derivative of the analytic torsion.

The derived Euler characteristic χ′(X) :=
∑n
k=0(−1)kk dimHk(X) is another

topological invariant and equals n
2χ(X) when n = dimX is even. Therefore, in

conclusion log T res,βX (ρ) is a smooth invariant if and only if it is a homotopy invari-

ant, in which case coincides with either χ(X) or n
2χ(X). This also yields that the

torsion logarithms T1
X(ρ) and TωX(ρ) are also invariants of X. Finally, using (??)

again, and a strategy similar to [65], we showed that a generalized analytic torsion

log T βX(ρ) =
1

2

n∑
k=0

(−1)k+1βk log detζ∆k

is a smooth invariant if and only if β is again equal to 1 or ω.

LogTQFT can provide a functorial setting also for torsion invariants, in the

following way. The representation FZ(M) := ΨZ(M,Λ(M)), M ∈ obj(Cobn) is
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unoriented and, as we said, has a trace: the noncommutative residue res. Thus, for

X ∈ mor(M0,M1), ∂X = Y −0 t Y1, we can de�ne a LogTQFT by setting

logβM0tM1
X := πM0tM1 ◦ κ]

(
1

2

n⊕
k=0

(−1)kβk log ∆k,Y0 ⊕
1

2

n⊕
k=0

(−1)k+1βk log ∆k,Y1

)
,

with character, for β = ω, res
(
log

ω
M0tM1

X
)

= χ′(M1) − χ′(M0). In this case,

log-additivity is straightforward. Additionally, if we restrict to the category of

h-cobordisms h-Cobn, where the objects are deformation retracts of the cobor-

disms, we can characterize the analytic torsion as the TRζ-character of the same

LogTQFT. The res-character in this context is, by homotopy invariance, trivial.

The same results can actually be reproduced for a �bre bundle with closed

�bre X X→ B. On the one hand, the de Rham operator dX + δX associated to

the total space X is a superconnection adapted to a family of de Rham operators

(dXb + δXb)b∈B . On the other hand, the Laplacian ∆X , i.e. the curvature of the

superconnection, is adapted to a family of Laplacians (∆Xb)b∈B . Since logarithm

and residue torsion are well-de�ned for families of di�erential operators and super-

connection, with suitable generalizations, we were able to de�ne a family torsion

logarithm and family residue analytic torsion

T res,β
X =

1

2

dimX∑
k=0

(−1)k+1βk res log ∆Xk ∈ H∗(B,R)

and show that the same result of the single operator case holds also for �bre bundles.

The di�erence here is that T res,β
X for β = 1, resp. β = ω, equals χ(X), resp.

dimX
2 χ(X), where X is the �bre, since the cohomology bundle H(X,E) → B is

�at. Here, we also use the family torsion logarithm to de�ne a `simple' LogFQFT.

We conclude the chapter with the appropriate generalization to a manifold X

with boundary Y . Since the analytic torsion is de�ned in terms of the eigenvalues

of the Laplacian ∆k on k-forms, we need self-adjoint boundary conditions, which

are once again represented by the relative (or the absolute) ones. For instance,

∆k,R stands for the Laplacian on Ωk(X,Eρ) with relative boundary conditions,

i.e. Rγω = 0 and Rγδω = 0. When such boundary conditions are imposed,

the Laplacian has a spectrum of discrete non-negative eigenvalues accumulating at

in�nity, as in the case Y = ∅. Therefore, one can de�ne a logarithm

log ∆k,R := lim
s↘0

i

2π

∫
C

log λλ−s (∆k,B − λ)−1dλ,
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([22]) and a res log ∆k,R via the generalization to Boutet de Monvel operators of the

residue trace ([21]). Thanks to this, we obtain a relative residue analytic torsion

log T res,βX,R (ρ) =
1

2

n∑
k=0

(−1)k+1βk res log ∆k,B .

We are then able to generalize the classi�cation theorem of the closed case:

Theorem. LetX be an oriented manifold with boundary Y . Then log T res,βX,B (ρ)

is a smooth invariant if and only if β = 1 or β = ω. The corresponding residue

analytic torsions are:

log T
res,1
X,R (ρ) = χ(X,Y,Eρ) and log T

res,ω
X,R (ρ) = χ′B(X,Y,Eρ) +

n∑
k=0

(−1)kkζk,R(0).

In particular, for a smooth path of metrics [0, 1] 3 u 7→ gX(u) for which the normal

direction to the boundary is the same, we have:

d

du
log T

res,ω
X,R (ρ) =

1

2

n∑
k=0

(−1)k+1 res αk.

We remark that the term
∑n
k=0(−1)kkζk,R(0) does not vanish as in the closed

manifold case (some examples are provided), but
∑n
k=0(−1)kζk,R(s) is zero also in

this case and is responsible for the equality log T
res,1
X,R (ρ) = χ(X,Y,Eρ). The proof

is analogous to the closed case and uses a generalization of Scott's formula (??)

to the boundary case, found in [27]. We conclude this �nal chapter by showing

quasi-additivity of the residue torsion (Theorem 6.5.17):

log T res,β1

X,R (ρ) = log T res,β1

X1,R
(ρ) + log T res,β1

X2,R
(ρ) + log T res,β1

Y (ρ) +
1

2
χ(Y )

and remark that χ′(X) = χ′(X,Y ) +χ′(Y ) + 1
2χ(Y ) if dimX is odd, but not when

it is even (a counterexample will be provided).



Acknowledgements

I would like to express my gratitude to the many people that have supported

me during this long period. First of all, to my supervisor Prof. Simon Scott, who

suggested this topic and supported me with enlightening and friendly discussions.

Furthermore, to my family, especially to my father, to my mother, to Federico,

to Benedetta, and to Lila, and to my `extended' families of Judo and Ichi Gi Do

Bujutsu. To all of them, I owe endless patience, and love, in di�erent measures,

which supported my heart, my mind and my body in this challenge.

Last, but not least, I would like to thank my friends and colleagues Tobias

Hartung, Francesca Tripaldi, and Riccardo J. Buonocore for sharing this time and

common e�ort, for the many discussions and for the mutual help.

To all these people, I owe everything good in this thesis.

27



CHAPTER 0

Background

In this introductory chapter, we set the notation and recall some standard

results that will be given for granted in the sequel. The �rst section recalls the

basic set up we will be working with. In the second one, we set the notation for

pseudodi�erential operators and their symbols. In the third one, we describe the

decomposition of a smooth form, over the boundary of a manifold, into a tangential

and a normal component. Finally, the fourth section recalls the Euler characteristic

of a manifold and its properties.

0.1. Riemannian manifolds with boundary and restriction of sections

Let X be an n-dimensional manifold, i.e. from now on a compact C∞-manifold,

possibly with non-empty smooth boundary Y := ∂X. If Y = ∅, we will say that

X is closed. If X is also oriented, then Y inherits a coherent orientation from X.

When X is considered with the opposite orientation, we will write X−. For x ∈ X,

let TxX and T ∗xX denote the tangent and cotangent spaces of X at x, respectively,

and TX and T ∗X its tangent and cotangent bundles. For standard de�nitions

about di�erentiable manifolds with boundary we refer to [16] and [68].

For c ∈ R+ := {x ∈ R| x > 0}, let U := [0, c)× Y be a collar neighborhood1 of

Y , where coordinates x = (t, y) are chosen in such a way that y ∈ Y and t ∈ [0, c)

corresponds to an inward normal covariant derivative, denoted by ∂t. Dt will stand

for −i∂t as usual in the context of microlocal analysis, where i :=
√
−1.

Let gX denote a choice of Riemannian metric for X, and v(x)dx the associated

volume element. The boundary Y inherits a metric gY with associated volume

element v(0, y)dy. We will consider a product stucture near the boundary (see for

instance [25]), i.e. on U :

gX = dt2 + gY and v(x)dx = v(0, y)dydt.(0.1.1)

Let E
π→ X be a Hermitian vector bundle over X of rank N . We will denote

by ∇E its connection, by C∞(X,E) the space of smooth sections of E, and by

1Which always exists, see for instance Theorem (1.2), [16].

28
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Hs(X,E) the associated Sobolev space, i.e. its Hilbert space completion with

respect to the measure (1+ |ξ|2)
s
2 dξ (see for instance �11 of [10] for a presentation).

H0(X,E) := L2(X,E) has inner product de�ned by the metric on X:

〈s1, s2〉 :=

∫
X

gx (s1(x), s2(x)) v(x)dx for s1, s2 ∈ C∞(X,E).

By D′(X,E) we will denote the space of distributions C∞(X,E)→ C.

Let E′ := E|Y =
⊔
y∈Y Ey be the restriction of E to the boundary. Then by

product structure E|U = ι∗E′, where ι∗ is the pull-back of the natural embedding

ι : Y ↪→ U . The restriction to the boundary Y de�nes a continuous trace map

γ : C∞(U,E|U )→ C∞(Y,E′):

s|Y (y) := (γs)(y) := s(0, y), s ∈ C∞(U,E|U ),(0.1.2)

which extends to a continuous and uniformly bounded operator (Corollary 11, [10]):

γ : Hs(X,E)→ Hs− 1
2 (Y,E′), for s >

1

2
.

We remark that the de�nition of γ can be extended to all s ∈ R.

Example 0.1.1 (�1.1, [68]). The restriction TX|Y :=
⋃
y∈Y TyX of TX to

Y is a classical example of restriction of a vector bundle to the boundary. If

ι : Y ↪→ X is the natural embedding, then dyι : TyY → TyX is injective ∀y ∈ Y

and TY is a 1-codimensional sub-bundle of TX|Y . In fact, by product structure

TX|Y = TY ⊕ R and dι induces a natural inclusions of the space of vector �elds

Γ(TY ) := C∞(Y, TY ) into Γ(TX|Y ) := C∞(Y, TX|Y ). Moreover, the pull-back

ι∗ : Γ(TX)→ Γ(TY ) is surjective.

We will assume familiarity with the concept of gluing of manifolds along dif-

feomorphic connected components of their boundaries. For example, if Yi := ∂Xi,

i = 1, 2, and φ : Y1

∼=→ Y2 is a di�eomorphism, then we write X1 ∪φ X2 for the

closed manifold de�ned by the gluing. The operation can easily be generalized to

some connected components of the boundaries Y1 and Y2. Here we only recall the

Uniqueness of Gluing Theorem, i.e. di�erent collar neighborhoods of the bound-

aries yield di�erent but di�eomorphic manifolds. The main reference in this case is

[31], Chapter 8, �2.

We will assume that X is embedded in a closed n-dimensional manifold X̃, such

that Y is smoothly embedded in X̃. Then Y has a symmetric tubular neighborhood

Ũ in X̃ such that x = (t, y), with |t| < c(y) and c(y) ∈ R+ (�7, [25]). For example,

X̃ could be the closed double X ∪ X1, where X1 = X or X1 = X− (in case we
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consider oriented manifolds). Its construction is explained in �9, [10]. Likewise, the

vector bundle E can be considered to be the restriction to X of a bundle Ẽ → X̃

of rank N . As for (0.1.2), the restriction γ̃ : C∞(X̃, Ẽ)→ C∞(Y,E′) extends to a

continuous and uniformly bounded operator

γ̃ : Hs(X̃, Ẽ)→ Hs− 1
2 (Y,E′), for s >

1

2
,

which has adjoint γ̃∗ : H−s+
1
2 (Y,E′)→ H−s(X̃, Ẽ), (γ̃∗φ)(y, t) := φ(y)⊗ δ(t), with

δ the delta distribution supported in Y (see �1.3, [26]).

0.2. Classical pseudodi�erential operators and traces

Here, we only mention some basic de�nitions of classical pseudodi�erential

operators on closed manifolds and manifolds with boundary for the sake of notation.

For a complete exposition, we refer to [32], [79], and [81] for closed manifolds, and

[26] for manifolds with boundary.

Let X be closed and m ∈ C. For a local trivialization (V, ϕ), let us de-

note by Sm := Sm(V × Rn,End(CN )) the space of symbols of order m; as usual,

S−∞ :=
⋂
k∈R Sk denotes the ideal of smoothing symbols. For the space of classical

symbols of order m, i.e. a(x, ξ) ∈ Sm such that:

a(x, ξ) =
∑
j≥0

am−j(x, ξ) ∈ Sm/S−∞ and

am−j(x, tξ) = tm−jam−j(x, ξ) for t ≥ 1, |ξ| ≥ 1,

we will write CSm := CSm(V ×Rn,End(C)N ). Notice that CS :=
⋃
m∈C CSm is not

a linear space , but CSZ :=
⋃
k∈Z CS

k is a Fréchet algebra (�1.5.2, [75]).

Let Ψ(X,E) :=
⋃
m∈C Ψm(X,E) denote the semigroup of classical pseudodi�e-

rential operators (from now on classical ψdos), i.e. A : C∞(X,E)→ C∞(X,E) is a

ψdo such that σA(x, ξ) ∈ CSm, where σA(x, ξ) ∼
∑
j≥0 σ

A
m−j(x, ξ) is the symbol of

A and therefore σAm(x, ξ) denotes its principal (or leading) symbol. As for symbols,

Ψ(X,E) is only a semigroup; however, ΨZ(X,E) :=
⋃
k∈Z Ψk(X,E) is a Fréchet

algebra (�1.5.4, [75]).

Let A ∈ Ψm(X,E); then A is elliptic if its principal symbol σAm is an invertible

section, i.e. σAm(x, ξ) ∈ End(CN ) is invertible for each (x, ξ) ∈ T ∗X \ 0 (�1.5.3.1,

[75]). This equivalently means that there exists p ∈ S−m such that pσA − I and

σAp− I belong to S−∞ (�18.1, [32]). ΨEll(X,E) :=
⋃
m∈C Ψm

Ell(X,E) denotes the

space of elliptic ψdos and is a sub-semigroup of Ψ(X,E). In particular, ΨZ(X,E)
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is the smallest algebra containing all elliptic di�erential operators and their para-

metrices (�1.1.8, [75]).

Let A ∈ Ψm(X,E), m ∈ Z. Then A is odd-class if in any local trivialization

σAm−j(x, ξ) = (−1)m−jσAm−j(x,−ξ), j ≥ 0. In this case we write A ∈ Ψm
(−1)(X,E)

and ΨZ
(−1)(X,E) :=

⋃
m∈Z Ψm

(−1)(X,E) is a subalgebra of ΨZ(X,E) containing

di�erential operators and smoothing ψdos (�7, [39]).

In particular, a ψdo A is called smoothing if σA ∈ S−∞. In this case, we

write A ∈ Ψ−∞(X,E) :=
⋂
m∈R Ψm(X,E) and Ψ−∞(X,E) is a Fréchet algebra.

In particular, A is characterized by a smooth Schwartz kernel

kA(x, y) ∈ C∞(X ×X,π∗1(E)⊗ π∗2(E)∗)

(π∗1(E) ⊗ π∗2(E)∗ is the vector bundle with �bre Hom(Ey, Ex) at (x, y) ∈ X ×X;

�1.1.7, [75]). There is a (projectively) unique trace on Ψ−∞(X,E), the classical

trace (�4.3.2, [75]):

Tr : Ψ−∞(X,E)→ C, Tr(A) :=

∫
X

tr kA(x, x)v(x)dx.(0.2.1)

where tr is the matrix trace on End(CN ).

IfX is an n-manifold with non-empty boundary Y , let X̃ be a closed n-manifold

such that X ↪→ X̃ smoothly and E = Ẽ|X for a Hermitian vector bundle Ẽ → X̃

of rank N , as in �0.1. Then the classical ψdos Ψ(X,E) are de�ned from Ψ(X̃, Ẽ)

by truncation as follows. Let us consider the natural operators (�11, [10]):

• restriction: r+ : Hs(X̃, Ẽ)→ Hs(X,E), u 7→ u|X , ∀s ≥ 0,

• extension by zero: e+ : L2(X,E)→ L2(X̃, Ẽ),

e+u(x) =

 u(x) if x ∈ X,

0 if x ∈ X̃ \X;

Then r+ and e+ are mutually L2-adjoint, i.e. for u ∈ L2(X,E) and v ∈ L2(X̃, Ẽ):

〈e+u, v〉X̃ =

∫
X̃

gx̃
(
e+u, v

)
v(x̃)dx̃ =

∫
X

gx
(
u, v|X

)
v(x)dx+ 0 = 〈u, r+v〉X .

Thus, A ∈ Ψm(X,E) is de�ned as A := r+Ãe+ for Ã ∈ Ψm(X̃, Ẽ). For A to be

regular over the boundary (�1.2, [26]), we must assume a transmission property,

i.e. in a collar neighbourhood of Y , for (t, τ) ∈ T ∗R,

Dβ
xD

α
ξ σ

Ã
m−l(0, y,−τ, 0) = eiπ(m−l−|α|)Dβ

xD
α
ξ σ

Ã
m−l(0, y, τ, 0).(0.2.2)

Then A : Hs(X,E) → Hs−m(X,E), s > 0, will be continuous. In particular, if A

is considered together with a boundary operator T : C∞(X,E) → C∞(Y,E′), i.e.
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a trace (�1.2, [26]), a singular Green operator G, a Poisson operator K, and a ψdo

over the boundary S, then the matrix:

 A+G K

T S

 :

C∞(X,E)

⊕

C∞(Y,E′)

→
C∞(X,F )

⊕

C∞(Y, F ′)

belongs to the Boutet de Monvel calculus or calculus of Pseudodi�erential boundary

operators (ψdbo). These operators in fact form an algebra which encompasses

the calculus of elliptic di�erential boundary problems and their solution operators.

Since we will not work with such algebra in general, we will not report the details

of each of the aforementioned operators. We only want to remark that such an

algebra can be seen as a good extension of the algerba of classical ψdos on closed

manifolds, at least with respect to the residue trace (see Chapter 6), which in fact

is generalized to the Boutet de Monvel algebra and is the unique trace there. We

refer to [26] for further details on Boutet de Monvel calculus.

0.3. Decomposition of di�erential forms near the boundary

The main references in this section will be [23] and [68]. We will denote the

vector bundle of di�erential forms on X of degree k by Λk(X) := Λk(T ∗X), and the

space of smooth k-forms by Ωk(X) := C∞(X,Λk(X)), k ∈ {0, . . . , n = dimX}. We

recall that Λk(X), and hence Ωk(X), are both graded, i.e. Λ(X) :=
⊕n

k=0 Λk(X)

and Ω(X) :=
⊕n

k=0 Ωk(X). Together with the exterior derivative dk := d|Ωk(X),

(Ωk(X), dk) will be called de Rham complex.

Let Hk(X,C) denote de Rham cohomology2 and ∗k : Ωk(X) → Ωn−k(X)

the Hodge operator, arising from the metric on X. Since ∗n−k∗k = (−1)k(n−k),

then ∗−1
k = (−1)k(n−k)∗n−k. When X is closed, ∗k yields Poincaré Duality, i.e.

Hk(X,C) ∼= Hn−k(X,C) (�3.3, [29]). We also recall that ∗k turns Ωk(X) into a

Hilbert space via the inner product 〈α, β〉 :=
∫
X
α∧∗β and provides an adjoint for

dk, i.e. the codi�erential δk : Ωk+1(X)→ Ωk(X),

δk := (−1)n(k+1)+1 ∗n−k dn−(k+1) ∗k+1 .

The operator d + δ : Ω(X) → Ω(X) is a �rst order di�erential operator, called de

Rham operator.

2We have considered de Rham cohomology with complex coe�cients, which is equivalent to

de Rham cohomology with coe�cients in any other �eld of characteristic zero by the Universal

Coe�cient Theorem (�3.1, [29]).
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Definition 0.3.1 (De�nition 1.2.2, [68]). The Hodge-Laplacian (or Laplace-de

Rham operator) is the map ∆ : Ω(X)→ Ω(X) de�ned as ∆ := dδ + δd = (d+ δ)2.

In particular, on smooth k-forms:

∆k := ∆|Ωk(X) = dk−1δk−1 + δkdk : Ωk(X)→ Ωk(X).

Both d+ δ and ∆ are self-adjoint elliptic di�erential operators on X closed.

When Y = ∂X 6= ∅, we write Ωk(X)|Y := C∞(Y,Λk(X)|Y ) for the space of

restrictions to the boundary ω|Y = γω of smooth k-forms ω ∈ Ωk(X). By product

structure (0.1.1) on a collar neighbourhood U ∼= [0, c)× Y , we have the orthogonal

decomposition:

ω|U = ω1 + dt ∧ ω2,(0.3.1)

where ω1 ∈ C∞([0, c))⊗Ωk(Y ) and ω2 ∈ C∞([0, c))⊗Ωk−1(Y ), which corresponds

to the decomposition Λ(X)|Y = Λ(Y ) ⊕ Λ(Y ) into the ±1-eigenspaces of the self-

adjoint idempotent α(γω) = ω1 − dt ∧ ω2 (�4.1, [23]). In this way, we can de�ne

the following fundamental boundary operators:

Definition 0.3.2 (�1.2, [68]). Consider the orthogonal decomposition of γω

as in (0.3.1). Then the di�erential forms ω1 ∈ Ωk(Y ) and ω2 ∈ Ωk−1(Y ) are called

tangential and normal components of γω. Moreover, this decomposition de�nes

the orthogonal (complementary) projections

R : Ω(X)|Y → Ω(Y ) A : Ω(X)|Y → Ω(Y )

ω|Y 7→ ω1 ω|Y 7→ ω2.

As in Example 0.1.1, the natural embedding ι : Y ↪→ X de�nes by pull-back the

surjection ι∗ : Ω(X)→ Ω(Y ). Since Rγ = ι∗, the projection R does not depend on

the metric gX . On the other hand, A does, since it depends on a choice of normal

tangent vector to the boundary (�4.1, [23], and �1.2, [68]).

Proposition 0.3.3 (1.2.6, [68]). R and A are Hodge adjoint to each other, i.e.

∗R = A∗. Moreover, R is d-invariant, while A is δ-invariant, i.e.:

R(dω) = d(Rω) and A(δω) = δ(Aω).

Remark 0.3.4. Because of Proposition 0.3.3, the complexes (Ωk(X), d) and

(Ωk(X), δ) can be re�ned to the complexes

dk : ΩkR(X)→ Ωk+1
R (X) and δk : Ωk+1

A (X)→ ΩkA(X),
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where ΩkR(X) = {ω ∈ Ωk(X)| Rγω = 0} and ΩkA(X) = {ω ∈ Ωk(X)| Aγω = 0}.

In this case we say that (ΩkR(X), d) (resp. (ΩkA(X), δ)) corresponds to (Ωk(X), d)

with relative (resp. absolute) boundary conditions (�2.6, [68]).

Remark 0.3.5. All the above can be generalize to smooth forms with coe�-

cients in a �at3 vector bundle E → X with rank N and connection ∇E . In fact,

all the previous de�nitions and results carry over to the twisted de Rham complex

(Ω(X,E), dE), where Ω(X,E) := C∞(X,Λ(X)⊗E) and dE is the exterior covariant

derivative dE : Ω(X,E)→ Ω(X,E), de�ned as dE(ω⊗s) = dω⊗s+(−1)kω⊗∇Es,

for ω ∈ Ωk(X) and s ∈ C∞(X,E).

0.4. Euler characteristic

Here, we recall the main de�nition and properties of the Euler characteristic.

The main reference for simplicial homology and cohomology will be [29] and [58].

Let K be a simplicial complex, with subcomplex L ⊆ K. We denote their

simplicial cohomology and relative cohomology groups of order k byHk(K), Hk(L),

and Hk(K,L), respectively. Then the Euler characteristic of K and L are the

integers:

χ(K) =

n∑
k=0

(−1)k dimHk(K) and χ(L) =

n−1∑
k=0

(−1)k dimHk(L),

while χ(K,L) =
∑n
k=0(−1)k dimHk(K,L) is the Euler characteristic of the pair

(K,L), i.e. the relative Euler characteristic of the pair.

Let X be an n-manifold with boundary Y , possibly non-empty. It is well

known that X admits a C1-triangulation K, i.e. a simplicial complex, with a

sub-triangulation L for Y (see [59]). Then, since simplicial homology is invariant

under subdivision (Theorem 17.2, [58]), the Euler characteristic of X is invariantly

de�ned as χ(X) := χ(K). Analogously, χ(Y ) := χ(L), and χ(X,Y ) := χ(K,L) is

the Euler characteristic of X relative to the boundary Y . They all are homotopy

invariants of X, since they are de�ned at the level of cohomology.

There is a split short exact sequence 0 → C(L) → C(K) → C(K,L) → 0

associated to the pair (K,L), which yields a long exact sequence (Theorem 43.1,

[58]) · · · → Hk−1(L)→ Hk(K,L)→ Hk(K)→ Hk(L)→ · · · and the identity:

χ(X) = χ(X,Y ) + χ(Y ).(0.4.1)

3That is, (∇E)2 = 0, i.e. the curvature tensor vanishes.
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The Euler characteristic of a closed manifold can also be expressed in terms

of its de Rham cohomology. In fact, by the de Rham Theorem (Chapter 5, [84]),

Hk(X) ∼= Hk(X,C); thus χ(X) =
∑n
k=0(−1)k dimHk(X,C).

Remark 0.4.1. By Poincaré Duality, χ(X) = 0 if n = dimX is odd. Therefore

(0.4.1) yields χ(X) = χ(X,Y ) when n = dimX is even.

If Y 6= ∅, then χ(X) and χ(X,Y ) can be represented in terms of Hk
R(X,C) and

Hk
A(X,C), i.e. the cohomology of (ΩkR(X), d) and (ΩkA(X), δ), respectively, with

complex coe�cients. In fact, from �4.1, [23], we know that

Hk(X,Y ) ∼= Hk
R(X,C) and Hk(X) ∼= Hk

A(X,C).

Thence, χ(X) =
∑n
k=0(−1)k dim Hk

A(X,C) and χ(X,Y ) =
∑n
k=0(−1)k dimHk

R(X,C).

The Hodge operator ∗ induces Poincaré Duality for manifolds with boundary,

Hk
R(X,C) ∼= Hn−k

A (X,C) (Corollary 2.6.2, [68]), which yields χ(X) = (−1)nχ(X,Y ).

Hence, in conclusion:

Lemma 0.4.2 (4.1.5, [23]).

χ(X) =

 χ(X,Y ) if n even,

−χ(X,Y ) = 1
2χ(Y ) if n odd.

(0.4.2)

Finally, Mayer-Vietoris Theorem (�3.1, [29]) provides a quasi-additive formula

when two manifolds are glued along di�eomorphic components of their boundaries,

i.e. if Xi, i = 1, 2, is an n-dimensional manifold with connected component of the

boundary Yi ⊆ ∂Xi and Y1
φ→ Y2, then χ(X1 ∪φ X2) = χ(X1) + χ(X2) − χ(Y1),

which translates into:

χ(X1 ∪φ X2) = χ(X1) + χ(X2) if n = dimXi is even.(0.4.3)

Notice that χ(Y1) = χ(Y2) and χ(X1∪φX2) does not depend on φ, i.e. it is cut-and-

paste invariant (Chapter 1, [36]). Also, Lemma 0.4.2 yields, for X := X1 ∪φ X2,

χ(X, ∂X) = χ(X1, ∂X1) + χ(X2, ∂X2) + χ(Y1) and

χ(X, ∂X) = χ(X1, ∂X1) + χ(X2, ∂X2) if n = dimXi is even.(0.4.4)

Remark 0.4.3. In the context of Remark 0.3.5, k-forms have coe�cients in

the �bre of a �at vector bundle E. Thus, de Rham Theorem generalizes to this

context, yielding Hk(X,Y,E) ∼= Hk
R(X,E) and Hk(X,E) ∼= Hk

A(X,E). Now, if C

be a chain complex of free abelian groups with homology groups Hk(C), then the
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cohomology groups Hk(C;G) of the cochain complex Hom(Hk(C), G) satisfy the

split exact sequence:

0 −→ Ext(Hk−1(C), G) −→ Hk(C;G) −→ Hom(Hk(C), G) −→ 0,

(Universal Coe�cient Theorem; 3.2, [29]). Then, since G = E is (locally) a vector

space and Hk(C) = Hk(X) are free groups, Ext(Hk(X), E) = 0 (see [29]) and

Hk(X,E) ∼= Hom(Hk(X), E). Therefore, dimHk(X,E) = dimHk(X) · dimE.

Therefore, if we de�ne:

χ(X,E) =

n∑
k=0

(−1)k dim Hk
A(X,E), χ(X,Y,E) =

n∑
k=0

(−1)k dimHk
R(X,E),

and χ(Y,E) =

n−1∑
k=0

(−1)k dimHk(Y,E),

we can conclude χ(X,E) = χ(X) · rk(E) and similarly for χ(X,Y,E) and χ(Y,E).
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CHAPTER 1

Logarithmic structures and LogTQFT

In this chapter we recall the de�nitions of logarithmic representations, traces

and determinants and provide some classical examples of logarithms (the local and

global logarithm on GL(n,C) and the Fredholm index). As part of this introduction,

we prove some general equivalent conditions for the uniqueness of log, trace and

det.

Then, we will present the main object of this work: the logarithmic represen-

tation of a symmetric monoidal categoy C, or log-functor (�1.4), which is called

LogTQFT if C = Cobn, the catory of n-dimensional cobordisms. This categori-

cal construction requires some preparation, which we summarize from [72], where

log-functors appeared for the �rst time.

At the end of the chapter we state and prove a new result for 2-dimensional

unoriented LogTQFTs, which classi�es them in terms of the logarithmic represen-

tation of the unit disc and the Euler characteristic of the cobordisms.

1.1. Logarithms and log-determinants structures

The following de�nitions can be found in �4.1, [73].

Definition 1.1.1. Let S be a topological semigroup and T a unital locally

convex topological algebra. Then a (global) logarithmic representation (or simply

logarithm) of S is a homomorphism:

log : S → (T ,+)

[T , T ]
, a 7→ log a

satisfying, for every a, b ∈ S, a log-additive property log ab = log a+log b, meaning:

log ab− log a− log b =

N∑
i=1

[ci, c
′
i] ∈ [T , T ] for some ci, c

′
i ∈ T ,(1.1.1)

where [ci, c
′
i] := cic

′
i−c′ici is the commutator of ci and c′i and [T , T ] is the subgroup

of (T ,+) of �nite sums of commutators.

Remark 1.1.2. A logarithm is local if, for each a ∈ S, it is only de�ned for an

open neighbourhood U of a, i.e. logU : U → T such that for any a, b ∈ S there exist

38



1.2. UNIQUENESS OF LOGARITHM, TRACE AND DETERMINANT 39

neighbourhoods U ,V,W such that logW ab− logU a− logV b ∈ [T , T ]. In this case,

logU is called a branch of the log. An example will be given in �1.3.1.

Thus, there exists an abelian group of logarithm representations of S into T ,

Log(S, T ) := Hom

(
S, (T ,+)

[T , T ]

)
.

Remark 1.1.3. By (1.1.1), if p ∈ S is idempotent, i.e. p2 = p, then log p = 0.

In particular, if S is a monoid with unit ι, then log ι = 0. All other standard

properties of the logarithm naturally follow ([73]).

Definition 1.1.4. A homomorphism of groups τ : (T ,+) → (U ,+) is said to

be a trace on T if it vanishes on commutators: τ([c, c̃]) = 0, i.e. [T , T ] ⊂ ker(τ).

The abelian group of traces is denoted by

Trace(T ,U) := Hom(T /[T , T ],U).

Definition 1.1.5. A log-determinant (or log-character, or τ -character) is the

composition τ ◦ log : S → U of a logarithmic representation of S with a trace τ .

By the linearity of τ and (1.1.1) we have the additive property of log-characters:

τ(log ab) = τ(log a) + τ(log b) ∀a, b ∈ S.

Definition 1.1.6. If e : (U ,+, ·) → (V,+, ·) is an exponential map, i.e. a

homomorphism of unital rings such that e(a + b) = e(a) · e(b), then the triple

(log, τ, e) is called a determinant structure and a determinant associated to the

triple is de�ned by the composition

detτ,e := e ◦ τ ◦ log .

It follows that a determinant functional has a natural multiplicative property:

det ab = det a · det b ∀a, b ∈ S.

1.2. Uniqueness of logarithm, trace and determinant

Here, we present the proofs of three similar lemmas about equivalent conditions

for the uniqueness of logarithm, trace and determinant. The main technical result

we need is the Snake's Lemma:

Theorem 1.2.1 (�VIII.4, [50]). In an abelian category1, let us consider the

following morphism of short exact sequences, i.e. the triple of morphisms (f, g, h)

such that the following diagram commutes:

1Such as Ab, the category of abelian groups and group homomorphisms.
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0 A B C 0

0 A′ B′ C ′ 0.

f

m

g

e

h

m′ e′

Then there is a morphism δ : ker(h) → coker(f) such that the following sequence

is exact:

0→ ker(f)→ ker(g)→ ker(h)
δ→ coker(f)→ coker(g)→ coker(h)→ 0.(1.2.1)

Remark 1.2.2. Notation here will try to be consistent with the common use

of additive notation for abelian groups and multiplicative notation for non-abelian

groups. Thus the unit elements will be respectively denoted by 0B (or just 0) when

(B,+) is abelian and 1G (or just 1) for (G, ·) non-abelian.

Remark 1.2.3. From now on, let R be a commutative unital ring and denote

by R∗ the subring of units of R. Notice that a trace on an R-module is in particular

an R-linear homomorphism.

Lemma 1.2.4 (Uniqueness of trace). Let B be a ring and an R-module and let

τ : (B,+)→ R be a trace. Consider the commutative diagram:

0 [B,B] B B
[B,B] 0

0 ker(τ) B R 0.

i

i

id

σ

πτ

i τ

Then the following are equivalent:

(1) B
[B,B]

πτ→ (R,+) is an isomorphism of abelian groups;

(2) ker(τ) = [B,B];

(3) if ξ ∈ B with τ(ξ) ∈ R∗, then ∀β ∈ B we can write:

β = τ(β)τ(ξ)−1ξ +

n∑
j=1

[δj , δ
′
j ]

for some δj , δ
′
j ∈ B depending on β and ξ;

(4) τ is projectively unique, i.e. for any other trace τ̃ : B → R there exist

r ∈ R such that τ̃ = τ · r;

(5) Trace(B,R) ∼= (R,+).

Lemma 1.2.5 (Uniqueness of logarithm). LetG be a group and consider its com-

mutator subgroupG′ = {ghg−1h−1 | g, h ∈ G}. ForB anR-module, let log : G→ B

be a logarithm and consider the commutative diagram:
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1 G′ G G
G′ 1

1 ker(log) G B
[B,B] 0.

i

i

id

π

πlog

i log

Then the following are equivalent:

(1) G
G′

πlog→ B
[B,B] is an isomorphism of abelian groups and the short exact

sequence 1→ G′ → G→ G
G′ → 1 is split J ′ : G

G′ → G;

(2) ker(log) = G′ and 1 → ker(log) → G
log→ B

[B,B] → 1 is a split short exact

sequence J : B
[B,B] → G;

(3) for a given splitting J : B
[B,B] → G of log, any g ∈ G can be written:

g = Πk{lk, l′k} · J(log g)

for some lk, l
′
k ∈ G depending on g and J , where {l1, l2} = l1l2l

−1
1 l−1

2 .

Then log is the unique logarithm split by J .

Lemma 1.2.6 (Uniqueness of determinant). Let G be a group and G′ its com-

mutator subgroup as in Lemma 1.2.5. Let det : G → R∗ be a determinant and

consider the commutative diagram:

1 G′ G G
G′ 1

1 ker(det) G R∗ 1.

i

i

id

π

πdet

i det

Then the following are equivalent:

(1) G
G′

πdet→ B
[B,B] is an isomorphism of abelian groups and the short exact

sequence 1→ G′ → G→ G
G′ → 1 is split j′ : G

G′ → G;

(2) ker(det) = G′ and the short exact sequence 1→ ker(det)→ G
det→ R∗ → 1

is split j : R∗ → G;

(3) for a splitting j : R∗ → G of det any g ∈ G can be written:

g = Πk{hk, h′k} · j(det g)

for some hk, h
′
k ∈ G depending on g and j.

Then det is the unique determinant split by j.

Remark 1.2.7. A priori, the homomorphisms of groups log, τ and det are not

required to be surjective, hence the second row of the diagrams need not be exact.
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But the R-linearity hypothesis for τ and the split hypothesis for log and det, or

assuming πlog and πdet invertible, will provide exactedness for the second row.

Moreover, we must notice that, except for the case of the trace, our commutative

diagrams belong to Grp, the category of groups and homomorphisms of groups,

which is not abelian or even additive. However, the morphisms involved are the

inclusions i and identity id, for which kernels and cokernels are de�ned and trivial:

ker(i : G′ → ker log) = ker(id : G→ G) = coker(id) = {1},

(likewise for the determinant), and the subgroup G′ is normal in G. Therefore,

δ : ker(h) → coker(f) of Theorem 1.2.1 exists and is well-de�ned also in these

cases. In fact, let us consider log (for det the proof works in the same way) and

let z ∈ kerπlog; since π is surjective, ∃ y ∈ G such that π(y) = z (speci�cally,

z = yG′). The identity pushes down y to itself and since the diagram commute, i.e.

log ◦ id = πlog ◦ π, we have log(y) = πlog ◦ π(y) = πlog(z) = 1, so y ∈ ker log ≤ G.

Let πG′ : ker log→ coker(i), with i : G′ → ker log. By de�nition of δ, δz = πG′ ◦

i−1 ◦ id ◦ π−1(z) = πG′(y) = yG′ and if x ∈ π−1(z), i.e. xG′ = z = yG′, we obtain

δxG′ = xG′. Hence δ is independent of the choice of representative of yG′ and is

the identity, and (1.2.1) is exact if and only if πlog is an isomorphism.

Proof of Lemma 1.2.4. Clearly, ker(i) = ker(id) = coker(id) = {0}, where

i : [B,B] → ker τ . Moreover, τ is surjective because R-linear (see Remark 1.2.8),

hence πτ is surjective as well (by commutativity of the diagram) and coker(πτ ) = {0}.

Since the category of R-modules is abelian, Theorem 1.2.1 applies and

0→ 0→ 0→ ker(πτ )
δ→ coker(i)→ 0→ 0→ 0

is exact, where i : [B,B] → ker(τ) and coker(i) := ker(τ)/[B,B]. Hence δ is an

isomorphism.

(1)⇔ (2) πτ isomorphism⇔ ker(πτ ) = {0} ⇔ coker(i)
δ∼= {0}⇔ ker(τ) = [B,B].

(2) ⇒ (3) If ker(τ) = [B,B] and ξ ∈ B such that τ(ξ) ∈ R∗, then ∀β ∈ B

β − τ(β)τ(ξ)−1ξ ∈ ker(τ). Hence there exist δj , δ
′
j ∈ B, 1 ≤ j ≤ n, such that

β − τ(β)τ(ξ)−1ξ =
∑n
j=1[δj , δ

′
j ].

(3) ⇒ (4) If τ̃ : B → R is another trace, then [B,B] ⊆ ker(τ̃) and therefore

τ̃(β) = τ̃
(
τ(β)τ(ξ)−1ξ +

∑n
j=1[δj , δ

′
j ]
)

= τ(β)τ(ξ)−1τ̃(ξ). Hence τ̃ = τ · r with

r = τ(ξ)−1τ̃(ξ).
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(4) ⇒ (5) Since for any other trace τ̃ we have τ̃ = τ · r, with r = τ(ξ)−1τ̃(ξ),

this de�nes a homomorphism τ̃ → r which is clearly one-to-one and onto. Hence

Trace(B,R) ∼= (R,+).

(5) ⇒ (2) Since Trace(B,R) ∼= (R,+), then dimHom(B/[B,B], R) = 1. As

Hom(B/[B,B], R) is the dual of B/[B,B], then dimB/[B,B] = 1. Therefore

B/[B,B] ∼= (R,+). Let t be the generator of Trace(B,R). Then ∀τ̃ ∈ Trace(B,R)

∃ s ∈ R such that τ̃ = t · s, therefore ker(τ̃) = ker(t). Let us suppose that [B,B]

is a proper subgroup of ker(t). Then B/ ker(t) is a proper subgroup of B/[B,B].

Therefore, since B/ ker(t) cannot be trivial, as t is not, it must be 1-dimensional

as well, and therefore ker(t) = [B,B].

�

Proof of Lemma 1.2.5. (1)⇒ (3) Since πlog is surjective, so is log = πlog ◦π

and the second row is exact. Since the �rst row is right split J ′ : G/G′ → G, i.e.

π ◦ J ′ = idG/G′ , then the second row is right split as well, J : B/[B,B] → G. In

fact, if we de�ne J := J ′ ◦ π−1
log , then:

log ◦J = πlog ◦ π ◦ J ′ ◦ π−1
log = πlog ◦ idG/G′ ◦ π−1

log = idB/[B,B].

Since the �rst row is exact, we can write G = G′ · J ′(G/G′) = G′ · J(πlog(G/G′)),

i.e. each g ∈ G can be written as the product of an element g′ ∈ G′, which is a �nite

product of commutators, and one h ∈ J ′(G/G′) = J ◦ πlog(G/G′) = J(B/[B,B]):

g = Πk{hk, h′k} · J ′ ◦ π(h) = Πk{hk, h′k} · J ◦ πlog ◦ π(h) = Πk{hk, h′k} · J(log h).

Clearly log g = log h, hence statement 3 holds.

(3) ⇒ (2) If the second row is split, then log is surjective and J injective and

the sequence is exact. As B/[B,B] is abelian, its unit is denoted 0, while the unit

of (G, ·) is denoted 1 (See Remark 1.2.2). Hence, if g ∈ ker log then:

g = Πk{lk, l′k} · J(log g) = Πk{lk, l′k} · J(0) = Πk{lk, l′k} · 1 = Πk{lk, l′k} ∈ G′.

(2)⇒ (1) By de�nition of split, log ◦J = idB/[B,B], hence log is surjective and

the row is exact. From Remark 1.2.7, δ : kerπlog → ker log /G′ is the identity, so if

ker log = G′, then ker(πlog) = {1}. Also, since log = πlog ◦ π and log is surjective,

then πlog surjective, too, i.e. πlog is an isomorphism. Finally, if J : B/[B,B] → G

is a right split for the second row, then J ′ := J ◦ πlog de�nes a right split for the

�rst row.
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We now show that there is a unique log split by J if one of this equivalent condi-

tions is satis�ed. Let l̃og be another logarithm split by J , i.e. l̃og ◦ J = idB/[B,B].

Hence l̃og vanishes on products of commutators, thus from (3) we have that ∀g ∈ G

l̃og(g) = l̃og(Πk{lk, l′k} · J(log g)) = l̃og ◦ J ◦ log g = log g, hence uniqueness.

�

Proof of Lemma 1.2.6. The proof is very similar to the previous one for log,

so we will give a brief sketch.

(1) ⇒ (3) If πdet is surjective, so is det = πdet ◦ π, hence the second row is

exact. If the �rst row is also right split j′ : G/G′ → G, then so is the second

row via j := j′ ◦ π−1
det : R∗ → G. Since the �rst row is exact, we can write

G = G′ · j′(G/G′) = G′ · j(πdet(G/G
′)) and every g ∈ G can be written as the

product of an element g′ ∈ G′ and h ∈ j′(G/G′) = j ◦ πdet(G/G
′) = j(R∗), which

yields g = Πk{hk, h′k} · j(det g).

(3) ⇒ (2) If the second row is split, then det is surjective, j is injective, and

the sequence is exact. By the decomposition of g ∈ G we have that if g ∈ ker det

then g = Πk{hk, h′k} · j(det g) = Πk{hk, h′k} · j(1R∗) = Πk{hk, h′k} · 1G ∈ G′.

(2) ⇒ (1) As for (1) ⇒ (3), the splitting of the second row yields the split-

ting of the �rst, and since det is surjective, so is πdet. Also, from Remark 1.2.7,

δ : ker(πdet)→ ker(det)/G′ is the identity, thus ker(det) = G′ yields ker(πdet) = {1}.

Hence uniqueness follows by the same argument used for the logarithm.

�

Remark 1.2.8. The hypothesis of τ R-linear assures that τ is surjective: in

fact, for ξ ∈ B such that τ(ξ) ∈ R∗, τ(ατ(ξ)−1 · ξ) = ατ(ξ)−1τ(ξ) = α ∀α ∈ R.

Thus the corresponding sequences is exact. It also assures the lower sequence to

split: in fact, we can de�ne K : R → B with K(r) = rτ(ξ)−1ξ, which is injective,

such that τ ◦ K = idR. As in the proof of Lemma 1.2.5, the composition K ◦ πτ
makes the upper exact sequence split.

1.3. Some examples of log-structures

As two fundamental examples of log-structures and log-characters, we present

the classical logarithm with its generalisation to a global logarithm on the universal

cover of the Lie group GL(n,C) and the index of Fredholm operators on a separable

Hilbert space.
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1.3.1. The local and global logarithm on GL(n,C). It is well-known that

the complex logarithm is not holomorphic on C× := C \ {0}, but is so with respect

to a complex cut Rθ = {w ∈ C| w = reiθ, r ≥ 0}, θ ∈ R, in which case it is called a

branch logθ : C \Rθ → C. However, a global holomorphic logarithm can be de�ned

on the universal cover of C×, U := {γ | γ : [0, 1]→ C×, γ(0) = 1}/∼ (where ∼ is the

homotopy equivalence relative to {0, 1}). In fact (�1.6.20, [75]), if we parametrize

U as (r, ϕ) ∈ (0,∞) × R, we can de�ne log(r, ϕ) := log r + iϕ and log-additivity

follows from the natural product on U , inherited from C. Such log : U → C× is

a global section of the (line) bundle associated to U → C× via the representation

ρ : π1(C×) ∼= Z→ EndC ∼= C, ρ(m)(λ) = λ− i2πm:

L := U ×Z C = {[(|z|, ϕ), λ] | ((|z|, ϕ), λ) ∼ ((|z|, ϕ) ·m, ρ(m)−1λ), m ∈ Z}.

In other words, log is a holomorphic Z-equivariant function on U , i.e.

log((r, ϕ) ·m) = ρ(m)−1(log(r, ϕ)),

with (r, ϕ) ·m = (r, ϕ+ 2πm) the natural right action of Z on U ; the branches logθ

are, instead, local sections of U .

In a similar way, holomorphic functional calculus can de�ne a logarithm for

GL(n,C) only locally, i.e. as a branch:

logθ A :=
i

2π

∫
Cθ

logθ λ (A− λI)−1dλ,(1.3.1)

for an annulus Cθ centred at 0, enclosing spec(A) and cut by Rθ (i.e. a Laurent

loop as in �6.2.2). In fact, (1.3.1) is local as it de�nes a map logθ : Uθ → EndCn,

where

Uθ = {C ∈ GL(n,C)|∃ε > 0 s.t. ‖A− C‖ < ε, spec(C) ⊂ C \Rθ}.

The branches satisfy

logθ+2πmA = logθ A+ i2πmI,(1.3.2)

and logθ A = logϕA+ i2π Πθ,ϕ if |θ−ϕ| < 2π, where Πθ,ϕ = i
2π

∫
Γθ,ϕ

(A−λI)−1 dλ

is the projection onto the direct sum of the eigenspaces of A corresponding to

those eigenvalues inside the contour Γθ,ϕ, which is the portion of annulus enclosing

spec(A) cut by Rθ and Rϕ. The log-additivity is a consequence of the Campbell-

Hausdor� formula (�2.4, [75]):

logθ AB − logϕA− logφB ∈ [End(Cn),End(Cn)] + P (End(Cn)),

with P (End(Cn)) the vector space of �nite sums of projectors in End(Cn).
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Since π1(GL(n,C)) ∼= Z as in the one dimensional case, we can once again

consider the universal cover:

Un := {γ | γ : [0, 1]→ GL(n,C), γ(0) = I}/∼,

a principal Z-bundle over GL(n,C), and identify an element [γ] ∈ Un, γ(1) = A,

with the pair (A,ϕ). With the representation ρ : Z → End(End(Cn)) de�ned as

ρ(m)(A) = A− i2πmI, we can then form the associated vector bundle:

Vρ := Un ×ρ End(Cn) = {[(A, θ), L] | ((A,ϕ), L) ∼ ((A,ϕ) ·m, ρ(m)−1L), m ∈ Z},

where (A,ϕ) · m = (A,ϕ + 2πm). Then logθ A ∈ End(Cn) is a local section of

Un → GL(n,C), while a global logarithm log : Un → End(Cn) can be de�ned as

log(A,ϕ) :=

∫ 1

0

γ(t)−1dγ(t), [γ] = (A,ϕ).

In fact, locally,
∫ 1

0
γ(t)−1dγ(t) =

∫ 1

0
d logθ γ(t) = logθ A, and by (1.3.2) we obtain

the Z-equivariance of such log:

log((A, θ) ·m) = log(A, θ + 2πm) = logθ+2πmA = logθ A+ i2πmI = ρ(m)−1(log(A, θ)).

1.3.2. The index of Fredholm operators. The algebra B(H) of bounded

linear operators on a separable Hilbert space H has a unique trace if and only

if dimH < ∞, and has no trace when dimH = ∞ (�1.3, [75]). However, B(H)

contains a tower of proper ideals that admit traces, the Schatten ideals:

F(H) := C0 ⊂ · · · ⊂ Cp ⊂ · · · ⊂ C∞ := C(H),

where F(H) = {A ∈ B(H)| dim RanA < ∞} is the ideal of �nite rank operators,

while C(H), its closure in the norm topology, is the (maximal) ideal of compact

operators. In particular, F(H) has a (unique) trace analogous to the classical trace

on endomorphisms of �nite-dimensional Hilbert spaces, still called classical, i.e.

TrA =
∑∞
j=1〈Aej , ej〉, with {ej}j∈N any orthonormal basis of H (�1.3, [75]).

Definition 1.3.1 (From �2.2 and �2.8, [75]). A ∈ B(H) is a Fredholm operator

if and only if there exists P ∈ B(H) such that AP − I, PA − I ∈ F(H). The

space of Fredholm operators is a multiplicative semigroup denoted by Fred(H).

Equivalently, A ∈ Fred(H) if and only if ran(A) and ran(A∗) are closed and

dim ker(A),dim ker(A∗) <∞. Clearly, if A ∈ Fred(H) then P,A∗ ∈ Fred(H).

Definition 1.3.2. The Fredholm index of A ∈ Fred(H) is de�ned as:

ind(A) := dim ker(A)− dim coker(A) = dim ker(A)− dim ker(A∗) ∈ Z
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It is well-known that the index is log-additive with respect to the composition

of Fredholm operators, i.e. ind(AB) = ind(A) + ind(B). We can see that such

log-additivity arises as a consequence of the log-additivity of a suitable logarithm

de�ned on Fred(H).

First of all, a good candidate for a logarithm on Fred(H) is the commutator

[A,P ], P a parametrix of A ∈ Fred(H). In fact, the dependence on P of [A,P ] lies

in the commutator subgroup:

Proposition 1.3.3 (�2.2.2, [75]). If A ∈ Fred(H) and P1, P2 two parametrices

for A, then [A,P ] − [A,P ′] ∈ [F(H),F(H)], i.e. π([A,P ]) = π([A,P ′]), where

π : F(H)→ F(H)/[F(H),F(H)] is the canonical projection.

Moreover, by the uniqueness of Tr and the �rst isomorphism theorem, there ex-

ists an isomorphism T̃r : F(H)/[F(H),F(H)]→ C such that Tr = T̃r◦π. Therefore,

for Fπ(H) := F(H)/[F(H),F(H)], we can de�ne a logarithm log : Fred(H)→ Fπ(H)

as logA := π([A,P ]). In fact, it is proved in �2.2.2, [75], that it satis�es:

logAB = logA+ logB, ∀A,B ∈ Fred(H),

and that ind(A) = T̃r (logA).

Remark 1.3.4. The same considerations carry over to elliptic ψdos on a closed

manifold X. If A ∈ Ψm
Ell(X,E), then (Theorem 19.2.3, [32]):

i) A is a Fredholm operator Hs(X,E)→ Hm−s(X,E);

ii) ker(A) ⊆ C∞(X,E) (in particular, ker(A) is independent of s);

iii) ran(A) = ker(A∗)⊥, with A∗ ∈ Ψm(X,E).

Thus, ind(A) is independent of s and there exists P ∈ Ψ−mEll (X,E) such that AP − I

and PA− I belong to Ψ−∞(X,E). Hence, [A,P ] is independent of P and is trace

class with respect to the classical trace Tr of smoothing ψdos (0.2.1). From �2.8,

[75], P can be chosen in such a way that AP−I = −Pker(A∗) and PA−I = −Pker(A)

and a logarithm is de�ned as:

log : ΨEll(X,E)→
(

Ψ−∞(X,E)

[Ψ−∞(X,E),Ψ−∞(X,E)]
, T̃r

)
, A 7→ π ([A,P ]) .

Hence, ind(A) = T̃r(Pker(A)) − T̃r(Pker(A∗)) = T̃r ([A,P ]), where Tr = T̃r ◦ π and

T̃r : Ψ−∞(X,E)/[Ψ−∞(X,E),Ψ−∞(X,E)]
∼=→ C.
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1.4. Logarithms on Categories and Cobordism

We recall that manifold will always stand for smooth and compact manifold

(�0.1). In order to de�ne log-functors, let us recall the de�nition of symmetric

monoidal categories and functors.

1.4.1. Cobordism categories.

Theorem 1.4.1 ((1.2), [16]). For any manifold W there exists an open collar

neighbourhood U ⊆ W of M = ∂W and a di�eomorphism h : U →M × [0, 1) such

that h(m) = (m, 0), ∀m ∈M .

Let n ∈ N, and let W1 and W2 be two n-dimensional manifolds such that

∂W1 = M0 tM1, and ∂W2 = M ′1 tM2. If f : M1 →M ′1 is a di�eomorphism, then

we can glue W1 and W2 together into a (topological) manifold W = W1 ∪f W2.

Since a smooth structure cannot be determined by the smooth structures ofW1 and

W2 alone, we need to choose collar neighbourhood for M1 and for M ′1. In this way,

W can become a (smooth) manifold with boundary ∂W = M0 tM2. Its smooth

structure does depend on the choice of collar neighbourhoods, but:

Theorem 1.4.2 (Theorem 6.3, [57]; Example 1.2.11, [48]). All smooth struc-

tures on W obtained by gluing with respect to a choice of collar neighbourhood

for M1 and M ′1 are di�eomorphic. Hence, gluing of manifolds is associative up to

di�eomorphism.

Definition 1.4.3 (�1, [48]). Let CobOn denote the category of unoriented

cobordisms: its objects are closed (n− 1)-dimensional manifolds and its morphisms

are cobordisms, i.e. equivalence classes of n-dimensional manifolds with boundary.

Precisely, if M1,M2 ∈ obj(CobOn ), then W ∈ mor(M1,M2) is the set af all mani-

folds W whose boundary ∂W is di�eomorphic to M1 tM2 via a di�eomorphism

κ∂W : ∂W →M1 tM2 and such that κ−1
∂W ′ ◦ κ∂W : ∂W → ∂W ′ can be extended to

a di�eomorphism W → W ′, if W ′ is another such manifold. Analogously, the cat-

egory of (oriented) cobordisms Cobn := CobSOn is de�ned as CobOn , but this time

objects and morphisms are oriented manifolds and the di�eomorphisms are orien-

tation preserving, i.e. for W ∈ mor(M1,M2) and W ∈ W , κ∂W is an orientation

preserving di�eomorphisms from ∂W to M−1 tM2.

Let W ∈ mor(M1,M2) and W ′ ∈ mor(M2,M3), i.e. ∂W = X− t Y and

∂W ′ = Ỹ −tZ such that there exist di�eomorphisms κX : X →M1, κY : Y →M2,
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κ
Ỹ

: Ỹ →M2, and κZ : Z →M3. If φ := κ−1

Ỹ
◦κY , then composition of morphisms

is de�ned by gluing with respect to φ:

W ∪φW ′ = W ∪φW ′ =: W ′ ◦W ∈ mor(M1,M3).

The identity morphism associated to M ∈ obj(Cobn) is the equivalence class of

the cylinder: M × [0, 1] ∈ mor(M,M). Clearly, ∂(M × [0, 1]) = M− tM .

1.4.2. Symmetric monoidal categories and TQFT. The following de�-

nitions are taken from �2, [72], unless stated otherwise.

Definition 1.4.4. Let C be a (small) category endowed with a bifunctor

⊗ : C×C→ C and unit object 1C ∈ obj(C) such that, for c, c′, c′′ ∈ obj(C):

c⊗ 1C ∼= c and c⊗ (c′ ⊗ c′′) ∼= (c⊗ c′)⊗ c′′,

where ∼= means a coherence isomorphism. Then C is called monoidal category and

⊗ monoidal product. If also:

c⊗ c′ ∼= c′ ⊗ c,(1.4.1)

then C is called symmetric monoidal category and ⊗ symmetric monoidal product.

Example 1.4.5. CobOn and Cobn are symmetric monoidal categories with

symmetric monoidal product ⊗ := t, the disjoint union. The unit object is the

empty manifold ∅, considered as a closed (n− 1)-dimensional manifold.

Example 1.4.6 (Category of R-modules). For a commutative ringR, letR-Mod

be the category with R-modules as objects and module morphisms between them.

It is a symmetric monoidal category with product de�ned by the tensor product

over R. The unit object is clearly the ring R itself. In particular, if R = F is a

�eld, then F-Mod =: VectF, the category of vector spaces over F.

Remark 1.4.7. Since any two associativity bracketing of x1 ⊗ · · · ⊗ xn, for

xi ∈ obj(C), coincide modulo coherence isomorphisms, we can simply write in

general x := x1 ⊗ · · · ⊗ xn. By (1.4.1), ∀c, c′ ∈ obj(C) there exist braiding iso-

morphisms bc,c′ : c ⊗ c′ → c′ ⊗ c, b−1
c,c′ = bc,′c, which extend to isomorphisms

sσ(x) : x→ xσ := xσ(1) ⊗ · · · ⊗ xσ(n) for any permutation σ ∈ Sn.

Definition 1.4.8. Let C be a monoidal category. Then a functor F : C→ B

is called strict if F (x1⊗· · ·⊗xn) is independent of the associativity bracketing and

all the coherence isomorphisms are mapped into the identity in B.
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Lemma 1.4.9 (Lemma 2.1, [72]). Let σ ∈ Sn and sσ(x) : x → xσ be as in

Remark 1.4.7. There exists a canonical isomorphism

µσ(x) := F (sσ(x)) : F (x)→ F (xσ),

independent of associativity bracketing of x and xσ, such that:

µσ′◦σ(x) = µσ′(xσ) ◦ µσ(x).

Definition 1.4.10 (�1.1, [48]). Let (C,⊗C), (B,⊗B) be two symmetric monoidal

categories. Then a functor F : (C,⊗C)→ (B,⊗B) is symmetric monoidal if:

F (1C) ∼= 1B and F (c⊗C c′) ∼= F (c)⊗B F (c′), ∀c, c′ ∈ obj(C).

Symmetric monoidal categories and functors are the necessary ingredients for

the functorial de�nition of Topological Quantum Field Theories ([2]):

Definition 1.4.11 (De�nition 1.1.5, [48]). A Topological Quantum Field The-

ory of dimension n is a symmetric monoidal functor

Z : Cobn → VectF.

Unfolding the de�nition, if W ∈ mor(M1,M2), then Z(W ) is a linear map

between the vector spaces Z(M1) and Z(M2), i.e.

Z(W ) ∈ mor(Z(M1), Z(M2)) ∼= Z(M1)∗ ⊗ Z(M2),

with Z(M1)∗ the dual of Z(M1). By Proposition 1.1.8, [48], Z(M1)∗ ∼= Z(M−1 ),

so Z(W ) ∈ Z(M−1 ) ⊗ Z(M2) ∼= Z(M−1 t M2), as Z is a symmetric monoidal

functor. Hence Z(W ) ∈ Z(∂W ) and, if ∂W = ∅, then Z(W ) ∈ F and thus a TQFT

assigns a numerical smooth invariant to a closed n-dimensional manifold W . In

fact, W can be seen as a bordism from ∅ to itself, i.e. W ∈ mor(∅, ∅). Hence

Z(W ) ∈ mor(F,F) ∼= F. We remark that if W is a homeomorphism class, or a

homotopy class, then Z(W ) represents topological or homotopy invariant.

1.4.3. Logarithms, traces and categories. For proofs, comments, and fur-

ther examples we redirect to �2, [72], from which the de�nitions and results of this

paragraph are taken, unless otherwise stated.

Definition 1.4.12. The symmetric monoidal bifunctor ⊗ naturally de�nes

(non-monoidal) product functors ∀y ∈ obj(C) which are respectively the right and
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left multiplication m⊗y,my⊗ : C → C, i.e. ∀c, y ∈ obj(C), ∀γ ∈ mor(C) and

ιy ∈ mor(y, y) the identity morphism associated to y, then

my⊗c = y ⊗ c and my⊗(γ) = ιy ⊗ γ, m⊗yc = c⊗ y and m⊗y(γ) = γ ⊗ ιy.

Definition 1.4.13 (Monoidal product representation). Let C∗ be a groupoid

obtained from C by considering only a speci�c subclass of its isomorphisms, con-

taining all the coherence isomorphisms and permutations sσ. Let B be an additive

category. Then, a functor F : C∗ → B is called monoidal product representation

(of the reduced category C∗) into B if F is strict and ∀ y ∈ obj(C) there exist a

natural transformation, called insertion transformation

η⊗y : F → F⊗y := F ◦m⊗y, η⊗yc : F (c)→ F (c⊗ y),

such that, ∀c, c′, y, y′ ∈ obj(C), η is:

• compatible with ⊗:

η⊗(y⊗y′)c = η⊗y′(c⊗ y) ◦ η⊗yc and

• compatible with the braidings bc,c′ :

η⊗(y⊗y′)c = µσ(c⊗ y′ ⊗ y) ◦ η⊗(y⊗y′)c,

with σ a permutation that swaps y and y′ and �xes c.

The morphisms η⊗yc are called insertion morphisms.

Definition 1.4.14. A monoidal product representation is injective if η⊗yc is

left-invertible ∀c, y ∈ obj(C), i.e. there exists δ⊗yc ∈ mor(F (c⊗ y), F (c)), compat-

ible with ⊗, such that δ⊗yc ◦ η⊗yc = ιF (c). δ⊗yc is called ejection morphisms.

Remark 1.4.15. Insertion maps intertwine with the permutation isomorphisms

(Lemma 2.4, [72]):

η⊗y(xσ) ◦ µσ(x) = µσ⊗1(x⊗ y) ◦ η⊗y(x).

Thus, by combining insertion maps and permutation isomorphisms we obtain more

general insertion maps:

ηky (x) : F (x1 ⊗ · · · ⊗ xn)→ F (x1 ⊗ · · · ⊗ xk−1 ⊗ y ⊗ xk ⊗ · · · ⊗ xn)

ηky (x) := µσk,n+1
(x⊗ y) ◦ η⊗y(x),

with σk,n+1 ∈ Sn+1 the permutation that moves y in the kth position. Analogously,

we can generalise the ejection morphisms in a similar fashion and obtain δk⊗y(x),

which commute nicely with ηky (x) (Lemma 2.5, [72]).
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Remark 1.4.16. Let obj(Cp) denote the set of p-tuples x0 ⊗ · · · ⊗ xp−1 of

objects of C. Then, we obtain a simplicial structure for F (C∗), with p-simplices

∆p ⊂ obj(B)× obj(Cp):

∆p = {(ξ, x0, . . . , xp−1) | ξ ∈ F (x0 ⊗ · · · ⊗ xp−1), xj ∈ obj(C)}.

Face maps dk : ∆p → ∆p−1 and degeneracy maps sk(w) : ∆p → ∆p+1 are respec-

tively de�ned as:

dk(ξ, x0, . . . , xp−1) := (δkxk(ξ), x0, . . . , xk−1, xk+1, . . . , xp−1) and

sk(w)(ξ, x0, . . . , xp−1) := (ηkw(ξ), x0, . . . , xk−1, w, xk, . . . , xp−1).

In particular, if only degeneracy maps are available, the structure is called presim-

plicial.

1.4.4. Tracial monoidal product representation. The following de�ni-

tions are taken from �2.1, [72].

Remark 1.4.17. If R is a ring, then the canonical projection π : R→ R/[R,R]

de�nes a quotient functor from the category of rings into the category of abelian

groups, i.e.

Π : Ring→ Ring/[Ring,Ring] ⊂ Ab(1.4.2)

Remark 1.4.18. If (A,+) is an additive category and a ∈ obj(A), then

endA(a) := morA(a, a) is a ring, the product being the composition. In partic-

ualr, if A = R-Mod, then R-linearity of the morphisms yields that endA(a) is an

R-algebra.

Definition 1.4.19. A monoidal product representation F : C→ Ring of a

symmetric monoidal category C is said to be pretracial with respect to an additive

category A if:

• ∀c ∈ obj(C) ∃ ! ac ∈ obj(A) such that F (c) = endA(ac);

• η⊗yc are ring homomorphisms;

• µσc are ring isomorphisms.

Then we will write F : C∗ → RingAdd. Moreover, if δ⊗yc preserves commutators,

i.e. δ⊗yc([F (c⊗ y), F (c⊗ y)]) ⊂ [F (c), F (c)], then F is called injective.

Lemma 1.4.20. Let F : C∗ → RingAdd be a pretracial monoidal product

representation. Then by compositon with (1.4.2), the functor

FΠ =: Π ◦ F : C∗ → FΠ(C∗) := F (C∗)/[F (C∗), F (C∗)] ⊂ Ab
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is a monoidal product representation with insertion homomorphisms

η̃⊗yc :
F (c)

[F (c), F (c)]
→ F (c⊗ y)

[F (c⊗ y), F (c⊗ y)]

and (FΠ(C∗), η̃ky ) inherits the structure of a presimplicial set.

Definition 1.4.21. A symmetric monoidal category C has a categorical trace

τ if there exist elements c ∈ obj(C) for which we have a non-empty subclass

endτC(c) ⊂ endC(c) and a map τc : endτC(c) → endC(1C) such that the follow-

ing trace property holds: ∀α ∈ mor(c, c′), β ∈ mor(c′, c) such that β ◦ α ∈ endτC(c)

and α ◦ β ∈ endτC(c′),

τc(β ◦ α) = τc′(α ◦ β).

Elements α ∈ endτCc are said to be τ -trace class.

Example 1.4.22. R-Mod of Example 1.4.6 is trace class, since Mm×n(R), the

algebra of matrices with R coe�cients, has a (classical) trace. More interestingly,

Cobn is trace class, with trace sending W ∈ mor(M,M) to the closed n-manifold

obtained by gluing the boundary together.

Definition 1.4.23. A pretracial monoidal product representation of C, F :

C∗ → RingAdd, is called tracial if the background additive category A has an F -

compatible trace τ , i.e. the ring homomorphisms τc : F (c) = endA(ac)→ endA(1)

satisfy τc⊗y ◦ η⊗yc = τc and τxσ ◦ µσ(x) = τx.

Remark 1.4.24. In a tracial monoidal product representation, τc factors though

πc : F (c) → F (c)/[F (c), F (c)], i.e. τc = τ̃c ◦ πc. Moreover, the trace τ̃ on FΠ(C∗)

satis�es an analogous compatibility condition:

τ̃c⊗y ◦ η̃⊗yc = τ̃c.

1.4.5. Logarithmic functors. The following de�nitions are taken from �2.2,

[72]. Speci�c references are provided when needed.

Definition 1.4.25. The nerve NC of a category C is a simplicial set with

p-simplices de�ned as p-tuples of morphisms:

(α0, . . . , αp−1), αj ∈ mor(xj , xj+1), j ∈ {0, . . . , p− 1}.

The set of all p-simplices is denoted by NpC, and face maps dj : NpC → Np−1C

and degeneracy maps sj : NpC→ Np+1C are respectively de�ned as:

dj(α0, . . . , αj−1, αj , . . . , αp−1) := (α0, . . . , αj ◦ αj−1, . . . , αp−1) and
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sj(α0, . . . , αj−1, αj , . . . , αp−1) := (α0, . . . , αj−1, ιxj , αj , . . . , αp−1).

Example 1.4.26. N0C = obj(C) and N1C = mor(C).

Remark 1.4.27. We recall that, if (X, dj , sj) and (Y, d′j , s
′
j) are simplicial sets,

a simplicial map f : X → Y consists of a family of maps that commute with the

face and degeneracy maps, i.e. fp : ∆p → ∆′p such that

fp−1dj = d′jfp and fpsj = s′jfp−1.(1.4.3)

If Y is only presimplicial, i.e. there are no face maps d′j , then f : (X, dj , sj)→ (Y, s′j)

is said to be a presimplicial map if s′jfp−1dj = fp, which implies (1.4.3) when f is

simplicial.

As
(
FΠ(C∗), η̃ky

)
is a presimplicial set by Lemma 1.4.20, we can �nally de�ne:

Definition 1.4.28 (De�nition 2.13, [72]). Let (C,⊗) be a symmetric monoidal

category and F : C∗ → RingAdd a pretracial monoidal product representation.

Then a logarithmic functor, or log-functor, is a presimplicial log-additive map

log : (NC, dj , sj)→
(
FΠ(C∗), η̃j

)
,

which is said to de�ne a logarithmic representation of C. In other words, a log-

functor is a simplicial system on N1C of maps

logx⊗y : mor(x, y)→ F (x⊗ y)

[F (x⊗ y), F (x⊗ y)]
, α 7→ logx⊗y α, x, y ∈ obj(C) \ 1C

such that if α ∈ mor(x, y) and β ∈ mor(y, z), then

logx⊗y⊗z(α, β) = η̃⊗z(logx⊗y α) + η̃x⊗(logy⊗z β)(1.4.4)

in F (x⊗ y ⊗ z)/[F (x⊗ y ⊗ z), F (x⊗ y ⊗ z)], that is

logx⊗y⊗z(α, β) = η⊗z(logx⊗y α) + ηx⊗(logy⊗z β) +

m∑
j=1

[vj , vj ] ∈ F (x⊗ y ⊗ z).

On the other hand, since

logx⊗y⊗z(α, β) = η̃y(logx⊗z β ◦ α) ∈ F (x⊗ y ⊗ z)
[F (x⊗ y ⊗ z), F (x⊗ y ⊗ z)]

,

(1.4.4) is equivalent to:

η̃y(logx⊗z β ◦ α) = η̃⊗z(logx⊗y α) + η̃x⊗(logy⊗z β).(1.4.5)
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Remark 1.4.29. In De�nition 1.4.28 it is enough to specify the maps on N1C

and it su�ces to de�ne (1.4.5) (Lemma 2.16, [72]), since all the other simplicial

maps, i.e. those on NpC, p ≥ 1, depend on those on N1C. Moreover, from

the de�nition one has all the other properties of logarithms, e.g. the log of an

idempotent object is trivial. For a complete description, see Lemma 2.18, [72].

Definition 1.4.30. Let F be a tracial monoidal product representation of a

symmetric monoidal category C, with τ the trace. Then the τ -character of the log-

functor de�nes a log-determinant functor representation of C, i.e. ∀ α ∈ morC(c, c′):

τ̃(logα) := τ̃c⊗c′ ◦ logc⊗c′ α ∈ endA(1).

Remark 1.4.31. By Remark 1.4.24, we have that the log-determinant repre-

sentation is independent of insertion maps (of any order: see Lemma 2.19, [72]):

τ̃c⊗c′(logc⊗c′ α) = τ̃c⊗c′⊗y(logc⊗c′⊗y α)(1.4.6)

Hence a log-determinant is independent of where it is computed (Lemma 2.20, [72]):

τ̃(log βα) = τ̃(logα) + τ̃(log β), α ∈ mor(c, c′), β ∈ mor(c′, c′′).

Remark 1.4.32. A log-functor can be extended to elements δ ∈ morC(1, 1).

In fact, after choosing α ∈ morC(1, z) and β ∈ morC(z, 1) such that z 6= 1 and

δ = β ◦ α, we can de�ne:

logz δ := log1⊗z⊗1 (α, β) ∈ F (1⊗ z ⊗ 1)

[F (1⊗ z ⊗ 1), F (1⊗ z ⊗ 1)]
∼=

F (z)

[F (z), F (z)]
.

It depends on δ and z, but by Lemma 2.19, [72], not on α or β. Moreover, if a

categorical trace τ is de�ned, then the corresponding log-determinant

τ̃(logz δ) = τ̃(logz α) + τ̃(logz β)

depends only on δ, by Lemma 2.20, [72].

1.4.6. Logarithmic Topological Quantum Field Theories. The follow-

ing de�nitions are taken from �2��3, [72]. Speci�c references are provided when

needed.

Definition 1.4.33. LetM := M1t· · ·tMp ∈ obj(Cobpn), where Mj may also

be disconnected. If we write M− for M with some of its connected components

chosen with opposite orientation, then a pretracial monoidal product representation

F : Cob∗n → RingAdd is called unoriented if F (M−) = F (M).
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Definition 1.4.34. Let F : Cob∗n → RingAdd be an unoriented pretracial

monoidal product representation. Then a Logarithmic Topological Quantum Field

Theory relative to F of dimension n, or LogTQFT, is a log-functor

log : (NCobn, dj , sj)→
(
FΠ(Cob∗n), η̃kt·

)
.

By de�nition, this is a simplicial system of logarithms

logM1tM2
: mor(M1,M2)→ FΠ(M1 tM2)

and a logarithm logM1tM2
W ∈ F (M1 tM2) = F (M−1 tM2) is identi�ed to an

element log∂W W ∈ FΠ(∂W ), since F (∂W ) ∼= F (M1 tM2).

Remark 1.4.35. Even in the case that F is unoriented, log∂W W could depend

on the orientation of W . Therefore, in the case that log∂W W = log∂W−W
−
for all

W , the LogTQFT is called unoriented. An example is provided by the (relative)

Euler characteristic (see Chapter 2), while the topological signature is an example

of a log-character of a LogTQFT that is not unoriented.

Proposition 1.4.36 (Proposition 2.18, [72]). Let CM = M × [0, 1] be the

cobordism class of the cylinder. Then

η̃M logMtM CM = 0 ∈ FΠ(M tM tM)

and if F is injective, then logMtM CM = 0 in FΠ(M tM).

A LogTQFT can de�ne a TQFT, at least in a week sense:

Lemma 1.4.37 (Lemma 3.4, [72]). Let F : Cob∗n → RingAdd be an unoriented

tracial monoidal product representation with trace τc : endA(ac) → endA(1) and

let log : NCobn → FΠ(Cob∗n) be a LogTQFT relative to F of dimension n. If

ε : endA(1)→ F is an exponential map into a �eld, then there exists a scalar-valued

symmetric monoidal functor Zlog,τ,ε, i.e. a TQFT, de�ned as follows:

Zlog,τ,ε(M) = F and Zlog,τ,ε(W ) = ε(τ(logW )).

The following fundamental example of unoriented tracial monoidal product

representation can be found in �2.1.2, [72], and will be useful in the next chapters.

Example 1.4.38. Let C-Alg is the category of C-algebras and consider the

strict functor F−∞ : Cob∗n → C-Alg de�ned as:

M ∈ obj(Cobn) 7→ F−∞(M) := Ψ−∞(M,E),
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for E →M some vector bundle. It comes with insertion maps:

ηN := ηtN : F−∞(M) ↪→ F−∞(MN ) ηN (T ) = j∗N ◦ T ◦ i∗N ,

whereM := M1t· · ·tMl,MN := M1t· · ·tNt· · ·tMl, and j
∗
N : Ω(M)→ Ω(MN )

and i∗N : Ω(MN ) → Ω(M) are the pull-backs of the projection jN : MN → M and

the inclusion iN : M ↪→ MN , respectively. Hence F−∞ is pretracial, but not

injective, and pushes down to:

F−∞,Π : Cob∗n → F−∞,Π(Cob∗n)

with insertion maps

η̃N (M) :
F−∞(M)

[F−∞(M), F−∞(M)]
→ F−∞(MN )

[F−∞(MN ), F−∞(MN )]
.

Let TrM : F−∞(M)→ C the classical trace on smoothing ψdos (0.2.1). Since TrM

is the unique trace on F−∞(M) (Lemma 2.10, [72]), by Lemma 1.2.4 there exists

T̃rM : πM (F−∞(M))
∼=→ C such that:

TrM = T̃rM ◦ πM , TrM = TrMN
◦ ηN and T̃rM = T̃rM ◦ η̃N .(1.4.7)

Hence (F−∞,Tr) is a tracial monoidal product representation.

Lemma 1.4.39 (Lemma 2.12, [72]).

• (F−∞,Tr) is an unoriented tracial monoidal product representation;

• a di�eomorphism φ : M → N , M,N ∈ obj(Cobn), induces a canonical

continuous isomorphism of algebras:

φ] : F−∞(M)→ F−∞(N) such that TrM = TrN ◦ φ];(1.4.8)

• φ pushes-down to a canonical linear isomorphism of complex lines:

ϑM,N :
F−∞(M)

[F−∞(M), F−∞(M)]
→ F−∞(N)

[F−∞(N), F−∞(N)]
(1.4.9)

which is independent of the initial φ.

1.4.7. The Unoriented Logarithm Theorem for Surfaces. We conclude

this chapter with a novel result for LogTQFTs of dimension 2, i.e. on compact

oriented surfaces. We shall see that an unoriented LogTQFT is characterised by its

de�nition on the unit disc D. First, we prove it for closed compact surfaces. The

general case will follow as a Corollary.
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Theorem 1.4.40. Let F : Cob∗2 → Ring be an injective and unoriented

monoidal product representation and let log : NCob2 → (FΠ(Cob∗2), η̃) be an

unoriented LogTQFT. Let Σg denote an orientable, closed and connected surface

of genus g and χ(Σg) = 2− 2g its Euler characteristic. Then, if D denotes the unit

disc,

logS1 Σ0 = χ(Σ0) · logS1 D for g = 0,

logS1tS1 Σ1 = χ(Σ1) · η̃S1 logS1 D for g = 1 and

logS1tS1tS1 Σg = χ(Σg) · η̃S1tS1 logS1 D, for any g > 1.

Proof. We start with some observations. If we consider the unit disc D to

be a morphism ∅ → S1, then D− : S1 → ∅. Thus since F and log are unoriented,

logS1 D = logS1 D− ∈ Fπ(S1) := F (S)/[F (S), F (S)]. In the same way, we can see

the pair of pants to be a morphism P : S1 → S1 t S1. Hence P− : S1 t S1 → S1

and logS1tS1tS1 P = logS1tS1tS1 P− ∈ Fπ(S1 t S1 t S1).

Figure 1. The pair of pants.

Finally, let us consider the cylinder C = S1 × [0, 1] : S1 → S1. On the one

hand, C corresponds to a map C̃ : ∅ → S1− t S1, but both surfaces are dif-

feomorphic, so they are accounted for in the same cobordism C. On the other

hand, C− : S1− → S1− is di�eomorphic to C̃− : S1 t S1− → ∅, thus they de-

�ne the same cobordims and since log is unoriented and F injective, we conclude

logS1tS1 C− = logS1tS1 C = 0 ∈ Fπ(S1 t S1).

Now, since Σg ∈ morCob2(∅, ∅), its logarithm must be de�ned relative to a

choice of embedded closed curve S ∈ obj(Cob2):

logS Σg := logS(∅ α→ S
β→ ∅) ∈ Fπ(S)

and depends on S, but not on the particular α, β used (Remark 1.4.32). So if g = 0,

Σ0 = S2 is the 2-sphere and the easiest choice for S is the unit circle S1. Hence

logS1 S2 = logS1(∅ D→ S1 D−→ ∅) and by (1.4.5)

logS1(∅ D→ S1 D−→ ∅) = logS1 D + logS1 D− = 2 · logS1 D = χ(Σ0) · logS1 D.
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=

Figure 2. Dual interpretation of C.

Figure 3. S2 as D ∪S1 D−.

Analogously, let g = 1, so Σ1 = T 2 is the 2-torus. Then we can split it into two

cylinders, ∅ C→ S1− t S1 and S1 t S1− C−→ ∅, and obtain:

logS1tS1 T 2 = logS1tS1 C + logS1tS1 C− = 0 = χ(T 2) · η̃S1 logS1 D.

Figure 4. T 2 as C ∪S1tS1 C−.

In general, let Σg be any closed and connected surface with g > 1. Then we

can split ∅ Σg→ ∅ into 2g pair of pants and 2 discs:

∅ D→ S1 P→ S1 t S1 P−→ S1 P→ S1 t S1 P−→ S1 P→ · · · P
−
→ S1 P→ S1 t S1 P−→ S1︸ ︷︷ ︸

2g

D−→ ∅.

Since ∂P = S1−tS1tS1, it su�ces to embed all logarithms into Fπ(S1 t S1 t S1).

Hence:

logS1tS1tS1 Σg = logS1tS1tS1(∅ D→ S1 P→ S1 t S1 P−→ · · · P→ S1 t S1 P−→ S1 D→ ∅)

= 2η̃S1tS1 logS1 D + 2g · logS1tS1tS1 P .(1.4.10)
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Figure 5. Σg for g = 2.

Since the cylinder can be split into a disc and a pair of pants:

∅ C→ S1 t S1 = ∅ D→ S1 P→ S1 t S1,

=

Figure 6. D ∪S1 P = C.

we have that 0 = η̃S1 logS1tS1 C = η̃S1tS1 logS1 D+logS1tS1tS1 P , which yields

logS1tS1tS1 P = −η̃S1tS1 logS1 D and (1.4.10) becomes

logS1tS1tS1 Σg = (2− 2g) η̃S1tS1 logS1 D = χ(Σg) · η̃S1tS1 logS1 D.

�

Remark 1.4.41. The injectivity hypothesis for F (Proposition 1.4.36) can be

safely relaxed. In that case we obtain η̃S1 logS1tS1 Σ1 = χ(Σ1)·η̃S1tS1 logS1 D(= 0).

Corollary 1.4.42 (Unoriented Logarithm Theorem for Orientable Surfaces).

Let F : Cob∗2 → Ring be an injective and unoriented monoidal product represen-

tation and let log : NCob2 → (FΠ(Cob∗2), η̃) be an unoriented LogTQFT. Let Σg,k

denote an orientable, compact, and connected surface of genus g, whose boundary

∂Σg,k has k connected components, i.e. ∂Σg,k ∼=
⊔
k S

1. Then, ∀g, k ∈ N:

log⊔
k S

1 Σg,k = χ(Σg,k) · η̃⊔k−1
j=1 S

1 logS1 D,(1.4.11)

where χ(Σg,k) = χ(Σg)−k is the Euler characteristic of Σg,k and χ(Σg) is the closed

surface Σg obtained from Σg,k by gluing k discs along the boundary components.
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Proof. We prove the statement by induction on k. If k = 0, then the state-

ment corresponds to Theorem 1.4.40, so let us assume the statement true for k ≤ n.

Since the surface Σg,n has boundary ∂Σg,n ∼=
⊔
n S

1 and de�nes a cobordism⊔
n S

1 Σg,n→ ∅, it can be decomposed as
⊔
n S

1 Σg,n+1→ S1 D→ ∅. Thus, by (1.4.5):

η̃S1 log⊔
n S

1 Σg,n = log⊔
n+1 S

1 Σg,n+1 + η̃⊔n
j=1 S

1 logS1 D.

Thence, by inductive hypothesis:

log⊔
n+1 S

1 Σg,n+1 = η̃S1 log⊔
n S

1 Σg,n − η̃⊔n
j=1 S

1 logS1 D

= χ(Σg,n) · η̃S1 η̃⊔n−1
j=1 S

1 logS1 D − η̃⊔n
j=1 S

1 logS1 D

= (χ(Σg)− n) · η̃⊔n
j=1 S

1 logS1 D − η̃⊔n
j=1 S

1 logS1 D

= (χ(Σg)− (n+ 1)) · η̃⊔k
j=1 S

1 logS1 D,

where η̃S1 η̃⊔n−1
j=1 S

1 = η̃⊔n
j=1 S

1 .

�

Remark 1.4.43. Let F : Cob∗1 → Ring be an injective and unoriented

monoidal product representation and let log : NCob1 → (FΠ(Cob∗1), η̃) be an

unoriented LogTQFT of dimension 1. ThenM ∈ objCob1) is a collection of points

and W ∈ mor(M1,M2) is a disjoint union of line segments L = {pt}× [0, 1]. Hence,

by the same approach of Theorem 1.4.40, every unoriented LogTQFT is trivial and

in particular logS1 = 0. This, together with an exponential map ε : endA(1)→ F,

can give rise to a (rather trivial) 1-dimensional TQFT as described in Lemma 1.4.37,

where Zlog,τ,ε(W ) = 1 ∈ F. In particular, this gives Zlog,τ,ε(S
1) = 1, which thus

retrieves the dimension of the vector space assigned to a point (which is F itself), as

prescribed by Lurie in Example 1.1.9 of [48]. Less trivial TQFTs can be obtained

dropping the unoriented hypothesis.



CHAPTER 2

Dirac operators and Logarithms

In this chapter we will show how the relative (or absolute) Euler characteristic

of an even dimensional manifold with boundary can be realised as a log-determinant

of a LogTQFT. The idea is similar to the proof of the same fact for the topological

signature (done in [72]) and relies on index theory of Elliptic Boundary Value

Problems.

Since Index Theory will have a key role also in Part II (with appropriate gen-

eralizations), we will recall the main de�nitions, such as the realization of Dirac

operator with respect to well-posed boundary conditions, the APS Index Theorem

and the quasi-additive formula of the index. In particular, we will prove this for-

mula again, but from the point of view of Calderón projectors. To our knowledge,

this has not been done.

2.1. Dirac operators

Let E → X be a complex vector bundle, with X an n-dimensional manifold

with (possibly empty) boundary Y := ∂X. The following de�nitions are taken from

�3, �8, and �14, [10]. Speci�c references are provided when needed.

Definition 2.1.1. A Dirac-type operator is a �rst order di�erential operator

D : C∞(X,E) → C∞(X,E) such that the principal symbol of D2 de�nes the

Riemannian metric, i.e σD
2

(x, ξ) =
∑n
i,j=1 g

ij
X(x)ξiξj . D

2 is called Dirac Laplacian.

In addition, let E → X be a Cli�ord bundle, c : C∞(X,TX⊗E)→ C∞(X,E)

be the left Cli�ord multiplication and J : C∞(X,T ∗X⊗E)→ C∞(X,TX⊗E) the

isomorphisms between vector and covector �elds. Then the �rst order di�erential

operator

ð := c ◦ J ◦ ∇E : C∞(X,E)→ C∞(X,E)

is called generalised Dirac operator. ð and ð2 are elliptic with principal symbols

(Lemma 3.3, [10]):

σð(x, ξ) = ic(ξ) : Ex → Ex and σð2

(x, ξ) = ‖ξ‖2I : Ex → Ex.

62
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Moreover, if ∇E is compatible1 with the Cli�ord module structure of E we call ð a

(compatible) Dirac operator.

Example 2.1.2. The de Rham operator d + δ : Ω(X) → Ω(X) in �0.3 is a

compatible Dirac operator with (d+ δ)2 = ∆, i.e. the Hodge-Laplacian (De�nition

0.3.1). Since c(ξ) = ext(ξ) − int(ξ) when E = Λ(X), i.e. the di�erence between

exterior and interior multiplication, we have σd+δ(x, ξ) = ic(ξ) = i(ext(ξ)− int(ξ))

(Lemma 1.5.3, [23]).

Theorem 2.1.3. Dirac operators satisfy:

i) the Unique Continuation Property :

`If a solution s of ðs = 0 vanishes in an open subset of X, then s = 0 on

the whole connected component of X';

ii) Green's formula:

〈ðs1, s2〉X − 〈s1,ðs2〉X = −〈σγs1, γs2〉Y , s1, s2 ∈ C∞(X,E).

with σ = c(dt) : E|U → E|U the Cli�ord multiplication by the inward unit

normal. In particular, ð is formally self-adjoint in the interior of X, i.e.

〈ðs1, s2〉X = 〈s1,ðs2〉X if s1, s2 ∈ C∞(X,E) with support disjoint from

Y .

Remark 2.1.4. σ : E|U → E|U , called Green's form of ð, is constant in t and

is skew-adjoint, i.e. σ∗ = σ−1 = −σ.

Remark 2.1.5 (�3, [25]). Any �rst order elliptic di�erential operator can be

represented on a collar neighbourhood U of Y as Σ(∂t + Bt), where Σ is an iso-

morphism of vector spaces. In particular, in the case of a Dirac operator, when a

product structure near Y is assumed, we have:

ð|U = σ(∂t + B),

i.e. Σ = σ and Bt = B, which is a �rst order self-adjoint elliptic di�erential operator

of C∞(Y,E′) independent of t. Also, B and σ anticommute, i.e. Bσ = −σB.

Example 2.1.6. Let us consider the de Rham operator d+ δ (Example 2.1.2)

and ω ∈ Ωk(X) on a collar neighbourhood U ∼= [0, c)×Y . Since ω|U = ω1 + dt∧ω2

1De�nition 2.3, [10].
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by (0.3.1), we have:

dk(ω1 + dt ∧ ω2) = dkY ω1 + dt ∧ (∂tω1 − dk−1
Y ω2) =⇒ dk =

 dkY 0

∂t −dk−1
Y


with respect to the decomposition

Ωk(X)|U =
(
C∞([0, c))⊗ Ωk(Y )

)
⊕
(
dt⊗ C∞([0, c))⊗ Ωk−1(Y )

)
.

Analogously, since δk acts in a similar fashion on ω|U ∈ Ωk(X)|U , we have (Lemma

3.1, [38]):

(d+ δ)|U = σ

∂t +

B︷ ︸︸ ︷
σ−1

 dY + δY 0

0 −dY − δY


 , where σ =

 0 −1

1 0



and dY , δY : Ω(Y ) → Ω(Y ). This can be obtained on a symbol level as follows.

Let {e0, . . . , en−1} be an orthonormal basis for T ∗X near Y with e0 = dt, i.e.

T ∗X 3 ξ =
∑n−1
j=0 ξjej and σ

d+δ(x, ξ) = ic(ξ) = i
∑n−1
j=0 ξjc(ej). Then:

σd+δ(0, y;Dt, ζ) = iDtc(e0) + i

n−1∑
j=1

ζjc(ej) = ∂tc(e0) + i

n−1∑
j=1

ζjc(ej)

= σ
(
∂t + σ−1σd+δ(0, y; 0, ζ)

)
= σ (∂t + b(y, ζ)) ,

with b(y, ζ) := σB(0, y; 0, ζ). In particular, b(y, ζ) has no purely immaginary eigen-

values (Lemma 1.9.4, [23]).

Remark 2.1.7. Since B is an elliptic self-adjoint operator on the closed mani-

fold Y , it is well known that its spectrum is a discrete set of real eigenvalues with

�nite multiplicity and approaching ±∞. Let Vλ ⊂ L2(Y,E′) denote the eigenspace

of B associated to the eigenvalue λ. On the one hand, if Πλ : L2(Y,E′)→ L2(Y,E′)

denotes the orthogonal projection into Vλ, we have that Πλ ∈ Ψ−∞(Y,E′) (as it is

�nite rank). On the other, the orthogonal projection Π≥a onto V≥a :=
⊕

λ≥a Vλ is

in Ψ0(Y,E′), and so are Π>a, Π≤a, and Π<a (Proposition 14.2, [10]).

2.2. Boundary value problems for Dirac operators

The following de�nitions and results are mainly taken from �18, [10], and �3,

[25], unless otherwise stated.

Some topological invariants of closed manifolds can be obtained as the index

of Dirac operators:
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Example 2.2.1. Let X be a closed 2n-dimensional manifold. Then by the

Atiyah-Singer Index Theorem χ(X) = ind(d + δ)+ (�1.5, [23]), where (d + δ)+

is the de Rham operator acting on Λ+(X) :=
⊕n

j=0 Λ2j(X), obtained from the

Z2-grading Λ(X) = Λ+(X)⊕Λ−(X), with Λ−(X) :=
⊕n−1

j=0 Λ2j+1(X). A di�erent

Z2-grading of Λ(X) yields a di�erent invariant: in fact, if we consider the grading

arising from the Hodge operator, then ind(d+δ)+ = σ(X), the topological signature

of X (see Proposition 3.61, [8]).

When X has a non-empty boundary Y , a Dirac operator ð on X becomes

Fredholm when suitable boundary conditions are imposed. We recall from �0.2

that X is considered embedded into a closed manifold X̃ and that E = Ẽ|X , for

Ẽ → X̃ a Hermitian vector bundle. In analogy with the maps de�ned in �0.1 and

�0.2, we consider X− := X̃ \X, i.e. the closure of X̃ \X, and E− := Ẽ|X− . Thus

we have:

r− : Hs(X̃, Ẽ)→ Hs(X−, E−), e− : L2(X−, E−)→ L2(X̃, Ẽ),

γ− : Hs(X−, E−)→ Hs− 1
2 (Y,E′).

Let X+ := X, E+ := E, and γ+ := γ. Recall that a pseudodi�erential opera-

tor D± : C∞(X±, E±) → C∞(X±, E±) is the truncation of a pseudodi�erential

operator D̃ on X̃ to X±, i.e. D± := r±D̃e±.

Definition 2.2.2. LetN±(y, ζ) be the spaces of boundary values of the bounded

solutions of σð(y, 0, ζ,Dt)z(t) = 0 on R±, i.e.

N±(y, ζ) := {z(0)| σð(0, y,Dt, ζ)z(t) = 0, z(t)→ 0 as t→ ±∞}.(2.2.1)

Then P ∈ Ψ0(Y,E′) is said to be a well-posed boundary condition for ð if the

following two conditions are both ful�lled:

i) the extension Ps : Hs(Y,E′)→ Hs(Y,E′) has closed range for each s ∈ R;

ii) for each (y, ζ) such that ζ ∈ T ∗Y and |ζ| = 1, σP(y, ζ) maps N+(y, ζ)

injectively onto its range, i.e. σP(y, ζ)|N+(y,ζ) : N+(y, ζ)→ ran(σP(y, ζ))

is an isomorphism.

Remark 2.2.3 (�3.6, [6]; Remark 18.2, [10]; �3, [25]). We note that in the

literature if, for all y ∈ Y and |ζ| = 1, σP(y, ζ)|N+(y,ζ) is injective from N+(y, ζ) to

ran(σP(y, ζ)), then the pair (ð,Pγ) is called injectively elliptic. If also σP(y, ζ)|N+(y,ζ)

is surjective from N+(y, ζ) to ran(σP(y, ζ)) and there exists a sub-bundle V ⊂ E′

such that ran(σP(y, ζ)) = Vy, then the pair (ð,Pγ) is called surjectively elliptic.
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Boundary conditions that are both injective and surjectivene are called local bound-

ary conditions ([10]) or properly elliptic ([25]). This implies dimN±(y, ζ) = 1
2N ,

as for relative and absolute boundary conditions R and A.

Finally, although the terms well-posed and elliptic (as used in [10]) for these

boundary conditions are used interchangeably, the latter can be confused with the

standard terminology for `elliptic' (which does not satisfy De�nition 2.2.2). Hence,

as in [25], we will adopt the term well-posed. A detailed explanation can be found

in [25], �3.

Definition 2.2.4. Let P ∈ Ψ0(Y,E′) satisfy De�nition 2.2.2. Then a realiza-

tion of ð is an unbounded operator

ðP : dom(ðP)→ L2(X,E), dom(ðP) = {u ∈ H1(X,E) | Pγu = 0}.

It is well known (Proposition 18.11, [10]) that P ∈ Ψ0(Y,E′) can be considered

to be a non-trivial pseudodi�erential projection, i.e. P2 = P, and is orthogonal if

P∗ = P.

Definition 2.2.5. Let P ∈ Ψ0(Y,E′) be a projection and set p(y, ζ) := σP(y, ζ).

Then the Grassmannian of pseudodi�erential projections with principal symbol p

is the topological set:

Gp := {Q ∈ Ψ0(Y,E′)| Q2 = Q and σQ = p}.

Let P ∈ Ψ0(Y,E′) be such that i) of De�nition 2.2.2 is satis�ed. Then the or-

thogonal L2-projection IP onto ran(P) ⊂ L2(Y,E′) is a pseudodi�erential operator

(Theorem 18.5, [10]).

Proposition 2.2.6 ([10]). Let P,P1,P2,P3 ∈ Gp. Then:

i) P2P1 : ran(P1)→ ran(P2) is Fredholm (note at page 119);

ii) ind(P1P2) + ind(P2P3) = ind(P1P3) (Proposition 15.15);

iii) ind(PIP) = ind(IPP) = 0 (Lemma 15.11);

iv) ind (P1P2) = ind
(
P⊥2 P⊥1

)
, where P⊥ := I − P.

Remark 2.2.7. Part iii) of Proposition 2.2.6 means that P and IP belong to

the same connected component of Gp.

The following theorem de�nes a special type of well-posed boundary conditions,

which will be fundamental in the sequel. It needs the existance of an invertible

Dirac operator ð̃ on the closed manifold X̃, which can be obtained for instance



2.2. BOUNDARY VALUE PROBLEMS FOR DIRAC OPERATORS 67

by constructing the closed double of X. We refer to Theorem 9.1 of [10] for a

description of such construction.

Theorem 2.2.8 (Theorem 7.1, [25]). Let ð : C∞(X,E) → C∞(X,E) be a

Dirac operator and consider the spaces of null-solutions of ð

Zs± := {u ∈ Hs(X±, E±) | ðu = 0 on X±}

and Cauchy data of null-solutions of ð, Ns
± := γ±Zs± ⊂ Hs− 1

2 (Y,E′). Then:

i) the spaces Ns
± are complementing subspaces of Hs− 1

2 (Y,E′), i.e.

Hs− 1
2 (Y,E′) = Ns

+ ∪Ns
− and Ns

+ ∩Ns
− = {0};

ii) there exist operators K± := ±r±ð̃−1γ̃∗σ : Hs− 1
2 (Y,E′) → Hs(X±, E±),

called Poisson operators, whose range is equal to Zs± and K±|Ns± : Ns
± → Zs±

are isomorphisms, i.e. Poisson operators are a left inverse of γ± on Zs±;

iii) there exist pseudodi�erential projections

C± := γ±K± : Hs− 1
2 (Y,E′)→ Hs− 1

2 (Y,E′),

called Calderón projectors, whose range is equal to Ns
± (along Ns

∓), i.e.

C+ + C− = I and C±C∓ = 0.

Remark 2.2.9. C± are projections because K± is a left inverse for γ± on Zs±

([26]), i.e. (C±)2 = γ±K±γ±K± = γ±K± = C±. Also, although C± are not

orthogonal a priori, they can be considered to be so by iii) of Proposition 2.2.6.

Finally, by Unique Continuation Property (Theorem 2.1.3) there are no non-

trivial solutions of ðs = 0 with support all contained in X (Remark 12.2, [10]).

Remark 2.2.10. Since the symbols σC
±

(y, ζ) are the orthogonal projections

onto N±(y, ζ), i.e. (2.2.1), N+(y, ζ) and N−(y, ζ) are orthogonal complements and

ranσC
+ ∼= ranσP for every well-posed boundary condition P by part ii) of De�nition

2.2.2.

Moreover, N±(y, ζ) correspond to the generalised eigenspaces associated with

the positive, respectively negative, eigenvalues of σB(y, ζ), and thence σC
±

(y, ζ)

coincide with the principal symbol of the spectral projections of Remark 2.1.7, i.e.

σC
+

= σΠ≥0 = σΠ>0 and σC
−

= σΠ≤0 = σΠ<0 . Since σΠ≥0 = σΠ≥a for all a ∈ R,

this shows that the symbols are independent of a.

Since Π≥a,Π>a ∈ GσC+ and Π≤a,Π>a ∈ GσC− , then the di�erences are compact

operators, i.e. C+−Π≥a ∈ Ψ−1(Y,E′) and C−−Π≤a ∈ Ψ−1(Y,E′), ∀a ∈ R. In the

case of compact manifolds, this can be improved:
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Proposition 2.2.11 (Proposition 2.2, [71]). If X is compact with product

metric near Y , then C+ −Π≥a ∈ Ψ−∞(Y,E′) and C− −Π≤a ∈ Ψ−∞(Y,E′).

Definition 2.2.12. Let P ∈ Ψ0(Y,E′) be a well-posed boundary condition.

Then the operator PC+ : ran(C+)→ ran(P) is called the boundary integral associ-

ated to ðR.

Theorem 2.2.13. Let P ∈ Ψ0(Y,E′) be an well-posed boundary condition and

let IPC+ denote the orthogonal projections of L2(Y,E′) onto ran(PC+) and IC+P∗

denote the one onto ran(C+P∗). Then:

i) IPC+ ∈ GσP and IC+R∗ ∈ GσC+ ;

ii) PC+ : ran(C+)→ ran(P) is Fredholm and

ind(PC+) = ind(IC+P∗C+)− ind(IPC+IP);(2.2.2)

iii) ðP is Fredholm operator and:

ind(ðP) = ind(PC+).(2.2.3)

2.3. The additivity of the index on a partitioned closed manifold

Let ði : C∞(Xi, Ei) → C∞(Xi, Ei), i = 1, 2, be two Dirac operators over Xi,

such that ∂X1 = ∂X2 = Y .

Definition 2.3.1 (�23, [10]). ð1 and ð2 are consistent if in a collar neighbour-

hood of ∂X1 = ∂X2 = Y they can be represented in the following form:

ð1 = σ (∂t + B) ð2 = σ−1
(
∂v − σBσ−1

)
, t = −v.

Remark 2.3.2. For example, if ð is a Dirac operator on a closed manifold X

that we partition with respect to a 1-codimensional submanifold Y into X1 ∪Y X2,

then ð restricts to two consistent Dirac operators ði := ð|Xi .

In fact, σBσ−1 corresponds to the boundary Dirac operator when Y has oppo-

site orientation and ð2 is formally equal to ð∗1 close to Y . Thus, via gluing (Chapter

9, [10]), we obtain the Dirac operator ð on the manifold X = X1 ∪Y X2, which

restricts to ði over Xi, i = 1, 2.

Formula (2.2.3) shows that for the realization of a Dirac operator on a manifold

X, the data related to the index are encoded in the boundary. Therefore, when X

is closed, one can obtain the value of the index of an associated Dirac operator via

a choice of 1-codimensional splitting embedded submanifold. In other words, for a

closed submanifold Y ↪→ X we obtain a splitting X = X1 ∪Y X2, where Xi ⊆ X,
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i = 1, 2, has Y as a common boundary (with reverse orientation in one case). Let

ð : C∞(X,E) → C∞(X,E) be a Dirac operator on X, restricting to ði on Xi,

i = 1, 2. If we assume a bicollar neighbourhood for Y , with product structure, we

have:

Theorem 2.3.3 (24.1, [10]). Let Ci := C+
i be the Calderón projectors associ-

ated to ði, i = 1, 2. Then:

ind(ð) = ind
(
C⊥2 C1

)
.(2.3.1)

Clearly, formula (2.3.1) has a obvious similarity with what stated in Remark

1.4.32. It yields the following:

Corollary 2.3.4. Let P,Q ∈ GσC1 . Then:

ind(ð)− ind (QP) = ind (ð1,P) + ind
(
ð2,Q⊥

)
= ind (PC1) + ind

(
Q⊥C2

)
.(2.3.2)

In general, ind (QP) 6= 0 and we do not have strict additivity. However, by

Proposition 2.2.6, it can be possible to change the boundary conditions P and Q

so that the extra term will vanish.

Example 2.3.5. Let ðΠ denote the realization of a Dirac operator ð overX with

APS boundary conditions, i.e. with Π := Π≥0 from Remark 2.1.7. Let ω denote the

index density, η(B) := η(0,B) be the eta invariant of B, and set h(B) := dim ker(B).

Then the Atiyah-Patodi-Singer Index Theorem ([4]) shows that:

ind(ðΠ) =

∫
X

ω − η(B) + h(A)

2
.(2.3.3)

Let ði : C∞(Xi, Ei)→ C∞(Xi, Ei) be two consistent Dirac operators over Xi, such

that ∂X1 = ∂X2 = Y , and set Πi for the pseudodi�erential projection Π≥0 for ði.

Then (Proposition 23.2, [10]):

ind(ð) = ind(ð1,Π) + ind(ð2,Π) + h(B)

where we set ði,Π := ði,Πi . Hence additivity holds if and only if h(B) = 0. By

ii) of Proposition 2.2.6 and equality (2.2.3), for another P ∈ GσC+ we have the

Agranovic-Dynin formula:

ind(ðP) = ind(ðΠ) + ind(PΠ).(2.3.4)

If ker(B) 6= {0}, then there always exists a unitary involution τ : ker(B)→ ker(B),

determined by the Dirac operator ð and anticommuting with σ, i.e. στ = −τσ

(Proposition 4.26, [56]). The ±1-eigenspaces of τ , L± := ker(τ∓id), are Lagrangian
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subspaces2 of ker(B), i.e. L± = σL∓ and ker(B) = L+ ⊕ L−. In particular,

h(B) = dim ker(B) ∈ 2N.

Let Θ± the orthogonal projections of L2(Y,E′) onto L±. Hence, Θ± are �nite

rank projections and de�ne the generalized APS boundary conditions:

P±> := Π>0 + Θ± ∈ GσC+ and P±< := Π<0 + Θ± ∈ GσC− .

In particular, they are well-posed and

ind(P±>Π : ran(Π)→ ran(P±> ) =

= dim(ran(Π) ∩ ran(P±> )⊥)− dim(ran(Π)⊥ ∩ ran(P±> ))

= dim(ran(Π) ∩ ran(P∓< ))− dim(ran(Π<0) ∩ ran(P±> ))︸ ︷︷ ︸
=0

= dim(L∓) = dim(L±) =
1

2
dim ker(B) =

1

2
h(B).

Analogously, ind(P±<Π≤0) = 1
2h(B) and, in conclusion, if ði,± denote the realiza-

tions of ði with respect to either one of the generalized APS boundary conditions,

we have by (2.3.4)

ind(ði,±) = ind(ði,Π) + ind(P±>Π) =

∫
Xi

ωi −
1

2
η(B)

and ind(ð) = ind(ð±1 ) + ind(ð±2 ).

Remark 2.3.6. When ð is the signature operator, the above example is used

to show that the topological signature of a manifold can be realised as the trace

character of a logTQFT. See [72] for further details on this.

2.4. The additivity of the index for manifolds with boundary

Example 2.4.1. We continue Example 2.3.5 by considering this time two man-

ifolds Xi, i = 1, 2, such that ∂Xi = Y −i−1 t Yi and at least one between Y0 and Y2

is non-empty. If the two Dirac operators ði : C∞(Xi, Ei)→ C∞(Xi, Ei) are con-

sistent in a collar neighbourhood of Y1, then we can glue them together into a

Dirac operator ð : C∞(X,E) → C∞(X,E) over X = X1 ∪Y1 X2, which has non-

empty boundary ∂X = Y −0 t Y2. If Bi := B|Yi , then B|∂X1
= σB0σ

−1 ⊕ B1 and

B|∂X2
= σB1σ

−1 ⊕ B2. Therefore, it si well known that:

η(B|∂X1
) = −η(B0) + η(B1) and η(B|∂X2

) = −η(B1) + η(B2)

2De�nition: L+ is the space of all limiting values of L2-extended sections u of E satisfying

ðiu = 0.
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and by the Atiyah-Patodi-Singer Index Theorem:

ind(ð1,Π) + ind(ð2,Π) =

∫
X1

ω1 −
η(σB0σ

−1 ⊕ B1) + h(σB0σ
−1 ⊕ B1)

2

+

∫
X2

ω2 −
η(σB1σ

−1 ⊕ B2) + h(σB1σ
−1 ⊕ B2)

2

=

∫
X1

ω1 −
−η(B0) + h(B0)

2
− η(B1) + h(B1)

2

+

∫
X2

ω2 −
−η(B1) + h(B1)

2
− η(B2) + h(B2)

2

=

∫
X

ω − −η(B0) + h(B0)

2
− η(B2) + h(B2)

2
− h(B1)

= ind(ðΠ) + dim ker(B1),

Let Θ±1 : L2(Y1, E
′
1)→ L2(Y1, E

′
1) be the orthogonal projection onto the Lagrangian

subspaces L± of ker(B1), and Πi denote the APS projection corresponding to B1.

Then suitable conditions on X1 and X2 are, respectively,

P±1 =

 Π0,≤0 0

0 Π1,>0 + Θ±1

 and P±2 =

 Π1,<0 + Θ±1 0

0 Π2,≥0

 .

In fact, if we denote ðP±i the realization of ði with such generalized APS con-

ditions, we obtain

ind(ðP±1 ) =

∫
X1

ω1 −
−η(B0) + dim ker(B0)

2
− η(B1)

2
,

ind(ðP±2 ) =

∫
X2

ω2 −
η(B2) + dim ker(B2)

2
+
η(B1)

2
,

and thus:

ind(ðP±1 ) + ind(ðP±2 ) =

∫
X

ω − −η(B0) + η(B2)

2
− h(B0) + h(B2)

2
= ind(ðΠ).

This example is just an instance of the general fact that formula (2.3.2) holds

also when gluing is performed with respect to a proper subset of the connected

components of the boundary (Remark 8.20, [7]). In that case, one imposes generic

well-posed boundary conditions of the form:

P =

 P1 0

0 P2


on the remaining boundary components.

Here, we will prove this additive formula but from the point of view of the

Calderón projectors and boundary integrals. It is clear that this is just an equivalent

formulation of what has just been stated.



2.4. THE ADDITIVITY OF THE INDEX FOR MANIFOLDS WITH BOUNDARY 72

For a general approach to gluing, let us consider a manifold X with bound-

ary Y :=
⊔k
i=0 Yi, for k ∈ N. Hence E′ =

⊕k
i=0E

′
i, with E′i := E|Yi , and

Hs(Y,E′) =
⊕k

i=0H
s(Yi, E

′
i). For Ui := [0, ci)×Yi a collar neighbourhood of Yi, the

set U = [0,maxi ci]× Y ⊇
⊔k
i=0 Ui is a collar neighbourhood of Y . Then the prod-

uct structure near the boundary implies ð|Ui = σi(∂ui + Bi), with σi : E|Ui → E|Ui

the Cli�ord multiplication by unit inward normal vector to Yi and Bi := B|Yi the

restriction to Yi.

First of all, Theorem 11.4 and Corollary 11.8 of [10] can be reformulated for

every 1-codimensional embedded submanifold in X:

Theorem 2.4.2. ∀s > 1
2 and ∀i ∈ {0, . . . , k}, the restriction to the boundary

component Yi de�nes continuous and uniformly bounded trace maps

γi : Hs(X,E)→ Hs− 1
2 (Yi, E

′
i) and γ̃i : Hs(X̃, Ẽ)→ Hs− 1

2 (Yi, E
′
i).

In particular, γ̃i are adjointable.

In this context, Green's formula becomes, for s1, s2 ∈ C∞(X,E):

〈ðs1, s2〉X − 〈s1,ðs2〉X = −
∫
Y

(σγu, γv)yv(y)dy

= −
k∑
i=0

∫
Yi

(σiγiu, γiv)yv(y)dy = −
k∑
i=0

〈σiγiu, γiv〉Yi ,

since the restrictions γ and γ̃ can be represented as column vectors, and σ, ð|U and

Π≥ as diagonal matrices:

γ =


γ0

...

γk

 : Hs(X,E)→
k⊕
i=0

Hs− 1
2 (Yi, E

′
i)

σ =


σ0

. . .

σk

 :

k⊕
i=0

E′i →
k⊕
i=0

E′i, Π≥0 =


Π0,≥0

. . .

Πk,≥0



ð|U =


ð|U0

. . .

ð|Uk

 :

k⊕
i=0

C∞(Ui, E|Ui)→
k⊕
i=0

C∞(Ui, E|Ui)
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Poisson operator and Calderón projector

K :
⊕k

i=0H
s− 1

2 (Yi, E
′
i)→ Hs(X,E) K := K+ = rð̃−1γ̃∗σ

C :
⊕k

i=0H
s− 1

2 (Yi, E
′
i)→

⊕k
i=0H

s− 1
2 (Yi, E

′
i) C := C+ = γK

can be represented in the following way:

K = rð̃−1 (γ̃∗0 , . . . , γ̃
∗
k)


σ0 0

. . .

0 σk

 = (rð̃−1γ̃∗0σ0, . . . , rð̃−1γ̃∗kσk) = (K0, . . . ,Kk),

C =
(
γirð̃−1γ̃∗j σj

)k
i,j=0

= (γiKj)ki,j=0 = (Ci,j)ki,j=0 ,

since γ̃∗ = (γ̃∗0 , . . . , γ̃
∗
k),

Remark 2.4.3. We have already seen in Remark 2.2.9 that C2 = C because K

is a left inverse of γ. Similarly, in this case we have
∑k
i=0Kiγiu = u for u ∈ Z1,

and C2 = C as a consequence. In fact, let u ∈ Z1, w ∈ L2(X,E) and v = (ð̃−1)∗ew.

Hence v ∈ H1(X̃, Ẽ) and by Green's Formula:

−〈u,w〉 = 〈ðu, rv〉X − 〈u, rð̃∗v〉X = 〈ðu, rv〉X − 〈u,ðrv〉X

= −
k∑
i=0

〈σiγiu, γirv〉Yi = −
k∑
i=0

〈σiγiu, γ̃iv〉Yi

= −
k∑
i=0

〈γ̃∗i σiγiu, (ð̃−1)∗ew〉X̃ = −
k∑
i=0

〈rð̃−1γ̃∗i σiγiu,w〉X

= −〈
k∑
i=0

Kiγiu,w〉X =⇒
k∑
i=0

Kiγiu = u ∈ Z1.

Therefore

C2 =

(
k∑
l=0

Ci,lCl,j

)k
i,j=0

=

(
k∑
l=0

γiKlγlKj

)k
i,j=0

=

(
γi(

k∑
l=0

Klγl)Kj

)k
i,j=0

= (γiKj)ki,j=0 = C.

Example 2.4.4. If Y = Y0 t Y1:

C =

 γ0

γ1

 rð̃−1 (γ̃∗0 , γ̃
∗
1 )

 σ0 0

0 σ1


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=

 γ0rð̃−1γ̃∗0σ0 γ0rð̃−1γ̃∗1σ1

γ1rð̃−1γ̃∗0σ0 γ1rð̃−1γ̃∗1σ1

 =

 C0,0 C0,1
C1,0 C1,1

 .

Lemma 2.4.5. Let u ∈ C∞(X,E) such that ðu = 0 and assume that there exists

i ∈ {0, . . . , k} such that γiu = 0. Then u = 0 on X and therefore ∀i ∈ {0, . . . , k}

γiu = 0.

Proof. The argument in Lemma 2.3, [71], works equally well for manifolds

with boundary with multiple connected components. Fix i ∈ {0, . . . , k} and let ði
denote ð restricted to C∞i (X,E) := {u ∈ C∞(X,E) | γiu = 0}. By the product

structure near Yi, u(t, y) =
∑
λ uλ(t)vλ(y) in Ui. Since ðiu = 0, uλ(t) = e−λtuλ(0).

Hence u = 0 on Ui because uλ(0) = 0. By Unique Continuation Property the claim

follows.

�

Corollary 2.4.6. Let u, v ∈ C∞(X,E) such that ðu = ðv = 0 and assume

that ∃i ∈ {0, . . . , k} such that γiu = γiv. Then u = v on X and therefore γju = γjv

∀j ∈ {0, . . . , k}.

Corollary 2.4.7. γi : ker ð→ γi ker ð is bijective.

Proof. Direct consequence of Corollary 2.4.6.

�

Proposition 2.4.8. Ci,j = γirð̃−1γ̃∗j σj is smoothing for i 6= j.

Proof. Let ξ ∈ C∞(Yj , E
′
j), i ∈ {0, . . . , k}. By pseudolocality of ð̃−1 ([10]),

the singular support of γ̃∗j σjξ is contained in Yj ; hence, rð̃−1γ̃∗j σjξ is C∞ outside

Yj , which implies that Ci,j = γirð̃−1γ̃∗j σj is smoothing for i 6= j.

�

Corollary 2.4.9. For each i ∈ {0, . . . , k}, Ci,i is a projection modulo smooth-

ing operators, i.e. C2
i,i − Ci,i ∈ Ψ−∞(Yi, E

′
i).

Proof. Since C2 = C (Remark 2.4.3), we have:

Ci,i = (C2)i,i =

k∑
j=0

Ci,jCj,i = C2
i,i +

∑
j 6=i

Ci,jCj,i.

Then the claim follows by Proposition 2.4.8.

�
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Theorem 2.4.10. If X is compact with product metric near the boundary,

then Πi,≥0 − Ci,i ∈ Ψ−∞(Yi, E
′
i) ∀i ∈ {0, . . . , k}.

Proof. For all i ∈ {0, . . . , 1}, Ci,i is a pseudodi�erential operator with the

same principal symbol of Πi,≥0, hence Πi,≥0 − Ci,i ∈ Ψ−1(Yi, E
′
i) in general. In

particular, since X is compact with product metric, by Proposition 2.2.11 we have

Π≥0 − C ∈ Ψ−∞(Y,E′); thus, the diagonal components of C di�er from those of

Π≥0 by a smoothing operator.

�

Corollary 2.4.11. Let Y −i denote Yi with opposite orientation and C̃i,i be

the Calderón projector de�ned for Y −i . If Π≥0 − C ∈ Ψ−∞(Y,E′), then

Ci,i + C̃i,i − I ∈ Ψ−∞(Yi, E
′
i).

Proof. Let Π−≥0 denote the projection onto the non-negative eigenspace of B

when the orientation of Yi is reversed. Then Π−i,≥0 = Πi,≤0 and, since Πi,≥0−Ci,i ∈

Ψ−∞(Yi, E
′
i), we have that Πi,≤0 − C̃i,i ∈ Ψ−∞(Yi, E

′
i). Therefore,

Ψ−∞(Yi, E
′
i) 3 Ci,i + C̃i,i −Πi,≥0 −Πi,≤0 = Ci,i + C−i,i − I −Πi,0.

Hence the statement, since Πi,0 is �nite rank.

�

Lemma 2.4.12. Let C := C+ be the Calderón projector for a Dirac operator

ð : C∞(X,E) → C∞(X,E) and assume Y :=
⊔k
i=0 Yi, for k ∈ N. Then there

exists an orthogonal projection IC onto ran(C) that is diagonal with respect to the

Boundary decomposition and such that IC and C belong to the same connected

component of GσC .

Proof. Without loss of generality, by ii) of Proposition 2.2.6, we can assume

C = C∗. Hence, Ci,i = C∗i,i and Ci,j = C∗j,i, i = 0, 1. Consider the operator:

C̃ =

k⊕
i=0

Ci,i =


C0,0 0

. . .

0 Ck,k

 .

Since Ci,j are smoothing, C̃ it is a smooth perturbation of C and thus is a well-

posed boundary condition. As such, its range is closed for every s. In particular,

its range is ran(C̃) =
⊕k

i=0 ran(Ci,i), from which we conclude that Ci,i ∈ Ψ0(Yi, E
′
i)

has closed range. Let Ii,i denote the L2-orthogonal projection onto ran(Ci,i). By
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Theorem 18.5, [10], Ii,i ∈ Ψ0(Yi, E
′
i) and the operator IC :=

⊕k
i=0 Ii,i ∈ Ψ0(Y,E′)

is a projection, and by ii) of Proposition 2.2.6, ind(ðC̃) = ind(ðIC ).

Finally, as C̃ = C + S for S ∈ Ψ−∞(Y,E′), the Fredholm operator C̃C is a

compact perturbation of CC, thence ind(C̃C) = ind(CC) = 0 and:

ind(ICC) = ind(ðIC ) = ind(ðC̃) = ind(C̃C) = 0.

�

Remark 2.4.13. By Lemma 2.4.12, we can always consider the Calderón to be

diagonal with respect to the boundary decomposition. In other words, the index

and its additivity depend only on the diagonal components of the operator.

2.4.1. An additive formula for manifolds with boundary. Let us go

back to the Example 2.4.1 and consider two oriented manifolds Xi, i = 1, 2, such

that ∂Xi = Y −i−1 t Yi and at least one between Y0 and Y2 is non-empty. Let ði be

the Dirac operators associated to the Cli�ord module bundles Ei → Xi such that

they are consistent in a collar neighbourhood of Y1, and let ð the Dirac operator

associated to X = X1 ∪Y1
X2 via gluing.

In order to de�ne the Calderón projectors, we only need that each of the man-

ifolds involved embeds smoothly into a closed manifold. We can therefore consider

as a common closed manifold, the closed double X̃ of X; thus, Xi embeds smoothly

in X, for i = 1, 2, and so does X in X̃ (Figure 1).

Let ð̃ be the invertible double of ð and Ẽ the double Cli�ord module bundle.

Then ð̃ is an invertible extension to X̃ of ð, ð1, and ð2. Therefore, by Theorem 2.2.8,

it is used to de�ne the Poisson operators and Calderón projectors relative to X, X1

and X2, respectively. We consider restriction maps r±i : Hs(X̃, Ẽ)→ Hs(X±i , E
±
i ),

with i = 1, 2 and X+
i := Xi, and trace maps:

γ±0 : Hs(X∓1 , E
∓
1 )→ Hs− 1

2 (Y0, E
′
0), γ±2 : Hs(X±2 , E

±
2 )→ Hs− 1

2 (Y2, E
′
2),

γ+
1 : Hs(X+

1 , E
+
1 )→ Hs− 1

2 (Y1, E
′
1), γ−1 : Hs(X+

2 , E
+
2 )→ Hs− 1

2 (Y1, E
′
1).

As we have seen, we can write γ∂X±i
=

 γ∓i−1

γ±i

 with respect to the decomposition

Hs(∂Xi, E|∂Xi) = Hs(Yi−1, E
′
i−1)⊕Hs(Yi, E

′
i).

Theorem 2.4.14. The following operator over Hs− 1
2 (Y1, E

′
1):

γ+
1 r

+
1 ð̃−1γ̃∗1σ1 + γ−1 r

+
2 ð̃−1γ̃∗1σ1 − I(2.4.1)

is smoothing.
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X2X1

X−1 X−2

Y −0

Y0

Y −1 Y1

Y1 Y −1

Y2

Y −2

Figure 1. The double X̃ of X = X1 ∪Y1 X2.

Proof. Let C±1 be the Calderón projectors associated to X1:

C±1 : Hs− 1
2 (Y0, E

′
0)⊕Hs− 1

2 (Y1, E
′
1)→ Hs− 1

2 (Y0, E
′
0)⊕Hs− 1

2 (Y1, E
′
1).

Set r+ := r+
1 and let r− : Hs(X̃, Ẽ) → Hs(X−, E−) the restriction to X− :=

X̃ \X1 and E− := Ẽ|X− . Then we have:

C±1 =

 γ∓0

γ±i

 r±ð̃−1 (γ̃∗0σ0, γ̃
∗
1σ1) =

 γ∓0 r
±ð̃−1γ̃∗0σ0 γ∓0 r

±ð̃−1γ̃∗1σ1

γ±1 r
±ð̃−1γ̃∗0σ0 γ±1 r

±ð̃−1γ̃∗1σ1

 .

Therefore, by the following equalities:

γ−0 r
+ = γ−0 r

+
1 , γ+

0 r
− = γ+

0 r
−
1 , γ+

1 r
+ = γ+

1 r
+
1 , γ−1 r

− = γ−1 r
+
2 ,

we can write C±1 in terms of r±i as:

C+
1 =

 γ−0 r
+
1 ð̃−1γ̃∗0σ0 γ−0 r

+
1 ð̃−1γ̃∗1σ1

γ+
1 r

+
1 ð̃−1γ̃∗0σ0 γ+

1 r
+
1 ð̃−1γ̃∗1σ1

 =

 C+
00 C+

01

C+
10 C+

11

 and

C−1 =

 γ+
0 r
−
1 ð̃−1γ̃∗0σ0 γ+

0 r
−
1 ð̃−1γ̃∗1σ1

γ−1 r
+
2 ð̃−1γ̃∗0σ0 γ−1 r

+
2 ð̃−1γ̃∗1σ1

 =

 C−00 C−01

C−10 C−11

 .

Let ϕj ∈ Hs− 1
2 (Yj , E

′
j), j = 0, 1. Then, since C+

1 + C−1 = I, we obtain:

(C+
00 + C−00 − I)ϕ0 + (C+

01 + C−01)ϕ1 = 0

(C+
10 + C−10)ϕ0 + (C+

11 + C−11 − I)ϕ1 = 0.
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Now, C±jk are smoothing operators when j 6= k; thus we conclude that C+
jj + C−jj − I

are smoothing operators.

�

Let C1 := C+
1 , C2 := C+

2 and C := C+ be Calderón projectors for ð1, ð2 and ð

respectively:

C1 :Hs− 1
2 (Y0, E|Y0

)⊕Hs− 1
2 (Y1, E|Y1

)→ Hs− 1
2 (Y0, E|Y0

)⊕Hs− 1
2 (Y1, E|Y1

)

C2 :Hs− 1
2 (Y1, E|Y1

)⊕Hs− 1
2 (Y2, E|Y2

)→ Hs− 1
2 (Y1, E|Y1

)⊕Hs− 1
2 (Y2, E|Y2

)

C :Hs− 1
2 (Y0, E|Y0

)⊕Hs− 1
2 (Y2, E|Y2

)→ Hs− 1
2 (Y0, E|Y0

)⊕Hs− 1
2 (Y2, E|Y2

).

Therefore, they are de�ned as:

C1 =

 γ−0 r
+
1 ð̃−1γ̃∗0σ0 γ−0 r

+
1 ð̃−1γ̃∗1σ1

γ+
1 r

+
1 ð̃−1γ̃∗0σ0 γ+

1 r
+
1 ð̃−1γ̃∗1σ1

 =

 C0,0 C0,1
C1,0 C1,1


C2 =

 γ−1 r
+
2 ð̃−1γ̃∗1σ1 γ−1 r

+
2 ð̃−1γ̃∗2σ2

γ+
2 r

+
2 ð̃−1γ̃∗1σ1 γ+

2 r
+
2 ð̃−1γ̃∗2σ2

 =

 D1,1 D1,2

D2,1 D2,2


C =

 γ−0 r
+
1 ð̃−1γ̃∗0σ0 γ−0 r

+
1 ð̃−1γ̃∗2σ2

γ+
2 r

+
2 ð̃−1γ̃∗0σ0 γ+

2 r
+
2 ð̃−1γ̃∗2σ2

 =

 C0,0 E0,2
E2,0 D2,2

 ,

where Ci,j := C+
i,j , i, j ∈ {0, 1} as in the proof of Theorem 2.4.14, and D1,1 = C−1,1

by inspection.

Theorem 2.4.15. Let P1, P2, and P be well-posed boundary conditions re-

spectively for ð1, ð2, and ð, such that:

P1 =

 P0,0 P0,1

P1,0 P1,1

 ,P2 =

 P̃1,1 P1,2

P2,1 P2,2

 , and P =

 P0,0 P0,2

P2,0 P2,2

 .

Then

ind(PC) = ind(P1C1) + ind(P2C2) + ind
(
P1,1P̃⊥1,1

)
.

Proof. P1C1 is Fredholm and a smooth perturbation of a diagonal operator:

P1C1 =

 P0,0C0,0 + P0,1C1,0 P0,0C0,1 + P0,1C1,1
P1,0C0,0 + P1,1C1,1 P1,0C0,1 + P1,1C1,1


=

 P0,0C0,0 0

0 P1,1C1,1

+

 P0,1C1,0 P0,0C0,1 + P0,1C1,1
P1,0C0,0 + P1,1C1,1 P1,0C0,1

 .
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Therefore,

ind(P1C1) = ind

 P0,0C0,0 0

0 P1,1C1,1

 = ind(P0,0C0,0) + ind(P1,1C1,1).

Analogously,

ind(P2C2) = ind(P̃1,1D1,1) + ind(P2,2D2,2)

ind(PC) = ind(P0,0C0,0) + ind(P2,2D2,2),

thus

ind(P1C1) + ind(P2C2)− ind(PC) = ind(P1,1C1,1) + ind(P̃1,1D1,1).(2.4.2)

Now, by iv) of Proposition 2.2.6, ind(P̃1,1D1,1) = ind(D⊥1,1P̃⊥1,1), and since

C1,1 +D1,1 − I is smoothing by Theorem 2.4.14, we obtain

ind(D⊥1,1P̃⊥1,1) = ind(C1,1P̃⊥1,1).

Thus (2.4.2) becomes:

ind(P1C1) + ind(P2C2)− ind(PC) = ind(P1,1C1,1) + ind(C1,1P̃⊥1,1) = ind(P1,1P̃⊥1,1).

�

Remark 2.4.16. For example, if we consider de Rham operators ð := (d+ δ)+

with relative boundary conditions on the boundaries, we have:

ind(RC) = ind(RC1) + ind(RC2) + ind(R⊥Y1
RY1

).

Since ind(R⊥Y1
RY1

) = χ(Y1), the above formula reduces to

ind(RC) = ind(RC1) + ind(RC2).(2.4.3)

if n is even.

2.4.2. Index and trace class operators. When the boundary conditions

are trace class operators, the index can be interpreted in terms of the trace.

Lemma 2.4.17 (Lemma 3.8, [72]). Let H = H+ ⊕H− be a polarized Hilbert

space, with H± in�nite-dimensional, and let Π± denote the orthogonal projections

onto H±. Let P0, P1 be projections on H such that Pi − Π+ is trace-class on H,

i = 0, 1. Then P0 − P1 is trace-class on H and P1P0 : ran(P0) → ran(P1) is a

Fredholm operator, and the index satis�es:

ind(P1P0) = TrH(P0 − P1).(2.4.4)
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Remark 2.4.18. Equality (2.4.4) applies to projections P0,P1 ∈ Ψ0(Y,E′)

such that P0−P1 ∈ Ψ−∞(Y,E′), with TrH = TrΨ−∞(Y,E′) =: Tr the classical trace

of smoothing pseudodi�erential operators:

ind(P1P0) = Tr(P0 − P1).(2.4.5)

In particular, if Q ∈ ker(Tr) = [Ψ−∞(Y,E′),Ψ−∞(Y,E′)],

ind(P1P0) = Tr(P0 − P1 +Q) = ind(P1(P0 +Q)) = ind((P1 −Q)P0),

i.e. index is stable with respect to commutators of smoothing pseudodi�erential

operators.

Remark 2.4.19 (From Remark 18.17, [10]). Let P ∈ Ψ0(Y,E′) be a well-posed

boundary condition. Then C+ − IC+P∗ and IP − IPC+ are smoothing pseudodi�e-

rential operators.

In fact, since ran(IC+P∗) = ran(C+P∗) = (ker((C+P∗)∗))⊥ = (ker(PC+))⊥, we

have the orthogonal decomposition ran(C+) = ran(C+P∗) ⊕ ker(PC+). Therefore

C+ − IC+P is the orthogonal projection onto ker(PC+), which is �nite dimensional

since PC+ is Fredholm. Hence C+ −IC+P∗ is a �nite rank operator, and as such it

is smoothing. Analogously for IP −IPC+ , since ran(IP) = ran(PC+)⊕ ker(C+P∗).

Theorem 2.4.20. Let P ∈ Ψ0(Y,E′) be a well-posed boundary condition and

ϕ : L2(Y,E′) → L2(Y,E′) an isomorphism extending ran(C+Q∗) ∼= ran(QC+).

Then:

ind(PC+) = Tr(C+ − ĨP), ĨP := ϕ−1IPϕ.(2.4.6)

Proof. Set C := C+. From (2.2.2) and (2.4.5), we have:

ind(PC) = Tr(C − ICP∗)− Tr(IP − IPC)

Now, recall that Q|ran(CQ∗) : ran(CQ∗)
∼=→ ran(QC) for a general well-posed bound-

ary condition Q (Proposition 18.16, [10]). Let ϕ be an isomorphism extending

ran(CQ∗) ∼= ran(QC). Then, ICP∗ = ϕ−1IPCϕ and by the invariance of the trace:

ind(PC) = Tr(C − ICP∗)− Tr(IP − IPC)

= Tr(C − ICP∗)− Tr(ϕ−1IPϕ− ϕ−1IPCϕ)

= Tr(C − ICP∗ − ϕ−1IPϕ+ ϕ−1IPCϕ) = Tr(C − ϕ−1IPϕ).

�
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2.5. LogTQFT formulation of the Euler Characteristic

As for the topological signature in [72], we can de�ne a log-functor on the

category of even dimensional bordisms Cob2n whose log-determinant will be the

relative Euler characteristic of the cobordism.

Let X be a 2n-dimensional oriented manifold with boundary Y and let us

consider the de Rham operator ð := d + δ : Ω(X) → Ω(X) of Example 2.1.2, i.e.

E = Λ(X) and E′ = Λ(X)|Y .

Let us set L2Ω(X) := L2(X,Λ(X)) andHsΩ(X) := Hs(X,Λ(X)), and consider

relative and absolute boundary conditions for ð, i.e. the orthogonal projections

R,A ∈ Ψ0Λ(X)|Y := Ψ0(Y,Λ(X)|Y ) of De�nition 0.3.2:

R : Ω(X)|Y → Ω(Y ) A : Ω(X)|Y → Ω(Y )

ω|Y 7→ ω1 ω|Y 7→ ω2.

Consider s1, s2 ∈ Ω(X) such that Rγsi = 0 or Aγsi = 0. Then, by Green's

formula, R and A are self-adjoint boundary conditions for ð, i.e.:

〈ðs1, s2〉 − 〈s1,ðs2〉 = −〈σγs1, γs2〉 = 0.

Therefore, if we want a non-vanishing index, we need to consider a Z2-grading of

Ω(X). Let the grading be the one of Example 2.2.1, and consider the associated

Dirac operator ð+ := ð|Ω+(X), i.e.

ð+ = (d+ δ)+ : Ω+(X)→ Ω−(X) Ω± := C∞(X,Λ±(X)).

We remark that ð+ is not self-adjoint, but (ð+)∗ = ð−.

Proposition 2.5.1. Relative and absolute boundary conditions R,A are well-

posed boundary condition for the de Rham operator ð+.

Proof. R and A are truly orthogonal projection at the bundle level, thus

independent of (y, ζ), and their ranges are closed for each s ∈ R, since one pro-

jection is the complement of the other. Moreover, Lemma 4.1.1, [23], shows that

R : N±(y, ζ) → ran(R) = Λ+(Y ) and A : N±(y, ζ) → ran(A) = Λ−(Y ) are

isomorphisms. �

Remark 2.5.2. In particular,R andA are local well-posed boundary conditions

(Example 3.19, [?baBa]). This places the complex d+ δ : Ω(X)→ Ω(X) in a rather

special situation, since there are no local well-posed conditions for the other classical

elliptic complexes: the signature, the spin and the Dolbeaux complex (Lemma 4.1.6,

[23]).
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The realization of ð+ with respect to relative boundary conditions,

ð+
R : dom

(
ð+
R
)
→ L2Ω−(X)

dom
(
ð+
R
)

= {ω ∈ H1Ω+(X) | Rγω = 0}

which is a Fredholm operator by Theorem 2.2.3.

Lemma 2.5.3. For ker ðkR = {ω ∈ H1Ωk(X)| ðω = 0, Rγω = 0}, we have:

i) ker ð+
R =

⊕n
k=0 ker ð2k

R (Lemma 4.1.2, [23]);

ii) for Hk
R(X) the relative de Rham cohomology of �0.4, (Corollary 2.6.2,

[68]):

ker ðkR ∼= Hk
R(X).(2.5.1)

Proposition 2.5.4. Let C := C+ denote the Calderón projector for ð+. Then:

Tr(C − R̃) = χ(X,Y ).

Proof. We only have to combine all the previous results together. By �0.4,

the relative Euler characteristic can be de�ned as χ(X,Y ) =
∑
k(−1)k dimHk

R(X).

Hence,

χ(X,Y )
(2.5.1)

=

2n∑
k=0

(−1)k dim kerðkR = indð+
R

(2.2.3)
= ind(RC) (2.4.6)

= Tr(C − R̃).

�

We �nally have all the ingredient to de�ne a LogTQFT associated to the relative

Euler characteristic. Let us consider the strict functor F−∞ : Cob∗2n → C-Alg of

Example 1.4.38, i.e.

F−∞(Y ) := Ψ−∞(Y,Λ(X)|Y ) Y ∈ obj(Cob∗2n) such that Y = ∂X.

By Lemma 1.4.39, (F−∞,Tr), with Tr the classical trace, is an unoriented tracial

monoidal representation.

Let W be a representative of a morphism W ∈ morCob2m
(M0,M1), where M0,

M1 are not both empty. As we have seen in the Example 1.4.5, it comes with

an orientation-preserving di�eomorphism κ : ∂W → M−0 tM1 that induces the

isomorphism κ] : F−∞(∂W )→ F−∞(M0 tM1), by Lemma 1.4.39. Consider the

following simplicial map:

logχ : NCob2n −→ F−∞,Π(Cob∗2n)

logχM0tM1
(W ) := πM0tM1

◦ κ](CW − R̃∂W ) ∈ F−∞,Π(M0 tM1)

(2.5.2)



2.5. LOGTQFT FORMULATION OF THE EULER CHARACTERISTIC 83

Theorem 2.5.5. (2.5.2) de�nes a LogTQFT. In other words, for X = X1∪fX2

with ∂Xi
∼= M−i−1 tMi and f a di�eomorphism used for the gluing, (1.4.4) holds,

i.e. in F−∞,Π(M0 tM1 tM2)

η̃M1
logχM0tM2

(X) = η̃M2
logχM0tM1

(X1) + η̃M0
logχM1tM2

(X2)(2.5.3)

Proof. First of all, assume X = X1 ∪Y1
X2, i.e. f is the identity and X1 and

X2 have a common boundary. Then, by (2.5.6) and (1.4.7), we have that:

ind(R∂XCX) = T̃rM0tM2

(
logχM0tM2

(X)
)

= T̃rM0tM1tM2

(
η̃M1

logχM0tM2
(X)

)
ind(R∂X1

CX1
) = T̃rM0tM1tM2

(
η̃M2

logχM0tM1
(X1)

)
and

ind(R∂X2
CX2

) = T̃rM0tM1tM2

(
η̃M0

logχM1tM2
(X2)

)
.

Therefore, by (2.4.3) and linearity of the trace:

T̃rM0tM1tM2

(
η̃M1

logχM0tM2
(X)− η̃M2

logχM0tM1
(X1)− η̃M0

logχM1tM2
(X2)

)
= 0.

Since T̃r is an isomorphism onto C, we obtain, in F−∞,Π(M0 tM1 tM2),

η̃M1
logχM0tM2

(X)− η̃M2
logχM0tM1

(X1)− η̃M0
logχM1tM2

(X2) = 0.

Let now assume ∂X1 = Y −0 tY1, ∂X1 = Ỹ −1 tY2, and f : Y1 → Ỹ1 a di�eomorphism.

Let Xf := X1∪fX2 be the resulting glued manifold. In a collar neighborhood of Y1

and Ỹ1 the respective Dirac operators are compatible by local invariance of smooth

forms with respect to di�eomorphisms. Hence, we can de�ne a Dirac operator on

Xf and by Theorem 25.4 of [10] the additive formula for the index is the same.

�

Proposition 2.5.6. The logarithm de�ned in (2.5.2) depends only on the ori-

ented bordism class W and has log-determinant

T̃rM0tM1

(
logχM0tM1

(W )
)

= χ(W,∂W ).

Proof. Form Proposition 2.5.4, χ(W,∂W ) = Tr∂W

(
CW − R̃∂W

)
. Thence:

Tr∂W (CW −R∂W )
(1.4.8)

= TrM0tM1
(κ](CW −R∂W ))

(1.4.7)
= T̃rM0tM1

(πM0tM1
(κ](CW −R∂W )))

(2.5.2)
= T̃rM0tM1

(
logχM0tM1

(W )
)
.
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Let W,W ′ ∈W , thus χ(W,∂W ) = χ(W ′, ∂W ′) and

T̃rM0tM1

(
logχM0tM1

(W )− logχM0tM1
(W ′)

)
= 0,

i.e. logχM0tM1
(W )− logχM0tM1

(W ′) = 0 in F−∞,Π(M0 tM1).

�

Corollary 2.5.7. The relative Euler characteristic is additive with respect to

composition of cobordisms, i.e. identity (0.4.4)

χ(X, ∂X) = χ(X1, ∂X1) + χ(X2, ∂X2).

Proposition 2.5.8. (2.5.2) is unoriented.

Proof. Since χ(W,∂W ) = χ(W−, ∂W−) and F−∞ is unoriented, then:

T̃rM0tM1

(
logχM0tM1

(W )
)

= T̃rM0tM1

(
logχM0tM1

(W ′)
)

Hence, we conclude as in the proof of Proposition 2.5.6.

�

Remark 2.5.9. By Corollary 1.4.42, (2.5.2) on Cob2 needs only to be de�ned

on D. In fact, as T̃r
(
logχS1 D

)
= χ(D,S1) = χ(D) = 1, for all other compact

surfaces we obtain:

T̃r
(
logχS1 Σ0

)
= χ(Σ0) · T̃r

(
logχS1 D

)
= χ(Σ0),

T̃r
(
logχS1tS1tS1 Σg

)
= χ(Σg) and T̃r

(
log⊔

k S
1 Σg,k

)
= χ(Σg)− k = χ(Σg,k),

i.e. the results are consistent.

Let us go back to the setting of Theorem 2.5.5. If Y0 = Y2 = ∅, we have that

X = X1 ∪Y1 X2 is closed and we do not have a boundary to associate boundary

conditions to. Then we extend the de�nition of (2.5.2) to this case by setting:

logχM1
(X) := πM1 ◦ κ]

(
C1 − C⊥2 )

)
∈ F−∞,Π(M1), where Ci := C+

Xi
.

Proposition 2.5.10. T̃rM1

(
logχM1

(X)
)

= χ(X).

Proof.

T̃rM1

(
logχY1

(X)
)

= T̃rM1

(
πM1 ◦ κ]

(
C1 − C⊥2

))
= TrM1

(
κ]
(
C1 − C⊥2

))
= TrY1

(
C1 − C⊥2

)
= ind

(
C⊥2 C1

) (2.3.1)
= ind(ð+

X) = χ(X).

�
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Remark 2.5.11. Since the dimension is even, then χ(X,Y ) = χ(X) and we

could have de�ned an equivalent LogTQFT through absolute boundary conditions.

Also, as R is independent of the metric gX (�0.4), χ(X,Y ) is independent of the

metric.



Part 2

Higher LogTQFTs



CHAPTER 3

Higher log-functors and cyclic homology

Let R be an associative ring. From Remark 1.4.17, the projection R → R
[R,R]

de�nes a functor Π : Ring → Ring
[Ring,Ring] ⊂ Ab. In fact, Π corresponds to the

functor from the category of rings into the category of abelian groups that associates

a ring to its �rst cyclic homology group.

Here we brie�y present cyclic homology and cohomology in order to extend the

concepts of tracial monoidal product representations, log-functors and logTQFTs.

3.1. Cyclic (co)homology and higher log-functors

Let R be a commutative ring and A be an (associative) R-algebra. We can

de�ne an action of the cyclic group Z/(n+ 1)Z on the (n+ 1)-fold tensor product

A⊗n+1 := A⊗ · · · ⊗ A.

in the following way. If tn : A⊗n+1 → A⊗n+1 is the generator of Z/(n+ 1)Z, then

on the generators of A⊗n+1

tn(a0 ⊗ · · · ⊗ an) = (−1)n(an ⊗ a0 ⊗ · · · ⊗ an−1).

Definition 3.1.1 (De�nition 2.1.4, [46]). The Hochschild boundary map is the

R-linear map bn : A⊗n+1 → A⊗n such that:

bn(a0 ⊗ a1 ⊗ · · · ⊗ an) :=

n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)n(ana0 ⊗ a1 ⊗ · · · ⊗ an−1).

If Cλn(A) := A⊗n+1

im(1−tn) , then bn restricts to C
λ
n(A) (Lemma 2.1.1, [46]) and (Cλ∗ (A), b)

is the so-called Connes' complex.

Definition 3.1.2 (�2.1, [46]). Cyclic homology is the homology of Connes'

complex1. We denote the nth cyclic homology group by HCn(A), and we set

HC∗(A) :=
⊕

n≥0HCn(A).

1There are several but equivalent de�nitions of cyclic homology. See Theorem 2.1.5, [46].

87
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Remark 3.1.3 (�2.1, [46]). If f : A → B is a morphism of R-algebras, then

f∗ : HCn(f) : HC∗(A)→ HC∗(B) is a morphism of R-modules. Therefore HCn is

a functor from R-Alg, the category of R-algebras, to R-Mod.

Example 3.1.4 (�2.1.12, [46]). For any ring R, R
[R,R]

∼= HC0(R). In particular,

if R is commutative, then R ∼= HC0(R).

Definition 3.1.5 (2.2.13, [46]). Let C
λ

n(A) be the quotient of Cλn(A) by

the sub-module generated by those a0 ⊗ · · · ⊗ an such that ai = 1 for some

i ∈ {0, 1, . . . , n}. Then (C
λ

∗(A), b) is a well-de�ned complex called reduced Connes'

complex ; its homology is called reduced cyclic homology and is denoted by HC∗(A).

Definition 3.1.6. A pretracial monoidal product representation of a sym-

metric monoidal category C, F : C∗ → RingAdd, is said to be higher pretracial

if in particular it is a monoidal product representation F : C∗ → R-Alg, i.e.

∀c ∈ obj(C), F (c) are R-algebras, η⊗yc are R-algebra homomorphisms and µσc are

R-algebra isomorphisms.

Example 3.1.7. The category of R-modules R-Mod is (pre)additive, which im-

plies by de�nition that its endomorphism sets are rings, with multiplication de�ned

as composition of endomorphisms. In fact, if x ∈ obj(R-Mod), then endR-Mod(x) is

an R-algebras and a pretracial monoidal product representation F : C→ RingAdd

with respect to A = R-Mod is a higher pretracial monoidal product representation.

Lemma 3.1.8. Let F : C∗ → R-Alg be a higher pretracial monoidal product

representation. Then by composition with the nth cyclic homology functor HCn

from Remark 3.1.3,

HCn ◦ F : C∗ → HCn(F (C∗)) ⊂ Ab.

is a monoidal product representation with insertion homomorphisms

η̃⊗yc := HCn(η⊗yc) : HCn(F (c))→ HCn(F (c⊗ y))

and (HCn(F (C∗)), η̃ky ) inherits the structure of a presimplicial set.

Proof. The proof of Lemma 1.4.20 is based on the fact that HC0 = Π is

a covariant functor. Therefore, the same argument works for the functors HCn,

n > 0.

�
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Higher traces of order n on an R-algebra A can be de�ned as homomorphisms

from HCn(A) to R, i.e. HTrace[n](A, R) := Hom(HCn(A), R). We can obtain

higher traces via cyclic cohomology in the following way.

First of all, let us consider the module Cnλ (A) of cyclic cochains, i.e. the sub-

module of Cn(A) := Hom(A⊗n+1, R) of linear functionals f ∈ Cn(A) such that

f(a0 ⊗ · · · ⊗ an) = (−1)nf(an ⊗ a0 ⊗ · · · ⊗ an−1).

Definition 3.1.9 (2.4.2, [46]). The homology of the complex (Cnλ (A), β), with

β : Cnλ (A)→ Cn+1
λ (A) de�ned as:

β(f)(a0 ⊗ · · · ⊗ an+1) :=

n∑
i=0

(−1)if(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)n+1f(an+1a0 ⊗ a1 ⊗ · · · ⊗ an),

is called cyclic cohomology and denoted by HC∗(A). If we restrict to those func-

tionals f ∈ Cnλ (A) such that f(a0⊗· · ·⊗an) = 0 if ai = 1 for some i ∈ {0, 1, . . . , n},

then we obtain a subcomplex (C
n

λ(A), β) whose homology HC
n
(A) is called reduced

cyclic cohomology (�8.3, [45]).

There is a Kroneker product pairing between cyclic homology and cohomology:

〈·, ·〉 : HCn(A)×HCn(A)→ R.

This pairing de�nes a map HCn(A) → Hom(HCn(A), R) = HTrace(A, R), which

can be an isomorphism, for example when R is a �eld (Remark 2.4.8, [46]).

Example 3.1.10 (�1.2.1, [75]). If A is a unital C-algebra, we can identify

HC0(A) = Hom(HC0(A,C)) = Trace(A,C).

Remark 3.1.11. If the unital R-algebra A is also Fréchet2 and locally convex,

then we can de�ne topological cyclic homology, by considering completed projective

tensor products (�8.6, [45]), and topological cyclic cohomology, by considering only

continuous linear functionals.

Example 3.1.12 (�8.7, [45]). C∗-algebras are Fréchet algebras. For example,

so are C(M), C∞(M), and C∞(M,E). These ones are also locally convex.

Therefore, we can generalize De�nition 1.4.21 to the following:

2An R-algebra is called Fréchet if it is a topological vector space for which the product is

continuous.
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Definition 3.1.13. A symmetric monoidal category C has a categorical higher

trace τ of order n ∈ N if there exist elements c ∈ obj(C) for which we have a

non-empty subclass endτC(c) ⊂ endC(c) and a map τc : endτC(c) → endC(1C) such

that it pushes down to a map τ̃c : HCn(endτC(c))→ endC(1C).

Example 3.1.14. By pairing with cyclic cohomology, R-Mod is a symmet-

ric monoidal category with categorical higher traces. For example, a higher trace

of order 1 τc : end(c) → end(R) = R is a group homomorphism that restricts

to τ̃c : HC1(end(c)) → R. In other words, it must be a R-linear morphism

whose restriction to ker b1 = {a ⊗ b ∈ Cλ1 (end(c)) | ab − ba = 0} vanishes on

imb2 = {ab⊗ c− a⊗ bc+ ca⊗ b | a⊗ b⊗ c ∈ Cλ2 (end(c))} ⊆ ker b1, i.e.:

τc(ab)⊗ τc(c)− τc(a)⊗ τc(bc) + τc(ca)⊗ τc(b) = 0 ∀a⊗ b⊗ c ∈ Cλ2 (end(c)).

Following De�nition 1.4.23, we have:

Definition 3.1.15. If in addition the background additive category A has a

higher F -compatible trace τ of order n, i.e. ∀c ∈ obj(C), the ring homomorphism

τc : Fc := endτA(ac)→ endA(1) satis�es:

τc⊗y ◦ η⊗yc = τc and τc⊗y ◦ µ⊗y = τc.(3.1.1)

then F : C∗ → R-Alg is called higher tracial monoidal product representation of C

of order n.

Remark 3.1.16. In analogy with Remark 1.4.24, from De�nition 3.1.13 we

have that the identities (3.1.1) push down to:

τ̃c⊗y ◦HCn(η⊗yc) = τ̃c and τ̃c⊗y ◦HCn(µ⊗y) = τ̃c.

Definition 3.1.17. Let (C,⊗) be a symmetric monoidal category. Recall that

HCn(F (C∗)) has a presimplicial set structure de�ned by the monoidal product rep-

resentation (Lemma 3.1.8), for F : C∗ → R-Alg a strict higher pretracial monoidal

product representation. Then a higher logarithmic functor of order n, or higher

log-functor of order n, is a pre-simplicial log-additive map

log[n] : (NC, dj , sj)→
(
HCn(F (C∗)), η̃j

)
,

and is said to de�ne a higher logarithmic representation of C. In other words, a

higher log-functor is a simplicial system on N1C of maps

log[n],x⊗y : mor(x, y)→ HCn(F (x⊗ y)), α 7→ log[n],x⊗y α, x, y ∈ obj(C) \ 1C
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such that if α ∈ mor(x, y) and β ∈ mor(y, z), then

log[n],x⊗y⊗z(α, β) = η̃y(log[n],x⊗z β ◦ α)

= η̃⊗z(log[n],x⊗y α) + η̃x⊗(log[n],y⊗z β) ∈ HCn(F (x⊗ y ⊗ z)).

Remark 3.1.18. Again, it is enough to specify the maps on N1C, i.e. to de�ne

log[n],x⊗y on mor(x, y) for each x, y ∈ obj(C). Moreover, from the de�nition one

has again all the other properties of logarithms, e.g. the logarithm of an idempotent

object is trivial.

Example 3.1.19. A log-functor is therefore a higher logarithmic functor of

order 0. An example of higher logarithm of order 1, i.e. a logarithm in HC1 can be

the following. Let Gl1(A) be the group of invertible elements of an algebra A and

let a ∈ Gl1(A). If we set log[1] a := a−1 ⊗ a, then b1(a−1 ⊗ a) = a−1a − aa−1 = 0

and

log[1] ab = b−1a−1 ⊗ ab

= b−1 ⊗ a−1ab− abb−1 ⊗ a−1 +

=ρ︷ ︸︸ ︷
b−1a−1 ⊗ ab− b−1 ⊗ a−1ab+ abb−1 ⊗ a−1

= b−1 ⊗ b− a⊗ a−1 + ρ = b−1 ⊗ b+ a−1 ⊗ a+ ρ

= log[1] a+ log[1] b+ ρ,

where ρ ∈ imb2 and a−1 ⊗ a = −a ⊗ a−1 in Cλ1 (Gl1(A)). Hence, in HC1(Gl1(A))

log[1] ab = log[1] a+ log[1] b.

Definition 3.1.20. Let F be a higher tracial monoidal product representation

of a symmetric monoidal category C, with τ a higher trace of order n. Then the

higher τ -character of the log-functor de�nes a higher log-determinant functor rep-

resentation of C of order n. For c ∈ obj(C), let τc push down to τ̃c on HCn(F (c))

(Remark 3.1.16). Then ∀ α ∈ morC(c, c′) the log-determinant functor representa-

tion is de�ned as τ̃(logα) := τ̃c⊗c′ ◦ log[n],c⊗c′ α ∈ endA(1).

Remark 3.1.21. With the obvious generalizations of Lemma 2.19 and Lemma

2.20, [72], we have once again that the log-determinant representation is indepen-

dent of the insertion maps (of any order):

τ̃c⊗c′(log[n],c⊗c′ α) = τ̃c⊗c′⊗y(log[n],c⊗c′⊗y α),(3.1.2)

and that a log-determinant is independent of where it is computed:

τ̃(log βα) = τ̃(logα) + τ̃(log β), α ∈ mor(c, c′), β ∈ mor(c′, c′′).
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Also, as in Remark 1.4.32, a higher log-functor can be extended to elements δ ∈

morC(1, 1). In fact, after choosing α ∈ morC(1, z) and β ∈ morC(z, 1) such that

δ = β ◦ α and z 6= 1, we can de�ne:

log[n],z δ := log[n],1⊗z⊗1 (α, β) ∈ HCn(F (1⊗ z ⊗ 1)).

Again, it depends on δ and z (not on α and β), and if a categorical trace τ is

de�ned, the corresponding log-determinant τ̃(logz δ) = τ̃(logα) + τ̃(log β) depends

only on δ.

Finally, we de�ne higher LogTQFTs. Non trivial higher LogTQFTs arise when

the cobordisms have extra structure de�ned on them, i.e. on speci�c subcategories

C ⊂ Cobn.

Definition 3.1.22. Let F : C∗ → R-Alg be an unoriented higher pretracial

monoidal product representation of a subcategory C ⊂ Cobm. Then

log[n] : NC→ HCn(F (C∗))(3.1.3)

is called higher logarithmic Topological Quantum Field Theory relative to F of

dimension m and order n, or higher LogTQFT.

(3.1.3) corresponds to a simplicial system

log[n],M1tM2
: morC(M1,M2)→ HC∗(F (M1 tM2))

and a logarithm logM1tM2
W is identi�ed as an element log∂W W ∈ HCn(F (∂W )),

since F (∂W ) ∼= F (M1 t M2). Also, for CM = M × [0, 1], then the proof of

η̃M logMtM CM = 0 ∈ FΠ(M tM tM) extends to HC∗(F (M tM tM)) in

a straightforward way.

Remark 3.1.23. In the following chapters, we will see examples of two higher

LogTQFTs, i.e. Logarithmic Fibred QFT (LogFQFT) and Logarithmic Homotopy

QFT (LogHQFT), respectively de�ned when C = FCobm(B), the category of

cobordisms �bred over a manifold B, or C = HCobm(B), the category of homotopy

classes of continuous maps into a path connected space B.

3.2. Universal log-functors

In addition to the canonical projection π : R→ R/[R,R], we also have the

projection onto the algebraic K-theory group K0(R), which corresponds to a func-

tor K0 : Ring → AbGrp. Since K0(R) has the universal property (De�nition
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3.2.2), there exists a unique abelian group homomorphism τ : K0(R)→ R
[R,R] called

Hattori-Stallings trace map (�2, Chapter II, [86], and �8.5.1, [46]) that factorizes

π, i.e. the diagram

Mr(R) K0(R)

R
[R,R]

π
τ

commutes, where Mr(R) is the associative ring of r× r-matrices with entries in the

ring R. Here, the horizontal map is the monoidal map in De�nition 3.2.2.

Example 3.2.1 (2.5.4, [86]). If R = C and n = 1, then π is the identity and

the Hattori-Stallings trace τ corresponds to the natural inclusion of K0(C) ∼= Z in

C.

Therefore, the idea is to de�ne LogTQFT at the level of K-theory, thus re�ning

the de�nition of higher LogTQFT. We begin with some standard de�nition about

algebraic K-theory.

3.2.1. Algebraic K-theory and log-funtors. The de�nitions and results of

this paragraph on algebraic K-theory are taken from Chapter II, [86]. We remark

that the contruction is algebraic and applies to rings, but we will restrict our work

to Banach algebras, and therefore the K-theory that will arise will be operator

K-theory.

Definition 3.2.2. LetM be an abelian monoid. The abelian group completion

of M is an abelian group, denoted M−1M , with a monoid map [·] : M → M−1M

with a universal property, i.e. if A is an abelian group and f : M → A a monoid

map, then there exists a unique group homomorphism f̃ : M−1M → A such that

f = f̃ ◦ [·].

Proposition 3.2.3. The group completion M−1M of an abelian monoid M

has the following characterizing properties:

i) M−1M = {[m]− [n] | m,n ∈M};

ii) [m] = [n] in M−1M if and only if m+ p = n+ p, for some p ∈M ;

iii) the monoid map (m,n) 7→ [m]− [n] is surjective;

iv) M−1M is the set-theoretic quotient ofM ×M by the equivalence relation

generated from (m,n) ∼ (m+ p, n+ p).
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Definition 3.2.4. Let P(R) denote the set of isomorphism classes of �nitely

generated projective (left) R-modules3. Then (P(R),⊕) is an abelian monoid with

identity 0R. Hence, the Grothendieck group of a ring R is the abelian group com-

pletion K0(R) := P(R)−1P(R). In particular, for r, s ∈ P(R), [r] + [s] := [r ⊕ s].

Remark 3.2.5. If R is commutative, then P(R) is a commutative semiring with

product ⊗R. Consequently, K0(R) is a commutative ring with multiplicative unit

1 = [R]. Hence, K0 is a functor from (semi)rings to rings, and from commutative

rings to commutative rings, and in particular K0 can be seen as a functor from

Ring to AbGrp (�8.2, [46]). In particular, for any �eld F we have K0(F) ∼= Z.

Example 3.2.6 (Grothendieck group of vector bundles). LetX be a topological

paracompact space. The space of isomorphism classes [E] of complex vector bundles

E over X is a commutative semiring and generates an abelian group K0(X) via

the relation [E] + [F ] ∼ [E ⊕ F ], ⊕ the Whitney sum. Then K0(X) is called

the Grothendieck group of vector bundles over X. Since the space of (continuous)

sections of a vector bundle E → X is a �nitely generated projective C(X)-module,

the Serre-Swan Theorem yields (�8.2.5, [46]):

K0(X) ∼= K0(C(X)).

Notice that K0 is covariant in C(X) and thus K0 is contravariant in X. In par-

ticular, if X is a smooth manifold, then the space of smooth sections of a vector

bundle is a �nitely generated projective C∞(X)-module and we have

K0(C(X)) = K0(C∞(X)).

As we will mention in �3.2.2, choosing C∞(X), i.e. a `smoothing' of the algebra

C(X), will allow the construction of another fundamental ingredient: the Chern

character.

From now on, let A be a unital R-algebra. Since HCn(A) is an abelian group,

we can consider the functor A → HC∗(A) as a universal trace (thus generalizing

the universal trace π : A → A
[A,A] ) and K0(A) can be seen as an `abelianization' of

A, since it can be considered as a functor Ring → AbGrp (Remark 3.2.5). With

the help of K0, we can re�ne the de�nition of higher log-functor to a `universal'

one.

3A �nite dimensional free module over R is a (left) R-module that is isomorphic to Rn

for some n ∈ N. A �nitely generated projective module over R is a direct summand of a �nite

dimensional free module, ([46]).
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Lemma 3.2.7. Let F : C∗ → RingAdd be a pretracial monoidal product rep-

resentation. Then by composition with K0 : Ring→ AbGrp,

K0 ◦ F : C∗ → K0(F (C∗)) ⊂ AbGrp

is a monoidal product representation with insertion homomorphisms

η̃⊗yc := K0(η⊗yc) : K0(F (c))→ K0(F (c⊗ y))

and (K0(F (C∗)), η̃ky ) inherits the structure of a presimplicial set.

Proof. The result follows once more by functoriality of K0.

�

Definition 3.2.8. Let (C,⊗) be a symmetric monoidal category and F : C∗ →

RingAdd a pretracial monoidal product representation. Recall that K0(F (C∗))

has a presimplicial set structure de�ned by the monoidal product representation

(Lemma 3.2.7). Then a universal logarithmic functor, or universal log-functor, is a

presimplicial log-additive map

u- log : (NC, dj , sj)→
(
K0(F (C∗)), η̃j

)
,

which is said to de�ne a logarithmic representation of C. In other words, a universal

log-functor is a simplicial system on N1C of maps

u- logx⊗y : mor(x, y)→ K0(F (x⊗ y)), α 7→ u- logx⊗y α, x, y ∈ obj(C) \ 1C

such that if α ∈ mor(x, y) and β ∈ mor(y, z), then (modulo torsion in general)

u- logx⊗y⊗z(α, β) = η̃y(u- logx⊗z β ◦ α)

= η̃⊗z(u- logx⊗y α) + η̃x⊗(u- logy⊗z β) ∈ K0(F (x⊗ y ⊗ z)).

If F (c) = A is an algebra, than the universal log-functor can yield a higher log-

functor when composed with a suitable Chern character K0(A)→ HC∗(A), which

in turns can be considered as a trace , i.e. an homomorphism on the abelianization

of A taking values into an abelian group.

3.2.2. Chern characters from the algebraic point of view. The Chern

character of a vector bundle on a manifold is a very well known object used to

compute K-theoretical invariants of manifolds via mapping them into de Rham

cohomology. However, its construction is way more general. Here, for the sake of

completeness, we recall the (non-commutative) formulation of the Chern character,

as a group homomorphism chn : K0 → HC2n, which can be found in �8, [46].
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An isomorphism class of �nitely generated projective R-modules can be asso-

ciated to an idempotent element e of the matrix algebra Mr(A). Let us de�ne

c(e) := (yn, zn, yn−1, zn−1, . . . , y1) ∈Mr(A)⊗2n+1 ⊕Mr(A)⊗2n ⊕ · · · ⊕Mr(A),

where yi := (−1)i (2i)!
i! e

⊗2i+1 and zi := (−1)i−1 (2i)!
2(i!)e

⊗2i.

Theorem 3.2.9 (8.3.2, 8.3.4, [46]). LetA be a unital R-algebra (not necessarily

commutative), with R a commutative ring. Let tr : Mr(A)⊗n → A⊗n be the

generalized trace map (�1.2.1, [46]). Then for any n ∈ N there are well-de�ned

maps, functorial in A:

chn : K0(A)→ HC2n(A), chn([e]) := tr(c(e)).

Hence, ch is a natural transformation K0 → HC∗ and a universal (higher)

trace, taking values in the abelian groups de�ned as cyclic homology of the algebra.

It vanishes on higher commutators (as much as the Hattori-Stallings trace vanishes

on simple commutators [r, s]).

Remark 3.2.10 (�8.2.6, [46]). This general de�nition reduces to the classical

Chern character à la Chern-Weil (i.e. de�ned via (super-)connections, �8.1.1, [46])

when A is commutative. In particular, if R = C and A = C∞(B), B smooth

manifold, i.e. in the case of �bre bundles, then K0(C∞(B)) ∼= K0(B) (Example

3.2.6), HC∗(C
∞(B)) ∼= H∗(B,C) (by de Rham Theorem) and ch is identi�ed with

the usual ring homomorphism K0(B)→ H∗(B,C).

Example 3.2.11 (8.3.6, [46]). For n = 0, ch0 : K0(A)→ A
[A,A] is just induced

by the trace of e. If in particular A is a �eld, then K0(A) ∼= Z and ch0 is isomorphic

to the inclusion Z ↪→ A. In fact, ch0 : K0(A)→ HC0(A) corresonds to the Hattori-

Stallings trace τ : K0(A)→ A
[A,A] (Proposition 8.5.3, [46]).

Remark 3.2.12. The Chern character is a natural transformation of the func-

torsK0 → HC∗. As such, it relates in a canonical way the insertion morphisms η̃j of

(K0(F (C∗)), η̃j) to the insertion morphisms ˜̃ηj of (HC∗(F (C∗)), ˜̃ηj), i.e. ch◦ η̃ = ˜̃η
and thus it is possible to obtain a higher LogTQFT from a universal LogTQFT in

a canonical way.

Remark 3.2.13 (�8.7, [45]). Sometimes, one must require additional struc-

ture for the algebra in order to have an interesting Chern character. In fact, the
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topological cyclic homology and cohomology of a C∗-algebra can be quite poor.

For instance, for a manifold M , HCn(C(M)) = HC0(C(M)) if n is even and

HCn(C(M)) = 0 when n is odd. Therefore, when dealing with a C∗-algebra A,

it is usually better to consider a smooth subalgebra B ⊂ A, i.e. a Fréchet lo-

cally convex dense subalgebra closed under holomorphic functional calculus, such

as C∞(M) ⊂ C(M), in order to have an interesting cyclic homology and thus an

interesting Chern character. This choice does not alter the K-theory involved, since

there exists a canonical isomorphism identifying K0(B) = K0(A).

3.2.3. Morita Equivalence.

Definition 3.2.14 (De�nition 1.2.5, [46]). Two unital R-algebras A and B are

called Morita equivalent if there is an A-B-bimodule P , an B-A-bimodule Q, an

isomorphism of A-bimodules u : P ⊗B Q ∼= A and an isomorphism of B-bimodules

v : Q⊗A P ∼= B.

Theorem 3.2.15 (2.2.9 & 2.4.6, [46]). Let A and B two Morita equivalent

unital or H-unital4 R-algebras. Then there exist canonical isomorphisms such that

HC∗(A) ∼= HC∗(B) and HC∗(A) ∼= HC∗(B).

Example 3.2.16. We have already seen that the tracial monoidal product

representation F−∞ : Cob∗2n → C-Alg, F−∞(M) = Ψ−∞(M,E) allows us to

de�ne a LogTQFT logM W := π∗(κ](C − P)) ∈ Π ◦ F−∞(M) with trace charac-

ter T̃r(logM W ) = ind(PC) ∈ Z. But we also have that [C − P] = ind(PC) ∈

Z = K0(C). In fact, Ψ−∞(M,E) is a C∗-algebra, and as such it is H-unital (see

for instance [87]). In particular, by Schwarz's Kernel Theorem, Ψ−∞(M,E) ∼=

C∞(M ×M,End(E)), and hence it is Morita equivalent5 to End(E) ∼= End(CN ),

which in turn is Morita equivalent to C. Therefore K0(F−∞(M)) ∼= K0(C) ∼= Z,

canonically, and we can de�ne a universal LogTQFT as l̃ogMW := [C − P], whose

log-character τ(l̃ogMW ) ∈ C is obtained via τ = ch0, the Hattori-Stallings trace.

Remark 3.2.17. Morita equivalence provides an alternative proof that:

HC0(Ψ−∞(M,E)) =
F−∞(M)

[F−∞(M), F−∞(M)]
∼= C

which is shown in Lemma 2.3, [72], via the unique (classical) trace Tr on smoothing

pseudodi�erential operators.

4Homologically unital. For a de�nition, see [87]. For example, all C∗-algebras are H-unital.

5See �1, [51].



CHAPTER 4

LogTQFT for families

In this chapter we extend the results of [72] on topological signature and

LogTQFT to the family signature and LogFQFT. The key point is represented

by the fact that EBVPs have a family counterpart, made of families of realizations,

which have a well de�ned index, now as a class in K0(B).

Boundary conditions are represented by spectral sections, among which we need,

for the family signature, symmetric ones ([42]), which will provide a homotopy

invariant index. They extend to families the concept of generalized APS condition

that we mentioned in Chapter 2.

4.1. Fibre bundles and their bordism groups

Let X ↪→ X π→ B denote a �bre bundle, i.e. a smooth surjective surjection1

onto a closed manifold B. We will call X the total space, B the base, and X the

�bre of the �bre bundle. When X is closed, the structure group of the �bre bundle

is Di�(X), the group of di�eomorphisms of the �bre X, while if Y := ∂X 6= ∅ then

the structure group of X ↪→ X → B is Di�(X,Y ), the group of di�eomorphisms of

X that leave the boundary Y invariant (�3, [13]).

We will be interested in families of cobordisms, i.e. �bred cobordisms, and

therefore we investigate the relationship between �bre bundles with closed �bre

and those whose �bre has a boundary.

Proposition 4.1.1. Let X ↪→ X π→ B be a �bre bundle and Y := ∂X 6= ∅.

Then there exists a �bre bundle Y ↪→ Y ρ→ B such that Y = ∂X and π|Y = ρ.

Proof. Consider the structure group Di�(X,Y ). Then, by composing with

the inclusion Y ↪→ X, we obtain well de�ned transition maps for Y , which in turns

de�ne the bundle Y ↪→ Y π→ B with the desired properties.

�

Remark 4.1.2. The converse of Propositions 4.1.1 needs not to be true and a

counterexample is provided at the beginning of [17]. In fact, if Y ↪→ Y π→ B is a

1Equivalently, we refer to De�nition 1.1, [8]
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�bre bundle and Y = ∂X, then it is not necessarily true that there exists a �bre

bundle with �bre X such that Y is its boundary. This is because Di�(Y ) needs not

to re�ne to those di�eomorphisms that extend to X and leave Y invariant.

Hence, it is not enough to assume that our �bre bundle has a bording �bre for

the total space Y to bord. Unfortunately, even when there exists a manifold X such

that ∂X = Y, it is not straightforward that X is a �bre bundle, at least on the same

base space. In fact, let S1 be the unit circle considered as a �bre bundle over itself,

the �bre being a point and the bundle map being the identity. Clearly, S1 bounds

the unit disc D, but D is not a �bre bundle over S1, as its Euler characteristic

does not vanish modulo 2 (see [17] for the use of the mod 2 Euler characteristic in

determining those manifolds that can be �bred over S1). Equivalently, there are

no continuous functions D → S1 that are the identity on S1 = ∂D.

Let Xi ↪→ Xi
πi→ B, i = 1, 2, be two �bre bundles over B. A �bre bundle

morphism is a smooth map ϕ : X1 → X2 such that π1 = π2 ◦ ϕ. Moreover, if ϕ is a

di�eomorphism, then it is called a �bre bundle isomorphism.

Remark 4.1.3 (Chapter 2, [33]). Since ϕ(π−1
1 (b)) ⊆ π−1

2 (b) ∀b ∈ B, then the

�bres are automatically preserved when ϕ is a �bre bundle isomorphism, i.e. ϕ

restricts to a di�eomorphism X1 → X2.

Definition 4.1.4. We denote by FDiff(B) the category of �bre bundles over

B as objects and �bre bundle isomorphisms as arrows. When endowed with dis-

joint union of De�nition 4.1.9, it becomes a symmetric monoidal category and a

subcategory of Diff({pt}) =: Diff , the category of manifolds and di�eomorphisms

between them. Let it be denoted FDiffn(B) when the total space has dimension

n. Again, FDiffn(B) is a symmetric monoidal category when considered together

with disjoint union.

Let X ↪→ X π→ B a �bre bundle with boundary bundle Y ↪→ Y π′→ B, and

let E := Eb be a smooth vector bundle over X = Xb, b ∈ B. For E′ := E|Y , let

Di�(X,E;E′) denote the subgroup of Di�(E) of di�eomorphisms mapping linearly

�bres into �bres and preserving E′. When Y = ∅, we denote it by Di�(X,E). Then

Di�(X,E;E′), respectively Di�(X,E), is a topological group and a subgroup of

Di�(E) ((1.1) in [5], and �3 in [13]).

Definition 4.1.5 (�2.1, [69]). A smooth family of vector bundles associated to

X ↪→ X π→ B is a �nite rank smooth vector bundle E ρ→ X . Hence, the composition

E π◦ρ→ B is a �bre bundle with �bre Eb := E|Xb and structure group Di�(X,E;E′).
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Example 4.1.6 (�2.1, [69]). Fundamental examples of smooth families of vector

bundles are the tangent and cotangent bundles of X ↪→ X π→ B, i.e. TX and T ∗X ,

respectively. In the sequel, we will consider the vertical tangent bundle, i.e. the

sub-bundle T (X/B) := TπX :=
⋃
b∈B TbX of TX . Likewise, we have the dual

vertical bundle T ∗(X/B) := T ∗πX :=
⋃
b∈B T

∗
bX of vertical di�erential 1-forms and

the pull-back bundles π∗TB and π∗T ∗B from the base.

Remark 4.1.7 (�2.1, [69]). If E ↪→ E → B is a family of vector bundles, then

there is an in�nite-dimensional smooth Fréchet bundle π∗(E) ↪→ π∗(E)→ B asso-

ciated to it, with �bre π∗(E) := π∗(Eb) = C∞(Xb, Eb), ∀b ∈ B. The space of

sections of π∗(E) is C∞(B, π∗(E)) and corresponds to C∞(X , E), a C∞(B)-module.

In practice, one works with the right hand side.

In general, we have the de Rham complex of smooth forms on B with values

in π∗(E), i.e. the graded algebra A(B, π∗(E)) =
⊕dimX

k=0 Ak(B, π∗(E)) where:

Ak(B, π∗(E)) := C∞(X , π∗Λk(B)⊗ E).

Remark 4.1.8. Let dπ : TX → TB be the di�erential of π. Then TπX = ker dπ

and it �ts in the short exact sequence:

0 −→ kerπ∗ −→ TX −→ π∗TB −→ 0,

where π∗TB is the pull-back bundle of TB → B. Then a connection corresponds

to a splitting of the sequence and therefore to a sub-bundle THX ∼= π∗TB which

complements TπX , i.e.

TX ∼= TπX ⊕ THX ∼= TπX ⊕ π∗TB.

From now on, X ↪→ X π→ B will also be denoted (X , π), if we do not need to

specify the �bre.

Definition 4.1.9. Let (X , π) and (W, ρ) be �bre bundles over B and �bres X

and W , respectively. Then we de�ne:

i) inverse orientation as the �bre bundle (X , π)− := (X−, π) with �bre X−;

ii) disjoint union as the �bre bundle (X , π) t (W, ρ) := (X tW, π t ρ) with

�bre X tW , where:

(π t ρ)|X = π and (π t ρ)|W = ρ.
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Remark 4.1.10 ([66]). (X , π), (X t∅, π) and (∅tX , π) are not identi�ed, but

naturally di�eomorphic via the di�eomorphisms:

l(X ,π) : (X t ∅, π)→ (X , π) and r(X ,π) : (∅ t X , π)→ (X , π).

Definition 4.1.11. Let Y ↪→ Y π→ B be a �bre bundle with Y closed. Then:

(Y, π) bords ⇐⇒ there exists (X , ρ) such that ∂X = Y and ρ|Y = π.

Hence (Yi, πi), i = 1, 2, are bordant if and only if (Y−1 t Y2, π1 t π2) bords. If

(Y−1 t Y2, π1 t π2) bords (X , ρ), then the latter is called �bred cobordism from

(Y1, π1) to (Y2, π2).

Then one can show as for the single manifold case that:

Proposition 4.1.12. Bordism of �bre bundles is an equivalence relation.

In the spirit of [16], [Y, π] will denote the bordism class of a �bre bundle (Y, π),

in the sense of De�nition 4.1.11. Then

Ωn(B) := {[Y, π] | (Y, π) has closed n-dimensional �ber}

is an abelian group, the addition being [Y1, π1] + [Y2, π2] := [Y1 t Y2, π1 t π2]. We

will call it �bred n-bordism group of B. Finally, Ω∗(B) =
⊕

n Ωn(B) is a graded

module over the Thom ring, with product:

[Y, π][Z] := [Y × Z, ρ],(4.1.1)

where [Z] ∈ Ω∗ and Y × Z
ρ→ B is the �bre bundle with η(y, z) = π(y) ∀y ∈ Y,

∀z ∈ Z and �bre Y × Z. If orientation is neglected, then we obtain Nn(B), the

group of equivalence classes [Y, π]2 of unoriented �bre bundles (Y, π) (the 2 clarly

stands for the coe�cient ring Z2), and the graded N∗-module N∗(B) =
⊕

nNn(B).

We remark that the di�erence between our case and [16] lies in the re�nement to

�bre bundles.

4.2. Families of logTQFTs

We can de�ne composition of �bred cobordisms by �brewise gluing. To this

purpose, we need a `�bred' version of the Smooth Collaring Theorem:

Proposition 4.2.1 (Proposition 4.1, [13]). Let Y ↪→ Y → B be the boundary

of X ↪→ X → B and U be a sub-bundle of X with the open set U ⊂ X as �bre

and structure group Di�(U, Y ), U being the closure of U . Then there exists a �bre
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bundle isomorphism Φ : [0, 1)× Y → U which restricts to a collar neighbourhood

of the boundary on each �bre.

From De�nition 4.1.4, we have the symmetric monoidal category of �bre bun-

dles over B and �bre bundles isomorphisms FDiff(B) =
⋃
n FDiffn(B). We as-

sume from now on oriented �bres and �brewise orientation preserving di�eomor-

phisms. As we said, we can glue �bre bundles together into a new �bre bundle

whose smooth structure depends on the choice of smooth collar. Hence, gluing is

associative modulo �bre bundle isomorphism, as for the `single' cobordism case.

Definition 4.2.2. Fibre bundles with (n − 1)-dimensional closed �bre and

�bred cobordisms between them de�ne the category (enriched over categories)

FCobn(B) of cobordims �bred over B with �bre dimension n. Together with

disjoint union, it is a symmetric monoidal category whose objects are �bre bundles

over B with (n−1)-dimensional closed �bre and whose morphisms are (compositions

of) �bred cobordisms over B and oriented �bre bundle isomorphisms.

Remark 4.2.3. Once gluing is de�ned, FCobn(B) is de�ned as in [80] for

the Riemannian (co)bordism category (the latter is more complicated because the

Riemannian structure is prescribed before hand and two �bered manifolds can

be glued only if their metrics coincide in a collar neighborhood of the common

boundary). In fact, it arises as a category internal to the 2-category of symmetric

monoidal categories, as Cobn. Since we do not aim at a precise description of

such categories, we simply refer to [80] for the de�nition of categories internal

to the category of strict symmetric monoidal categories and for the commuting

diagrams they satisfy. Equivalently, FCobn(B) can be obtained by the construction

described in [66] for HCobn(B), the category of homotopy cobordisms (which will

be described brie�y in Chapter 5), which is still based on the concept of categories

enriched over categories.

In a similar fashion, we can consider the category of vector bundles over B,

where the �bers are vector spaces over a �eld F, and vector bundles morphisms

between them VectF(B) (as De�nition 2.47, [80], where the vector bundles are

also topological). Then, reading o� De�nition 2.48 of [80] in our setting, we have:

Definition 4.2.4. A Fibered Topological Quantum Field Theory (FQFT) of

dimension m over B is a symmetric monoidal functor:

Z : FCobm(B)→ VectF(B).
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Since FCobm(B) ⊆ FCobm({pt}) = Cobm, it can also be used to de�ne a

special kind of higher LogTQFT:

Definition 4.2.5. A family of LogTQFTs of dimension m, or LogFQFT, is a

higher log-functor over FCobm(B), i.e.:

log : NFCobm(B)→ HC∗(F (FCobn(B)∗)).

4.3. Families of Dirac operators and boundary value problems

As in �0.2, let Ψm(X;E,F ) denote the space of classical pseudodi�erential

operatorsA : C∞(X,E)→ C∞(X,F ) of orderm and let CSm(X;E,F ) be the space

of classical symbols. Let σ : Ψm(X;E,F )→ CSm(X;E,F ) be the symbol map.

Proposition 4.3.1 (�1, [5]). For E ,F two smooth vector bundles over X , with

�bres E and F , respectively, there is a well de�ned smooth family of vector bundles

Ψm(X ; E ,F) → B with �bre Ψm(X;E,F ) := Ψm(Xb;Eb, Fb) and structure group

Di�(E,F ;X), the subgroup of Di�(E ⊕F ;X) of di�eomorphisms mapping E to E

and F to F .

Also, since σ is invariant under the action of Di�(E,F ;X), there is a symbol

bundle CSm(X;E,F ) ↪→ CSm(X ; E ,F) → B, with structure group Di�(E,F ;X).

Thus, in every local trivialization a continuous section of CSm(X ; E ,F) is a family

of symbols in CSm(X;E,F ), which is called a vertical symbol, since its cotangent

variable belongs to the cotangent bundle along the �bres T ∗(X/B).

Definition 4.3.2 (�1, [5]). A smooth family of ψdos of order m associated to

a �bre bundle X is a smooth section T ∈ C∞(B,Ψm(X ; E ,F)). Concretely (see

[69]), it consists of a classical ψdo T : C∞(X , E)→ C∞(X ,F) with Schwarz kernel

κT ∈ D′(X ×π X ,F � E∗), such that in any local trivialization κT is an oscillatory

integral whose symbol is a vertical symbol. T will also be called vertical ψdo, and

we will write

Ψm
vert(X ; E ,F) = C∞(B,Ψm(X ; E ,F))

for the algebra of vertical ψdos. T may sometimes be denoted2 by T = (Tb)b∈B . If

Tb is elliptic ∀b ∈ B, then T is called elliptic.

Example 4.3.3 ([5]). When X = B ×X, E = B ×E and F = B × F , then T

is just a continuous map B → Ψm(X;E,F ). All continuous families are locally of

this form.

2In fact, in a local trivialization T is identi�ed with Tb : C∞(Xb, Eb)→ C∞(Xb, Fb).
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If Y := ∂X 6= ∅, i.e. X ↪→ X → B has a boundary Y ↪→ Y → B, then

T ∈ Ψm
vert(X ; E ,F) is de�ned as T := r+T̃ e+, where:

• X̃ ↪→ X̃ π̃→ B is a �bre bundle with closed �bre such that X ⊂ X̃ and

π̃|X = π;

• Ẽ , F̃ → B are smooth families of vector bundles such that E = Ẽ|X and

F = F̃|X ;

• r+ : C∞(X̃ , F̃)→ C∞(X ,F) and e+ : C∞(X \ Y, E)→ C∞(X̃ , Ẽ);

• T̃ ∈ Ψm
vert(X̃ ; Ẽ , F̃);

• T satis�es transmission conditions at the boundary �bre bundle (see

Chapter 0 and [69] for more on this).

Remark 4.3.4 (�1, [62]). Following Remark 4.1.7, there is complex of smooth

forms on B with values in Ψm(X ; E ,F),

A(B,Ψm(X ; E ,F)),

i.e. the algebra of vertical classical pseudodi�erential operators with di�erential

form coe�cients. If Q ∈ A(B,Ψm(X ; E ,F)), then its form degree zero component

Q[0] ∈ A0(B,Ψm(X ; E ,F)) is a vertical ψdo; in fact,

A0(B, π∗(E)) = C∞(X , π∗Λ0(B)⊗ E) = C∞(X , E) = C∞(B, π∗(E)).

Thence, A0(B,Ψm(X ; E ,F)) = Ψm
vert(X ; E ,F) and Q ∈ Ψm

vert(X ; E ,F) if and only

if Q = Q[0].

Definition 4.3.5 (De�nition 1, [62]). Q ∈ A(B,Ψm(M, E)) is elliptic, resp.

admissible3, resp. invertible, if Q[0],b is elliptic, resp. admissible, resp. invertible,

∀b ∈ B.

If T ∈ Ψm
vert(X ; E ,F) is elliptic and ∂X = ∅, then each σTb is invertible outside

the zero section and hence each Tb is Fredholm. Hence, by Proposition 2.2 of [5],

there exist k sections w1, . . . , wk ∈ C∞(X ,F) such that the map

T̂ : C∞(X , E)⊕ Ck → C∞(X ,F), T̂b(u, λ1, . . . , λk) := Tb(u) +

k∑
i=1

λiwi(b),

is surjective ∀b ∈ B. This implies that the vector spaces ker(T̂b) then form a vector

bundle ker(T̂ ) over B and that the element [ker(T̂ )]− [B × Ck] ∈ K0(B) does not

depend on the choice of the sections wi. This yields the following:

3That is, there exists a spectral cut θ for the operator, i.e. its spectrum is not dense.
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Definition 4.3.6 ((2.3), [5]). The index of the elliptic family T is de�ned as:

ind(T ) := [ker T̃ ]− [B × Ck] ∈ K0(B).

If in addition dim ker(Tb) is locally constant, then the families (ker(Tb))b∈B and

(coker(Tb))b∈B form the vector bundles ker(T ) and coker(T ) over B and the index

of T can be de�ned as ind(T ) = [ker(T )]− [coker(T )] ∈ K0(B).

Remark 4.3.7 (�2, [5]). indT ∈ K0(B) is a homotopy invariant and depends

only on the homotopy class of σT .

Example 4.3.8 (�4, [3]). Let DSign := {ðSignb }b∈B be a smooth family of signa-

ture operators, i.e. ðSignb : Ω+(Xb)→ Ω−(Xb) (where clearly the splitting is induced

by the family of Hodge operators). If ∂X = ∅, then ker(ðSignb ) has constant dimen-

sion and ind(DSign) = [ker(DSign)] − [coker(DSign)] ∈ K0(B). By Atiyah-Singer

Family Index Theorem, its Chern character is

ch(ind(D)) =

∫
X/B

L(TπX ) ∈ H∗(B),

where the map
∫
X/B : H∗(X ) → H∗−n(B) is the integration along the �ber (or

Gysin map, De�nition 1.5.10, [75] - see Proposition 6.14.1, [11] for the de�nition

on cohomology). Here, n = dimX.

Analogously, we obtain a smooth family of signature operators when ∂X 6= ∅,

but in order to have a well-de�ned virtual index bundle, one has to impose suitable

boundary conditions. Hopefully, the technology of Chapter 2 generalizes to the case

of �bre bundles in a natural way.

Let us consider X π→ B with oriented even-dimensional �bre X and boundary

Y ↪→ Y π′→ B. We consider a Riemannian metric gX/B on T (X/B), thus inducing

a metric gY/B on T (Y/B), such that it is of product form on a collar �bration

U → B (which exists by Proposition 4.2.1), i.e. g
X/B
|U = dt2 + gY/B . Let E → X be

a family of Cli�ord bundles with metric gE and unitary connection ∇E such that

gE|U and ∇E|U are both independent of t, the normal coordinate. In this way, we

obtain a family D = (ðb)b∈B ∈ Ψ1
vert(X , E) of Dirac operators.

The �brewise restriction de�nes a global trace map γ : C∞(X , E)→ C∞(Y, E ′)

corresponding to the restriction γ : C∞(B, π∗(E)) → C∞(B, π∗(E ′)). Hence, by

product structure, E|U = γ∗E ′ and C∞(U , E|U ) = C∞([0, 1)) ⊗ C∞(Y, E ′), for U a

�bred neighbourhood of the boundary bundle Y. There, a family of Dirac operators
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D decomposes as

D|U = Υ (∂t + DY) ,(4.3.1)

where DY ∈ Ψ1
vert(Y, E ′) is a family of Dirac operators associated to the boundary

�bration, and Υ ∈ C∞(Y,End(E ′)) is a bundle isomorphism given by the �brewise

Cli�ord product by the inward unit normal to Y .

Let D̃ : C∞(X̃ , Ẽ) → C∞(X̃ , Ẽ) be an invertible family such that D̃|X = D .

Then we can de�ne a vertical Poisson operator K : C∞(Y, E ′) → C∞(X , E) and

a vertical Calderón projector C := γK ∈ Ψ0
vert(Y, E ′) in the expected way. In

fact, ker D = {s ∈ C∞(X , E)| Ds = 0 in X \ Y} and ranC = γ ker D , the space

of vertical Cauchy data, are well de�ned smooth bundles (Proposition 2.1, [70]).

Also, by �brewise Unique Continuation, γ : ker D
∼=→ ranC is an isomorphism, with

the vertical Poisson operator K as a left inverse.

Unfortunately, (Π≥0,b)b∈B de�nes a smooth family if and only if dim ker(DY)b

is constant over B. Therefore, boundary conditions for families requires the more

general notion of spectral section.

Definition 4.3.9 (De�nition 2.1, [19]). A spectral section P of DY is a smooth

family (Pb)b∈B ∈ Ψ0
vert(Y, E ′) of self-adjoint pseudodi�erential projections of degree

zero such that Pb is a �nite rank perturbation of Πb := Π≥,b for each b ∈ B. In

particular, all spectral section have the same principal symbol.

A generalized spectral section4 P of DY is a smooth family (Pb)b∈B ∈ Ψ0
vert(Y, E ′)

of self-adjoint pseudodi�erential projections such that its principal symbol is the

same as that of a spectral section of of DY .

Remark 4.3.10. The family of Calderón projectors C de�ned above is a gen-

eralized spectral section of DY (as pointed out in [19]), but is a classical spectral

section if Πb − Cb is a �nite rank perturbation, e.g. when the �bre X is compact

and has a product structure near the boundary.

Theorem 4.3.11 ([19]). Let Pi ∈ Ψ0
vert(Y, E ′), i = 1, 2, 3, be generalized

spectral sections of DY . Then P2P1 := (P2,bP1,b : ran(P1,b) → ran(P2,b))b∈B is

Fredholm, ind(P2P1) = [P1 −P2] ∈ K0(B), and

[P1 −P2] + [P2 −P3] = [P1 −P3].

4It is called Grassmannian section in [70].
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Remark 4.3.12 ([70]). Since ranPi = C∞(B,Wi), where Wi → B has �bre

Wb = ranPb, P2P1 can be seen as an operator C∞(B,W1)→ C∞(B,W2).

Theorem 4.3.13 (Proposition 1, [52]). Let T ∈ Ψm
vert(Y, E ′) a family of elliptic

operators over B. Then there exist spectral sections for T if and only if ind(T ) = 0.

Remark 4.3.14 (�1, [19]). DY in (4.3.1) is elliptic and ind(DY) = 0 by cobor-

dism invariance, thus there exist spectral sections for DY

Definition 4.3.15 (�3.2, [69]). A smooth family of well-posed boundary con-

ditions is a smooth perturbation of the family of Calderón projectors:

P = C + S ∈ Ψ0
vert(Y, E ′), S ∈ Ψ−∞vert(Y, E ′).

Let DP denote the smooth family of well posed boundary problems. As for

the classical case, the existence of the Poisson operator reduces the construction of

a vertical parametrix for DP to the construction of a parametrix for the operator

PC on boundary sections. Therefore:

Theorem 4.3.16. Let D be a family of Dirac operators associated to the family

of Cli�ord bundles E → X over B. Let Y = ∂X and P ∈ Ψ0
vert(Y, E ′) be a family

of well-posed boundary conditions. Then:

i) there exists a well-de�ned virtual bundle IndexDP ∈ K0(B) such that

IndexDP = Index(PC ) (Theorem 2.14, [19]);

ii) if P1,P2 ∈ Ψ0
vert(Y, E ′) are two well-posed boundary conditions (Theo-

rem 2.13, [19]):

ind(D1,P1)− ind(D1,P2) = [P2 −P1].(4.3.2)

Let Xi ↪→ Xi
πi→ B be two even-dimensional �bre bundles with common

boundary �bre bundle Y ↪→ Y → B. After choosing a collar neighbourhoods

Ui ↪→ Ui
ρ→ B in Xi for Y, we can glue them into a �bre bundle X ↪→ X ρ→ B with

closed �bre X := X1∪Y X2. As in the single operator case, if Di is a family of com-

patible Dirac operators associated to Xi, we obtain a Dirac operator D associated

to X .

Theorem 4.3.17 (Theorem 2.10, [19]). Let Ci := C +
i be the family of Calderón

projectors for Di, i = 1, 2. Then indD = ind(C⊥2 C1) = [C1−C⊥2 ]. As a consequence

(Theorem 1.1, [19]), for P1,P2 two families of generalized spectral sections for Y

as boundary of X1,

indD = indD1,P1 + indD2,P⊥2
+ [P1 −P2] ∈ K0(B).
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Remark 4.3.18. As for the classical case, (4.3.2) shows that in general the

index is not an invariant, as it depends on the spectral section. But like in the

classical case, one can use a speci�c subclass of boundary conditions (if such class

exists) in order to remove the dependance on the boundary projection. In fact,

as we needed generalised APS boundary conditions in order to split the the index

of the signature operator, now we need to use what has been de�ned in [42] as

symmetric spectral section. It corresponds to an additional assumption which the

signature operator hopefully satis�es. As for classical signature, special kind of

spectral sections are needed for gluing.

Let now Xi ↪→ Xi
πi→ B have boundary �brations Y −i−1 t Yi ↪→ Y

−
i−1 t Yi → B,

i = 1, 2. When glued along the common boundary Y1 ↪→ Yi → B, the resulting

�bre bundle X ↪→ X → B, X = X1 ∪X2 has a non-empty boundary �bre bundle

Y0 t Y2 ↪→ Y0 t Y2 → B. By Lemma 2.4.12, we can consider diagonal vertical

Calderón operators and spectral sections P = {Pb}b∈B of the form:

P = P⊥
0,0 ⊕P1,1 =

 P⊥
0,0 0

0 P1,1

 .

Proposition 4.3.19 (Additivity of the index class). In general:

indDP = indD1,P1 + indD2,P2 + [P1,1 − P̃1,1] ∈ K0(B).(4.3.3)

Proof.

indDP = [C −P] = [C⊥0,0 ⊕ C2,2 −P⊥
0,0 ⊕P2,2]

= [(C⊥0,0 −P⊥
0,0)⊕ (C2,2 −P2,2)] = −[C0,0 −P0,0] + [C2,2 −P2,2].

Analogously:

indD1,P1
= −[C0,0 −P0,0] + [C1,1 −P1,1], indD2,P2

= −[C1,1 − P̃1,1] + [C2,2 −P2,2].

Hence,

ind(D1,P1) + ind(D2,P2)− ind(D ,P) = [C1,1 −P1,1]− [C1,1 − P̃1,1]

= [C1,1 −P1,1] + [P̃1,1 − C1,1]

= [P̃1,1 −P1,1] = ind(P1,1P̃1,1).

�
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4.4. The signature of a �bre bundle as a LogFQFT

Let us consider the strict functor F−∞vert : FCobn(B)∗ → C-Alg de�ned as:

F−∞vert (Y) := Ψ−∞vert(Y, E),

where E → Y is a family of vector bundles. As in Example 1.4.38, we can de-

�ne as insertion maps the algebra morphisms ηtZY : F−∞vert (Y) ↪→ F−∞vert (Y t Z)

for Z ∈ Obj(FCobn(B)) as ηtZY(T ) = j∗Z ◦ T ◦ i∗Z , where jZ : Y t Z → Y

is the projection and iZ : Y ↪→ Y t Z the inclusion. Consider the morphisms

η̃tZY := K0(ηtZY) : K0(F−∞vert (Y))→ K0(F−∞vert (Y t Z)) induced by K0 by functo-

riality. Then, by Lemma 3.2.7, F−∞vert is a non-injective higher pretracial monoidal

product representation and (K0(F−∞vert (FCobn(B)∗)), η̃kt·) is a presimplicial set.

Lemma 4.4.1. Ψ−∞vert(Y, E) and C∞(B) are Morita equivalent.

Proof. This generalizes the fact that Ψ−∞(Y,E) and C∞({point}) = C are

Morita equivalent (Example 3.2.16). In fact, Ψ−∞vert(Y, E) isH-unital and, by Schwarz's

Kernel Theorem, is naturally identi�ed with C∞(Y ×Y, E �E∗), which is a smooth

family of complex matrices parametrized by B. Hence, C∞(Y×Y, E�E∗) is Morita

equivalent to End(C∞(B)N ), which is Morita equivalent to C∞(B).

�

Corollary 4.4.2. K0(F−∞vert (Y)) ∼= K0(C∞(B)) ∼= K0(F−∞vert (YtZ)) by canon-

ical isomorphisms. In particular, K0(F−∞vert (Y)) ∼= K0(B) and η̃kt are isomorphisms.

Moreover, a �bre bundle isomorphism φ : Y → Z induces a canonical con-

tinuous isomorphism of algebras φ] : F−∞vert (Y) → F−∞vert (Z) and pushes-down to a

canonical linear isomorphism φ̃] : K0(F−∞vert (Y)) → K0(F−∞vert (Z)), hence indepen-

dent of the initial φ.

Proof. If φ is a �bre bundle isomorphism, it induces a bundle isomorphism

and continuous linear pull-back isomorphism between the corresponding spaces of

sections, which provides an isomorphism φ] : F−∞vert (Y)→ F−∞vert (Z). The rest follows

by Lemma 4.4.1.

�

Remark 4.4.3. F−∞vert is unoriented. In fact, as Ψ−∞(M,E) is unoriented (see

Lemma 1.4.39), so is F−∞vert (Y). It is also tracial with the Chern character as a trace.

Consider a representative X → B, with 2m-dimensional �bre X, of a �bred

cobordism class in morFCobn(B)(M0,M1). As usual, we consider a �bred collar
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near its boundary Y ↪→ Y → B ∈ obj(FCobn(B)), with vertical product structure,

i.e. for the vertical metric gT (X/B). Recall that after choosing a connection we can

decompose TX ∼= T (X/B)⊕ THX (Remark 4.1.8); this yields the decomposition

Λ(X ) := Λ(T ∗X ) ∼= Λπ(X )⊗ π∗Λ(B), where Λπ(X ) := Λ(T ∗(X/B)).

Let E → X be a smooth family of vector bundles which is �at along the �bres.

By Remark 4.1.7, the smooth sections of Λπ(X )⊗ E → X correspond to the smooth

sections of W := π∗(Λπ(X )⊗ E)→ B, i.e.

Ωvert(X , E) := C∞(X ,Λπ(X )⊗ E) = C∞(B,W).

Recall that the �bre of W → B is Ω(X,E). Then Ωvert(X , E) is a subspace of

the total space of smooth forms Ω(X , E) := C∞(X ,Λ(X ) ⊗ E), corresponding to

sections that vanish under interior multiplication with horizontal vectors (�3, [9]).

Let dX := (db)b∈B be the associated smooth family of exterior derivatives.

Since we assume a vertical Riemannian metric, we obtain a smooth family of Hodge

operators ∗M := (∗b)b∈B and an associated family of coderivatives δX := (δ)b∈B in

the obvious way (see �3, [9], for a detailed description), thus obtaining the family

of Dirac operators D := (db + δb)b∈B ∈ Ψ1
vert(X ,Λπ(X )⊗ E) acting on the vertical

smooth di�erential forms.

Definition 4.4.4. The operator DSign, de�ned as the restriction of the fam-

ily D to Λ+
π (X ) ⊗ E of the Z2-grading induced by the �brewise Hodge operator,

Λπ(X ) = Λ+
π (X )⊕ Λ−π (X ), is called (twisted) family signature operator.

Let us consider the restriction DSign
Y , which is a twisted (odd) family signature

over the boundary. By cobordism invariance, indDSign
Y = 0 and we have a non-

empty grassmannian of spectral sections (Remark 4.3.14).

Let (DSign
Y )2 := (∆sign

Yb
)b∈B be the (twisted) family of signature Laplacians.

Since we assumed that the �bre X is 2m-dimensional, the boundary Y = ∂X has

dimension 2m− 1.

Proposition 4.4.5 (Propositions 1.2 & 1.3, [42]). If ker(∆sign
m,Yb

), i.e. the space

of harmonic forms in degree m, has constant dimension with respect to b ∈ B, then

there exist spectral sections, called symmetric5, such that for any two such sections

P,Q ∈ Ψ0
vert(Y,Λπ(Y)⊗ E ′),

[P −Q] = 0 in K0(B)⊗Q.

5For a detailed exposition and explanation of the name, see [42].
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Clearly, if K0(B) is torsion-free, then [P −Q] = 0 in K0(B).

Remark 4.4.6 ([43]). Symmetric spectral sections generalize the idea of gen-

eralized APS projections (which are subordinated to a Lagrangian subspace for the

signature operator on the boundary), which allowed an additivity formula. Im-

portantly, they provide a homotopy invariant index and Chern character, and the

homotopy invariance of the scalar signatures that may arise from them, such as the

signature of the total space of a �bre bundle (see Remark 4.4.12). This is related

to higher (Novikov) signatures, and therefore we will say more in the next Chapter.

The results there will be in fact analogous to the family case.

Let C := C + ∈ Ψ0
vert(Y,Λ+

π (Y)⊗ E ′) denote the family of Calderón projectors

associated to the family signature operator and P a symmetric spectral section.

We de�ne a universal LogTQFT:

u- logSign : NFCobn(B)→ K0(F−∞vert (FCob∗n(B)))⊗Q

by setting u- logSignM0tM1
: mor(M0,M1)→ K0(F−∞vert (M0 tM1))⊗Q as

u- logSignM0tM1
X := φ̃],M0tM1 ([C −P]) ∈ K0(F−∞vert (M0 tM1))⊗Q,(4.4.1)

with φ̃],M0tM1
the canonical isomorphism K0(F−∞vert (∂X )) ∼= K0(F−∞vert (M0tM1)).

Theorem 4.4.7. (4.4.1) de�nes a universal LogTQFT, i.e. with respect to

gluing along a common boundary, in K0(F−∞vert (M0 tM1 tM2))⊗Q we have:

η̃M1u- logSignM0tM2
X = η̃M2u- logSignM0tM1

X1 + η̃M0u- logSignM1tM2
X2.

Proof. The η̃Mi
are isomorphisms into K0(F−∞vert (M0tM1tM2)) ∼= K0(B),

where we have:

[C −P] = [C1 −P1] + [C2 −P2] ∈ K0(B)⊗Q.

from (4.3.3) and Proposition 4.4.5.

�

Remark 4.4.8. If X is closed, Y codimension 1 closed sub-bundle such that

Y ∼=M, then by Theorem 4.3.17:

u- logSignM X := φ̃],M([C1 − C⊥2 ]) ∈ K0(F−∞vert (M)).

Since F−∞vert (M) is equivalent to the commutative C∗-algebra C∞(M), the

Chern character of �3.2.2 corresponds to the classical ch∗ : K0(B) → H2∗(B),

de�ned via a superconnection (Remark 3.2.10).



4.4. THE SIGNATURE OF A FIBRE BUNDLE AS A LOGFQFT 112

Definition 4.4.9 (De�nition 1.37, [8], and �1.3, [70]). A superconnection on

W adapted to P ∈ A0(B,End(W)) is an odd-parity �rst order di�erential operator

A on the graded complex A(B,W) such that A(ω ∧ s) = dω ∧ s+ (−1)|ω|ω ∧ A(s)

for ω ∈ Ω(B) and s ∈ A(B,W), and with A[0] = P, where A[i] is the component

of A which raises form degree by i. The curvature of A is the even-parity element

A2 of A(B,End(W)).

Theorem 4.4.10 (Theorem 1.4, [70]). Let D ∈ Ψ1
vert(X , E) be elliptic and

P ∈ Ψ0
vert(Y, E ′) be a spectral section. Then:

ch(indDP) = ch([C −P]) =

dimB∑
k=0

1

k!
TrY/B

(
RkC −RkP

)
∈ H2∗(B),

where RP :=
(
P · ∇W ·P

)2 ∈ A2(B,Ψ0(Y, E ′)) is the curvature of the sub-bundle

ran(P).

Remark 4.4.11. The theorem uses canonically de�ned superconnections AC

and AP . In particular, R0
P = P and

ch(indDP)[0] = TrY/B (C −P) ∈ H0(B)

is constant over B and corresponds to the pointwise index ind(Cb −Pb) ∈ Z, which

is σ(X), the signature of the �bre.

Remark 4.4.12. Therefore, the signature of a �bre bundle X → B can arise

as a log-determinant of the higher LogTQFT ch(u- logSignM X ) ∈ H2∗(B). In fact,

let L(B) ∈ H∗(B) denotes the Hirzebruch L-class of B and consider the Poincaré

dual of ch(u- logSignM X ), i.e. ch(u- logSignM X )∩ [B] ∈ H∗(B), where [B] ∈ HdimB(B)

is the fundamental class of B. Then, by Kronecker pairing:

〈L(B), ch(u- logSignM X ) ∩ [B]〉 = 〈ch(u- logSignM X ) ∧ L(B), [B]〉

= 〈L(TπX ) ∧ π∗L(B), [X ]〉 = σ(X ).

It is a oriented homotopy invariant of the �bre bundle X , as so is the right-hand

side of (4.4.1), by results in [43] (Remark 4.4.6).

Remark 4.4.13. These approach can be used for the family de Rham operator

with relative boundary conditions, thus generalizing the result of Chapter 2. How-

ever, the cohomology bundle is �at, hence all classes of ch(indDdR
R ) vanish, except

for that of order zero, which corresponds to the Euler characteristic of the �bre.



CHAPTER 5

Other Higher LogTQFT

As for �bre bundles, one can de�ne a log-functor for singular manifolds, i.e.

continuous maps M → B from a manifold M to a path connected space B. In

particular, we will consider the case that M → B is a Galois covering. This moves

the problem to the setting of non-commutative geometry and our attempt here is

to see higher Novikov signatures as log-characters of a higher LogTQFT.

5.1. Galois Γ-coverings and LogHQFTs

Definition 5.1.1. Let M be a manifold. A covering M̃ →M is called Galois

(or regular or normal) if there exists a discrete and �nitely presented group Γ acting

freely and transitively on the �bres. In particular, it is a principal Γ-bundle.

Example 5.1.2. The universal cover is a Galois covering, where Γ = π1(M).

Remark 5.1.3. By the Classifying Theorem for Principal Bundles (Appendix

B, [40]), isomorphism classes of Galois covering are bijectively associated to homo-

topy classes of classifying maps r : M → BΓ, i.e. continuous maps with values in

the classifying space1 of Γ, which is uniquely de�ned modulo homotopy. Therefore,

we will identify Galois coverings with the pair (M, r), which is the notation for a

singular manifold2 ([16]).

Definition 5.1.4 (De�nition 5.1, [45]). Let (M, r) and (M ′, s) be closed ori-

ented Γ-coverings. They are oriented homotopy equivalent if there exists a oriented

homotopy equivalence h : M → M ′ such that s ◦ h ' r, i.e. s ◦ h and r are

homotopic.

Definition 5.1.5 (De�nition 5.2, [45]). Let ∂M, ∂M ′ 6= ∅ and such that

there exist orientation preserving di�eomorphisms φ, ψ : ∂M → ∂M ′. Then two

1A classifying space for a group Γ is a connected topological space BΓ together with a

principal Γ-bundle EΓ → BΓ such tha for any compact Hausdor� space X there is a bijective

correspondence between the equivalence classes of principal Γ-bundles over X and the homotopy

classes of maps X → BΓ (De�nition B.I, [40]).

2Or a BΓ-manifold, as they are called in [66].
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Γ-coverings r : M ∪φM ′ → BΓ and s : M ∪ψM ′ → BΓ are said to be cut-and-paste

equivalent if r|M ' s|M and r|M ′ ' s|M ′ .

The above de�nition can be extended to M ∪φM ′ when ∂(M ∪φM ′) 6= ∅ for

homotopies relative to the boundary.

Remark 5.1.6. Clearly two closed oriented Galois Γ-coverings (M, r) and

(M ′, s) are di�eomorphic if there exists an orientation preserving di�eomorphism

ψ : M → M ′ such that r = s ◦ ψ. In particular, a di�eomorphism must �x the

boundaries, i.e. ψ|∂M : ∂M
∼=→ ∂M ′. Moreover, we can de�ne the disjoint union

of Γ-coverings (over manifolds with or without boundary) and the covering with

inverse orientation as in De�nition 4.1.9. Finally, (M, r), (M t ∅, r) and (∅ tM, r)

are naturally di�eomorphic (Remark 4.1.10).

Definition 5.1.7. An oriented Galois Γ-covering (M, r) bords (or is a bound-

ary) if there exist an oriented manifoldW such thatM
ψ∼= ∂W , and a homotopy class

of continuous maps R : W → BΓ relative to the boundary such that R|∂W ◦ψ = r.

Therefore, two oriented Galois Γ-coverings (M1, r1) and (M2, r2) are bordant if and

only if (M−1 tM2, r1 t r2) bords (W,R), which is called BΓ-cobordism, following

[66].

Let Diff(BΓ) be the category of oriented Galois Γ-coverings and di�eomor-

phisms between them. When endowed with disjoint union of De�nition 4.1.9, it

becomes a symmetric monoidal category and a subcategory of Diff .

Definition 5.1.8. Consider two BΓ-cobordisms (W,F ) : (M1, f1) → (M2, f2)

and (W ′, F ′) : (M ′2, f
′
2) → (M3, f3) with di�eomorphic boundary components

(M2, f2)
ψ∼= (M ′2, f

′
2). Then their composition is the BΓ-cobordism (W ∪ψ W ′, G)

such that:

G(w) := F · F ′(w) :=

F (w) if w ∈W

F ′(w) if w ∈W ′.

If (M,f) is a closed oriented Galois Γ-covering, then the identity for the composition

is the BΓ-cobordism:

([0, 1]×M, 1f ) : (M,f)→ (M,f) with 1f (t,m) = f(m).

Definition 5.1.9 (�1, [66]). (n − 1)-dimensional oriented Galois Γ-coverings

and BΓ-cobordisms de�ne the category (enriched over categories) HCobn(BΓ) of
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homotopy n-cobordism over BΓ. Together with disjoint union, it is a symmetric

monoidal category whose objects are oriented Galois Γ-coveringof dimension n− 1,

and whose morphisms are (compositions of) BΓ-cobordisms and oriented Galois

Γ-covering di�eomorphisms.

For a precise construction of HCobn(X), X a path connected space, we re-

fer to the Appendix of [66]. We remark that it is constructed as a category en-

riched over categories (as FCobn(X)), out of the category Diff(X). In particular,

HCobn(X) ⊆ Cobn. Thus, once we choose a good monoidal product representa-

tion F , we can de�ne a higher log-functor. In particular:

Definition 5.1.10. A log-functor log : NHCobm(X)→ HCn (F (HCob∗m(X)))

is called Logarithmic Homotopy Quantum Field Theory (LogHQFT) of dimension

m and order n.

As for TQFTs, LogHQFTs can de�ne HQFTs, at least in a weak sense.

Lemma 5.1.11. Let F : HCob∗m(X) → RingAdd be a pretracial monoidal

product representation and log : NHCobm(X) → (HCn (F (HCob∗n(X))) , τ) an

associated LogHQFT. If ε : end(1A)→ R is an exponential map into a commutative

ring, then there exists a symmetric monoidal functor Zlog,τ,ε : HCobn(X)→ R-Mod,

i.e. a HQFT de�ned as:

Zlog,τ,ε(M,f) = R Z(ψ) = R∗ Zlog,τ,ε(W,F ) = ε(τ(log(W,F ))).

Proof. This follows directly from the de�nition and the log-additivity, as for

Lemma 1.4.37.

�

5.2. Dirac operators associated to Galois coverings

Definition 5.2.1 (�7.1, [45]). Let B(`2(Γ)) be the algebra of bounded opera-

tors of `2(Γ) and let CΓ be the group ring of Γ. Then its completion in B(`2(Γ)) is

a unital C∗-algebra called reduced group C∗-algebra C∗rΓ.

For M closed, let (M, r) be a Galois covering and ð : C∞(M,E)→ C∞(M,E)

be the Dirac operator associated to a Cli�ord module E → M , with unitary con-

nection ∇E . Since r : M → BΓ corresponds to a Γ-covering M̃
ρ→ M (Remark

5.1.3), ð can be lifted to a Γ-invariant operator ð̃ : C∞(M̃, Ẽ)→ C∞(M̃, Ẽ), with

Ẽ := ρ∗E a Γ-equivariant bundle. Moreover, since Γ acts on the right on C∗rΓ by
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translation and on the left on M̃ by deck transformation, we have an associated

bundle of �nitely generated projective C∗rΓ-modules (check):

V := C∗rΓ×Γ M̃ →M, with �bre C∗rΓ.

Let us consider smooth sections s ∈ C∞(M,E⊗V). Therefore, if h(·, ·) denotes

the Hermitian metric on E, there is a C∗rΓ-valued inner product, which is de�ned

on an open neighbourhood U by:

〈s1, s2〉 :=

∫
U

h(s1, s2) ∈ C∗rΓ, s1, s2 ∈ C∞(U, (E ⊗ V)|U ).

Hence C∞(M,E⊗V) is a left C∗rΓ-module, and with such inner product it becomes

a pre-Hilbert C∗rΓ-module:

Definition 5.2.2 (15.1.1 & 15.1.5, [85]). Let B be a C∗ algebra. A pre-

Hilbert B-module is a right B-moduleH with a compatible C-vector space structure,

together with a B-inner product H×H → B, i.e a sesquilinear positive de�ne form

that respects the module action. A Hilbert B-module is a pre-Hilbert module that

is complete with respect to the norm ‖x‖ :=
√
‖〈x, x〉‖.

The Hilbert module completion of C∞(M,E ⊗V) is denoted L2
C∗rΓ(M,E ⊗V).

Remark 5.2.3 (�7.3, [45]). As C∗rΓ × M̃ → M̃ has trivial �at connection,

V →M has a (non-trivial) �at connection ∇V . Hence E ⊗ V →M has connection

∇E ⊗ I + I ⊗∇V . This de�nes a C∗rΓ-linear Dirac operator ((7.1) in [45]):

D(M,r) : C∞(M,E ⊗ V)→ C∞(M,E ⊗ V).

Remark 5.2.4 (�7.3, [45]). Since C∞(M,E ⊗ V) can also be completed into

Sobolev C∗rΓ-modules Hs
C∗rΓ(M,E ⊗ V), D(M,r) extends to a bounded C∗rΓ-linear

operator:

D(M,r) : H1
C∗rΓ(M,E ⊗ V)→ L2

C∗rΓ(M,E ⊗ V).

In particular, if E is Z2-graded:

D(M,r) =

 0 D−(M,r)

D+
(M,r) 0

 ,

with D±(M,r) : C∞(M,E± ⊗ V)→ C∞(M,E∓ ⊗ V) C∗rΓ-linear.

Example 5.2.5. The signature operator ðSign : Ω+(M) → Ω−(M) de�nes a

twisted signature operator DSign
(M,r) on the twisted signature bundle Λ+(M)⊗V →M .
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For E,F vector bundles overM , set E := E⊗V and F := F ⊗V. Then there is

a well-developed Mishchenko-Fomenko pseudodi�erential calculus, [54]. The alge-

bra of ψdodi�erential C∗rΓ-linear opertors Ψ∗C∗rΓ(M ; E ,F) contains the subalgebra

of elliptic C∗rΓ-linear di�erential opertors, which we denote Di�∗C∗rΓ(M ; E ,F), fol-

lowing [45]. Hence, Dsign
(M,r) belongs to Di�1

C∗rΓ(M ; Λ(M)+ ⊗ V,Λ(M)− ⊗ V). In

particular, there exist parametrices for the operators in Di�∗C∗rΓ(M ; E ,F).

Finally, in this case as well there are decomposition formulae:

C∞(M, E) = I+ ⊕ I⊥+ and C∞(M,F) = I− + D(M,r)(I⊥+ ),

with I± �nitely generated projective C∗rΓ-modules. Note that the second decom-

position is not necessarily orthogonal, but D(M,r) induces an isomorphisms between

I⊥+ and D(M,r)(I⊥+ ).

Definition 5.2.6. The index class of D(M,r) à la Mishchenko-Fomenko is:

ind(D(M,r)) = [I+]− [I−] ∈ K0(C∗rΓ).

Remark 5.2.7. Let P+ be the orthogonal projection onto I+ and P− be the

projection onto I− along D(M,r)(I⊥+ ). Then P± are smoothing pseudodi�erential

operators of the Mishchenko-Fomenko pseudodi�erential calculus and hence de�ne

a smoothing perturbation R = −P−D(M,r)P+ of D(M,r).

Therefore, since ker(D(M,r)) and coker(D(M,r)) are not necessarily �nitely gen-

erated projective modules,

ind(D(M,r)) = [ker(D(M,r) +R)]− [coker(D(M,r) +R)] ∈ K0(C∗rΓ),

independently of the perturbation R.

Let now (M, r) be 2m-dimensional with non-empty boundary ∂M and a prod-

uct type close to it. As for the closed case, given a Cli�ord bundle we can de�ne a

twisted Dirac operator D(M,r). Let D(∂M,r∂) : C∞(∂M, E ′)→ C∞(M, E ′) be the as-

sociated boundary Dirac operator, where r∂ := r|∂M and E ′ := E|∂M , corresponding

to the boundary operator for ð.

As for the family case, boundary conditions are realized via spectral sections,

which can be de�ned since we can use functional calculus in this context as well.

Let A be a unital C∗-algebra and H a full Hilbert A-module. Let B(H) be the

algebra of bounded A-linear adjointable operators on H and K(H) the ideal of such

operators that are also compact. If D is a densely de�ned unbounded self-adjoint
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A-linear regular operator on H, then continuous functional calculus on D is well

de�ned: for any f ∈ C(R,C) such that ∃ limt→∞ f(t) <∞, f(D) is in B(H).

Definition 5.2.8 (De�nition 2.1, [41]). A spectral section forD is a self-adjoint

projection P ∈ B(H) such that there exist smooth spectral cuts3 χ1, χ2 such that

χ2(t) = 1 for t ∈ supp(χ1) and:

imχ1(D) ⊂ imP ⊂ imχ2(D).

A criterion for the existence of a spectral cut is the vanishing of the index.

Theorem 5.2.9 (Theorem 2.2 and Proposition 2.8, [41]). There exists one

spectral section P for D, and hence in�nitely many, if and only if ind(D) = 0 in

K1(A).

Remark 5.2.10. D(∂M,r∂) is a densely de�ned unbounded self-adjoint C∗rΓ-

linear regular operator on L2
C∗rΓ(∂M, E ′) (Proposition 2.3, [41]). Moreover, Cobor-

dism Invariance holds also in the context of Galois coverings and thus we have:

ind(D(∂M,r∂)) = 0 ∈ K1(C∗rΓ).

Hence, there always exist spectral sections P ∈ Ψ0
C∗rΓ(∂M ; E ′, E ′) for D(∂M,r∂)

(Theorem 2.7 (1), [41]).

Theorem 5.2.11 ([45]; 7.6, [41]). Let D(M,r) a twisted Dirac operator associ-

ated to a Galois covering (M, r) with non-empty boundary. Let P ∈ Ψ0
C∗rΓ(∂M ; E ′, E ′)

be a spectral section for the boundary Dirac operator D(∂M,r∂). Then D(M,r) with

domain C∞(M, E ; P) := {s ∈ C∞(M, E)| Ps|∂M = 0} has a well de�ned index

ind(D(M,r),P) ∈ K0(C∗rΓ), depending only on P.

The classical index formulas hold also in this context.

Theorem 5.2.12 (Theorem 6, [44]). Let P,Q ∈ Ψ0
C∗rΓ(∂M ; E ′, E ′) be spectral

section for D(∂M,r∂). Then:

ind(D(M,r),P)− ind(D(M,r),Q) = [Q−P] ∈ K0(C∗rΓ).(5.2.1)

Theorem 5.2.13 (Theorem 8 & 9, [44]). If (M, r) is a Galois covering split

into two Galois coverings with boundary (Mi, ri), where ri = r|Mi
for i = 1, 2, by a

1-codimensional manifold N , then:

ind(D(M,r)) = ind(D(M1,r1),P) + ind(D(M2,r2),Q
⊥) + [P −Q].

3A smooth spectral cut is a function χ ∈ C∞(R, [0, 1]) such that for some real s1 < s2,

χ(t) = 0 if t ≤ s1 and χ(t) = 1 if t ≥ s2 (�2, [41]).
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Corollary 5.2.14. Let (Mi, ri), i = 1, 2, be Galois Γ-coverings such that

∂Mi = Yi−1 t Yi and let (M = M1 ∪Y1
M2, R), R = r1 · r2, be their composition.

We consider the following spectral sections for M , M1, and M2, respectively:

P =

 P0,0 0

0 P2,2

 , P1 =

 P0,0 0

0 P1,1

 , P2 =

 I −Q1,1 0

0 P2,2

 .

Then:

ind(D(M,R),P) = ind(D(M1,r1),P1) + ind(D(M2,r2),P2) + [P1,1 −Q1,1].

Remark 5.2.15. In the classical or family case, the proof can be based on the

fact that the index of the realization via a spectral section coincides with the K-

theory class of the di�erence between Calderón operator and the spectral section

itself. As a matter of fact, a Calderón projector C exists also for these elliptic value

problems over C∗-algebras, and is obtained essentially from the classical proof (see

[10]) by methods allowed for Hilber modules over a C∗-agebra B (see [1]). However

it is still only conjectured that:

ind(D(M,r),P) = [C −P]

On the other hand, given a spectral section P, there is a well-de�ned Grassman-

nian GP := {Q spectral section | Q−P compact}, whose connected components

are in bijective correspondance with the classes in K0(B) via the map Q → [P−Q]

(See [30]). Then, by (5.2.1) there exist a spectral section P̃ ∈ GP corresponding to

the class ind(D(M,r),P), i.e. [P − P̃] = −ind(D(M,r),P) ∈ K0(B), which yields:

ind(D(M,r), P̃) = ind(D(M,r),P) + [P − P̃] = 0.

Therefore, ind(D(M,r), P̃) can be expressed as a class depending only on the spec-

tral sections, and in particular, the index depends on the boundary and the quasi-

additivity of Corollary 5.2.14 follows.

5.2.1. Smoothing of the algebra. From Remark 3.2.13, we know that in

order to have interesting topological cyclic homology (and Chern character), we

should consider a smooth subalgebra B ⊂ C∗rΓ. Such an algebra exists and can be

de�ned as follow:

Definition 5.2.16 (�8.8, [45]). The Connes-Moscovici algebra is smooth and

de�ned as the subalgebra:

B := {T ∈ C∗rΓ | ∀k ∈ N, δk(T ) ∈ B(`2(γ))}
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where δ(T ) = [D,T ], D being the unbounded operator on `2(Γ) de�ned for the

standard orthonormal basis (eγ)γ∈Γ of `2(Γ) as Deγ = ‖γ‖eγ . Here, ‖ · ‖ is a word

metric on Γ.

Remark 5.2.17 (�8.8, [45]). Then there exists an isomorphism identifying

K∗(B) with K∗(C
∗
rΓ) and the image of ind(D(M,r)) ∈ K∗(C∗rΓ) in K∗(B) is said to

be the smoothing of the index class. In practice, we can achieve such smoothing

directly, i.e. by replacing C∗rΓ by the smoothing subalgebra B in the construction

above. Set V∞ := B ×Γ M̃ and E∞ := E ⊗ V∞ for a Hermitian Cli�ord module

E →M . Then we analogously de�ne B-linear Dirac operator:

D∞(M,r) : C∞(M,E ⊗ V∞)→ C∞(M,F ⊗ V∞),(5.2.2)

that we still denote D(M,r). Then it is possible to de�ne a pseudodi�erential calculus

as in �5.2, with C∗rΓ replaced by B.

When restricting to a smooth subalgebra, some extra care has to be used for

the spectral sections, since it is not at all obvious that a spectral section could be

chosen in Ψ0
B(∂M, E ′). However, this is possible for the following class of groups.

Definition 5.2.18 (�8.11, [45]). Γ is called virtually nilpotent if it contains a

nilpotent subgroup of �nite index. Then Γ is of polynomial growth with respect to

a (and thus any) word metric and the smooth subalgebra in this case corresponds

to {f : Γ→ C | supγ∈Γ (1 + ‖γ‖)n |f(γ)|,∀n ∈ N}.

Theorem 5.2.19 (Theorem 2.7, [41]). Let Γ be virtually nilpotent. Then a

spectral section P ∈ Ψ0
C∗rΓ(∂M, E ′) can be chosen in Ψ0

B(∂M, E ′).

In particular, the spectral section can be chosen to be symmetric if the assump-

tion is satis�ed. As a consequence, there is a well de�ned index class ind(D(M,r),P) ∈

K0(B) ∼= K0(C∗rΓ) (Theorem 7.6, [41]).

5.3. Novikov's higher signatures as characters of a LogHQFT

Definition 5.3.1 (�8.11, [45]). Let Γ be �nitely generated. We say that Γ has

the extension property if there exists a smooth subalgebra B ⊂ C∗rΓ such that every

[c] ∈ H∗(BΓ,C) de�nes a cyclic cocycle ϕc ∈ HC∗(CΓ) which also extends to a

continuous cyclic cocycle in HC∗(B).

Remark 5.3.2. Virtually nilpotent groups have the extension property. We

have already seen that they are important for having well-de�ned spectral sections

in Ψ0
B, hence we will consider Γ to be virtually nilpotent from now on.
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Let Γ be a virtually nilpotent group and B the smooth subalgebra of C∗rΓ. We

consider the strict functor F−∞Γ : HCobn(BΓ)∗ → C-Alg de�ned as:

F−∞Γ (M, r) := Ψ−∞B (M,Λ(M)⊗ B) ∀(M, r) ∈ obj(HCobn(BΓ)).

As in �4.4, we can de�ne as insertion maps the algebra morphisms η(N,s)(M, r) :

F−∞Γ ((M, r)) ↪→ F−∞Γ ((M, r) t (N, s)) as:

η(N,s)(M, r)(A ) = j∗(N,s) ◦A ◦ i∗(N,s), A ∈ F−∞Γ ((M, r)),

where j(N,s) : (M, r)t (N, s)→ (M, r) and i(N,s) : (M, r) ↪→ (M, r)t (N, s) are the

projection and the inclusion, respectively. If η̃(N,s) := K0(η(N,s)), then by Lemma

3.2.7 we have once again that F−∞Γ is a a non-injective higher pretracial monoidal

product representation and (K0(F−∞Γ (HCobn(B)∗)), η̃kt·) is a presimplicial set.

Clearly, F−∞Γ (M, r) is unoriented (as F−∞(M) and F−∞vert (M)).

Lemma 5.3.3. Ψ−∞B (M,E ⊗ B) and B are Morita equivalent.

Proof. This is analogous to Example 3.2.16 and Lemma 4.4.1. In fact, by

Schwarz Kernel Theorem, Ψ−∞B (M,E ⊗ B) is locally given by smooth functions in

the matrix algebra Mk(B).

�

Corollary 5.3.4. K0(F−∞Γ ((M, r)) ∼= K0(B) ∼= K0(F−∞Γ ((M, r) t (N, s))).

In particular, η̃kt are isomorphisms.

Moreover, a di�eomorphism φ : (M, r) → (N, s) induces a canonical contin-

uous isomorphism of algebras φ] : F−∞Γ (M, r) → F−∞Γ (N, s) and pushes-down

to a canonical linear isomorphism φ̃] : K0(F−∞Γ (M, r)) → K0(F−∞Γ (N, s)), hence

independent of the initial φ.

Proof. This follows because isomorphic algebras are in particular Morita

equivalent.

�

Consider (M, r) of dimension 2m and the twisted signature operator DSign
(M,r)

associated to it. In order to obtain homotopy invariant index and Chern classes,

we need symmetric spectral section for DSign
(∂M,r|∂M ), like in the family case. Their

existance, in this case, requires the following assumption (Assumption (H2), [42]):

Definition 5.3.5 (Middle-degree assumption). Let dimM = 2m. If d is the

de Rham di�erential on ∂̃M , endowed with a Γ-invariant metric, then we assume
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that dd∗ + d∗d acting on L2(∂̃M,Λm(∂̃M))/ ker(d) has a gap at zero, i.e.

spec(dd∗ + d∗d) ∩ (−δ, δ) = {0}.

Remark 5.3.6. The middle degree assumption is analogous to the condition

that ker(∆sign
m,Yb

) has constant dimension with respect to b ∈ B (Proposition 4.4.5).

Proposition 5.3.7 (Proposition 4.4, [42]). Let us assume De�nition 5.3.5.

Then there exist symmetric spectral sections, such that for any two such sections

P,Q ∈ Ψ0
C∗rΓ(∂M, E ′),

[P −Q] = 0 in K0(C∗rΓ)⊗ C.

Let P be a symmetric spectral section and de�ne the following universal

LogTQFT:

u- logSign : NHCobn(BΓ)→ K0(F−∞Γ (HCobn(BΓ)∗))⊗ C

by setting as a map on 1-simplices:

u- logSign(M0,r0)t(M1,r1) : mor((M0, r0), (M1, r1))→ K0(F−∞Γ ((M0, r0) t (M1, r1)))⊗ C

u- logSign(M0,r0)t(M1,r1)(W,F ) := φ̃],(M0,r0)t(M1,r1)

(
ind(D(W,F ),P)

)
,(5.3.1)

with φ̃],(M0,r0)t(M1,r1) : K0(F−∞Γ (∂W))⊗ C→ K0(F−∞Γ ((M0, r0) t (M1, r1)))⊗ C

the canonical isomorphism.

Theorem 5.3.8. With respect to gluing, we have :

η̃(M1,r1)u- logSign(M0,r0)t(M2,r2)(W,F ) =

= η̃(M2,r2)u- logSign(M0,r0)t(M1,r1)(W1, F1) + η̃(M0,r0)u- logSign(M1,r1)t(M2,r2)(W2, F2)

inK0(F−∞Γ ((M0, r0)t(M1, r1)t(M2, r2)))⊗C. Therefore (5.3.1) de�nes a universal

LogTQFT.

Proof. The η̃(Mi,ri) are isomorphisms into

K0(F−∞Γ ((M0, r0) t (M1, r1) t (M2, r2)))⊗ C ∼= K0(B)⊗ C,

where Corollary 5.2.14 holds.

�
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Corollary 5.3.9. By composition with ch∗ : K0(B) → HC2∗(B) we obtain

the following LogHQFT:

logSign : NHCobn(BΓ)→ HC2∗(F
−∞
Γ (HCobn(BΓ)∗))

logSign(M0,r0)t(M1,r1)(W,F ) := ch∗
(
ind(D(W,F ),P)

)
.

Remark 5.3.10. ch∗(ind(D(M,r),P)) actually belongs to Ĥ∗(B) (Theorem 6.3,

[42]), the noncommutative topological de Rham homology of B. However, this is

contained in the cyclic homology of B. We refer to the paragraphs �8.4 � �8.7 of

[45] for the de�nition of noncommutative topological de Rham homology and its

relationship with cyclic homology.

For [c] ∈ H∗(Γ,C), let ϕc ∈ HC∗(B) be its associated cyclic cocycle. From �3.1

we know that a higher trace τ c : HC∗(B)→ C can be de�ned by Kronecker pairing

with ϕc.

Proposition 5.3.11. The right-hand side of (5.3.1) depends only on the ori-

ented homotopy class (W,F ). Also, it has log-character:

τ c(M0tM1,s1ts2)

(
logSign(M0tM1,s1ts2)(W, r)

)
= Sign(W, r; c),

where Sign(W, r; c) is a Novikov's higher signature. Log-additivity clearly yields

additivity of Novikov's higher signatures.

Proof. By de�nition of higher trace:

τ c(M0tM1,s1ts2)

(
logSign(M0tM1,s1ts2)(W, r)

)
= 〈ch(ind(DSign,P)), ϕc〉 =: Sign(W, r; c),

(5.3.2)

which is the de�nition of the Novikov signature associated to c.

The �rst statement is a consequence of the fact that Novikov signatures are

homotopy invariants when Γ is nilpotent and the middle-degree assumption (De�-

nition 5.3.5) holds.

�

Indeed, (5.3.2) is the de�nition of higher signatures for a manifold with bound-

ary. The closed case is very similar:

Definition 5.3.12 (�5.2, [45]). The Novikov's higher signature of (M, r) ∈

obj(HCobn(BΓ)) associated to [c] ∈ H∗(BΓ,R) is:

sign(M, r; [c]) :=

∫
M

[L(M)] ∧ r∗[c] = 〈L(M) ∪ r∗[c], [M ]〉.
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Remark 5.3.13. If dimM = 4k and [c] = 1 we obtain

sign(M, r; 1) := 〈L(M), [M ]〉 :=

∫
M

L(M) = σ(M) ∈ Z,(5.3.3)

i.e. the topological signature of M .

Thus, if c = 1, then τ1
(M0tM1,s1ts2)

(
logSign(M0tM1,s1ts2)(W, r)

)
= 〈ch(ind(DSign,P)), ϕ1〉 =:

Sign(W, r; 1) = σ(W ).



Part 3

Logarithms and torsion invariants



CHAPTER 6

Torsion invariants

In this chapter we will study an exotic torsion invariant of manifolds, which

we de�ned via the residue trace. It is similar in nature to the analytic torsion and

as such is a generalized log-determinant that can be represented in the functorial

framework of LogTQFTs.

We start with a survey of Reidemeister and analytic torsion, since their con-

struction will highlight the steps that led us to de�ne exotic torsions. We will

represent the analytic torsion as a trace-character of a torsion logarithm and will

be able to de�ne a residue torsion by composition with the residue trace. We

will generalize our results to �bre bundles (with closed �bre), and manifolds with

boundary and relative/absolute boundary conditions.

Along the way, we will study a topological invariant called secondary Euler

characteristic, that arises from the de�nition of residue torsion.

6.1. Reidemeister Torsion

6.1.1. The Torsion of a Matrix. The de�nitions and results in this section

are taken from [15], unless otherwise stated.

Let GLn(R) be the nth general linear group with coe�cients in a ring R with

unit 1R and, for i 6= j, let Eni,j be the n × n matrix with coe�cient eij = 1R and

0R elsewhere.

Definition 6.1.1. Let In be the n × n identity matrix and c ∈ R. Then

matrices of the form In + cEni,j , for some n ∈ N, are called elementary.

Remark 6.1.2. Let E(R) be the subgroup of GL(R) = lim−→GLn(R) gener-

ated by the elementary matrices. Then E(R) E GL(R) (i.e. is normal) and it

coincides with the commutator subgroup GL(R)′ = [GL(R), GL(R)] (de�ned in

Lemma 1.2.5).

Remark 6.1.3. Let us consider the quotient group GL(R)/E(R), which is

de�ned by similarity, i.e.

`A ∼ B if and only if there exist E1, E2 ∈ E(R) such that A = E1BE2'.

126
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Then, for every normal subgroup E(R) E H E GL(R), the quotient GL(R)/H is

abelian.

For R∗ the subring of units, let G ≤ R∗, i.e. a subgroup, and c ∈ G. We

consider the diagonal matrices of the form In + (c − 1R)Eni,i with 1 ≤ i ≤ n, i.e.

diagonal matrices with 1R entries everywhere but in the (i, i)-position, which is c.

Let EG(R) ≤ GL(R) be the subgroup generated by such matrices and E(R).

Definition 6.1.4. If τG : GL(R) → KG(R) denotes the canonical projection

onto the quotient KG(R) := GL(R)/EG(R), then the torsion of the matrix A is

the class τG(A).

Example 6.1.5 (�2, [53]). If G = {1}, K1(R) := GL(R)/E(R) is called White-

head group of R, while K1(R) := KG(R) for G = {−1, 1} is called reduced White-

head group of R.

If we assume R commutative, then we can represent the torsion in terms of

the determinant det : GL(R) → R∗ as follows. Recall that the determinant is a

surjective homomorphism with kernel SL(R) := {A ∈ GL(R)| det(A) = 1}.

Proposition 6.1.6. LetR be commutative, G ≤ R∗, and SKG(R) := τG(SL(R)).

Then there is a short exact sequence:

0 −→ SKG(R) −→ KG(R)
d̃et−→ R∗/G −→ 0

which is split s : R∗/G→ KG(R), where s(rG) = τG(r).

Corollary 6.1.7. If R is a �eld, then d̃et : KG(R)→ R∗/G is an isomorphism

and the torsion τG : GL(R)→ KG(R) can be identi�ed with the matrix determinant

modulo G.

Example 6.1.8. Let R = R and G = {−1, 1}. Then τG(A) ∈ K1(R) can be

identi�ed with |det(A)| and K1(R) ∼= R+.

Remark 6.1.9. Unlike in [15] and [53], which use an additive notation, we will

keep the multiplicative one1, as in [59], since we will de�ne Reidemeister torsion in

terms of the determinant. An additive formalism will naturally arise though com-

position with the real logarithm. Therefore, we will write τG(AB) = τG(A)τG(B).

1Usually, the notation is additive when working with abelian groups.
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6.1.2. The Reidemeister torsion of a chain complex.

Remark 6.1.10. From now on, we will assume that −1R ∈ G ≤ R∗.

Definition 6.1.11 (�12, [15]). Let f : V → W be an isomorphism of �nitely

generated free R-modules, for R a commutative ring. Let v and w be bases for

V and W , respectively, and let Af denote the (invertible) matrix associated to f .

Then the torsion of f : V →W is τG(f) := τG(Af ).

Remark 6.1.12 (�2, [53]). τG(f) of De�nition 6.1.4 does depend on the chosen

bases.

Since f : V → W is a short exact sequence, one can generalize the previous

de�nition to chain complexes. Thus, let us consider a (�nite) chain complex of

based �nitely generated free R-modules:

C : 0 −→ CN
d−→ · · · d−→ Cr+1

d−→ Cr
d−→ . . . C1

d−→ C0 −→ 0.

Set Zr := ker(d : Cr → Cr−1) and Br := ran(d : Cr+1 → Cr), so that

Hr(C) = Zr/Br will denote the homology R-modules of (C, d).

Definition 6.1.13 ([64]). A chain complex (C, d) is called acyclic if ∀r ≥ 0

Hr(C) = 0, i.e. the sequence is exact.

Proposition 6.1.14 ((13.1), [15]). If (C, d) is acyclic, then there exists a

degree-one module homomorphism δ : C → C, i.e. a collection of homomorphisms

δ : Cr → Cr+1, such that δd+ dδ = 1C , the identity chain map. For any such δ, we

have dδ|Br−1
= id and thus Cr = Br ⊕ δBr−1, ∀r ≥ 0.

Remark 6.1.15 ([64]). The chain map δ : C → C of Proposition 6.1.14 is called

chain contraction and is a chain homotopy between 1C and the zero chain map

0C : C → C. Moreover, the previous Proposition yields that d|δBr−1
: δBr−1 → Br−1

is an isomorphism.

Lemma 6.1.16 (Lemma 3, [64]). Let (C, d) be an acyclic R-module chain com-

plex and δ : C → C a chain contraction. Then the R-module morphism:

(d+ δ)|Codd
: Codd → Ceven

is an isomorphism, where Codd = C1 ⊕ C3 ⊕ . . . and Ceven = C0 ⊕ C2 ⊕ . . . .
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Proposition 6.1.17 ((14,2), [15]). (C, d) and the `wrapped up' exact complex:

C ′ : 0 −→ Codd
d+δ−→ Ceven −→ 0

are stably equivalent, i.e. C and C ′ are isomorphic modulo trivial complexes2.

This latter result motivates the following:

Definition 6.1.18 (�15, [15]). Let (C, d) be an acyclic R-module chain com-

plex. Then the torsion of C is de�ned as τG(C) := τG((d+ δ)|Codd
) ∈ KG(R) and

is independent of the chain contraction δ ((15.3), [15]).

Remark 6.1.19. As anticipated in Remark 6.1.21, τG(C) depends on a choice

of basis for C. Let cr be a basis for Cr; then codd =
⊕

j≥0 c2j+1, ceven =
⊕

j≥0 c2j ,

and c =
⊕

j≥0 cj are bases for Codd, Ceven, and C, respectively, with respect to

which the isomorphism (d+ δ)|Codd
: Codd → Ceven can be represented by the

non-singular square matrix (denoted with the same symbol):

(d+ δ)|Codd,c
=


d 0 0 . . .

δ d 0 . . .

0 δ d . . .
...

...
...

. . .

 .

Proposition 6.1.20 ((15.1), [15]). With respect to a basis c for C, we have

τG((d+ δ)|Codd,c
) = τG((d+ δ)|Ceven,c

)−1.

If c′r be another basis for Cr, let (c′r/cr) represent the matrix of the change of

basis cr 7→ c′r. Thence,

(c′odd/codd) =
⊕
j≥0

(c′2j+1/c2j+1) and (c′even/ceven) =
⊕
j≥0

(c′2j/c2j).

Proposition 6.1.21. Let c, c′ be two arbitrary bases for the acyclic R-module

chain complex (C, d). Then, for τG(C, c) := τG((d+ δ)|Codd,c
):

τG(C, c′) = τG(C, c) ·
∏
r≥0

τG(cr/c
′
r)

(−1)r .

In general, for a short exact sequence of chain complexes, the torsion is multi-

plicative:

2These are complexes whose boundary map can be represented by the identity matrix for a

particular choice of basis. See �14, [15], for a detailed presentation.
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Theorem 6.1.22 (Theorem 3.1, [53]). Let 0→ C ′ → C → C ′′ → 0 be a short

exact sequence of (�nite) chain complexes of �nitely generated free R-modules. Let

c, c′, and c′′ be bases for C, C ′, and C ′′, respectively, such that the matrix of change

of basis (c′c′′/c) belongs to EG(R), and let H denote the exact homology sequence

of the homology groups of C ′, C, and C ′′. Then:

τG(C) = τG(C ′)τG(C ′′)τG(H).

In particular, if they are all acyclic3, τG(C) = τG(C ′)τG(C ′′).

Definition 6.1.23. Let F be a �eld and G = {−1, 1}. Then the torsion

τ(C, c) := τG(C, c) ∈ K1(F) of an acyclic F-module chain complex C is called

Reidemeister-Franz torsion (or R-torsion) of C.

Remark 6.1.24 (�18, [15]). In general, the R-torsion arises after a suitable

change of rings. In fact, for ρ : R → S a change of rings such that ρ(G) ≤ G′, for

−1 ∈ G′ ≤ S∗, one obtains a new complex Cρ out of C, which can be acyclic even

if C is not, and a new algebraic invariant: the torsion τG′(Cρ) ∈ KG′(S).

Remark 6.1.25. By Corollary 6.1.7, R-torsion can equivalently be de�ned as

the determinant:

τ(C, c) := det(d+ δ : Codd → Ceven) ∈ F, for c a basis of C.

Definition 6.1.26 (De�nition 14, [64]). Let Br be free for each r ≥ 0, and br

a basis. An internal basis of C is a basis obtained extending br to the whole Cr via

the isomorphism d|δBr−1
: δBr−1 → Br−1 of Remark 6.1.15.

Proposition 6.1.27 (�3, [53]). For b =
⊕

r≥0(br, δbr−1) an internal basis,

τ(C, b) = 1 and:

τG(C, c) =
∏
r≥0

τG(br, δbr−1/cr)
(−1)r .(6.1.1)

In particular, τG(C, c) does not depend on the particular internal basis b chosen.

Remark 6.1.28 (�, [53]). Milnor de�nes torsion exactly as (6.1.1) and in this

way, he can de�ne torsion for stably free modules Br and for a non-acyclic chain

complex (C, d). In fact, if hr is a basis for Hr(C), then br, hr and br−1 form a

3It actually su�ces that C and one between C′ and C′′ are acyclic.
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basis for Cr. If we denote the matrix of change of basis with (br, hr, δbr−1/cr), then

Milnor's de�nition of torsion for non-acyclic complexes is:

τG(C, c, h) =
∏
r≥0

τG(br, hr, δbr−1/cr)
(−1)r ,

which depends on the bases c and h =
⊕

r≥0 hr.

Remark 6.1.29. If we combine Corollary 6.1.7 and Example 6.1.8, we obtain

Ray and Singer's de�nition of R-torsion of an acyclic complex in [65]:

τ(C, c) =
∏
r≥0

|det(br, δbr−1/cr)|(−1)r ∈ R+,

and therefore, log τ(C, c) =
∑
r≥0(−1)r log |det(br, δbr−1/cr)|.

6.1.3. Reidemeister torsion of manifolds. Given a CW-complex, one can

associate to it an acyclic chain complex and hence an R-torsion, which represents

a secondary topological invariant of the CW-complex, i.e. a topological invariant

de�ned at the level of the chain complex, which can therefore distinguish between

spaces with same homology and fundamental groups (such as Lens spaces, [67]).

First, let us see how to de�ne the R-torsion of a �nite and connected CW-

complex X =
⋃n
r=0

⋃
er, with er ⊂ X an r-cell, as shown in [64] and [65]. Let

X̃ =
⋃
g∈π1(X)

⋃n
r=0

⋃
gẽr be the universal cover of X, where ẽr is a lift of the cell

er and π1(X) is acting on X̃ as deck transformation group, i.e.

π1(X)× X̃ → X̃; (g, x) 7→ gx.

Let X(r) =
⋃
j≤r

⋃
er be the r-skeleton of X, with preferred basis given by the

cells of X(r) and induced cover X̃(r), and consider the relative homology modules

Cr(X̃) := Hr(X̃
(r), X̃(r−1)) and the group ring R[π1(X)] of �nite formal sums∑

k αkgk, for αk ∈ R and gk ∈ π1(X). Then Cr(X̃) is a based �nitely generated

free R[π1(X)]-module generated by the er cells, and �ts into the cellular chain

complex

C(X̃) : Cn(X̃)
d→ Cn−1(X̃)

d→ · · · d→ C1(X̃)
d→ C0(X̃),

where d is the boundary operator induced by the natural boundary operator of the

CW-complex. With respect to a preferred basis, d is represented by a matrix with

R[π1(X)] entries.

However, this construction does not provide an acyclic complex, as

H0(C(X̃)) = H0(X̃) = R. Therefore, as suggested in Remark 6.1.24, we can con-

sider a representation of π1(X), i.e. a group homomorphism ρ : π1(X) → O(N),
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such that we can construct a new complex which is also acyclic. We remark here

that, since ρ takes values in O(N), this will remove every possible ambiguity in

the de�nition of the R-torsion (see [59], for instance, for a general treatment of

ambiguities of the de�nition of R-torsion). A representation ρ extends to a ring

homomorphism for R[π1(X)], thus making Rn into a right R[π1(X)]-module. The

associated new complex, denoted (C(X, ρ), d), is de�ned as the chain complex of

�nitely generated free modules

Cr(X, ρ) := RN ⊗R[π1(X)] Cr(X̃).(6.1.2)

Moreover, a preferred basis of Cr(X, ρ) is realised by the equivalence class of

(ẽr, v) modulo the relation (ẽr, v) ∼ (g · ẽr, ρ(g−1)v), with v ∈ RN and g ∈ π1(X).

The boundary operator d is the one induced on the equivalence classes by the one

on C(X̃), i.e. d[ẽr, v] = [der, v] (see �5.3.1, [67]).

Definition 6.1.30 (De�nition 1.3, [65]). Let ρ : π1(X) → O(N) be a ring

homomorphism such that C(X, ρ) is acyclic. Then the Reidemeister torsion of X

is de�ned as τX(ρ) := τ(C(X, ρ)). Here, the dependence on a preferred basis is

omitted from the notation.

With respect to a basis for each Cr(X, ρ), dr : Cr(X, ρ)→ Cr−1(X, ρ) is repre-

sented by a real matrix. Let d∗r : Cr−1(X, ρ)→ Cr(X, ρ) be its transpose.

Definition 6.1.31 (�1, [65]). The matrix ∆c
r := dr+1d

∗
r+1 + d∗rdr, which acts

on Cr(X, ρ), is called the combinatorial Laplacian.

Proposition 6.1.32 (Proposition 1.7, [65]). Let τX(ρ) be the R-torsion of a

�nite CW-complex X =
⋃n
r=0

⋃
er, with ρ : π1(X)→ O(N) an acyclic representa-

tion. Then:

log τX(ρ) =
1

2

n∑
r=0

(−1)r+1r log det ∆c
r.(6.1.3)

Remark 6.1.33. Let λi be an eigenvalue of ∆c
r, which is positive since ∆c

r is

positive de�nite (see the proof of Proposition 1.7, [65]). Then the sum
∑
λi>0 λ

−s
i ,

s ∈ C, is holomorphic for <(s) large enough and de�nes a spectral zeta function for

∆c
r as the meromorphic extension

ζcr(s) := ζ(∆c
r, s) =

∑
λi>0

λ−si |
mer.
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In particular, ζcr(s) is holomorphic at s = 0 and:

d

ds
ζcr(s)|s=0

= −
∑
λi

log λi = − log
∏
λi

λi = − log det ∆c
r.(6.1.4)

Hence, (6.1.3) can be equivalently written:

log τX(ρ) =
1

2

n∑
r=0

(−1)rr
d

ds
ζcr(0).(6.1.5)

Lemma 6.1.34 (Combinatorial invariance of R-torsion; Lemma 7.1, [53]). τX(ρ)

is invariant under subdivision of X. Hence, it is a combinatorial invariant of X.

Theorem 6.1.35 (Topological invariance of R-torsion; [14]). Let f : X1 → X2

be a homeomorphism of CW-complexes. Then τX1
(ρf∗) = τX2

(ρ).

Finally, let M be an n-dimensional manifold with possibly ∂M 6= ∅. Then M

admits a C1-triangulation X and thus:

Definition 6.1.36 (�9, [53]). Let M be a manifold with C1-triangulation X.

Then the R-torsion of M is the scalar τM (ρ) := τX(ρ).

Remark 6.1.37. τM (ρ) does not depend on the C1-triangulation of M , but

only on the manifold M and the representation ρ (Lemma 9.1, [53]). In particular,

from Theorem 6.1.35 we have that the R-torsion is a topological invariant of a

manifold.

Theorem 6.1.38 (�6, [55]). Let M be a closed oriented manifold, dimM = n

even. Then log τM (ρ) = 0.

Let now Y ⊆ X be a subcomplex. The construction for X applies now also

to the pair (X,Y ) (see �8 in [53]), thus there exists a chain complex of �nitely

generated free R[π1(X)]-modules C(X̃, Ỹ ), with X̃
p→ X the universal cover and

Ỹ := p−1(Y ). We observe that the inclusion ι : Y ↪→ X de�nes an homomorphism

ι∗ : π1(Y ) → π1(X), which yields a representation for π1(Y ) once it is composed

with ρ : π1(X) → O(N). Thence it is possible to de�ne a relative chain complex

(C(X,Y, ρ), d), where Cr(X,Y, ρ) is as in (6.1.2). See [82] for a detailed construc-

tion.

Definition 6.1.39. Let ρ : π1(X) → O(N) be a ring homomorphism such

that C(X,Y, ρ) is acyclic. Then the R-torsion of the CW-pair (X,Y ) is de�ned as

τX,Y (ρ) := τ(C(X,Y, ρ)).
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As a consequence of Theorem 6.1.22, the three R-torsions τX(ρ), τX,Y (ρ) and

τY (ρ ◦ ι∗) relate through the following result:

Theorem 6.1.40 (0.2.2, [82]). τX(ρ) = τX,Y (ρ) · τY (ρ ◦ ι∗).

It is therefore natural to extend the de�nition of relative R-torsion to manifolds

with boundary:

Definition 6.1.41 (�9, [53]). Let M be a manifold with non-empty boundary

∂M , and (X,Y ) a CW-triangulation such that Y is a triangulation of ∂M . Then

the relative R-torsion of M is τM,∂M (ρ) := τX,Y (ρ).

Remark 6.1.42 (Remarks 2.12 & 2.62, [59]). If ∂M 6= ∅, then τM (ρ) is called

absolute R-torsion of M . Moreover, Lemma 6.1.34 holds generally for CW-pairs

(X,Y ), [53]. Thus τX,Y (ρ) is invariant under subdivision and τM,∂M (ρ) is indepen-

dent of the triangulation (X,Y ). In fact, τM,∂M (ρ) is a smooth invariant, but not

a topological invariant, in general.

We conclude with a gluing formulas for the R-torsion of CW-pairs, which is a

direct consequence of Theorem 6.1.22:

Theorem 6.1.43 (Gluing of relative R-torsion; Proposition 1.5, [83]). Let

(Xi, Yi), i = 1, 2, be two CW-pairs such that X := X1 ∪ X2 and N := X1 ∩ X2,

with N ∩Yi = ∅ ∀i = 1, 2. Then, for ι : N → X, ιi : Xi → X the natural inclusions:

τX,Y1tY2(ρ) = τX1,Y1tN (ρι1∗) · τX2,Y2tN (ρι2∗) · τN (ρι∗).

Combined with Theorem 6.1.40, we obtain:

Corollary 6.1.44 (Gluing of absolute R-torsion; Proposition 0.2.3, [82]). Let

Xi, i = 1, 2, be two CW-complexes such that X := X1 ∪ X2 and N := X1 ∩ X2.

Then, for ι : N → X, ιi : Xi → X the natural inclusions, we have:

τX(ρ) = τX1
(ρι1∗) · τX2

(ρι2∗) · τN (ρι∗)
−1.

6.2. Analytic and Residue Torsion of a closed manifold

6.2.1. Analytic Torsion. The spectral zeta function de�nition of the R-

torsion (6.1.5) motivated Ray and Singer to de�ne in [65] an analytic counterpart

as follows.

Let X be a closed oriented manifold and ρ : π1(X) → O(N) an orthogo-

nal representation. For Eρ := X̃ ×ρ CN the principal (�at) bundle associated
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to ρ, let Ω(X,Eρ) be the twisted de Rham bundle with coe�cients in Eρ and

∆k : Ωk(X,Eρ)→ Ωk(X,Eρ) the Laplacian on twisted k-forms, as usual.

Remark 6.2.1 ([55]). By Hodge Theorem, ∆k has real non-negative eigenval-

ues with �nite multiplicity, which accumulate at in�nity, and ker(∆k) ∼= Hk(X),

thus ∆k is strictly positive if and only if Ω(X,Eρ) is acyclic. Let λi be an eigenvalue

of ∆k and consider the sum
∑
λi>0 λ

−s
i , s ∈ C as in Remark 6.1.33. Such sum is

holomorphic for <(s) > 1
2 dimX and de�nes a spectral zeta function for ∆k as the

meromorphic extension ζk,ρ(s) := ζ(∆k, s) =
∑
λi>0 λ

−s
i |mer, which is holomorphic

at s = 0.

Definition 6.2.2 (De�nition 1.6, [65]). Let X be a closed manifold and let

ρ : π1(X)→ O(N) be an orthogonal representation. Then the analytic torsion of

X is the scalar:

TX(ρ) =

n∏
k=0

exp

(
(−1)k

k

2

d

ds
ζk,ρ(0)

)
,

i.e. log TX(ρ) = 1
2

∑n
k=0(−1)kk d

dsζk,ρ(0).

Remark 6.2.3 (�1, [65]). Let detζ ∆k := e−ζ
′
k,ρ(0) be the zeta determinant

of ∆k, a regularized extension of the determinant of a matrix. Then the analytic

torsion can be equivalently written as:

log TX(ρ) =
1

2

n∑
k=0

(−1)k+1k log detζ∆k.(6.2.1)

We remark the similarity with Proposition 6.1.32.

In some cases, the analytic torsion is a smooth invariant:

Theorem 6.2.4 (Theorem 2.1, [65]). Let X be a closed oriented Riemannian

manifold and ρ : π1(X) → O(N) an orthogonal representation. If Ω(X,Eρ) is

acyclic, then TX(ρ) is independent of the choice of Riemannian metric on X.

One may wonder why De�nition 6.2.2 involves the weight k, or similarly, why

we do not consider a torsion of the form log T̃X(ρ) = 1
2

∑n
k=0(−1)k+1 log detζ ∆k,

in analogy with the Euler characteristic. The reason is that such unweighed version

is trivial, as the following results show.

Remark 6.2.5 (�5.3.2, [67]). For each k = 0, . . . , n, ∆k and ∆n−k are isospec-

tral, i.e. they have the same eigenvalues, since ∗k∆k = ∆n−k∗k. Therefore, ∀s ∈ C,
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we obtain Poincaré Duality, i.e.

ζk,ρ(s) = ζn−k,ρ(s),(6.2.2)

which yields:

Proposition 6.2.6.

i) n even: n
2

∑n
k=0(−1)k ζk,ρ(s) =

∑n
k=0(−1)kk ζk,ρ(s),

ii) n odd:
∑n
k=0(−1)k ζk,ρ(s) = 0.

Proof. i) If n is even, then (−1)n−k = (−1)k and:

n∑
k=0

(−1)kkζk,ρ(s)
(6.2.2)

=

n∑
k=0

(−1)kkζn−k,ρ(s) =

n∑
k=0

(−1)n−k(n− k)ζk,ρ(s)

=

n∑
k=0

(−1)k(n− k)ζk,ρ(s) = n

n∑
k=0

(−1)kζk,ρ(s)−
n∑
k=0

(−1)kkζk,ρ(s).

ii) If n is odd, then (−1)n−k = −(−1)k and:

n∑
k=0

(−1)k ζk,ρ(s)
(6.2.2)

=

n∑
k=0

(−1)k ζn−k,ρ(s) =

n∑
k=0

(−1)n−k ζk,ρ(s) = −
n∑
k=0

(−1)k ζk,ρ(s).

�

Theorem 6.2.7 (2.3, [65]). Let X be a closed oriented manifold and ρ an

orthogonal representation, not necessarily acyclic. If dimX = n is even, then∑n
k=0(−1)kk ζk,ρ(s) = 0 for each s ∈ C. In particular, log TX(ρ) = 0 in even

dimension.

By Proposition 6.2.6, we conclude:

Corollary 6.2.8. If dimX = n is even, then also
∑n
k=0(−1)k ζk,ρ(s) = 0.

Hence this is true ∀n ∈ N.

Remark 6.2.9 (�5.3.2, [67]). Since χ(X) = 0 whenX closed and odd-dimensional,

the analytic torsion represents a complementary invariant for closed manifolds, able

to distinguish between manifolds when the Euler characteristic cannot. In partic-

ular, given the relationship between χ and Index Theory, we can see that analytic

torsion (and R-torsion as well) provides information when Index Theory fails to do

so.

Although Ray and Singer in [65] could prove that analytic and R-torsion of

closed oriented manifolds share important properties, they could only conjecture

their equivalence. The conjecture was set for the a�rmative by Cheeger and Müller,

independently, around 1980:
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Theorem 6.2.10 (Theorem 10.22, [55]). Let X be a closed oriented manifold.

Then TX(ρ) = τX(ρ).

Finally, also in the light of Remark 6.1.28, we can also de�ne R-torsion and

analytic torsion for non-acyclic representations of X. However, in this case we have

dependence on the Riemannian metric g of X. This is true also for manifolds with

boundary, but we postpone the full statement of the theorem to the next section.

Theorem 6.2.11 (Theorem 7.6, [65]). Let u ∈ R 7→ gX(u) be a smooth path

of metrics4. If Cr(X, ρ) is not acyclic, then:

d

du
log τX(ρ) =

d

du
log TX(ρ) =

1

2

n∑
k=0

(−1)k tr αk|ker∆
k

(6.2.3)

where αk := ∗−1
k ∗̇k : Ωk(X,Eρ)→ Ωk(X,Eρ).

We conclude this section by introducing another homotopy invariant which will

appear in the next paragraphs.

Definition 6.2.12 (�1, [63]). The integer χ′(X) de�ned as:

χ′(X) :=

n∑
k=0

(−1)kkbk, bk = dimHk(X)

is called secondary (or derived) Euler characteristic of X.

Remark 6.2.13. We remark that the above de�nition di�ers from the one in

[63] by a sign and that the secondary Euler characteristic is the �rst of a sequence

of homotopy invariants for (not necessarily closed) manifolds X called higher Euler

characteristics:

χj(X) :=

n∑
k=0

(−1)k−j

 k

j

 bk,(6.2.4)

with clearly χ0(X) = χ(X) and χ1(X) = −χ′(X). It is interesting to note that

(6.2.4) is not the only natural generalization of χ(X) and χ′(X). χ′(X) in partic-

ular has appeared recently in many �elds; for instance, it is a term of the family

analytic torsion studied in [9]. For more properties and references on higher Euler

characteristics, we refer to [63].

Proposition 6.2.14. Let X be a closed n-dimensional manifold. Then:

χ′(X)(1 + (−1)n) = nχ(X).

4Which exists since the space of Riemannian metrics on X is convex, [55].
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Proof. By Poincaré duality:

χ′(X) =

n∑
k=0

(−1)kkbk =

n∑
k=0

(−1)kkbn−k =

n∑
k=0

(−1)n−k(n− k)bk

= (−1)nn

n∑
k=0

(−1)kbk + (−1)n−1
n∑
k=0

(−1)kkbk

= (−1)n−1χ′(X) + (−1)nnχ(X).

�

Corollary 6.2.15. If n is even, then χ′(X) = n
2χ(X).

Remark 6.2.16. Corollary 6.2.15 shows that if χ(X) does not vanish, then

χ′(X) does not really provide new information. However, χ′(X) provides informa-

tion on X when n is odd and, in general, χj(X) is the �rst nontrivial homotopy

invariant when χk(X) vanish for each k < j.

6.2.2. Exotic torsions of closed manifolds. We recall from Chapter 1 that

a determinant is a homomorphism detτ,ε = ε ◦ τ ◦ log, where ε : T → S is an

exponential map. If in addition ε has a left inverse, i.e. a (possibly di�erent)

logarithm map l̃og : S → T , then:

l̃og ◦ detτ,e = τ ◦ log .

With this in mind, we will re-write analytic and R-torsion in terms of the

composition of logarithm and trace, i.e. as log-determinants.

Proposition 6.2.17. Let X be a closed oriented manifold and ρ an orthogonal

acyclic representation. Then:

log τX(ρ) =
1

2

n∑
k=0

(−1)k+1k tr log ∆c
k.

Proof. Since the combinatorial Laplacian ∆c
k for an acyclic complex is a pos-

itive de�nite square matrix, by holomorphic functional calculus (see �1.3.1) we can

de�ne its logarithm as:

log ∆c
k :=

i

2π

∫
C

log λ (∆c
k − λ)−1dλ,(6.2.5)

where C is a closed loop around the spectrum of ∆c
k. Thus, its eigenvalues are of

the form log λi, for λi > 0 an eigenvalues of ∆c
k. Therefore, (6.1.4) implies that

log det ∆c
k = tr log ∆c

k and by Proposition 6.1.32 the statement follows.

�
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Remark 6.2.18. If ∆c
k in not positive de�nite but only semi-de�nite, i.e. the

complex is not acyclic, then the statement holds for the positive eigenvalues, i.e.

for det(∆c
k + Πk), with Πk the orthogonal projection onto ker ∆c

k, by a standard

regularization argument.

In a similar way, let us consider ∆k, the restriction to k-forms of the Lapla-

cian ∆ : Ω(X,Eρ)→ Ω(X,Eρ) in �6.2.1. Since it is elliptic with non-negative real

eigenvalues, it is admissible and for C a Leurent loop ((2.6) in [22], and �2 in [78]),

i.e.:

C := {reiπ| ∞ > r > r0} ∪ {r0e
iθ| π ≥ θ ≥ −π} ∪ {reiπ| r0 < r <∞},(6.2.6)

by holomorphic functional calculus ([76]),

∆−sk :=
i

2π

∫
C

λ−s(∆k − λ)−1dλ,(6.2.7)

is a holomorphic family for <(s) > 0, which is trace class if in particular <(s) > n
2 ,

and de�nes a logarithm as log ∆k := − d
ds |s=0

∆−sk , i.e.

log ∆k = lim
s↘0

i

2π

∫
C

λ−s log λ(∆k − λ)−1dλ =
i

2π

∫
C

log λ (∆k − λ)−1dλ.(6.2.8)

As shown in [76], the trace Tr(∆−sk ) =
∫
X
k∆−sk (x, x)dx extends meromorphi-

cally to C and such extension coincides to the spectral zeta function de�ned in

Remark 6.2.1, i.e. ζk,ρ(s) = Tr(∆−sk )|mer, which is holomorphic at s = 0; there, its

derivative is:

d

ds
ζk,ρ(0) =

d

ds |s=0
Tr(∆−sk )|mer = lim

s↘0
Tr(

d

ds
∆−sk )|mer =: −TRζ(log ∆k),

where TRζ is the zeta quasi-trace, the extension of the classical trace to ΨZ with

respect to the complex power gauging. We refer to [39], and �1.5.6��1.5.7 of [75],

for a general description of the extension of the classical trace to elliptic pseudodif-

ferential operator of any order via complex gauging.

Therefore, log detζ ∆k = −ζ ′k,ρ(0) = TRζ(log ∆k) and in conclusion we obtain:

Proposition 6.2.19. Let X be a closed oriented manifold and ρ an orthogonal

representation. Then:

log TX(ρ) =
1

2

n∑
k=0

(−1)k+1k TRζ(log ∆k).
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Remark 6.2.20 (Lemma 1.10.1, [23]). Since λ−s = 1
Γ(s)

∫∞
0
ts−1e−λtdt by

Mellin transform and ∆k is positive de�nite (in the case at hand), ζk,ρ(s) is equiv-

alently de�ned as (the meromorphic extension of):

1

Γ(s)

∫ ∞
0

ts−1 Tr(e−t∆k)dt,

where et∆k is the heat semigroup associated to ∆k and Γ(s) is the gamma function.

Moreover, if A ∈ Ψ(X,Λk(X)⊗ Eρ), a (generalized) zeta function is de�ned as

ζ(A,∆k, s) := Tr(A∆−sk )|mer =
1

Γ(s)

∫ ∞
0

ts−1 Tr(Ae−t∆k)dt|mer.(6.2.9)

Consequently, we can consider a pre-existing torsion element, de�ned at the

operator level:

Definition 6.2.21. We de�ne the torsion logarithm to be the operator:

TX(ρ) :=
1

2

n⊕
k=0

(−1)k+1k log ∆k ∈
n⊕
k=0

Ψ0,1
log(X,Λ

k(X)⊗ Eρ)
[Ψ0,1

log(X,Λ
k(X)⊗ Eρ),Ψ0,1

log(X,Λ
k(X)⊗ Eρ)]

,

where Ψ0,1
log are the log-classical

5 ψdos of order 0 and log-degree 1.

In general, given an (n + 1)-tuple β = (β0, . . . , βn) ∈ Rn+1, a chain complex

C and a log operator log : Dk → logDk ∈ Ak for R-modules Ak, with Dk chain

maps, we can de�ne a generalized torsion logarithm as

TβX(ρ) :=
1

2

n⊕
k=0

(−1)k+1βk log ∆k ∈
n⊕
k=0

Ak
[Ak, Ak]

.

Then, given the regularized zeta-trace TRζ : ΨZ(X,Λ(X) ⊗ Eρ) → C, De�ni-

tion 6.2.21 yields log TX(ρ) = TRζ ◦ TX(ρ), i.e. a sum of log-determinants, and

TX(ρ) = exp (TRζ(TX(ρ))), i.e. a product of generalized determinants.

Therefore, we are going to investigate the e�ect of composing with other traces

for Ψ≤0(X,Λ(X)⊗Eρ) :=
⋃
m≤0 Ψm(X,Λ(X)⊗Eρ), as di�erent trace evaluations of

TX(ρ) may generate di�erent log-determinants of ∆ and possibly di�erent invariants

for X. To this purpose, let us recall that the leading symbol σB of B ∈ Ψm(X,E)

is a globally de�ned section over the co-sphere bundle S∗X → X. Then:

Definition 6.2.22 (�1.5.8.3, [75]). The leading symbol trace is the linear map

τ0 : Ψ≤0(X,E)→ C∞(S∗X) de�ned as τ0(A)(x, ξ) = tr σA(x, ξ).

Remark 6.2.23 (�1.5.8.3, [75]). For u ∈ D′(S∗X) any distribution, then

τu,0 : Ψ≤0(X,E)→ C, de�ned as τu,0(A) = u(τ0(A)), is a scalar trace.

5For the generalization of classical ψdos to log-classical ψdos of order m and log-degree k we

refer to �2.6.1.2 of [75].
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We investigate the nature of the log-determinant arising with respect to this

trace and de�ne:

Definition 6.2.24. The (exotic) analytic leading symbol torsion T lead,β,uX (ρ)

associated to u ∈ D′(S∗X) is the character of TX(ρ) with respect to a scalar

leading symbol trace6, i.e.

log T lead,β,uX (ρ) := τ0,u(TβX(ρ)) =
1

2

n∑
k=0

(−1)k+1βk τ0,u log ∆k, ∀β ∈ Rn+1.

As it turns out, such torsion invariants vanish identically:

Theorem 6.2.25. Let X be a closed oriented n-dimensional manifold. Then

log T lead,β,uX (ρ) = 0 ∀β ∈ Rn+1 and u ∈ D′(S∗X).

Proof. Let σlog ∆k

0 (x, ξ) and σ∆k
2 (x, ξ) denote the principal symbols of log ∆k

and ∆k, respectively. Then by Proposition 2 of [61]:

σlog ∆k

0 (x, ξ) = 2 log |ξ|I + log σ∆k
2 (x,

ξ

|ξ|
).

Since σ∆k
2 (x, ξ) = |ξ|2I, we have that log σ∆k

2 (x, ξ|ξ| ) = log
(
|ξ|
|ξ|

)2

I = 0; thus,

τ0(∆k)(x, ξ) = 2 log |ξ| trI = 0 as (x, ξ) ∈ S∗X.

�

The leading symbol trace is only one of the two independent traces on Ψ≤0(X,E).

In fact, every trace on Ψ≤0(X,E) is a linear combination of the leading symbol trace

and the residue trace (�2.7.4, [75]):

Definition 6.2.26 (�1.5.4, [75]). The residue trace is a continuous functional

res : ΨZ(X,Λ(X)⊗ Eρ)→ C de�ned as

res(A) :=

∫
X

(∫
|ξ|=1

tr σA− dimX(x, ξ) dξS

)
dx

It is the unique trace on classical pseudodi�erential operators ΨZ(X,E) and is

(roughly) complementary to TRζ .

Hence, in this context, the residue trace becomes the unique trace at hand and

we can use it to de�ne:

6In practice, it's extension to Ψ0,1
log

.
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Definition 6.2.27. The (exotic) analytic residue torsion T res,βX (ρ) is the char-

acter of TX(ρ) with respect to the residue trace, i.e.

log T res,βX (ρ) := res(TβX(ρ)) =
1

2

n∑
k=0

(−1)k+1βk res log ∆k, ∀β ∈ Rn+1.

It is, as we shall see, an invariant for X of a complementary behaviour with

respect to the classical analytic torsion.

Theorem 6.2.28. Let X be a closed oriented n-dimensional manifold and

ρ : π1(X)→ O(N) an orthogonal representation (not necessarily acyclic). Then:

(i) if n is odd, log T res,βX (ρ) = 0 ∀β ∈ Rn+1;

(ii) if n is even, log T res,βX (ρ) is a smooth invariant if β equals:

1 := (1, . . . , 1) or ω := (0, 1, . . . , n).(6.2.10)

The corresponding residue analytic torsions are equal, respectively, to the

Euler characteristic χ and the derived Euler characteristics χ′ (De�nition

6.2.12):

log T resX (ρ) := log T
res,1
X (ρ) = χ(X,Eρ) = χ(X)rk(Eρ) and

log T resX (ρ)′ := log T
res,ω
X (ρ) = χ′(X,Eρ) = χ′(X)rk(Eρ).(6.2.11)

Finally, for a smooth path of metrics u ∈ R→ gX(u) we have:

d

du
log T resX (ρ)′ =

1

2

n∑
k=0

(−1)k+1 res(αk)︸ ︷︷ ︸
=0

,(6.2.12)

i.e. it is a smooth invariant (and even if it vanishes, it has the same form

of (6.2.3)).

Proof. (i) Let n be odd. Since di�erential operators and their inverses are

odd-class7 by Lemma 7.1, [39], so are ∆k−λI and (∆k−λI)−1, with λ /∈ spec(∆k).

Moreover, as the symbol of log ∆k ∈ Ψ0(X,Λ(X)⊗Eρ) has asymptotic expansion:

σlog ∆k(x, ξ) ∼
∑
j≥0

σlog ∆k

j (x, ξ) = 2 log |ξ|+
∑
j≥2

i

2π

∫
C

log λ σ
(∆k−λ)−1

−j (x, ξ) dλ,

we have σ
logθ ∆k

−n (x, ξ) = i
2π

∫
C log λ σ

(∆k−λ)−1

−n (x, ξ) dλ, which is odd in ξ because

n is odd, i.e.:

σ
logθ ∆k

−n (x, ξ) =
i

2π

∫
C

log λ σ
(∆k−λ)−1

−n (x, ξ) dλ =

7See �0.2.
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=
(−1)−ni

2π

∫
C

log λ σ
(∆k−λ)−1

−n (x,−ξ) dλ = −σlogθ ∆k

−n (x,−ξ).

We remark that, generally, the various homogeneous terms σlog ∆k

j (x, ξ) do not

de�ne a global density on X, while σ
logθ ∆k

−n (x, ξ) does, as observed by Okikiolu in

[60]. Therefore8,
∫
|ξ|=1

tr σ
logθ ∆k

−n (x, ξ) dξS = 0 and res log ∆k = 0, which clearly

yields log T res,βX (ρ) = 0 for each β ∈ Rn+1.

(ii) Let now n be even and u ∈ R 7→ gX(u) be a smooth path of metrics. Since

log T res,βX (ρ) is a smooth invariant if and only if it is independent of the Riemannian

metric gX , i.e.
d
du log T res,βX (ρ) = 0, we need to compute d

du res log ∆k. We know

that the Hodge operator depends smoothly on the metric gX , so ∗k = ∗k(u) is

a smooth family for each k and ∆k = ∆k(u) is an admissible smooth family of

constant order.

Since ∗−1
k = (−1)k∗n−k and d

du (∗−1
k ∗k) = d

du (id) = 0,

0 =
d

du
(∗−1
k ) ∗k + ∗−1

k

d

du
(∗k) = ∗̇n−k ∗−1

n−k + ∗−1
k ∗̇k,

and if we set αk := ∗−1
k ∗̇k = − ∗̇n−k ∗−1

n−k : Λk(X,Eρ)→ Λk(X,Eρ), we have:

∆̇k :=
d

du
∆k =

d

du
(δkdk + dk−1δk−1)(6.2.13)

= −αkδkdk + δkαk+1dk − dk−1αk−1δk−1 + dk−1δk−1αk,

as in the proof of Theorem 2.1, [65]. Notice the di�erence in sign due to our

de�nition of Laplacian.

As all ∆k have spectrum on the non-negative real axis, we can consider a

Laurent loop C independent of u, thus de�ninig a di�erentiable family log ∆k, of

constant order 0. Hence, by Proposition 7 of [61], we have:

d

du
res log ∆k = res

(
d

du
log ∆k

)
.

Let Πk be the orthogonal projection onto ker ∆k
∼= Hk(X); as Hk(X) is an homo-

topy invariant, Πk is a �nite rank operator that does not dependent on the metric

and ∆k + Πk are a di�erentiable family of invertible operators of constant order.

This yields d
du (∆k + Πk) = ∆̇k.

8Clearly, if f is an odd function on RN , N odd, and SN−1 is the (N − 1)-dimensional sphere∫
SN−1

f(x)dxS = −
∫
SN−1

f(−x)dxS = −
∫
SN−1

f(x)dxS.
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Since spec(∆k + Πk) = spec(∆k)\{0}, log(∆k + Πk) and log ∆k can be de�ned

for the same contour C and

log ∆k − log(∆k + Πk) =
i

2π

∫
C

log λ(∆k − λ)−1dλ− i

2π

∫
C

log λ(∆k + Πk − λ)−1dλ

=
i

2π

∫
C

log λ[(∆k − λ)−1 − (∆k + Πk − λ)−1] dλ.

Since (∆k − λ)−1 − (∆k + Πk − λ)−1 = (∆k + Πk − λ)−1Πk(∆k − λ)−1, we can

conclude that

log ∆k − log(∆k + Πk) ∈ Ψ−∞(X,Λ(X)⊗ Eρ).

In particular,

d

du
log ∆k −

d

du
log(∆k + Πk) ∈ Ψ−∞(X,Λ(X)⊗ Eρ).

Since the residue trace vanishes on Ψ−∞(X,Λ(X)⊗ Eρ), we have

res

(
d

du
log ∆k

)
= res

(
d

du
log(∆k + Πk)

)
.

By Lemma 1, [61], we also have:

d

du
log(∆k + Πk) = ∆̇k(∆k + Πk)−1 + S ∈ Ψ0(X,ΛT ∗X ⊗ Eρ),

where S is a sum of commutators. Hence, in conclusion:

d

du
res log ∆k = res

(
d

du
log(∆k + Πk)

)
= res

(
∆̇k(∆k + Πk)−1

)
= res

(
(∆k + Πk)−1∆̇k

)
.

We remark that Pk := (∆k + Πk)−1 is a parametrix for ∆k, since:

I = Pk(∆k + Πk) = Pk∆k + PkΠk, where PkΠk ∈ Ψ−∞(X,Λ(X)⊗ Eρ).

For the sake of notation, we will only write Ψ−∞ from now on. By (6.2.13) and the

linearity of res, we write:

res(Pk∆̇k) = −res(Pkαkδkdk)︸ ︷︷ ︸
1

+ res(Pkδkαk+1dk)︸ ︷︷ ︸
2

−res(Pkdk−1αk−1δk−1)︸ ︷︷ ︸
3

+ res(Pkdk−1δk−1αk)︸ ︷︷ ︸
4

The following identities for the Laplacian:

dk∆k = ∆k+1dk δk−1∆k = ∆k−1δk−1(6.2.14)

hold also for the parametrix Pk. In fact, since ∆kPk− I ∈ Ψ−∞, we have that both

dk∆kPk−dk and ∆k+1Pk+1dk−dk are smoothing. So after subtracting these terms,

by (6.2.14) we obtain ∆k+1(dkPk−Pk+1dk) ∈ Ψ−∞. Hence dkPk−Pk+1dk ∈ Ψ−∞
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and δk−1Pk−Pk−1δk−1 ∈ Ψ−∞ can be proved in the same way. These two identities

can be used to rearrange 1 and 3 :

1 = −res(Pkαkδkdk) = −res(δkdkPkαk) = −res(δkPk+1dkαk)

= −res(Pkδkdkαk)

3 = −res(Pkdk−1αk−1δk−1) = −res(δk−1Pkdk−1αk−1)

= −res(Pk−1δk−1dk−1αk−1)

On the other hand, since αk − Pk∆kαk ∈ Ψ−∞, we can decompose:

αk − Pkδkdkαk − Pkdk−1δk−1αk ∈ Ψ−∞

and use this to rearrange 2 and 4 :

2 = res(Pkδkαk+1dk) = res(dkPkδkαk+1) = res(Pk+1dkδkαk+1)

= res(αk+1)− res(Pk+1δk+1dk+1αk+1)

4 = res(Pkdk−1δk−1αk) = res(αk)− res(Pkδkdkαk)

Now, for γk := res(Pkδkdkαk) we can write:

1 = −γk, 2 = res(αk+1)− γk+1, 3 = −γk−1, and 4 = res(αk)− γk,

thus obtaining:

res(Pk∆̇k) = res(αk) + res(αk+1)− γk+1 − 2γk − γk−1.

Note that res(αk) = 0, since αk ∈ End(Λk(M,Eρ)), and γ0 = res(α0). Then:

2
d

du
log T res,βX (ρ) =

=

n∑
k=0

(−1)k+1 βk
d

du
res log ∆k =

n∑
k=0

(−1)k+1 βk res(Pk∆̇k)

=

n∑
k=0

(−1)k+1 βk res(αk) +

n∑
k=0

(−1)k+1 βk res(αk+1)

− 2

n∑
k=0

(−1)k+1 βk γk −
n∑
k=0

(−1)k+1 βk γk+1 −
n∑
k=0

(−1)k+1 βk γk−1

= −β0 res(α0) +

n∑
k=1

(−1)k+1(βk − βk−1) res(αk)

− 2

n∑
k=0

(−1)k+1 βk γk +

n∑
k=1

(−1)k+1 βk−1 γk +

n−1∑
k=0

(−1)k+1 βk+1 γk

=

n∑
k=0

(−1)k+1(βk − βk−1) res(αk)︸ ︷︷ ︸
=0

+

n∑
k=0

(−1)k+1 (βk+1 − 2βk + βk−1) γk.
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where we can require β−1 = 0 since γn = 0.

At this point, we seek those β ∈ Rn+1 such that βk+1 − 2βk + βk−1 = 0, i.e

a solution of the recurrence equation βk+1 = 2βk − βk−1. As the characteristic

polynomial is x2 − 2x + 1, a general solution must be a linear combination of the

two independent solutions βk = 1 and βk = k, for each k = 0, . . . , n, i.e:

1 = (1, . . . , 1) or ω = (0, 1, . . . , n).

Hence, for β = 1 or β = ω, we can conclude d
du log T res,βX (ρ) = 0 and log T res,βX (ρ)

does not depend on the Riemannian metric.

Now, from Theorem 1.8 of [74], we have:

−1

2
res log ∆k = ζk,ρ(0) + dim ker(∆k),(6.2.15)

which allows us to write:

log T res,βX (ρ) =

n∑
k=0

(−1)kβkζk,ρ(0) +

n∑
k=0

(−1)kβk dim ker(∆k).

Thus, if β = 1,

log T
res,1
X (ρ) =

n∑
k=0

(−1)kζk,ρ(0) +

n∑
k=0

(−1)k dim ker(∆k) = 0 + χ(X,Eρ)

by Corollary 6.2.8, while if β = ω, since n is even,

log T
res,ω
X (ρ) =

n∑
k=0

(−1)kk ζk,ρ(0) +

n∑
k=0

(−1)kk dim ker(∆k) = 0 + χ′(X,Eρ)

by Theorem 6.2.7.

�

Corollary 6.2.29. If β = 1 or β = ω then log T res,βX (ρ) is a smooth invariant.

In fact,

log T
res,1
X (ρ) = χ(X,Eρ) and log T

res,ω
X (ρ) =

n

2
χ(X,Eρ).

Remark 6.2.30. The res-log of a generalized Laplacian is linked to the index

of the associated Dirac operator. In fact, by (6.2.15), we can write

ind(d+ δ)+ =
1

2

(
res log(d+ δ)+(d+ δ)− − res log(d+ δ)−(d+ δ)+

)
.

This can be accounted for the fact that the behaviour of the residue torsion is

complementary to the one of the analytic torsion, as Theorem 6.2.28 showed.
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Remark 6.2.31. Equivalently, since ζk(0) = −dimHk(X) when dimX is odd

(Theorem 7.6, [55]), part (i) follows directly from Scott's formula (6.2.15), which

could also be used to prove part (ii), together with an approach similar to the one

of Theorem 2.1 in [65]. Indeed, we can express the residue torsion as:

log T res,βX (ρ) =

n∑
k=0

(−1)kβk ζk,ρ(0) +

n∑
k=0

(−1)kβk dim ker(∆k)

and calculate d
du log T res,βX (ρ) in this case. As ker(∆k) ∼= Hk(X), it is independent

of the metric and we have:

d

du
log T res,βX (ρ) =

d

du

n∑
k=0

(−1)kβk ζk,ρ(0).

We can therefore evaluate for s = 0 the derivative with respect to u of the mero-

morphic extension of

f(u, s) :=

n∑
k=0

(−1)kβk
1

Γ(s)

∫ ∞
0

ts−1Tr(e−t∆k(u))dt,

which is well-known to be analytic at s = 0. Then the statement will follow from,

d
du log T res,βX (ρ) = ∂

∂uf(u, 0).

By the proof of Theorem 2.1, [65], we can di�erentiate under the integral sign,

thus obtaining:

∂

∂u
f(u, s) =

n∑
k=0

(−1)kβk
1

Γ(s)

∫ ∞
0

ts−1 ∂

∂u
Tr(e−t∆k(u))dt(6.2.16)

=

n∑
k=0

(−1)k+1βk
1

Γ(s)

∫ ∞
0

ts
∂

∂u
Tr
(
e−t∆k(u)∆̇k(u)

)
dt,

as ∂
∂uTr

(
e−t∆k

)
= −t Tr

(
e−t∆k∆̇k

)
. By (6.2.13), (6.2.14), and the traciality of

Tr, we can write:

Tr
(
e−t∆k∆̇k

)
= −Tr

(
e−t∆kδdα

)
+ Tr

(
e−t∆k+1dδα

)
− Tr

(
e−t∆k−1δdα

)
+ Tr

(
e−t∆kdδα

)
.

If we set ϕk := Tr
(
e−t∆kdδα

)
and θk := Tr

(
e−t∆kδdα

)
, then

Tr
(
e−t∆k∆̇k

)
= ϕk+1 − θk + ϕk − θk−1

and we can rewrite (6.2.16) as:

∂

∂u
f(u, s) =

1

Γ(s)

∫ ∞
0

ts
n∑
k=0

(−1)k+1βk (ϕk+1 − θk + ϕk − θk−1) dt.

By standard manipulations, we have:

n∑
k=0

(−1)k+1βk (ϕk+1 − θk + ϕk − θk−1) =

n−1∑
k=1

(−1)k+1 [(βk − βk−1)ϕk + (βk+1 − βk)θk]
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+ (β0 − β1)θ0 + (−1)n(βn−1 − βn)ϕn =: ?

since ϕ0 = θn = 0. If we also set ψk := Tr
(
e−t∆k∆kα

)
= ϕk+θk, i.e. θk = ψk−ϕk,

we can write:

? =

n∑
k=1

(−1)k+1(2βk − βk−1 − βk+1)ϕk +

n∑
k=0

(−1)k+1(βk+1 − βk)Tr
(
e−t∆k∆kα

)
=

n∑
k=1

(−1)k+1(2βk − βk−1 − βk+1)ϕk +

n∑
k=0

(−1)k(βk+1 − βk)
d

dt
Tr
(
e−t∆kα

)
.

Hence, (6.2.16) becomes

∂

∂u
f(u, s) =

n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)
1

Γ(s)

∫ ∞
0

tsϕkdt︸ ︷︷ ︸
1

+

n∑
k=0

(−1)k(βk+1 − βk)
1

Γ(s)

∫ ∞
0

ts
d

dt
Tr
(
e−t∆kα

)
dt︸ ︷︷ ︸

2

.

On the one hand, via integration by parts, 2 becomes

n∑
k=0

(−1)k+1(βk+1 − βk)
s

Γ(s)

∫ ∞
0

ts−1Tr
(
e−t∆kα

)
dt =:

n∑
k=0

(−1)k+1(βk+1 − βk)sζ(α,∆k, s).

Since res(α) = 0, ζ(α,∆k, s) is regular at s = 0 and sζ(α,∆k, s) vanishes there;

thus 2 = 0.

On the other hand,

1

Γ(s)

∫ ∞
0

tsϕkdt =
1

Γ(s)

∫ ∞
0

tsTr
(
e−t∆kdδα

)
dt =

Γ(s+ 1)

Γ(s)
ζ(∆−1

k dδα,∆k, s)

= sζ(∆−1
k dδα,∆k, s), Γ(s+ 1) = sΓ(s),

is holomorphic at s = 0 and lims→0 sζ(∆−1
k dδα,∆k, s) = 1

2 res(∆
−1
k dδα). Therefore,

for s = 0, 1 vanishes if βk+1 − 2βk + βk−1 = 0, which has solutions (6.2.10) as in

the proof of Theorem 6.2.28. Thus, d
du log T res,βX (ρ) = ∂

∂uf(u, 0) = 0 for (6.2.10).

Finally, (6.2.12) can be retrieved from 2 in the following way. In fact,

lims→0 sζ(αk,∆k, s) = 1
2 res(αk) and for β = ω we have:

d

du
log T

res,ω
X (ρ) =

∂

∂u
f(u, 0) =

1

2

n∑
k=0

(−1)k+1res(αk).

. �
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An application of the same technique yields a motivation for the weights in the

de�nition of the analytic torsion. In fact, by De�nition 6.2.21, we could study a

more general analytic torsion,

log T βX(ρ) =
1

2

n∑
k=0

(−1)k+1βk log detζ∆k, β ∈ Rn+1,

and �nd the weights β that correspond to a smooth invariant of X, in analogy with

Theorem 6.2.28. In fact, (6.2.15) can be accounted for the underlying similarity of

the results for analytic and residue analytic torsions.

Theorem 6.2.32. Let X be a closed oriented n-dimensional manifold, with n

odd and ρ : π1(X)→ O(N) an acyclic orthogonal representation. Then the gener-

alized analytic torsion log T βX(ρ) is a smooth invariant if β equals:

1 = (1, . . . , 1) or ω = (0, 1, . . . , n).(6.2.17)

If β = 1 we have that the log T
1
X(ρ) vanishes identically.

Proof. The proof is a generalization of the proof of Theorem 2.1, [65], and

Remark 6.2.31. Set

f(u, s) :=
1

2

n∑
k=0

(−1)kβk

∫ ∞
0

ts−1Tr
(
e−t∆k

)
dt, <(s)� 0.

Then f(u, 0) = log T βX(ρ) and for <(s) large:

∂

∂u
f(u, s) =

1

2

n∑
k=0

(−1)k+1βk

∫ ∞
0

tsTr
(
e−t∆k∆̇k

)
dt.(6.2.18)

If we set ϕk := Tr
(
e−t∆kdδα

)
and θk := Tr

(
e−t∆kδdα

)
as in Remark 6.2.31, then

by the same manipulation we obtain

∂

∂u
f(u, s) =

1

2

∫ ∞
0

ts
n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)ϕkdt︸ ︷︷ ︸
1

+
1

2

n∑
k=0

(−1)k(βk+1 − βk)

∫ ∞
0

ts
d

dt
Tr
(
e−t∆kα

)
dt︸ ︷︷ ︸

2

.

By integration by parts, 2 becomes

s

2

n∑
k=0

(−1)k+1(βk+1 − βk)

∫ ∞
0

ts−1Tr
(
e−t∆kα

)
dt︸ ︷︷ ︸

=:g(u,s)

.
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and since g(u, s) has no pole at s = 0 (Theorem 2.1, [65]), 2 =0 at s = 0. On the

other hand,∫ ∞
0

tsTr
(
e−t∆kdδα

)
dt = Γ(s+ 1)Tr(∆−sk ∆−1

k dδα)|mer = Γ(s+ 1)ζ(∆−1
k dδα,∆k, s)

is holomorphic at s = 0, since res(∆−1
k dδα) = 0 as ∆−1

k dδα is odd class (as in the

proof of (i) of Theorem 6.2.28). Therefore, for s = 0,

1 =
1

2

n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)ζ(∆−1
k dδα,∆k, 0) = 0

if βk+1 − 2βk + βk−1 = 0, which has solutions (6.2.10) as in the proof of Theorem

6.2.28. Thus, d
du log T βX(ρ) = ∂

∂uf(u, 0) = 0 when (6.2.10) hold.

The fact that log T
1
X(ρ) = 0 follows from Proposition 6.2.6.

�

Corollary 6.2.33. LetX be closed and let TβX(ρ) = 1
2

⊕n
k=0(−1)k+1βk log ∆k

be its logarithmic torsion, for a choice of orthogonal representation ρ. If n is even,

non-trivial torsion invariants are the e residue torsions for β = 1 or β = ω and

coincide with the classical or derived Euler characteristics:

log T resX (ρ)′ = res(TωM (ρ)) = χ′(X,Eρ) =
n

2
χ(X,Eρ) =

n

2
log T

res,1
X (ρ),

while if n is odd, a non-trivial torsion invariant is the analytic torsion for β = ω

and coincides with the R-torsion:

TRζ(TωM (ρ)) = log TX(ρ) = log τX(ρ).

Corollary 6.2.34. The class of the logarithmic torsion TβX(ρ) ∈ ΨZ/[ΨZ,ΨZ]

for β = 1 or β = ω does not depend on the metric and therefore is a smooth

invariant of X.

Proof. Theorem 6.2.28 shows that the residue torsion is a smooth invariant if

β = 1 or β = ω. Since res is the unique trace for ΨZ := ΨZ(X,Λ(X)⊗Eρ) (§1.5.4,

[75]), it pushes down to an isomorphism r̃es : ΨZ/[ΨZ,ΨZ] ∼= C by Lemma 1.2.4.

Hence,

r̃es

(
d

du
TβM (ρ)

)
=

d

du
r̃es
(
TβM (ρ)

)
=

d

du
log T res,βM (ρ) = 0 =⇒ d

du
TβM (ρ) = 0,

i.e. d
duT

β
M (ρ) ∈ [ΨZ,ΨZ].

�



6.3. TORSION AS A LOGTQFT 151

6.3. Torsion as a LogTQFT

Theorem 6.2.28 can be used to de�ne a LogTQFT. Let us consider

FZ : Cob∗n → C-Alg, M 7→ FZ(M) := ΨZ(M,Λ(M)).

Then FZ is a strict pretracial monoidal product representation (see (2.24) of �2.1,

[72], for the proof). Thus, for X ∈ mor(M0,M1), ∂X = Y −0 t Y1, we can de�ne a

simplicial map log : NCobn → FZ,Π(Cob∗n) as

logM0tM1
X := πM0tM1

◦ κ]

(
1

2

n⊕
k=0

(−1)kβk log ∆k,Y0
⊕ 1

2

n⊕
k=0

(−1)k+1βk log ∆k,Y1

)
,

(6.3.1)

with πM0tM1
◦κ] : F (Y0tY1)→ F (M0tM1)/[F (M0tM1), F (M0tM1)] as usual.

Then, with respect to the residue trace, we obtain as character:

res
(

logβM0tM1
X
)

= −1

2

n∑
k=0

(−1)k+1βk res log ∆k,Y0
+

1

2

n∑
k=0

(−1)k+1βk res log ∆k,Y1

= − log T res,βY0
+ log T res,βY1

.(6.3.2)

Theorem 6.3.1. (6.3.1) is a LogTQFT.

Proof. We only have to check log-additivity, which follows in a straightfor-

ward way from the additivity of res
(

logβM0tM1
X
)
and the fact that res is the

unique trace for ΨZ. The additivity of res
(

logβM0tM1
X
)
is also straightforward

thanks to the strategic choice of the sign.

�

Remark 6.3.2. res
(

logβM0tM1
X
)
is non trivial only if n is odd (and hence

dim is even). Also, the log-determinants (6.3.2) equal the homotopy invariants

χ(M1)− χ(M0) if β = 1 or χ′(M1)− χ′(M0) if β = ω.

If we restrict to the category of h-cobordisms h-Cobn, then we can consider

the character arising from the zeta trace. By h-Cobn we mean a category whose

objects are obj(Cobn) and whose morphisms W ∈ morh-Cobn(M0,M1), called

an h-cobordism, are cobordisms W ∈ morCobn(M0,M1) for which the inclusions

ιi : Mi →W are homotopy equivalences (or, equivalently, such that Mi are defor-

mation retracts of W).

Remark 6.3.3. If we want to obtain smooth invariants, we will need acyclicity.

Thus, the objects should be considered a pairs (M,ρ) where ρ : π1(M) → O(N)

is an acyclic representation (generating the �at associate bundle Eρ). In this way,
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π1(W ) = π1(M0) = π1(M1) =: π1 and for every composable h-cobordism we will

have the same orthogonal representation ρ : π1 → O(N) (and thus the same coe�-

cient bundle Eρ) to consider.

Therefore, let us consider a log-functor de�ned as (6.3.1), but now restricted

to h-Cobn, i.e. log : Nh-Cobn → FZ,Π(h-Cob∗n). Then, with respect to the zeta

trace, we obtain as character:

TRζ

(
logβM0tM1

X
)

=− 1

2

n∑
k=0

(−1)k+1βk TRζ log ∆k,Y0

+
1

2

n∑
k=0

(−1)k+1βk TRζ log ∆k,Y1

=− log T βY0
(ρ) + log T βY1

(ρ),

which is, for β = ω, the di�erence of the analytic torsions of the boundary compo-

nents. The latter coincides, for n even, with log det τWh(X), where τWh(X) is the

Whitehead torsion of X (see �3.4, [72] for details).

Remark 6.3.4. When restricted to h-Cobn, the character res
(

logβM0tM1
X
)

is always trivial for β = 1 or β = ω. In fact, it would depend on the di�erence

χ(M1) − χ(M0), which is always vanishing when M0 and M1 are homotopically

equivalent.

6.4. Residue Analytic Torsion for families

We recall from �4.4 that if M ↪→ M → B is a smooth �bre bundle with

closed �bre M ∼= Mb, b ∈ B, and E → M is a family of vector bundles with �at

connection ∇E , we have a natural family of de Rham operators D = dM + δM

acting on Ωvert(M, E) ∼= C∞(B,W) (recall thatW := π∗(Λπ(M)⊗ E)→ B) and a

family of Hodge Laplacians ∆M := (dM + δM )2 ∈ Ψ2
vert(M,Λπ(M)⊗ E).

Together with the families of exterior derivatives and coderivatives, we also have

the natural exterior derivative over the total spaceM, dM : Ω(M, E)→ Ω(M, E).

Proposition 6.4.1 (Proposition 3.4, [9]). dM is a �at superconnection of total

degree 1 on Λπ(M)⊗ E such that

dM = dM +∇W + iT ,(6.4.1)

where iT ∈ Ω2(B,Hom(W•,W•−1)) is a 2-form (which depends on the curvature

T of the �bre bundle).
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The family of Hodge operators de�ning δM also de�nes an adjoint supercon-

nection

δM = δM + (∇W)∗ − T ∧ ·(6.4.2)

(Proposition 3.7, [9]). Together with dM, we obtain the superconnection dM+δM ∈

A(B,Ψ1(M,Λπ(M)⊗E)) (Proposition 3.9, [9]) adapted to the family of de Rham

operators dM + δM (De�nition 4, [62]). In the same way, the Laplacian over M,

∆M := dM + δM : Ω(M, E) → Ω(M, E), is adapted to the family of Laplacians

∆M : Ωvert(M, E)→ Ωvert(M, E).

Let H∗(M,E)b =
⊕dimM

i=0 Hi(Mb, Eb) be the cohomology of (Ω(Mb, Eb), db).

It is the �bre of a Z-graded vector bundle H∗(M,E)→ B, the cohomology bundle

of W → B (De�nition 3.13, [9]). Since E → M is �at, the Chern character of

H∗(M,E), ch(H∗(M,E)) ∈ H∗(B,R), actually corresponds to rk(E)χ(M) ∈ Z.

By Hodge Theory,

H∗(M,E)b ∼= ker(db + δb) ∼= ker(∆b),

which assures the existence of Z-graded vector bundles ker(dM + δM ) → B and

ker(∆M ) → B, with H∗(M,E) ∼= ker(dM + δM ) ∼= ker(∆M ). Let ΠH∗ denote the

projection of Ωvert(M, E) onto H∗(M,E).

Remark 6.4.2. For Q ∈ A(B,Ψm(M, E)) there is a natural notion of classical

symbol (with di�erential form coe�cients) and, when Q is invertible and admissible

with spectral cut θ (De�nition 4.3.5), one can de�ne complex powers and logarithms

as for the single operator case:

i) Q−sθ = i
2π

∫
C λ−sθ (Q− λI)−1dλ ∈ A(B,Ψ(M, E)) (Lemma 1, [62]);

ii) logθQ = d
ds |s=0

Qsθ and (logθQ)[0] = logθQ[0] ∈ Ψ0
vert(M, E) (Lemma 2,

[62]).

If Q is not invertible, then Q + ΠQ[0]
is so, where ΠQ[0]

is the orthogonal pro-

jection onto kerQ[0], which is a well-de�ned vector bundle over B if we assume

dim ker(Q[0])b constant. In this case, logQ := logθ(Q+ ΠQ[0]
).

Remark 6.4.3. For a family of ψdo-valued forms Q ∈ A(B,Ψm(M, E)) it is

possible also to de�ne a Wodzicki residue trace and a zeta-trace in a natural way

(�3, [62]). In particular, there exists a well-de�ned residue trace density resx(Q) ∈

C∞(M, π∗Λ(B)) (which is de�ned in analogy to the single operator case), and via
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integration along the �bre a residue trace:

res(Q) :=

∫
M/B

resx(Q)dx ∈ Ω∗(B).

If also Q =
∑dimB
k=0 Q[k] ∈ A(B,Ψm(M, E)) satis�es ordQ[0] = q0 > 0 and

qk ≤ q0 ∀k = 0, . . . ,dimB, qk := ordQ[k],(6.4.3)

then a res-logarithm can be de�ned (�3, [62]):

res logQ :=

∫
M/B

resx(logQ)dx ∈ Ω∗(B).

Theorem 6.4.4 (From Theorem 3, [62]). Let Q ∈ A(B,Ψm(M, E)) be admis-

sible and satisfy (6.4.3). Assume also that kerQ[0] → B is a well-de�ned vector

bundle and consider R ∈ A(B,Ψm(M, E)) such that R[k] is a di�erential operator

for each k. Then:

− 1

q0
res (R logQ) = ζ(R,Q, 0)|mer + tr

(
RΠkerQ[0]

)
∈ Ω∗(B).

Remark 6.4.5 (�4, [62]). A ζ-regularization is clearly well-de�ned also in this

family setting, hence giving rise to a meromorphic map ζ(R,Q, 0)|mer. Moreover,

as for the single operator case, ζ, res and TRζ for families are related by the same

formulas.

This applies to superconnections, thus yielding:

Theorem 6.4.6 (From Theorem 4, [62]). Let Q be a superconnection adapted

to a smooth family of formally self-adjoint elliptic pseudodi�erential operators

P = Q[0] ∈ A0(B,Ψm(M, E)) satisfying (6.4.3). Assume also that kerQ[0] → B

is a well-de�ned vector bundle. Then:

− 1

2q0
res
(
Q2k logQ2

)
= ζ(Q2k,Q2, 0)|mer + tr

(
Q2kΠkerQ[0]

)
∈ Ω∗(B)

is closed and ζ(Q2k,Q2, 0)|mer is exact. Therefore:

− 1

2q0
res
(
Q2k logQ2

)
= tr

(
Q2kΠkerQ[0]

)
∈ H∗(B,R)

Corollary 6.4.7. − 1
2q0

res logQ2 = tr
(
ΠkerQ[0]

)
∈ Z

Proof. As kerQ[0] → B is assumed to be a well-de�ned vector bundle, the

function b 7→ tr
(
ΠkerQ[0],b

)
is locally constant.

�
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Definition 6.4.8. Given an (n+ 1)-tuple β = (β0, . . . , βn) ∈ Rn+1, we de�ne

the family torsion logarithm to be the operator:

TM :=
1

2

dimM∑
k=0

(−1)k+1βk log ∆Mk ∈ A(B,ΨZ(M, E))

The family analytic residue torsion T res,β
M is the class in H∗(B,R) of the character

of TM with respect to the residue trace, i.e.

T res,β
M := res TM =

1

2

dimM∑
k=0

(−1)k+1βkres log ∆Mk ∈ H∗(B,R).

Theorem 6.4.9. LetM→ B be a �bre bundle with closed oriented n-dimensional

�bre M and E → X �at Hermitian vector bundle. Then:

i) if n is odd, T res,β
M = 0 ∀β ∈ Rn+1;

ii) if n is even, T res,β
M is a smooth invariant if β equals:

1 = (1, . . . , 1) or ω = (0, 1, . . . , n).(6.4.4)

The corresponding family residue analytic torsions are the Euler charac-

teristic and derived Euler characteristic of the �ber:

T
res,1
M = χ(X,E) and T

res,ω
M = χ′(X,E).

Finally, for a smooth path of vertical metrics u 7→ gM/B(u) we have

d

du
T

res,ω
M (u) =

1

2

n∑
k=0

(−1)k+1 resΛk︸ ︷︷ ︸
=0

, Λk := (αk,b)b∈B .

Proof. (i) By (6.4.1) and (6.4.2), dM + δM satis�es (6.4.3) and is a smooth

form with di�erential operator coe�cients. Then log ∆M−log ∆M ∈ A(B,ΨZ(M, E))

(Lemma 2, [62]), and hence log ∆M, is a sum of forms whose coe�cients are log-

arithms of di�erential operator, hence odd-class and thus the integration of the

�bre of its residue density vanishes in odd (�bre) dimension, as in the proof of (i)

Theorem 6.2.28.

(ii) If n is even, then the proof works as for the single operator case, �berwise.

In fact, the change in the metric generates the vertical multiplication operator Λk

for which the family Wodzicki residue vanishes, as explained in �3 of [62].

�

Remark 6.4.10. As for the single manifold case, we can de�ne a LogTQFT

(this time a higher one) from the family residue torsion:

log : NFCobn(B)→ HC∗ (F (FCob∗n))
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with logM0tM1
W := T res,β

M0
− T res,β

M1
∈ H0(B). Its properties are easy to check

and it represents a rather simple higher LogTQFT, as its higher order terms are all

zero.

6.5. Manifolds with boundary

6.5.1. Analytic Torsion of manifolds with boundary. When X has a

non-empty boundary Y , Green's formula yields:

〈∆ω, θ〉X = 〈ω,∆θ〉X +

∫
Y

ω ∧ ∗dθ −
∫
Y

θ ∧ ∗dω +

∫
Y

δω ∧ ∗θ −
∫
Y

δθ ∧ ∗ω,

(6.5.1)

for ω, θ ∈ Ω(X,Eρ) ((2.8), [18]). Hence, ∆ : Ω(X,Eρ) → Ω(X,Eρ) becomes self-

adjoint when relative or absolute boundary conditions are imposed.

Definition 6.5.1 (�2.1, [18]). Relative and absolute boundary conditions, re-

spectively, for ∆ = dδ + δd are de�ned as:

Relative:

Rγω = 0

Rγ(d+ δ)ω = Rγδω = 0

Absolute:

Aγω = 0

Aγ(d+ δ)ω = Aγdω = 0

Its realization ∆R is the L2-closure of an unbounded operator acting like ∆ and

with domain {ω ∈ Ω(X,Eρ)|Rγω = 0,Rγδω = 0}. When absolute boundary

conditions will be considered, then we will write ∆A.

Remark 6.5.2 (�7, [12]). Relative, resp. absolute, boundary conditions are

equivalent to:

Relative:

Rγω = 0

Aγ∂tω = 0

Absolute:

Aγω = 0

Rγ∂tω = 0,

i.e. are normal (according to the terminology in �3.3, [26]). For second order

operators, this stands for boundary conditions of the form

T =

 T0

T1

 : C∞(X,E)→ C∞(Y,E′)⊕ C∞(Y,E′), with

T0 = s0(y)γ + T ′0 and T1 = s1(y)γ∂t + S1,0γ + T ′1,

with s0(y) and s1(y) surjective endomorphisms. For example, s0(y) = R, s1(y) = A,

and T ′0 = S1,0 = T ′1 = 0 for relative boundary conditions.

With relative, resp. absolute, boundary conditions, (6.5.1) yields that ∆ be-

comes self-adjoint. Therefore the realization ∆k,R, resp. ∆k,A has a discrete set
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of non-negative eigenvalues accumulating at in�nity and a corresponding orthonor-

mal basis of eigenvalues for L2(X,E), which satisfy the boundary conditions (for

instance, by Lemma 1.9.1, [23]).

Each ∆k,B has R− as a ray of minimal growth, i.e. θ = π is an Agmon angle

for ∆k,B . Therefore, for <(s) > 0 and C the Laurent Loop (6.2.6),

∆−sk,B :=
i

2π

∫
C

λ−s (∆k,B − λ)−1dλ,

is a holomorphic family ([77], [78]), and is trace class for <(s) > n/2 ([77]). There-

fore, if Tr is the classical trace, Tr(∆−sk,B) is holomorphic for <(s) > n/2 and by

linearity of Tr:

d

ds
Tr(∆−sk,B) = Tr(

d

ds
∆−sk,B) for <(s) > n/2.

Tr(∆−sk,B) and Tr( dds∆−sk,B) can be extended meromorphically and are holomorphic

at s = 0 (by expansion (1.12), [28]). Therefore, if we de�ne the zeta function to be

the meromorphic extension ζk,B(s) := Tr(∆−sk,B)|mer, we obtain

d

ds
ζk,B(s) = Tr(

d

ds
∆−sk,B)|mer = −Tr(log ∆k,B ·∆−sk,B)|mer,

where:

log ∆k,B := lim
s↘0

i

2π

∫
C

log λλ−s (∆k,B − λ)−1dλ

has been de�ned by Grubb and Gaarde, (2.5) in [22]. Therefore by [28] we can

conclude:

Lemma 6.5.3.

d

ds
ζ∆k,B

(0) = −TRζ(log ∆k,B),(6.5.2)

for TRζ the generalization of the ζ-trace to Boutet de Monvel calculus, discussed

in [28].

Remark 6.5.4 (�2.2, [18]; �7, [65]). The spectral zeta function of ∆k,B, with

B either R or A, is also equivalently de�ned as:

ζk,B(s) := ζ(∆k,B, s) =
∑
λi

λ−si =
1

Γ(s)

∫ ∞
0

ts−1 Tr
(
et∆

k
B(I −Πk)

)
dt

for λ /∈ spec(∆B), et∆k,B the heat operator associated to ∆k,B, and Πk the orthog-

onal projection onto the generalized ker(∆k,B). The generalization to ζ(A,∆k,B, s)

is straightforward.
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Lemma 6.5.5.

n∑
k=0

(−1)kkζk,R(s) = (−1)n−1
n∑
k=0

(−1)kkζk,A(s).(6.5.3)

Proof. Since ∆k,R, resp. ∆k,A has a discrete set of non-negative eigenvalues

accumulating at in�nity, the proof follows the one in the closed case, i.e. the proof

of Theorem 2.3, [65]. Let λ 6= 0 an eigenvalue for ∆k,R and denote by

Ek,R(λ) = {ω ∈ Ωk(X,Eρ)| ∆ω = λω,Rγω = Rγδω = 0}

the associated eigenspace. Then:

Λ′k(λ) =
1

λ
dδ and Λ′′k(λ) =

1

λ
δd

are orthogonal projections of Ek,R(λ) onto Fk,R(λ) = {ω ∈ Ek,R(λ)| dω = 0}

and Gk,R(λ) = {ω ∈ Ek,R(λ)| δω = 0}, respectively. Also, by construction,

Λ′k(λ) + Λ′′k(λ) = I. Since the map 1√
λ
d is an isomorphism with inverse 1√

λ
δ, we

conclude Gk,R(λ) ∼= Fk+1,R(λ) and thence:

gk,R(λ) = |Gk,R(λ)| = |Fk+1,R(λ)| = fk+1,R(λ).

Therefore:

ζk,R(s) =
∑
λ6=0

λ−s|Ek,R(λ)| =
∑
λ6=0

λ−s(fk,R(λ) + fk+1,R(λ))

=
∑
λ6=0

λ−s(gk,R(λ) + gk−1,R(λ)) and

n∑
k=0

(−1)kkζk,R(s) =

n∑
k=1

(−1)k
∑
λ6=0

λ−sfk,R(λ) = −
n−1∑
k=0

(−1)k
∑
λ6=0

λ−sgk,R(λ).

By Proposition 0.3.3, ∗R = A∗, which yields Fk,R(λ) ∼= Gn−k,A(λ) and there-

fore fk,R(λ) = gn−k,A(λ) and

ζk,R(s) = ζn−k,A(s).(6.5.4)

In conclusion:

n∑
k=0

(−1)kkζk,R(s) = −
n−1∑
k=0

(−1)k
∑
λ6=0

λ−sgk,R(λ) =

n∑
k=1

(−1)k
∑
λ 6=0

λ−sfk,R(λ)

=

n∑
k=1

(−1)k
∑
λ6=0

λ−sgn−k,A(λ) =

n−1∑
k=0

(−1)n−k
∑
λ6=0

λ−sgk,A(λ)

= (−1)n
n−1∑
k=0

(−1)k
∑
λ6=0

λ−sgk,A(λ) = (−1)n−1
n∑
k=0

(−1)kkζk,A(s).

�
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Remark 6.5.6. It came to our attention that (6.5.3) had been proven by W.

Lück, [47], Proposition 2.10 (unsurprisingly called Poincaré duality for analytic

torsion). We stress the fact that the approach is very similar and is based on the

proof of Theorem 2.3, [65]. This latter result can be obtained as a corollary for n

even and Y = ∅, since in this case ζk,R(s) = ζk,A(s) = ζk(s), tautologically.

Corollary 6.5.7.

n∑
k=0

(−1)kζk,R(s) =

n∑
k=0

(−1)kζk,A(s) = 0.

Proof. Since ζk,R(s) = ζn−k,A(s), from (6.5.3) we have:

0 =

n∑
k=0

(−1)kkζk,R(s) + (−1)n
n∑
k=0

(−1)kkζk,A(s)

=

n∑
k=0

(−1)kkζk,R(s) + (−1)n
n∑
k=0

(−1)kkζn−k,R(s)

=

n∑
k=0

(−1)kkζk,R(s) + (−1)n
n∑
k=0

(−1)n−k(n− k)ζk,R(s)

=

n∑
k=0

(−1)kkζk,R(s) +

n∑
k=0

(−1)k(n− k)ζk,R(s)

= n

n∑
k=0

(−1)kζk,R(s) = (−1)nn

n∑
k=0

(−1)kζk,A(s)

�

Remark 6.5.8. Unlike for even dimensional closed manifolds,
∑n
k=0(−1)kkζk,R(s)

may not vanish in general, as we can see from the following examples.

Let X = [0, R] (i.e. n = 1 and Y = {0} t {R}); the eigenvalue problem for

∆0 = −∂2
x with relative boundary conditions is just the harmonic oscillator with

Dirichlet boundary conditions. As it is well-known, its eigenvalues are λ = n2π2

R2 ,

n ∈ N, and therefore:

ζ0,R(s) = 2
R2s

π2s

∞∑
n=1

n−2s = 2
R2s

π2s
ζR(2s),

where ζR(s) is the Riemann zeta function. Consequently,

1∑
k=0

(−1)kkζk,A(s) = −ζ1,A(s)
(6.5.4)

= −ζ0,R(s) = −2
R2s

π2s
ζR(2s)

does not vanish identically and
∑1
k=0(−1)kkζk,A(0) = −2ζR(0) = 1.

Analogously, let now X be the cylinder [0, R]× S1, with x ∈ [0, R] the normal

coordinate; hence, ∆ = −∂2
x + ∆S1

and ζ1,R(s) = ζ0,R(s) + ζ2,R(s) by Corollary
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6.5.7. Therefore,

2∑
k=0

(−1)kkζk,R(s) = −ζ1,R(s) + 2ζ2,R(s) = ζ2,R(s)− ζ0,R(s) = ζ0,A(s)− ζ0,R(s).

Since ∆0 with relative/absolute boundary conditions corresponds to the Laplacian

on functions with Dirichlet/Neumann conditions, we have ζ0,A(s)−ζ0,R(s) = ζS
1

0 (s)

(�3.2, [37]). In particular, by an easy calculation one obtains that ζS
1

0 (s) = 2ζR(2s).

As in the closed manifold case, once a notion of zeta function holomorphic at

zero is established, one can de�ne the analytic torsion.

Definition 6.5.9 (7.2, [65]). Let X be a manifold with non-empty boundary

and ρ : π1(X)→ O(N) an orthogonal representation. Then the analytic torsion

with relative boundary conditions TX,R(ρ) of X is de�ned as:

log TX,R(ρ) =
1

2

n∑
k=0

(−1)kk
d

ds
ζk,R(0).

The analytic torsion with absolute boundary conditions TX,A(ρ) is analogously

de�ned.

Remark 6.5.10 ([18]). By (6.5.3), log TX,A(ρ) = (−1)n−1 log TX,R(ρ).

Vishik [83] generalized Cheeger-Müller theorem to:

Theorem 6.5.11 (1.4, [83]). X = X1 ∪Y1 X2 and Y = ∂X

TX(ρ) = 2
χ(Y )

2 τX(ρ) and log TX1∪Y1
X2(ρ) = 2

χ(Y )
2 +χ(Y1)τX(ρ).

6.5.2. Analytic Residue Torsion of manifolds with boundary. From

(6.5.2) we can rewrite the analytic torsion as:

log TX,B(ρ) =
1

2

n∑
k=0

(−1)k+1kTRζ(log ∆k,B), B = R or A.

Hence once again our analysis shifts to the more fundamental invariant:

1

2

n∑
k=0

(−1)k+1k log ∆k,B ,

which now belongs to the Bouted de Monvel calculus (from [22]). There, the residue

trace has been exteded by work of Fedosov, Golse, Leichtnam, and Schrohe (we only

refer to [21] for the de�nition and a detailed exposition) and is the unique trace

of this algebra. Hence, we have a well-de�ned res log ∆k,B , which we can use to



6.5. MANIFOLDS WITH BOUNDARY 161

de�ne a (generalized) residue analytic torsion of X with either relative or absolute

boundary conditions:

log T res,βX,B (ρ) =
1

2

n∑
k=0

(−1)k+1βk res log ∆k,B ,(6.5.5)

where B stands for either R or A.

Theorem 6.5.12. Let X be an oriented manifold with boundary Y . Then

log T res,βX,B (ρ) is a smooth invariant if β equals

1 = (1, . . . , 1) or ω = (0, 1, . . . , n).

The corresponding residue analytic torsions are:

log T
res,1
X,B (ρ) = χB(X,Eρ) and log T

res,ω
X,B (ρ) = χ′B(X,Eρ) +

n∑
k=0

(−1)kkζk,B(0).

Finally, for a smooth path of metrics [0, 1] 3 u 7→ gX(u) for which the normal

direction to the boundary is the same, we have:

d

du
log T

res,ω
X,B (ρ) =

1

2

n∑
k=0

(−1)k+1 res αk.

Proof. For the proof, we follow the idea of Remark 6.2.31, almost identically.

In fact, by [27], we have that:

−1

2
res log ∆k,B = ζk,B(0) + dim ker ∆k,B ,(6.5.6)

as relative/absolute boundary conditions are normal. The claim will follow as for

the closed case, since appropriate trace asymptotic expansions were established by

Grubb and Vishik.

By (6.5.6), we can re-write (6.5.5) as:

log T res,βX,B (ρ) =

n∑
k=0

(−1)kβk ζk,B(0) +

n∑
k=0

(−1)kβk dim ker ∆k,B .

Let [0, 1] 3 u 7→ gX(u) be a smooth path of metrics for which the normal direc-

tion to the boundary Y is the same and consider d
du log T res,βX,B (ρ). Since ker ∆k,B

is isomorphic to relative/absolute de Rham cohomology, it is independent of the

metric (see for instance the proof of Proposition 6.4, [65], or (2.5) in [83]) and the

derivative reduces to:

d

du
log T res,βX,B (ρ) =

d

du

n∑
k=0

(−1)kβk ζk,B(0).



6.5. MANIFOLDS WITH BOUNDARY 162

Therefore, without loss of generality in this context, we can consider ∆k,B to be

invertible. Again, ζk,B(s) = 1
Γ(s)

∫∞
0
ts−1Tr(e−t∆k,B(u))dt and we can study the

derivative at s = 0 of:

f(u, s) :=

n∑
k=0

(−1)kβk
1

Γ(s)

∫ ∞
0

ts−1Tr(e−t∆k,B(u))dt.

By Theorem 6.1, [65], ∂
∂uTr(e

−t∆k,B ) = −tTr((δαd − dαδ + αdδ − αδd)e−t∆k,B )

and, by the proof of Proposition 2.15, [83], we can di�erentiate under the integral

sign, thus obtaining:

∂

∂u
f(u, s) =

n∑
k=0

(−1)kβk
1

Γ(s)

∫ ∞
0

ts−1 ∂

∂u
Tr(e−t∆k,B )dt

=

n∑
k=0

(−1)k+1βk
1

Γ(s)

∫ ∞
0

tsTr((δαd− dαδ + αdδ − αδd)e−t∆k,B )dt.

Moreover, from Theorem 7.3 of [65], Tr(dαδe−t∆k,B ) = Tr(αδde−t∆k−1,B ) and

Tr(δαde−t∆k,B ) = Tr(αdδe−t∆k+1,B ). Thus, if we set θk := Tr(αδde−t∆k,B ) and

ϕk := Tr(αdδe−t∆k,B ), we obtain:

∂

∂u
f(u, s) =

n∑
k=0

(−1)k+1βk
1

Γ(s)

∫ ∞
0

ts(ϕk+1 − θk + ϕk − θk−1)dt,

exactly as in Remark 6.2.31. Therefore, we have to face the same calculation for

the closed case, which we know yields:

∂

∂u
f(u, s) =

1

Γ(s)

∫ ∞
0

ts
n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)ϕkdt

+
1

Γ(s)

n∑
k=0

(−1)k(βk+1 − βk)

∫ ∞
0

ts
d

dt
Tr
(
αe−t∆k,B

)
dt

=

n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)
1

Γ(s)

∫ ∞
0

tsTr(αdδe−t∆k,B )dt

+ s

n∑
k=0

(−1)k+1(βk+1 − βk)
1

Γ(s)

∫ ∞
0

ts−1
(
αe−t∆k,B

)
dt

=

n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)sζ(αdδ∆−1
k,B ,∆k,B , s)

+

n∑
k=0

(−1)k+1(βk+1 − βk)sζ(α,∆k,B , s).

By (1.14), [28]:

∂

∂u
f(u, 0) =

1

2

n∑
k=1

(−1)k(βk+1 − 2βk + βk−1)res(αkdδ∆
−1
k,B)

+
1

2

n∑
k=0

(−1)k+1(βk+1 − βk)res(αk).
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Since αk is the usual multiplication operator, res(αk) = 0, while the �rst term on

the right hand side vanishes if βk+1− 2βk +βk−1, as in the closed case. We remark

that for β = ω we have, once again:

log T
res,ω
X,B (ρ) =

1

2

n∑
k=0

(−1)k+1 res(αk)︸ ︷︷ ︸
=0

Therefore, if β = 1,

log T
res,1
X,B (ρ) =

n∑
k=0

(−1)kζk,B(0) +

n∑
k=0

(−1)k dim ker(∆k,B) = 0 + χB(X,Eρ)

by Corollary 6.5.7, where χB(X,Eρ) is the relative/absolute Euler characteristic,

while if β = ω,

log T
res,ω
X,B (ρ) =

n∑
k=0

(−1)kk ζk,B(0) +

n∑
k=0

(−1)kk dim ker(∆k,B)

=

n∑
k=0

(−1)kk ζk,B(0) + χ′B(X,Eρ),

where χ′B(X,Eρ) is the relative/absolute derived Euler characteristic.

�

Definition 6.5.13. The absolute and relative derived Euler characteristics are

the integers de�ned as:

χ′(X) :=

n∑
k=0

(−1)kk dimHk
A(X) and χ′(X,Y ) :=

n∑
k=0

(−1)kk dimHk
R(X).

By Poincaré Duality, we can obtain some straightforward identities, as follows.

Theorem 6.5.14. χ′(X) + (−1)nχ′(X,Y ) = nχ(X).

Proof. Let bkA = dimHk
A(X) and bkR = dimHk

R(X); then bkA = bn−kR by

Poincaré Duality, and:

χ′(X) =

n∑
k=0

(−1)kkbkA =

n∑
k=0

(−1)kkbn−kR =

n∑
k=0

(−1)n−k(n− k)bkR

= (−1)nn

n∑
k=0

(−1)kbkR + (−1)n−1
n∑
k=0

(−1)kkbkR

= (−1)n−1χ′(X,Y ) + (−1)nnχ(X,Y ) = (−1)n−1χ′(X,Y ) + nχ(X),

where the last equality holds because χ(X) = (−1)nχ(X,Y ).

�
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Corollary 6.5.15. If n is odd, then:

χ′(X) = χ′(X,Y ) + χ′(Y ) +
1

2
χ(Y ).

Proof. Since n is odd, n−1 is even and by Corollary 6.2.15 χ′(Y ) = n−1
2 χ(Y ).

From χ(X) = 1
2χ(Y ), we obtain χ′(Y ) = (n − 1)χ(X). Hence, by the previous

theorem, n
n−1χ

′(Y ) = nχ(X) = χ′(X)− χ′(X,Y ).

�

Remark 6.5.16. Interestingly enough, χ′(X) = χ′(X,Y )+χ′(Y )+ 1
2χ(Y ), does

not hold when n is even. To see this, let us considerX = Dn the n-dimensional disc.

Then H∗(D
n, Sn−1) = H∗(S

n) (at least for ∗ > 0, which is good enough for χ′) and

H∗(D
n) = H∗({pt}) by homotopy equivalence. Therefore, χ′(Dn) = χ′({pt}) = 0,

χ′(Dn, Sn−1) = χ′(Sn) = (−1)nn, and χ(Sn−1) = 1 + (−1)n−1, which do not �t in

the equation unless n is odd.

Finally, we have log-additivity of the the residue analytic torsion:

Theorem 6.5.17. Let X := X1∪NX2 with ∂X1 = Y −1 tN and ∂X2 = N−tY2.

Then, for n = dimX:

i) log T
res,ω
X,R (ρ) = n

2χ(X, ∂X) and log T
res,ω
X,A (ρ) = n

2χ(X);

ii) log T
res,ω
X,A (ρ)− log T

res,ω
X,R (ρ) = log T

res,ω
Y (ρ) + 1

2χ(Y ) = n
2χ(Y );

iii) log T
res,ω
X,R (ρ) = log T

res,ω
X1,R

(ρ) + log T
res,ω
X2,R

(ρ) + log T
res,ω
Y (ρ) + 1

2χ(Y );

iv) log T
res,ω
X,A (ρ) = log T

res,ω
X1,A

(ρ) + log T
res,ω
X2,A

(ρ)− log T
res,ω
Y (ρ)− 1

2χ(Y ).

Proof. It follows from Proposition 2.22 and 2.23, [83], after observing (6.5.6).

�

Corollary 6.5.18. For each n = dimX,
∑n
k=0(−1)kkζk,R(0) is a topological

invariant. In paricular, if n = dimX is even, then the trace logarithm is additive,

i.e.
n∑
k=0

(−1)kk log ∆X
k,B =

n∑
k=0

(−1)kk log ∆X1

k,B +

n∑
k=0

(−1)kk log ∆X2

k,B,

(where B = R or B = A) in the Boutet de Monvel calculus, modulo smoothing

operators.

Proof. Both statements follows directly from Theorem 6.5.17. In particular,

the second follows also because the residue trace is the unique trace in the Boutet

de Monvel calculus.

�
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Remark 6.5.19. As for Corollary 6.5.15, we can conjecture that the formula

χ′(X, ∂X) = χ′(X1, ∂X1) + χ′(X2, ∂X2) + χ′(N) +
1

2
χ(N)

may hold for the odd-dimensional case, but not for the even dimensional one. In

fact, if we use the values of Remark 6.5.16 for the splitting of Sn along Sn−1, we

can check that the formula holds if and only if n is odd.

Luckily, quasi-additivity holds for analytic torsion (Theorem 1.1, [83]):

log TX1∪Y1
X2

(ρ) = log TX1
(ρ) + log TX2

(ρ) + log TY1
(ρ).

Hence for dimXi odd we have a proper gluing formula for the logarithm of the

analytic torsion:

log TX1∪Y1
X2

(ρ) = log TX1
(ρ) + log TX2

(ρ).

This could be seen as the character of a LogTQFT, which we were not able to

identify at this stage. We will leave this for future work.



Concluding remarks

The categori�cation provided by log-functors can form a framework for the

study of manifold invariants. In fact, one of the goals of this thesis was to show

that such categori�cation can be generalized to �t more complicated structures and

delicate situations, such as invariants in the context of noncommutative geometry,

in the hope to understand better additive manifold invariants and possibly �nd

new ones by composition with other traces or quasi-traces (like the case of residue

analytic torsions).

As for further problems and projects arising from this research, there are several

ones that came to our attention and we would like to study for the future. Indeed,

there are other interesting extensions that could be investigated, such as a de�nition

of log-functors for (∞, n)-categories, which should lead to a conjectural logarith-

mic cobordism hypothesis, analogous to the Baez-Dolan cobordism hypothesis for

TQFTs ([48]). On (∞, 2)-categories, such log-functors should provide a functorial

setting for invariants of manifolds with corners. Moreover, it should be possible to

extend the Unoriented Logarithm Theorem (Corollary 1.4.42) to Cobn for generic

n. We expect this to be possible by generalizing the proof with handlebody methods

for higher dimensional cobordisms.

On another side, the derived Euler characteristic is just one of a whole family

of higher Euler characteristics ([63]). Its presence in the context of residue torsion

suggests that there is more to investigate about the relationship between these Euler

characteristics and Deitmar's higher analytic torsions ([20]). Also, as mentioned at

the end of Chapter 6, one can attempt to characterize (relative or absolute) residue

and analytic torsions for manifolds with boundary in terms of a LogTQFT. As a

matter of fact, they are generalized logarithms.

From the family point of view, we de�ned a family residue torsion via Pay-

cha and Scott's generalization to families of the residue and classical trace ([62]).

Therefore, by using the ζ-trace for families, we could de�ne a family analytic tor-

sion as the (quasi-)trace-character of the family torsion logarithm, which we expect

to be related to Bismut and Lott's family analytic torsion ([9]).

166
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Also, the Whitehead torsion of a manifold can be seen as the trace-character of a

LogTQFT on the subcategory of h-cobordisms and corresponds to the Reidemeister

torsion of the boundary. Our aim in this area is to show a family version of this

result and prove that Igusa-Klein torsions ([24]) can be seen as characters of a

higher log-functor.

Finally, when we were working with index theory of Dirac operators on Hilbert

Modules over C∗-algebras, we remarked that there is not much that we know about

the Calderón projector in this setting. Hence, we would like to study the Calderón

de�ned in [1] and try to prove in this context the conjecture that the index of the

realization of an elliptic pseudodi�erential operator with respect to the Calderón

projector vanishes.
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