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Abstract 
 
 

   Language is a unique human ability influenced by genetic, cultural and social factors. Decades  

of research in the field have identified those brain networks that have made the development of language in 

humans possible. This PhD thesis introduces three studies that aim to explore the anatomy of the perisylvian 

language pathways (three segments of the arcuate fasciculus) both in healthy and pathological condition, 

using dffusion tensor imaging tractography. First study examined typical developmental trajectories of the 

perisylvian language network in a normative data of 101 subjects (age range: 9-49 years). After observing 

how these pathways mature across life span, second study investigated how these are influenced by genes 

and environment in a sample of 43 adult twin pairs (26 monozygotic and 17 dizygotic pairs). The results 

showed that perisylvian language pathways exhibit distinct maturational patterns and vary in respect to 

genetic control that guides this process. Familial effects played an important role for those tracts that 

lateralised early in life (frontal lobe connections), whereas those tracts that continue to remodel throughout 

adolescence (temporo-parietal connections) were driven more by unique environmental effects. While the 

first two studies explored anatomy of perisylvian language pathways in healthy population, third study 

examined neural correlates in a pathological condition that affects language processing. This study included 

61 adults with autism spectrum disorder and 61 matched neurotypical controls. Localised abnormalities were 

identified in the left perisylvian language pathways in people with autism spectrum disorder and an 

association was found between these white matter abnormalities and severity of past language deficits. In 

conclusion, these findings may be important to furthering our knowledge of the anatomy of the perisylvian 

language pathways in healthy population. Also, they may facilitate our understanding of possible biological 

mechanisms that underpin language dysfunction in psychiatric disorders, and lead to new approaches for 

early diagnosis and treatment. 
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Outlines of the Thesis 
 
 

   The PhD thesis is broken up into five major sections describing three diffusion tractography studies  

(for a graphical representation see the following page). The first part of the thesis - Chapter 1 - offers  

an introduction to the perisylvian language pathways in the human brain and diffusion tensor imaging 

tractography. The second part of the thesis - Chapter 2 -describes the first diffusion tractography study  

on the maturation of the perisylvian language pathways using healthy cross-sectional data of children, 

adolescents and adults. The third part of the thesis tackles the questions of heritability of the perisylvian 

language network, and is divided into following two Chapters.  Chapter 3 is an introduction to imaging 

genetics and classical twin design used in the second tractography study, discussed in Chapter 4.  

Chapter 4 investigates the nature-nurture debate in relation to the anatomy of the perisylvian language 

pathways as described by diffusion tensor imaging tractography. The fourth part of the thesis - Chapter 5 

and 6 - introduces the third diffusion tractography study investigating perisylvian language pathways in 

autism. Chapter 5 is a general introduction to autism spectrum disorders. Chapter 6 describes the third 

diffusion tractography study investigating neuroanatomical and neuropsychological data on language 

impairment in autism spectrum disorders. It explores how impaired language development is associated  

with abnormalities in the perisylvian language pathways known to support language processes in the  

healthy adult brain. Finally, the fifth part of the thesis - Chapter 7 - briefly summarises the results of  

the mentioned studies and provides final conclusions. 
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Chapter 1 

 

Introduction to the perisylvian language pathways: 
brain and language 

 

 

   In the last decade tractography methods based on diffusion imaging have rekindled an interest in the 

neuroanatomical basis of language. This chapter is devoted to the harmonisation of the neuroanatomical 

findings from post-mortem dissection to more recent evidence emerging from diffusion tractography. The 

chapter will explore basic concepts linked to the anatomy of the perisylvian language pathways (i.e. the 

arcuate fasciculus), while placing them in a wider historical and evolutionary context. Further, it will discuss 

the asymmetry of the arcuate fasciculus, its heterogeneity in the normal population, and possible functional 

and behavioural correlates. The chapter also provides an introduction to diffusion tensor imaging 
tractography, a method used in this PhD study. 

 

1.1 The cerebral organisation of language: historical overview 
 
   The earliest known written document on the loss of speech is Edwin Smithʼs Surgical Papyrus from ancient 

Egypt (1600 BC) (Wilkins, 1992), which is itself based on an even earlier document. Hence, it could be 

speculated that humans have been investigating language for circa 4000 years. However, the brain as a 

possible culprit for the loss of speech remained unstudied for most of that time. Even in Greco-Roman times 

tongue paralysis and not the brain was regarded as the source of all speech disorders. The first time that the 

brain was given due importance was during the Dark and Middle Ages, when Church Fathers, influential 

theologians, claimed that the fourth ventricle of the brain was responsible for aphasia (loss of speech) 

syndromes, believing it to be the seat of memory for words. Renaissance brought further approval that 

speech disorders were due to excessive phlegm in the fourth ventricle, with Paracelsus noting that speech 

disturbances can occur with or without tongue paralysis (Finger, 2001).  
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   It was in the 19th century that speech and language were localised in the cortex, based upon phrenological 

beliefs that the cerebral cortex is subdivided into functional units. Phrenologist Franz Joseph Gall placed the 

faculty of language in the frontal lobes, and although coming close to what is known today about the 

importance of the frontal lobes for language, his deductions were merely speculations. Gall gives an example 

of his classmate with large bulging eyes who had an exceptional memory for words, and explains that his 

talent was due to the abundance of frontal lobe brain tissue protruding to push his eyes forward (Finger, 

2001). Although Gallʼs deductions were unsupported by facts, he deserves the credit for pioneering cerebral 

localisation of language function and surmising the importance of the frontal lobes. Subsequently, French 

physician Jean-Baptiste Bouillaud supported Gall's hypothesis about frontal localisation of speech, basing 

his conclusion upon 500 cases with speech pathology affecting the frontal lobes of the brain. Bouillaud was 

the first to systematically study language localisation in a bigger sample, and could be regarded as the first 

statistician in the history of neuroscience.  

 

   Analysing deficits resulting from lesions (localised damage) due to illness or injury, like Bouillaud did, is 

one of the oldest approaches to identifying the function of specific brain region (Bechtel, 2004). Upon the 

death of the patient, a correlation between the symptoms observed during life and the loss of brain 

substance found at post-mortem examination enabled neurologists to associate specific parts of the brain 

surface with certain functions (Mott, 1910). The classical example of using brain lesions to refine our 

knowledge on how the brain processes language was Paul Brocaʼs (1824-1880) study of two patients,  

Leborgne and Lelong. When Broca first encountered a 51-year old Leborgne in his surgical service in April 

1861, he had been hospitalized for circa 20 years (Bechtel, 2004). Other patients called him Tan because 

this sound and few other words were his only utterances. Similarly, patient Lelong was 84-year old labourer 

who was able to say only a few simple words (e.g. oui, non, trois, toujours) and could not write. After 

Leborgne and Lelong died, Broca performed an autopsy and revealed that both patients had a lesion 

localised in the third frontal convolution of the left hemisphere (see Fig 1.1.1). Following this, Broca gathered 

similar evidence from a number of other patients and maintained that the inability to speak was limited to this 

frontal area. Subsequently the third frontal convolution, known as Brocaʼs area, became known as the locus 

of articulate speech.  
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Fig 1.1.1 Photographs showing lateral views of the brains of Leborgne (A) and Lelong (B) adapted from Dronkers et al. 

(2007). Paul Broca preserved the organs by immersing them in alcohol; he then donated them to the Musée Dupuytren in 
Paris. 
 

   Not everyone agreed with Brocaʼs findings. Neurologist Pierre Marie published a paper in 1906 entitled 

“The third frontal convolution plays no special role whatsoever in the function of language” and stated that 

none of the older observations of Broca can be accepted because of the methodological limitations and 

inability to reveal the full extent of brain damage (Mott, 1910). A decade after Brocaʼs work, Carl Wernicke 

(1874) described a different pattern of language deficit, affecting comprehension of language following 

lesions in a part of the temporal cortex known today as Wernickeʼs area (Bechtel, 2004). This clinico-

anatomical correlation method encountered fierce opposition with the rise of holistic ideas during the first half 

of the 20th century, which started a famous holistic-localisationist controversy. John Hughlings Jackson, 

Constantin von Monakow, Henry Head, Karl Lashley and Kurt Goldstein warned that to locate the damage 

which destroys speech and to locate speech are two different things - localisation of symptoms is different 

from localisation of function. They believed that symptoms can arise also due to secondary and distant 

ʻhodologicalʼ effects. The tradition of Broca and Wernicke was revived later in the 1960s in a series of 

influential papers by Norman Geschwind, who added new insights to the brain connectivity underlying 

language function. Geschwind brought new credibility to the localisationist approach by re-interpreting the 

functional role of connections and specialized cortical areas according to evidence arising from the new 

methodologies that became available during the 20th Century (Catani and Mesulam, 2008). 

 

   Before blunt dissection methodology appeared in the 19th century, there was a lack of scientific information 

on human connectional neuroanatomy. The dissection techniques for white matter tracts developed by early 

neuroanatomists led to important anatomical discoveries about the connection pathways. Much of the current 

understanding of the anatomy of the perisylvian language pathways –i.e. the arcuate fasciculus - which will 

be explored in this PhD thesis, is based on the work of 19th century neuroanatomists, such as Johann 

Christian Reil, Karl Friedrich Burdach, Theodor Hermann Meynert, Carl Wernicke, Ludwig Lichtheim, and 

Jules Dejerine (see Fig 1.1.2).   



  16 

 
 

Fig 1.1.2 Some of the major 19th century neuroanatomists who have contributed to our understanding of the anatomy 

of the arcuate fasciculus; A) Reilʼs (1812) and B) Dejerineʼs (1895) post-mortem dissections of the arcuate fasciculus. 
 

 

   The arcuate fasciculus, a large association tract connecting perisylvian areas of the frontal, temporal and 

parietal lobes of each hemisphere was first described at the beginning of the 19th century by Johann 

Christian Reil (1809, 1812). Reil developed a dissection method whereby he soaked the brain in alcohol to 

make it more suitable for dissecting white matter bundles. Upon his discovery of the arcuate fasciculus 

arching around the Sylvian fissure of the right hemisphere, he described it as the unnamed white matter 

substance (i.e., Ungenannte Marksubstanz (Catani, et al., 2010)). Reilʼs findings were confirmed a decade 

later by Karl Friedrich Burdach (1822), who was the first to use Latin name Fasciculus Arcuatus (arcuate 

fasciculus) due to its arching shape. This name became widely accepted and remains unchanged in the 

current international nomenclature. Subsequently, Jules Dejerine (1895) confirmed the findings of the two 

German neuroanatomists, but attributed the discovery to Burdach. Dejerine further believed that the arcuate 

fasciculus was mainly composed of short associative fibres connecting neighbouring perisylvian cortex 

(Catani, 2009). Burdach and Dejerine considered the arcuate fasciculus to be part of the superior longitudinal 

fasciculus and used these two terms interchangeably in their descriptions (Martino, et al., 2012). For almost 

90 years since its first description, the functions of the arcuate fasciculus remained unknown and no 

association was made to language. The first scientist who attributed a role in language processing indirectly 

to the arcuate fasciculus was Carl Wernicke, who postulated that language relies on the integrity of a 

ʻʻpsychic reflex arcʼʼ between temporal and frontal regions (Catani, 2009). However, the arcuate fasciculus 

was not part of Wernickeʼs original anatomical model as he thought that the temporal and frontal language  
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areas were mutually interconnected by fibres passing through the external capsule and relaying in the insular 

cortex (Wernicke, 1874). Constatin von Monakow was the first to identify the arcuate fasciculus as the tract 

connecting Brocaʼs and Wernickeʼs areas in 1897, a view later accepted by Wernicke in 1908 (Geschwind, 

1967).  

 

   This view, which only in part overlapped with more complex but anatomically unproven models of language 

(e.g. Lichtheimʼs house (Lichtheim, 1887)), attracted initially the favour of many aphasiologists. However, 

others, like Pierre Marie, criticised this model and drew attention to subcortical structures involved in 

language disorders. This approach culminated in the work of Penfield, who in 1959 co-authored with Roberts 

a monograph on language, where emphasis was placed on thalamo-cortical connections rather than cortico-

cortical pathways. The arcuate fasciculus model was later revitalised by Norman Geschwind who had the 

merit of including the inferior parietal region among other language areas. Geschwindʼs model was in part 

supported by early neuroimaging studies based on radioisotope brain scanning and computerised 

tomography that permitted to refine the cortical localisation of the major cortical syndromes. Nevertheless, 

the lack of advanced methods for studying connections in the human brain forced neurologists to rely entirely 

on animal models. This approach had two inherent problems. First it did not allow to test whether tracts 

identified in monkeys have a role in language. Second it implied that tracts serving language functions are 

preserved along the phylogeny scale, which is rather speculative considering that animals do not have 

language.   

 

   Recent advances in diffusion imaging have rekindled an interest in language related brain research, and 

together with the studies of aphasics over the last century, refined the knowledge of how the brain processes 

language. The existence of the arcuate fasciculus was confirmed in human post-mortem studies using 

different methods like blunt dissections, and axonal staining of degenerating axons. However, dissection 

methods are inadequate for quantitative studies of this tract and hence have not shed much light on the 

characteristics of the arcuate fasciculus in the general population. The advent of diffusion tensor imaging 

(DTI) tractography that can visualize white matter pathways in vivo brought a major influx of information. It 

was shown that the anatomy of the arcuate fasciculus is more complex than previously thought (Catani, et 

al., 2005, 2007), and this will be discussed later on (Chapter 1.4). The following section will review the basics 

of DTI, and explain the limits of this technique, in order to subsequently introduce the contributions of DTI to 

the neuroanatomy of the arcuate fasciculus. 
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1.2 Diffusion Tensor Imaging Tractography 

 

   Our ability to study the perisylvian language pathways in the human brain is contingent upon the power of 

our methods of investigation. Using diffusion tensor imaging (DTI) we can garner indirect information on cell 

structure, and explore white matter connections of the living human brain (Jones, 2008). Hence, this section 

will focus on portraying the methodological advantages and limitations of diffusion tensor imaging and the 

related fibre tracking method, or tractography, used in this PhD study.  

 

1.2.1 Introduction to white matter tractography 

   The study of human brain connections has a long history dating back from the 19th centuryʼs pioneering 

blunt dissections to involve staining techniques of degenerating myelin, axonal tracing, neurohistology and 

more recent cortical electrophysiology and DTI tractography.  

 

   Among the myriad of different MRI methods DTI offers the advantage of allowing the exploration of the 

brainʼs connectional anatomy in vivo. It is a non-invasive technique that measures molecular diffusivity inside 

tissues in order to probe tissue structure at a microscopic level, well beyond the usual image resolution of 

other in vivo imaging methods (Basser, et al., 1994; Pierpaoli and Basser, 1996; Le Bihan, 1985). Molecular 

diffusivity or diffusion is a random motion of molecules and represents an essential phenomenon in all living 

cells. DTI is based on the notion that the displacement of water molecules during diffusion is proportional to 

the “Apparent” Diffusion Coefficient (ADC) and the time. ADC thus represents an index of mobility of water 

molecules inside biological tissue. A visualisation of the diffusion tensor is a “diffusion ellipsoid”, which 

represents the 3D probability of the displacement of water molecules. The profile of the diffusion ellipsoid is 

defined by the square root of the three eigenvalues. In DTI the diffusion is characterised by the magnitude 

(trace), directional variance (anisotropy), and the orientation (eigenvectors) of the anisotropic diffusion 

(Alexander, 2011). The most common diffusion measures that can be derived from diffusion information are 

the mean diffusivity (MD), indicating the average mobility of water molecules in a tissue, and fractional 

anisotropy (FA), reflecting the directionality of water diffusion, or in other words degree of anisotropy in water 

diffusion (Basser and Pierpaoli, 1996). These measures can highlight subtle anomalies in the organisation of 

white matter tracts that are not visible with anatomical MRI. One of the major advantage of DTI is that it is 

rotationally invariant (of the orientation of the subject/scanner), and that 3D alignments can be extracted 

easily and visualised using the 2D colour-coded scheme proposed by Pajevic and Pierpaoli (1999). 

    

   Diffusion MRI fibre tractography also referred to as fibre tracking or tract tracing, can be defined as the 

virtual reconstruction of the white matter pathways from diffusion MRI data. It is the most advanced 

visualisation strategy, and uses directional information from diffusion measurements to estimate the white 

matter trajectories. Tractography algorithms can be split into two major classes, deterministic and 

probabilistic tractography. Deterministic tractography is the focus of this section, and will be discussed in 

more detail. 
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    The general principle of deterministic tractography algorithms is to use the directional information 

described by the diffusion tensor. A primary assumption is that the direction of greatest diffusivity (the major 

eigenvector) is roughly parallel to the local white matter fibre bundle direction (Alexander, 2011). If we 

assume that the main eigenvector is tangential to the underlying trajectory of the white matter, starting from a 

seed voxel we can propagate a 3D curve that represents the white matter pathway according to the 

tractography algorithm. This is called streamline tractography, originally proposed by Basser, et al. (2000) for 

diffusion tensor imaging. Several approaches have been presented for integrating the streamline pathway. 

The simplest are Fibre Assignment by Continuous Tracking (FACT) (Mori, et al., 1999) and Interpolated 

Streamline (IS) approach (Euler method, Runge-Kutta method, etc) (Basser, et al., 2000). Using FACT the 

tract follows a path parallel to the principal eigenvector until the end of the voxel. In FACT the step size is not 

fixed, and thus works well in low curvature regions. On the other hand, using IS at each step a new direction 

is interpolated taking into account the surrounding eigenvectors. With the IS approach the step size is fixed 

and is smaller than the voxel dimensions. Sub-voxel interpolation is necessary because we need a new 

direction in each new position. Criteria must be defined to terminate tracts when they either leave the tissue 

regions of interest or become unreliable. There are two main criteria on stopping the streamlines. The first 

one is the level of anisotropy, in order to avoid regions of low FA (e.g. less than 0.2) that can result in high 

noise effect and variability, and regions such as CSF and grey matter. The obvious limitation is that FA can 

be quite low in some white matter regions (e.g. due to crossing fibres), which can cause some tracts to 

terminate prematurely (Alexander, 2011). The second commonly used criteria is the angle of curvature - 

requiring that fibres do not turn too sharply, but follow anatomically reliable trajectories. Once we obtain our 

streamlines, we can use them as regions of interest to sample quantitative measures. At each step we can 

sample the value of FA, MD, etc. along the tract and perform quantitative analysis. Generally, tractography 

can be visualised in two different ways, as streamlines (Conturo, et al., 1999; Mori, et al., 1999; Basser, et 

al., 2000) or as streamtubes, i.e., cylindrical 3D tubes constructed by sweeping a circle along the 

corresponding streamline (Catani, et al., 2002, 2005). A streamtube approach is computationally more 

expensive in terms of display rendering than visualising streamlines (Leemans, 2011). However, it enhances 

the visual cue of the tract shape, and hence will be used in the figures presented in this PhD thesis.  
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1.2.2 Estimates of white matter changes: what does it all mean?   
 
   White matter is the translucent substance of the brain containing long and short range fibres connecting 

distant and local cerebral regions respectively. It is composed of mainly two population of cells: axonal 

propagations of neurons contained in the grey matter and non-neuronal cells. Myelin sheaths surround the 

axons and are composed of multiple segments of myelin, which are modified extensions of oligodendroglial 

cell processes (Barkovich, 2000). It is known that myelin can influence conduction velocity by regulating axon 

diameter, thickness of the myelin sheath, and the number and spacing of nodes of Ranvier. Hence, myelin 

can affect information processing in the brain by regulating velocity and synchrony of impulse conduction. 

Importantly, myelination continues for decades in the human brain and is modifiable by experience 

(Bengtsson, et al., 2008; Fields, 2008). Changes of the single constituents of the white matter substance, 

e.g. maturation of myelin, decreasing axonal water secondary to microtubule and microfilament production, 

or decreasing extracellular free water secondary to myelin production, happen as part of normal brain 

development. Pathological white matter changes have been described in many psychiatric conditions 

including depression and schizophrenia (Fields, 2008), visualised and quantified in vivo using diffusion MRI 

and diffusion measures such as FA, MD, perpendicular (radial) diffusivity, parallel (axial) diffusivity etc. 

Changes in the MRI signal are thought to reflect a number of physiological processes such as demyelination, 

oedema, gliosis, inflamation (Assaf and Pasternak, 2008). Nevertheless, there is still limited understanding of 

the link between the biology of white matter and the diffusion signal, with diffusion outcome measures lacking 

in specificity. Nevertheless, this section will try to highlight current agreements on the possible interpretations 
behind diffusion estimates of white matter changes. 

   It is important to distinguish the contributions of both the intra and extra-cellular compartments to measured 

diffusion indices. This is because at least two distinct populations of water molecules are known to contribute 

to MR images of white matter (Barkovich, 2000). The first is composed of water located within the myelin 

sheath, while the second is composed of intra-axonal and interstitial water (i.e. water outside of the myelin 

sheath). Myelin water can diffuse across axonal and myelin membranes and interact with water molecules in 

the other compartments. Recent research has identified that axonal membranes play the primary role in 

diffusion anisotropy by hindering the water diffusion perpendicularly. However, it is still not clear whether 

increases in anisotropy are due to reduced diffusivity along the axes perpendicular to it (Bhagat and 

Beaulieu, 2004; Bonekamp et al., 2006; Eluvathingal et al., 2007; Giorgio et al., 2008; Snook et al., 2005) or 

due to greater diffusivity along the main diffusion axis (Ashtari et al., 2007) or a combination of the two 

(Giorgio, et al., 2010). Myelin sheaths that surround the axons further modulate the degree of anisotropy, 

although myelination itself is not a requirement for the presence of significant anisotropic diffusion (Beaulieu, 

2002). Many other factors can also modulate the estimates of water diffusion in brain tissue. These include 

methodological factors (e.g. movement artifacts), biological explanations (e.g. brain development) or 

pathological (e.g. white matter degeneration, demyelination, inflammation, etc.). A synopsis of recent 

research on possible interpretation of diffusion changes is presented in Table 1.2.2 with an emphasis on 

biological explanations. We have to bear in mind the limitations of interpreting these diffusion data, together 
with the fact that all these diffusion indices are intrinsically related to each other. 



  21 

                  
       Table 1.2.2 Some of the likely biological interpretations of increases and decreases of diffusion indices. The list is 

not complete and is not intended as a comprehensive overview, rather as a guide; the different diffusion measures are 

not independent and are intrinsically related to each other. 

 

    Despite the importance of obtaining reliable tractography results, only a few studies have provided  

information regarding the reliability of tractography measurements (Ciccarelli et al., 2003; Danielian et al., 

2010; Heiervang et al., 2006; Vollmar et al., 2010), with only one using deterministic tractography (Danielian 

et al., 2010). In general, test-retest reliability of other neuroimaging measures, such as the blood oxygenation 

level dependent (BOLD) signal in fMRI, will typically not be greater than 0.7 (Vul, et al., 2009). Further, the 

intersession reliability of diffusion measures depends on the structure studied (e.g. arcuate fasciculus versus 

corpus callosum) and the variable used (e.g. FA versus tract volume) (Wang, et al., 2012). In the above 

mentioned studies, the arcuate fasciculus, together with the corpus callosum, cingulum, cerebral peduncular 

fibres and uncinate fasciculus, are the structures that exhibit the most reliable diffusion measures  (i.e. 

intersession coefficient of variation ≤ 10% or intraclass correlation coefficient ≥ 0.70), compared to fornix, 

inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and so on. The findings from Danielian et al. 

(2010) and Wang, et al. (2012) further indicate that the number of gradient directions and scan repetition are 

both more important than the choice of MR scanner for test-retest reliability of tractography measurements, 

as well as for MRI signal variation and physiological noise/change over time. 
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1.2.3 Advantages and limitations of tractography data  

   Whilst tractography has many advantages over older techniques of studying brain connections a number of 

limitations still exist. Some of the advantages and limitations of tractography, in relation to other methods for 

studying connections (post-mortem), are summarised in Table 1.2.3. 

 

        
Table 1.2.3 Advantages and limitations of diffusion tractography method 

 

  There are many sources of errors that can confound tractography results. These include very small 

perturbations in the image data, i.e. acquisition noise, physiological noise, image distortions, scanner 

stability, head motion, partial-volume averaging, etc. (Alexander, 2011); inaccuracy of the single-tensor 

model to solve the regions of crossing, merging and bending of white matter fibres; dependency on a number 

of factors under the control of the experimenter, such as the choice of angular and anisotropy thresholds, 

and tractography algorithm (Catani and DellʼAcqua, 2011), and lastly presence of pathological processes, 

such as brain oedema, bleeding, and compression which could all affect tractography results. Improving 

diffusion acquisition (higher spatial resolution and signal to noise ratio), processing (complex fibre 

orientation, tractography algorithms) and specificity of the outcome measures in relation to the underlying 

biology, could lead to better application of this technique in research and clinical settings. Nevertheless, and, 

despite itsʼ limitations, deterministic tractography has allowed anatomical models of language to be re-

explored, and permitted the visualisation and assessment of the microstructural integrity of the perisylvian 
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language pathways in the living human brain that conventional structural and functional MR imaging were not 

able to provide. In this PhD thesis two applications of tractography will be used: first, to explore the 

perisylvian language pathways in a healthy population, and second to investigate the perisylvian language 

pathways relative to brain pathology. The contributions of DTI tractography to the anatomy of the perisylvian 

language pathways will be discussed in the following section.  

 

 

1.3 Arcuate fasciculus: anatomy and function 

 

   The neural basis of language has been the topic of research for over two hundred years (see Section 1.1 

of this Chapter).  Since then our ideas about how language is processed in the human brain have undergone 

many changes mostly due to the technological advances that are driving research possibilities. The historical 

cortico-centric view, which included only Brocaʼs and Wernickeʼs area in a language model, has been 

supplemented by models that assign language-related functions also to white matter pathways such as the 

arcuate fasciculus, and subcortical structures (e.g. basal ganglia, thalamus). Consequently, the anatomy and 

function of the arcuate fasciculus became of crucial importance in the neuroscience of language, and these 

will be discussed in a more detail below. 

 

 

1.3.1 Arcuate fasciculus: contributions of diffusion tensor imaging tractography 

   The arcuate fasciculus is regarded as a white matter tract that lies in the inferior portion of the superior 

longitudinal fasciculus (SLF), superior to the insula and extreme capsule, connecting temporal and frontal 

language areas (Shuren, 1995). Recently, diffusion tensor imaging (DTI) tractography has permitted the 

visualisation and assessment of this large white matter pathway in the living human brain that conventional 

structural and functional MR imaging were not able to provide (Catani, 2007, 2005; Kamada, 2007; Makris, 

2005; Mamata, 2002; Nucifora, 2005; Parker, 2005; Powell, 2006; Rivkin, 2000; Vernooij, 2007). However, 

because of the proximity of the arcuate fasciculus and the SLF III (the perisylvian component of the SLF 

connecting supramarginal gyrus with the ventral premotor and prefrontal regions (Thiebaut de Schotten, et 

al., 2011a)), and the limitations of the current DTI methodology, these two pathways are indistinguishable in 

tractography dissections (Frey, et al., 2008; Friederici, 2009). Hence, the two terms - arcuate fasciculus and 

SLF might be used interchangeably in this PhD thesis. 

 

  DTI tractography has shown that the anatomy of the arcuate fasciculus is more complex than previously 

thought (Catani, et al., 2005, 2007; Martino, et al., 2012). Besides directly connecting classical language 

areas in the frontal and temporal lobes, studies have shown that inferior parietal areas might also be part of 

the arcuate fasciculusʼ network. Hence, the proposed connection pattern of the arcuate fasciculus 

encompasses the network of fronto-temporo-parietal fibres, which is the neuroanatomical approach followed 
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in this PhD thesis. In other words, this parallel pathway model describes two distinct parallel pathways that 

interconnect cortical language territories of the frontal, temporal and parietal lobes (Catani, et al., 2005). The 

classical direct pathway (i.e. the arcuate fasciculus sensu strictu), or the direct long segment (denoted in red 

in Fig 1.3.1), connects the inferior frontal cortex (Broca's territory) with the superior temporal cortex 

(Wernicke's territory). The indirect pathway is composed of two segments: the indirect anterior segment 

(denoted in green in Fig 1.3.1), which connects Broca's territory with the inferior parietal lobule (Geschwind's 

territory), and the indirect posterior segment (denoted in yellow in Fig 1.3.1) that connects Wernicke's 

territory with Geschwind's territory (Catani, et al., 2005). The reason why these regions were named 

ʻterritoriesʼ and not the classical ʻareasʼ lies in the fact that tractography revealed unexpected projections of 

the arcuate fasciculus, whose cortical terminations extended beyond the classical limits of Wernickeʼs (BA22, 

37, 39, and 40) and Brocaʼs (BA 44 and BA45) areas to include part of the posterior middle temporal gyrus, 

middle frontal gyrus and inferior precentral frontal gyrus, respectively (Catani, et al., 2005). Geschwindʼs 

territory, now important as a separate primary language area, corresponds to BA39 and 40, and although its 

importance as a language region has been recognised for some time (Geschwind, 1965), the exact role of 

this area is still largely unknown (Catani, 2009) (more on the functions in the following Section 1.3.2). It is 

important to note that the support for the existence of the indirect pathway, with connections to the 

Geschwindʼs territory, came from the classical post-mortem dissections (Lawes, et al., 2008), human 

intraoperative electrocorticography  (Matsumoto, et al., 2004), functional MRI studies (Bullmore, et al., 2000; 

Schmithorst and Holland, 2007), studies of the homologous parts of the monkey brain (Deacon, 1992), and 

lastly DTI studies (Lawes, et al., 2008; Eluvathingal, et al., 2007; Maldonado, et al., 2012). 

 

    

                        
         Fig 1.3.1 Tractography dissections of the three segments of the left arcuate fasciculus:  

     direct long segment (in red), indirect anterior (in green) and indirect posterior segment (in yellow). 
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   In the last two decades the boundaries of the language network were expanded beyond the arcuate 

fasciculus. One of the most interesting development has been the demonstration that areas in the medial, 

inferior and anterior temporal cortices, traditionally considered outside the classical language network, may 

play a crucial role in semantic processing. The interaction of these additional areas with the canonical 

perisylvian language network may be mediated by a set of ventral tracts such as the inferior longitudinal 

fasciculus, the uncinate fasciculus, and the inferior fronto-occipital fasciculus (Catani and Mesulam 2008). 

Although this PhD thesis investigates only the arcuate fasciculus, these additional connections that play a 

role in language will be described briefly. The inferior longitudinal fasciculus connects the anterior temporal 

pole and the occipital lobe, and is likely to be involved in visual object recognition, semantic processing and 

linking of object representations to their lexical labels (Catani, et al., 2003; Mandonnet, et al., 2007; 

Mummery, et al., 1999). The uncinate fasciculus, connects the anterior temporal lobe with the orbitofrontal 

area, including inferior frontal gyri. It may play a role in lexical retrieval, semantic associations, and aspects 

of naming that require connections from temporal to frontal components of the language network (e.g. the 

naming of actions) (Catani and Mesulam, 2008). The inferior fronto-occipital fasciculus is part of the mirror 

neuron system and arguably the only direct connection between frontal and occipital cortex in the human 

brain (Forkel, et al., in press). The functions of this pathway are not fully understood, but may involve reading 

and writing and other semantic aspects of language (Duffau, 2012; Duffau, et al., 2005). The extreme 

capsule tract is a ventral pathway that has been initially described in monkey and more recently in humans 

with diffusion tractography (Parker et al., 2005; Saur et al., 2008). However, the term extreme capsule tract is 

not specific enough as many other tracts run through the extreme capsule, including the uncinate fasciculus, 

the inferior fronto-occipital fasciculus and many fibres connecting to the insula. Future studies are necessary 

to establish the presence of direct connections linking Wernickeʼs to Brocaʼs territory running through the 

extreme capsule. Besides mentioned ventral connections, the frontal aslant tract is a newly described 

pathway connecting posterior Brocaʼs region with medial frontal areas including pre-supplementary motor 

area and cingulate cortex. This tract is left lateralised in most right-handed subjects, suggesting a role in 

language (Catani et al., 2012).  In addition to the above tracts, data from axonal tracing studies and 

tractography have suggested the existence of additional tract important for language, the middle longitudinal 

fasciculus. This tract is an important association tract between posterior temporo-parietal areas and anterior 

temporal regions, and thus it is likely involved in linking sounds to meaning (Makris, et al., 2009; Menjot de 

Champfleur, et al., 2012). Nevertheless, unilateral resection of the middle longitudinal fasciculus does not 

result in permanent language deficits (De Witt Hamer, et al., 2011). Besides these white matter pathways, 

there are other structures that play an important role in language processing, such as: posterior third of the 

corpus callosum - for interfacing syntax and prosody (Friederici, et al., 2007), and subcortical structures such 

a basal ganglia (caudate nucleus) - for language comprehension that requires less automatic and more 

controlled language processes (Crinion, et al., 2006; Friderici, 2006a; Ullman, 2004) and thalamus - for 

processing syntactic and semantic language analysis (Wahl, et al., 2008). Having touched upon some 

functional correlates of the above mentioned brain structures, I will now discuss in more detail the possible 

functional correlates of the arcuate fasciculus. 
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1.3.2 Arcuate Fasciculus: possible functional correlates    
 

   Mapping functions onto a single tract is subject to the same criticism directed at localisationism. Our 

knowledge of possible functional correlates of the arcuate fasciculus depends upon the specific temporal 

and/or spatial context (stage of development, injury, disorder, method of inquiry, etc.), and the neural 

systems affected. Nevertheless, diffusion tractography combined with functional MRI is likely to offer 

productive insights into the structure-function relationship of this perisylvian language network.  

 

   Knowing that the arcuate fasciculus connects the inferior frontal, temporal and inferior parietal cortices, the 

functions assigned to the above mentioned cortical regions will now be briefly discussed, as they provide the 

first clue to the possible functional correlates of the white matter pathway in question. Before going into each 

specific cortical region in more detail, it is important to note that there are hemispheric differences in 

processing linguistic information (more on language lateralisation in Section 1.4 of this Chapter). 

Complementary evidence from neuropsychological and neuroimaging studies suggest that language is 

processed via an effective basic bilateral system, which is superimposed on the left-dominant perisylvian 

language system (Bozic, et al., 2010; Brauer, et al., 2008). Bozic, et al. (2010) proposed that speech 

comprehension is supported by bihemispheric fronto-temporal system - supporting sound-to-meaning 

mapping and general perceptual processing demands, and a more specialized left hemispheric perisylvian 

system supporting morpho-syntactic functions. However, research showed that the left hemispheric 

perisylvian network might also be responsible for processing lexico-semantic and not just morpho-syntactic 

information (Friederici, 2002, 2006b). In contrast, the right hemisphere is thought to be responsible for 

processing prosodic information (Meyer, et al., 2002; Zatorre, et al., 2002). Linguistic prosody is mainly 

localised to the right hemisphere, unless phonemic segmental information is present in a speech signal, and 

prosody is segmentally bound (Friederici, et al., 2007) - then the left hemisphere comes into play. I will briefly 

summarise regional differences in processing linguistic information, starting from the classical language 

areas, Brocaʼs and Wernickeʼs, to the inferior parietal lobule, before proceeding to the possible functions of 

direct and indirect pathways of the arcuate fasciculus. 

 

   Brocaʼs area is located in the left inferior frontal cortex, and comprises the opercular (BA44) and triangular 

(BA45) parts of the inferior frontal gyrus (Amunts, et al., 2004). Neighbouring areas include premotor area 6 

at the ventral precentral gyrus, dorso-lateral prefrontal areas 9 and 46, area 47, and the anterior insula 

(Amunts, et al., 2010). Recently, Brocaʼs area was successfully parcellated using transmitter receptor 

distribution (Amunts, et al., 2010), high angular resolution diffusion imaging (Frey, et al., 2008) and 

probabilistic tractography (Anwander, et al., 2007) to reveal anatomical dissociation between BA44 and 

BA45, which proved to be functionally relevant. In the past, Broca's area has been considered as the brain 

centre responsible for speech production. However, with advances in neuroimaging, combined with the 

neuropsychological evidence, it has become clear that Brocaʼs area is involved in a wider range of functions. 

These include syntactical and phonological analysis, verbal fluency, semantic retrieval and categorization, 

language comprehension, selection between competing linguistic alternatives, mathematical calculation, 
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music processing and understanding actions of other individuals (Amunts, et al., 2004; Bozic, et al., 2010; 

Fazio, et al., 2009; Friederici, 2011; Sakai, 2005). It is thought that in healthy adults the anterior ventral 

regions (BA47/45) support processing of lexical semantics, whereas posterior dorsal regions (BA45/44) 

support syntactic processing (Bookheimer, 2002; Bozic, et al., 2010; Friederici, 2002). Wernickeʼs area, 

encompassing the middle and superior temporal gyri, has been considered to play a role in language 

comprehension for over a century. It is known that temporal activation of Wernickeʼs area appears earlier 

than Brocaʼs during language comprehension, but vice-versa during language production (Brauer, et al., 

2008). This bidirectionality, subserved by the arcuate fasciculus, has also been shown in a recent human 

intraoperative electrocorticography study (Matsumoto, et al., 2004). However, the functions of Wernickeʼs 

area are also much wider than previously thought. More specifically, the posterior middle temporal region is 

associated with storing lexical-semantical representations, anterior superior temporal cortex with building of 

syntactic structure, and posterior superior temporal cortex for semantic-syntactic integration during sentence 

processing (Friederici, et al., 2011). Recent imaging studies have shown that inferior parietal lobe 

(Geschwindʼs territory) is another crucial part of the perisylvian language network. It is thought to play a role 

in control of intention to speak (Carota, et al., 2010; Desmurget et al., 2009), speech self-awareness (Jardri, 

et al., 2007), production of gestures related to tools and speech planning (Damasio and Damasio, 1992; 

Daprati and Sirigu, 2006; Haaland, et al., 2000), word semantics and conceptual semantics (Friederici, et al., 

2011), verbal working memory (Jacquemot and Scott, 2006), and global coherence of narratives (Martin-

Loeches, et al., 2008). Thanks to its anatomical position, Geschwindʼs territory is considered to be a 

convergence and integration zone for sensory and motor information and their temporal dynamics (Catani, 

2009). However, although research has provided us with valuable insights, the exact functional roles of these 

language cortical regions remain elusive. Even less is known about the functional correlates of the 

perisylvian language pathways. 

 

   Lesion studies in patients with perisylvian damage indicate that the arcuate fasciculus is involved in almost 

all aspects of language and verbal working memory. In the light of the parallel pathway model, and the 

combined evidence from aphasic patients, Catani et al. (2005) suggested the following functions for direct 

and indirect pathways of the arcuate fasciculus: the direct pathway subserves phonologically based 

language functions (e.g. automatic repetition), while the indirect pathway facilitates semantically based 

language functions (e.g. vocalisation of semantic content, auditory comprehension, etc.). The conclusions 

were mainly derived from observing impaired repetition but relatively preserved spontaneous speech and 

language comprehension in conduction aphasia (lesions in parts of the direct pathway); but intact repetition 

and impaired spontaneous speech and language comprehension in transcortical motor aphasia (lesions in 

the indirect pathway). However, recent findings question the supremacy of the long segment in word 

repetition, and show that the contributions of the direct and indirect pathways in repetition remain to be 

clarified (Berthier, et al., 2012; Breier et al., 2008; Epstein-Peterson, et al., 2012; Friedrikssen et al., 2011). In 

this two-route model of language processing, Catani et al. (2005) suggested that lesions of different indirect 

pathways would produce different symptoms. Hence, a lesion of the indirect anterior segment would result in 

a failure to vocalise semantic content, while a lesion of the posterior segment would result in a failure of 

auditory semantic comprehension. Recent findings give support to this model, and show that lesions 
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involving Brocaʼs area and anterior segment lead to Broca-like conduction aphasia, while lesions to the 

Wernickeʼs area and posterior segment produce Wernicke-like conduction aphasia (Song, et al., 2011)  

However, very often aphasia patients present with extensive lesions, which makes it difficult to attribute 

specific functions to single segments of the arcuate fasciculus. The combined analysis of structural and 

functional connectivity of perisylvian networks in healthy subjects may represent a valid alternative. In a 

recent study Lopez-Barroso et al. (2012) showed that performance in word learning correlates with 

microstructural properties and strength of functional connectivity of the direct connections between Brocaʼs 

and Wernickeʼs areas. There were no correlations with the segments of the indirect pathway. This study 

demonstrates that our ability to learn new words relies on efficient and fast communication between temporal 

and frontal areas. Schulze et al. (2012) suggested that the absence of these connections in other animals 

may explain human unique ability to learn words and connect them into meaningful sentences. While the 

direct pathway may support auditory-motor integration, which is crucial during early stages of language 

acquisition, the role of the indirect pathway may be more complex and more relevant during later stages of 

language development, such as linking semantics and phonology (posterior segment) (Newhart, et al., 2012; 

Parker, et al., 2005), processing syntactically complex sentences (Newhart, et al., 2012; Perani, et al., 2011; 

Wilson, et al., 2011) and various aspects of verbal working memory (Burzynska, et al., 2011; Vestergaard, et 

al., 2011). There is further evidence of the arcuate fasciculus being involved in the development of reading 

skills (Rimrodt, et al., 2010; Yeatman, et al., 2011), however how specific segments play a role in reading 

remains elusive.  

    

   The parallel pathway model brings together the opposing views on the functional correlates of the arcuate 

fasciculus, with some suggesting it supports the processing of complex syntax (Brauer et al, 2011; Friederici, 

2009; Friederici, et al., 2006a, 2011; Griffiths, et al., 2012), and others that it supports language repetition by 

auditory-motor mapping (Saur, et al, 2008, 2010; Hickok and Poeppel, 2007). Nevertheless, additional 

diffusion and functional MR imaging studies are needed to further clarify the role that each segment of the 

arcuate fasciculus has in language processing. This PhD study provides an important step forward in our 

understanding of the role that specific segments of the perisylvian network have in language dysfunction in 

autism spectrum disorders. 
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1.4 Introduction to language asymmetry  
  
 

   

   Asymmetry of the arcuate fasciculus is one of its key features. This section gives a general introduction to 

the concept of language lateralisation, in order to provide a background for the first tractography study (see 

Chapter 2), which explores the maturation effects on the asymmetry patterns of the perisylvian language 

network. 

 

   Hemispheric lateralisation of the human brain has, for a long time been the focus of interest in numerous 

fields of neuroscience. From an evolutionary prospective, Vallortigara (2006) regards the brain lateralisation 

at the population level as an "evolutionary stable strategy" that might increase brain efficiency. Denenberg 

(1981) is in agreement that the advantage of lateralisation is to increase neural capacity. Specialising one 

hemisphere for a particular function leaves the other hemisphere free to perform other additional functions. 

Thus, useless duplication of functions in the two hemispheres can be avoided and neural tissue spared. 

Language is one of the most known lateralised brain functions. Since 1865, when Broca coined the motto: 

"one speaks with the left hemisphere" (Broca, 1865), the left hemisphere has been regarded as the neural 

substrate for core language skills. In humans language lateralisation can be functional and structural. 

 

   Functional hemispheric lateralisation for language has been shown to correlate with handedness  

in several neuroimaging studies using functional MRI, positron emission tomography (PET) and 

magnetoencephalography (MEG), where approximately 95% of right-handers show left-sided functional 

lateralisation, while 15% of left-handers show right-sided functional hemispheric lateralisation (Vernooij, et 

al., 2007; Springer, et al., 1999; Pujol, et al., 1999). Minagawa-Kawai et al. (2008) used near-infrared 

spectroscopy to show that 85% of his right-handed subjects exhibit left dominance in response to auditory 

speech stimuli. During the first year of life there is, at rest, no reported left-right difference in cerebral blood 

flow in linguistic regions (i.e. inferior frontal, superior temporal and plurimodal temporal – parietal regions). 

However in response to auditory stimuli, asymmetric response favouring the left side is observed in fMRI and 

event-related potential studies (Dehaene-Lambertz, et al., 2002). Significant left asymmetry is present for 

speech-like stimuli from birth onwards, and it is suggested that during the first months of life the left auditory 

areas are more reactive than the right areas to any sound, and this bias can contribute to orientation towards 

the left hemispheric processing of speech. Locke et al. (1995) considers babbling as the process that marks 

the onset of the left hemispheric control of speech-like activity, and begins around 6-7 months together with 

the sharp increase in rhythmic hand movements and right-handed reaching. Left hemisphere advantage in 

processing speech can also be studied with dichotic listening, which is based on the competing message 

technique when two different verbal stimuli are presented one to each ear and selective attention is then 

assessed. With this method, right ear advantage was found in children after 3 years of age (Ingram, 1975; 

Kimura, 1967). Language asymmetry during development will be discussed in more detail in Chapter 2.1.3. 
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   Although this functional lateralisation of language has been well documented, the neuroanatomical basis 

for it has not yet been fully elucidated. Forty years ago, Geschwind and Levitsky (1968) reported a greater 

left planum temporalis in approximately 65% of the normal population. Since then various studies found 

structural asymmetries in a number of brain regions relevant to language processing (Vernooij, et al., 2007). 

However, a direct link between structural and functional lateralisation has not been clearly established. The 

incidence of left-hemisphere planum temporale asymmetry (about 60-80%) is lower than the incidence of left 

hemisphere language lateralisation in the population as estimated by functional studies (›90%) (Dorsait-

Pierre, et al., 2006). Other anatomical left asymmetries observed at the macroscopic and cytoarchitectonic 

levels include a longer left Sylvian fissure (Geschwind and Levitsky, 1968); larger left inferior frontal region, 

though less frequent (Knaus, et al., 2006);  greater white matter volume underlying Heschl's gyri (Penhune, 

et al., 1996); bigger pyramidal cells in the left auditory cortex (Hutsler, 2003) and these are associated with 

thicker myelinated fibres (Anderson, et al., 1999), and lastly, widths of the individual cortical columns and 

distances between those columns are greater in the left superior temporal lobe (Seldon, 1981). 

 

   The lateralisation pattern of the arcuate fasciculus is somewhat more complex. DTI tractography revealed 

a highly heterogeneous distribution of the lateralisation pattern for the long segment of the arcuate fasciculus 

in the healthy human population (Catani, et al., 2007). An extreme degree of left lateralisation (as measured 

by the number of streamlines as an indirect index of volume) was found for the direct long segment in 60%, 

mild left lateralisation in 20% and symmetrical pattern in 20% of the normal adult right-handed male and 

female population (Catani, et al., 2007). The degree of lateralisation of the long segment in left-handed 

individuals is less clear, with some suggesting that it is similar to the right-handed subjects (Vernooij, et al., 

2007), and others that it is more bilateral (Hagmann, et al., 2006). Left asymmetry was also noticed for 

diffusion measures of the arcuate fasciculus, such as FA and MD (Powell, et al., 2008; Rodrigo, et al., 2007).  

Many diffusion studies confirmed the dominant left asymmetry of the arcuate fasciculus (Nucifora, et al., 

2005; Barrick, et al., 2007; Parker, et al., 2005; Powell, et al., 2006; Upadhyay, et al., 2008; Vernooij, 2007). 

The left asymmetry of the long direct segment is already present in children between 6-17 years of age 

(Eluvathingal, et al., 2008). Upadhyay et al. (2008) confirmed this left asymmetry in FA and fibre density of 

the long direct segment in healthy right-handed adults. Furthermore, the authors also used diffusion tensor 

spectroscopy and showed that radial diffusivities (RD) of NAA (N-acetyl-aspartate) and water were both 

lower in the left arcuate fasciculus, but only significantly lower for RD (NAA). Since intra-axonal properties 

primarily determine RD (NAA) it is possible that an intra axonal difference exists between the two fascicules. 

Upadhyay et al. (2008) suggest that larger axonal diameters of the left arcuate fasciculus may explain this 

RD (NAA) difference, which in turn suggests that the left arcuate fasciculus is responsible for a fast phasic 

signal.  

 

   An important question is whether this anatomical lateralisation of the long segment of the arcuate 

fasciculus is related to the functional lateralisation of language. Preliminary studies combining DTI 

tractography and fMRI show no correlation between the lateralisation of the long direct segment volume and 

the degree of functional lateralisation as determined by fMRI during tasks of verbal fluency, verb generation 

and reading comprehension (Powell, et al. 2006; Vernooij, et al. 2007). However, the lateralisation of the 
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fractional anisotropy values of the long segment seems to correlate better with the functional lateralisation as 

demonstrated in healthy individuals (Powell, et al. 2006) and in patients with temporal lobe epilepsy 

(Rodrigo, et al. 2008).  

 

   Significant differences in lateralisation pattern of the long direct segment are present between genders, 

with females more likely to have a symmetrical bilateral lateralisation pattern than males (Catani, et al., 

2007). This symmetrical distribution of the long segment was correlated with better performances in complex 

verbal memory tasks. These findings are not surprising having in mind that gender differences were 

previously reported for the lateralisation of the volume of cortical language regions (Good et al., 2001; Luders 

et al., 2004), subcortical white matter anatomy (Good et al., 2001; Hagmann et al., 2006), and activation 

patterns during linguistic tasks (Shaywitz et al., 1995). Some studies suggested that different maturational 

trajectories are driving these gender differences in lateralisation (Paus, 2009; Perrin et al., 2009), but this 

was not confirmed in a recent tractography study of children and adolescence (Lebel and Beaulieu, 2009). 

Our first tractography study (see Chapter 2) will address some of these issues. 

 

   Other components of the perisylvian networks seem to have a more bilateral distribution (posterior 

segment) or right lateralisation (anterior segment). Inter-hemispheric differences have been found in the 

fractional anisotropy of the anterior indirect segment with higher values in the right side (Catani, et al. 2007; 

Eluvathingal, et al. 2007), and this was later confirmed also for the volume measures (Thiebaut de Schotten, 

et al. 2011b). This right lateralisation of the anterior segment may be related to the specialization of the right 

parietal and frontal cortex for visuo-spatial processing (Doricchi, et al., 2008; Thiebaut de Schotten, et al., 

2008).  

 

   In conclusion, tractography studies suggest an overall prevalence of left asymmetry for the long direct 

segment of the arcuate fasciculus in approximately 80% of the population. Considering that the prevalence of 

left functional dominance for language is >90%, asymmetry of the long direct segment may represent a more 

critical anatomical substrate for language lateralisation than planum temporale asymmetry, whose leftward 

lateralisation is found only in around 65% of the right-handed population (Geschwind and Levitsky, 1968).  
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1.5 Language evolution: the rise of the arcuate fasciculus  
    

   Language is a defining feature of the human species, and yet little is known about how this ability 

developed. This PhD study adds indirect information to the phylogenic context of language anatomical 

development, through inferences from language-brain relationship during human ontogeny, and heritability of 

language related brain structures. Hence, the first tractography study on the maturation of the arcuate 

fasciculus could be informative for language evolution (see Chapter 2), as well as investigating the heritability 

of the perisylvian connections (see Chapter 4). Furthermore, systematic analysis within clinical syndromes 

associated with social and language disorders could provide new insights into language evolution. Hence, 

the study on autism and the perisylvian language network might bring new insights (see Chapter 6). Thus, 

this section will give a general blueprint of the recent developments in the evolutionary research of language, 

focusing on the arcuate fasciculus in order to find its place in a phylogenic frame of reference.  

 
1.5.1 Paleoneurological evidence for the origins of language brain regions 
 

   There are several ways to approach the study of language evolution. Due to the impossibility of direct 

examination of the brains of our predecessors, science had to turn to indirect methods of investigation, which 

are far from optimal. One way to study ancestral systems for language is through paleoneurology, a scientific 

field that uses fossil records to approach the study of brain evolution. The paleoneurological evidence is 

exciting, but has inherent problems given the often incomplete, fragmented, and eroded cranial portions of 

our fossil ancestors (Holloway, 1983). For example, KNM-ER 1470 specimen found in Kenya (originally 

assigned to Homo habilis, and later to Homo rudolfensis, which has an estimated age of 1.9 million years) 

suggested a unique sulcal pattern in the left inferior frontal gyrus (Brocaʼs area) as being similar to modern 

humans and unlike Australopithecus and living great apes (Falk, 1983). However, the fossil evidence was 

difficult to interpret because the markings on the brain casts were very faint. Hence, no clear evidence exists 

for the presence of Brocaʼs area in a specimen as geologically old as Homo rudolfensis. Some believe that 

Brocaʼs area was present in the Homo erectus (specimen WT 15000, also called Turkana Boy, 1.5 million 

years old) noted by a slight slant on the cranium (Walker and Shipman, 1996). Thus, it is believed that at 1.5 

- 2.0 million years ago there is a clearer fossil evidence for a Homo lineage showing a more modern and 

enlarged third inferior frontal convolution and strong cerebral asymmetries identical to those known for 

modern Homo sapiens (Holloway, 1983). However, the question is whether skull morphology reflects brain 

features at all. A sceptic would now remember the notorious fall of the phrenologists in the 19th century. 

These findings remain mere speculation and rest on weak scientific grounds. Nevertheless, these exciting 

discoveries, if true, would generate a number of implications regarding the existence of Brocaʼs area and 

possibly the arcuate fasciculus very early in human evolution. But even is strong evidence existed for an 

enlarged third inferior frontal convolution so early in human evolution, it would still not imply that language 

was formed and used at that time. Many believe that language coincided with the modern humans once 

culture and complex social groups were established (Crystal and Varley, 2006) and Cro-Magnon man 

(species Homo Sapiens) appeared in Europe some 120,000 years ago.  
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1.5.2 Language evolution in genetic terms 
 

   Comparative genomics has brought about novel technologies, in particular microarrays, which are able to 

detect expression levels for thousands of genes simultaneously. As a result, it was revealed that the genome 

of our closest living relative, the chimpanzee, is astonishingly similar to our own, with approximately 96% of 

genes identical to our own (Cheng et al., 2005). Hence, many of the fundamental differences between 

humans and chimpanzees are likely to depend more upon differences in the regulation of gene expression 

than on differences in the amino-acid sequences of gene products (King and Wilson, 1975). This notion is 

supported by recent research describing human brain evolution in terms of an accelerated rate of change, 

up-regulation of gene expression, and a preponderance of changes in the regulation of genes affecting 

synaptic transmission and energy metabolism (Oldham and Geschwind, 2006). 

 

   To explore the importance that changes in the regulation of gene expression have had in the human 

evolution of language, microarray studies were used to compare expression levels for thousands of genes in 

the language brain areas between humans and chimpanzees. By applying this approach to the perisylvian 

network of brain regions involved in language, it may be possible to discern the genetic basis of language 

evolution in the brain. The research showed that grey matter of the left prefrontal cortex had significantly 

higher rate of change in gene-expression across species (humans and chimpanzees) compared with liver 

(Enard, et al., 2002; Gu and Gu, 2003). Furthermore, the large majority of genes are differentially expressed 

across species in various frontal and temporal cortical brain regions including language areas, with genes 

up-regulated in humans (Caceres, et al., 2003). However, a recent study by Khaitovich et al. (2004) found 

only a small number of transcripts with expression patterns unique to Brocaʼs area in humans versus 

chimpanzees. These surprising results may however reflect methodological limitations, and the small number 

of individuals used in the study. Geschwind (2000) suggested that it is also possible that differences in 

cellular density and/or composition may underlie the functional and structural specialization of language 

areas in humans and that these differences fall below the detection limits of the microarrays, hence making 

this method unsuitable for exploration of human language evolution in genetic terms. 

 
1.5.3 Comparative anatomy of the arcuate fasciculus 
 

   In order to understand how and why language evolved in the human species, and being unable to observe 

language evolution directly, we have to rely on comparisons between human and non-human primates. By 

comparing human and simian connectional anatomy of the language pathways we may unveil the 

evolutionary changes underlying the development of language. The comparison between human and non-

human DTI data with respect to the arcuate fasciculus has raised questions of the extent to which differences 

and similarities are functionally relevant for language processing in humans (Friederici, 2009; Ghazanfar, 

2008). This section explores recent research on comparative anatomy of the arcuate fasciculus. 
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   Early 20th century comparative anatomy studies emphasised the essential role that the frontal lobes had 

for human cognition, justified by the great expansion of the frontal lobes along the phylogeny scale that 

seemed bigger than for any other brain region (Thiebaut de Schotten, et al., 2012). The large size of the 

frontal lobes was linked to extraordinary cognitive development, including development of language in 

humans. It was not known whether these anatomical differences were global or specific to certain frontal lobe 

pathways like the arcuate fasciculus. However, recent research challenges this supremacy of the frontal 

lobes (Théodoridou and Triarhou, 2012). It was revealed that the frontal cortex of humans and great apes 

occupies a similar proportion of the cortex (Semendeferi, et al., 2002), and moreover that the enlargement of 

the human brain has preserved the relationship between its major lobes compared to other species (Risberg, 

2006). These similarities between human and non-human primates seem to stretch further to include an 

asymmetry in the planum temporale, Brocaʼs area and lateral sulcus (Cantalupo and Hopkins 2001; 

Cantalupo et al. 2003; Galaburda et al. 1978; Gannon et al. 1998; Hopkins, et al., 1998). Although in terms of 

gross morphology human and simian brain language regions seem alike, anatomical differences were 

recently revealed at the microanatomical and molecular level. Buxhoeveden et al. (2001) discovered that 

increased width and spacing of cortical minicolumns in the left planum temporale of humans was absent in 

chimpanzees. These observed differences and similarities across species led to two opposing views on 

comparative anatomy of the language brain regions. One view holds that the neuroanatomy of the human 

and non-human brain is the same, and hence that fibre tracts of the monkeyʼs brain are directly linked to the 

human language pathways. For example, Schmahmann et al. (2007) questioned whether arcuate fasciculus 

has a role in language at all because their monkey data showed different cortical terminations of the arcuate 

fasciculus, which did not connect mid superior temporal region to the Brocaʼs homologue; rather, they 

proposed a pathway through the extreme capsule to be crucial for language. The other view holds that there 

are significant neuroanatomical differences across species that are crucial for language development in 

humans. This view acknowledges that there are similar brain phenotypes between humans and 

chimpanzees as a result of precursors for language structures that exist in chimpanzees, and probably 

existed in the last common ancestor of humans and chimpanzees (Oldham and Geschwind, 2006). Rilling et 

al. (2008) compared humans, chimpanzees and macaques, and analysed three pathways; the arcuate 

fasciculus and the superior longitudinal fasciculus as the dorsal connection, and the extreme capsule as the 

ventral connection. They found the arcuate fasciculus to be smaller in chimpanzees and absent in 

macaques. This dorsal pathway in humans terminated in the temporal lobe, whereas in chimpanzees, 

terminations were dominant in the parietal lobe. As a result, the authors argued that the expanded dorsal 

pathway in humans is crucial for the evolution of language. This finding supports the theory that changes in 

the strength of perisylvian connections between posterior temporal and inferior frontal regions have 

increased during evolution from monkey to human (Aboitiz and Garcia, 1997a). The theory rests on two 

evolutionary tendencies: the posterior temporal and inferior parietal regions became increasingly connected, 

linking the auditory system and a pre-existing parietal – premotor system; and development of connections 

between superior temporal and inferior frontal regions that link auditory information to orofacial premotor 

regions. There are speculations that these tendencies correspond to the evolution of posterior and long 

segments of the arcuate fasciculus, respectively, and the anterior segment being, phylogenetically, the oldest 

component of the perisylvian network (Catani, 2009). 
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    Perisylvian connections in the monkey brain have been studied extensively using axonal tracing 

techniques; however, their significance with respect to language remains controversial because the 

homologies between cortical areas in monkeys and humans are unclear (Schmahmann and Pandya, 2006). 

Old axonal and recent tractography studies support the theory that evolution of language from monkey to 

human involved a change in a pre-existing pattern of perisylvian connections (Catani, 2009). Thiebaut de 

Schotten, et al. (2012) used spherical deconvolution tractography (Tournier et al., 2004; DellʼAcqua et al., 

2007) to build an atlas of human frontal connections for a direct comparison with a recent atlas of the fibre 

pathways of the monkey brain (Schmahmann and Pandya, 2006). The authors investigated the third branch 

of the superior longitudinal fasciculus (SLF III) that connects the intraparietal sulcus and inferior parietal 

lobule to the inferior frontal gyrus (BA 44, 45, 47) and is equivalent to the anterior segment of the arcuate 

fasciculus. In the monkey the SLF III had a similar anatomy, linking the posterior part of the inferior frontal 

gyrus (area 6V and area 44) to the rostral portion of the inferior parietal lobule. The authors concluded that 

overall, the anatomy of the anterior segment of the arcuate fasciculus is highly conserved between humans 

and monkeys, in line with the theory that the anterior segment is phylogenetically the oldest component of 

the perisylvian network. The same study explored the comparative anatomy of the long segment of the 

arcuate fasciculus connecting posterior regions of the frontal lobe to the temporal lobe (Catani et al., 2002, 

2005). In the human brain, a subset of connections links the most posterior part of the superior temporal 

gyrus (BA 41 and 42) to the inferior frontal gyrus (BA 44 and 45), while a larger subset of connections links 

the middle and inferior temporal gyri (BA 21, 22 and 37) to the inferior pre-central (BA 6) and posterior 

regions of the middle and inferior frontal gyrus (BA 8, 9, 44 and 45) (Thiebaut de Schotten, et al., 2012). 

However, in the monkey brain, the arcuate seems to connect only the caudal part of the superior temporal 

gyrus and the dorsal part of area 8, area 46, and area 6. In contrast, Yeterian et al. (2012) made a claim for 

the existence of a direct projection between the superior temporal lobe and dorsal prefrontal areas via the 

arcuate fasciculus in the monkey brain. Nevertheless, the described pathway is more likely to be a 

connection linking temporal areas to the eyes in order to orient the eyes to the sound. In conclusion, it seems 

that the classical long direct segment of the arcuate fasciculus is what makes human and monkey brain 

different (in terms of ʻlanguageʼ connections). Thiebaut de Schotten et al. (2012) confirmed that there are 

significant differences in this fronto-temporal segment of the arcuate fasciculus between human and monkey 

brains, with the projection to middle and inferior temporal gyrus being absent in the monkey (see Fig 1.5.3).  
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Fig 1.5.3  (adapted from Thiebaut de Schotten, et al., 2012) Reconstruction of the arcuate fasciculus: comparison 

between post-mortem axonal tracing in monkey and human in vivo spherical deconvolution tractography. Common 
anatomical features between human and monkey are reconstructed in red whereas anatomical differences have been 

coloured in blue. 
 

 

   Controversy surrounding language evolution involves two existing views divided according to whether  

the emphasis is placed on a hand-gestural communication ancestral system, or auditory-vocal ancestral 

mechanisms. The arcuate fasciculus is likely an element involved in auditory–vocal coordination and 

articulatory control, which did not arise out of nothing. According to Aboitiz (2012) these perisylvian 

projections may only have a weak participation in vocalisation in the chimpanzees, but in hominids, 

neighbouring inferior parietal areas were recruited to participate in the planning of motor processes involving 

vocal articulation. Thus, domain-general ancestral inheritance was accompanied by domain-specific 

adaptations leading to the development of the arcuate fasciculus capable of supporting complex language 

processing in humans. 
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Chapter 2 

 

Maturation of the perisylvian language pathways: 
effects on lateralisation  

 

 

2.1 Introduction and summary of findings 

   

   In 1865 Paul Broca first proposed the idea of neuroanatomical lateralisation of language. Today, the left 

hemisphere is regarded as dominant for core language skills, and the left perisylvian brain regions are known 

to play a quintessential role in language function. However, we still know very little about how development 

shapes perisylvian language pathways and how it drives the lateralisation of the perisylvian white matter 

network. 

 

   The present study has applied diffusion tensor imaging (DTI) tractography to a group of 101 healthy 

children, adolescents and adults (age range 9-49 years) to investigate the developmental patterns of the 

perisylvian language network, and how these affect the resulting anatomical asymmetries. This is a 

retrospective study that used already acquired data from several projects (IOP brain library), with 

demographic information limited to age, gender and handedness. This study was largely done before I 

started my PhD. Processing of data, tractography dissections and data analyses was performed by dr. 

Marco Catani and dr. Flavio dellʼAcqua. I performed the spatial normalisation and created the visitation 

maps. The study explored whether the maturational changes occurring throughout development are global or 

involve a specific sub-population of language fibres. By investigating age-related differences in hemispheric 

lateralisation and the diffusion properties of the white matter in the perisylvian language network several 

important findings emerged. Firstly, the results showed that individual perisylvian language pathways exhibit 

distinct maturational trajectories affecting the resulting lateralisation patterns. Frontal lobe connections 

lateralised very early in life, whereas temporo-parietal connections continued to lateralise and remodel during 

adolescence and early adulthood, associated with the reorganisation of the white matter connections in the 

right hemisphere. Developmental changes in the white matter microstructure was evidenced by a significant 

age-related decrease in the mean diffusivity of all components of the perisylvian language network, except 

for the long segment in the right hemisphere. The study showed that the development of the perisylvian 

language pathways continues throughout adolescence and early adulthood with important differences 
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between genders. It further suggested that language lateralisation is a diverse process, with some tracts 

already lateralised early in life, whereas others continue to remodel throughout life span. 

 

2.1.1 Brain maturation  
 
   One of the most fascinating aspects of the human brain is its dynamic and essentially lifelong development 

that progressively sculpts the brain to its resulting shape. Although the human brain has around 100 billion 

neurons at birth, it is only one-quarter of its adult brain volume, due to continuous growth and modifications 

driven by genes and environment (Toga, et al., 2006). It is currently considered that some periods of life are 

more critical than others, and many think that the first two decades in life are pivotal for brain development 

(Yakovlev and Lecours, 1967). However, we must not forget the crucial role of neurogenesis, synaptic 

pruning and cell shrinkage during the intrauterine period (Rosenzweig, et al., 2012). It has been suggested 

that these pruning processes occur in order to provide required space and volume to support the later 

process of myelination (Bartzokis, 2011). These prenatal changes are likely driven by genes, but are also 

affected by environmental factors such as prenatal stress and nicotine exposure that change the 

neuroanatomical organisation of the developing brain altering dendritic branching, dendritic length and spine 

density (Muhammad, et al., 2012; Schwabe, et al., 2012). The postnatal process of myelination is also 

susceptible to environmental factors. Oligodendrocytes, which are responsible for myelin production, are 

continually dividing and differentiating and hence epigenetic modifications of gene expression can be 

introduced in each generation of these cells and reflect environmental conditions at different stages of 

development (Bartzokis, 2011; Rosenzweig, et al., 2012). Hence, it has been recently accepted that 

environment can alter the white matter of the brain (Fields, 2008) and recent study provided evidence of 

experience-related changes in diffusion characteristics in practising pianists (Bengtsson, et al., 2005). 

Hence, the development of the brain is orchestrated by highly interlinked genetic, epigenetic and 

environmental mechanisms (see Chapter 4). Both spontaneous brain-specific physiological (Zhou, et al., 

2006) and sensory-driven neural activity (environmental) are essential for guiding the process of brain 

development and the formation, refinement and maturation of synapses (West and Greenberg, 2011). Under 

environmental stimulation and genetic control, dendritic branching of neurons, increased numbers of 

synapses, faster conduction speed along fibres due to progressive myelination of the axons followed by the 

enigmatic process of synapse elimination and dendritic pruning, all lead to more efficient information 

processing. Exploring the maturation of the brain could bring insights into the cognitive changes during oneʼs 

life. In order to understand maturation and age-related changes of the perisylvian language pathways, it is 

necessary to examine closer how the overall brain matures, focusing first on the grey and later white brain 

matter. 

 

   Total brain tissue volume was found to linearly increase from 28 weeks' gestation to term (Rivkin, 2000).  

Subsequently, cortical thickness and grey matter volume follow a U-shaped developmental course, 

characterised by a period of initial childhood increase followed by a decline in adolescence (Giedd, et al., 

1999; Giorgio, et al., 2010; Gogtay, et al., 2004; Shaw, et al., 2008; Sowell, et al., 2003; Tamnes, et al., 

2010). Studies have further observed region-specific patterns of cortical maturation with different areas 



  39 

developing at different rates and at different times (Giedd, et al., 1999; Gogtay, et al.. 2004; Shaw, et al., 

2008; Sowell, et al., 2004; Tamnes, et al., 2010). Cortical regions with simple laminar architecture (3-layered 

allocortex), including most limbic areas, show simpler developmental trajectories (Shaw, et al., 2008). In 

contrast, polysensory and high-order association areas of cortex, the most complex areas in terms of their 

laminar architecture (6-layered isocortex), typically have more complex developmental trajectories (Shaw, et 

al., 2008). Some of these areas were unique to, or expanded, in primates, lending a possible clue to the 

developmental trajectories of language-related brain regions. It was found that from ages 5-11 years 

dendritic pruning and arborisation result in grey matter thinning of 0.15-0.30 mm per year (mostly right dorsal 

frontal and bilateral parietal regions) whereas in the language areas of temporal and frontal lobes cortical 

thickening was observed of 0.10-0.15 mm per year (Sowell, et al., 2004). These dynamic but distinct cortical 

changes in grey matter might be related to the acquisition of complex language abilities after 5 years of age 

(Sowell, et al., 2004).  

 

   In contrast to the nonlinear and regionally specific development of the cerebral cortex, white matter volume 

has been shown to increase globally in a generally linear manner throughout human life. Both post-mortem 

histological (Huttenlocher, 1990; Yakovlev and LeCours, 1967) and MRI studies (Giedd, et al., 1999; Paus, 

et al., 1999; Sowell et al. 2002) note that white matter increases linearly with age in frontal, temporal and 

parietal regions. This volume increase seems to peak in the fourth or fifth decade of life and then steadily 

declines due to aging (Sowell et al. 2003). Development of white matter appears to be related to re-

arrangement of white matter fibres, increases in the diameter and degree of myelination of the axons forming 

the fibre tracts, increases in neuronal size and glial proliferation that vary with age at different rates across 

bundles. Axonal wiring and pruning processes as well myelination, which begins in a scant distribution prior 

to birth, continue during the postnatal years stretching well into the third decade of life (Rivkin, 2000; Sowell, 

et al., 2003; Yakovlev and LeCours, 1967). Volpe (1995) has explained the pattern of myelination in human 

brain as the process that proceeds from proximal pathways to distal pathways – from sensory pathways to 

motor pathways, from projection pathways to associative pathways, from central loci towards the lobar poles 

with occipital lobe preceding frontal lobe in completion of the process.  
 

   The literature on age-related differences in white matter microstructure, as measured by DTI, shows a 

consistent pattern of increased fractional anisotropy (FA) and decreased mean diffusivity (MD) during 

childhood, adolescence, and even early adulthood (Ashtari et al., 2007a; Barnea-Goraly et al., 2005; 

Eluvathingal et al., 2007; Giorgio et al., 2008; Lebel et al., 2008; Nagy et al., 2004; Schmithorst et al., 2002; 

Zhang, et al., 2007), but after the fifth decade of life FA steadily decreases due to aging (Voineskos, et al., 

2012). The full maturity for all white matter tracts but one (cortico-spinal tract) is reached during the 3rd and 

4th decades of life (23.1-39.4 years) as measured by FA (Kochunov, et al., 2012). With increasing maturity 

of the brain, there is less motion of water molecules, since the extracellular space is diminished because of 

the proliferation of myelin and the increased size of maturing neurons and glia, resulting in a decrease in MD. 

In addition, the motion of the water molecules becomes increasingly anisotropic, due to a hinderance of 

water motion by the myelin sheath, oligodendrocytes, intraaxonal macromolecules and functional ionic 

channels, all leading to FA increase (Barkovich, 2000). Lebel et al. (2008) reported age-related increases in 
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FA and decreases in MD in major white matter tracts (including the superior longitudinal fasciculus) and 

selected subcortical regions in the age span 5-29 years. Studies suggest that this early age-related increase 

in FA in tracts is primarily driven by a reduction in perpendicular diffusion (Dperp), whereas parallel diffusion 

(Dpar) remains relatively stable or decreases slightly across different age groups (Asato, et al.,2010; Giorgio 

et al. 2008; Lebel et al. 2008). Still, others have reported a reduction of both Dperp and Dpar in many regions 

but usually to a greater extent in Dperp (Eluvathingal et al. 2007; but see Ashtari et al. 2007a). Investigating 

white matter maturation is important since recent diffusion imaging studies point to an association between 

structural maturation of neural pathways (when using FA as an index of white matter maturation) and the 

successful development of cognitive functions (Paus, 2010). Several groups have reported a positive 

relationship between various cognitive skills and FA in different tracts, such as the arcuate fasciculus 

(Ashtari, et al., 2007a,b), corpus callosum (Fryer et al., 2008; Muetzel et al., 2008; Nagy, et al., 2004) and 

other multiple white matter tracts (Schmithorst, et al., 2005). 

 

   How are grey matter and white matter maturation trajectories related? Are the loss (ʻpruningʼ) and gain 

(intra-cortical myelination) of tissue, which can be observed around puberty, related? Tamnes, et al. (2010) 

found that cortical age-related thinning was not explained by white matter maturation (volume increases, and 

changes in diffusion parameters) in one-hundred and sixty-eight participants aged 8-30 years. Only 

moderate associations between cortical thickness and both volume and diffusion parameters in underlying 

white matter regions were found, but the relationships were not strong. However, most of these DTI studies 

have been cross-sectional, further highlighting the importance of longitudinal studies that would enable the 

true reconstruction of the dynamic course of the developing brain (Toga et al., 2006) and correlation with 

behavioural outcomes. 

 

   After the process of brain maturation the steady decline is observed, known as brain aging or atrophy. 

Brain atrophy accelerates with increasing age and no gender difference is found in the rate of brain atrophy 

(Takao, et al., 2012). Age-dependent neuronal loss has long been considered central to age-related decline, 

associated with oxidative damage to the RNA molecules (Nunomura, et al., 2012) and iron accumulation 

which increases the toxicity of environmental or endogenous toxins (Zecca, et al., 2004). However, recently, 

age-related changes in brain white matter have taken precedence in explaining the steady decline in 

cognitive domains seen in the elderly (Hinman and Abraham, et al., 2007). Using a newly developed 

stereologic method it was found that males have a staggering total myelinated fibre length of 176,000 km at 

the age of 20, but only 97,000 km at the age of 80, whereas the total length in females was 149,000 km at 

the age of 20 and 82, 000 km at the age of 80. This finding corresponds to a 10% decrease per decade in 

myelinated nerve fibres (Marner, et al., 2003), and could explain cognitive decline observed in the elderly. In 

the normal aging population Voineskos, et al. (2012) found that a decrease in FA of white matter fibres 

correlated with cognitive decline: inferior longitudinal fasciculus (ILF) with visuomotor dexterity; the inferior 

occipitofrontal fasciculus with visuospatial construction; and posterior fibres (i.e. splenium) of the corpus 

callosum with memory and executive function. A general pattern emerged indicating that the prefrontal white 

matter is most susceptible to the influence of age (Gunning-Dixon, et al., 2009). Nevertheless, structural 

imaging studies showed that active cognitive lifestyle may be protective against development of brain 
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atrophy in late life (Suo, et al., 2012). Enriched environment of physical, social and sensory stimuli, can 

alleviate the normal aging process of the white matter marked by demyelination and loss of 

oligodendrocytes, and associated with cognitive decline (e.g. in spatial memory) (Yang, et al., 2012). 

Enriched environment can recover cognitive functions and promote remyelination in the aged brain. DTI 

tractography offers a valid approach to study the white matter maturation and age-related effects, as 

measured by FA and MD, and probe the associations with various cognitive functions. 

 

    It is important to note that significant gender differences are observed during brain maturation. Sexual 

dimorphism was found for both global and regional grey and white matter development. Studies of children 

and adolescents showed different ages of volume peak for cortical and subcortical grey matter in males and 

females (Giedd, et al., 1996, 1999; Lenroot and Giedd, 2006), with rates of brain maturation higher for 

females. EEG studies supported this and showed that regions involved in language (e.g. Wernickeʼs and 

Brocaʼs area) and fine motor skills mature significantly earlier in girls than in boys (Anokhin, et al., 2000; 

Hanlon, et al., 1999). Sexually dimorphic developmental patterns are observed for white matter, i.e. the 

arcuate fasciculus where FA increased in girls but decreased in boys during childhood (Schmithorst, et al., 

2008). Studies further found steeper growth of white matter during childhood (Lenroot, et al., 2007; 

Rosenzweig, et al., 2012) and consequent FA decline in adulthood (Rosenzweig, et al., 2012) in males 

compared to females. These gender differences might be driving the differences in the incidence of 

neuropsychiatric disorders, with females being at reduced risk of developing some disorders like autism 

(Baird, et al., 2006) and at greater risk of developing others, like affective disorders (Kessler, et al., 1994) 

and Alzheimerʼs disease (Andersen, et al., 1999). The important question is which factors are driving these 

gender differences during brain development. A number of biological mechanisms have been suggested that 

might provide explanations. Animal and human studies show that sex hormones are important for 

development of sexual dimorphism during early brain maturation, especially the effects of testosterone 

(Perrin, et al., 2008, 2009; Phoenix, et al., 1959) and oestrogen (Kochunov, et al., 2012), which has 

neuroprotective effects and increases the number of neurons, branching complexity and dendritic spine 

density in animal models (Brinton, 2001; Hao, et al., 2006;  Sandstrom and Williams, 2001). Furthermore, 

sex hormones can modulate brain function, and previously hormonal variation across the menstrual cycle 

was associated with significant changes in brain activity during language tasks (Dietrich, et al., 2001; 

Fernandez, et al., 2003; Goldstein, et al., 2005). However, sexual dimorphisms are also driven by factors 

other than sex hormones. Animal studies observed significant gender differences in gene expression levels 

even prior to the development of gonads (Dewing, et al., 2003) suggesting that gender differences in the 

brain may be present prior to and independent of the sex hormones. Sex chromosomes are other important 

culprits in driving these differences during brain development. The effects of sex chromosomes are studied in 

relation to Turnerʼs syndrome, a genetic disorder in females where normal second X chromosome is lacking. 

Findings note that the mode of inheritance of the X chromosome affects the development of specific brain 

regions. Observed X chromosome monogamy alters global and regional brain volumes (Cutter, et al., 2006), 

and more importantly alters language system in the temporal and frontal lobes (Temple and Shephard, 

2012). Hence, it is likely that this present diffusion tractography study will observe significant gender 

differences in the maturation of the perisylvian language network. 
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2.1.2 Language maturation 
 
Language functional maturation  

 

  Prior studies of maturation of language function support the widely held view that language develops 

continuously over time. Discontinuities may sometimes be observed in children with language impairments. 

Electrophysiological and hemodynamic studies indicate that although language functional lateralisation is 

present at birth, phonological processes appear during the first months of life, semantic processes at 12 

months, and syntactic processes around 30 months (Friederici, 2006b).  

 

   First exposure to language is based on acoustic and phonological/phonetic information, and therefore the 

initial step for every infant is to discriminate between speech and non speech sounds. Even in the first days 

after birth newborns are able to discriminate between different phonemes and distinguish the sentence 

prosody of their mother tongue from that of other languages (Friederici, 2006b). Sleeping newborns showed 

a larger increase in cerebral blood volume over the left temporal brain regions for forward speech compared 

to backward played speech in an optical imaging experiment (Pena et al., 2003). However, the 

neuroanatomical basis of these early abilities still needs to be fully specified. An fMRI experiment with 3-

month-olds suggests that at this age language processing is supported by inferior frontal and temporal brain 

regions similar to adults, with stronger left hemispheric activation of the superior temporal gyrus for speech 

sounds as measured by forward and backward speech compared to silence (Dehaene-Lambertz et al., 

2002). The same study also found differences between forward and backward speech in the left angular 

gyrus and precuneus. This is in line with other fMRI studies suggesting that neonates and 3-months old 

infants recruit areas beyond temporal lobes: the inferior and dorsolateral frontal regions when engaged in a 

speech task (Dehaene-Lambertz et al., 2002, 2006; Bristow et al, 2009) and the anterior prefrontal cortex 

when social cues are present (Dehaene-Lambertz et al., 2010). Findings on the participation of frontal lobes 

came as a surprise since they used to be neglected in previous studies of early language processing, due to 

their protracted maturational course. However, recently Leroy et al. (2011) showed that even at this early 

stage in life frontal maturation is sufficient for functional language activity (Leroy, et al., 2011). Thus, many 

studies reported early left hemispheric dominance for speech recruiting multiple brain regions, similar to that 

of adults. Nevertheless, Perani, et al. (2011) observed that in 2-days old infants, language-related neural 

substrate is fully active in both hemispheres with a preponderance in the right auditory cortex. However, 

functional and structural connectivities within this neural network were still immature, with strong connectivity 

only between the two hemispheres, in contrast to the adult pattern of dominant intrahemispheric 

connectivities (Perani, et al., 2011).  

 

   Recent data also indicate that language-specific neural representations of words form as early as 4 months 

of age in the infant brain (Friederici, et al., 2007) and by 9 months of age infants have already acquired the 

inventory of phonemes and stress patterns of their mother tongue (Jusczyk, 1997). They start to produce 

their first words between 11 and 13 months, with a lexicon gradually increasing from 50 to 75 items by the 

age of 16 months to a proper vocabulary between the age of 18 and 24 months (Bates and Goodman, 1999).  
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In the second and third year of life, infants acquire syntactic structures and the first production of two-word 

utterances, and later more-word utterances (Friederici, et al., 2006b; Hohle et al., 2001). It has also been 

reported that 14- to 20-month-olds are already able to differentiate between familiar and unfamiliar words 

(Mills et al., 2004), however it was not clear whether infants at this age process the semantics of words in a 

similar fashion to adults. What is known is that in early childhood event-related potentials (ERPs) differ as a 

function of word meaning, and their distribution change from bilateral at 13 months to left hemisphere 

dominant at 20 months of age during language comprehension (Mills et al., 1997).  

 

   Imaging studies point to the increasing functional lateralisation during childhood and adolescence (Everts 

et al., 2009; Holland et al., 2007; Mills et al., 1997; Ressel et al., 2008; Szaflarski et al, 2006) indicating a 

functional reorganisation of the neural network underlying language towards a left lateralised language 

system. Some authors suggest that these functional changes correspond to language skill acquisition rather 

than global brain maturation (Holland et al., 2007). A recent fMRI study by Friederici, et al. (2011) showed 

that in contrast to adults who show strong effective connectivities between frontal and temporal language 

regions within the left hemisphere, six-year-old childrenʼs default language network is characterised by 

stronger functional interhemispheric connectivity, mainly between the superior temporal regions. The 

observed pattern in children is in line with other fMRI studies that report childrenʼs stronger reliance on the 

right hemisphere, reflected in a more right functional lateralisation during language processing as compared 

to adults (Brauer and Friederici, 2007; Brauer, et al., 2008). In contrast with the left hemispheric perisylvian 

cortex that supports the processing of semantic and syntactic information (Friederici, 2002), the right 

perisylvian cortex is responsible for processing prosodic information (Meyer et al., 2002, 2004). Thus, it has 

been suggested that the stronger reliance of the right hemisphere in children is due to a higher involvement 

of prosodic processes in language processing (Sabisch, et al., 2009; Brauer, et al., 2008). This observed 

difference between children and adults is in line with the assumption of ongoing structural maturation of the 

perisylvian brain regions and the connections between them.  

 

  From the age of 5- to 10-years, language processing in children, observed using semantic categorization 

tasks and fMRI, has a similar activation pattern to those of adults (activation of the frontal and temporal 

regions of the left hemisphere) suggesting that language is left-lateralised as early as 5 years of age 

(Balsamo, et al., 2006). However, development of language functions is an on-going process, and 

behavioural data indicate that the processing of syntactically complex sentences, such as sentences with a 

noncanonical word order that do not follow the usual subject-verb-object word order, occurs late. From fMRI 

data in adults, we know that to process the noncanonical sentences we recruit Brocaʼs area (Stromswold, 

1996; Rogalsky, et al., 2008) and the posterior superior temporal gyrus/superior temporal sulcus 

(Bornkessel, et al., 2005; Friederici, Fiebach, et al., 2006), areas which are connected by the arcuate 

fasciculus (Catani, et al., 2005). It is hence possible that the processing of complex syntax coincides with the 

maturation of the arcuate fasciculus fibre bundle. Other complex language processing that occurs late 

includes understanding object-first sentences (Dittmar, et al., 2008) or passive sentences (Hahne, et al., 

2004) which occurs around the age of 7 years.  
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   In order to explore the potential influence of variation in early language experience on shaping of brain 

function and structure and its potential for plasticity, many studies turned towards bilingualism (Hull and Vaid, 

2007, 2006; Golestani and Pallier, 2006; Mechelli, et al., 2004; Gandour, et al., 2007). Recent discoveries 

suggest that bilingual experience may confer unique patterns of neurofunctional activity. After two meta-

analyses of 66 behavioural studies, Hull and Vaid (2007) showed that monolinguals and late bilinguals 

(second language acquired after the age of six) in general have left functional hemispheric dominance 

across language tasks regardless of proficiency, whereas early bilinguals (second language acquired before 

the age of six) have bilateral hemispheric involvement. Corballis (1991) suggested that language might be 

left lateralised because the left hemisphere develops more rapidly than the right during early development. 

However, these findings suggest that left-lateralisation may be a consequence of housing only one language 

system, and the speculation is whether the right hemisphere could similarly undergo rapid early growth when 

multiple languages must be accommodated. A voxel-based morphometry study (Mechelli, et al., 2004) 

showed that brain structure is affected by bilingual experience, since grey matter density increases in 

bilinguals over monolinguals in inferior parietal cortex. The effect was greater in the early bilinguals in the left 

and right hemisphere. The density in this region increased with the second language proficiency, but 

decreased as the age of acquisition increases. This relationship between grey matter density and 

proficiency/age of acquisition suggests that the attainment of better skills in a second language or earlier 

learning of second language results in structural reorganisation in this language region. 

 

   Little is known how functional language maturation is related to the underlying neural organisation of the 

perisylvian language network. The next section will discuss the maturation of the arcuate fasciculus in order 

to provide a relevant background to the present diffusion tractography study. 

 

Language structural maturation: arcuate fasciculus 

 

   The fibres of the arcuate fasciculus are among the slowest ones to mature in the human brain (Paus, 

1999), and imaging-based anatomical data suggest that its maturation is associated with different structural 

changes. 

 

   Converging evidence from fMRI and DTI indicate that the arcuate fasciculus is still immature in 7-year old 

children (as measured by diffusion anisotropy); and although children make use of this dorsal pathway, it is 

suggested that due to its relative immaturity they extend their fronto-temporal network by making additional 

use of a ventral extreme capsule fibre system (Brauer, et al., 2011). Hence, it is suggested that adults make 

use of a more confined language network compared to children, due to the ongoing maturation of this 

structural network. As Annette Karmiloff-Smith (2010) wrote, neural processing tends initially to be diffused 

across both hemispheres, but with developmental time and the continuous processing, brain activity 

becomes increasingly restricted to more specific networks. Continuous maturation is further highlighted by 

highly significant changes of fibre orientation in regions which correspond to the superior longitudinal 

(arcuate) fasciculus during the first 5 years of life (Zhang, et al., 2007). This late maturation of the arcuate 



  45 

fasciculus could be explained in terms of progressive axonal reorganisation and late myelination, due to 

increasingly complex use of this network in speech and language processes.  

 

   Using DTI, even in weakly myelinated brains the main fibre tracts can be identifiable and thus, maturational 

changes of language network can be observed (Dubois, et al., 2006, 2009). Dubois et al, (2009) studied in-

vivo structural markers of hemispheric language asymmetries in infants from 1-4 months of age and found 

left-right differences in the arcuate fasciculus during the first post natal weeks, with no evolution in the 

amplitude of these differences at later stages (3.9 - 18.4 weeks). However, this study did not manage to 

reconstruct consistently the frontal portion of the tract, because of insufficient diffusion anisotropy in this age 

range, so only two segments, temporal and parietal, were analysed. Nevertheless, the results indicated 

distinct developmental patterns for different segments of the arcuate fasciculus. Analysis on localisation, 

geometry and diffusion indices revealed an asymmetry in the temporal segment of the arcuate fasciculus. At 

this age the temporal segment of the arcuate fasciculus is already larger in the left hemisphere as shown by 

voxel-based analysis, and exhibits higher FA, which may imply higher coherence of fibres; and higher MD 

and longitudinal diffusivity – suggesting a delayed "pre-myelination" stage, compared to its right counterpart. 

Further, maturation seemed more advanced in the left parietal segment of the arcuate fasciculus compared 

to its right counterpart, as measured by FA. Authors suggested that the higher FA observed in the left 

parietal segment is related to a higher organisation of parallel fibres, rather than attributing it to advances of 

"true" myelination (corresponding to the sheathing of oligodendroglial processes around the axons), as this 

region matures slowly during childhood. These early left asymmetries suggest that structural language 

lateralisation might be related to the functional lateralisation of language.  

 

   Diffusion imaging studies suggest that the arcuate fasciculus exhibits changing fibre coherence and/or fibre 

density during development. Age-related increases in FA were found for both left and right arcuate fasciculus 

(Ashtari et al., 2007a; Bonekamp et al., 2006; Eluvathingal et al., 2007; Schmithorst et al., 2002). Barnea-

Goraly et al. (2005) observed age related increases in FA and fibre density in intrahemispheric tracts which 

correspond to the location of long segment of the arcuate bundle during childhood and adolescence. 

Similarly, Schmithorst et al. (2002) found significant positive correlation of FA and significant negative 

correlation of the apparent diffusion coefficient with age in the left arcuate fasciculus for both children and 

adolescents. These age-related increases in fractional anisotropy could be compatible with a mechanism of 

an increasingly dense and ordered packing of fibre tracts, which leads to directionally more hindered 

extracellular, rather than intracellular space. It is however unclear whether increases in FA are due to greater 

diffusivity along the main diffusion axis (Ashtari et al., 2007a), reduced diffusivity along the axes 

perpendicular to it (Bonekamp et al., 2006; Eluvathingal et al., 2007; Giorgio et al., 2008; Snook et al., 2005; 

Suzuki et al., 2003) or a combination of the two. Giorgio, et al. (2010) showed an age-related increase in FA 

of the arcuate fasciculus driven by increases in parallel diffusivity during adolescence (in line with Ashtari, et 

al., 2007a). FA values of both left and right arcuate fasciculus were significantly higher at the end of the 

follow-up compared to baseline. The authors found an overlap between age-related FA and white matter 

volume increase at the level of the bilateral superior longitudinal fasciculi (including arcuate fasciculi). Taken 

together, these age-related differences probably reflected the increases in the diameter of the axons of the 
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arcuate fasciculus in both hemispheres. However, Paus et al. (1999) revealed significant age related 

increases in white matter density in the posterior portion of the left, but not right, arcuate fasciculus. Moore 

(2002) examined brain specimens of children, and observed gradual maturation of axons originating in the 

superficial layers of the auditory cortex; these axons possibly contributed to cortico-cortical connections 

contained within the arcuate fasciculus. Thus, author argued that age-related increases in white matter 

density along the arcuate fasciculus may represent a structural correlate of another component of the 

auditory-vocal system, namely the cortico-cortical pathway mediating sensory-motor interactions between 

the anterior and posterior speech regions. It is also possible that age-related increases in white matter 

density reflect the effect of extensive use of this system during one's life. Taken together, these age-related 

changes in FA and fibre density, mainly observed along the left arcuate fasciculus, may reflect increases in 

axon diameter, myelination, fibre coherence, axonal membrane integrity, separately or in combination. 

However, we cannot conclude directly which cellular changes are involved in the dynamic maturational 

processes, because MRI lacks the resolution to characterise the exact cellular mechanisms. 

 

   The first study to propose that maturation of the arcuate fasciculus might not be uniform for its three 

segments was done by Eluvathingal et al. (2007).  The authors studied the effects of age, and lateral 

asymmetries in right-handed children using DTI, and noticed that different arcuate fasciculus segments 

showed different patterns of lateralisation. The long direct segment exhibited higher FA in the left 

hemisphere, while the anterior indirect segment showed a significant right asymmetry in the FA, consistent 

with the findings of Buchel et al. (2004). The authors suggested that the less prominent or absent long 

segment of the arcuate fasciculus on the right side (observed in 29% of participants) allowed the segment to 

be straighter on the left side, leading to the observed differences in diffusivity parameters. These differences 

in lateralisation can lead to a conclusion that different segments may have different maturational trajectories, 

and that the observed lateralisation differences merely reflect different stages of white matter maturation. 

Eluvathingal et al. (2007) proposed two different patterns of white matter maturation, affecting differently on 

one hand the anterior indirect segment and on the other the long direct and posterior indirect segments. First 

pattern of white matter maturation observed for the bilateral anterior segment was characterised by a 

significant increase in FA and a decrease in all three diffusivities (mean, transverse and axial) suggesting 

that myelination (as measured by decreased transverse diffusivity) is accompanied by changes in the 

intrinsic characteristics of axons/changes in extra-axonal or extracellular space (decrease in axial diffusivity). 

The authors suggested that this pattern of maturation plays an important role in higher cognitive functions. 

Myelination in general is known to coincide with the development of various cognitive skills (Yakovlev and 

Lecours, 1967; Mabbott, et al., 2006; Nagy, et al., 2004), such as language-related reading (Kraft, et al., 

1980), and development of vocabulary (Pujol, et al., 2006). On the other hand, significant age-related 

decrease in all three diffusivities not accompanied by significant increase in FA was observed in the left long 

segment and bilateral posterior indirect segment of the arcuate fasciculus. Although this may be attributable 

to progressive myelination, the changes in the axial diffusivities may also indicate continued changes in 

intrinsic characteristics of axons/changes in extracellular space. Whether different maturational trajectories of 

the three segments influence the resulting lateralisation patterns and whether language anatomical 

asymmetry changes across lifespan will be discussed in more detail in the following section. 
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2.1.3 Age-related differences in lateralisation patterns 

 

   Earlier reports confirmed dominant left asymmetry of the arcuate fasciculus by microscopic examination of 

post-mortem specimens (Galuske, et al.,2000) structural MRI (Paus, et al., 1999) and DT-MRI (Catani, et al., 

2005; Eluvathingal, et al., 2007; Hagmann, et al., 2006; Nucifora, et al., 2005; Parker, et al., 2005; Powell, et 

al., 2006; Vernooij, et al., 2007) for both volumetric (Hagmann, et al., 2006; Parker, et al., 2005; Paus, et al., 

1999) and diffusion parameters (Eluvathingal, et al., 2007; Nucifora, et al., 2005; Powell, et al., 2006; 

Vernooij, et al., 2007). However, not all studies found a left-sided asymmetry of the arcuate fasciculus. 

Giorgio et al. (2010) observed that FA values computed from the whole arcuate fasciculus by probabilistic 

tractography were significantly higher in the right compared to the left hemisphere at different time points 

during adolescence. This was not explained by differences in segmented tract volumes and appeared to 

conflict with previous cross-sectional brain asymmetry DTI studies in children, adolescents (Eluvathingal, et 

al., 2007) and adults (Buchel, et al., 2004; Catani, et al., 2005). However, the authors suggested that these 

differences reflected different biases in localisation of changes. In two of the aforementioned studies (Buchel 

et al., 2004; Eluvathingal et al., 2007) a right-sided FA asymmetry was found in the fronto-parietal (anterior) 

segment of the arcuate fasciculus, which might be leading the right-sided asymmetry of the results obtained 

by Giorgio et al. (2010). This is likely considering that previous diffusion tractography studies  revealed a 

highly heterogeneous distribution of the degree of lateralisation of the three segments of the arcuate 

fasciculus in the human population (Catani, et al., 2007; Eluvathingal, et al., 2007). In addition, significant 

differences were observed between genders, with females more likely to have a symmetrical bilateral pattern 

than males of the long direct segment. This symmetrical distribution of the long segment was correlated with 

better performances in complex verbal memory tasks (Catani, et al., 2007). This might not be true for other 

measures of language function, since extreme left-sided asymmetry of the long segment was associated with 

better receptive vocabulary scores, while a phonological processing task was performed best by those with 

more moderate left-sided lateralisation (Lebel and Beaulieu, 2009). Although it is not clear from these recent 

studies how lateralisation of the arcuate fasciculus affects different language skills, it is certain that it plays 

an important role in cognitive language-related tasks. 

 

   Having in mind the association between language anatomical lateralisation and cognitive skills, it is 

important to investigate whether, and how, language lateralisation changes across the lifespan. Lenneberg 

(1967) proposed that language could be acquired only during a critical developmental period during 

childhood. In his "plasticity hypothesis" he argues that both maturational and environmental factors lead to a 

gradual specialization of the left hemisphere for language, which is completed around puberty. This would 

imply that language lateralisation is a dynamic process that continues until the beginning of adolescence. 

However, this hypothesis has been challenged by imaging findings reporting that a degree of left hemisphere 

lateralisation exists shortly after birth (Dubois, et al., 2009). The period of brain plasticity was originally 

assumed to be associated with incomplete brain lateralisation, and subsequently identified in the literature 

with the ongoing processes of myelination, dendritic pruning, creation of neural networks and with higher 

levels of glucose uptake (Snow, 2002). Contrary to the classical critical period, a newer concept of the 
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'optimal period' refers to a window that is more variable in onset and offset, and supports the language 

hypothesis of one or several optimal periods in language acquisition (Werker and Tees, 2005). 

   Structural imaging studies also brought a wealth of evidence suggesting that the left asymmetry of the 

arcuate fasciculus is stable, and present very early in human life. This might seem surprising considering 

that the arcuate fasciculus matures relatively late in life (Brauer, et al., 2011; Giorgio et al. 2008). 

Nevertheless, research points to the fact that in general brain asymmetries occur very early in life. Hence, 

left-right asymmetry becomes evident in the early human embryonic stages, driven by asymmetrical gene 

expression in the perisylvian cortical regions (Abrahams et al., 2007; Sun et al., 2005). Gene expression 

asymmetries of the perisylvian cortex seem to mirror the asymmetries of language functional and anatomical 

organisation, favouring the left hemisphere. Further, if we investigate the language anatomical lateralisation 

by studying the asymmetry of the planum temporale (PT), which overlaps partly with Wernickeʼs area, we 

can observe this left PT asymmetry in fetal brains as early as 29-31 weeks of gestation (Wada, et al., 1975). 

Lastly, DT-MRI studies point to left asymmetry of the arcuate fasciculus in the first months of human 

postnatal life (Dubois, et al., 2009) and childhood (Eluvathingal, et al., 2007; Lebel and Beaulieu, 2009). 

These asymmetric structural changes of the language network are probably linked to an early language 

functional asymmetry (Dehaene-Lambertz, 2000; Dehaene-Lambertz et al., 2002; 2006; 2010; Pena et al., 

2003). Lebel and Beaulieu (2009) reported a consistent pattern of left asymmetry of the arcuate fasciculus in 

children, adolescents and young adults, stable across age and gender, and concluded that arcuate 

fasciculus lateralisation seems to be constant throughout human life. Nevertheless, it is not known whether 

this stable and early lateralisation is present for all three segments of the arcuate fasciculus, and this will be 

investigated in the present PhD study. Also, stable anatomical lateralisation does not imply stable functional 

lateralisation of language. Although structural studies observed constant lateralisation pattern, which does 

not change from early childhood into adulthood, functional studies note an age-related increase in the degree 

of lateralisation favouring the left hemisphere during language processing tasks (Brauer and Friederici, 2007; 

Holland, et al., 2007; Perani, et al., 2011; Szaflarski, et al., 2006). Yet, no study to date has separately 

examined  the maturation of the three segments of the arcuate fasciculus, and their hemispheric 

asymmetries over time.  Hence it is not understood whether the maturational changes occurring throughout 

development are global or involve a specific sub-population of language fibres. Having different maturational 

trajectories might imply different functional specialisations of the three segments. That asymmetries of 

different segments might have different maturational patterns could be expected if we consider the 

maturation of grey matter overlying the language network.  For example Leroy, et al. (2011) analysed 

asymmetries in Brocaʼs regions, and found that BA44 (pars opercularis) is significantly more asymmetric 

towards the left than area BA45 (pars triangularis), suggesting a developmental gradient in asymmetry that 

begins in BA44 and extends progressively towards BA45. This is in line with a study by Amunts, et al. (1995) 

who reported that asymmetry in BA45 gray matter thickness increased with age, while it was already 

established in BA44 even in young infants. Likewise, it is possible that the three segments of the arcuate 

fasciculus have different maturational trajectories reflected in resulting asymmetry differences. Thus my aim 

was to decipher  age-related differences in the fronto-temporo-parietal perisylvian network underlying 

language processing, and elucidate the effects of maturation on lateralisation patterns of fibre bundles 

running within the arcuate fasciculus. 
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2.2 Methods 

Study Participants 

We recruited 101 right-handed healthy volunteers between the age of 9 and 49 years. There was almost 

equal number of females and males included (50 males, 51 females). Handedness was assessed by using 

the Edinburgh Handedness Inventory (Oldfield, 1971). Approval was obtained from the Joint Medical Ethical 

Committee of the Institute of Psychiatry, Kings College London. Informed written consent was obtained from 

all participants. 

 

DT-MRI Acquisition and Processing 

Data was acquired on a GE Signa 1.5-T LX MRI system (General Electric, Milwaukee, WI) with 40-mT/m 

gradients, using an acquisition sequence fully optimised for DT-MRI of white matter, providing isotropic 

resolution (2.5 x 2.5 x 2.5 mm) and coverage of the whole head. This acquisition was gated to the cardiac 

cycle using a peripheral gating device placed on the subjects' forefingers. There were 64 uniformly 

distributed directions used, with 7 b0 images, with b-value being 1300 s/mm-2. Full details of the acquisition 

sequence are provided in Jones et al. (2002). DTI acquisition per subject took approximatively 15/20 min 

according to the heart rate. Following correction for the image distortions introduced by the application of the 

diffusion encoding gradients, the DT was determined in each voxel following the method of Basser et al. 

(1994). After diagonalisation of the DT, different quantitative indices were estimated in each voxel, e.g. 

fractional anisotropy and mean diffusivity. To ensure that the observer was blind to the hemisphere during 

virtual dissection of the language pathways and to provide protection against subjective bias, some of the 

anonymised DT-MRI datasets were flipped about the midline. 

 

Tractography Algorithm and ROI delineation 

Tractography was performed using in house software and was based on the procedure originally described 

by Basser et al. (2000). Details of the method were published before (Catani, et al., 2005), but a brief 

description will follow. Firstly, a continuous description of the DT field was obtained using a B-spline fitting on 

the elements of the tensor from each voxel (Basser, 2004). This procedure allows rapid evaluation of the DT 

at any arbitrary location within the imaged. The regions of interest were selected, and the voxel inside these 

regions considered as the starting point of the tractography (“seed points”). For each seed point we 

propagated the streamline following the directions of the principal eigenvector. The track was propagated by 

0.5mm step along this direction. The DT was then determined at this new location and the orientation of its 

principal eigenvector estimated. The procedure was repeated iteratively. A pathway was tracked until the 

fractional anisotropy of the tensor was below a fixed arbitrary threshold (0.2) or the curvature was less than 

30 degrees. The procedure was then repeated by tracking in the opposite direction, to reconstruct the whole 

tract passing through the seed-point. 

 

ROI delineation method 

A two regions of interest (ROI) approach described in Catani et al. (2005, 2007) has been used in this study 

to dissect the three segments of the perisylvian pathways (see Fig 2.2.1). ROIs were defined on the axial 

fractional anisotropy maps, to encompass the horizontal fibres lateral to the corona radiata and medial to the 
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cortex extending from Talairach z=22 to z=28. All fibres passing through this ROI were reconstructed in three 

dimensions using MATLAB (Mathworks, Natick, MA) and visualised as illuminated streamtubes. The ROI 

was defined on axial slices as this projection facilitates the visualisation of the borders between the fibres of 

the arcuate and those of the corona radiata. A two-ROI approach was used to perform further detailed 

dissection of the arcuate fasciculus, allowing separation of different sets of fibres within the arcuate bundle. 

Two spatially separated regions are defined in the fractional anisotropy volume, and all fibres passing 

through both are visualised. The approach does not constrain the tracts to start and end within the defined 

regions, only to pass through them. The distribution of the arcuate fasciculus terminations found by 

tractography extends beyond the classical limits of Broca's and Wernicke's areas to include, in addition to the 

inferior frontal cortex, part of the middle frontal gyrus and, in addition to the superior temporal cortex, the 

posterior middle temporal gyrus respectively. For this reason, these regions are referred to as Broca's and 

Wernicke's territories. The single segments were visually inspected for the presence of aberrant streamlines 

and anatomical correspondence between the two hemispheres. The number of seeds used to start tracking 

was similar between the two hemispheres. 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 
          Fig 2.2.1 (adapted from Catani, et al., 2005) Virtual dissections of perisylvian language pathways using one- and 

two-region of interest approaches. (A) A large region of interest (ROI) is defined around the central part of the arcuate 

fasciculus. (B) Guided by the colour-encoded fibre orientation map on the upper row, where the green fibres of the 
arcuate fasciculus (indicated by the yellow arrows) pass lateral to the corona radiata (blue), a region of interest (encircled 

in white) is defined through four axial fractional anisotropy images (lower row). (C) Pathways passing through the ROI 
are displayed in red and superimposed on sagittal fractional anisotropy images. The most lateral image (Talairach x -52) 

shows the three cortical projection territories of the arcuate fasciculus: posterior inferior frontal territory (B, Broca's 
territory), inferior parietal territory (G, Geschwind's territory) and superior posterior temporal region (W, Wernicke's 

territory). (D) A two-region of interest approach is used to dissect connections between the Broca's, Geschwind's and 
Wernicke's territory. (E) ROIs are defined on axial fractional anisotropy images. (F) Connections from Broca's to 

Geschwind's territory are displayed in green (anterior indirect segment), connections from Wernicke's to Broca's territory 
in red (long direct segment) and connections from Wernicke's to Geschwind's territory in yellow (posterior indirect 

segment). 
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At the termination of tracking, the number of reconstructed pathways, the fractional anisotropy, which 

quantifies the directionality of diffusion on a scale from zero (when diffusion is totally random) to one ( when 

water molecules are able to diffuse along one direction only) and mean diffusivity were sampled at regular 

(0.5mm) intervals along the tract and the means computed. For each reconstructed segment a lateralisation 

index was calculated counting the number of reconstructed pathways within each hemisphere. Lateralisation 

index was obtained according to the following formula (N., number): 

 (N. streamlines-left) – (N. streamlines-right) 

(N. streamlines-left) + (N. streamlines-right)]/2 

 

Positive values of the index indicate a greater number of streamlines in the left segment compared with the 

right. Values around the zero indicate a similar number of streamlines between left and right. Similarly, a 

lateralisation index was calculated for the fractional anisotropy of each segment. 

 

Visitation Maps and Tract Volume Measurements 

 

All the tracts were first converted into binary maps. We used SPM5 normalisation pipeline, which is affine 

normalisation followed by non-linear. Binarisation occurred after normalisation to the native space. Binary 

maps with dimensions equal to that of the DT-MRI data (i.e., 128 x 128 x 60) were computed by assigning 

each voxel a value of 1 or 0 depending on whether the pixel was intersected by the tract segment or not. All 

the binary masks were normalized to the MNI space (defined by the Montreal Neurological Institute). 

Normalization of all the brains first required an adequate template to be estimated. The b0 images from 60 

subjects were then spatially normalized to the MNI reference space defined by the Echo Planar Imaging 

(EPI) template supplied as part of the SPM5 software package (statistical parametric mapping; Wellcome 

Department of Cognitive Neurology, London, U.K.). The same transformation was applied to the fractional 

anisotropy (FA) maps for each subject. FA maps were then averaged, and the result was regarded as the 

first guess template. In order to refine and improve the quality of this first template, we repeated the 

normalization of the original FA maps but this time using the guess as the new template. Afterwards all the 

FA maps were averaged to obtain the final template, and on this final template the normalization of FA maps 

was repeated. The final transformation was applied also to the binary maps produced for each subject and 

segment. All the datasets were sorted according to age. A moving average technique with a square window 

of ±5 years was applied, and an average visitation map for each year ± the width of the window was 

obtained. There were approximately the same number of participants in each windon (around 10 subjects). 

Visitation map is defined as the average of the binary maps inside the windows, where the voxel value of 1 is 

reached when all the subjects present streamline in that voxel or 0 when no streamlines are present in the 

given voxel. This technique enabled us to investigate and follow the volume changes of different segments of 

the tract at different ages. 
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2.3 Results 

 

Age-related differences in language lateralisation 

 

   The following are the analyses previously done by the members of the Natbrainlab, dr. Marco 

Catani, dr.Flavio DellʼAcqua and dr. Luca Pugliese. For each segment of the arcuate fasciculus 

the number of streamlines in both hemispheres was counted and a laterality index was 

calculated. Variations in the laterality index of the three segments were plotted against age (Fig 

2.3.1). 

 

 
Fig 2.3.1. Age-related differences in the laterality index (number of streamlines) for the posterior, long and 

anterior segment of the arcuate bundle (quadratic fit lines ± mean 95% confidence intervals). Laterality 
index of 0.0 represents bilateral representation; 2.0 extreme left asymmetry; -2.0 extreme right asymmetry. 

The variance at extreme of age is wider due to the smaller number of subjects in that age range. *p< 0.001. 

 

    At the age of 9 there was a statistically significant difference in the laterality index of the three segments. 

The laterality index of the long direct segment showed positive values (.95 ± 1.11, age range 9-12 years) 

indicating a left lateralisation, whereas the indirect posterior (.04 ± .70, age range 9-12 years) showed no 

lateralisation and the anterior segments (-.56 ± .65, age range 9-12 years)  indicated a right lateralisation. 

This suggests that the direct long segment has an asymmetrical distribution from an early age with greater 

volume in the left as compared to the right. A correlation analysis between laterality index (number of 

streamlines) and age (Table 2.3.1) revealed a statistically significant correlation for the posterior indirect  
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segment, whose values increase positively with age (Pearson's correlation = .355, p<.001), leading to a shift 

of lateralisation from bilateral to the left hemisphere. There was no significant correlation between age and 

the anterior indirect (Pearson's correlation = -.080, p=.53) and long direct segment (Pearson's correlation = 

.091, p=.34). 

 

 

                           Table 2.3.1. Correlation between age and the lateralisation indices       

 
 

 

   To understand whether this shift in lateralisation to the left of the posterior segment is associated with an 

increase in the number of streamlines in the left hemisphere or a decrease in the number of streamlines in 

the right hemisphere, a correlation analysis with the absolute values of the number of streamlines for each 

side was undertaken. This analysis shows a negative correlation between the number of streamlines in the 

right posterior segment (Pearson's correlation = -.366, p<.001) with age. There were no significant 

correlations with age for the number of streamlines in the left posterior segment, left and right anterior and 

left and right long segment (Table 2.3.2).  
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                                Table 2.3.2. Correlation between age and the number of streamlines            

 
   

   These results suggest that the lateralisation of the perisylvian language pathways is a dynamic process; 

and  that for some of the tracts has already been completed before adolescence (e.g. long and anterior 

segments).  In contrast, for the temporo-parietal connections (posterior segment) the lateralisation continues 

throughout adolescence and early adulthood. These differences occur in the right hemisphere and consist of 

a reduction in the number of streamlines.  

 

   In order to understand whether there is a critical period for these changes to occur, a voxelwise analysis 

was performed using visitation maps derived from the tractography dissections. For each segment a binary 

map was produced and averaged across subjects. A moving average window was applied to visualise age-

related modifications in the volume of the specific segments. Compared to the number of streamlines this 

method represents an alternative estimate of the volumetric differences occurring during development. 

Figures 2.3.2-5 show the results of this analysis for each segment. 

 

 

                                        
               Fig 2.3.2. Age-related volumes of the anterior indirect segment 

                   in the right (in red) and left (in blue) hemisphere  
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  Fig 2.3.3. Age-related volumes of the long direct segment  

  in the right (in red) and left (in blue) hemisphere  
 

 

      
  Fig 2.3.4. Age-related volumes of the posterior indirect segment 

   in the right (in red) and left (in blue) hemisphere  

 
 

 

   As can be seen from the Fig 2.3.4, before adolescence there is a clear asymmetry in the volumes of the 

posterior segment, with greater values in the right hemisphere. By the age of 13 and throughout adolescence 

the volume of the right posterior segment decreases, whereas the volume of the left posterior remains almost 

unchanged. These changes continue also into early adulthood. The analysis confirms the early right 

lateralisation of the anterior segment and left lateralisation of the long segment and their minimal changes 

throughout adolescence (for an overview see Fig 2.3.5). These results suggest that adolescence is a critical 

period for brain development, during which posterior connections of the right hemisphere undergo intense 

reorganisation and lead to a change in lateralisation patterns. 
 

 
 

 

 
 

 

 



  56 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

Fig 2.3.5. Visualisation of the age-related volumetric differences of the long, anterior, and posterior 

segments of the bilateral arcuate fasciculus. Tract volume with 50% overlap represents the volume of the 

tract that is common in at least 50% of the subjects. 

 

 

Microstructural age-related differences in perisylvian language pathways 

 

   Microstructural differences in the arcuate bundle can be studied by sampling fractional anisotropy (FA) and 

mean diffusivity (MD) for each single tract. FA is a scalar measure that reflects the degree to which the 

diffusivity depends on the orientation in which it is measured, and is considered an index of microstructural 

order and integrity of fibres, whereas MD is a scalar measure of the total diffusion within a voxel. Correlation 

analysis of the absolute values of MD in the right and left hemisphere revealed a statistically significant 

negative correlation between age and mean diffusivity in bilateral posterior (Pearson's correlation = -.573, p< 

.001; Pearson's correlation = -.602, p< .001 respectively) and anterior segments (Pearson's correlation = -

.562, p< .001; Pearson's correlation = -.595, p< .001 respectively), and long left segment (Pearson's 

correlation = -.540, p< .001) of the arcuate fasciculus (see Table 2.3.3). No significant correlation between 

absolute values of FA and age were observed. 
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                                 Table 2.3.3. Correlation between age and FA, MD absolute values  

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age-related differences between genders  

 

   To assess age-related gender differences in the perisylvian language pathways Z-obs (correlation curves) 

analysis was performed for microstructural differences (FA and MD), laterality index and the number of 

streamlines in each hemisphere. A significant gender difference was found using correlation analysis 

between age and the lateralisation index of MD of the posterior segment (males= -.341 compared to 

females= .145, Pearson's correlation = - 2.37, p< .001). This result suggests that different processes are 

occurring in the posterior indirect segment depending on the gender, with the lateralisation of MD increasing 

with age in females and decreasing in males (see Table 2.3.1). However, these individual correlations were 

not significant, and thus provide no further clue on the exact mechanisms that might be leading this gender 

difference. 
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   The correlation analysis between age and FA and MD absolute values (Table 2.3.3) revealed a significant 

gender difference in FA and MD of the anterior right segment (Pearson's correlation = 2.14, p< .001; 

Pearson's correlation = -2.026, p< .001 respectively), and in the MD of the long left (Pearson's correlation = 

2.62) and posterior left (Pearson's correlation = -2.22, p< .001) segment over time. Furthermore, Pearson's 

correlation between age and MD was statistically significant in all three perisylvian segments of both 

hemispheres in males - showing that MD decreases over time; but not in female participants, where only a 

trend of MD decrease with age was observed.  

 

   The analysis of microstructural changes (Table 2.3.4) showed a significant difference among genders in 

the absolute values of FA of the left posterior (males= .41± .03 compared to females= .43± .02, p< .001) and 

right posterior segment (males= .41± .02 compared to females= .43± .02, p< .001) of the arcuate fasciculus, 

with females exhibiting higher anisotropy values. 

 

 

              Table 2.3.4 FA and MD absolute values of the three segments of the arcuate fasciculus 
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   No significant difference was observed for the absolute values of MD in the single tracts. In addition, no 

significant gender difference was observed in the laterality index of FA and MD values (Table 2.3.5), the 

number of streamlines in left and right hemisphere (Table 2.3.6), and in correlations between age and the 

number of streamlines (Table 2.3.2). 

                          

                      Table 2.3.5 Laterality indices of the three segments of the arcuate fasciculus 

               
 

                          Table 2.3.6 The number of reconstructed pathways in both hemispheres  

                                                   of the three segments of the arcuate fasciculus 
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2.4 Discussion 

 

   The present study utilised diffusion tractography in healthy children and adults to investigate age-related 

differences in white matter anatomy of the perisylvian language pathways. This is the first time that a 

comprehensive account of the maturational trajectories of the three segments underlying the fronto-temporo-

parietal language network has been reported, revealing different developmental models that ultimately affect 

the establishment of heterogeneous lateralisation patterns. 

 

   The main findings of this study are generally consistent with earlier post-mortem (Yakovlev and LeCours, 

1967), MRI volumetry (Giedd, et al., 1999; Paus, et al., 1999; Sowell, et al., 2003) and DTI studies (Barnea-

Goraly, et al., 2005; Schmithorst, et al., 2002) which reported continued white matter maturation throughout 

childhood and adolescence. This conclusion was derived from several lines of results that emerged. First, 

the lateralisation of the perisylvian language network, based on the number of streamlines and volume, 

differed between different segments already at our first observation at the age of 9. The long direct segment 

showed early left lateralisation with minimal changes during early adolescence and adulthood, while the 

indirect posterior segment exhibited a significant shift in lateralisation from bilateral to left as a function of 

age. This shift was due to a decrease in the number of streamlines of the posterior segment in the right 

hemisphere. The anterior indirect segment showed early right lateralisation with no significant difference 

occurring later on in life. Second, on the basis of an examination of the microstructural properties (fractional 

anisotropy (FA) and mean diffusivity (MD)) specific to the three segments of perisylvian network, significant 

differences were observed in the absolute values of MD that decreased over time in the posterior and 

anterior segments bilaterally and the left long segment, pointing to continuous maturational processes 

shaping the microstructure of these tracts. This significant decrease in MD over time was driven by sex 

differences, since in males MD decreased significantly with increasing age, while in females this decrease 

was observed only as a trend. MD was not the only measure that exhibited between-genders difference. The 

measures of FA also displayed significant gender effects in bilateral anterior segment. There was a trend 

towards an increase in the absolute values of FA with age in males, whereas a trend to a decrease in FA 

values with age was observed in females, with individual correlations failing to reach statistical significance. 

 

Age-related differences in lateralisation patterns  

 

   Our results confirmed early left lateralisation of the long direct segment with minimal changes throughout 

adolescence and adulthood, consistent with the earlier reports (Barrick, et al., 2007; Dubois, et al., 2009; 

Nucifora, et al., 2005; Parker, et al., 2005; Powell, et al., 2006; Vernooij, et al., 2007). A lateralisation index 

based on the number of streamlines was also used by Lebel and Beaulieu (2009), who reached the same 

conclusion: that there was a consistent pattern of left asymmetry of the arcuate fasciculus (long segment) in 

children, adolescents and young adults, and this is stable across age and gender. Our findings provide 

further evidence that lateralisation of the long segment is constant from early adolescence to late adulthood. 
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   The results of this study also suggest that different perisylvian pathways have different maturational 

patterns leading to different resulting asymmetries, consistent with the findings of Eluvathingal et al. (2007). 

However, in contrast with Eluvathingal et alʼs (2007) observation that long and posterior segments are likely 

to undergo substantial maturation by the age of 6 years, we showed that this is unlikely for the posterior 

segment that exhibited the most dynamic course of maturation. However, the difference lies in different 

measures used to observe maturation effects. Eluvathingal et al. (2007) used fractional anisotropy measures 

along the three tracts, while we analysed the volumetric measures to determine anatomical asymmetries. 

Our findings point to an early development of the long and anterior segmentʼs asymmetries (left lateralisation 

for long and right lateralisation for anterior segment), while the development of posterior segmentʼs 

asymmetry continues well into adolescence. At the age of 9 the posterior segment shows bilateral 

organisation, however by the age of 13 significant changes are observable. Around that age and throughout 

adolescence the volume of the right posterior segment decreases whereas the volume of the left segment 

remains unchanged, leading to the left lateralisation of this segment. This is in agreement with the findings of 

Paus et al. (1999) in whose study the variance of age related changes was lower in the left arcuate 

fasciculus compared to the right. If we consider a decrease in the number of streamlines and volume of the 

right posterior segment as an indirect measure of the loss or pruning of white matter, then our results support 

the hypothesis of Galaburda (1990) that lateralisation arises through axonal pruning and post-migrational cell 

loss, rather than an increase in neurons and axons. Importantly, a reduction in the number of streamlines of 

the right posterior segment was observed during early adulthood. Hence, our results support reports that 

adolescence is a critical period for brain development (Giedd, et al., 1999) -  during which posterior temporo-

parietal connections undergo intense reorganisation. 

 

   In line with our results, recent imaging findings suggest that the temporo-parietal cortical areas are the 

slowest regions to mature among the language network. For example Leroy et al. (2011) used an index 

based on the normalized T2-weighted magnetic resonance signal to quantify maturation within the linguistic 

network in 1- to 4-month-old infants. They found that the most immature structures of the linguistic network 

are not the inferior frontal cortices, as previously believed, but the superior temporal sulcus and the 

supramarginal gyrus, two structures connected by the temporo-parietal (posterior) segment. This is 

consistent with our results pointing that the posterior segment is a pathway that is the least mature within the 

perisylvian language network. It can, however, be argued that the differences Leroy et al. (2011) observed 

were not due to maturation but rather to differences in cellular organisation between the different types of 

cortices. However, the authors demonstrated that the signal difference between areas is not constant and 

that maturation, rather than cortical type, is the main cause of this difference between regions.  

 

   The dynamic pattern of lateralisation of the posterior segment observed in our study might be related to the 

increasingly left functional lateralisation during development. Thus, although previous structural studies 

observed a constant lateralisation pattern, which does not change from early childhood into adulthood (Lebel 

and Beaulieu, 2009), functional studies note an age-related increase in the degree of functional lateralisation 

favouring the left hemisphere during language processing tasks (Brauer and Friederici, 2007; Holland, et al., 

2007; Perani, et al., 2011; Szaflarski, et al., 2006). Childrenʼs stronger reliance on the right hemisphere was 



  62 

reflected in a more right functional lateralisation during language processing as compared to adults (Brauer 

and Friederici, 2007; Friederici, et al., 2010). Hence, it can be speculated that this increasing left functional 

lateralisation partly reflects the dynamic structural changes observed in the posterior indirect segment during 

development. 

 

   There are number of implications arising from the observation that the posterior segment has a different 

maturation trajectory compared to the long and anterior segments. Dynamic maturational pattern of the 

posterior indirect segment, that connects the temporal and parietal lobes, might be linked to its possible 

involvement in other functions besides language processing. It is known that the superior temporal sulcus 

hosts important functions besides language, such as social contact, audiovisual integration, and biological 

motion perception (Hein and Knight, 2008). Furthermore, the temporal and parietal lobes have been 

implicated in  the "theory of mind" (ToM) - a model of the functional and anatomical basis of human ability to 

reason about other people, to predict and interpret their behaviour based on understanding of otherʼs minds 

and thoughts. The relationship between language and ToM, which is the basis of social cognition, is still 

controversial. For example, Apperly et al. (2004) and Samson et al. (2004) found that patients with lesions 

affecting the left temporo-parietal junction (TPJ), the superior temporal cortex (STS), and inferior parietal (IP) 

regions were selectively impaired in ToM. Furthermore, a number of studies have reported increased 

responses in the TPJ during ToM tasks (Saxe and Kanwisher, 2003). These posterior regions seem critical 

for ToM reasoning, however the exact roles they have remains unclear. There is a debate whether TPJ is 

involved only in the preliminary stages of social cognition that "aid" ToM reasoning or ToM reasoning itself. 

Njomboro et al. (2008) gave one possibility that the left TRJ/STS/IP are responsible for higher-order 

mentalising processes that are required for belief reasoning, but not for decoding facial emotions. Perner et 

al. (2006) further found that the right TPJ was specialized for mental perspective tasks (false beliefs) while 

the left TPJ seemed to be associated with a broader range of tasks including mental states (false beliefs) as 

well as non-mental entities (false signs). It is a speculation whether the posterior indirect segment might be 

involved in any of the mentioned functions of the ToM model. However, it is possible that the posterior 

segment is implicated in additional functions besides language, and that it acts as a neural substrate for 

higher-mental processes like abstract thinking and reasoning, semantical processing etc. 

 

Microstructural age-related differences 

 

   Many diffusion imaging studies reported microstructural age-related differences in the white matter of the 

human brain. Diffusion studies that examined developmental changes reported an increase in FA and a 

decrease in MD with increasing age (Barnea-Goraly, et al., 2005; Bonekamp et al., 2006; Dubois, et al., 

2006; Neil, et al., 1998; Schmithorst, et al., 2002). Our study confirmed the latter observation in that the 

absolute values of MD decreased over time in the bilateral indirect segments (posterior and anterior) and left 

long direct segment. MD is the overall magnitude of water diffusion and is a sensitive indicator of 

maturational changes in brain tissue. A decrease in MD would reflect a decrease in brain water content and 

an increase in axonal membranes density (Neil, et al., 2002). However, unlike other DTI studies, there was 

no significant increase in the values of FA with increasing age. This is consistent with previous reports that 
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found MD measures to be more sensitive to age than FA measures (Barnea-Goraly, et al., 2005; 

Schmithorst, et al., 2002; Schneider, et al., 2004). In line with our results, a recent study also observed a 

significant age-related decrease in all three diffusivities that was not accompanied by significant increase in 

FA, in the left long segment and bilateral posterior segments of the arcuate fasciculus (Eluvathingal, et al., 

2007). The authors interpreted these findings as continued changes in intrinsic characteristics of axons 

and/or changes in extracellular space, rather than progressive myelination. In our study we did not analyse 

the measures of parallel and perpendicular diffusivities, and therefore can only speculate on microstructural 

changes in developing brain focusing on two complementary diffusion indices FA and MD, and relying on the 

model assumptions made by Dubois et al. (2008, 2009). According to their model, a decrease in MD not 

followed by an increase in FA may be caused by proliferation and functional maturation of glial cell bodies 

and prolongations (oligodendro-glial cells and their processes, etc.) and intracellular compartments 

(neurofilaments, microtubules, etc.) indicative of a “pre-myelination” phase. However, we have to be aware 

that these changes are not due to true ʻpre-myelinationʼ since they are happening rather late in human 

development, from early adolescence to late adulthood. Therefore it is likely that they reflect a mixture of 

processes including continuous myelination and membrane proliferation – i.e. differences in the intrinsic 

characteristics of axons (that do not affect anisotropy measures, as reported by Beaulieu and Allen, 1994) or 

in extra-axonal/extracellular space. However, like every other scientific model, this one is also a simplification 

of possible biological explanations, and this should be taken into account. Furthermore, each voxel examined 

in a DTI dataset may contain a mixture of gray matter, white matter and cerebrospinal fluid. Therefore, a 

decrease in MD can potentially represent a change in any of these components, and thus may allow for 

several interpretations. 

 

Gender differences 

 

   This study found significant age-related gender differences in the maturation of the perisylvian language 

network. Sex differences have previously been reported in the brain of the adult population by various DTI-

MRI region-of-interest and voxel-based studies (Nucifora, et al., 2005; Peled, et al., 1998; Szeszko, et al., 

2003) but a previous tractography study failed to observe them (Eluvathingal, et al., 2007). Sexually 

dimorphic developmental patterns were noticed in certain brain regions during childhood and adolescence 

(Giedd, et al., 1996). However, no study to date has specifically examined sex differences in the 

developmental patterns of the perisylvian language pathways.  

 

   In our study the genders differed significantly in the developmental patterns of the absolute values of  

MD in the dominant hemispheres (dominance measured by lateralisation index based on the number of 

streamlines): left hemisphere for the long and posterior segment, and right hemisphere for the anterior 

segment. It should be noted that in the male population all MD measures of the bilateral arcuate fasciculus 

showed a strong, statistically significant, negative correlation with age. Compared to males, females showed 

a trend towards a decrease in mean diffusivity in all the tracts, but this failed to reach conventional statistical 

significance. This difference was statistically significant between genders only in left long and left posterior 

segment, and right anterior segment. Therefore, males displayed a sharper, and more aggressive decrease 
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in MD compared to females, possibly indicating steeper maturational processes (e.g. membrane 

proliferation, intra-axonal and/or extra-axonal changes, etc.). However, when observing the absolute values 

of MD, there was a trend towards lower MD values in females as compared to males, so these differences 

might represent a ʻcatching-upʼ phase in the male population, rather than “faster” maturation. 
 

   The developmental patterns of FA measures also exhibited gender effects. The absolute values of FA in 

the bilateral anterior segment were positively correlated with age in males, but negatively correlated in 

females. However, these correlations again failed to reach statistical significance. If we use FA as an index 

of white matter maturation, then it can be speculated that the increasing FA  with age in males, again 

indicate a faster, steeper and more aggressive maturation of the bilateral anterior segment, reflected in fibre 

coherence and alignment, axonal membrane integrity and myelination. However, noting that there is a trend 

towards higher anisotropy in females compared to males, these results might once more suggest a subtle 

ʻcatching-upʼ phase of the male population. Previously, a study by Schmithorst et al. (2008) observed that 

during childhood FA of the arcuate fasciculus increases in girls but decreases in boys. This finding provides 

justification for our observed maturational differences and the ʻcatching-upʼ phase noted in males during later 

stages of development (adolescence and adulthood). Further, this steeper white matter maturation during in 

males compared to females was also noticed for white matter growth during adolescence (Lenroot, et al., 

2007) and consequent FA decline in adulthood (Rosenzweig, et al., 2012). This sexual dimorphism can be 

attributed to the rise of testosterone levels in males in adolescence (Perrin, et al., 2008, 2009), 

neuroprotective properties of oestrogen in females (Kochunov, et al., 2012), differences in sex  

chromosomes (Temple and Shephard, 2012), and other biological mechanisms (e.g. epigenetic factors).  

 

Limitations and conclusions 

 

   DT-MRI is the only technique that allows us to identify large white matter pathways in the living human 

brain. It was therefore used to investigate the association between macro- and micro- structural properties 

and age. However the tensor model is not without limitations, and these have to be taken into account. DT-

MRI tractography offers, at best, only indirect indices of tissue properties and a degree of uncertainty in 

tractography measurements (e.g. number of streamlines, FA etc.) always exists (Catani, 2007). A 

deterministic fibre tracking algorithm was used with tract-specific measurements (TSM) method to extract 

anisotropy and diffusivity values at regular intervals along the reconstructed fibres. Hence, tract-specific 

measurements are used to assess micro-structural differences within a particular tract. The TSM approach 

can suffer from a number of problems, such as operator-dependent placement of the seed regions from 

which the tracking is started. However, despite this operator dependence, it has been shown that 

anatomically faithful reconstructions of white matter fasciculi can be reproduced (Catani, et al., 2002). In 

addition, there are difficulties in resolving the crossing, ʻkissingʼ, and touching of different fibres, since in the 

regions where fibres cross, branch or twist the tensor model does not perform as well (artificially low FA 

values could be obtained) and artifactual reconstructions of the pathways (false negatives and false 

positives) are likely to occur (Basser, et al., 2000). However, all the tracts were visually inspected to confirm 

their anatomical correctness. Another limitation involves the spatial normalisation I used for visitation maps. 
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This is not as robust in children as it is in adult brains, because childrenʼs brains are smaller and thus due to 

the low spatial resolution it is possible that some partial-volume overlap between white matter and adjacent 

structures could more easily occur. Furthermore, the normalisation technique has its limitations in the fact 

that considerable variability exists among subjects, and so some individual differences (e.g. ventricular 

variances) were observable even after the normalisation was done. Although not a limitation per se, it is 

important to emphasize that my study was cross sectional, where data was obtained from different subjects 

of different ages, rather than a longitudinal study of the same subjects as they aged over time, which is the 

ideal method when investigating developmental patterns. Future extensions of this study should include 

larger male and female populations with a wider age range, or ideally longitudinal type of study. Furthermore, 

additional statistical modelling of the interplay between microstructural DTI metrics and the accompanying 

cognitive and behavioural changes with development would be useful. In the future, a combination of DT-MRI 

tractography with other MRI techniques will allow the information about the engagement of specific tracts 

during cognitive tasks to be extracted together with the information about the metabolic composition of the 

dissected pathways (Catani, 2007). 

 

   The study shows observable age-related differences in the maturation of the posterior indirect segment 

compared to the long and anterior segment of the arcuate bundle. It raises further questions regarding the 

posterior segment as being functionally distinct from the other two, and involved in more than just language 

processing. The ability to process and use language for communication involves both language and social 

cognition. In addition, language itself can be viewed as a set of processes. The likely role of the posterior 

indirect segment in higher mental processes gives good ground for further research into the relationship 

between language and social cognition. In-vivo quantification of white matter characteristics within specific 

perisylvian language tracts during development provides the basis for further research into the normal 

language neurodevelopment as an important step towards unravelling the reasons behind language deficits 

and pathological conditions implicated in many disorders (e.g. autism). In conclusion, our data suggest that 

the maturation of the perisylvian network is not a uniform process for all of its three segments, but instead 

differs and shows distinct developmental patterns throughout human lifespan. Lateralisation exhibits a 

dynamic pattern that for some segments finishes early in life (long direct and anterior indirect segment) while 

for the others (posterior indirect segment) continues well into adolescence. The study confirms the early left 

lateralisation of the long segment. The anterior segment shows an early right lateralisation, whereas 

posterior segment shifts from being bilateral to becoming left lateral, due to a decrease in the number of 

streamlines in the right hemisphere. Early structural asymmetries of the long and anterior segments of the 

arcuate fasciculus suggest that macro- and microscopic structural organisation and maturation of this 

network might have underlied the setting up for brain functional lateralisation. Significant negative correlation 

between age and the absolute values of the mean diffusivity indicate constant maturation with age diffused 

throughout the arcuate bundle. Finally, there were significant gender differences observed in the maturation 

of the perisylvian language microstructure, with males showing steeper maturation of certain perisylvian 

language tracts that might be due to a ʻcatching-upʼ phase; leading to the conclusion that language-related 

neurodevelopment differs among genders. 
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 Chapter 3 

 

Imaging genetics and twin methodology 

 

 

3.1 Introduction  

   Quantitative genetics has been waiting for centuries to merge with the modern, up-and-coming, 

neuroimaging methodology. Once found, the new duo quickly became an influential field of study, often 

referred to as simply ʻimaging geneticsʼ - threatening to be the most promising technique for understanding 

genetic basis for variation in brain structure and function. Although genetic variation is what usually captures 

scientific curiosity, it is not solus ipse as the cause for variation. One of the most consequential findings that 

has emerged from quantitative genetic studies is the importance of various environmental factors in shaping 

individual differences of brain structure and function. This section will introduce the reader to the imaging 

genetics, and deal with the fundamental methodological concepts that made my research on language 
heritability possible, with a special focus on classical twin study design used in this PhD project (Chapter 4).  

 

3.2 Historical context of quantitative genetic approach  

   The idea that a hereditary component is part of our ephemeral living makeup has been with us for centuries. 

The first known questions about the causes of human differences and similarities were sparked by the twins 

enigma. It was in 426 A.D. that Augustine of Hippo in Book V of the ʻCity of Godʼ argued that highly discrepant 

life histories of the twins point to the failure of astrology and planetary influence on human destiny (Neale and 

Maes, 2002). Ancient Greeks attributed similarities of twins to their shared environment (maternal environment 

more precisely). Nevertheless, it was not until the pioneering work of Francis Galton in the nineteenth century 

that the study of twins received its deserved attention. Francis Galton (1875) was the first to systematically 

examine the effects of nature versus nurture on human behaviour although it is uncertain whether he knew of 

the distinction between monozygotic (MZ) and dizygotic (DZ) twins. He did realize that twin and family studies 

are the key experiments of nature upon which he could infer his observations about genetic and environmental 

interplay. He introduced the concept of a correlation coefficient as a measure of association between 

variables, which became the basis for future developments in twin methodology and quantitative genetics 
(Neale and Maes, 2002).  



  67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Graphical summary of the main streams of intellectual thought which converged to yield the ideas and methods 

that we use today in imaging genetics, which Neale and Maes (2002) discuss in their seminal book ʻMethodology for 
Genetic Studies of Twins and Familiesʼ. The picture is not intended to be a comprehensive history of statistical or 

quantitative genetics, so a number of people whose work is extremely important to this discipline might be unaccounted 
for. 

 

 

   The systematic analysis of similarity between MZ and DZ twins was introduced by Siemens H.W. in 1924, 

who formulated the twin rule of pathology: any heritable disease will be more concordant in identical twins than 

in non-identical twins, and concordance will be even lower in non-twin siblings (Boomsma et al, 2002). 

Quantitative genetics has, since the nineteenth century and with the advances in statistics, blossomed into 

different areas of research, and has become an intrinsic part of behavioural, population, molecular, and 

imaging genetics. A number of thinkers contributed and made todayʼs progress in genetic analysis possible. 

Some of them are shown in Fig 3.2 together with brief information regarding their main findings and ideas (for 

more on the history of quantitative genetics see Neale and Maes, 2002 Chapter 1, or Boomsma et al, 2002).  
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3.3 Twin methodology and classical twin study design  

 

   Today we are aware that most types of behaviour and traits (normal variations such as receptive and 

expressive language skills, or fractional anisotropy of the arcuate fasciculus) result from a complex interplay 

between environmental factors and multiple genes - thus named the polygenic model (Tandon and McGuffin, 

2002). Individual differences in traits (phenotypes) of a population are studied as a total of genetic and 

environmental effects by means of twin and family methods. When behaviour genetic techniques are 

combined with neuroimaging studies the answers to how important the genes and environment are on the 

structure and function of the brain can be addressed. However, the information we obtain from imaging 

genetics is limited. It does not currently tell us the number of genes affecting the trait, the direction of these 

gene effects, or the specific identity of the genes exerting this influence (Medland and Hatemi, 2009).  

 

   The most common method used in quantitative genetics for initial exploration is a classical twin design which 

focuses on the variance rather than the means, and which I applied in this PhD study of the heritability of 

language pathways. The objective of the classical twin design is to examine the extent to which genetic and 

environmental factors influence variation around a population mean (Neale and Cardon, 1992). It is important 

to remember that the causes of variation that emerge relate to a particular population of genotypes at a 

specific time and place in their evolutionary and cultural history. Outcomes of the studies can be affected by 

factors that change the gene frequencies, the expression of genes, or the frequencies of different kinds of 

environmental influences. It is vital to be aware that results obtained relate to the causes of human differences, 

and may have almost nothing to do with the processes that account for the development of the mean 

expression of a trait in a particular population (Neale and Cardon, 1992). Hence, it is important to avoid 

expressions such as “FA in the arcuate fasciculus is genetic" when we really mean” individual differences in 

FA in the arcuate fasciculus are mainly genetic."   

 

   Two main types of twin studies exist: those based on twin pairs ascertained through affected probands and 

those based on population twin registers. The former is appropriate for investigating heritability of diseases, 

whereas the latter is better suited for studying common traits in the population (Rijsdijk and Sham, 2002). Both 

studies are based on the fact that there are two types of twins: monozygotic (MZ) that are genetically identical, 

and dizygotic (DZ) that share, on average, 50% of their genetic makeup. By comparing the observed 

correlations or concordances between them we can relate the studied traits of twins to their underlying 

genotypes and environments. 

 

   Recently it became possible to write structural equations in biometrical genetic theory, relating observed 

traits of twins to their underlying genotypes and environments. As a rule, a polygenic model is used in which 

the observed trait is influenced by several different loci on one or more chromosomes. This leads to the 

sources of genetic and environmental variation considered in behavioural genetics to be divided into: 
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- additive genetic influence, A, representing the sum of the effects of alleles at all loci that influence the trait; 

- non-additive genetic influences, concerning the interactions between alleles at the same locus (dominance, 

D) or on different loci (epistasis); 

- common environmental factors, C, shared by family members/twins, e.g. linguistic input children receive from 

the parents, socioeconomic status, rearing, childhood diet etc. In twin studies, shared environment is expected 

to contribute to the correlation of both MZ and DZ twins as long as they are reared together; 

- unique environmental factors, E, specific to each individual e.g. illnesses, accidents, differential parental 

treatment, differential prenatal exposure, which results in differences among the twins. Importantly, E also 

includes the measurement error. 

 

   Geneticists distinguish between broad-sense heritability and narrow-sense heritability. Broad-sense 

heritability refers to the variance accounted for by all genetic factors (A+D), including the influence of gene 

dominance, epistasis and interactions between genes and environment. Narrow-sense heritability is the 

variance accounted for by additive genetic factors (A) alone, and represents the amount of genetic influence 

that is likely to be passed on to offspring (Stromswold, 2006). Narrow-sense heritability is studied in this PhD 

thesis. 

 

   The total phenotypic variance of a trait (P) is the sum of all these genetic and environmental effects, and can 
be expressed through equation:  

   P = A + D + C + E 

   Because of the difference in genetic proximity between twins with different zygosities, a classical twin design 

is able to yield these variance components. To elaborate this better, it suffices to know that MZ correlate 1 for 

additive genetic effects (A) (or narrow heritability) because they are genetically identical, whereas DZ twins 

correlate only half of that (0.5) because they share only half of their genes (Plomin, 2001). Conversely, both 

types of twins correlate 1 for environmental effects that both twins share (C), whereas unique environmental 

effects (E) that twins do not share is uncorrelated for both types of twins (for visual representation refer to Fig 

3.3.1). As a consequence of these different degrees of correlations, a higher correlation in MZ compared to DZ 

twins would signify the higher proportion of genes shared among MZ twins. Similarly, the first impression of 

the importance of unique environmental factors can be obtained from the extent to which MZ twins do not 

resemble each other. On the other hand, if there is a high degree of similarity between MZ twins, as well as 

DZ twins, this can be interpreted as due to high shared environmental effects on the trait. A/C/E influences on 

the phenotype are given by parameters a, c and e, which are equivalent to the standardised regression 

coefficients of the phenotype observed on their respective latent (unmeasured) factors A, C and E. The 

amount of variance due to each source is the square of these parameters.  
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Fig 3.3.1 Path diagram of the univariate genetic ACE model used in this PhD study. The sources of phenotypic variation 

considered in this example are A, the additive genetic factors; C, the environmental influences shared by the twin pair and 

E, specific environmental factors that are unique to each twin member. a, c and e are path coefficients representing the 
relative contributions of A, C and E, respectively. Correlations between A1 and A2 is 1 for MZ twins that share all of their 

genes, and 0.5 for DZ twins that share only half of their genes. The correlation between C1 and C2 is 1 when the twins are 
reared together (and 0 when not). No interaction is assumed between the genetic and environmental factors within an 

individual. 
 

   It might be noticed from the Fig 3.3.1 that the effects of shared environment (C) and dominance genetic 

effects (D) are not included simultaneously in the model. This is because they are confounded in twin studies, 

and therefore cannot be tested together. The twin correlation pattern reveals which of the two effects is more 

likely. When the DZ twin correlation is less than half of the MZ correlation, dominance genetic influences are 

more likely. A common environment tends to make the DZ twin correlations greater than half the MZ 

correlations (Boomsma et al, 2002). DZ correlations of about half the MZ correlations suggest additive genetic 

influences but are also consistent with the presence of both C and D. Data on twins reared together do not 

contain enough information to determine both factors. However, if data on adopted twins are included (which 

can give an independent estimate of C) we can estimate the effects of both components (Rijsdijk and Sham, 

2002). It is important to note that even twins separated at birth share the same pre-natal environment, so 

comparison of twins reared together and apart is only able to provide a simple test of the post-natal shared 
environment which should be taken into account when explaining the results (Neale and Maes, 2002). 

Assumptions of the classical twin design 

   A number of assumptions are made in the classical twin study design (see Fig 3.3.2). If all four assumptions 

are met then classical twin study design can be performed. It is important to be aware of the implications of 

such assumptions and of the extent to which they are realistic in relation to the trait in question (Rijsdijk and 
Sham, 2002). The assumptions include the following: 
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- Gene-environment correlations and interactions are minimal for the trait; 

- MZ and DZ twin pairs share their environments to the same extent; 

- Mating in the population occurs at random; 

- Twins are not different from the general population in terms of the trait.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Fig 3.3.2 Assumptions of the classical twin study design  

 

   The assumption that has received most criticism in the classical twin study design is the assumption of 

equal environment (Phillips, 1993), which states that trait-relevant environments of MZ twin pairs are not 

more correlated than that of DZ pairs. This allows the twin model to calculate the genetic influences based on 

the extent to which MZ twins are more alike than DZ twins. Criticism dwells around the idea that shared 

environment might be more alike for MZ twins because they might experience more similar environments 

while growing up (e.g. the same dressing, sharing friends). However, various checks, such as incorporating 

environmental measures in twin studies and examining the effects of mistaken zygosity, suggest that the 
equal environmental assumption is generally valid (Plomin, 2001). 

Falconerʼs formula of heritability 

   Early twins studies used Falconer (1960) transformations to estimate proportion of variance due to additive 

genetic (A), nonadditive genetic effects (D), common environment (C) and unique environment (E) effects from 

the MZ and DZ correlations. Falconer heritability (h2) is a rough estimate of the relative contribution of additive 

genetic effects to the total phenotypic variance, obtained by doubling the difference between MZ and DZ twin 

correlations. All the variance estimates are based on twin correlations where r is an intra-class correlation 

coefficient: 
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h2 = 2(rMZ - rDZ) assuming D ≅ 0; 

C = 2rDZ - rMZ 

D = 2rMZ - 4rDZ 

E = 1rMZ 

 

   The intra-class correlation coefficient (ICC) is a statistical measure for the strength and direction of 

resemblance between two variables (or two family members). It can vary between -1 (no resemblance) and 

+1 (identical). ICC refers to the correlation in defined subgroups, such as in MZ or DZ pairs (Boomsma et 

al, 2002). This approach is not adequate for testing explicit models for individual differences and ignores 

information available in variances and covariances important for analysing sex and generation differences. 

In the past years this method was replaced by more advanced analyses techniques in which genetic 

covariance structure models are employed by special purpose software, where data can be analysed by 

means of maximum likelihood (ML) techniques. Packages used for this modelling are LISREL (Joreskog 

and Sorbom, 1986) and Mx/OpenMx (Neale, 1999).  

 

3.4 Introduction to Structural Equation Modelling approach for analysis of twin data 

   Structural equation modelling (SEM), also known as covariance modelling, is a more advanced method, 

which in contrast to the Falconer analysis is capable of explicitly testing how genetic and environmental factors 

contribute to explaining individual differences by fitting a genetic model to the observed data and testing the 

model fit. By genetic model we mean a formal, mathematical statement which mediates between the logic of 

the theory and the reality of the data (Neale and Maes, 2002). This method estimates regression coefficients 

(ʻparametersʼ) between latent (unmeasured, e.g. A) and measured (e.g. mean diffusivity) variables. This is 

done by using numeric optimisation of a likelihood function and producing parameter values that provide the 

best fit to the data. The output then informs modification of the parameters and the process is repeated until 

the likelihood of the observed data is maximised, that is, the model best approximates the data (Neale and 

Cardon, 1992). The difference between the covariance structure of the observed data and that predicted by 
the genetic model is thus minimal. 

   Advantages of the SEM approach are that assumptions can be made explicitly and can be tested, that 

parameters can be estimated with their standard errors or confidence intervals, and that the programs provide 

a chi-square test of the goodness-of-fit of the tested genetic model. In genetic model fitting a series of 

structural equations are solved, which allow comparison of alternative models in order to estimate genetic and 

environmental parameters that best fit the observed twin co-variations (Boomsma et al, 2002). Parameters A 

or C, or both, can be removed from the univariate ACE model to generate sub-models (i.e. AE, CE, E) that can 

be tested via likelihood ratio tests. Further, in genetic model fitting more than two groups of twins can be 
analysed simultaneously, and sex differences in parameter estimates and significance of parameters tested.  
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Also, the univariate analyses (one variable tested - see Fig 3.3.1) can be extended to multivariate (multiple 

variables) designs (Neale and Cardon, 1992). Finally, SEM is appropriate for both human and animal 
quantitative genetic data (Rijsdijk and Sham, 2002). 

Modelling twin data in OpenMx  

   Many SEM programs are available on the market, but the package OpenMx (University of Virginia, Virginia, 

USA) was specifically developed to model genetically sensitive data in a flexible way, and represents an 

advancement over previous package Mx (Neale, 1999). For this PhD study we have used OpenMx to analyse 

the twin data. The advantages of OpenMx lie in the fact that data handling and data manipulation is flexible. 

Data can be entered either as summary statistics (e.g. covariance matrices and mean vectors) or raw data. 

Raw data allow greater flexibility: missing data problems are handled automatically; it is possible to fit finite 

mixture distributions and it is easy to specify continuous moderator variables. In addition, OpenMx allows for 

testing both dichotomous moderator effects (e.g. sex) and continuous moderator variables (e.g. age) (Rijsdijk 

and Sham, 2002). 

 

 

3.5 Limitations of imaging genetics 

   Are the tools of classical twin design limited when applied to complex human traits (e.g. language and 

ʻlanguageʼ anatomy)? Understanding biometrical properties of human complex traits in neuroimaging, such as 

the anatomy of language in the brain, can prove challenging for a number of reasons. 

 

   Several standard limitations exist in the quantitative genetics methodology that can affect the results of 

imaging genetics: assumptions of twin design not met, ascertainment bias (systematic distortion in measuring 

the true frequency of a phenomenon - trait or disease), problems with phenotypic assessment, lack of follow-

up of the phenotypes over time and environmental noise that can arise, for example, from developmental 

variation (Boomsma et al, 2002).  

 

   Besides these, it needs to be established whether results of the twin studies are applicable to non-twin 

populations. The results might be regarded applicable only to the extent that twin and singleton brains are 

alike. A reason to suspect differences is that as a group, twins are more likely than singletons to experience 

adverse prenatal (before birth) and perinatal (during or immediately after childbirth) events that may affect 

brain development. However, Ordaz and colleagues (2010) found no significant differences in the brain 

structures of twins compared to singletons in healthy paediatric data, neither did Hulshoff Pol et al (2002) in 

adult data. However, further studies are needed to include different imaging methods and different 

demographic samples in order to infer any sensible generalisation of results to non-twin populations.  
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   Results of power studies show that at least 200 pairs are needed for obtaining a reasonable estimate of the 

degree of genetic influence on a highly heritable trait. For intermediate or low heritable traits, 10–20 times 

these numbers are required. The same is true for detecting shared environmental effects and non-additive 

genetic effects (Rijsdijk and Sham, 2002). This proves to be especially challenging for neuroimaging studies, 

where the sample size is significantly smaller compared to, for example, behavioural studies. There is a lack of 

consensus regarding formal power calculations in MRI and DTI studies, but usually their group sizes are too 

small for obtaining any viable quantitative genetic results, compared to thousands in population study 

samples. Lack of sufficient power in neuroimaging studies necessary to detect A and C can be helped by 

reporting C and A in combination (if they are statistically significant together), and expressing them as ʻfamilial 

effectsʼ. Classical twin design is further restrained by being unable to discern between C and dominant genetic 

effects (D). It does not mean that both effects are not present, and it is a limitation affecting the interpretation 

of results. Additionally, the areas in which non-genetic factors are the chief contributors to variance are 

extensive. However, in twin studies it is not possible to separate various sources of shared or unique 

environmental effects. For example, unique environmental influences will always include the measurement 

error thus making interpretation more difficult. 

 

   Using the advantages of the twin methods discussed here, the next Chapter will review the genetics of the 

brain and language, and introduce the second diffusion tractography study of this PhD project that examined 
the heritability of the perisylvian language pathways in the healthy human brain. 
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Chapter 4 

 

Heritability of the perisylvian language pathways - 
linking genes, brain and language  

 

 

4.1 Introduction and general aims 

 

   We have observed that in typical development the perisylvian language network undergoes different 

maturational trajectories leading to differences in anatomical make up (see Chapter 2). How experience 

impacts on the anatomy of these pathways when compared to genetic mechanisms is not known, yet the 

degree to which genes and environment determine brain structure is of fundamental importance. There must 

be many ways in which genetic and non-genetic influences combine to determine the differences in the 

anatomy of the perisylvian language pathways. The task of this chapter is to try to discern how genetic 
factors affect the neural bases of language in adulthood.  

   An exploratory study was performed investigating 86 genetically identical and fraternal male twins using 

diffusion tensor imaging (DTI) tractography and quantitative genetics approaches to estimate the relative 

contribution of genes and environment to perisylvian white matter anatomy, and to explore the connections 

between genetics of perisylvian white matter and maturation. This was a retrospective study that used 

already acquired data from several projects over the last five years, with demographic information limited to 

age, gender and handedness. An account of the genetic mechanisms that control the variability of different 
aspects of perisylvian white matter is crucial for understanding normal and pathological language function. 

   In order to better understand the sculpting of brain language connections, this study tested the hypotheses 

that (i) there are differences in the heritability patterns among distinct perisylvian language pathways (ii) 

heritability of the lateralisation patterns varies between those tracts that lateralise early (long and anterior 
segment) as compared to those that have a more dynamic lateralisation pattern (posterior segment). 
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4.1.1 Heritability of variation in brain structure and function 

 

   In neuroscience we are faced with the inevitable question of what caused our brains to be of a certain size 

and shape. Influences of nature and nurture on the brain are not independent, since genes function through 

the environment, especially if they involve susceptibilities to environmental stressors (Thompson, et al., 

2001). We are aware that complex interplay is at place, between genes, genes and environment, and other 

factors (e.g. hormonal) - producing the end product, which is our brain. But how do we know to what extent 

each of these factors plays a role in shaping our brain? It was not until the recent development of brain 

imaging methods and quantitative genetics that the answer to this question became available (for a review 

see Peper, et al., 2007). Applying these two methods in parallel we can measure the degree of genetic 

control over variability in brain structure and function. This means that we can get an idea of the roles that 

both genes and environment play, though we cannot locate specific genes or understand the molecular 

pathways involved. However, we can inform future genetic linkage and association studies where to direct 

their research focus in their hunt for genes. 

 

      The traditional and most common method used in the quantitative genetics of neuroimaging is a classical 

twin design that compares monozygotic (MZ) and dizygotic (DZ) twin pairs (see Chapter 3). Although it might 

seem unnecessary to consider brain morphological and volumetric differences between MZ twins because of 

their identical genotype, there are various reasons why MZ twins might still have different brain anatomical 

features (see Chapter 3.5). Until 2007, there were approximately 75 twin reports using magnetic resonance 

imaging (MRI) (Schmitt, et al., 2007). Although there were some studies using functional MRI, the vast 

majority of twin studies have focused on anatomy. Of these, almost half, 35 reports, focused on normal brain 

structure. Half of these 35 reports have used the SEM technique, with the other half basing their estimates 

on Falconer analysis. The reason why anatomical MRI is used more often in twin designs most likely lies in 

the fact that it allows for several options in image processing and the wider/earlier availability of more 

conventional MRI technology for structural assessment. Structural MRI yields both volumetric (measurement 

of volumes) and form analyses (measurement of shape) at multiple levels of spatial resolution (Schmitt, et 

al., 2007). This section will review recent anatomical and functional twin studies using MRI, and discuss how 

heritable the variations of normal brain structure and function are, with the focus on the aetiology of 

variations in brain structure.  
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4.1.1.1 Heritability of brain phenotypes 

 

Global brain volumes 

 

   A large body of literature has revealed that the most heritable neuroanatomical feature in twins is global 

brain volume. Recent imaging studies have shown that genetic factors account for 64-97% of total cerebral 

volume across the lifespan, ranging from young children (Eckert et al, 2002; Peper, et al., 2009; Wallace, et 

al., 2006) and adolescents (Pennintgon, et al., 2000) to adults (Baare, 2001; Bartley, Jones and Weinberger, 

1997; Brun, et al., 2009; Posthuma, et al., 2002; Tramo, et al., 1998; Wright, 2002) and elderly population 

(Carmelli, et al., 1998; Geschwind, et al., 2002). This finding was supported by a recent review of 17 

anatomical twin studies applying volumetric MRI, voxel-based morphometry (VBM), and DTI analysis, 

consistently noting the high heritability of global brain volume (Peper, et al., 2007).  

 

   When investigating the genetic basis of global brain volumes, we need to be aware that brain maturation is 

an ongoing, dynamic process (see Chapter 2.1.1). As a consequence of continuing changes, global gray 

matter volume initially increases, but then decreases around puberty (Giedd, et al., 1999; Gogtay, et al., 

2004; Sowell et al., 2002, 2004; Thompson, et al., 2000) while global white matter volume increases linearly 

over time (Barnea-Goraly, et al., 2005; Giedd, et al., 1999; Paus, et al., 1999). However, regardless of these 

maturational changes, the heritability of global grey and white matter volume is consistently high throughout 

life. The first twin-sibling study to measure the genetic contributions to variation in global grey and white 

matter found heritability of 82% for grey and 88% for white matter volume in adults (Baare, 2001). Later 

studies confirmed that genetic factors account for at least two thirds of the phenotypic variance in gray and 

white matter volume (for a review see Schmitt, et al., 2007). 

 

   What are the possible explanations behind these findings? High heritability of gray matter volume may 

imply that inter-individual variation in cell-body volume is largely driven by genes, and only marginally 

modified by experience. A similar scenario can be observed for white matter. However, it should be 

remembered that genes and environment are not independent of each other, and that genetic factors can 

drive the exposure to certain environmental settings and relevant experiences. 
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Regional brain differences 

 

   Heritability estimates for neuroanatomical substructures are less known and the role of genetics less clear 

than for global volumetric measures. This is mostly due to two factors: a dearth of research, which results in 

one or two estimates of heritability reported for a given region, and frequent disagreements between studies 

(Schmitt, et al., 2007). Nevertheless, research efforts have indicated that genetic effects vary regionally 

within the brain. Overall, cortical regions involved in language, executive function, and emotional regulation 

appear to be more heritable than other areas (for a review see Peper, et al., 2007, and Schmitt et al, 2007). 

 

   In order to investigate heritability of regional grey matter, most studies tend to parcellate cerebral gray 

matter into cortical regions corresponding to Brodmannʼs areas (Wright, et al., 2002) or use point-wise  

(not a region-wise) analysis of cortical measures (Joshi, et al., 2011). So far, the most consistent finding is 

high genetic control of the frontal grey matter. The grey matter areas of the brain involved in language, 

process and rule learning are under tighter genetic control in terms of anatomy than other areas of the brain 

like the temporal and parietal (Thompson, et al., 2001; Toga, et al., 2006). This is not to say, however, that 

other brain regions are not under strong genetic control. Overall, high heritability estimates were revealed for 

regional amounts of grey matter in medial frontal cortex, Wernickeʼs area, Heschlʼs gyrus and postcentral 

gyrus, while moderate to high heritabilities were observed for densities in Brocaʼs area, anterior cingulate, 

hippocampus, amygdala, grey matter of the parahippocampal gyrus (Brouwer, et al., 2010; Peper et al, 2007, 

2009; Thompson, 2001). 

 

   There also seems to be a significant interaction between genetic control of grey matter and age. Findings 

suggest that heritabilities of regional grey matter densities as well as cortical thickness might increase with 

age. Moderate influences of genetic factors on cortical thickness have been found in children and 

adolescents, mainly in the frontal regions (Lenroot et al., 2007; 2009; Schmitt, et al., 2008). However, in 

adults, the heritability estimates for some gray matter areas (Thompson, et al., 2001; Wright, et al., 2002; 

Hulshoff Pol, et al., 2006) are more pronounced than in children. Other authors, like Wallace, et al. (2006) in 

contrast observed a reduction in heritability of grey matter volumes with increasing age, while white matter 

volume heritability increased with greater age - perhaps providing the control mechanism of continuous 

increase of white matter volume during development (Paus, et al., 1999).    

 

Regarding the heritability of localised white matter, a similar picture can be observed, with genetic effects 

varying regionally within the brain. Currently, genetic analyses are being done mostly through analysis of 

white matter integrity using diffusion measures (Chiang, et al., 2009) or regional white matter density 

(Hulshoff Pol, et al., 2006) in twins. 
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   New imaging techniques like DTI are showing evidence that white matter integrity (axonal membrane 

integrity, myelin etc.) changes according to environmental experience (Fields, 2008). It is important to see 

how this information can fit with the twin imaging studies. If we regard myelination as a developmental 

process, it could be expected that environment plays a big role in the variability of the white matter integrity 

as measured by DTI, knowing that myelin, although not necessary, is a modulator of fractional anisotropy 

(FA). However, results regarding the heritability of white matter integrity as measured by FA are inconsistent. 

Some studies showed that FA is under strong genetic control (explaining almost 80% of the variance) 

(Chiang, et al., 2009; Kochunov, et al., 2010) while others reported significant genetic effects on radial and 

longitudinal diffusivities only (Brouwer, et al., 2010). Some also noted that heritability of FA is greater in 

adolescence versus adulthood (Chiang, et al., 2010). Though, what is consistent is that diffusion studies 

showed that regardless of the diffusion measure analysed, the highest heritability for white matter integrity is 

found in bilateral frontal and parietal brain regions and corpus callosum. 

 

   When investigating variations in local white matter volumes, studies reported high control of common 

environmental factors (Brun, et al., 2009), with high genetic influence being limited to a few brain areas only. 

Nevertheless, two regions are consistently reported to be under high genetic control both in terms of white 

matter integrity and volume, and these are the superior fronto-occipital fasciculus (Brouwer, et al., 2010; 

Hulshoff Pol, et al., 2006; Peper, et al., 2009) and the corpus callosum (Brouwer, et al., 2010; Brun, et al., 

2009; Hulshoff Pol, et al., 2006; Peper, et al., 2009; Pfefferbaum, et al., 2000; Scamvougeras, et al., 2003) in 

both paediatric and adult twin samples. Furthermore, heritability of corpus callosum macrostructure and 

microstructure demonstrated significant (and differential) genetic regulation even in old age - with anterior 

interhemispheric connecting pathways more susceptible to environmental influences (Pfefferbaum, et al., 

2001). This is consistent with Brun et al. (2009) who noted that frontal lobe white matter is more 

environmentally driven, compared to posterior brain regions. On the other hand, environmental factors were 

found to be dominant for white matter density in the orbitofrontal cortex, anterior cingulate, and (parts of) the 

cingulum (Peper, et al., 2009).  

 

Brain morphometric measures     

 

   As noted above, up to now, many studies have reported strong genetic effects on brain size, but factors 

affecting brain shape are still poorly understood. In general, it seems that brain morphometry is heritable, but 

to a lesser extent than brain volume, with gyral and sulcal patterns appearing more similar in MZ compared 

to DZ twins (Schmitt, et al., 2007). Deep sulci appear to be more genetically determined than superficial sulci 

(Biondi, et al., 1998; Lohmann, et al., 1999). But overall, cortical gyral and sulcal patterns, though 

significantly affected by genes, seem to be determined primarily by environmental factors (Wright, et al., 

2002). 
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Functional imaging measures 

 

   Functional MRI experiments on twins are extraordinarily rare with only nine reports published to date.  

Four studies have examined the heritability of brain activation during working memory tasks and found a 

strong genetic influence accounting for up to 80% of the total variance in BOLD response during working 

memory tasks (Blokland, et al., 2008; 2011; Karlsgodt, et al., 2010; Koten, et al., 2009). Similarly, high 

heritabilities were observed for the measures of default-mode activity (Castellanos, et al., 2010; Glahn, et al., 

2010) and functional network cost-efficiency (Fornito, et al., 2011). The only study that found no genetic 

effects measured by fMRI was reported by Côté, et al. (2007) who examined the neural substrates of 

sadness in 8-year-olds. No genetic influences on the relationships between sadness and brain activation 

were found in two areas of the brain (medial prefrontal cortex and ventrolateral prefrontal cortex) previously 

correlated with the subjective experience of sadness. These relationships were dominated by unique 

environmental effects. Taken together, fMRI research on twins suggests that brain activation can be both 

strongly genetically or environmentally influenced. However, it should be emphasised that most functional 

MRI studies on twins suffer from very small sample sizes by the standards of quantitative genetic research 

(Fornito, et al., 2011; Karlsgodt, et al., 2007; Spaniel, et al., 2006) which can bias the results.  

 
Cerebral asymmetry 

   There are reports of cerebral asymmetry with regard to heritability estimates of brain structure. However 

these reports are inconsistent and appear to be sensitive to the choice of volumetric measure used. Overall, 

there are findings of no asymmetry (Wright, et al., 2002) or the left hemisphere being under greater genetic 

(Joshi, et al., 2011; Lohmann, et al., 1999; Pell, et al., 2009; Tramo, et al., 1995; Thompson, et al., 2001; 
Yoon, et al., 2010) or environmental control (Geschwind, et al., 2002; Carmelli, et al., 2002).  

   There are scarce data on the genetic control of known cerebral structural asymmetries. Only one diffusion 

study so far has examined the genetics of the brain fibre asymmetries (Jahanshad, et al., 2010). They 

showed that genetic factors accounted for approximately one third (20-37%) of the variance in asymmetry of 

white matter pathways such as inferior fronto-occipital fasciculus, the anterior thalamic radiation, forceps 

major and uncinate fasciculus in 374 adult twins. Shared environmental factors accounted for between 10-

15% of the variance in asymmetry for the corticospical tract and the forceps minor. The rest of the variance 

was attributed to unique environmental effects, which seemingly played the biggest role in defining the fibre 

asymmetries. It should be noted however, that studies in fibre-level asymmetries may be confounded by 

known asymmetries in shape, such as the natural petalias that make the right frontal lobe protrude beyond 
the left (Jahanshad, et al., 2010). 
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4.1.1.2 Final remarks 

   On the basis of the twin and family MRI studies it can be inferred that genes play a highly significant role in 

the generation of the variability in global brain volumes, particularly for larger structures (Baaré et al., 2001; 

Pennington et al., 2000; Pfefferbaum et al., 2000; Schmitt, et al., 2007). Notwithstanding some differences in 

findings, it seems that individual variation in brain areas involved in attention, language, visual processing as 

well as sensory motor processing are strongly genetically influenced (Peper, et al., 2007). The next section 

will introduce language-related research and discuss how we came to understand the heritability of language 
processing in the human brain.  

 

4.1.2. Heritability of speech and language disorders 
 

    Systematic analyses of language and speech disorders have shown that these are heritable and 

importantly that most patients with these disorders exhibit abnormalities in brain structure. We cannot 

deduce from this that language-related structures are under substantial genetic control, but it is nonetheless 

worthwhile to discuss the research on language impairments further. However, as with other genetic analysis 

of developmental traits, considerable challenges are present since speech, language, reading and other 

language-related abilities change significantly with advancing age. 

 

   Disorders of communication, consisting of speech and language disorders, can either occur alone, in 

otherwise normal developmental trajectory (primary disorders), or can be part of the global developmental 

deficits, such as in learning disability, autism spectrum disorders (see Chapter 6.1.2), hearing impairments 

etc. Primary speech and language disorders are classified into five distinct categories (DSM-IV) (Newbury 

and Monaco, 2010):  

 

- expressive language disorder (LD);  

- mixed receptive-expressive LD;  

- phonological disorder (disrupted production and proper use of speech sounds);  

- stuttering (disrupted fluency), and  

- communication disorder not-otherwise-specified.  

 

   Newbury and Monaco (2010) describe disorders of speech as impairments in the production of intelligible 

speech that include stuttering, phonological disorder, and developmental verbal dyspraxia (impairment in the 

coordination and motor control of the speech organs). On the other hand, disorders of language are more 

subtle and include problems with the correct formation of words (morphology) or sentences (syntax), the 

derivation of meaning (semantics), the use of linguistic context (pragmatics) which may affect expressive 

and/or receptive language as well as non-verbal language (e.g. reading and writing - developmental 

dyslexia) (Newbury and Monaco, 2010). 
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   In order to explore whether there are substantial genetic influences on communication disorders we can 

investigate whether disorders run in families. Recent studies show that speech and language deficits show 

strong familial aggregation (Barry, 2007; Lewis, 2007) mostly due to genetic factors (Bishop, 2002; 

Felsenfield, 2000; Spinath, et al., 2004). However, that is not the complete story. Research reveals that 

shared environmental contributions are also substantial (Beijsterveldt, et al., 2010; Spinath, et al., 2004). It is 

now considered that genetic mechanisms underlying susceptibility to speech and language disorders are 

multifactorial in nature, involving complex interactions between genes and environmental factors (Newbury 

and Monaco, 2010). I will discuss in more detail specific language disorders. 

 

Specific Language Impairment 

 

   Specific language impairment (SLI) is used as an umbrella term for expressive LD, mixed receptive-

expressive LD and sometimes phonological disorder, and presents an unexpected failure to develop age 

appropriate oral language. There is sufficient evidence that SLI is highly heritable: relatives of language-

impaired individuals are at increased risk of developing SLI, and family members frequently report literacy 

difficulties (Stromswold, 1998, 2001). Furthermore, twin studies consistently point to a strong genetic role in 

susceptibility to SLI, repeatedly showing that monozygotic twin pairs are linguistically more similar to each 

other than dizygotic twins (Bishop, 1995; Hayiou-Thomas, 2008; Lewis and Thompson, 1992; Newbury, et 

al., 2005; Tomblin and Buckwalter, 1998; Viding, et al., 2004). Nevertheless, the inheritance pattern is hardly 

unambiguous. One exception is the case of the KE family, where a single autosomal mutation is associated 

with a distinctive pattern of this speech-language disorder (Lai, et al., 2001). The rest of the studies on SLI 

show inconsistent heritability patterns. There are two main reasons why this might be so.  

 

   First, SLI is clinically heterogeneous, hence, different heritability estimates can be the consequence of 

different diagnostic criteria and psychometric tests used. Some studies indicate that strong genetic influence, 

on both structural and pragmatic language impairments in children, can be detected equally well with 

psychometric tests as well as simple checklist for communication skills completed by parents or teachers 

(Bishop, et al., 2006). However, although the majority of studies reported heritability of 0.5 or more, a recent 

report from Twins Early Development Study (Hayiou-Thomas, et al., 2005) found only a minor genetic 

influence in 4-year-olds. When differences in studies were analysed, it was noted that substantially higher 

heritability was observed if SLI was defined in terms of referral to speech and language pathology services 

rather than language test scores (Bishop and Hayiou-Thomas, 2008). The fact that heritability estimates of 

specific language impairments seem to depend on diagnostic criteria used should therefore be taken into 

account when summarizing results of different studies. 

 

   Second, because of clinical heterogeneity, different deficits within SLI can have different aetiological origin, 

hence heritability estimates might vary for different aspects of SLI. For example, it has been suggested that 

low-level auditory deficits cause phonological problems in SLI. However, a twin study showed that these 

deficits have quite different origins, with environmental factors more important for auditory deficit, and genes 

more important for deficient phonological short-term memory (Bishop, et al., 1999). Likewise 
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morphosyntactic deficits in SLI are also highly heritable, but have different genetic origins from impairments 

of phonological short-term memory (Bishop, 2006). A genetic perspective shows that SLI is a complex and 

heterogeneous disorder, likely to be guided by multiple genes that interact, both with each other and with the 

environment to produce an overall SLI susceptibility and phenotype. Some studies point to the involvement 

of chromosomes 16q and 19q in the condition (SLI Consortium, 2002, 2004). However, due to the lack of 

clear genotype–phenotype relationships molecular genetic studies have been hindered, and a clear genetic 

basis of the condition is still not known. 

 

   Importantly, brain abnormalities were found in patients with SLI, especially in the language-related areas of 

the left hemisphere. Gauger, et al. (1997) reported a volume decrease in the left pars triangularis as part of 

the Brocaʼs area in 9-year-olds, while Jernigan, et al. (1991) found a volume decrease in the left posterior 

temporal region. Furthermore, children with SLI seem to have a loss of left structural asymmetry for frontal 

and temporal language-related regions (Gauger, et al., 1997; Plante, et al., 1991). 

 

Dyslexia and reading difficulties 

 

   Traditionally, SLI and developmental dyslexia (or reading disability) have been regarded as separate 

disorders. However, there is a growing recognition that problems with oral and written language frequently 

co-occur, and genetic factors that influence variation in SLI were found to account for much of the 

relationship between early speech and later reading (Hayiou-Thomas, 2008). Today many experts regard 

SLI and dyslexia as different manifestations of the same underlying disorder (Newbury, et al., 2005). It is 

estimated that for both disorders the prevalence in first-degree relatives of affected individuals is 30–50%, 

compared to the 5–10% prevalence in the general population (Barry, et al., 2007; Fisher and DeFries 2002). 

Research showed that reading difficulties are both heritable and stable (Astrom, et al., 2011, 2007). Genetic 

control varied from moderate, for general reading backwardness or specific reading retardation (Stevenson, 

1987), to strong, for general reading disability (Hensler, et al., 2010; Kirkpatrick, et al., 2011). Importantly, 

individuals with developmental dyslexia or dysphasia often present with structural brain abnormalities, such 

as polymicrogyric cortex in language-related areas, around the left perisylvian fissure (Spalice, et al., 2009).  

 

Nonspecific Language Impairment 

 

   Nonspecific language impairments (NLI), compared to SLI, do not occur in isolation, and children exhibit 

both verbal and nonverbal deficits. It is acknowledged that there is a distinction between specific (SLI) and 

nonspecific (NLI) language impairment at an etiological level (Hayiou-Thomas, et al., 2005). For children with 

NLI genetic control on language impairment was moderate while shared environmental influence was 

substantial. A similar pattern was found for SLI, although there was a trend for the genetic effects to be 

smaller for SLI than for NLI. 
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Stuttering    

   Behavioural genetic studies of speech fluency have focused on participants who present with clinical 

stuttering. Research showed moderate and almost equal involvement of genetic and shared environmental 

factors. In a study done by Beijsterveldt and colleagues (2010) genetic analyses revealed heritability 

estimates of 0.42 for stuttering and 0.45 (out of 1.00) for high non-fluency. Shared environmental factors were 
also significant, explaining 0.44 of the individual differences in probable stuttering and 0.32 in non-fluency.  

 

4.1.2.1 Identification of the candidate genes: molecular genetics approach 
 

   Twin and family studies have showed that genetic influences should not be underrated in the aetiology of 

language and speech disorders, however progress in identifying genes has been slow. Most of the candidate 

genes for dyslexia and SLI have been discovered in family-based samples through genetic association 

studies which targeted chromosomal regions previously mapped by linkage studies (Parrachini, 2011). 

Identified candidate genes for specific language impairment (SLI) and dyslexia include FOXP2, FOXP1, 

CNTNAP2, DYX1C1, SRPX2, and others. These will be discussed in more detail bellow, focusing on 

associations with brain abnormalities. 

 

FOXP2 and FOXP1  

 

   The link between transcription factor forkhead box protein P2 (FOXP2) and language was first recognised 

in the large three-generation KE family, whose members are disproportionately affected by language 

impairments (Lai, et al., 2001). Structural and functional brain imaging of individuals with FOXP2 mutations 

shows volume and activation differences during language tasks, particularly in cortico-cerebellar and cortico-

striatal circuits (Fee and Scharff, 2010). Today it is evident that this gene is important for development of 

brain regions responsible for fine motor control (motor cortex, striatum, and cerebellum) and that its 

disruption has severe consequences on development of speech (Newbury and Monaco, 2010). Moreover, 

research in songbirds and juvenile zebra finches noted that this gene is implicated in auditory-guided vocal 

motor learning (Fee and Scharff, 2010). Hence, it is possible that FOXP2 is not only important for early brain 

development, but it might also play a role in post-developmental formation of language-related circuits. 

Similarly to FOXP2, forkhead box protein P1 (FOXP1) seems to have overlapping functions during brain 

development. FOXP2 and FOXP1 work together throughout tissue development, thus it is likely that they are 

both involved in biological processes important for development of speech and language (Newbury and 

Monaco, 2010). 

 

CNTNAP2  

 

   Common variants in contactin-associated protein-like 2 (CNTNAP2), a neurexin superfamily member, may 

play a role in susceptibility to language impairments and autism. Research gave evidence of CNTNAP2 

effects on developing language areas of the frontal and temporal lobes. 
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   CNTNAP2 shows asymmetric patterning in the brain, with anterior-enriched cortical expression. Its mRNA 

is significantly elevated in the developing human brain in the frontal and temporal lobes (Abrahams, et al., 

2007), regions responsible for supporting speech and language learning and processing. In addition, 

CNTNAP2 is believed to be important for the construction of neural circuits, since Caspr2, the protein 

encoded by CNTNAP2, is thought to assist in interactions important for cellular migration and laminar 

organisation (Scott-Van Zeeland, et al., 2010). Structural MRI showed that individuals who carry two copies 

of the genetic “risk” variants have significantly reduced volumes of gray and white matter across several 

brain regions including prefrontal cortex, fusiform gyri, occipital cortices, and cerebellum (Tan, 2010). 

Furthermore, functional neuroimaging studies noticed a relationship between frontal lobar connectivity and 

common genetic variants in CNTNAP2, implicating dysfunction of long-range connections within the frontal 

lobe in autism (Scott-Van Zeeland, et al., 2010) 

 

DYX1C1 and SRPX2  

 

   The status of dyslexia susceptibility 1 candidate gene 1 protein (DYX1C1) as a susceptibility gene for 

developmental dyslexia is unclear. It was found that missense mutation rs17819126 of DYX1C1 gene 

influences reading and spelling ability with additional effects on short-term information storage or rehearsal 

(Bates, et al., 2010). Another gene implicated in developmental dyslexia is sushi repeat-containing protein 

(SRPX2) gene. Mutations of the SRPX2 have been associated with brain structural abnormalities, such as 

bilateral perisylvian polymicrogyria that often accompanies developmental dyslexia (Spalice, et al., 2009). 

These observations suggest a role for DYX1C1 and SRPX2 in the development and functioning of language-

related areas in humans. 

 
4.1.2.2 Final remarks 

  
   The last decade has seen an eruption of research aimed at deciphering the genetic basis of speech and 

language disorders. The identification of FOXP2 triggered novel investigations on heritability of language and 

speech foundations, but in comparison to other developmental disorders with a genetic contribution (e.g. 

autism), speech and language disorders are still somewhat understudied. Many of the studies described 

above need to be replicated in independent cohorts, since they involve rather small samples. Furthermore, 

correlating genetic variation with specific phenotypic features is extremely difficult, since associations alone 

can never prove causality. As our understanding of phenotypes becomes more refined, we may be able to 

identify different subtypes with distinct aetiologies, which might aid our research into the genetic basis of 

communication disorders. Up to now, research suggests that language impairments are heritable. Having 

said that, the next step is to investigate the implications of these findings on the genetic basis of normal 

variations in language skills. The next section will discuss the heritability of language-related skills in a 

healthy population. 
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4.1.3. Heritability of normal variations in language skills - behavioural genetic 
approach 
 
   Unconsciously, we tend to perceive language as a whole, although it is essentially a manifestation of many 

different modalities and components. An apparently simple task of producing a sentence demands many 

distinct and specialized anatomical mechanisms and sub-mechanisms, some essential and others with a 

smaller, supportive, role. Linking different language modalities to various brain regions has been an ongoing 

venture for almost two centuries. Although our study is concerned with the heritability of ʻlanguage anatomyʼ, 

and not of functional properties expressed by different language modalities, I will briefly discuss the 

behavioural findings of normal variation in language skills. 

 

   Psychology, sociology and linguistics, when gathered together under the umbrella term of the behavioural 

sciences, provide useful cues to the heritability of different aspects of language. The main branches of 

behavioural genetic analyses focus, for example, on reading and writing skills, phonology, grammar 

(morphology, syntax), lexical abilities (vocabulary) and so on. At the present time there is no one-to-one 

correlation between neuroimaging and behavioural genetic data, because there are no studies that have 

matched both methods. Analyses of subjects in neuroimaging have, thus far, proceeded along very separate 

lines from the analyses in behavioural genetic studies.  

 

   This section will try to answer, by studying the results of behavioural genetic studies, whether heritable 

factors are responsible for the variation in linguistic abilities observed among healthy people, or do heritable 

factors only account for the variance observed for people diagnosed with language disorders mentioned in 

the previous section. I will focus on observing how normal variations in language skills are driven by innate 

genetic mechanisms matched with the experience of specific and shared linguistic environments.  

 

   Evidence of the importance of genetic factors in normal variation of language skills comes from 

Stromswoldʼs (2001) meta-analysis of almost 100 twin studies. Her results indicate that genetic factors play 

an important role in the variation of the rate of language acquisition and linguistic proficiency attained by both 

children and adults. Depending on what aspect of language is assessed, heritable factors accounted for 1/4 

to 1/2 of the variance in normal twinsʼ linguistic abilities. However, this was a much lower figure compared to 

language-impaired twins where heritable factors accounted between 1/2 to 2/3ʼs of the variance. Based on 

this meta-analysis, it seems that genetic factors account for much of the variance in linguistic abilities among 

people with written or spoken language disorders but much less of the variance in linguistic abilities among 

the healthy population.  

 

   Studies suggest that different genetic factors are involved in different aspects of language (e.g. written 

language vs. spoken language; lexical vs. syntactic abilities). This is further complicated by the fact that one 

aspect of language can be analysed in different ways. For example, analyses of reading related skills could 

include phoneme awareness, word recognition, phonological decoding, and/or orthographic coding tests. 

Strong genetic and negligible-to-small environmental influences were found to affect normal variation in 
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reading-related skills, such as reading comprehension (Olson, 2011), reading span (Kremen, et al., 2007) 

word recognition (Kremen, et al., 2007; Olson, 2011), phonology (Hohnen and Stevenson, 1999), 

phonological awareness (Olson, 2011), literacy (Hohnen and Stevenson,1999) and reading ability (Hensler, 

et al., 2010; Kirkpatrick, et al., 2011), but also speech-related skills (Hayiou-Thomas, 2008; DeThorne, et al., 

2008), writing and spelling (Olson, 2011). Moderate genetic effects were observed for phonology (Kovas, et 

al., 2005), articulation (Kovas, et al., 2005), grammar (Dale, et al., 2010; Hayiou-Thomas, 2008; Kovas, et 

al., 2005), vocabulary (Dale, et al., 2010; Hart, et al., 2010; Hayiou-Thomas, 2008; Kovas, et al., 2005), 

verbal memory (Kremen, et al., 2007; Kovas, et al., 2005) and reading comprehension (Hart, et al., 2010).   

Hence, heritability estimates of language skills depend on the specific language measure used. Overall, 

research results indicate that for both language-impaired and normal twins, genetic factors play a greater 

role for phonological and syntactic abilities than for lexical abilities (Stromswold, 2001). Heritable factors 

account for about a third of the variance in normal twinsʼ lexical abilities and about a half of the variance in 

their phonological and syntactic skills. Consistent with Stromswoldʼs (2001) meta-analytic results, some 

years later Stromswold, et al (2005) published a study on language-impaired and normal twins, showing that 

genetic factors account for more of the variance for phonology (70% for language-impaired and 31% for 

normal twins) and syntax (100% for language-impaired and 26% for normal twins) than for vocabulary (69% 

for language-impaired and 5% for normal twins).  

 

   Nevertheless, two measures were consistently found to be under a greater shared environmental effects: 

vocabulary knowledge (Hart, et al., 2009; Hayiou-Thomas, 2008; Olson, 2011) and grammar skills (Hayiou-

Thomas, 2008). Thus, there seems to be a stable relationship between home literacy environment and 

vocabulary and grammar. If we monitor a childʼs development, we know that vocabulary growth starts slowly 

between 12 and 18 months of age (Karmiloff-Smith, 2004). However, at around 21 months of age many 

infants show a ʻvocabulary spurtʼ where the rate of vocabulary growth increases dramatically. From then on, 

the transition from early child-like word combinations to full blown grammar is rapid. By the time children 

reach their fourth birthday, they have triumphed over an impressive range of grammatical tools, they can 

make statements, ask questions and issue commands (Karmiloff-Smith, 2004). Likewise, longitudinal 

investigations have indicated that a richer early home literacy environment is associated with enhanced 

vocabulary ability in early and middle childhood (van Steensel, 2006) and adolescence (Olson, et al., 2011). 

These studies also pointed to the importance of developmental stage when studying heritability. Thus, the 

next section will briefly discuss the relationship between age and heritability of language. 

 

Heritability of language skills and age  

 

   We have seen that heritability estimates of variation in language skills are often different for children 

compared to adults. This is not surprising when we know that the influences of genes and environment 

change over lifetime, and that language skills expand in both quantitative and qualitative ways during 

development. Hence, it is important to understand the ways in which age can influence language heritability 

estimates. We know that some traits exhibit a linear age-related increase in heritability, such as general 

cognitive ability g (Haworth, et al., 2010) and IQ (Bouchard, 1998). When observing heritability of different 
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aspects of language, the picture is somewhat different due to immense complexity and variety of language 

skills. Previous behavioural genetic analyses of twin data have suggested a possible developmental 

dissociation between genetic influences on word reading and spelling deficits as a function of age 

(overcoming reading but not spelling problems over time) (Friend, 2007). Research shows that genetic 

influence declines across age for word recognition, and increases for spelling recognition (DeFries, et al., 

1997; Wadsworth, et al., 1989). This pattern of decline in heritability across age for reading and increase for 

spelling conformed to that predicted by the developmental dissociation hypothesis. In conclusion, research 

shows that age is an important factor that should not be ignored in behavioural genetics, since the effects of 

age can alter significantly heritability estimates. However, there are also other factors that can affects the 

heritability estimates of language skills, and these will be briefly discussed in the following section. 

 

Why are identical twins linguistically different? 

 

   Although the heritability estimates obtained in twin studies indicate that MZ co-twins are more linguistically 

similar than DZ co-twins, heritability estimates for language in healthy twins rarely exceed 60% and MZ twins 

(who are usually assumed to have identical genetic and shared environmental contributions) sometimes 

have very different linguistic profiles (Stromswold, 2006). Some argue that this is because twins are more 

likely to suffer linguistic delays and impairments than singletons - which makes MZ twins linguistically 

different and therefore lowers the heritability estimate. Postnatal factors, such as differences in linguistic 

input which twins receive, are usually assumed to be the major reason for these findings. However, 

Stromswold (2006) argues that perinatal environmental factors (premature birth, low birth rate, placental and 

amniotic complication, intrauterine infection) affect linguistic development more than postnatal factors, while 

postnatal factors affect cognitive development more than perinatal factors. This, in Stromswoldʼs view, is 

because perinatal factors are principally biological, whereas postnatal factors tend to be psychosocial (e.g., 

how and how much parents speak to their children). Overall, the contributions of both perinatal and postnatal 

factors are significant in making identical twins linguistically different, nonetheless the classical twin study 

design does not have the power to discern between the two. Hence, other methods are needed to shed the 

light on specificities of what makes identical twins linguistically different. 

 

Conclusions 

 

   So far, research has given us reasons to believe that most of the language skills are under high genetic 

control. What does this mean for brain correlates of language function? Posthuma, et al. (2003) have 

compared the similarity of twinsʼ test performance and twinsʼ brain structures. The verbal comprehension 

subcomponent of full scale IQ, which was highly heritable, was not related to grey matter, white matter, or 

cerebellar volume either genetically or environmentally. This result is surprising, but as they suggested, it 

most likely reflected the fact they used overall brain volumes rather than regional brain volumes. Due to the 

lack of other, more regionally specific studies, we cannot infer about one-to-one correlation, though 

behavioural genetic approach would be a very useful companion to neuroimaging studies. The next section 

will focus on brain imaging studies, in order to understand the heritability of language brain regions. 
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4.1.4. Heritability of variation in language areas and language lateralisation  

 

   Numerous studies have embarked on investigating the inheritance of grey and white matter brain regions 

that subserve language processing. Research has examined both regional language-related brain areas, and 

the functional and anatomical lateralisation pattern specific to language function. This section will try to give a 

summary of recent key findings in the field of language-in-the-brain heritability, in order to provide a context 

for understanding the importance of mapping the heritability of specific perisylvian language pathways (which 

is the aim of my study). 

 

 

4.1.4.1 Heritability of variation in perisylvian language areas  

Structural MRI findings 

   Structural volumetric and morphometric imaging studies, along with diffusion tensor imaging studies, have 

examined the effects that the interplay between genes and environment have on language-related brain 

regions at different points in human life. In general, findings report significant heritability of frontal, temporal 

and parietal brain regions in both paediatric (Lenroot, et al., 2009) and adult twin data (Joshi, et al., 2011; 

Hulshoff Pol, et al., 2006; Thompson, et al., 2001).  

 

   Genetic brain-mapping techniques applying structural MRI (sMRI) data from twins, indicate that grey matter 

volumes in perisylvian areas are under tight genetic control and are highly heritable (Toga and Thompson, 

2003). A review of 17 sMRI and CT brain imaging twin studies highlights moderate to high heritability for grey 

matter densities of Brocaʼs area (Peper, et al., 2007). This is in line with a study by Thompson, et al. (2001) 

that found significant genetic effects on cortical structures in both Brocaʼs and Wernickeʼs language areas. 

Near-identity was found in MZ twins, and 90-100% correlation in DZ twins in perisylvian language cortices 

including supramarginal, angular territories, and Wernickeʼs area. Furthermore, language asymmetry 

reflected heritability asymmetry, with highly significant heritability on the left (but not right) of Brocaʼs and 

Wernickeʼs area. Similarly, cortical thickness in Wernickeʼs area showed a significant genetic effect in a later 

study by Joshi, et al. (2011) and was, in addition, correlated with full-scale IQ. Contrary to Thompson, et al. 

(2001) findings, Hulshoff Pol and colleagues (2006) did not observe significant heritability for Brocaʼs 

language area. The authors suggested that the differences in their findings might be due to different 

transformation and structural equation modelling procedures. Thompson, et al. (2001) applied twice the 

difference between MZ and DZ intraclass correlation coefficients and a permutation analysis to correct for 

multiple comparisons while Hulshoff Pol, et al. (2006) used random field theory for multiple comparisons 

correction. Overall though, there is substantial evidence that grey matter cortices underlying language 

processing are under tight genetic control. 
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   Brain morphometry also appears to be significantly heritable, though to a lesser extent than volume 

(Schmitt, et al., 2007). Some familial influences, but also a role of the unique environmental effects, were 

observed in the development of gyral (Biondi, et al., 1998) and sulcal patterns (Lohmann, et al., 1999). 

Although gyral–sulcal forms appear to be much less heritable, it seems that individual variation in 

morphology of language processing areas is strongly genetically influenced. The gyri with the highest 

heritability estimates are the ones underlying language, speech and social cognition; functions thought to 

have developed relatively recently in evolutionary time (Lenroot, et al., 2009). Schmitt, et al. (2008) observed 

that during childhood the regions with the highest heritability included language-related gyri such as inferior 

frontal gyri, left medial frontal gyrus, the pre- and postcentral gyri, left supramarginal gyrus, and the left 

inferior temporal gyrus. Likewise, Yoon et al. (2010) found significant genetic effects for the left middle and 

inferior frontal gyri and precentral gyri in a paediatric twin sample. However, the genetic effects seem 

significant even in adulthood. Lenroot, et al. (2009) found significant heritability in the postcentral and 

supramarginal gyri in both childhood and adolescent twin data. Similarly, Hulshoff Pol, et al. (2006) found 

high heritability of left postcentral gyrus and Heschlʼs gyrus bilaterally, in an adult twin sample. However, 

these positive findings were not replicated in a study of young adult twins by Joshi, et al. (2011), where only 

a trend towards significant genetic effects was observed in the mentioned gyri. Although there are some 

inconsistent results within studies, a recent review of brain imaging studies in twins points to high heritability 

estimates for both Heschlʼs gyrus and postcentral gyrus (Peper, et al., 2007) further highlighting the 

relevance of these brain areas when searching for genes influencing language-related brain structure and 

language function.  

 

   The only study thus far that has come close to examining the heritability of the arcuate fasciculus/superior 

longitudinal fasciculus (SLF) applied volumetric MRI and voxel-based morphometry on a sample of 45 MZ 

and 62 DZ paediatric twins (Peper, et al., 2009). High heritability was observed for white matter density in 

SLF and gray matter density of frontal and temporal brain areas. Genetic effects were significant in the SLF 

bilaterally, with heritability estimates ranging from 76 to 91%. Reported heritable white matter voxels within 

the SLF largely overlapped with the post-mortem maps of fibre bundles supporting the notion that this fibre 

tract is involved. However, since no actual fibre-bundles could be traced on the T1-weighted brain images, 

we have to interpret SLF results with some caution since location of SLF cannot be categorically stated. 

Diffusion imaging findings can thus provide more insights into the heritability of specific white matter tracts, 

such as the arcuate fasciculus. 

 

Diffusion MRI findings 

 

   Knowing that experience changes white matter and diffusion characteristics (Bengtsson, et al., 2005; 

Fields, 2008) and that myelination is a developmental process that continues into the third decade of life 

(Yakovlev and Lecours,1967) it might be expected that the effects of environment will play a bigger role in 

shaping perisylvian white matter pathways as compared to genes. Diffusion tensor imaging (DTI) findings 

show that the arcuate fasciculus in not fully mature in early human ontogeny, at least not in 7-year-old 

children compared with adults as measured by fractional anisotropy (Brauer, et al., 2011). Is it plausible that 
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the environment is driving this continuing maturation of perisylvian pathways? Although the numbers of DTI 

studies are modest, their results suggest otherwise. Fibre architecture in most major white matter structures 

is found to be highly heritable, consistent with prior reports that brain morphometry is also highly heritable 

(Toga and Thompon, 2003). Advances in quantitative genetics has led to three DTI studies focused on 

elucidating the amount of genetic influence on the variability of the arcuate fascicululs (referred to as SLF in 

the mentioned studies) through analysis of fractional anisotropy, axial and radial diffusivities in healthy twins 

(Brouwer, et al., 2010; Chiang, et al., 2009; Kochunov, et al., 2010). 

 

   Chiang, et al. (2009) explored white matter integrity, quantified using fractional anisotropy (FA) in 92 

identical and fraternal adult twins. Genetic factors explained almost 80% of the variance in global white 

matter integrity. Shared environmental effects were detected but were not significant in the left temporal lobe, 

and the effects of unique environment were relatively small. Importantly, significant contributions of genetic 

factors were found in the SLF bilaterally. That the heritability of FA measured in SLF is highly heritable was 

confirmed in a later study by Kochunov, et al. (2010). They used a larger sample of 467 adult subjects and 

applied the TBSS method (Smith, et al., 2006) to perform whole brain heritability analyses together with the 

analysis of ten major white matter tracts. Kochunov, et al. (2010) concluded that the microstructure of 

cerebral white matter is under a strong genetic control, with SLF showing significant heritability for FA 

measures (h2 = 0.58), while radial and axial diffusivity measurements in SLF were not significant. However, 

TBSS technique does not allow us to isolate and identify, categorically, the SLF, so these results should be 

taked with some caution. Contrary to Kochunov, et al. (2010), Brouwer, et al. (2010) performed fibre 

tractography and observed that FA measured in SLF was not significantly influenced by genetic factors in 

185 paediatric subjects. In contrast, when studying axial and radial diffusivity separately, significant genetic 

effects were observed for both in the right SLF. Presence of genetic influence was most widespread for 

radial diffusivity, for which significant influences of genetic factors were found in the SLF bilaterally (left SLF 

h2 = 0.64). Significant influence of genetic factors on variation in axial diffusivity was found in the right SLF 

(h2 = 0.35). Genetic factors influencing magnetization transfer ratio (MTR), and thus possibly myelination, 

were also pronounced in the SLF bilaterally. These results are supported by a voxel-based morphometry 

(VBM) study in this sample (Peper, et al., 2009), which showed moderate to high heritability estimates of 

white matter density in areas covering the SLF. 

 

  In summary, at the time of writing this dissertation, DTI studies have just started applying quantitative 

genetics to study the inheritance of white matter pathways. Although this area is in its infancy, the results 

reached so far show that genetic effects play an important role on diffusion measures of the perisylvian 

language pathways. However the magnitude of these effects varies with age, so that the heritability of FA, a 

measure of microstructural directionality, in SLF is higher in adulthood compared to childhood while the 

opposite is true for the measure of axial diffusivity. Nevertheless, no study to date has examined the 

heritability of the three segments of the arcuate faciculus, and/or compared the heritability estimates of 

diffusion measures versus volumetric measures in these pathways. This is of importance because different 

segments of the arcuate fasciculus might have different vulnerability to the environmental stressors, which 

would have clinical implications, and would furthermore imply that different genetic mechanisms are driving 
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their development. Besides investigating heritability of specific segments of the arcuate fasciculus, this PhD 

study also examined the heritability of the language lateralisation patterns. Hence, the next section is 

dedicated to introducing the genetic basis of language lateralisation. 

 

4.1.4.2 The genetic basis of language lateralisation 

 

   It is well-known that left and right cerebral hemispheres differ both functionally and anatomically in respect 

to language processing (see Chapter 1). The frequency distribution of language lateralisation reveals that 

approximately 90% of humans are left-hemisphere dominant (Knecht, et al., 2000). However, little is known 

about the environmental or genetic factors that govern this asymmetry bias for processing language. The 

inheritance of brain asymmetries is difficult to research and findings tend to be inconsistent. This section will 

try to elucidate the hereditary mechanisms that drive functional and anatomical lateralisation of language, 

deriving explanations from molecular genetic, twin and family studies. 

  

   One vital question concerning the asymmetry of the perisylvian language network is at what stage of life 

can this left-hemispheric asymmetry be observed? Several findings note that the arcuate fasciculus shows 

an early asymmetry towards the language-dominant hemisphere already in infants (Dubois, et al., 2009) but 

these white matter connections are not fully mature until very late in human life (Giorgio, et al., 2008). This 

developmental pattern might suggest that both genes and environment are important for the arcuate 

fasciculus, although at different points in time. Strong genetic effects are more likely present during early 

years, in order to precipitate the language asymmetry, but significant environmental influences act at a later 

stage and mould the final outcome of maturation process.  

 

Molecular genetic studies 

 

   Recent advances in molecular genetic research point to large differences in genetic make-up between the 

left and right hemispheres in humans by investigating specific gene effects on developing language areas of 

the frontal and temporal lobes. Although studies are scarce, an understanding of the developmental pattern 

of the perisylvian language regions in the human brain is starting to emerge. It has previously been noted 

that cortical asymmetry of these regions has a strong molecular basis demonstrated through asymmetrical 

gene expression in perisylvian cortex at early human embryonic stages (Abrahams, et al., 2007; Geschwind, 

et al., 2001; Sun, et al., 2005).  

 

   Abrahams, et al. (2007) performed a genome-wide analysis of human perisylvian cerebral patterning 

during mid-gestation, a critical epoch in cortical regionalization, and found 345 genes asymmetrically 

expressed between superior temporal gyrus (STG) and the remaining cerebral cortex. They found LIM 

domain-binding 1 (LDB1) gene - a regulator of LMO4 gene, to be enriched in STG. LMO4 gene is involved in 

asymmetrical patterning and is consistently more highly expressed in the right perisylvian human cerebral 

cortex than in the left (Sun, et al., 2005). In addition, contactin associated protein-like 2 (CNTNAP2), of which 

mutations are known to be associated with language delay and autism, shows a remarkable pattern of 
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anterior-enriched cortical expression. CNTNAP2 expression is high in anterior temporal and prefrontal 

regions in humans, but low or absent in rodents (Sun, et al., 2005). 

 

   Molecular genetic studies indicate that a strong genetic control is driving early language lateralisation. It 

seems that gene expression asymmetries mirror the asymmetries of language functional and anatomical 

organisation. However, these studies cannot answer the question of whether this genetic control persists in 

later years, when language dominance is already formed and language skills have developed. To answer 

this question, we need to turn to twin and family studies of both paediatric and adult data. 

 

Twin and family studies 

 

   There must be many ways in which genetic and non-genetic influences combine to determine functional 

and anatomical language asymmetries. The task of this subsection is to try to elucidate the formula by 

investigating twin and family studies (for more details on the twin and family research methods see the 

following section 3.1.5). These studies, of strength of functional and anatomical lateralisation in twins and 

families, suggest only minor genetic effects in both paediatric and adult data.  

 

Heritability of variation in functional language lateralisation 

 

   The first twin and family studies related to the genetics of language lateralisation examined the functional 

asymmetry in the human brain. The reason behind this is that functional language organisation could be 

easily explored using behavioural tests such as dichotic listening, long before the advent of non-invasive 

imaging methods. A standard dichotic listening test involves simultaneously presenting two different auditory 

stimuli to both ears, and then asking the participants to identify one or both. This test elicits a right ear 

advantage in most right-handed subjects, reflecting left-cerebral dominance for language processing 

(Kimura, 1967). With the advent of non-invasive imaging methods new findings emerged unmasking the 

underlying neurobiology with the functional imaging method. However, there is still insufficient information on 

language lateralisation in twins and their relatives. Studies assessing language lateralisation in twin pairs 

used small samples and it is therefore difficult to generalise their results to the rest of the population 

(Anneken, et al., 2004; Springer and Searleman, 1978; Jäncke and Steinmetz, 1994; Steinmetz, et al., 1995; 

Sommer, et al., 2004). 

 

   It is important to mention that recent brain imaging studies have demonstrated that an early functional 

asymmetry is already present in the first months of life (Dehaene-Lambertz, 2000; Dehaene-Lambertz, et al., 

2002). Hence, it is highly possible that strong familial (genetic and shared environmental) effects are driving 

this asymmetry. Dehaene-Lambertz, et al. (2010) noted that the motherʼs voice plays a special role in the 

early shaping of the posterior language areas at the level of the planum temporale. From this we can infer 

that shared environment plays an important role in functional language maturation.  
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   The picture is less clear when exploring genetic effects on asymmetry. An early study by Bryden (1975) 

used a dichotic listening test in 49 families to study the inheritance of brain asymmetries responsible for 

language processing. Speech lateralisation showed small correlations between parents and children, and no 

correlation at all between siblings - suggesting only negligible genetic effects. Conversely, a later study by 

Anneken, et al. (2004) found a strong association for strength of language lateralisation between relatives 

using functional transcranial Doppler ultrasonography (fTCD) in ten families. This technique measures a 

localised cerebral blood flow velocity change due to neural activation during language tasks. The results 

showed that in families were both parents were strongly lateralised children tended to be strongly lateralised 

too. By contrast, in families were neither parent was strongly lateralised none of the children were strongly 

lateralised. Although numbers were small, this study elucidates significant familial segregation for strength of 

functional language lateralisation. 

 

   Genetic control of functional language lateralisation seems to depend on handedness. Springer and 

Searleman (1978) assessed 88 twin pairs and unrelated singletons applying a verbal dichotic listening test. 

They found similar language lateralisation in right-handed twin pairs, compared to right-handed singletons. 

However, discordant twin pairs did not show the same heritability pattern. Significant intra-pair correlations 

were found only in MZ twins of equal handedness, compared to insignificant correlations in MZ pairs with 

discordant handedness. The large intra-pair differences in MZ twins of unequal handedness were greater 

than intra-pair differences in DZ twins of unequal handedness. Sommer, et al. (2002) made a similar 

comparison in their study with 25 MZ twin pairs assessed for language lateralisation using fMRI. The intra-

pair correlation for lateralisation index was significantly larger in pairs who were both right-handed, compared 

to discordant twin pairs. It seems that MZ twins do resemble each other for language lateralisation, at least 

when twins are concordant for handedness. Other studies also showed that the genetic influence on cerebral 

asymmetry in right-handed twin pairs is diminished when one of the twins is left-handed (Geschwind, et al., 

2002). However, this finding is not consistent across all studies. Jäncke and Steinmetz (1994) also applied 

verbal dichotic listening to 20 MZ twin pairs and their singleton siblings. Intra-pair correlation for lateralisation 

of all 20 MZ pairs was not significant. Even MZ twins concordant for handedness had lower language 

lateralisation concordance than their singleton siblings. At the moment it is not clear whether the same 

genetic mechanism is driving language functional lateralisation and handedness, but this possible genetic 

dependency should be addressed by further studies.  

 

   In summary, findings are inconsistent, but they point to the obvious conclusion, that functional language 

lateralisation is determined by an interplay between genes and environment (Bryden, 1975; Anneken, et al., 

2004) with handedness playing an uncertain but seemingly important role (Springer and Searleman, 1978; 

Sommer, et al., 2004). However, to what extent is heredity crucial for functional asymmetry is still debatable, 

and needs further investigation. The next section will address whether the same is true for the heritability of 

language anatomical asymmetry. 
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Heritability of variation in anatomical language lateralisation 

 

   One way to study anatomical lateralisation of language is to measure the asymmetry of the planum 

temporale, observed in foetal brains already by 29-31 weeks of gestation (Wada, et al., 1975). The planum 

temporale is the upper surface of the posterior temporal lobe, which overlaps partly with Wernickeʼs area and 

is thereby involved in language function (Shapleske, et al., 1999). Importantly, it is thought to be larger on the 

left side of the brain in the majority of subjects providing an indication of cerebral dominance for language 

(Geschwind and Levitsky, 1968). Using this approach, most studies found insignificant genetic effects on 

language lateralisation. Steinmetz, et al. (1995) measured asymmetry in 20 MZ twin pairs and observed low 

intra-pair correlation for planum temporale asymmetry, indicating insignificant genetic and widespread 

environmental influences. However, this finding might have been influenced by the inclusion of twins of 

unequal handedness. Eckert, et al. (2002) examined the heritability for planar asymmetry in 12 DZ and 27 

MZ male twins who were between 6 and 16 years of age. There was weak but positive evidence for 

heritability of planar asymmetry. Co-twin similarity for planar asymmetry increased when twins discordant for 

handedness and birth weight differences of more than 20% were excluded from the analysis. These results 

suggest that perinatal factors affect the development of planar asymmetry in twins. 

 

   In a similar manner, Geschwind, et al. (2002) analysed anatomical asymmetry of the frontal and temporal 

lobes in 72 MZ and 67 DZ older male twin pairs. Their study supported the notion that cerebral asymmetry is 

strongly correlated with handedness, since concordances for handedness in twins played a big role in the 

heritability of language lateralisation. Significant intra-pair correlations were found only in MZ twin pairs who 

were both right-handed, compared to MZ twin pairs with one left-hander. It was reported that genetic factors 

contributed twice the influence to hemispheric volume in right-handed twin pairs, suggesting a large 

decrement in genetic control of cerebral volumes in the non-right-handed twin pairs (Geschwind, et al., 

2002). The main result reveals strong lateralised effects of the shared environment (C) over brain volumes. 

These effects were almost twice as strong in frontal and temporal regions of the left language dominant 

hemisphere compared to those in the right hemisphere (Geschwind, et al., 2002). Hence, it is open to 

speculation whether this is also true for the arcuate fasciculus, the tract underlying these brain regions. 

Nevertheless, it has been previously demonstrated that a large sample is necessary to detect C effects 

(Posthuma and Boomsma, 2000) and the present study lacks the sufficient power to do so. Conversely, most 

other studies have observed high genetic effects on the cerebral asymmetry, and strong lateralised effects of 

genes over the left hemisphere. 

 

   It has been suggested that the cerebral hemispheres might experience different genetic influences on 

cortical morphogenesis, with the language-dominant left cerebral cortex under stronger genetic control in 

adults (Tramo, et al., 1995) and paediatric twins (Yoon, et al., 2010). These left-lateralised genetic effects on 

cortical morphogenesis seem to be mostly involved in the language processing system. The only study that 

examined more specifically the language-related regions using genetic correlation maps, also found 

significant asymmetry in the heritability of these grey matter areas across hemispheres (Thompson, et al., 

2001). Both Wernickeʼs and Brocaʼs area displayed highly significant heritability on the left but not on the 
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right hemisphere in adult twins. However, the results should be interpreted with some caution, since the 

study sample was very small (10 MZ and 10 DZ twin pairs) and lacked statistical power. 

 

   There has only been one study to date that examined specifically at the lateralisation indices of the fibre 

integrity measures for perisylvian pathway using diffusion tensor imaging. In a study done by Jahanshad, et 

al. (2010) involving 374 adult twins and siblings, voxel-based statistical maps were used to calculate genetic 

effects on lateralisation measures of the SLF. Three diffusion measures were used: geodesic anisotropy 

(tGA), fractional anisotropy (FA) and mean diffusivity (MD). The intra-pair correlations for tGA asymmetry 

were low in MZ twins (0.29), and zero in DZ (0.00), hence pointing to high environmental effects. Further 

SEM analysis revealed minor genetic influences for SLF fibre asymmetry as measured by tGA (a2=0.24) and 

FA (a2=0.21), while small shared environmental effects were noticed for the asymmetry of MD measures 

(c2=0.10). The results indicated that the asymmetry of SLF is mostly influenced by unique environmental 

effects, with negligible contributions from genes and shared environment.  

 

  Studies on the heritability of language asymmetry are inconsistent. Most of them agree that there is a 

difference in heritability pattern across hemispheres, but the inconsistencies are based around the 

magnitude of genetic or environmental effects that play a role. However, there are also studies that found no 

difference in the heritability pattern of the two hemispheres. Wright, et al. (2002) suggests that random or 

fluctuating asymmetry in bilateral structures is not heritable, and Hulshoff Pol, et al. (2006) found that both 

the left-and right-hemisphere representations of anatomical brain regions share the extent to which their 

individual differences in grey and white matter density are genetically determined. Further studies are 

needed to discern the importance of genetic versus environmental effects on brain asymmetries. 

 

4.1.4.3 Final remarks 

 

   The conclusion from these several lines of research points to high genetic effects on language brain 

regions, but small genetic control on lateralisation of language function and anatomy. To ponder the reasons 

why there are differences in the heritability of language regions versus language lateralisation we have to 

more closely examine the context in which these findings arise. 

 

   To begin with, we know that asymmetry cannot be influenced exclusively by an individualʼs genotype, as 

many identical twins are discordant for handedness (Toga and Thompson, 2003). The intra-pair correlations 

for language lateralisation in monozygotic twin pairs are low (hardly exceeding that of dizygotic twins). Thus, 

it is assumed that the environment is the key player - acting through different mechanisms such as pathology 

(Coren, 1992), learning (Provins, 1997), culture (Collins, 1977), or a combination of variables (Perelle and 

Ehrman, 2005). However, this assumption may be premature since several other non-environmental factors 

can affect language lateralisation in twins. For example, the genetic models may involve a random factor, 

which produces low concordance even in MZ twins; or they can be a result of disruption of embryonic 

asymmetry development by the twinning process itself, a phenomenon called “mirror-imaging” (Sommer and 

Kahn, 2009). Second, besides these genetic factors, it is possible that environmental factors are more 
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prominent in twins. For example, it is known that twin birth is more difficult than singleton birth. Twins are at 

increased risk of low birth weight, preterm birth, prolonged birth, prolonged labour, aberrant foetal position at 

birth, bleeding complications, and asphyxia (Norwitz, et al., 2005). If we reflect on the possibility that 

environmental influences play a bigger role in twins than singletons then the crucial question is whether 

these lateralisation studies overestimate the importance of environmental factors in twins. Taking all these 

reasons into account, some authors argue against extrapolating the findings on heritability of lateralisation in 

twins to predict heritability in singletons. The classic twin design may therefore not be the ideal method to 

test heredity of language lateralisation (Sommer and Kahn, 2009). 

 

   Within the studies that examined the inheritance of language-related brain regions there are 

inconsistencies as well. Discrepancies in MRI findings can be explained by several factors. First, the age 

difference of twin samples may be important. The interplay between genes and environment is a dynamic 

process, and hence the influences of genes and environment most likely change over oneʼs lifetime. 

Potential contributors to changing heritability are age-dependent gene expression (Plomin, et al., 1997; Sun, 

et al., 2005) or gene-environment correlation, which occurs when the same genes affect both a trait and 

relevant features of the environment (Lenroot, et al., 2009). Regions associated with complex cognitive 

processes such as language were suggested to be more heritable in adolescents than children (Lenroot, et 

al., 2009). This is consistent with previous studies noting that cognitive abilities such as prosocial behaviour, 

IQ and g become increasingly heritable with maturity (Plomin, et al., 1997). Nevertheless, a recent DTI study 

demonstrated that genetic influences on FA are greater in adolescence than adulthood (Chiang, et al., 2010). 

This observation might be understandable if we recall that many highly heritable neuropsychiatric disorders, 

involving language and social cognition, have their peak age of onset during adolescence (Wallace, 2006). It 

is therefore, perhaps, unsurprising that the genetic control is higher during that time. Hence, the results of the 

present study will not be generalisable, but will be specific to the age-range tested (adulthood). 

 

   A second reason for discrepancies in MRI findings is the different methodology for brain volumetric and 

morphometric measures such as grey matter density (Thompson, et al., 2001; Hulshoff Pol, et al., 2006), 

cortical gyral pattern (Hulshoff Pol, et al., 2006; Lenroot, et al., 2009), cortical thickness (Joshi, et al., 2011), 

fractional anisotropy (Chiang, et al., 2009) and so on.  
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          Fig 4.2.1 Descriptive explanation of the methodological steps taken in the present twin study 
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4.2 Methods   

Subjects 

Eighty-six twin subjects (26 monozygotic (MZ) and 17 dizygotic (DZ) pairs) were recruited from a volunteer 

twin register at the Institute of Psychiatry, London, England and by national media advertisements. Exclusion 

criteria applied were age younger than 18 years, a history of psychiatric and neurological disorder or of 

systemic illness with known neurological complications, a history of significant head injury associated with 

loss of consciousness for more than one minute, and current harmful substance use or dependence (defined 

as within the last 12 months). The age range was 21-56 years for MZ and 20-62 years for DZ pairs. The U.K. 

Multicenter Research Ethics Committee has granted the approval, and all of the subjects gave written 
informed consent before participating. Descriptive statistics is shown in Fig 4.2.1 and Table 4.2.1. 

 MZ DZ 

Number of Subjects 52 34 

Mean Age  35.54 42.53 

Age Range 21-56 20-62 

Females 34 26 

Males 18 8 

Table 4.2.1 Demographics of the twin data used in the study 

DT-MRI acquisition 

Data was acquired on a GE Signa 1.5-T LX MRI system (General Electric, Milwaukee, WI) with 40-mT/m 

gradients, using an acquisition sequence fully optimized for DT-MRI of white matter, providing isotropic 

resolution (2.4 x 2.4 x 2.4 mm) and coverage of the whole head. This acquisition was gated to the cardiac 

cycle using a peripheral gating device placed on the subjects' forefingers. TE= 104.5ms, there were 60 

slices, 32 uniformly distributed directions, 6 b0 images, with a b-value= 1300 s/mm-2. 

 

DT-MRI processing 

Following correction for the image distortions introduced by the application of the diffusion encoding 

gradients using in-house software (Jones, 2002), the diffusion tensor was determined in each voxel following 

the method of Basser (1994). Four different quantitative indices were estimated in each voxel (number of 

streamlines, volume, fractional anisotropy (FA) and mean diffusivity (MD)). To ensure that the observer was 

blind to zygosity during virtual dissection of the language pathways and to provide protection against 

subjective bias, DT-MRI subjects were blinded and randomised, thus withholding the information on the twin 

pairs. FA treshold was FA less than 0.2, and angle threshold was 35 degrees. 

 

Tractography Algorithm and ROI delineation 

Tractography was performed using in house built software and was based on the procedure originally 

described by Basser (2000). Firstly, a continuous description of the diffusion tensor field was obtained using 

a B-spline fitting on the elements of the tensor from each voxel (Basser, 2004). This procedure allows rapid 

evaluation of the DT at any arbitrary location within the image. The regions of interest were selected, and  

the voxel inside these regions considered as the starting point of the tractography (“seed points”). For each  
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seed point we propagated the streamline following the directions of the principal eigenvector. The track was 

propagated by 0.5 mm step along this direction. The diffusion tensor was then determined at this new 

location and the orientation of its principal eigenvector estimated. The procedure was repeated iteratively. A 

pathway was tracked until the fractional anisotropy of the tensor was below a fixed arbitrary threshold (0.2) or 

the curvature was less than 30 degrees. The procedure was then repeated by tracking in the opposite 

direction, to reconstruct the whole tract passing through the seed-point. 

 

ROI delineation method  

A two regions of interest (ROI) approach described in Catani et al., (2005) has been used in this study to 

dissect the three segments of the perisylvian pathways. Please refer to Methods section of Chapter 2, to 

read more about this procedure. 
 

Genetic Model Fitting  

Assumptions of the Twin Design  

Distributional Assumption 

Normal distribution was found for all diffusion measures (number of streamlines, volume, fractional 

anisotropy and mean diffusivity). This was tested using 1-Sample KS test in SPSS. 

Homogeneity of variances and means 

There were no significant differences in the means and variances of diffusion measures within and across 

zygosity (MZ and DZ), as tested by Leveneʼs test (for variances) and paired t-test (for means). Data is 

included in the Appendix A, Table 4.2.1. 

Equal Environment  

In our sample, there is no evidence of increased MZ environmentally influencing MZ co twin correlations 

(which would inflate genetic contributions, and underestimate common environment effects). Therefore, 

equal environment assumption is met. 

 

Power and Sample Size 

An important limitation in using twin analysis in neuroimaging is the necessity for large sample sizes in order 

to have confidence in the results. Samples in the hundreds offer very little statistical power, so only full model 

(i.e. ACE model, and not sub-nested models like AE, CE etc.) results was considered. For that reason we 

employ full ACE model results. 

 

Preparation of data prior to model fitting 

For quantitative genetic model-fitting, the scores of age, and sex were regressed out in SPSS and the 

standardized residuals used. This was done for several reasons. First, the mean age between MZ and DZ 

twins differed significantly. Second, gender differences and age-related changes in diffusion measures 

influence tracking results (Catani et al, 2005; Lebel et al, 2008, 2010; Lebel and Beauieu, 2009). Third, 

significant modulatory effects of age and sex on the heritability of white matter as measured by FA have 

previously been reported (Chiang, et al., 2010). And last, it is believed that members of same-sex twin pairs 
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are more likely to be similar to one another than members of opposite-sex twin pairs. Therefore, because MZ 

twins are necessarily the same sex, whereas DZ twins may be opposite sex, if one does not exclude 

opposite-sex DZ twin pairs, heritability estimates may be inflated (Stromswold, 2001). Although in this study I 

only used the same-sex DZ twin pairs, I used sex as a covariate in the later analysis to remove the possible 

different effects of male versus female twin pairs on the heritability results. 

 

Handedness was added as additional covariate (measured with the Edinburgh Handedness Inventory 

(Oldfield, 1971), since it has been reported that handedness has effects on language lateralisation 

(Geschwind, et al., 2002; Vernooij, 2007; Springer, 1999; Pujol, 1999). 

 

Estimation of genetic and non-genetic contributions  

 

   The comparison of interclass correlation coefficients (ICC) in MZ and DZ twins provided an initial, 

descriptive statistic of the presence of genetic effects and were computed for the three segments of the 

arcuate fasciculus using quantitative measures of FA, MD, Number of Streamlines, Volume and Laterality 

Index (as calculated by procedure explained in Methods Chapter 2) using SPSS. Causative influences of 

variability were divided into additive genetic (A), shared environment (experiences that make children 

growing up in the same family similar, C), and unique environment (environmental influences that contribute 

to differences between family members (E)) (Plomin, 2001). Non-additive genetic influences (D) replace C in 

ADE model. Formal estimation of the genetic and environmental components of variance was assessed in 

two ways: with preliminary analysis using the Falconer method and confirmed with more advanced structural 

equation modelling (SEM).  

 

Falconer analysis 

 

   For all three segments of the arcuate fasciculus, we computed Falconerʼs heritability estimate (h2) 

(Falconer and Mackay, 1995), by calculating intra-class correlations ICCs (Scout and Fleiss, 1979) which 

provide descriptive evidence of genetic influences on diffusion measures. ICCs, as the general measures of 

resemblance, help estimate the proportion of variance due to additive genetic (A), dominant genetic effects 

(D), common environment (C) and unique environment (E) effects. The formulae for calculating variances are 

shown below, with ICC written as r. 

A (h2) = 2(rMZ - rDZ)  assuming D ≅ 0; 

C = 2rDZ - rMZ; 

D = 2rMZ - 4rDZ; 

E = 1rMZ: 
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Univariate Model Fitting 

 

   Model fitting was carried out using raw data and the structural equation modelling program OpenMx to 

provide parameter estimates and confidence intervals (Neale et al, 2003). Maximum likelihood estimates of 

a2, c2, and e2 were obtained, 95% confidence intervals calculated and a series of nested models compared. 

Model selection among hierarchically nested models was based on likelihood-ratio tests using (chi-square) 

test (LRT), and the Akaike information criterion to compare untested models. The LRT uses the log likelihood 

statistic -2LL with associated p values and is used to select the model with the best fit given the number of 

degrees of freedom (df). A full ACE model was compared with an AE model (excluding common 

environmental factors), CE model (excluding additive genetic effects), and an E model (excluding all familial 

resemblance). Statistical power for univariate twin analyses can become an issue in cases where effect 

sizes, sample sizes, or trait prevalence are low (Neale et al., 1994). Also, reliance on the use of global fit 

indices such as Akaikeʼs information criterion to select among nested models can be problematic (Sullivan 

and Eaves, 2002). Therefore only full model estimates are reported in the final results (full ACE model). 

Furthermore, even if the role of the shared environment (C) is not statistically significant, calculating 

heritability estimates from an AE model will upwardly bias the estimates. Figure 4.2.2 outlines the univariate 

ACE model used in this study. Latent factors A (additive genetic), C (shared environment) and E (non-shared 

environment) are shown as acting on diffusion measure (FA) of arcuate fasciculus, via paths a, c, and e. 

 

                         

Fig 4.2.2 Univariate ACE model of Fractional Anisotropy measure for one twin pair. It is assumed that there are additive 

genetic (A), shared environment (C), and unique environment (E) factors acting on the measured variable. These are 

assumed to be the same for each member of a twin pair: a, c and e provide estimates of the variance due to additive 
genetic, shared environment, and unique environment factors. Genetic correlation between twins in a pair is 1 in MZ 

pairs and 0.5 in DZ pairs. Shared environment correlation is assumed to be 1 for both MZ and DZ. 
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4.3  Results 
 
DTI dissections  

 
Tractographic dissection of the three segments of the arcuate fasciculus were performed for both MZ and DZ 

twins, and these are shown in Fig 4.3.1.  

 

 

Fig 4.3.1 Descriptive example of DTI dissections of the three segments of the arcuate fasciculus in the left and the right 

hemisphere for one representative pair of monozygotic (MZ) and dizygotic (DZ) twins; the long direct segment is shown 

in red, the anterior indirect segment is shown in green, and the posterior indirect segment is shown in yellow. 
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Intra-class correlation coefficients (ICC) results 

   I created a so-called Correlation Bubble Diagram, in order to visualize better the differences between MZ 

and DZ twins in intra-class correlations of different diffusion measures of the three segments across 

hemispheres (see Figure 4.3.2 below). Each Correlation Bubble ranges from values 0 (no correlation) to 1 

(perfect correlation), with MZ and DZ Bubbles superimposed on top of each other for visual guidance of 

correlation differences. As expected from the twin studies of brain structure (Thompson et al, 2001) MZ twins 

showed higher intra-class correlation coefficients than DZ for all diffusion measures, suggesting considerable 
influence of familial effects on all DTI measures (genetic and shared environment, A+C). 

 
   Fig 4.3.2 Bubble diagram of intra-class correlation coefficients for diffusion measures of MZ (in grey) and DZ  

                    (in colours) twins of the long, anterior and posterior segment.  
 

SEM analysis: Univariate Twin Modelling  

   To separate genetic and environmental factors acting on the perisylvian language network I performed 

SEM analysis using OpenMx (for SEM results see Fig 4.3.3). As the sample size was too small for the 

standards of quantitative genetics, I had low power to test the hypotheses a=0 or c=0. Therefore, although 

nested models were examined (CE, AE, E) I derived estimates for the a2, c2, and e2 parameters, and their 

95% confidence intervals, from the ACE model. Due to the moderate-sized twin study, the width of 

confidence intervals for heritability estimates is sometimes considerable (See Table 4.3.1, Appendix A). 

Where A and C are non-significant individually, but significant together, they are reported together as familial 
effects (A+C), as previously reported by Wright, et al. (2002). 
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Fig 4.3.3 Results of the SEM analysis for the three segments of the arcuate fasciculus in the left and right hemisphere. 
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a) Asymmetry of heritability estimates - hemispheric differences 

   SEM analysis showed that overall genetic control was similar across hemispheres, with the exception of 

FA heritability, an index sensitive to the degree of myelination, fibre diameter, axonal density and coherence 

(Beaulieu, 2002). FA heritability pattern was highly sensitive to anatomical lateralisation, with significantly 

higher genetic control in the dominant hemisphere (left hemisphere for the long segment, right hemisphere 

for the anterior segment) (See Fig 4.3.4 bellow). 

 

    
Fig 4.3.4 Genetic (A), shared environmental (C) and specific environmental (E) effects on the three segments of the left 

and right hemisphere; asterisks (*) represents significant confidence intervals; where A and C are non-significant 
individually, but significant together (familial effects A+C) a box is drawn around both A and C values.  

 

 
b) Heritability differences of DTI-extracted parameters 

   DTI-extracted parameters showed different degrees of heritability. In general, the measures of fibre 

integrity (FA and MD) showed higher genetic control compared to volumetric measures (number of 

streamlines and volume) (please refer to Fig 4.3.4). The highest genetic control was observed for fibre 

integrity measured by MD, where genetic effects achieved statistical significance across all the tracts and 

hemispheres. 54-78% of the inter-subject variability in MD across hemispheres was explained by genetic 

factors. Similarly, high genetic factors, which reached statistical significance, were found for FA in the 

dominant hemisphere (62-66%). However, genetic factors acting on volumetric measures of the three 

segments across hemispheres did not reach statistical significance. In all three segments of the arcuate 

fasciculus volumetric measures were under higher environmental control, with the exception of the long 
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segment that matures and lateralises very early in life, and shows significant familial effects (A+C). However, 

due to the wide confidence intervals (see Table 4.3.1, Appendix A) I was not able to separate these familial 
effects and determine the exact size of genetic versus common environmental factors. 

c) Heritability differences of the three perisylvian language segments  

   Heritability estimates of the long segment of the arcuate fasciculus showed overall the highest degree of 

genetic (FA and MD) and familial (number of streamlines and volume) effects, which acted to the same 

extent in both hemispheres, compared to the anterior and posterior segments (see Fig. 4.3.5) . Variability in 

DTI measures of the anterior and posterior segments were more affected by the unique environmental 

factors (except MD). The posterior segment on the right showed the highest degree of unique environmental 
factors (except on MD measures). 

                                                   
Fig 4.3.5 A, C and E effects on the variability of diffusion measures of the three segments, where A+C+E=1; asterisks 

(*) represents significant confidence intervals; where A and C are non-significant individually, but significant together 

(familial effects A+C) a box is drawn around both A and C values. 
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d) Heritability of the lateralisation patterns 

   SEM analysis revealed significant genetic influences on the long segment fibre asymmetry as measured by 

FA (a2=0.63) and MD (a2=0.61), while significant familial effects (A+C) were noticed for the asymmetry of the 

number of streamlines (a2=0.39, c2=0.23) and volume (a2=0.41, c2=0.08) measures (see Fig 4.3.6). In 

contrast, the results indicated that the asymmetry of the anterior and posterior segments is mostly influenced 

by unique environmental effects, with an E model yielding the best fit for all the measures used. 

 

                   

Fig 4.3.6 A, C and E effects on the variability of the lateralisation of the three segments, where A+C+E=1; asterisks (*) 

represents significant confidence intervals; where A and C are non significant individually, but significant together 
 (familial effects A+C) a box is drawn around both A and C values. 
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4.4 Discussion 

 

   This is the first time that the heritability of the perisylvian white matter network underlying language has 

been analysed comprehensively in a classical twin study design. Using the methods of quantitative genetics 

and brain imaging I measured the degree of genetic control over the variability in the three segments of the 

arcuate fasciculus, through analysis of white matter integrity (MD and FA) and white matter volume (number 

of streamlines, volume) in twins.  

 

   Several findings have arisen from this study. First, different inheritance patterns were observed for different 

segments of the arcuate fasciculus. The highest genetic and familial control in adulthood was observed for 

the variability of the long segment that matures and lateralises very early in life (see Chapter 2), with these 

effects present to an equal extent in both hemispheres. In contrast, individual differences in the anatomy of 

the anterior and posterior segments were mostly affected by the unique environmental factors (except for MD 

measures). This is contrast to prior studies which reported that frontal lobe white matter is more 

environmentally driven, as compared to posterior brain regions (Brun, et al., 2009). Although the wide 

confidence intervals merit cautious interpretation, it is noteworthy that the right posterior segment is the 

language structure with the lowest additive genetic effects. We can speculate that high environmental control 

of the right posterior segment is related to it having a more protracted maturational course, and being 

implicated in higher cognitive functions that continue to develop throughout adulthood, such as theory of 

mind, abstract thinking, language pragmatics and so on. Our results are in line with the findings of higher 

degree of environmental contribution for those brain structures that mature later in cerebral development 

(Brun, et al., 2008; Lohmann, et al., 1999).  

 

   Regarding the heritability of language asymmetry, the findings from prior studies are inconsistent. Most 

agree that there is a difference in heritability pattern across hemispheres, but there are inconsistencies in the 

magnitude of genetic versus environmental effects. In this study SEM analysis revealed significant genetic 

control of the long segment fibre asymmetry as measured by FA (a2=0.63) and MD (a2=0.61), while 

significant familial effects (A+C) were noticed for asymmetry in the number of streamlines (a2=0.39, c2=0.23) 

and volume (a2=0.41, c2=0.08). This is contrary to a recent finding by Jahanshad, et al. (2010) who reported 

only minor genetic influences for FA fibre asymmetry of the long segment. The results of my study suggest 

that the variability in the lateralisation pattern of the long segment, that arises very early in life favouring the 

left hemisphere, is mostly influenced by genetic or familial effects, with only minor contributions from unique 

environmental factors. However, individual differences in the asymmetry of the anterior and posterior 

segments, that tend to be more dynamic in nature (see Chapter 2), are mostly influenced by unique 

environmental effects. This is in line with the suggestion by Wright, et al. (2002) that random or fluctuating 

asymmetry in bilateral structures is not heritable. What implications these results have on the maturation 

study (Chapter 2) will be discussed later (Chapter 7). 
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   Different heritability patterns were observed for different DTI measures. This indicates that, in adulthood, 

genetic factors act to a different degree on different aspects of white matter anatomy. DTI-extracted 

parameters of white matter integrity, highly sensitive to the degree of axonal myelination, average axonal 

diameter and membrane integrity (FA and MD) showed higher genetic control compared to volumetric 

measures of white matter (number of streamlines, volume). In all three segments of the arcuate fasciculus 

volumetric measures were under higher environmental control, with the exception of the long segment that 

that matures and lateralises very early in life, and shows significant familial effects (A+C). High 

environmental effects on the volume measures are not surprising given that the brain volume continues to 

increase after birth, showing progressive and regressive changes during life, partly driven by experience 

(Fields, 2008) My results indicate that in adulthood modifications in the number of brain connections are 

driven mainly by familial effects on the long segment, in contrast specific environmental factors impact on the 

anterior and posterior segment. This suggests that dynamic changes in perisylvian white matter volume are 

driven by stimulation from the environment (specific or shared). My study also lends support to the notion 

that experience changes white matter (Fields, 2008; Toga et al., 2006) and can greatly increase the number 

of white matter connections underlying language processing. In contrast, white matter microstructure of 

perisylvian language pathways encompassing axonal membrane integrity, degree of myelination, orientation 

of fibres and fibre diameter is mostly predetermined by our genetic makeup. These findings may explain why 

DTI studies of highly heritable neurodevelopmental disorders, for example autism, consistently found 

abnormalities of white matter integrity (FA and MD measures) but not white matter volume of the perisylvian 

language pathways (Ameis, et al., 2011; Fletcher, et al., 2010) linked to functional language deficits in autism 

(Levy, et al., 2012). However, genes and environment are not independent of each other, and genetic factors 

can drive the exposure to certain environmental settings and relevant experiences. 

 

   The highest heritability among DTI parameters I observed was for MD of water diffusion, where 54-78% of 

the inter-subject variability across hemispheres was explained by genetic factors. Similarly, high genetic 

factors were observed for FA, an index sensitive to the degree of myelination, fibre diameter, axonal 

membrane integrity (Beaulieu, 2002). Previous DTI studies observed a significant contribution of genes to FA 

measures in bilateral fronto-temporal segment of the arcuate fasciculus (long segment) in adults (Chiang, et 

al., 2009; Kochunov, et al., 2010). However, my results suggest that FA inheritance is highly sensitive to 

anatomical lateralisation, with significantly higher genetic control in the dominant hemisphere (left 

hemisphere for the long segment, and right hemisphere for the anterior segment). Other DTI findings found 

no such asymmetry, however might be due to different methods used, such as voxelwise analysis (Chiang, 

et al., 2009) and tract-based spatial statistics (Kochunov, et al., 2010) versus tractography used in this study. 

Reports of lateralised genetic effects on brain structure are not uncommon, but are inconsistent. There are 

findings of the left hemisphere being under greater genetic (Joshi, et al., 2011; Lohmann, et al., 1999; Pell, et 

al., 2009; Tramo, et al., 1995; Thompson, et al., 2001; Yoon, et al., 2010) or environmental control 

(Geschwind, et al., 2002; Carmelli, et al., 2002). My study showed that in adulthood the inheritance of FA 

exhibits an asymmetrical hemispheric pattern reflecting the anatomical asymmetry of the perisylvian 

language network. However, the magnitude of genetic effects varies with age (Lenroot, et al., 2009), and so 

does FA, which increases during development due to progressive myelination. In childhood no significant 
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effects were found for FA of the arcuate fasciculus (long segment) (Brouwer, et al., 2010). Thus, it is likely 

that the heritability of FA increases from childhood to adulthood, in line with the reports that complex 

cognitive processes such as language become increasingly heritable with maturity (Lenroot, et al., 2009), 

with the increases prevalent in the dominant hemisphere. 

 

   However, in all three segments of the arcuate fasciculus volumetric measures were under higher specific 

environmental control, with the exception of the long segment that matures and lateralises very early in life, 

and shows significant familial effects (A+C). High genetic effects acting on the white matter density of the 

long segment (SLF) were found previously in a study by Peper et al. (2009), with heritability estimates 

ranging from 76 to 91% in paediatric populations. Although their study used a voxel based approach, and 

their results need to be interpreted with some caution since no actual fibre-bundles could be traced on the 

T1-weighted brain images, taken together our results indicate that throughout life genetic/familial effects are 

significant for the long segment. In contrast, volumetric measures of the anterior and posterior segment are 

more environmentally driven. This is not surprising given that we know brain volume continues to increase 

after birth, and shows progressive and regressive changes during life. My results indicate that in adulthood 

modifications in the number of brain connections are driven mainly by familial effects for the long segment, 

and specific environmental factors for the anterior and posterior segment - meaning that dynamic changes in 

perisylvian white matter volumes respond significantly to stimulation from the environment (specific or 

shared). However, genes and environment are not independent of each other, and genetic factors drive the 

exposure to certain environmental settings and relevant experiences.  

 

   There are several limitations arising in my study design. First, there are technical limitations of DT-MRI 

tractography such as inability to solve crossing or kissing of fibres leading to possible presence of false 

positives and false negatives (Catani and DellʼAcqua, 2011). However, all three segments of the arcuate 

fasciculus were visually inspected to ensure that they conformed to known anatomical trajectories. Further, 

low MRI voxel resolution lacks the ability to characterise cellular mechanisms and thus we were unable to 

distinguish directly how heritability affects individual cellular components. Second, my results need to be 

interpreted in the context of the limitations to the classical twin model. These include unequal environments 

between MZ versus DZ twins - however, research shows that equal environment assumption is generally 

valid (Plomin, 2001); ascertainment bias; problems with significant gene-environment correlations and 

interactions; lack of follow-up of the phenotypes over time, and environmental noise (Boomsma et al, 2002). 

Also, there is a question of whether the results of twin studies are applicable to non-twin populations. They 

might be regarded applicable only to the extent that twin and singleton brains are alike. Although twins are 

more likely than singletons to experience adverse prenatal and perinatal events that may affect brain 

development (Norwitz, et al., 2005), studies showed that in general there are no significant differences in the 

brain structures of healthy paediatric (Ordaz, et al., 2010) and adult subjects (Hulshoff Pol et al., 2002). Also, 

twins are slower in language development than singletons, although this delay diminishes during childhood 

(Rutter & Redshaw, 1991). My study was further limited by sample size, that is small for the standards of 

quantitative genetics leading to the confidence intervals of additive genetic (A), common environment (C), 

and unique environment (E) to be wide. Results of power studies show that at least 200 pairs are needed for 
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obtaining a reasonable estimate of the degree of genetic influence on a highly heritable trait (Rijsdijk and 

Sham, 2002). A large sample is necessary to detect C effects (Posthuma and Boomsma, 2000) and the 

present study probably lacks sufficient power to do so. However, this lack of sufficient power was helped by 

reporting C and A in combination (when they are statistically significant together), and expressing them as 

ʻfamilial effectsʼ (Wright, et al., 2002). Importantly, it needs to be taken into account that correlation analyses 

depend on the reliability of the variables used. There is limited information on the reliability of tractography 

measurements (see Chapter 1.2.2) but there are some indications that the arcuate fasciculus is one of the 

structures that exhibits the most reliable DTI measurements (Danielian et al., 2010). However, this sheds 

some doubt on the findings of different inheritance patterns of different tractography measures, which might 

instead reflect differences in individual reliability (e.g. volumetric measures being less reliable than diffusion 

measures would lead to lower intra-class correlation coefficients, and hence lower genetic effects). 

 

   In conclusion, converging diffusion imaging and genetic data are beginning to elucidate the influences of 

genes and environment on specific aspects of perisylvian language anatomy. In general, knowing the degree 

of genetic control on individual features of perisylvian white matter is important since abnormalities of the 

constituents of the white matter substance have been described in various psychiatric conditions and has 

vital implications for disorders that manifest with language pathology. Results from this study lend support to 

the view that different aspects of white matter anatomy are under different hereditary mechanisms: higher 

genetic control of white matter integrity as compared to volume. DTI-derived features that are more heritable 

than others (FA and MD), provide biological markers for inherited traits and may serve as targets for linkage 

and association studies. On the other hand, knowing that volumetric measures are prone to environmental 

modulations has implications for environmentally-based therapies. Our study further highlights the relevance 

of fronto-temporal perisylvian pathway (long segment), which is under the greatest genetic (white matter 

integrity) and familial (volume) control, for the future genetic linkage and association studies in aiding their 

hunt for genes influencing language-related brain structure and function. Further research though is needed, 

to replicate and overcome the limitations of the present study, and aid in deciphering the inheritance puzzle 

of the perisylvian white matter anatomy. 
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Chapter 5 
 

 

Introduction to Autism Spectrum Disorders 
 

 

 

5.1 Introduction  

 

   In my previous chapters I explored how perisylvian language pathways behave in the healthy population, 

without reference to different neuropathological conditions. In contrast, the third tractography study will 

explore the anatomy of the perisylvian network in autism spectrum disorder (ASD, including high functioning 

autism and Aspergerʼs syndrome). Although ASD is not primarily a language disorder, deficits in 

communication represent an important diagnostic feature, along with problems in social interaction and 

repetitive and/or stereotyped behaviours. Hence, this neurodevelopmental disorder offers the possibility of 

correlating white matter abnormalities along the segments of the perisylvian pathways with clinical and 

neuropsychological assessment of language performance. In order to provide background information to the 

following autism study, this chapter will introduce autism spectrum disorders and discuss what language 

deficits have been reported in this disorder up to now. 

 

   Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterised by a triad of 

impairments in reciprocal social interaction, verbal and/or non-verbal communication, and repetitive and 

stereotyped behaviour (DSM-IV, APA 1994). ASD is used as an umbrella term to refer to different autistic 

subtypes sharing some of these core features and includes: autism, Asperger syndrome, Rett syndrome, 

childhood disintegrative disorder, and pervasive developmental disorder-not otherwise specified (PDD-NOS).  

Although my sample satisfied clinical research criteria for childhood autism at the time of recruitment I use 

the term ASD throughout the PhD thesis to acknowledge the range of participants used and the 

heterogeneity of the disorder. Also, this decision reflects the future change in diagnostic criteria within DSM-

V, which is due in 2013, whereby all the previously related subgroups (Asperger syndrome, autism, and 

PDD-NOS) will be combined into one diagnosis of autism spectrum disorder. Hence, diagnosis of autism will 

change from categorical to dimensional, and I will relate to this later in Chapter 6 when discussing the autism 

sample in my study.  
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History 

 
   The concept of autism is fairly recent. It was first introduced by the pioneering work of Leo Kanner (John 

Hopkins University) on what he called ʻearly infantile autismʼ characterised by severe impairments in social 

interaction, communication and intense resistance to change. Kanner published his results in 1943, based 

on eleven children, nine boys and two girls that he thought were suffering from this condition. Unaware of 

Kannerʼs publication, in a war-struck Europe, Hans Asperger, an Austrian paediatrician, published his paper 

only one year later, describing children unable to form social relationships with their peers. Asperger used 

the term ʻautistic psychopathyʼ, which might seem strangely coincidental. However, the term ʻautisticʼ had 

been coined decades earlier to reflect the condition of ʻself-absorptionʼ in schizophrenia, and was well-known 

in the scientific community. Unlike Kanner, Asperger based his observations on hundreds of children, and 

not surprisingly ended up with a much broader definition of his ʻautistic psychopathyʼ. However, his paper 

was originally published in German and remained largely unknown in English speaking countries, until four to 

five decades later, when an account of his work (Wing, 1981) and a translation of his paper (Frith, 1991) 

were first published in English. His contributions to the field of autism were later recognised by naming 

Asperger syndrome after him.  

 

   Since Kannerʼs first description of autism, the clinical picture has changed significantly in order to include 

recent refinements. Recognition of clinical heterogeneity in expression and severity of symptoms led to the 

redefinition of diagnostic concepts. Wing and Gould (1979) carried out an epidemiological survey in the 

London borough of Camberwell, investigating children aged 15 years or under, who showed behavioural 

deficits. From a total of 35,000 children living in this mainly working-class area, 132 were selected as fulfilling 

one or both criteria for autism. The authors pointed out that social impairments were present in all children, 

but to a varying degree, and identified what they described as the ʻAutism Triadʼ of impairments. Based on 

the variability of the impairments, Wing and colleagues proposed the term ʻautistic continuumʼ and later 

ʻautistic spectrumʼ to reflect the changes in diagnostic criteria, and allow for broader definitions of autism. 

The early work of Rutter (1978) and Wing (1979, 1981) opened up the field of diagnostic refinements, and 

significantly influenced changes in categorical definitions of ASDs. The spectrum nowadays includes 

individuals with symptoms of varying severity, from severely autistic with no speech and low intelligence, to 

individuals with Asperger syndrome who have normal intelligence and language abilities. However, 

diagnostic criteria for autism were not included until the third edition of the Diagnostic and Statistical Manual 

of Mental Disorders by American Psychiatric Association (DSM-III, APA 1980), while Asperger syndrome did 

not appear in classification systems until the fourth edition (DSM-IV, APA 1994). The heterogeneity of the 

disorder has been recognised in DSM-V – and Asperger syndrome is no longer separately defined. 
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Prevalence 

 
   Following Kannerʼs seminal publication in 1943, the scientific community believed that autism was a rather 

rare condition with a prevalence of around 2-4 per 10,000 (Wing and Potter, 2002). It was not until the 1980s 

and 1990s that this view was challenged following an annual rise in prevalence rates for the diagnosis of 

ASD. Studies in the 1990s reported a prevalence of around 10 per 10,000 (0.1%) (Bryson and Smith, 1998), 

while currently the estimate rose close to 1 per 100 (1%) for all ASDs (Croen et al., 2002; Fombonne, 2009; 

Lord, et al., 2012; Rice, 2009). The most recent systematic review of epidemiological surveys suggested a 

median of prevalence estimates of autism spectrum disorders worldwide to be 62 per 10,000 (0.62%) 

(Elsabbagh, et al., 2012). 

 

   The change in reported prevalence led to considerable debate on whether it reflected a real increase or not 

(Bryson, 1996; Fombonne, 1996). This is because the increase in prevalence coincided with the introduction 

of autistic “spectrum” in diagnostic manuals. Hence, it was to be expected that the broadening of diagnostic 

criteria would have an effect on the prevalence of autism. However, there are other factors that could also 

affect the prevalence rate. These include increased rates of diagnosis due to growing awareness and 

knowledge among parents and professional workers, development of specialist services, different methods 

used in epidemiological studies, and lastly the possibility of a true increase in numbers (Wing and Potter, 

2002). Wing and Potter (2002) reported that the majority, if not all, of the reported rises in incidence and 

prevalence rates were due to changes in diagnostic criteria and increasing awareness of ASDs. On the other 

hand, Bryson and Smith (1998) reflected on revised estimates, and noted that based on the males to 

females ratio for autism (i.e., 3–4:1), and the number of individuals with typical autism IQ range (50–70 

range), which remained unchanged since the early studies, the recent higher prevalence estimates are not 

due to a fundamental redefinition of autism, but rather to an increased awareness of the heterogeneity of its 

expression. The notion that environmental factors caused the increase in prevalence (e.g., triple vaccine for 

measles, mumps and rubella) is today largely rejected, due to recent investigations that failed to support it.  

 

Heredity 

 
   Both Kanner and Asperger thought that autism most probably results from a neuropathological origin, 

based on the observation that symptoms appear very early in life. However, since no organic pathology 

could be found at the time, this notion was questioned by influential school of American Behaviourism, which 

explained autistic symptoms in terms of parental (ʻrefrigerator mothersʼ theory (Bettelheim, 1967)) and early 

environmental experiences. The first clues to neurobiological underpinnings came from family and twin 

studies during the 1970s and 1980s, which showed that autism is a highly heritable disorder. 

 

   Folstein and Rutter (1977a,b) were the first to undertake a twin study in autism. Despite the small  

numbers (n=21), their findings showed significant difference in concordance rate between monozygotic (MZ) 

compared to dizygotic (DZ) twins, implying a strong underlying genetic liability. Furthermore, concordance 

rates within MZ pairs included a range of cognitive and social deficits and not just the seriously handicapping 



  116 

condition of autism. During subsequent decades, twin and family studies replicated these findings and 

yielded further evidence of an exceptionally strong genetic base to the aetiology of autism (Folstein and 

Rutter, 1977b; Bailey et al, 1995; Ritvo et al, 1985; Rutter, 2000; Steffenburg et al, 1989), with genetic factors 

explaining over 90% of cases of ASDs according to DSM-IV (Rutter, 2000). Concordance rates for autism 

are 2 - 6% for siblings and dizygotic twins and approximately 60% for monozygotic twins (Bailey, et al., 1995; 

Smalley, et al., 1988; Szatmari, et al., 1998). Furthermore, in line with the first study by Folstein and Rutter 

(1977b), these genetic factors apply to a broader phenotype of autistic spectrum, including milder and not 

only traditional, more extreme autistic traits (Rutter, 2000). 

 

   But are genetic effects overestimated? Does environment have a role in ASDs? A recent study by Croen et 

al. (2011) showed that prenatal exposure to antidepressant medications (treatment with selective serotonin 

reuptake inhibitors by the mother) was associated with a 2-fold increased risk of ASD, with the strongest 

effect was associated with treatment during the first trimester. Although the number of children exposed 

prenatally to selective serotonin reuptake inhibitors in this study population was low, results suggest that 

exposure may modestly increase the risk of ASDs. Similarly, other reports point to the importance of 

environmental prenatal factors for autism risk, such as maternal viral infections during first trimester of 

pregnancy (Atladottir, et al., 2010), multiple births (Croen et al, 2002), low birth weight (especially for girls) 

and preterm births (Schendel, et al., 2008), exposure to teratogens such as thalidomide (Miller, et al., 2005), 

valproic acid (Moore, et al., 2000) and so on. In summary, although ASD is highly genetic, environmental 

factors may increase the risk of developing ASD.  

 

Triad of impairments 

 
   According to the current DSM-IV criteria, individuals have to exhibit six symptoms falling within the three 

core domains: socialisation, communication, and restricted behaviours, interests, and activities (Witwer and 

Lecavalier, 2008). Autistic individuals must manifest at least two of the following four symptoms in 

socialisation: marked impairments in the use of nonverbal behaviours (eye-to-eye gaze, facial expressions, 

body posture and/or gestures); failure to develop peer relationships appropriate to developmental level; lack 

of spontaneous seeking to share enjoyment, interests, achievements; and lack of social or emotional 

reciprocity. Further, they must present with one of the following restrictive/repetitive or stereotypic behaviour, 

interest, or activity: an encompassing preoccupation with one or more stereotyped and restricted patterns of 

interest abnormal either in intensity or focus; apparently inflexible adherence to routines or rituals; persistent 

preoccupation with parts of objects; and motor mannerisms (e.g., hand or finger flapping, twisting, or 

complex whole-body movements). Finally, they must present with at least one of the following qualitative 

communication impairments: delay in/total lack of the development of spoken language; in individuals with 

adequate speech, marked impairments of the conversational abilities; stereotyped and repetitive use of 

language or idiosyncratic language; and lack of varied, spontaneous make-believe play or social imitative 

play appropriate to developmental level. In order to obtain a diagnosis of autism, this triad of impairments 

must be present by the age of three (Witwer and Lecavalier, 2008). It should be noted that any of these 

symptoms can vary in extent and severity (Bryson and Smith, 1998). 
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   The behavioural manifestation of autism varies according to the severity of the condition, childʼs 

developmental level, and intellectual ability. It is known that autism can occur at any point on the IQ 

continuum, and that IQ is a strong predictor of the outcome of early behavioural interventions (Ben-Itzchak 

and Zachor, 2007; Volkmar, 2002). The strength and origin of the association between autism and IQ is, 

however, unclear. Recent studies suggest that this association may largely be explained by genetic factors, 

however the genetic correlation between extreme autistic traits and intellectual disability was only modest. 

Extreme autistic traits were substantially genetically independent of intellectual disability (Hoekstra, et al., 

2009). But are autistic traits genetically independent among themselves? Marked heterogeneity of 

behavioural phenotypes in autism leads us to expect substantial genetic heterogeneity underlying autistic 

symptoms. A large twin study, the Twins Early Development Study found that three core domains disrupted 

in ASDs (social behaviour, communication and obsessive behaviour) are highly heritable, but independent of 

each other, at 7 years (Ronald et al., 2005), 8 years (Ronald et al., 2006) and 12 years of age (Robinson, et 

al., 2011). Results suggested that different genes affect the social and non-social components of ASD (Oliver 

and Plomin, 2007).  

 

Variation in the clinical picture (high-functioning autism versus Asperger syndrome) 
 

   According to the DSM-IV (APA, 1994) and ICD-10 (WHO, 1993) classification systems, HFA and AS are 

distinguished from each other based on language development. While for HFA diagnosis there have to be 

delays and/or abnormalities in language functioning, for AS there should be no general delay in language 

development. Other than this, there is remarkable similarity in behavioural phenotypes between these two 

subtypes. Both HFA and AS present with the same qualitative impairments in reciprocal social interaction, 

together with a restricted, stereotyped, repetitive repertoire of interests and activities (Macintosh and 

Dissanayake, 2004). Whether there are true differences between HFA, which is autism without intellectual 

disability, and AS is today a topic of debate among clinicians and researchers, with many advocating the use 

of a dimensional spectrum rather than categorical subtypes (e.g. Lord and Jones,2012; Macintosh and 

Dissanayake, 2004; Witwer and Lecavalier, 2008). The need to move to dimensional descriptions of autism 

comes from the recent notion that the relationship between behavioural phenotypes and clinical diagnosis is 

not a clear-cut one. Clinical distinctions across subtypes can very even across sites with well documented 

fidelity using standardized diagnostic instruments (Lord, et al., 2012). Witwer and Lecavalier (2008) reviewed 

22 studies published between 1994 and 2006 that examined the differences between the subtypes of autism 

spectrum disorders, and suggested that the results largely did not support the differences between HFA and 

AS. Rather, they suggested that the most salient group difference was not overall language delay, but the 

category of IQ, drawing the question on how linguistically different HFA and AS groups are (for more on 

linguistic differences between these two groups see Section 5.3). Other reviews of epidemiological studies 

and empirical research have also not provided clear evidence for the validity of the HFA and AS subtypes 

(Macintosh and Dissanayake, 2004). Nevertheless the distinctions between the two subtypes (if they exist) 
may be important, since they might have implications for determining the aetiology of the condition. 
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5.2 Language deficits in autism: behavioural studies 

 
   Although language and communication deficits in autism are its defining feature, they can vary from  

being striking to hardly noticeable. This section will give a brief overview of linguistic processing in  

autistic individuals. 

 

   Parents of autistic children know how daunting communication impairments can be, since communication 

is essential in our social world. It is therefore appropriate to start with the opening lines of The Siege, written 

by Clara Claiborne Park (1972, quoted in Crystal and Varley, 2006, p.14) who is a parent of an autistic child.  

In this she gives a short description of the communication impairments she observed in her 18 months old 

child. 

 

   “One speaks to her, loudly or softly. There is no response. She is deaf, perhaps. That would explain a lot of 

things - her total inattention to simple commands and requests, which we thought stubbornness; the fact that 

as month follows month she speaks no more than a word or two, and these only once or twice a week; even, 

perhaps, her self-absorption. But we do not really think she is deaf. She turns, when you least expect it, at a 

sudden noise. The soft whirr as the water enters the washing machine, makes her wheel round. And there 

are the words. If she were deaf there would be no words. But out of nowhere they appear. And into nowhere 

they disappear; each new word displaces its predecessor. At any given time she has a word, not a 

vocabulary.” 

 

   Autism, as a neurodevelopmental disorder, has profound consequences on language and general 

communicative ability. Previously, studies suggested that up to fifty percent of children with autism were 

nonverbal (Lord and Rutter, 1994). However, recent research indicated that this percentage is much lower. 

Lord, Risi, and Pickles (2004) found that at 9 years old only 14–20% of autistic children were nonverbal 

(defined as a daily use of five or fewer words). Recent research agrees that approximately one-third of 

individuals with autism never develop functional use of language (Fletcher, et al., 2010), with communicative 

deficits extending to non-verbal domains, such as impoverished use of eye contact and gestures. As 

described in the extract above, the response to language can be so minimal during early childhood that 

some children with autism seem deaf although their hearing is normal. In the remaining two thirds language 

does develop, but in many cases it is represented by deviant and unusual language and speech forms. 

Some argue that these children, who use verbal communication, are better described in terms of language 

delay than deviance, a delay that Tager–Flusberg (2004) suggests is similar to the one seen in specific 

language impairment (SLI). However, delay in spoken language is observed only in half of ASD individuals 

(Alarcon, et al., 2002; Spence, et al., 2006). Therefore it needs to be remembered that there are significant 

differences in the extent and quality of linguistic symptoms observed among the ASD population. 

Furthermore, as Galaburda et al. (2002) notes, different forms of language have different developmental 

schedules, and thus break down separately in developmental disorders. Therefore, different aspects of 

verbal and non-verbal language may be differently affected in autistic individuals. 
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Language and global developmental deficits     

 

   Communicative impairments of autistic individuals have to be considered in the context of global 

developmental delays and deficits that co-occur. Language is tightly linked to other cognitive processes 

(learning, memory, attention, perception, reasoning, etc.), and failing to examine the broader cognitive 

picture might result in omission of crucial information regarding communicative problems in autism. For 

example, if selective attention is impaired, it might lead to impairment in receptive language skills. Today we 

are aware that impairments linked to communication and language deficits in autism include pre-linguistic 

pathology (cognition), pragmatic disability (saying the wrong thing at the wrong time), motor programming 

(apraxia), motor execution (disorder of articulation/voice - monotone, flat, mechanic), reception (due to 

attention) and message decoding problems (Crystal and Varley, 2006). So how does early language link to 

each of the core impairments characteristic of autism spectrum disorders? 

 

   Dworzynski, et al. (2007) used a population-based twin sample and prospectively assessed at 2, 3, 4 and 8 

years to determine the extent to which shared genetic and environmental factors underlie the association 

between early language abilities and autistic-like traits (ALTs) in middle childhood. ALTs measured by the 

Childhood Asperger Syndrome Test at 8 years were explored in relation to language assessed earlier by the 

MacArthur Communicative Development Inventory at 2, 3 and 4 years. Their results supported the idea that 

the triad of core features in ALTs are aetiologically heterogeneous, and furthermore that early language is 

genetically related to social and communication impairments but not to restrictive and repetitive behaviours 

and interests. It seems that shared genetic influences drive language performance to be an early antecedent 

of later ALTs. This is in line with a population-based study by McEwin, et al. (2007) showing significant 

correlation between imitation, vocabulary, pretend play, and socially insightful behaviour in healthy 2-year-old 

twin pairs. Therefore, the development of language seems to be linked to development of various social 

skills, and therefore has implications when discussing the impairments present in autism. 

 

   Studies investigating the comparison between language and nonverbal cognitive skills gave further support 

to the notion of congruence between the two (Lord, et al., 2004). However this congruence is not present in 

early years, when a discrepancy between verbal and non-verbal cognitive skills is present (Rice, et al., 

2005). This is supported by the findings of Joseph, et al. (2002), who reported that more preschool children 

with autism had verbal scores below nonverbal scores, compared to school-age children. Furthermore, 

whether a child is verbal or nonverbal affects this relationship. For nonverbal children with autism, only 16% 

showed a discrepancy between verbal and nonverbal cognitive skills (Lord, et al., 2004). These findings 

suggested that for a majority of nonverbal autistic children linguistic delays were expected based on their 

nonverbal cognitive performance. Also, Tager–Flusberg (2004) found that most verbal children with autism 

had normal nonverbal intelligence. Therefore, at least for young children with autism and older, verbal 

children with autism, there is a congruence between language and nonverbal cognitive skills (Rice, et al., 

2005).  
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Development of lexical knowledge and morphosyntax 

 

   Lexical development has been extensively studied in children with autism. One of the surprising findings 

involves a subgroup of children with autism (around 20 percent) who show normal lexical development 

followed by an abrupt decline in the use of words (Lord, et al., 2004). Language loss group differs 

significantly from the majority of autistic children that display a delayed onset of the first words, highlighting 

the clinical heterogeneity of the autistic population. Investigations of the morphosyntactic abilities in verbal 

children with autism report that approximately 67% of verbal children show mixed expressive and/or 

receptive language delay (Allen and Rapin, 1980, 1992). Morphosyntactic deficits observed in spontaneous 

speech include omission of the finiteness morphemes, errors in eliciting past tense and third person singular 

verbs etc. (Roberts, et al., 2004). 

 

Pragmatics in autism 

 

   Pragmatic impairments, which encompass social aspects of communication, are a defining hallmark of 

autism. Despite the clinical heterogeneity of the autistic population, and the presence or absence of linguistic 

pathology, all individuals with autism show some pragmatic impairment (Rice, et al., 2005). These deficits 

vary from restricted range of speech acts (Loveland, et al., 1988; Wetherby, 1986), conversational deficits 

(Loveland and Tunali, 1993; Tager–Flusberg and Anderson, 1991; Tager–Flusberg and Sullivan, 1995) to 

deficits in understanding mental states of others in a conversation (Loukusa, et al., 2007; Paul and Cohen, 

1984; Perkins, et al., 2006). Autistic individuals often fail to respond directly to conversational stimuli, and 

usually end up keeping a monologue of their own. Hence, an ʻapparentʼ conversation is obtained. The 

following extract is taken from Crystal and Varley (2006, p.161) to illustrate this point.  

The conversation is taking place between an autistic child and his therapist. 

T- what are you going to do with that car now? 

C- I like my car (pushing it on the floor). 

T- look, Iʼve got one like that! 

C- in here it goes (pushing car into garage). 

T- donʼt forget to shut the doors. 

C- find the man now (looking about)... 

 

Semantics in autism 

 

   Subtle abnormalities in semantic processing are often found among different subtypes of autistic spectrum, 

including difficulties in non-literal language and language context (Verhoeven, et al., 2010). Semantic 

impairments result in autistic subjects showing no difference when recalling semantically encoded compared 

to perceptually encoded words, and reproducing to an equal extent concrete words compared to abstract 

ones (Verhoeven, et al., 2010). Behavioural findings were strengthened by a recent functioning imaging 

study, which showed diminished differential fMRI activation patterns when contrasting concrete and abstract 

word stimuli in autism (Harris, et al., 2006).  
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5.3 Categorical versus dimensional approach to language and communication 
deficits in autism 

 
   Although the new edition of DSM (DSM-V) will drop the categorical distinctions and combine all the 

subtypes into one autism spectrum disorder, in my data analysis I have used both categorical and 

dimensional approaches. Hence, this section will briefly introduce the categorical and dimensional approach  

to language and communication deficits observed in autism.  

 

   The categorical approach states that language delays and/or language functional abnormalities have to be 

present for a diagnosis of HFA, while in comparison there is no significant delay in language acquisition in 

Aspergerʼs syndrome. Studies that examined language and communication skills found that AS individuals 

scored significantly higher on language measures such as expressive language skills (Ghaziuddin and 

Gerstein, 1996; Ozonoff, et al., 2000; Szatmari, et al., 1995), pedantic speech (Eisenmajer, et al., 1996; 

Ghaziuddin and Gerstein, 1996), phonemic fluency (Spek, et al., 2009) but not on measures of receptive 

language skills (Ozonoff, et al., 2000; Ramberg, et al., 1996), semantic fluency (Spek, et al., 2009), 

conversational impairments (Fine, et al., 1994) and pragmatic language (Verte, et al., 2006b) where no 

difference was found between the subtypes. Inconsistent results were reported for the measures of echolalia 

(Eisenmajer, et al., 1996; Fine, et al., 1994; Miller and Ozonoff, 2000; Szatmari, et al., 1989), repetitive 

speech (Eisenmajer, et al., 1996; Szatmari, et al., 1989), and flat/mechanical intonation (Eisenmajer, et al., 

1996; Fine, et al., 1991; Gillberg, 1989). When exploring verbal IQ, it seems that the distinction between AS 

and HFA rests largely upon diagnostic and inclusion criteria. Studies that followed the DSM-IV diagnostic 

criteria found significantly higher verbal IQ in those with AS compared to HFA (Klin et al. 1995; Miller and 

Ozonoff 2000; Ghaziuddin and Mountain-Kimchi 2004), while studies that modified DSM criteria and widened 

age and IQ range observed no differences (de Bruin et al. 2006; Ozonoff et al. 2000). Overall, the findings 

indicate that distinction between those with HFA compared to those with AS on language measures are 

inconsistent, and seem to be largely dependent on the IQ factor, age and/or related to the original diagnostic 

criteria (Macintosh and Dissanayake, 2004; Witwer and Lecavalier, 2008). Age is especially important in 

altering linguistic distinctions between HFA and AS individuals, since differences in communication 

impairments between these two groups seem to diminish over time (Eisenmajer, et al., 1996; Gilchrist, et al., 

2001; Howlin, 2003; Joseph, et al., 2002; Verte, et al., 2006a). If the categorical approach is valid, then the 

question is how individuals with HFA overcome these language differences - whether this is due to 

compensation mechanisms or simple developmental factors is not known (Macintosh and Dissanayake, 

2004). However, future changes in diagnostic criteria (DSM-V) suggest that linguistic differences between 

these two subtypes are not meaningful and well-defined (Macintosh and Dissanayake, 2004; Witwer and 

Lecavalier, 2008). This dimensional approach gets further support from studies reporting that children with 

AS can also have difficulties in language development (Eisenmajer, et al., 1996; Prior, et al., 1998), and that 

not all children with HFA experience language delay ((Eisenmajer, et al., 1996; Miller and Ozonoff, 2000). 

This PhD study will use both, the categorical – to acknowledge the historical split between HFA and AS; and 

dimensional – to explore the anatomical differences across the whole autistic sample. 
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5.4 Conclusion 
 

   This Chapter offered an introduction to autism spectrum disorders and underlying language and 

communication deficits, discussing both categorical and dimensional approach to this disorder.  

What is the biological basis for the observed language deficits? The following Chapter 6 will discuss  

the neuroanatomical findings in autism and how they might link to language deficits, and importantly 

introduce the third diffusion tractography study of this PhD project, investigating perisylvian language 

pathways in ASD. 
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Chapter 6 

 

Perisylvian language pathways in Autism Spectrum 
Disorder 

 

 

6.1 Introduction and General Aims 

 

   Autism spectrum disorders (ASDs) have become the focus of intense research in the last couple of 

decades, and yet remarkably little is known about the underlying neural mechanisms that cause autistic 

behaviour. The aetiology of autism remains elusive, and presently there is no biological marker for autism. 

This Chapter attempts to give an overview of the recent neuroanatomical findings in ASD, focusing on the 

brain language regions. It has been suggested that abnormal brain connectivity and white matter 

development may underlie some of the communication deficits observed in ASD (Belmonte, et al., 2004; 

Herbert, et al., 2004). However, direct evidence linking the severity of communication deficits with anatomical 

abnormalities is missing.  

 

   The present study has applied diffusion tractography to dissect ʻsocialʼ and language pathways  

(specifically the three segments of the arcuate fasciculus) in adults with ASD and matched controls with 

normal intelligence. The primary hypothesis was that people with ASD have structural abnormalities in the 

left perisylvian pathways specialised for language, social cognition and theory of mind compared to controls. 

I also predicted greater white matter abnormalities in those patients with the most severe clinical deficits in 

communication. This analysis of anatomy and behaviour was explored in different ways: categorically (high-

functioning autism versus Asperger syndrome), dimensionally (within ASD) and by investigating across the 

whole sample the relationship of brain to language ability. 
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6.1.1  Unravelling the brain in autism   

   Both Kanner and Asperger thought that the origin of autism lies within the field of neuropathology, on 

account of early appearance of symptoms. However, the idea of an organic cause was largely forgotten 

during the following decades, in the light of a wide-spread bias in American psychiatry that all psychiatric 

disorders result from inadequate parenting and distressing early experiences. This belief was further 

supported by no direct evidence of brain abnormality and a lack of proper methodology to study the brain at 

the time. After six decades of research, the evidence of a neuropathological contribution is indisputable, yet 

definite biological markers have not been identified. This section will try to give an overview of the recent 

research and build up a coherent picture of what really happens in the autistic brain. The emphasis will be 

placed on white matter abnormalities and diffusion tensor imaging research. 

 

6.1.1.1 Molecular and structural evidence  

   Developmental abnormalities were first indirectly noted in Kannerʼs original paper from 1943. He described 

11 children with autism, and noted that five of them had ʻlarge headsʼ. Today referred as macrocephaly, it 

represents one of the most prominent theories of neuropathology in autism. Structural MRI studies 

consistently found an increase in overall brain volume (Aylward, et al., 2002; Courchesne, et al., 2001; 

Hazlett, et al., 2005; Lainhart, 2006; for a review see Amaral, et al., 2008). In a large epidemiological study, 

14% of autistic subjects had macrocephaly, 11% of males and 24% of females (Lainhart, et al., 1997). The 

study did not find any association between abnormal head growth and behavioural phenotypes, such as 

nonverbal IQ, verbal status, neurological soft sings or minor physical anomalies in the autistic subjects. 

Taking all the recent findings together, abnormally accelerated brain growth was observed in 50-70% of 

children with autism during the first 2 years of life (Courchesne, 2004; Courchesne and Pierce, 2005; 

Lainhart, 2006; Redcay and Courchesne, 2005). According to the ʻbrain growth dysregulation hypothesisʼ, 

this excessive age-related growth in postnatal life is followed by an apparent arrest, resulting in no significant 
difference between autistic and healthy population in adulthood.  

   The question that intrigued the scientific community was whether excessive brain growth equally affects 

cortical grey and intra-cerebral white matter. Herbert, et al. (2003) suggested that there is a disproportionate 

overgrowth in the white matter, compared to the grey matter. Also, as Conturo (2008) argued, the increase in 

cortical grey matter might be linked to the increase in white matter by an increase in white matter projections 

necessary to maintain the connectivity of the increased number of cortical cells reported in histopathological 

studies (Casanova, 2002, 2003, 2006). However, in a recent review article Amaral et al. (2008) summarised 

imaging findings and concluded that there were no significant differences between grey and white matter 

volumes in autism, with both exhibiting significant increases compared to healthy controls, that dissipate over 

time. What is more, it seemed that the difference in volume was declining faster in white matter as compared 

to grey matter volume over time. Nevertheless, regional differences do seem to be present, with the majority 

of studies reporting the frontal lobes to be predominantly affected (Hazlett, et al., 2006; Carper, et al., 2002; 
Herbert, et al., 2003, 2004). 
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Neuropathological findings in autism 

 

   In order to really understand the neurobiology of the observed neuroanatomical differences, we need to 

turn to the neuropathological data. If the brain volume is bigger in autism, does it mean there are more 

neurons, axons, glia, or synapses? Which neuropathological processes are behind excessive brain growth? 

Unfortunately, there are insufficient data from neuropathological studies to clarify which direct mechanisms 

might underlie this phenomenon. However, studies do point to early pre- and postnatal developmental 
abnormalities affecting multiple brain regions, such as frontal cortices, the limbic system, and cerebellum. 

   To date, subtle neuronal abnormalities have been found throughout the cortex in autism, affecting 

predominantly the frontal lobes and limbic system. Studies showed reduced size and spacing of cortical 

radial minicolumns (Casanova, et al., 2002); increased packing density of cells and reduced cell size in the 

anterior cingulate gyrus, hippocampus, entorhinal cortex, mammillary body, subiculum and amygdala 

(Kemper and Bauman, 1985, 1994, 1996); fewer neurons in total amygdala (Schumann and Amaral, 2006); 

increase in the number of Von Economo neurons in the anterior cingulate cortex and frontoinsular cortex 

(Santos, et al., 2010); and minor disruption of dendritic orientation with reduced branching of pyramidal 

neurons in autism (Raymond et al,1995). Furthermore, Bailey, et al. (1998) observed thickened cortices, 

irregular laminar patterns, poor grey-white matter boundaries, areas of increased neuronal density and 

abnormally oriented pyramidal cells. Cerebellar abnormalities were found as well, reflected in reduced 

density of Purkinje cells (Bauman, 1991; Vargas, et al., 2005; Williams, et al., 1980; Ritvo, et al 1986) and 

reduced sizes of Purkinje cells (Fatemi, et al., 2002). However, abnormalities reported in these 

neuropathological studies were not always replicated and mostly occur without correlations with the severity 

of autistic symptoms. 

 

   Overall, post-mortem evidence, based on small sample numbers, points to distributed atypical 

development of the autistic brain. This is in line with the findings by Fatemi, et al. (2001a, b) reporting 40% 

reduction in Reelin, a signalling protein involved in neuronal migration and lamination, and 34-51% reduction 

in Bcl-2, a protein responsible for apoptosis, and thus cell density. Verhoeven, et al. (2010) suggested that 

abnormal brain patterning seen in autism resembles the earlier stages of brain maturation, thus reflecting the 

features of an immature brain. 

 

  Nevertheless, we have to be aware that interpretations from neuropathological findings face many 

limitations. First, a dearth of human pathological material affected the quality of results, with the small 

samples mostly involving older children and adults, thus being inadequate to investigate directly abnormal 

development in autism. Secondly, there are technical limitations intrinsic to post-mortem studies. For 

example, Whitney et al. (2008) found no significant difference in the density of Purkinje cells between the 

autistics and controls when using more accurate method of cell counting (immunostained for calbidin-D28k), 

suggesting that instead of observing cell reductions, previous studies might have simply lacked the technical 

tools to accurately count the cells. Thirdly, the paucity of animal models is preventing direct exploration of 

biological processes involved in autism. And lastly, post-mortem studies largely included brains of autistic 

patients with other co-morbid disorders. Nowadays, it is increasingly recognised that ASDs are associated 
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with other conditions, such as epilepsy, attention-deficit hyperactivity disorder, obsessive compulsive 

disorder, mood disorders and so on. Epidemiological studies indicate that 25–30% of individuals with autism 

have associated medical conditions, which predominate among the most severely intellectually disabled 

(Bryson and Smith, 1998). This represents the biggest limitation of recent post-mortem findings, since they 

included clinically heterogeneous samples with other associated medical conditions that also affect brain 

development. For example, from 24 post-mortem studies of cerebellum, 19 (or 79%) show decreased density 

of Purkinje cells. However, 22 of the 24 brains examined in post-mortem studies came from individuals with 

mental retardation, while almost half had epilepsy (for a review see Amaral, et al., 2008). Hence, it is 

possible that the abnormalities of Purkinje cells is a secondary phenomenon linked to co-morbid disorders, 

rather than primary phenomenon of autism. The post-mortem findings must be considered with caution, as 

we cannot decipher the association if more than one disorder is present. 

 

General disruption of brain development: clues from genetics 

 

   Today it is largely accepted that inherited brain anomalies are pivotal in autism aetiology. However, 

deciphering the genetics of autism remains challenging, since it involves multiple, rare genetic variants and 

complex gene-environment interactions. Environmental factors, such as prenatal exposures to teratogens 

(Arndt, et al., 2005), also play a role by interacting with genetic susceptibility to increase the risk of ASDs. At 

present, at least 12 genome scans are completed, many chromosomal regions have been implicated (e.g., 

2q, 3q, 7q, 16p or 13q21) and over 100 candidate genes studied - however few results have been replicated 

(Barnby & Monaco, 2003; Geschwind and Levitt, 2007) since a ʻsingle causeʼ approach is too simple to 

account for the clinical heterogeneity in autism (Bishop, 2006).  

 

   Genetics points to an overlap between autism and a general disruption of brain development, and 

implicates processes such as neuronal migration, cellular proliferation, synaptic connectivity and so on, as 

being abnormal in autism. Research revealed mutations of genes responsible for: 

- synaptogenesis, e.g. Neuroligin 3 and Neuroligin 4 genes (Jamain, et al., 2003); 

- neuronal migration, e.g. contactin-associated protein-like 2 (CNTNAP2) gene (Strauss, et al., 2006); 

- dendritic development, e.g. Shank3 gene (Durand, et al., 2007); 

- cerebellar developmental patterning, e.g. Engrailed 2 gene (Yang, et al., 2008); 

- cellular growth and proliferation, e.g. PTEN gene (Varga, et al., 2009); 

- development of local and long-range cortical circuits, and the cerebellum, gene encoding the tyrosine 

kinase receptor MET (Campbell, et al., 2006); 

- synaptic and neuronal signalling function, downregulation of multiple genes (Voineagu, et al., 2011). 

 

   A recent study by Voineagu et al. (2011) further supported the notion of strong molecular abnormalities in 

ASDs, implicating transcriptional and splicing dysregulation as underlying mechanisms. Regional patterns of 

gene expression that typically distinguish frontal (BA09) and temporal cortex (BA41, BA42) during foetal 

development were significantly attenuated in ASD, pointing to abnormal developmental patterning as a 

potential pathophysiological driver. The number of genes showing significant expression differences between 
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frontal and temporal cortex was 510 in controls and only 8 in autism. Nevertheless, many features reflecting 

the general organisation of the autistic brain transcriptome were otherwise consistent with that of the normal 

brain (87%) (Voineagu et al., 2011).  

 

   Taking all the genetic findings together, there is strong evidence that risk-associated candidate genes for 

autism are linked to disruption in the development of brain connectivity. Brain connectivity is used as a 

general term, referring to a number of factors, such as synaptic and neuronal signalling function, signal 

transduction, physical properties of neurons, axons, synapses, and lastly development of local and long-

range circuits and brain pathways. Aberrant brain connectivity in autism received support from many studies 

using various methods, like functional magnetic resonance imaging, diffusion tensor imaging, 

electroencephalography and so on, ultimately leading to a ʼdevelopmental disconnectionʼ model of autism, 

implying over-connectivity of local connections (particularly within the frontal lobes) and under-connectivity of 

long-range connections along the anterior-posterior axis (Courchesne, 2005; Geschwind and Levitt, 2007). 

 

6.1.1.2 Developmental disconnection syndrome 

 

   A unifying model that explains brain abnormalities found in autism was proposed by Geschwind and Levitt 

(2007), in which higher-order association areas of the brain that normally connect to the frontal lobe are 

partially disconnected during development (referring to both under-connectivity and over-connectivity) . This 

concept of ʻdevelopmental disconnection syndromeʼ clarifies behavioural phenotypes seen in autism in the 

context of a heterogeneous aetiology.  

 

   The model describes how early disruption of maturational schedules, evidenced by early brain overgrowth 

and neuropathological findings of developmental abnormalities, results in an aberrant connectivity and 

dysfunction that subsequently leads to the development of autistic behavioural impairments. These 

disconnections disrupt the development of important neural circuits, hindering the formation of social and 

communication skills, and leading to repetitive and stereotyped patterns of behaviour in autism. For example, 

involvement of the dorsolateral prefrontal cortex and anterior cingulate cortex is predicted to disrupt joint 

attention, which is necessary for later development of language and social cognition (Geschwind and Levitt, 

2007). Based on which systems are disconnected, and how severe and widespread this disconnection is, it 

has been proposed that this leads to distinct autistic phenotypes. 

 

   Emerging ʻdisconnectionʼ explanations, suggesting wide-spread disturbances of brain connectivity, were 

supported by functional MRI studies. For example there are numerous reports of a significant reduction in 

functional correlation among various cortical regions activated during various executive, social, and 

communication tasks in autism as compared to controls (Just, et al., 2004, 2007; Kana, et al., 2006, 2007; 

Koshino, et al., 2005; Luna, et al., 2002; Mason, et al., 2008; Schultz, et al., 2000). Overall, findings point to 

reduced functional connection or disconnection between different cortical areas essential for higher order 

processing functions in autism.  
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   Some authors have related neuropathological findings with resulting aberrant connectivity in autism. 

Courchesne and Pierce (2005) suggested that autism is the underdevelopment of large integrative and 

projecting pyramidal neurons, especially those in the frontal cortex. They argued that long distance under-

connectivity but local over-connectivity would appear as a result. However, relating neuropahological findings 

based on small heterogeneous samples involving low-functioning autism with associated medical conditions, 

and imaging findings based mostly on high-functioning autism without co-morbid disorders is problematic.  

 

   In the light of recent ʼdisconnectionʼ theories the study of white matter is becoming increasingly more 

important, especially after the findings of abnormal integrative processing involving intrahemispheric as well 

as interhemispheric transfer of information (Just, 2004; for the recent review see Amaral, 2008). Hence white 

matter abnormalities are discussed in more detail in the following subsection.   

 

 

6.1.1.3 White matter abnormalities in autism  
 

   Diverse neuroimaging and neuropathological findings have indirectly suggested that aberrant white matter 

connectivity is an important contributor to the core triad of autistic impairments (for example see Belmonte, et 
al., 2004; Just, 2004; Minshew, 1996; Minshew and Williams, 2007)..  

   However, the results from in vivo imaging studies of white matter have been variable.. Some published 

studies revealed more severe white matter alterations in the right hemisphere (Barnea-Goraly, 2004 etc), 

whilst others found severe white matter deficits in the left (Ben Bashat, et al., 2007; Pardini, et al., 2009 etc) 

of autistic subjects. McAlonan et al. (2009) argued that the asymmetry and localisation of anatomical 

abnormalities in autism is dependent on the specific behavioural impairment studied. For instance, she 

reported that HFA is characterised by volumetric deficits localised mainly in the left hemisphere, while AS is 

associated with abnormalities in white matter systems predominantly in the right hemisphere. Some 

suggested that anatomical abnormalities in autism affected predominantly the outer white matter radiations 

containing association tracts (Herbert, et al., 2004), whereas others argued that the most affected were 

internal regions containing mainly projection fibres (McAlonan, et al., 2009; Rocha Brito, 2009). More recent 

imaging evidence points to a diffuse pattern of white matter abnormalities present at the level of both 

association and projection white matter pathways of adults with autism spectrum disorder (Ecker, et al., 

2012). However, these voxel based morphometry studies could not localise the abnormalities to specific 

tracts and further lacked the power to examine the microstructural integrity of white matter connections. With 

the advent of diffusion tensor imaging (DTI) it became possible to study the specific white matter pathways in 
the autistic brain. The following section will give an overview of the recent DTI findings in ASD.  
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Diffusion tensor imaging in autism 

 

   DTI provided the opportunity to explore white matter in autism, and DTI tractography to trace specific fibre 

pathways and test for altered physical connectivity between brain regions. So far, there has been a 

substantial number of diffusion studies in autism, compared to only nine using tractography to dissect 
language white matter tracts. 

   DTI studies highlighted that individuals with ASD have abnormalities in important white matter regions 

involved in social cognition (fusiform gyrus, superior temporal sulcus) and theory of mind tasks (ventromedial 

prefrontal cortex, anterior cingulate, temporo-parietal junction, superior temporal sulcus and amygdala), long-

range communication processing (anterior corona radiata, right retrolenticular part of internal capsule) and 

interhemispheric transfer of information (corpus callosum) (Rocha Brito, et al., 2009; Alexander, et al., 2007; 

Barnea-Goraly, et al., 2004; Keller, et al., 2007; Thakkar, et al., 2008; Lee, et al., 2007; Ben Bashat, et al., 
2007). 

   Tractography studies focused on alterations of specific white matter pathways underlying the three core 

domains of autistic dysfunction. Abnormalities were found in the regions of social cognition (limbic tracts, 

frontal, temporal, occipital and cerebellar connections), language (fronto-temporal association pathways) and 

repetitive and stereotyped behaviour (frontal connections and fronto-striatal network) in both hemispheres. 
Hence, I will now focus on regions and pathways underlying language and communication. 

 

 

6.2 Language-related brain research in autism 
 
   Recent imaging studies have made big advances in delineating the neuropathology of ASDs, however, 

relatively few have focused on understanding the neural basis of language and communication deficits. The 

reason possibly lies in the challenging nature of language-related research, due to language impairments 

being one of the most variable and complex symptoms of ASDs - occurring along many levels: phonological, 

syntactic, semantic and pragmatic. So far, research has suggested that language impairments in ASD are 

attributable to the maldevelopment of multiple brain regions and multiple underlying structural and functional 

networks, all contributing to the final linguistic phenotype. Findings in this area are of great importance, since 

the investigation of specific autism-related impairment, such as language deficits, could be more informative 

than investigations based on the categorical ASD subtypes. This section will give an overview of up-to-date 

research of language-related brain regions in autism, focusing particularly on the abnormalities of perisylvian 
language pathways, providing a context for understanding the importance of this PhD project.  
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6.2.1 Language-related cortical regions 

 
   Research points to both structural and functional alterations of language-related cortices in ASD. Not 

surprisingly, language-related cortical abnormalities of the frontal and temporal lobes have been consistently 

found. Neuropathological studies pointed to diffuse cortical abnormalities, such as alterations of the cortical 

minicolumns (Casanova et al., 2002, 2003) and cortical dysgenesis of the frontal and temporal lobes (Bailey 

et al., 1998) as a possible source of aberrant connectivity underlying language dysfunction in ASD. Further 

support for frontal and temporal lobe abnormalities in autism came from neuroimaging studies. A small but 

consistent increase in grey matter volume of the left middle and inferior frontal gyri (BA46 and BA10) 

important for language processing was found after quantitative meta-analysis of voxel-based morphometry 

studies (Via, et al., 2011). The inferior frontal gyrus is a structure previously implicated in language 

dysfunction (Groen et al, 2008) and mirror neuron system dysfunction in autism (Dapretto et al, 2006; 

Oberman et al, 2005; Uddin et al, 2008). These findings converge with previously reported larger frontal 

language region volumes in both children and adolescents with ASD (Knaus, et al., 2009). Furthermore, in 

children with ASD, a larger left pars triangularis and left frontal language volume were associated with more 

severe communication and social autism symptoms. This finding may be related to suggestions that a lack of 

pruning, especially in the right hemisphere, contributes to language dysfunction in autism (Beaton, 1997).  

 

   Besides frontal, temporal language areas were also found to be affected in autism, with some studies 

reporting an increase and others a decrease in temporal grey matter volume. A decrease in grey matter 

density was observed in the left planum temporale (Rojas, et al., 2002), left superior temporal sulcus, left 

inferior temporal and supramarginal gyrus (Hadjikhani et al. 2006; Hardan et al. 2006; Wallace et al. 2010), 

and bilateral superior temporal gyri (Boddaert, et al., 2004), while grey-matter increases were reported for 

primary and associative auditory cortex (Hyde et al. 2010). Moreover, a disruption of structure–function 

relationship between superior temporal gyrusʼ volume loss and receptive language function was observed in 

ASD (Bigler et al., 2007). The relationship between classical cortical language areas in autism also seems to 

be impaired, with autistic children showing reduced correlations between gray matter volumes in frontal and 

temporal language regions compared to controls (McAlonan et al., 2005). Furthermore, alterations in 

asymmetry patterns were observed for brain volumes of both the frontal and temporal lobes in ASD (Rojas et 

al., 2002, 2005; Herbert et al., 2005). Studies also reported hemispheric asymmetry alterations in Brocaʼs 

area (De Fosse et al., 2004; Herbert et al., 2002; Tager-Flusberg and Joseph, 2003), planum temporale and 

Heschlʼs gyrus (Rojas et al., 2002, 2005). Children with autism present with less lateralised cortical 

structures compared to neurotypical subjects, and the loss of left asymmetry for the frontal and temporal 

language areas. It is reported that this loss of leftward asymmetry is due to an increase in the rightward 

asymmetry, which may result from an early abnormal brain growth during development (Herbert, et al., 

2005).  
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   There is also some evidence that, within ASD, anatomy of language regions may differ between those with 

HFA and AS. A recent meta-analysis of MRI studies reported that distribution and direction of anatomical 

differences was different between HFA and AS (Yu, et al., 2011) . AS involved clusters of lower grey matter 

volume in the right hemisphere and clusters of greater grey matter volume in the left hemisphere. On the 

other hand, autism led to more extensive bilateral excess of grey matter. Both conditions shared clusters of 

grey matter excess in the left ventral temporal lobe. The authors suggest that the difference in language 

acquisition drives anatomical differences between HFA and AS. However, another meta-analysis found no 

significant differences in regional gray matter volume between the two groups (Via, et al., 2011). It is still not 

clear whether subtle differences in language dysfunction can alter the brainʼs anatomical basis. How 

language dysfunction affects functional connectivity in the brain will be discussed next. 

 

6.2.2 Altered functional connectivity underlying language processing in autism 
 
   Two key areas that become active during language processing are left inferior frontal gyrus, or Brocaʼs 

area (BAʼs 45–47) responsible for sentence comprehension through syntactic and semantic processing and 

working memory functions, and left superior and middle temporal gyrus, or Wernickeʼs area (BA21) involved 

in lexical processing (Bookheimer, 2002). Functional activations of these cortical areas, together with their 

interhemispheric synchronization and hemispheric lateralisation, are often altered during language 

processing tasks in ASD. However the picture is sometimes mixed, and inconsistencies remain regarding the 

nature of language processing anomalies in the condition.   

 

   One of the first functional neuroimaging studies on language processing in autism was carried out by Just, 

et al. (2004) who investigated sentence comprehension. HFA subjects performed worse on sentence 

comprehension tasks, and exhibited reduced activation of Brocaʼs area with increased activation in 

Wernickeʼs area compared to controls, revealing weakness in the integration of the meaning of words into a 

coherent syntactic structure. This finding gave further evidence that processing of low-level linguistic tasks 

(single words) is well preserved in children with autism, while the processing of higher-level tasks requiring 

integration (meaning of complex sentences) is often impaired (Goldstein, et al., 1994). Consistent with this 

hypothesis, individuals with autism performed more poorly and demonstrated increasingly more abnormal 

evoked-potential patterns on listening tasks as spectral and dynamic complexity increased (Samson et al. 

2006). This can be explained in terms of the recent findings reporting anomalies of neural mechanisms 

indexing sound discrimination in young autistic children (Kuhl et al. 2005) and poor attention to phonemes 

(Ceponiene et al. 2003). Although it was proposed that autism is a disorder caused by under-functioning of 

higher-level integrative circuitry (Just, et al., 2004) recent findings question this. Scott-Van Zeeland, et al. 

(2010b) showed that even basic aspects of language acquisition are typically impaired in autism. The 

authors studied statistical learning, which refers to identification of word boundaries in continuous speech, 

and observed decreased sensitivity to the statistical and speech cues available in HFA subjects. However, it 

is not clear whether the results reflect true deficits in language acquisition, or are a product of the contrived 

nature of this experimental design. Therefore, further studies are needed to demonstrate whether basic 

aspects, and not just higher-level processing of linguistic information are impaired in autism. 
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   A lower degree of information integration entails lower synchronization across different cortical networks 

responsible for language processing. Just, et al. (2004) demonstrated lower functional connectivity, i.e. the 

degree of synchronization or correlation of the time series of the activation, between the various participating 

cortical areas important in language processing in the autistic adults. Likewise, toddlers with autism showed 

significantly weaker inter-hemispheric synchronization in the putative language areas (Dinstein, et al., 2011). 

The strength of this synchronization was positively correlated with verbal ability and negatively correlated 

with autism severity. Decreased functional connectivity was also found for working memory in high 

functioning autism (Koshino, et al., 2008). Taken together, results converge with the ʻunder-connectivityʼ 

theory on tasks involving the semantic and associative networks (Beversdorf et al., 2000). 

 

   It is important to note that processing mechanisms for speech versus song are differently affected in 

autism. While activation in inferior frontal gyrus is reduced in autistic children relative to controls during 

speech stimulation, it was greater than controls during song stimulation (Lai, et al., 2012). Furthermore, 

functional connectivity for song relative to speech was also increased between left inferior frontal gyrus and 

superior temporal gyrus in autism, and large-scale connectivity showed increased frontal-posterior 

connections (Lai, et al., 2012). Preference for song stimuli in autism might reflect greater reliance of the right 

hemisphere, noticed in several imaging studies that revealed atypical cerebral language lateralisation in 

autism. HFA individuals showed more extensive activation in homologous areas of the right hemisphere 

during sentence comprehension tasks (Kleinhans et al., 2008) and smaller degree of lateralisation during 

semantic processing of words (Knaus, et al., 2008). Hence, it is possible that the right hemisphere will not be 

affected in this PhD study and that anatomical alterations will be found only in the left hemisphere. 

 

   Studies further showed that due to decreased activation within inferior frontal gyrus there is a 

compensatory higher activation in the left temporal regions (Harris et al., 2006; Just, et al 2004). 

Nevertheless, temporal regions in autism were found to be both over- and under-connected (Castelli, et al., 

2002). Also, the structure consistently implicated as abnormal in autism is the superior temporal sulcus 

(STS), involved in language, biological motion and theory of mind tasks (Redcay, et al., 2008; Groen, et al., 

2008; Klin, et al., 2009). Abnormalities of the STS were found in several anatomical studies (Carper, et al., 

2002; Hardan, et al., 2006; Hazlett, et al., 2006; Casanova, et al., 2002). Decreased speech processing 

ability of STS region was noted in the lack of activation in response to vocal sounds (Gervais, et al., 2004), 

reduced activation for socio-communicative tasks in positron emission tomography (Castelli, et al., 2002) and 

functional MRI studies (Kana, et al., 2006; Shih, et al., 2011), with reduced synchronization with regions 

important for social processing (Kana, et al., 2009; Kleinhans, et al., 2008; Mason, et al., 2008). These 

functional alterations in autism were recently explained in terms of atypical maturation of STS. Shih, et al. 

(2011) suggested that altered trajectories for functional segregation and integration of networks in autism are 

result of aberrant anatomical maturation of STS.  

 

   Overall, the studies report aberrant functional ʻconnectivityʼ between key language regions. Whether this 

altered functional connectivity indicates differences in anatomical organisation of language in autistic brain 

will be discussed in the following section. 
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6.2.3 Altered structural connectivity underlying language in autism 

 
   White matter abnormalities affecting language-related areas have been frequently observed in ASD, 

however results are somewhat inconsistent. Some studies revealed white matter volume increases in tracts 

known to be important for language, such as arcuate fasciculus, inferior fronto-occipital and uncinate fasciculi 

(for a meta-analysis of voxel-based morphometry studies see Radua, et al., 2011), while others reported 

significant clusters of white matter decreases, broadly allocated to bilateral arcuate fasciculus (Ecker, et al., 

2012). Alterations in diffusion parameters of frontal and temporal language-related brain regions were 

reported as well, reflected in reduced fractional anisotropy (FA) values (Barnea-Goraly, et al., 2010; Ke, et 

al., 2009; Lange, et al., 2010; Lee, et al., 2007) and increased diffusivity (Lange, et al., 2010; Lee, et al., 

2007). In the light of the focus of most recent studies, and this thesis, on perisylvian language pathways the 

following text will summarise our current understanding of this white matter system in autism. 

 
Perisylvian language pathways in autism 

   To date, the microstructural integrity of perisylvian language pathways in ASDs has been explored in 16 

DTI studies, of which 9 used diffusion tractography. All these studies found alterations of perisylvian anatomy 

(ʻconnectivityʼ) in autism, affecting volumetric tract properties and/or diffusion parameters as indirect 

measures of white matter integrity. Studies noted abnormalities of the perisylvian language pathways in both 

left (Ameis, et al., 2011; Barnea-Goraly, et al., 2010; Ben Bashat, et al., 2007; Fletcher, et al., 2010; Jou, et 

al., 2011a, b; Sahyoun, et al., 2010a,b; Shukla, et al., 2011; Weinstein, et al., 2011) and right hemisphere 

(Ameis, et al., 2011; Barnea-Goraly, et al., 2010; Cheng, et al., 2010; Cheung, et al., 2009; Jou, et al., 

2011b; Kumar, et al., 2010; Lai, et al., 2012; Sahyoun, et al., 2010a; Shukla, et al., 2011) of autistic subjects. 

 

   However, methodological constraints limit generalisability of these findings to the broad autism spectrum, 

since most participants were high-functioning autistic children or adults (e.g. Ameis, et al., 2011; Fletcher, et 

al., 2010; Sahyoun, et al., 2010a,b), while only one explored perisylvian language pathways in low-

functioning children (Lai, et al., 2012). Furthermore, other limitations such as small sample sizes, sample 

heterogeneity and absence of standardised diagnostic criteria, led to inconsistencies between the findings 

such as hemispheric differences in the extent of alterations, and direction of abnormalities in diffusion 

measures. Further replication of these findings is important since structural changes observed are likely to be 

implicated in language and behavioural deficits in autism. Thus, a recent study of toddlers with autism 

showed that abnormal structure of the language pathways correlated with delayed language acquisition later 

in life (Levy, et al., in press). This section will focus on nine diffusion tractography studies that reported 

diffusion alterations in children, adolescence and adults with ASD. 

    

   In very young children (1.5-5.8 years) with ASD increased FA and decreased perpendicular diffusion has 

been found in the left arcuate fasciculus compared to controls (Weinstein, et al. 2011). The authors explain 

this FA difference as a consequence of accelerated maturation and brain overgrowth that may occur in ASD 

brains during early years of life. Further evidence for accelerated maturation of white matter in autism comes 

from a tract-based spatial statistics (TBSS) analyses (Cheng, et al., 2010; Shukla, et al., 2011), and a high b 
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value diffusion-weighted imaging study (Ben Bashat, et al., 2007) that reported different developmental curve 

of bilateral arcuate fasciculus in autism compared to typically developing children. The findings leave open 

the question on what could cause accelerated maturation in young autistic children - an increase in the 

number or size of axons, accelerated myelination or reduced synaptic pruning. 

 

   In a study of children aged 2.5-9 years, Kumar and colleagues (2010) combined tract based spatial 

statistics and tractography, and found decreased FA in ASD versus controls in several long-range white 

matter tracts relevant to communication and socio-emotional functioning, including the right arcuate 

fasciculus. The left arcuate fasciculus, implicated in majority of other studies, was not found to be affected. 

Furthermore, fibre volume of the right arcuate fasciculus was positively correlated with stereotypic behaviour, 

social isolation, and overall autistic triad symptoms, that is, children with higher volume of this tract had more 

severe autistic symptoms (Kumar, et al., 2010). Similarly, in older children aged 6-12, decreased FA in the 

right arcuate fasciculus has been found in ASD compared to controls (Poutska, et al. 2011), where FA values 

were negatively correlated with the severity of ASD symptoms in communication and social interaction but 

not repetitive behaviour. Older children and adolescents with HFA showed reduced FA in the left (Jou et al., 

2011a, 2011b) and right arcuate fasciculus (Sahyoun et al., 2010; Jou et al., 2011a). The only study that 

investigated low-functioning children with autism reported reduced FA in the left arcuate fasciculus and 

significant correlation between the affected FA and the activity in the left inferior frontal gyrus for both speech 

and song conditions (Lai, et al., 2012), further supporting the notion that language dysfunction is associated 

with the underlying white matter integrity of the perisylvian network. 

 

   Alterations in language lateralisation patterns of diffusion measures of adolescents with high-functioning 

autism were also noticed (Fletcher, et al., 2010; Lo, et al. 2011). Lo, et al. (2011) found that while controls 

exhibited consistent leftward asymmetry of the long segment of the arcuate fasciculus, there was no such 

asymmetry present in autistic adolescents. Similarly, a study by Fletcher et al. (2010) showed that the long 

segment was less lateralised in the autism group. This study found alteration only in the asymmetry of 

diffusion measures, and not volume. This loss of typical language structural asymmetry points once again to 

abnormal maturation of brain connections underlying language in autism.  

 

   To date, peer-reviewed diffusion tractography studies revealed abnormalities of white matter integrity of 

perisylvian language pathways, their maturational trajectories and resulting asymmetries. The findings have 

attracted significant attention since they suggested a link between compromised brain anatomy and deficient 

language function in autism. This PhD study aims to broaden our understanding of this relationship, by 

investigating for the first time individual three segments of the arcuate fasciculus, and exploring association 
between their structural integrity and behavioural language measures in ASD.  
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6.2 Methods 

Subjects 
   Sixty-one male right-handed adults with ASD (mean age 26.0±7.2) and sixty-one matched neurotypical 

male controls (mean age 27.7±6.4) aged from 18 to 44 years were recruited by advertisement and 

subsequently assessed at 1 of 2 collaborating autism research centres in the United Kingdom that make up 

the Medical Research Council UK Autism Imaging Multicentre Study (MRC AIMS) Consortium: the Institute 

of Psychiatry, Kings College London; the Autism Research Centre, University of Cambridge. Approximately 

equal ratios of cases to controls were recruited at each site: London, 35:33, and Cambridge, 26:28 (see 

Table 6.2.1 for details). Exclusion criteria for all participants included a history of major psychiatric disorder, 

head injury, genetic disorder associated with autism (e.g., fragile X syndrome and tuberous sclerosis), or any 

other medical condition affecting brain function (egg, epilepsy). We excluded potential participants who were 

abusing drugs (including alcohol) and individuals taking antipsychotic medication, mood stabilizers, or 

benzodiazepines. Also, eight subjects were excluded as outliers based on the quality of imaging data (4 ASD 

subjects from Cambridge; and 4 controls, 1 from IOP and 3 from Cambridge). All participants with ASD were 

diagnosed according to International Statistical Classification of Diseases, 10th Revision (ICD-10) research 

criteria confirmed using the Autism Diagnostic Interview–Revised (ADI-R) (Lord, et al., 1994) to ensure that 

all participants with ASD met the criteria for childhood autism. All cases of ASD reached ADI-R algorithm cut-

off values in the 3 domains of impaired reciprocal social interaction, communication, and repetitive 

behaviours and stereotyped patterns, although failure to reach cut-off in one of the domains by one point was 

permitted. Current symptoms were assessed using the Autism Diagnostic Observation Schedule (ADOS) 

(Lord, et al., 1989) but were not used as inclusion criteria. We also assessed autistic traits in both case and 

control participants, using the Autism Spectrum Quotient (Baron-Cohen, et al., 2001). Overall intellectual 

ability was assessed using the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999) All 

participants fell within the high-functioning range on the spectrum defined by a full-scale IQ higher than 70.. 

The final sample of 61 individuals who met diagnostic criteria for childhood autism comprised of 24 with a 

history of delayed language acquisition after 36 months (i.e. subtype of HFA) and 37 individuals who 

developed phrase speech earlier than 36 months (i.e. subtype of Asperger syndrome). For all subjects, MRI 

scans were evaluated by an independent clinical neuroradiologists. No gross abnormalities were reported for 

any of the subjects. All participants gave informed written consent in accordance with ethics approval by the 

National Research Ethics Committee, Suffolk, England.  

 

Groups  Total  IOP  CAM  AS  HFA 

ASD   61  35  26  37  24 

Controls  61  33  28  n/a  n/a 
 

Table 6.2.1 Numbers used in the study; IOP - subjects scanned at the Institute of Psychiatry (London); CAM - subjects 

scanned in Cambridge; AS - Asperger group; HFA - high functioning autism group; n/a - not applicable 
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DT-MRI acquisition 

All participants were scanned using contemporary magnetic resonance imaging (MRI) scanners operating at 

3-T (GE Medical Systems HDx, Department of Radiology, University of Cambridge, and GE Medical Systems 

HDx, Centre for Neuroimaging Sciences, Institute of Psychiatry, Kings College London), with magnetic field 

gradients (maximum amplitude 40 mT m-1). The body coil was used for RF transmission, and an 8 channel 

head coil for signal reception, allowing a parallel imaging (ASSET) speed up factor of two. Each volume was 

acquired using a multi-slice peripherally-gated doubly refocused spin echo EPI sequence, optimized for 

precise measurement of the diffusion tensor in parenchyma, from 60 contiguous near-axial slice locations 

with isotropic (2.4 x 2.4 x 2.4 mm3) voxels. The echo time was 104.5 ms while the effective repetition time 

varied between subjects in the range 12 and 20 RR intervals. Based on the recommendations by Jones, et 

al. (2002), the maximum diffusion weighting was 1300 sec/mm2, and at each slice location, 6 images were 

acquired with no diffusion gradients applied, together with 32 diffusion-weighted images in which gradient 

directions were uniformly distributed in space. 

 

DT-MRI processing 
 

Pre-processing and generation of fibre tract data: The diffusion data were analysed using ExploreDTI 

(Leemans et al., 2009), analysis consisted of (i) correcting for eddy current distortion and subject motion 

(Leemans and Jones, 2009); (ii) diffusion tensor estimation using a non linear least square method (Jones 

and Basser, 2004), and (iii) whole brain tractography with a step-size of 0.5 mm, FA thresholds of 0.2 to 

initiate and continue tracking, and an angle threshold of 35 degrees (Mori and Van Zijl, 2002). To ensure that 

the observer was blind to hemisphere during virtual dissection of the language pathways and to provide 

protection against subjective bias, half of the DT-MRI datasets were flipped about the midline. 

 

Visualisation and analysis of fibre tracts: For each individual subject, the high-resolution structural image 

and the manually segmented structures were registered to the fibre tract data using FLIRT (Jenkinson and 

Smith, 2001). TrackVis (Wang and Wedeen, 2007) was used for visualising and quantifying fibre tracts. With 

TrackVis, tract data can be reduced to specific tracts of interest by using a region-of-interest (ROI) selection 

method (Conturo et al., 1999).  

 

ROI delineation method: A two regions of interest (ROI) approach has been used to dissect the three 

segments of the perisylvian pathways as described by Catani, et al. (2005). A detailed account of this 

method can be found in the Methods section of Chapter 2. 
 

Dependent measures 
 

All the measures were calculated using statistics tool in TrackVis. To measure the macro-structural 

properties of the tracts the number of streamlines within the tract of interest and the number of voxels 

(volume) through which the fibres of the tract pass were computed. However, to account for individual 
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variation in brain size, the number of streamlines and volume were co-varied with the total number of 

streamlines and total brain volume in the analyses. The micro-structural integrity of a tract was quantified 

by computing the measures of the mean fractional anisotropy (FA), mean diffusivity (MD), and 

perpendicular diffusivity (Dperp). FA quantifies the directionality of diffusion on a scale from zero (when 

diffusion is totally random) to one (when water molecules are able to diffuse along one direction only). MD 

is, as the name suggests, total diffusivity in the tissue, while Dperp measures diffusivity perpendicular to 

white matter fibres. 

A lateralisation index was calculated for each tract based on the number of streamlines, and according to 

the following formula: 

 (N. streamlines-left) – (N. streamlines-right) 

(N. streamlines-left) + (N. streamlines-right)]/2 

Positive values of the index indicate a left lateralisation of the variable. Values around zero indicate 

symmetry between left and right.  
 

Neuropsychological assessments  

a) FAS verbal fluency task 

Participants were administered the controlled oral word association test (FAS) (Benton, 1968; Benton & 

Hamsher, 1978) as part of a comprehensive neuropsychological battery. The participants were instructed to 

say as many words as possible that begin with a letter of the alphabet, excluding proper nouns. The letters 

F, A, S then were presented in that order. The words produced during a 60-second period for each letter 

were recorded. The score was the number of words produced. Series of numbers and proper nouns were not 

scored. 

 

b) Non-word repetition (NWR) task  

A test of non-word repetition (NWR) was used to assess phonological short-term memory (Gathercole et al. 

1994). In this test, subjects are required to repeat tape-recorded nonsensical words of increasing length and 

complexity (e.g., “brufid” and “contramponist”). Studies show that individuals with current language 

impairments, as well as those who had language difficulties in early childhood which later resolved, perform 

poorly on this test (Gathercole et al. 1994; Bishop et al. 1999). In addition, it has been suggested that 

performance on the nonword repetition task is the best index of disorder in the KE pedigree known for severe 

language and speech disturbances (Vargha-Khadem et al. 1998). 

 
c) Verbal IQ   

Verbal IQ is part of Wechsler Abbreviated Scale of Intelligence (WASI) and consists of two subtests: 

vocabulary and similarities. These two subtests compose the verbal scale and yield the Verbal IQ, which is a 

measure of crystallized abilities. The inter-rater reliability for these tests is: 0.98 (Vocabulary) and 0.99 
(Similarities) (Wechsler, 1999). 
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d)  ADOS and ADI-R  

Behavioural correlation analyses also were conducted using DTI values and the ADI-R and ADOS sub-scale 

scores of the ASD group. ADI-R is a semi-structured parental interview that follows DSM-IV criteria for 

autism (Lord et al., 1994) and evaluates past autistic behaviour, whereas ADOS is a semi-structured 

interview designed to assess social, communication, play, and stereotyped behaviour and interests at 

present, and therefore assesses items derived from the communication and social interaction domains (Lord 

et al., 1989, 1999). DTI measures were correlated with the ADOS sub-scale scores related to current 

communication impairment, and the ADI-R sub-scale scores related to past communication deficits. The ADI-

R, and ADOS items that were used in the analyses are shown in Table 6.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 6.2.2  ADI-R and ADOS items used in a correlation analysis between behaviour variation and perisylvian 

language network anatomy 

 

e) Autism Spectrum Quotient (AQ) test 

The AQ test is a brief, self-administered instrument for measuring the degree to which an adult with normal 

intelligence has the traits associated with the autistic spectrum. Individuals score in the range of 0-50, with 

higher scores defining autistic traits. AS and HFA groups usually score 32+, compared to controls whose 

score is lower by half (Baron-Cohen, et al., 2011). The AQ sub-scores include: Communication, Social, 

Imagination, Local Details, and Attention Switching. In this study two domains were used in the correlational 

analysis: Communication and Social domain, as they might be related to the underlying functions of the 
perisylvian language network.  

 

Instrument Items Behaviour 

Q33 stereotyped utterances and delayed echolalia 

Q34 social verbalization/chat 

Q35 reciprocal conversation 

Q36 inappropriate questions or statements 

Q37 pronominal reversal 

Q38 neologisms / idiosyncratic language 

ADI-R 

Total Q Total score (Q33 + Q34 + Q35 + Q36 + Q37 + Q38) 

A-4 stereotyped and/or idiosyncratic use of words, phrases 

A-8 conversation ADOS 

Total A Total score (A4 + A8) 
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f) Empathy Quotient (EQ) test 

Empathy Quotient (EQ) test is a self-report questionnaire, for use with adults of normal intelligence when 

measuring empathy, essential for social functions. It contains 40 empathy items and 20 filler/control items, 

on which individuals can score in the range of 0-80, with the lower scores characteristic for autism (scores 

lower than 30) (Baron-Cohen and Wheelwright, 2004). 

 

Statistical analysis 
 

Statistical comparisons of the demographic and behavioural data were performed using SPSS 16.0 software 

for Apple Mac (SPSS Inc, Chicago, IL). For all analyses, the level of statistical significance was defined as p 

< .05 (two-tailed). Overall group differences in age, IQ data, and behavioural performances were calculated 

using an independent samples t-test. 

 

Tractography 

 

The tractography data were first subject to a two-tailed 1-Sample K-S test to verify normal distribution. 

Because normal distribution was found for all the measures, parametric tests could be adopted to examine 

group differences. Differences between ASD and healthy controls were assessed using ANOVA and 

regression models. Analysis comparing the three groups, AS, HFA, and control groups, was done using an 

ANOVA test and applying Bonferroni correction for multiple comparisons. Logistic regression was used to 

compare the autism group (AS and HFA together) and controls, and co-vary for centre, age (for FA 

measures), total number of streamlines or total brain volume (for the measures of number of streamlines and 

volume of specific tract). 

 

Behavioural 

 

The relationship between the specific anatomical differences in perisylvian language pathways and domains 

of symptom severity (ADI-R and ADOS) was investigated within ASD group using ANOVA analysis. 

Symptom severity measures included 6 items of the ADI-R measuring past communication symptoms at 

ages 4 to 5 years, and their total score, and 2 items of the ADOS assessment (communication scores) of 

current symptom severity, and their total score (see Table 6.2.2).Furthermore, relationships between 

behavioural measures and anatomy were explored using Pearson correlation coefficients across the whole 

sample and within the subtypes. Behavioural tests included the FAS verbal fluency task, NWR task, verbal 

IQ, AQ and EQ tests. The goal was to elucidate the relationship between structural connectivity and 

dimensions of behaviour across the whole sample.. 
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6.3 Results 

 

Participants Demographics 

 

   There were no significant differences (Independent samples t-test, 2-tailed) between the ASD and control 
groups with regard to age or full scale IQ (see Table 6.3.1).  

   As expected ASD subjects performed significantly worse than controls on the FAS verbal fluency (t=2.015, 

p=0.046), AQ (t=-12.049, p=.000) and EQ (t=10.012, p=.000) tests, together with AQ test sub-domains, 

Communication domain (t=-11.679, p=.000) and Social domain (t=-9.993, p=.000). Other behavioural tests 

did not differ significantly between the groups (see group statistics in Table 6.3.1 and t-test results in Table 
6.3.2, Appendix B). 

 

Variable 
Controls  

(mean± STD) 
ASD group  

(mean± STD) t Sig. (2-tailed) 

Age 27.67 ± 6.4 26.05 ± 7.2 1.332 0.185 

Full IQ 114.54 ± 11.6 111.57 ± 12.2 1.374 0.172 
 
Table 6.3.1 No significant difference was found between ASD and control group with regard to age and full IQ  

 

 

Splitting the autism group 

 

   There were no significant differences in behavioural measures between HFA and AS group  

(Table 6.3.3, Appendix B).  
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Tractography reconstructions 
 

   Tractography reconstructions of the three segments in each hemisphere were performed (see Fig 6.3.1). 

 

   
Fig 6.3.1 Tractography reconstructions of the long (in red), anterior (in green) and posterior (in yellow) segments of the 

perisylvian language network from a typical healthy subject (on the left) and an ASD subject (on the right). 

 

 

Between-group differences in DTI parameters 
 
Dimensional approach - tract-specific differences  

 

   People with ASD had significantly higher mean diffusivity (MD) (p=0.002; p=0.003) and perpendicular 

diffusivity (Dperp) (p=0.003; p=0.003) values than controls in the long left (Table 6.3.5, Appendix B) and 

anterior left segment (Table 6.3.6, Appendix B), and significantly higher MD in the posterior segment of both 

hemispheres (p=0.007 for posterior left and p=0.005 for posterior right segment) (Table 6.3.7 and Table 

6.3.10, Appendix B). In contrast ASD individuals had a significantly lower fractional anisotropy (FA) 

(p=0.025), number of streamlines (p=0.031), and volume (p=0.025) in the anterior left segment compared to 

controls (Table 6.3.6, Appendix B), and number of streamlines of the left long segment (p=0.039) (Table 

6.3.5, Appendix B) There were no significant between group differences in the right anterior and right long 

segment (Table 6.3.8 and Table 6.3.9, Appendix B). The most affected diffusion index in the ASD population 

was MD, which was significantly decreased in all the tracts implicated. Fig 6.3.2 provides graphical summary 

of the findings. Furthermore, no significant differences were found for the lateralisation indices (based on the 

number of streamlines) of the perisylvian tracts between ASD group and controls.  
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Fig 6.3.2 Overview of the significant differences and direction of differences found in the ASD group compared to 

controls, in FA - fractional anisotropy, MD - mean diffusivity, Dperp - perpendicular diffusivity, NoSt - number of 
streamlines, Vol - volume; n.s.- not significant, * significant at p < 0.05; *** significant at p < 0.01 
 

Categorical approach - splitting the ASD group  

   There were no significant differences in the anatomy of the arcuate fasciculus measured by diffusion 

tractography between HFA and AS group. Hence, only dimensional approach was used, and not  

categorical (HFA versus controls, and AS versus controls).  
 

 

Relating behavioural variation to anatomy of perisylvian language pathways 
 

Association with past language use in autism 

 

   We found that within people with autism, there was a highly significant relationship (r= -.359, p=0.009) 

between number of streamlines in the anterior left segment and severity of stereotyped utterances and 

delayed echolalia in childhood, ages 4-5 years (as measured by the ADI-R Q33) (see Fig 6.3.3). We 

performed ANOVA analysis (with Bonferroni correction) and obtained significant differences in mean values 

of the number of streamlines between the groups of different symptom severity. The more severe the 

symptoms were during childhood, the less was the number of streamlines present in adulthood. 
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Fig 6.3.3  Histogram of the mean number of streamlines (±95% confidence interval) in the left anterior segment for the 

three subgroups of ASD patients divided according to the severity of stereotyped utterances and delayed echolalia (for 

ADI-R question 33, score 0 corresponds to normal, 1 to mild symptoms, 2 to severe symptoms). ( * p=0.035 between 
normal and mild, after Bonferroni correction; ** p=0.027 between normal and severe, after Bonferroni correction). 

 

Relationship with present behaviour in autism 

 

   Using ANOVA analysis, no significant relationship was found between present language deficits measured 

by ADOS-R and the anatomy of the perisylvian language pathways within people with autism. 

 

Relationship with present behaviour across the whole sample 

 
   The relationships between regional anatomic abnormalities and dimensions of behaviour across the whole 

sample were explored using Pearson correlation coefficients. Within the whole sample there were significant 

positive and negative correlations (in the right direction) between white matter language integrity (MD and 

Dperp values) of the left long and left anterior and MD values of bilateral posterior segment and 

Communication and Social scores from Autism Spectrum Quotient (AQ), and Empathy Quotient (EQ) scores. 

AQ Communication scores were positively correlated diffusion measures of the left perisylvian tracts: long 

(MD r=.200, p=.030; Dperp r=.219, p=.017), anterior (MD r=.224, p=.014; Dperp r=.213, p=.020) and 

posterior (MD r=.211, p=.021) segments (see Appendix B Table 6.3.11). AQ Social scores were positively 

correlated with MD values of the anterior (r=.182, p=.048) and posterior (r=.189, p=.038) segment in the left 

hemisphere (see Appendix B Table 6.3.12). A significant negative correlation was observed between the 

empathy scores on the EQ test and diffusion measures of the left long (MD r=-.221, p=.017; Dperp r=-.189, 

p=.041), left anterior (MD r=-.228, p=.013; Dperp r=-.220, p=.017), and bilateral posterior segment (MD rL=-

.208, p=.023; MD rR=-.185, p=.045). Data plots for each correlation are shown in Appendix B, Figures 6.3.14-

21. No significant correlations were found for the scores on the FAS verbal fluency and NWR tasks, or verbal 

IQ. However, the results across the whole sample were not replicated within each sub-sample, and hence it 

is likely that the differences between the cases (autistic individuals) and controls are driving these 

correlations towards significance. Data plots for each affected regions are shown in Appendix B,  

Figures 6.3.14-21.  

 

normal                mild                  severe 
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6.4 Discussion 

 
   This study is the first large-scale multi-centre MRI study to investigate perisylvian language pathways in a 

well-characterised sample of men meeting the ADI-R research diagnostic criteria for autism. Significant 

alterations of the left perisylvian white matter network including long, anterior and posterior segments of the 

arcuate fasciculus were found, some of which related to the severity of language deficits. 

 

6.4.1 Analysis of the perisylvian language pathways in ASD: main findings 
 

Tract-specific differences: left frontal perisylvian connections most affected in ASD 

 

   This study found significant differences in the language network that mostly affected left hemisphere frontal 

lobe connections (long and anterior segment) linking inferior frontal gyrus to parietal and temporal regions.  

These brain areas have previously been implicated in language (Groen et al, 2008) and mirror neuron 

system (Dapretto et al, 2006; Oberman et al, 2005; Uddin et al, 2008) dysfunction in autism.  

 

   Adults with ASD had significantly higher mean diffusivity (MD) and perpendicular diffusivity (Dperp) than 

controls in the left long and left anterior segment. In contrast, ASD individuals exhibited significantly lower 

fractional anisotropy (FA), number of streamlines, and volume in the left anterior segment compared to 

controls, although the mentioned differences did not stand the test of multiple comparisons, and should be 

interpreted as a trend only. Nevertheless, the results reveal that left frontal perisylvian connections are the 

ones most affected in ASD.  

 

   Previous diffusion studies reported diffusion differences in the left long segment (Ben Bashat, et al., 2007; 

Fletcher, et al., 2010; Jou et al., 2011a, 2011b; Lai, et al., 2012; Weinstein, et al., 2011; ) and left anterior 

segment (Barnea-Goraly, et al., 2010; Ben Bashat, et al., 2007) in autistic children and adolescents. It was 

suggested that these differences reflect abnormal and accelerated maturation of the left frontal lobe 

connections during childhood (Ben Bashat, et al., 2007). However, most of these studies were limited in 

terms of sample size and did not investigate structural connectivity in adults with autism. Ours is the first 

large tractography study to confirm that structural alterations of the frontal lobe connections are present also 

in adults with autism, suggesting that anatomical differences in childhood persist into adulthood. Functional 

alteration of these frontal lobe connections were previously confirmed in functional MRI studies of autistic 

adults. Differences in the microstructure of the left long segment may be the structural correlate of decreased 

functional connectivity between Wernicke's and Broca's areas during language comprehension in autism 

(Just et al., 2004; Knaus et al., 2008). On the other hand, anatomical alterations of the anterior segment of 

the left hemisphere might represent a neural substrate for decreased fronto-parietal functional connectivity 

during language and social tasks (Just et al., 2007; Kana et al., 2006; Koshino et al., 2005; Lombardo, et al., 
2010) observed in autism.  
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   Besides differences in frontal lobe connections, we observed significant differences in the temporo-parietal 

connections bilaterally in adults with autism. This was reflected in significantly higher MD bilaterally, and 

significantly higher Dperp value in the right hemisphere of posterior segment. Observed alterations of the 

temporal connections (long and posterior) might be a consequence of atypical maturation observed in 

posterior temporal brain regions in autism (Shih, et al., 2011). These temporal abnormalities are likely to lead 

to language-related learning deficits in autism during development (Kuhl et al. 2005; Scott-Van Zeeland, et 

al., 2010b), since recent evidence shows that the posterior segment is involved in language-related learning 

through syllable discrimination and identification (Parker, et al., 2005). 

 

   Based on the ʻparallel pathway modelʼ and possible functional correlates of specific perisylvian language 

tracts some authors have argued that indirect pathway will be more affected than direct pathway in autism 

(Fletcher, et al., 2010). This suggestion is based on prior investigations of aphasic patients that reported that 

lesions of the long direct segment result in Wernickeʼs “conduction” aphasia characterised by impaired 

passive repetition but relatively preserved spontaneous speech and language comprehension, whereas 

lesions of the indirect pathways (anterior and posterior) result in transcortical motor aphasias characterised 

by relatively intact passive repetition but impaired spontaneous speech and/or comprehension (Catani et al., 

2005). Hence, given the frequency of immediate echolalia during early childhood the indirect pathways might 

be more impaired in verbal individuals with autism than the long direct pathway (Fletcher, et al., 2010).  

However, our findings do not support that suggestion as we found both long and anterior pathways of the left 

hemisphere significantly different in autism.  

 

   Furthermore, our study failed to find differences in lateralisation patterns (based on the number of 

streamlines as a proxy measure of volume) of the perisylvian language network. This finding might seem 

somewhat unexpected if we have in mind that recent structural MRI studies point to the loss of left 

asymmetry in the volume of both frontal and temporal language regions, more specifically Brocaʼs area (De 

Fosse et al., 2004; Herbert et al., 2002; Tager-Flusberg and Joseph, 2003), planum temporale and Heschlʼs 

gyrus area (Rojas et al., 2002, 2005) in autism. However, when exploring the asymmetry of perisylvian white 

matter connections, this study found no significant differences among the two groups. This is in line with the 

findings by Fletcher et al. (2010) who found similar volumetric asymmetry of the long segment in individuals 

with high-functioning autism compared to controls. 

 

   Using categorical approach to autism, previous voxel-based morphometry studies reported differences in 

grey and white matter of language-related brain regions between autism and Asperger syndrome (AS) 

(McAlonan, et al., 2005, 2009). However, this approach is limited in being unable to localise the differences 

to specific white matter tracts and unable to examine the underlying white matter integrity. Our study failed to 

support that there are significant anatomical differences between the high-functioning autism (HFA) 

compared to AS. We observed no significant differences in the anatomy of the perisylvian language network 

between these two groups. Hence, our findings suggest that delay in acquisition of language in ASD is not  
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associated with anatomical variation in the perisylvian network, but some aspect of overall language skill is. 

This findings gives further support to the recent transition from categorical to dimensional approach to 

autism.  

 

Differences among DTI-extracted parameters  

 

   The neuropathology of the perisylvian language pathways in autism was more evident in diffusion 

measures - implicating white matter microstructure, than in volumetric measures (volume and number of 

streamlines). The diffusion measure most affected in the ASD population was MD, which was significantly 

decreased in all the tracts implicated. This is in line with the studies noting that MD is a more sensitive 

marker of neuropathology compared to FA or volumetric measures in autism (Ameis, et al., 2011; Fletcher, et 

al., 2010; Nagae, et al., 2012), primary progressive aphasia (Galantucci, et al., 2011) and Alzheimerʼs 

disease (Acosta-Cabronero, et al., 2010). The potential biological implications will be discussed in the 

section 6.4.4.  

 

6.4.2 Relating behavioural variation to anatomy of perisylvian language pathways 
 
   The question remains as to how these organic brain deficits map onto what is known about the language 

functioning in adults with autism. Hence, the relationships between regional anatomic abnormalities and 

domains of symptom and behaviour severity were explored. White matter integrity of perisylvian pathways 

has previously been correlated with language deficits in childhood autism (Levy, et al., in press), while this 

study gave the first evidence of this association in autistic adults, and showed that differences in childhood 

persist into adulthood and continue to be associated with clinical symptoms. 

 

Relationship with past language use in autism  

 

   Within people with ASD, there was a highly significant relationship between the number of streamlines in 

the anterior left segment and severity of stereotyped utterances and delayed echolalia in childhood. The 

more severe the symptoms were during childhood, the less was the number of streamlines present in 

adulthood. Echolalia is explained as a failure of normal imitation of speech, and represents a normal 

phenomenon in the learning of language in infancy (Lecours, et al., 1983). In general, imitation was found to 

be of crucial value for development of language, but also the normal development of pretend play and 

socially insightful behaviour (McEwen, et al., 2007) that are typically impaired in autism. Some authors 

suggested that echolalia represents intactness of primary language areas in the frontal and temporal lobes, 

with syntax unimpaired but disconnected from control (Hadano, et al., 1998; Mendez, 2002). I could 

speculate that this disconnection might be partly explained by the reduced connectivity of the left anterior 

segment in autistic children, possibly due to aberrant maturation, which persists into adulthood. Another link 

between the anterior segment and the impaired imitation comes from recent studies of mirror neuron system. 

The neural basis for vocal learning and imitation is though to involve mirror neuron system in humans, which 

if disrupted is likely to result in echolalia. This systems contains also the fibres of fronto-parietal (anterior 
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segment) connections (Aboitiz, 2012), which could thus be the neural basis for echolalia in autism. However, 

many of the mirror neuron studies are still controversial, and need further replication. Finally, the question 

remains of how reliable is it to study the association between past language deficits and the anatomy in 

adulthood. Furthermore, we found no association between anatomy and the severity of language deficits in 

adulthood, as measured by ADOS. Thus, it is possible that individuals with ASD partly overcome these 

language deficits by compensation mechanisms or simple developmental factors, as recently reported in 

several behavioural studies (Eisenmajer, et al., 1996; Gilchrist, et al., 2001; Howlin, 2003).  

 

Relationship with present behaviour across the whole sample 

 

   This study found significant relationship between structural connectivity and dimensions of behaviour 

across the whole sample after performing correlation analysis between anatomy and measures of 

communication and social domains of Autism Quotient (AQ) test and empathy of Empathy Quotient (EQ) 

test. The more severe, ʻautisticʼ, the deficits in communication and social domains were, the higher MD and 

Dperp were in the three segments of the left perisylvian network. Furthermore, higher MD and Dperp of the 

left frontal lobe connections (long and anterior segment) and higher MD of the posterior segment bilaterally, 

were associated with more severe deficits in empathy across the whole sample. However, the results across 

the whole sample were not replicated within each sub-sample, and hence the differences between the cases 

and controls were probably driving these correlations towards significance.  

 

6.4.3 Limitations 
 

   We have included individuals fulfiling ʻgold standardʼ diagnostic criteria (i.e., who were above threshold in 

both the ADI-R and ADOS-R) and who did not differ in gender, age or overall intellectual functioning from 

controls. Both ADI-R and ADOS scores were chosen as exclusion criteria because current symptoms 

assessed in adult samples can often be masked by coping strategies developed as the person ages and can 

also be alleviated by treatments and/or interventions (e.g., social skills training), whereas the accuracy of 

ADI-R may sometimes be uncertain given the reliance on retrospective parent report. Using both ADI-R and 

ADOS-R lent confidence to the findings of between-group differences. Nevertheless, there are several 

limitations to this study. Firstly, due to the benefit of decreasing variability of the sample and thus increasing 

statistical power, only verbal males with normal intelligence were included. Hence, it is not known to what 

extent would these findings generalise to females, cognitively lower functioning and non-verbal individuals 

with autism, or children. This generalisation is especially problematic when considering children with autism, 

since age was revealed to be an important factor influencing autistic neuropathology (Herbert, et al., 2003; 

McAlonan, et al., 2002). It is necessary to detect these differences during development of brain structure and 

function, and not merely as end-products of brain systemsʼ neuropathology in adulthood. In order to study the 

brain anatomy in autism throughout the lifespan, longitudinal or large cross sectional designs with different 

age cohorts should be employed. Secondly, a multicentre design was used for MRI data acquisition to 

overcome single-site recruitment limitations, but similarly poses a methodological issue affecting the 

reliability of findings. However, inter-site effects were accounted for in the statistical model, by using different 
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centres as covariates. Therefore, the detected between-group differences cannot be fully explained by these 

limitations. Lastly, the methodological limitations of DTI tractography need to be acknowledged. 

Tractography cannot visualise axons directly, and hence represents merely an indirect measure of white 

matter tracts. Furthermore, methodological considerations potentially impacting measurement of FA, MD, 

Dperp (partial volume effects, signal-to-noise ratio of the data) need to be acknowledged (see chapter 1 for 

more details on DTI limitations). Additional imaging techniques such as magnetisation transfer imaging, MR 

spectroscopy, and relaxation time measurements may help to increase the specificity of our FA findings 

(Kubicki et al., 2005). 

 

6.4.4 Implications 
 

   As the autism field strives for sensitive and specific biomarkers of ASD, these findings offer hope for  

future research, suggesting a possibility of non-invasive, brain-based screening methods that could detect 

anatomical differences possibly even prior to behavioural emergence. However, the question remains 

whether these changes in white matter structure are a direct cause of the disorder or alternatively, a 

secondary consequence of abnormal brain function and the result of living oneʼs whole life with autism. Our 

findings of significant relationship between altered anatomy in adulthood and language deficits relevant to 

earlier developmental stages, suggest that these perisylvian white matter differences are likely present in the 

brain of young autistic children. Hence, it is possible that altered structural connectivity of the perisylvian 

language network is one of the core features of autistic brain. These results place further importance on 

exploring how structural changes co-evolve with the language deficits observed in autism. A longitudinal 

study is necessary in order to provide a detailed profile of atypical development, sub-categorisation of the 

behavioural phenotype, and (potentially) prediction of treatment response (e.g. to language training). For 

example, bearing in mind the continued maturation of the arcuate fasciculus in the healthy population 

(Brauer, et al., 2011) it may be possible to explore whether specific interventions that improve language 

functioning in individuals with autism do so by modulating the development of white matter microstructure. 

 

Potential neurobiological implications  

 

   The changes in microstructure of the left perisylvian language pathways suggested by our findings could 

be due to a number of different processes. Since autism is a developmental disorder with onset in early 

childhood, the micro-structural changes may be a persisting manifestation of a primary abnormality of early 

development of the arcuate fasciculus (Fletcher, 2010). Alternatively, the microstructural changes in white 

matter could be secondary to abnormal development of cortical minicolumns (Casanova et al., 2009) and/or 

cortical dysgenesis of the frontal and temporal lobes (Bailey et al., 1998). It is also possible that the observed 

changes are the result of abnormal language functioning rather than itʼs cause (Paus et al., 1999).  
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   It is important to note the neuroanatomical implications and discuss which neurobiological changes might 

give rise to the present tractography findings. It is known that the relative sensitivity of the various diffusion 

parameters in identifying abnormalities is dependent upon the underlying pathology (Kumar, et al., 2009). 

For example, if there is a change in diffusion in all directions, such as in stroke or cell death, MD is likely to 

be a very sensitive measure as it represents the average of diffusivities along three main directions. We 

found that MD was significantly different – but so were other parameters such as also Dperp . Hence our 

results most likely arise from a complex mixture of microstructural changes. Increased MD found in this study 

may reflect demyelination, axonal damage (Basser, 1995), or loss of white matter coherence (Basser and 

Pierpaoli, 1996; Werring et al., 2000a), while increased Dperp is by some considered a sensitive marker for 

demyelination (Song et al., 2005) but this is questionable (Wheeler-Kingshott and Cercignani, 2009). Hence, 

the differences in the frontal lobe connections of the left hemisphere and bilateral temporo-parietal segment 

in ASD likely reflect the mixture of underlying biological changes such as demyelination, axonal damage (e.g. 

decrease in the number of axons, an increase in intra-axonal space etc).  

 

6.4.5 Conclusions 
 
   Our findings show that diffusion tractography is sensitive to anatomical difference in the language 

pathways of normal intelligence adults with ASD. These differences are mainly localised in the left perisylvian 

pathways and relate to the severity of stereotyped utterances and delayed echolalia in childhood. Abnormal 

development of the left frontal perisylvian connections may partially explain some of the abnormal imitative 

behaviours and impaired communication typically found in ASD. In conclusion this is the first in vivo study to 

identify localised abnormalities in the left perisylvian language pathways of people with ASD and to 

demonstrate a significant relationship between abnormalities in white matter integrity and the severity of 
language deficits.  
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Chapter 7 

 

Final Remarks 

 
 
 

 

   The intention of this PhD project is to bring significant experimental and theoretical extension of  

knowledge to our understanding of the anatomy of the perisylvian language network in the living human 

brain. The presented studies have tried to determine the role that age, genes and environment play upon  

the anatomy of the perisylvian language pathways in healthy population and how impaired language 

development affects the anatomy of these perisylvian connections. 

 

   The results presented herein have showed that the perisylvian language pathways exhibit distinct 

maturational patterns and are under different extent of genetic control. The frontal lobe connections were 

shown to lateralise relatively early in life, which is in line with imaging studies that observed early asymmetric 

organisation of the arcuate fasciculus (Dubois, et al., 2009; Eluvathingal, et al., 2007; Lebel and Beaulieu, 

2009). Prior to adolescence the left long segment is larger than the right, and the right anterior segment is 

larger than its left counterpart, and this arrangement remains stable throughout adulthood. Early structural 

asymmetries of the long and anterior segments suggest that structural organisation and maturation of this 

network might underlie the brainʼs functional lateralisation. Support for this notion comes from a recent study 

reporting that early frontal maturation is sufficient to sustain language functional activity (Leroy, et al., 2011). 

Furthermore, functional studies showed this area to be active in infants when listening to speech (Dehaene-

Lambertz et al., 2006; Bristow et al., 2009). On the other hand, temporo-parietal connections exhibit a 

dynamic pattern of lateralisation, and continue to lateralise during adolescence and early adulthood due to 

the loss of white matter connections in the right hemisphere. The question remains whether this maturational 

pattern of the posterior segment is linked to childrenʼs stronger reliance on the right hemisphere, reflected in 

a more rightward functional lateralisation during language processing as compared to adults (Brauer and 

Friederici, 2007), which ceases in later years due to the loss of connections in the right hemisphere. 
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  Knowing that experience changes white matter (Fields, 2008), and affects dendritic branching of neurones 

and the numbers of synaptic connections (Toga et al., 2006) it might be expected that the effects of 

environment will play a bigger role on the temporo-parietal connections (posterior indirect segment) that 

undergo a more dynamic maturational pattern, compared to the frontal lobe tracts, long direct and anterior 

indirect segment, that show early development. Our results suggest this to be the case. Genetic analysis 

revealed that temporo-parietal dynamic maturational pattern is mostly driven by specific environmental 

factors that twins do not share. Conversely, frontal lobe connections that lateralise very early in life exhibit a 

higher degree of familial control (genes and shared environment) in adulthood. This is also in agreement with 

studies that noted a lower degree of genetic contribution to those brain structures that appear later in 

cerebral development (Brun, et al., 2008; Lohmann, et al., 1999). However, we need to be aware that genes 

and environment are not independent of each other, and that genetic factors can drive the exposure to 

certain environmental settings and relevant experiences. Thus we need to interpret these findings with some 

caution. Also we need to be aware that heritability changes with age, with regions associated with complex 

cognitive processes such as language being more heritable in adolescents than children (Lenroot, 2009), 

and the same being true for cognitive functions such as prosocial behaviour, IQ and general cognitive ability 

g (Plomin et al., 1997). It is thus possible that strong genetic effects are more likely present during later years 

for the posterior indirect segment. 

 

   Maturational and heritability differences between posterior indirect segment and the frontal connections, 

long and anterior segment, raise questions whether posterior segment is functionally different from the other 

two. Previous study found that differences in maturation of the left language connections were associated 

with differences in cognitive abilities (Lebel and Beaulieu, 2009). The observation that developmental 

changes of the posterior segment are most prominent during adolescence could be related to increasingly 

complex functional requirements. This is in line with the findings suggesting that temporo-parietal 

connections are important for higher order cognitive functions that continue to develop throughout 

adolescence and adulthood, including theory of mind (Apperly et al., 2004; Njomboro, et al., 2008; Samson, 

et al., 2004; Saxe and Kanwisher, 2003), control of intention to speak (Carota et al., 2010; Desmurget et al., 

2009), speech self-awareness (Jardri, et al., 2007), word semantics and conceptual semantics (Friederici, et 

al., 2010), verbal working memory (Jacquemot and Scott, 2006), and so on. It is likely that posterior segment 

acts as a neural substrate for higher mental processes that involve both language and social cognition. 

Hence, our results are in line with a hypothesis that long direct segment supports early crucial stages of 

language acquisition, while indirect pathways become more relevant for complex processing during later 

stages of language development (Perani et al., 2011). Our findings also lend support to the view that 

different aspects of language skills, being supported by different perisylvian segments, are under different 

hereditary mechanisms (Stromswold, 2001). Furthermore, our study supports the view that later developing 

white matter structures (i.e. posterior segment) are more vulnerable to environmental stressors (Kochunov, 

et al., 2012; Rosenzweig, et al., 2012). This is because later developing myelin is exceptionally vulnerable to 

subtle metabolic and oxidative abnormalities during developmental and degenerative phases (Bartzokis, 
2011).  
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   The understanding of developmental patterns has vital implications for neurodevelopmental disorders that 

manifest with language pathology. The application of DTI tractography in the final study offered insights on 

how language pathology affects the anatomy of perisylvian language networks in adults with autism 

spectrum disorders (ASD). Significant differences in the left perisylvian language connections were found in 

ASD, including long, anterior and posterior segments. Previously left arcuate fasciculus was implicated in 

children with autism (Jou et al., 2011a, 2011b; Lai, et al., 2012; Weinstein, et al., 2011), but our study is the 

first to show that these anatomical differences persist from childhood into adulthood. Furthermore, the 

observed structural differences in anterior segment connections in adulthood were associated with the 

severity of the past language use in autism, suggesting that these anatomical abnormalities might be present 

already in childhood, as a result of abnormal maturation. It is possible that aberrant perisylvian language 

connections represent one of the key features of autistic brain. Further, our study suggests that delay in 

acquisition of language in ASD is not associated with anatomical variation in the perisylvian network but 

some aspect of overall language skill is, since we found no structural differences between high-functioning 

autism and Asperger syndrome. Hence, these findings give further support to dimensional approach for 

classifying ASD. Importantly, autism spectrum disorder, which is a highly heritable neurodevelopmental 

disorder, exhibited most abnormalities in those tracts that were found to be most heritable in the twins study - 

frontal lobe connections. Furthermore, the diffusion measure most affected in autism was mean diffusivity, 

which was the measure under the highest genetic control in the twin study. Our results therefore implicate 

those structures and measures with the highest heritability estimates as potential sensitive biomarkers for 

autism. The findings lend support to the already reported notion that mean diffusivity is a more sensitive 

marker of neuropathology compared to fractional anisotropy or volumetric measures (Nagae, et al., 2012; 

Galantucci, et al., 2011). Results highlight the relevance of frontal perisylvian network in the future genetic 

linkage and association studies, and their hunt for genes influencing language-related brain structure and 

function. The relevant susceptibility genes, once identified, could be informative for understanding the 

evolution of social cognition and how this relates to language origins. Also, these findings offer hope for 

future research in specific biomarkers in autism spectrum disorder, suggesting a possibility of non-invasive, 

brain-based screening methods that could detect anatomical differences possibly even prior to behavioural 
emergence.  

   In conclusion, it is hoped that the research summarised in this PhD thesis will contribute to better 

understanding of the anatomy of the perisylvian language pathways and the complex relationship between 

language impairments in psychiatric disorders and their neural correlates, facilitating better diagnostic and 

treatment schedules for affected individuals. However, future studies should explore the ventral pathways 

which are also important for language and social cognition in humans. However, as David Hubel notes, to 

know the connections of a structure within the brain is a quite different from understanding the structureʼs 

physiology (Hubel, 1995). How individual neurons work, how they generate electrical signals and convey 

information to other cells, and how they interact to produce a system capable of supporting language 

processing remains unanswered. Understanding the structure and function of a trait as complicated as 

language requires a synthesis of future multidisciplinary research from neuroscience, genetics, linguistics, 

psychology and developmental biology. This thesis is plainly just one piece of the research puzzle, but it 
provides an exciting step forward in investigations of language in the human brain. 
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Appendix A 
 
Chapter 4. 
Tables of appendix A: 
 
Table 4.2.1 Equality of means and variances within zygosity groups (paired t-test for means, Leveneʼs test 
for variances) and across zygosity (independent t-test). p value is significant at p< .05 
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Table 4.3.1 Intraclass correlation coefficients, ACE estimates (with 95% Confidence Intervals), and SEM model 
fitting estimates for the Number of Streamlines of the three segments of AF in MZ and DZ twins 
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Appendix B 
 
Chapter 6. 
Tables and figures of appendix B: 
 
Table 6.3.1 Group statistics of the behavioural measures; 1 - controls, 2 - ASD group. 

 
Group Statistics 

  group N Mean Std. Deviation Std. Error Mean 

1.00 61 110.1639 12.77652 1.63587 Verbal_IQ 

2.00 61 110.5738 12.77557 1.63574 

1.00 61 114.5410 11.59824 1.48500 Full_IQ 

2.00 61 111.5738 12.24263 1.56751 

1.00 60 43.2000 12.54119 1.61906 FAS 

2.00 60 38.4667 13.17865 1.70136 

1.00 59 22.7797 3.54803 .46191 NWR 

2.00 60 21.7167 3.85804 .49807 

1.00 61 14.0656 6.41578 .82146 AQ 

2.00 59 30.3898 8.33153 1.08467 

1.00 60 44.1333 11.79553 1.52280 @EQ 

2.00 59 22.6102 11.65305 1.51710 

1.00 61 1.7377 1.67234 .21412 COMMUNICATION 

2.00 59 6.3051 2.51378 .32727 

1.00 61 1.7541 1.97193 .25248 SOCIAL 

2.00 59 6.0847 2.70560 .35224 

1.00 61 27.6885 6.41493 .82135 AGE 

2.00 61 26.0492 7.16107 .91688 
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Table 6.3.2 Group comparison on behavioural measures; 1 - controls, 2 - ASD group. 

 
Independent Samples Test 

t-test for Equality of Means  
t df Sig. (2-tailed) 

Equal variances assumed -.177 120 .860 Verbal_IQ 

Equal variances not assumed -.177 120.000 .860 

Equal variances assumed 1.374 120 .172 Full_IQ 

Equal variances not assumed 1.374 119.651 .172 

Equal variances assumed 2.015 118 .046 FAS 

Equal variances not assumed 2.015 117.711 .046 

Equal variances assumed 1.564 117 .121 NWR 

Equal variances not assumed 1.565 116.482 .120 

Equal variances assumed -12.049 118 .000 AQ 

Equal variances not assumed -11.998 108.962 .000 

Equal variances assumed 10.012 117 .000 @EQ 

Equal variances not assumed 10.013 116.997 .000 

Equal variances assumed -11.755 118 .000 COMMUNICATION 

Equal variances not assumed -11.679 100.485 .000 

Equal variances assumed -10.044 118 .000 SOCIAL 

Equal variances not assumed -9.993 105.889 .000 

Equal variances assumed 1.332 120 .185 AGE 

Equal variances not assumed 1.332 118.576 .185 
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Table 6.3.3 Descriptives between the three groups on behavioural measures; 1 - Asperger group, 2 - High functioning 
autism group, 3 - Controls; significant at 0.05 level. 

 

Descriptives 

95% Confidence Interval for 

Mean  

N Mean 

Std. 

Deviation Std. Error Lower Bound 

Upper 

Bound 

1.00 37 110.3514 13.61416 2.23815 105.8122 114.8905 

2.00 24 110.91

67 

11.63920 2.37584 106.0019 115.8315 

3.00 61 110.16

39 

12.77652 1.63587 106.8917 113.4362 

Total 122 110.36

89 

12.72481 1.15205 108.0881 112.6496 

Fixed Effects     12.82809 1.16140 108.0692 112.6685 

Verbal_IQ 

Mod

el Random 

Effects 
      1.16140

a 

105.3717a 115.3660a 

1.00 37 111.9459 12.54314 2.06208 107.7639 116.1280 

2.00 24 111.00

00 

12.00724 2.45097 105.9298 116.0702 

3.00 61 114.54

10 

11.59824 1.48500 111.5705 117.5114 

Total 122 113.05

74 

11.96848 1.08358 110.9122 115.2026 

Fixed Effects     11.97021 1.08373 110.9115 115.2033 

Full_IQ 

Mod

el Random 

Effects 
      1.08373

a 

108.3945a 117.7203a 

1.00 36 38.2500 14.31558 2.38593 33.4063 43.0937 

2.00 24 38.791

7 

11.55320 2.35829 33.9132 43.6702 

3.00 60 43.200

0 

12.54119 1.61906 39.9603 46.4397 

Total 120 40.833

3 

13.02830 1.18932 38.4784 43.1883 

Fixed Effects     12.91733 1.17919 38.4980 43.1686 

FAS 

Mod

el Random 

Effects 
      1.77216 33.2084 48.4583 

1.00 36 21.3056 3.76313 .62719 20.0323 22.5788 NWR 

2.00 24 22.333

3 

3.99638 .81576 20.6458 24.0209 
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Descriptives 

95% Confidence Interval for 

Mean  

N Mean 

Std. 

Deviation Std. Error Lower Bound 

Upper 

Bound 

1.00 37 110.3514 13.61416 2.23815 105.8122 114.8905 

2.00 24 110.91

67 

11.63920 2.37584 106.0019 115.8315 

3.00 59 22.779

7 

3.54803 .46191 21.8550 23.7043 

Total 119 22.243

7 

3.73024 .34195 21.5665 22.9209 

Fixed Effects     3.70590 .33972 21.5708 22.9166 

 

Mod

el Random 

Effects 
      .47380 20.2051 24.2823 

1.00 37 30.6757 7.88830 1.29683 28.0456 33.3058 

2.00 22 29.909

1 

9.20098 1.96166 25.8296 33.9886 

3.00 61 14.065

6 

6.41578 .82146 12.4224 15.7087 

Total 120 22.091

7 

11.03394 1.00726 20.0972 24.0861 

Fixed Effects     7.44648 .67977 20.7454 23.4379 

AQ 

Mod

el Random 

Effects 
      6.47943 -5.7871 49.9704 

1.00 37 21.8649 12.38539 2.03615 17.7354 25.9944 

2.00 22 23.863

6 

10.46216 2.23054 19.2250 28.5023 

3.00 60 44.133

3 

11.79553 1.52280 41.0862 47.1804 

Total 119 33.462

2 

15.90906 1.45838 30.5742 36.3502 

Fixed Effects     11.75535 1.07761 31.3278 35.5965 

@EQ 

Mod

el Random 

Effects 
      8.51550 -3.1771 70.1014 

1.00 37 6.3784 2.39619 .39393 5.5794 7.1773 

2.00 22 6.1818 2.75398 .58715 4.9608 7.4029 

3.00 61 1.7377 1.67234 .21412 1.3094 2.1660 

Total 120 3.9833 3.12212 .28501 3.4190 4.5477 

Fixed Effects     2.13593 .19498 3.5972 4.3695 

COMMUNICATI

ON 

Mod

el Random 

Effects 
      1.81261 -3.8157 11.7823 

SOCIAL 1.00 37 6.3243 2.71880 .44697 5.4178 7.2308 



  159 

Descriptives 

95% Confidence Interval for 

Mean  

N Mean 

Std. 

Deviation Std. Error Lower Bound 

Upper 

Bound 

1.00 37 110.3514 13.61416 2.23815 105.8122 114.8905 

2.00 24 110.91

67 

11.63920 2.37584 106.0019 115.8315 

2.00 22 5.6818 2.69720 .57505 4.4859 6.8777 

3.00 61 1.7541 1.97193 .25248 1.2491 2.2591 

Total 120 3.8833 3.20237 .29234 3.3045 4.4622 

Fixed Effects     2.36099 .21553 3.4565 4.3102 

 

Mod

el Random 

Effects 
      1.72569 -3.5417 11.3084 

1.00 37 24.9459 7.23013 1.18863 22.5353 27.3566 

2.00 24 27.750

0 

6.85407 1.39908 24.8558 30.6442 

3.00 61 27.688

5 

6.41493 .82135 26.0456 29.3315 

Total 122 26.868

9 

6.81994 .61745 25.6465 28.0913 

Fixed Effects     6.75593 .61165 25.6577 28.0800 

AGE 

Mod

el Random 

Effects 
      .95071 22.7783 30.9594 
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Table 6.3.4 ANOVA analysis between the three groups on behavioural measures; 1 - Asperger group, 2 - High 
functioning autism group, 3 - Controls; significant at 0.05 level. 

Multiple Comparisons 

Bonferroni 

95% Confidence Interval 

Dependent 

Variable (I) GROUPS (J) GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

Lower 

Bound 

Upper 

Bound 

2.00 -.56532 3.36218 1.000 -8.7297 7.5990 1.00 

3.00 .18742 2.67

306 

1.000 -6.3036 6.6784 

1.00 .56532 3.36

218 

1.000 -7.5990 8.7297 2.00 

3.00 .75273 3.09

101 

1.000 -6.7532 8.2586 

1.00 -.18742 2.67

306 

1.000 -6.6784 6.3036 

Verbal_IQ 

3.00 

2.00 -.75273 3.09

101 

1.000 -8.2586 6.7532 

2.00 .94595 3.13733 1.000 -6.6724 8.5643 1.00 

3.00 -2.59504 2.49

430 

.901 -8.6519 3.4619 

1.00 -.94595 3.13

733 

1.000 -8.5643 6.6724 2.00 

3.00 -3.54098 2.88

430 

.666 -10.5449 3.4630 

1.00 2.59504 2.49

430 

.901 -3.4619 8.6519 

Full_IQ 

3.00 

2.00 3.54098 2.88

430 

.666 -3.4630 10.5449 

2.00 -.54167 3.40401 1.000 -8.8096 7.7263 1.00 

3.00 -4.95000 2.72

321 

.215 -11.5644 1.6644 

1.00 .54167 3.40

401 

1.000 -7.7263 8.8096 2.00 

3.00 -4.40833 3.11

983 

.481 -11.9861 3.1694 

1.00 4.95000 2.72

321 

.215 -1.6644 11.5644 

FAS 

3.00 

2.00 4.40833 3.11

983 

.481 -3.1694 11.9861 
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Multiple Comparisons 

Bonferroni 

95% Confidence Interval 

Dependent 

Variable (I) GROUPS (J) GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

Lower 

Bound 

Upper 

Bound 

2.00 -.56532 3.36218 1.000 -8.7297 7.5990 

2.00 -1.02778 .97659 .884 -3.4001 1.3445 1.00 

3.00 -1.47411 .783

75 

.188 -3.3780 .4298 

1.00 1.02778 .976

59 

.884 -1.3445 3.4001 2.00 

3.00 -.44633 .897

22 

1.000 -2.6259 1.7332 

1.00 1.47411 .783

75 

.188 -.4298 3.3780 

NWR 

3.00 

2.00 .44633 .897

22 

1.000 -1.7332 2.6259 

2.00 .76658 2.00477 1.000 -4.1028 5.6360 1.00 

3.00 16.61010
* 

1.55

167 

.000 12.8413 20.3789 

1.00 -.76658 2.00

477 

1.000 -5.6360 4.1028 2.00 

3.00 15.84352
* 

1.85

189 

.000 11.3455 20.3415 

1.00 -

16.61010
* 

1.55

167 

.000 -20.3789 -12.8413 

AQ 

3.00 

2.00 -

15.84352
* 

1.85

189 

.000 -20.3415 -11.3455 

2.00 -1.99877 3.16482 1.000 -9.6867 5.6892 1.00 

3.00 -

22.26847
* 

2.45

723 

.000 -28.2375 -16.2994 

1.00 1.99877 3.16

482 

1.000 -5.6892 9.6867 2.00 

3.00 -

20.26970
* 

2.92

992 

.000 -27.3870 -13.1524 

1.00 22.26847
* 

2.45

723 

.000 16.2994 28.2375 

@EQ 

3.00 

2.00 20.26970
* 

2.92

992 

.000 13.1524 27.3870 
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Multiple Comparisons 

Bonferroni 

95% Confidence Interval 

Dependent 

Variable (I) GROUPS (J) GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

Lower 

Bound 

Upper 

Bound 

2.00 -.56532 3.36218 1.000 -8.7297 7.5990 

2.00 .19656 .57504 1.000 -1.2002 1.5933 1.00 

3.00 4.64067* .445

08 

.000 3.5596 5.7217 

1.00 -.19656 .575

04 

1.000 -1.5933 1.2002 2.00 

3.00 4.44411* .531

19 

.000 3.1539 5.7343 

1.00 -

4.64067* 

.445

08 

.000 -5.7217 -3.5596 

COMMUNICATI

ON 

3.00 

2.00 -

4.44411* 

.531

19 

.000 -5.7343 -3.1539 

2.00 .64251 .63564 .943 -.9014 2.1864 1.00 

3.00 4.57023* .491

97 

.000 3.3753 5.7652 

1.00 -.64251 .635

64 

.943 -2.1864 .9014 2.00 

3.00 3.92772* .587

16 

.000 2.5016 5.3539 

1.00 -

4.57023* 

.491

97 

.000 -5.7652 -3.3753 

SOCIAL 

3.00 

2.00 -

3.92772* 

.587

16 

.000 -5.3539 -2.5016 

2.00 -2.80405 1.77070 .348 -7.1038 1.4957 1.00 

3.00 -2.74258 1.40

777 

.161 -6.1611 .6759 

1.00 2.80405 1.77

070 

.348 -1.4957 7.1038 2.00 

3.00 .06148 1.62

789 

1.000 -3.8915 4.0145 

1.00 2.74258 1.40

777 

.161 -.6759 6.1611 

AGE 

3.00 

2.00 -.06148 1.62

789 

1.000 -4.0145 3.8915 

*. The mean difference is significant at the 0.05 level. 
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Table 6.3.5 Regression analysis for the long segment in the left hemisphere; showing significant differences in diffusion 
parameters at p < 0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; number 
of tracts and volume co-varied additionally for total number of streamlines or total brain volume. 
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Table 6.3.6 Regression analysis for the anterior segment in the left hemisphere; showing significant differences in 
diffusion parameters at p < 0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; 
number of tracts and volume co-varied additionally for total number of streamlines or total brain volume. 
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6.3.7 Regression analysis for the posterior left segment; showing significant differences in diffusion parameters at p < 
0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; number of tracts and 
volume co-varied additionally for total number of streamlines or total brain volume. 
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Table 6.3.8 Regression analysis for the long segment in the right hemisphere; showing significant differences in 
diffusion parameters at p < 0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; 
number of tracts and volume co-varied additionally for total number of streamlines or total brain volume. 
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Table 6.3.9 Regression analysis for the anterior segment in the right hemisphere; showing significant differences in 
diffusion parameters at p < 0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; 
number of tracts and volume co-varied additionally for total number of streamlines or total brain volume. 
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Table 6.3.10 Regression analysis for the posterior segment in the right hemisphere; showing significant differences in 
diffusion parameters at p < 0.05; all the measures were co-varied for centre; FA measures co-varied additionally for age; 
number of tracts and volume co-varied additionally for total number of streamlines or total brain volume. 
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Table 6.3.11  Significant positive correlations between diffusion measures of the three segments and AQ 

Communication scores 

                               

Table 6.3.12 Significant positive correlations between diffusion measures of the anterior and posterior left segments 

and AQ Social scores 

                                

Table 6.3.13 Significant negative correlations between diffusion measures of the three segments and EQ Empathy 

scores 
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Fig 6.3.14 Significant positive correlations between AQ Communication scores and mean diffusivity (MD) (r=.200, 
P=.030) and Dperp (r=.219, P=.017) of the LL (left long) segment 

 

 

 

 
 
Fig  6.3.15 Significant positive correlations between AQ Communication scores and mean diffusivity (MD) (r=.224, 
P=.014) and Dperp (r=.213, P=.020) of the AL (left anterior) segment 
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Fig 6.3.16  Significant positive correlation between AQ Communication scores and mean diffusivity (MD) (r=.211, 
P=.021) of the PL (left posterior) segment 
 

                             
Fig 6.3.17  Significant positive correlation between AQ Social scores and mean diffusivity (MD) (r=.182, P=.048) of the 
AL (left anterior) segment 

 

                                
Fig 6.3.18 Significant positive correlation between AQ Social scores and mean diffusivity (MD) (r=.189, P=.038) of the 
PL (left posterior) segment 
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Fig 6.3.19  Significant negative correlations between EQ (empathy) scores and mean diffusivity (MD) (r=-.221, P=.017) 
and Dperp (r=-.189, P=.041) of the LL (left long) segment 

 

 

Fig 6.3.20  Significant negative correlations between EQ (empathy) scores and mean diffusivity (MD) (r=-.228, P=.013) 
and Dperp (r=-.220, P=.017) of the AL (left anterior) segment 
 
 

 
 
Fig 6.3.21  Significant negative correlations between EQ (empathy) scores and left mean diffusivity (MD) (r=-.208, 
P=.023) (left table) and right MD (r=-.185, P=.045) (right table) of the posterior segment 
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