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Abstract. .

Abstract .

We determine the high energy asymptotic density of the eigenvalues of the scat-

tering matrix associated with the operators H0 = −∆ and H = (i∇ + A)2 + V (x),

where V : Rd → R is a smooth short-range real-valued electric potential and

A = (A1, . . . , Ad) : Rd → Rd is a smooth short-range magnetic vector-potential. Two

cases are considered. The first case is where the magnetic vector-potential is non-zero.

The spectral density of the associated scattering matrix in this case is expressed as an

integral solely in terms of the magnetic vector-potential A. The second case considered

is where the magnetic vector-potential is identically zero. Again the spectral density

of the scattering matrix is expressed as an integral, this time in terms of the poten-

tial V . These results share similar characteristics to results pertaining to semiclassical

asymptotics for pseudodifferential operators.
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SPECTRAL DENSITY OF THE SCATTERING MATRIX 1

1. Introduction

1.1. Introduction. We begin by discussing the Schrödinger operators H and H0 which

we shall consider throughout the remainder of this work. Firstly, let us define an

operator Ḣ0 = −∆ acting in L2(Rd) with domain C∞0 (Rd), where here and throughout

we shall assume that d ≥ 2. Then it is well known that the operator Ḣ0 is essentially

self-adjoint, that is, its closure in L2(Rd) is self-adjoint (see e.g. [4] Theorem 3.1.1). We

define

H0 = −∆

to be the closure of Ḣ0 in L2(Rd).

Next, we let Ḣ = (i∇+A)2 +V be the operator acting in L2(Rd) with domain C∞0 (Rd).

By V we denote the operator of multiplication by a real-valued electric potential V :

Rd → R such that V ∈ L∞(Rd). By A we denote the multiplication by a magnetic

vector-potential A(x) = (A1(x), . . . , Ad(x)) where Ai : Rd → R for all i = 1, . . . , d and

A ∈ L∞(Rd). Then again it is well known that the operator Ḣ is essentially self adjoint

(see e.g. [18] Section X.2), and we define

H = (i∇+ A)2 + V

to be the closure of Ḣ in L2(Rd).

Associated to the pair of operators H and H0 is an operator S(k) = S(k;H,H0) known

as the scattering matrix (at the energy k2 = λ > 0). Under certain assumptions

on the potential functions A and V , the scattering matrix is a unitary operator, and

further the difference S(k) − I is compact. We briefly discuss here two cases for the

potential functions which we shall revisit throughout this work. The first case is where

the magnetic vector-potential A is non-zero and V and A are infinitely differentiable

satisfying the estimates

(1.1) |∂αV (x)| ≤ Cα〈x〉−ρ−|α|, |∂αA(x)| ≤ Cα〈x〉−ρ−|α|, ρ > 1,

for all multi-indices α; here and throughout 〈x〉 = (1+|x|2)1/2. In this case the scattering

matrix is unitary and the difference S(k) − I is compact - a proof of this fact may be

found in [31] Proposition 6.2. The scattering matrix S(k) also depends continuously on

k. This point is discussed in Section 1.6.

The second case we consider is when A is identically zero. In this case we assume only

that V is continuous and satisfies the short-range condition

(1.2) |V (x)| ≤ C〈x〉−ρ, ρ > 1.

Again it is well known that the scattering matrix in this case is unitary, that the

difference S(k) − I is compact and further that S(k) depends continuously on k (see

e.g. [30] Theorem 1.8.1 for details). A simple corollary of the fact that the difference

S(k) − I is a compact operator is that the spectrum of the scattering matrix consists
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solely of eigenvalues of finite multiplicity (except possibly the point 1), which lie on the

unit circle and accumulate at the point 1. We label these eigenvalues as

(1.3) exp(iθn(k)), n ∈ N, θn(k) ∈ [−π, π).

The purpose of this study is to determine the asymptotic distribution of the eigenvalues

of the scattering matrix at high energy i.e. as k →∞.

The study of semiclassical asymptotics, and in particular those of the stationary

Schrödinger operator

−~2∆ + V (x)

(where ~ is a semiclassical parameter) is historically well established, with the earliest

results in this field dating back more than one hundred years. In the semiclassical limit,

i.e. as ~ becomes very small, one derives a correspondence between the purely quantum

objects, such as wave functions and eigenvalues, and the purely classical objects such

as the classical trajectories of the associated classical Hamiltonian Hclass = p2 + V (x).

Perhaps the most celebrated result in this area, due to H. Weyl [29], is as follows. Let Ω

be a bounded region in Rd. We define an operator ∆Ω
D, called the Dirichlet Laplacian,

as the unique self-adjoint operator on L2(Ω) whose quadratic form is the closure of the

form

q(f, g) =

∫
Ω

∇f · ∇gdx

with domain C∞0 (Rd) (by u we denote the complex conjugate of u). Let ND(Ω, ~)

denote the dimension of the range of the spectral projection P[0,1) for −~2∆Ω
D, that is

ND(Ω, ~) = dimP[0,1)(−~2∆Ω
D).

In other words, ND(Ω, ~) is an eigenvalue counting function for the operator −~2∆Ω
D.

Then Weyl’s result states that

lim
~→0

~dND(Ω, ~) = τd(2π)−d Vol Ω,

where τd denotes the volume of the unit ball in Rd and Vol Ω denotes the volume of

the set Ω. Let us discuss this result. To ease the notation, let us use the transform

m := ~−2, so instead we consider the asymptotics of the above result as m→∞. Then

the asymptotics of ND(Ω,m) as m→∞ is

ND(Ω,m) ∼ (τdm
d/2) Vol Ω/(2π)d.

Hence by informally considering ND(Ω,m) as the product of two volumes in Rd,

ND(Ω,m) is itself associated with a volume in R2d. Indeed, since (τdm
d/2) = Vol{p ∈

Rd : p2 < m}, it follows that

ND(Ω,m) ∼ Vol{(x, p) : x ∈ Ω, p2 < m}/(2π)d,
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that is (2π)dND(Ω,m) is asymptotic to the classical phase space volume of a particle

moving freely inside Ω with energy E ≤ m. This highlights the correspondence between

the purely quantum and purely classical objects in the semiclassical limit. Further, this

result agrees with the Bohr-Sommerfeld quantization condition, which states that each

quantum state is associated with a volume (2π~)d = (2πm−1/2)d in Rd. Weyl’s re-

sult has far-reaching consequences, for instance it is intrinsic in the famous uncertainty

principle. Weyl’s result is so well celebrated that results of a similar nature are termed

Weyl-type asymptotics.

The more general case of the semiclassical asymptotics of the eigenvalues of the

Schrödinger operator with V non-trivial have also been well studied for a multitude

of different potentials and in different spaces; see e.g. [10], [20] for many examples of

such results. We shall provide one such simple example here to further illustrate the

characteristics associated with results of this nature. Consider the Schrödinger operator

−~2∆ +V (x) acting in L2(Rd) and let us suppose that the function V (x) is continuous

with a compact support in Rd. We remark here that this result is true for a much

wider class of potential functions V , but we have chosen a simple example for illustra-

tive purposes. Let [a, b] ⊂ (−∞, 0) be an interval and define the eigenvalue counting

function

N([a, b]; ~) = dimP[a,b](−~2∆ + V (x)).

Then the semiclassical asymptotics of the eigenvalue counting function are given by

lim
~→0

~dN([a, b]; ~) = (2π)−d Vol Ωa,b,

where

Ωa,b = {(p, x) ∈ Rd × Rd : a ≤ p2 + V (x) ≤ b}.

Again here we see the same characteristics as in the previous result, that is the semi-

classical asymptotics of the counting function N([a, b]; ~) are associated with a classical

phase space volume and the number of quantum states is given by this volume divided

by (2π)d. The results we shall provide on the distribution of the eigenvalues of the

scattering matrix exhibit characteristics of a similar but not identical nature as the

those of the results just provided.

1.2. The purpose of this study. In this work, we shall study a similar class of

problems to those related to semiclassical asymptotics described in Section 1.1, but

for the spectrum of the scattering matrix S(k), which has been less well studied. We

shall in fact determine the asymptotic distribution of eigenvalues of the scattering ma-

trix S(k) as k → ∞ associated with the magnetic Schrödinger operators H0 = −∆,

H = (i∇ + A)2 + V (x), where V : Rd → R is a real-valued electric potential and

A = (A1, . . . , Ad) : Rd → Rd is a magnetic vector-potential. Our results, similarly to

those above, will be expressed in terms of explicit integrals of the potential functions,
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akin to the classical phase space volumes in the Weyl-type results.

We shall consider two main cases of the above problem. The first case is where the

magnetic vector-potential A is non-zero and V and A are infinitely differentiable satis-

fying the estimates (1.1) for all multi-indices α. Let us define the eigenvalue counting

measure for the scattering matrix S(k). We denote by arc(t1, t2) an arc on the unit

circle T of the form

(1.4) arc(t1, t2) = {eiφ : t1 < φ < t2}, (t1, t2) ⊂ (0, 2π), t1 < t2.

Then using the notation (1.3), we define the eigenvalue counting measure µk for S(k)

as

(1.5) µk(arc(t1, t2)) = #{n ∈ N : exp(iθn(k)) ∈ arc(t1, t2)}

where # denotes the number of elements in the set. We shall always count the eigen-

values with multiplicities. The weak limit of µk as k →∞ can be expressed in terms of

an explicit integral involving the magnetic vector-potential A as follows. Let ω ∈ Sd−1

and let Λω ⊂ Rd be the hyperplane passing through the origin and orthogonal to ω:

Λω = {x ∈ Rd : 〈x, ω〉 = 0}.

We equip both Sd−1 and Λω with the standard (d− 1)-dimensional Lebesgue measure.

We set

M(ω, ξ) =

∫ ∞
−∞
〈A(tω + ξ), ω〉dt, ω ∈ Sd−1, ξ ∈ Rd.

Let us note here that since A : Rd → Rd, the function M is a real-valued function. We

define a measure µm (here the m denotes magnetic) on T \ {1} by

µm(arc(t1, t2)) = (2π)1−d
∫

Sd−1

∫
Πω(t1,t2)

dξdω, 1 /∈ (t1, t2),

where

Πω(t1, t2) = {ξ ∈ Λω : eiM(ω,ξ) ∈ arc(t1, t2)}.

Then our result states that

k1−dµk → µm weakly as k →∞.

This result is stated in Section 1.6.

The second case we shall consider is when A is identically zero, that is H = −∆+V (x).

We now suppose that V is continuous and satisfies the short-range condition (1.2). In

this case, the associated scattering matrix S(k) satisfies the estimate

sup
k≥1

k‖S(k)− I‖ ≤ C(V ).

For a proof of the above estimate, see Lemma 3.3. As a consequence, we see that the

eigenvalues of S(k) are located on an arc of length O(k−1) around 1 as k grows large.
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This suggests the following rescaling of the problem: for any interval (t1, t2) ⊂ R \ {0}
separated away from zero, we set the eigenvalue counting measure µ̃k for S(k) by

(1.6) µ̃k((t1, t2)) = #{n ∈ N : kθn(k) ∈ (t1, t2)}.

The weak limit of µ̃k as k →∞ is again given in terms of an explicit integral but this

time depending on the electric potential V . We set

X(ω, ξ) = −1

2

∫ ∞
−∞

V (tω + ξ)dt

and define a measure µe (here the e denotes electric) on R \ {0} by

µe((t1, t2)) = (2π)1−d
∫

Sd−1

∫
Γω(t1,t2)

dξdω, 0 /∈ (t1, t2),

where

Γω(t1, t2) = {ξ ∈ Λω : X(ω, ξ) ∈ (t1, t2)}.

Then

k1−dµ̃k → µe weakly as k →∞.

This result is stated in Section 1.4.

We shall also consider an extension to the second case considered above. We shall study

the same problem but with a coupling constant α > 0, that is H0 = −∆, H = −∆+αV ,

where S(k) denotes the scattering matrix associated with these operators. We shall

impose the condition

(1.7) α = O(kδ), δ ∈ [0, 1), k →∞.

In fact this problem is a trivial extension of the problem mentioned above and simply

requires different scaling. We discuss this in Section 1.5. We do not look at the bor-

derline case δ = 1 in (1.7) in this work. However we believe a similar result for the case

δ = 1 to those stated above can be determined using the results [33] and [34] due to

Yafaev by utilising the methods of proof established for the above two main results.

1.3. Scattering theory. Scattering theory seeks to describe the results of collisions

and interactions of quantum particles after the particles have already diverged a long

way from one another and ceased to interact. We shall look at the particular case of

particles interacting with potential fields, in particular electric and magnetic potentials.

For the case of two particles interacting, one of them (usually the more massive of the

two) can be substituted by a potential field over which the other particle is scattered.

Scattering theory may be thought of as a branch of perturbation theory on the

absolutely continuous spectrum. We begin with a well understood ‘unperturbed’ self

adjoint operator H0 acting in a Hilbert space H, which we use to draw conclusions

about a more complicated operator H (acting in the same space H), given that H and

H0 differ from one another in a certain sense depending on the particular problem. In
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a physical description, the operator H0 is the ‘free’ Hamiltonian describing a system

of non-interacting particles, whereas the full Hamiltonian H describes the ‘full’ system

including all interactions.

In particular, scattering theory concerns itself with solving two related problems.

The first of these is understanding the long-time behaviour of solutions of the time

dependent Schrödinger equation

(1.8) i
∂u

∂t
= Hu, u(0) = f,

based on solutions of the time dependent ‘free’ Schrödinger equation

(1.9) i
∂u0

∂t
= H0u0.

The second problem is to determine conditions for the unitary equivalence of the ab-

solutely continuous parts of the operators H and H0. Clearly, (1.8) has the unique

solution

u(t) = exp(−iHt)f.

Under certain assumptions on the perturbation V = H −H0, for every f orthogonal to

eigenvectors of H, there is a vector f±0 orthogonal to eigenvectors of H0 such that

lim
t→±∞

‖u(t)− u0(t)‖ = 0

if u0(0) = f±0 (here and throughout, the use of ± refers to two separate identities). For

more detail on this point, see for example [30]. In this case, we say that u(t) has free

asymptotics as t → ±∞. Since from (1.9), u0(t) = exp(−iH0t)f
±
0 , using the previous

formula we are led to the following relationship between the inital data f and f±0 :

f = lim
t→±∞

exp(iHt) exp(−iH0t)f
±
0 .

This motivates the following definition of the wave operators. The definition originated

in the physics literature and was defined by Heisenberg and others; we state here the

definition given by K .Friedrichs in [11].

Definition 1.1. For a pair of self adjoint operators H and H0, the wave operators W±

are defined by

W± = W±(H,H0) = s-lim
t→±∞

exp(iHt) exp(−iH0t)P (H0)

provided the corresponding strong limit (s-lim) exists. Here P (H0) represents the or-

thogonal projection onto the absolutely continuous subspace Hac
0 of the operator H0.

The wave operators are automatically isometric on Hac
0 , and satisfy the intertwining

property HW± = W±H0 (see e.g. [4] Section 4.1 for a proof of this result). Thus the

range of the wave operators RanW± is contained in the absolutely continuous subspace

Hac of the operator H. This motivates the following definition.
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Definition 1.2. The wave operators W±(H,H0) are said to be complete if

RanW+ = RanW− = Hac.

It can easily be shown that the completeness of the wave operators W±(H,H0) is

equivalent to the existence of the wave operators W±(H0, H). We provide a proof of

this claim shortly, which is based on the following chain rule for the wave operators (for

a proof see e.g. [4] Proposition 4.1.9)

Proposition. Let H1, H2, H3 be self-adjoint operators. If W±(H2, H1) and W±(H3, H2)

exist, then so does the operator W±(H3, H1) and

W±(H3, H1) = W±(H3, H2)W±(H2, H1).

Let us now prove the above claim. We do this only for the + sign wave operators, it

being trivial to replicate the proof for the − sign wave operators. First suppose that

both W+(H,H0) and W+(H0, H) exist. Note that by the chain rule,

P (H) = W+(H,H) = W+(H,H0)W+(H0, H)

where P (H) represents the orthogonal projection onto the absolutely continuous sub-

space Hac of the operator H. Then for ψ ∈ Hac,

P (H)ψ = W+(H,H0)(W+(H0, H)ψ)

and hence Hac ⊂ RanW+(H,H0) so that W+(H,H0) is complete.

Now suppose that W+(H,H0) is complete. Let ψ ∈ Hac, then there exists some φ ∈ Hac
0

such that W+(H,H0)φ = ψ. Hence

lim
t→∞
‖eitHe−itH0φ− ψ‖ = 0,

and since eitHe−itH0 is a unitary operator it follows that

lim
t→∞
‖φ− eitH0e−itHψ‖ = 0.

This is sufficient to conclude that W+(H,H0) exists, and by repeating the above for the

wave operator W−(H,H0), the above claim is proved. �

Consequently, if W±(H,H0) exist and are complete, then the absolutely continuous

parts of the operators H and H0 are unitarily equivalent.

Let us now describe the existence and completeness of wave operators for the two

specific cases we shall study. The first result is due to T. Kato [13].

Proposition 1.3. Let H0 = −∆ and let H = −∆ + V be the Schrödinger operators

acting in L2(Rd), d ≥ 2. Suppose that V is the operator of multiplication by a real-

valued potential which satisfies the short-range condition (1.2). Then the wave operators

W±(H,H0) exist and are complete.

The second result is well-known (see e.g. [30] Theorem 1.10.2).
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Proposition 1.4. Let H0 = −∆ and let H = (i∇ + A)2 + V (x) be the Schrödinger

operators acting in L2(Rd), where A = (A1, . . . , Ad) : Rd → Rd is a magnetic vector-

potential and V : Rd → R is a real-valued electric potential. Suppose that the functions

V , A satisfy the short-range condition (1.2). Then the wave operators W±(H,H0) exist

and are complete.

Via the wave operators, we define another important object in scattering theory

called the scattering operator. The scattering operator is defined as

S = S(H,H0) = W ∗
+W−.

The above operator connects the ‘free’ asymptotics of a quantum system as t → ±∞,

as seen from the relation

Sf−0 = f+
0 .

Thus the scattering operator allows us to consider complicated interactions by un-

derstanding the ‘initial’ and ‘final’ characteristics of the simpler free problem. For

perturbations V satisfying the short-range condition (1.2), the scattering operator S is

unitary in H = L2(Rd), d ≥ 2, and the commutation relation

(1.10) SH0 = H0S

holds (see e.g. [4] Proposition 4.1.7). We now discuss the standard spectral represen-

tation of the self-adjoint operator H0 in the space h = L2(R+;L2(Sd−1)), which is the

direct integral of identical spaces L2(Sd−1) enumerated by the numbers k2 = λ > 0. We

define a unitary operator Γ0 : H → h by

(1.11) (Γ0u)(k;ω) = 2−1/2k
d−2
2 û(kω), u ∈ C∞0 (Rd), ω ∈ Sd−1,

where we understand (Γ0u)(k;ω) as a function of k with values in L2(Sd−1) and where

û is the usual (unitary) Fourier transform of u, that is

û(ξ) = (2π)−
d
2

∫
Rd
e−i〈ξ,x〉u(x)dx, ξ ∈ Rd.

It is clear that we have the following diagonalisation of the operator H0;

(Γ0H0u)(k;ω) = k2(Γ0u)(k;ω), ∀u ∈ C∞0 (Rd).

The commutation relation (1.10) implies that Γ0(k) also diagonalises the scattering

operator S, i.e.

(Γ0Su)(k;ω) = S̃(Γ0u)(k;ω)

where S̃ is the operator of multiplication by the scattering matrix S(k) in the space

h = L2(R+;L2(Sd−1)).

We end this section by introducing the stationary representation of the scattering matrix

(for more details see Section 3 and e.g. [30] Section 8.1). Let the potential V satisfy
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the short range estimate (1.2). We shall factorize V as

V = 〈x〉−ρ/2J〈x〉−ρ/2

where J = J(ρ) is the bounded operator of multiplication by 〈x〉ρV (x). By T (z) we

denote the sandwiched resolvent operator

T (z) = 〈x〉−ρ/2(H − zI)−1〈x〉−ρ/2, Im z > 0.

Next, for k > 0 and ρ > 1 we define an operator Γρ(k) : L2(Rd)→ L2(Sd−1) by

(Γρ(k)u)(ω) = (Γ0(〈x〉−ρ/2u))(k;ω), u ∈ C∞0 (Rd), ω ∈ Sd−1,

where Γ0 is defined in (1.11). Then the scattering matrix S(k) may be expressed in the

stationary representation as

S(k)− I = −2πiΓρ(k)[J − JT (k2 + i0)J ]Γρ(k)∗.

Let us denote the resolvent operators of H and H0 by

R(z) = (H − zI)−1, R0(z) = (H0 − zI)−1, Im z > 0.

Then as a result of the resolvent identity

R(z) = R0(z)−R0(z)V R(z) = R0(z)−R(z)V R0(z), Im z > 0,

and the estimate (3.3), it may be shown the scattering matrix can be written as the

following asymptotic expansion (the Born expansion):

S(k)− I = −2πi
N∑
n=0

(−1)nΓρ(k)[JT0(k2 + i0)]nJΓρ(k)∗ +GN(k)

where for any N ∈ N, the operator GN(k) satisfies

‖GN(k)‖ = O(k−N+2), k →∞.

The first term of this expansion i.e.

(1.12) SB(k) := −2πiΓρ(k)JΓρ(k)∗

is referred to as the Born approximation to the scattering matrix.

1.4. The case of an electric potential. Let H0 = −∆ and let H = −∆ + V be the

Schrödinger operators in L2(Rd), d ≥ 2, where V is the operator of multiplication by a

continuous real-valued potential V : Rd → R, which satisfies the short-range condition

(1.2). By S(k) we denote the scattering matrix associated with the operators H and

H0. The scattering matrix S(k) is continuous in k as are the scattering phases θn(k)

defined in (1.3). Let us now explain the definition of the eigenvalue counting measure

µ̃k for S(k), as defined in (1.6) (some of the material which follows was introduced in

Section 1.2 but we shall restate it here for completeness).
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We begin by recalling the estimate (see Lemma 3.3)

(1.13) ‖S(k)− I‖ = O(k−1), k →∞.

This estimate is sharp, i.e. O(k−1) cannot be replaced by o(k−1); this can be seen by

considering the case of a spherically symmetric potential and using the separation of

variables. Thus, the spectrum of the scattering matrix S(k) for large k consists of a

cluster of eigenvalues located on an arc of length O(k−1) around 1. This explains the

scaling by k in the definition of µ̃k, and also why the measure is defined on the real-line

as opposed to the seemingly more natural domain of definition T.

We now describe the weak limit of µ̃k as k → ∞ as follows. For any ω ∈ Sd−1,

let Λω ⊂ Rd denote the hyperplane passing through the origin and orthogonal to ω.

We equip both Sd−1 and Λω with the standard (d − 1)-dimensional Lebesgue measure

(=Euclidean area). We set

(1.14) X(ω, ξ) = −1

2

∫ ∞
−∞

V (tω + ξ)dt, ω ∈ Sd−1, ξ ∈ Λω.

The function X (up to a multiplicative factor) is known as the X-ray transform of

V in the inverse problem literature. The following elementary estimate is a direct

consequence of (1.2):

(1.15) |X(ω, ξ)| ≤ C(V )(1 + |ξ|)1−ρ, ω ∈ Sd−1, ξ ∈ Λω,

with some constant C(V ). Let us prove (1.15). Let us begin by writing

X(ω, ξ) = −1

2

∫ ∞
−∞

V (tω + ξ)〈tω + ξ〉ρ〈tω + ξ〉−ρdt, ρ > 1.

Note that from the estimate (1.2) we obtain

max
x∈Rd
|V (x)〈x〉ρ| < +∞,

and hence

(1.16) |X(ω, ξ)| ≤
(

max
x∈Rd
|V (x)〈x〉ρ|

)∫ ∞
−∞
〈tω + ξ〉−ρdt.

Using the estimate

〈x〉−ρ ≤ C(1 + |x|)−ρ, ρ > 1,

together with the Pythagorean identity for orthogonal vectors

‖x+ y‖2 = ‖x‖2 + ‖y‖2, 〈x, y〉 = 0,

we easily see that the right hand side of (1.16) can be estimated above by

C(V )

∫ ∞
0

(t+ (1 + |ξ|))−ρdt.
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Evaluating the above integral shows that

|X(ω, ξ)| ≤ C(V )(1 + |ξ|)1−ρ,

as required.

We define a measure µe on R \ {0} by

(1.17) µe((t1, t2)) = (2π)1−d
∫

Sd−1

∫
Γω(t1,t2)

dξdω, 0 /∈ (t1, t2),

where

Γω(t1, t2) = {ξ ∈ Λω : X(ω, ξ) ∈ (t1, t2)}.

By the boundedness of V , the measure µe has a compact support. The measure µe need

not be absolutely continuous. The measure µe may be weakly singular at zero in the

following sense: µe((0,∞)) or µe((−∞, 0)) may be infinite, but, by the estimate (1.15)

we have

(1.18)

∫ ∞
−∞
|t|`dµe(t) <∞, ∀` > (d− 1)/(ρ− 1).

Indeed, the left hand side of (1.18) can be written as∫
Sd−1

∫
Λω

|X(ω, ξ)|`dξdω, ω ∈ Sd−1, ξ ∈ Λω,

which is finite by the estimate (1.15) for all ` > (d− 1)/(ρ− 1).

The main result of this section is as follows:

Theorem 1.5. Let V : Rd → R be a continuous potential satisfying the short-range

condition (1.2). Then for the measures µ̃k and µe defined in (1.6) and (1.17) respec-

tively,

(1.19) k1−dµ̃k → µe weakly as k →∞.

More explicitly, we may state (1.19) as follows: for any test function ϕ ∈ C∞0 (R\{0}),

lim
k→∞

k1−d
∫ ∞
−∞

ϕ(t)dµ̃k(t) =

∫ ∞
−∞

ϕ(t)dµe(t).

Remark 1.6. In the paper [5], the case of potentials with the power asymptotics at

infinity of the type

V (x) = v(x/|x|)|x|−ρ(1 + o(1)), |x| → ∞, ρ > 1,

was considered. It is assumed that the potential V ∈ L∞(Rd) and v ∈ C∞(Sd−1). Using

the notation µ̃k, µ
e, the result of [5] can be written as

k1−dµ̃k((ε,∞)) ∼ µe((ε,∞)),

k1−dµ̃k((−∞,−ε)) ∼ µe((−∞,−ε))
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when k > 0 is fixed and ε→ +0. Here a ∼ b means a
b
→ 1. In other words, the above

result determines the asymptotic distribution of the scattering phases θn(k) as n→∞
with k fixed. In the paper [5], their result was also determined by considering asymp-

totics of a pseudodifferential operator but in a different asymptotic regime. Clearly

the result (1.19) is expressed by the same formula as above. However, since uniform

asymptotics of pseudodifferential operators are not available, neither our result nor the

result of [5] is uniform in the other variable (n or k) and so neither implies the other.

Remark 1.7 (Semiclassical interpretation). By the definition of the scattering operator

S, for any ψ ∈ L2(Rd) we have

i((S−I)ψ, ψ) = i lim
t→∞

((e−2itHeitH0ψ, e−itH0ψ)−‖ψ‖2) = i

∫ ∞
0

d

dt
(e−2itHeitH0ψ, e−itH0ψ)dt

=

∫ ∞
0

(V e−2itHeitH0ψ, e−itH0ψ)dt+

∫ ∞
0

(V eitH0ψ, e2itHe−itH0ψ)dt.

Recall that the potential function V satisfies the short-range estimate (1.2). Therefore

if ψ corresponds to large energies, the significant contribution to the total energy is

determined by the kinetic energy. In terms of our operators, this means that the

operator H0 dominates the potential energy given by V (x), at least in quadratic form

terms. As a consequence of this and recalling H = H0 + V , the right hand side of the

above can be approximated by the first term in its expansion in powers of V . This

means that we can replace eitH by eitH0 in the above expressions, and so

(1.20) i((S− I)ψ, ψ) ≈
∫ ∞
−∞

(V e−itH0ψ, e−itH0ψ)dt, ψ ∈ L2(Rd),

which is exactly the Born approximation (1.12) in the time-dependent picture.

In order to write down the classical analogue of the right hand side of (1.20), as-

sume that ψ is concentrated near x in the coordinate representation and near p in the

momentum representation. Then ψ represents a particle with the coordinate x and

momentum p, and in the same way e−itH0ψ represents a particle with the coordinate

x+ 2pt and momentum p. Thus, the classical analogue of the right hand side of (1.20)

is ∫ ∞
−∞

V (x+ 2pt)dt =
1

2|p|

∫ ∞
−∞

V (x+ ωt′)dt′, (x, p) ∈ Rd × Rd,

where ω = p
|p| ∈ Sd−1. Note that the above is an integral over the free dynamics. This

calculation explains the appearance of the X-ray transform in the spectral asymptotics

of S(k).

1.5. The case of a coupling constant. Let H0 = −∆ and let H = −∆ + αV be

the Schrödinger operators in L2(Rd), d ≥ 2 where V : Rd → R is a continuous electric

potential satisfying the short-range condition (1.2) and α > 0 is a coupling constant.

By S(k) we denote the scattering matrix associated with the operators H and H0. We
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impose upon the coupling constant α the condition

(1.21) α = O(kδ), δ ∈ [0, 1), k →∞.

The problem constitutes a trivial extension of Theorem 1.5. Similarly to the estimate

(1.13), we have

(1.22) ‖S(k)− I‖ = O(kα−1), α = O(kδ), δ ∈ [0, 1), k →∞.

A proof of this estimate may be found in Lemma 3.3. The estimate (1.22) motivates

the following definition of the eigenvalue counting measure µ̃k:

(1.23) µ̃k((t1, t2)) = #{n ∈ N : (kα−1)θn(k) ∈ (t1, t2)}.

The weak limit of µ̃k is given in the following result.

Theorem 1.8. Let V : Rd → R be a continuous electric potential satisfying the short-

range condition (1.2) and let the coupling constant α = O(kδ), δ ∈ [0, 1) as k → ∞.

Then for the measures µ̃k and µe defined in (1.23) and (1.17) respectively,

(1.24) k1−dµ̃k → µe weakly as k →∞.

1.6. The case of a magnetic potential. Let H0 = −∆ and let H = (i∇+ A)2 + V

be the Schrödinger operators in L2(Rd), d ≥ 2. Here V : Rd → R is an electric potential

and A = (A1, . . . , Ad) : Rd → Rd is a magnetic vector-potential. We assume that both

V and A are infinitely differentiable and satisfy the estimates (1.1) for all multi-indices

α. By S(k) we denote the scattering matrix associated with the operators H and H0.

As mentioned in Section 1.1, the operator S(k) is unitary and the difference S(k) − I
is compact. Further, the scattering matrix S(k) depends continuously on k. In order

to see this, we note that in the work [12], the absence of positive eigenvalues for the

operator H = (i∇+A)2 +V is established, where A and V need only satisfy the short-

range condition (1.2) with A ∈ C1(Rd) and V ∈ C(Rd). Using this fact and following

the scheme set out in [30] Theorem 1.8.1 and its preceding discussion, in this case one

can determine the continuity of the scattering matrix in the variable k.

Let us briefly remark here that the scattering matrix S(k) is gauge invariant in the

following sense. Let A be a magnetic vector-potential which is differentiable and satisfies

the short-range condition

|A(x)| ≤ C〈x〉−ρ, ρ > 1.

We define a function

(1.25) Ã(x) = A(x) +∇φ(x)

where φ(x) ∈ C1(Rd) satisfies the estimate

(1.26) lim
|x|→∞

|∇φ(x)| = 0.
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Then the scattering matrix S̃(k) associated with the pair H̃ = (i∇+Ã)2+V , H0 = −∆,

coincides with S(k). See [21, 32] for further details.

We now describe the weak limit of the eigenvalue counting measure µk for S(k) as

defined in (1.5). We set

(1.27) M(ω, ξ) =

∫ ∞
−∞
〈A(tω + ξ), ω〉dt, ω ∈ Sd−1, ξ ∈ Λω,

where Λω denotes the hyperplane passing through the origin and orthogonal to ω as

before. Note that it is easily seen that M is gauge invariant under the gauge transfor-

mations of the class (1.25) where φ satisfies (1.26). Indeed, we need only show∫ ∞
−∞
〈∇φ(tω + ξ), ω〉dt = 0, ω ∈ Sd−1, ξ ∈ Λω.

By definition,∫ ∞
−∞
〈∇φ(tω + ξ), ω〉dt =

∫ ∞
−∞

[
d

dt
φ(tω + ξ) +

〈
ξ̂
∂

∂ξ
φ(tω + ξ), ω

〉]
dt,

where ξ̂ = ξ|ξ|−1. Then since 〈ξ̂, ω〉 = 0,∫ ∞
−∞
〈∇φ(tω + ξ), ω〉dt = lim

T→+∞
[φ(Tω + ξ)− φ(−Tω + ξ)] = 0

as required.

The following elementary estimate is a direct consequence of (1.1):

(1.28) |M(ω, ξ)| ≤ C(A)(1 + |ξ|)1−ρ, ω ∈ Sd−1, ξ ∈ Λω.

The estimate (1.28) is derived in an almost identical way to that of (1.15). Using the

notation (1.4), let us define a measure µm on T \ {1} by

(1.29) µm(arc(t1, t2)) = (2π)1−d
∫

Sd−1

∫
Πω(t1,t2)

dξdω, 1 /∈ arc(t1, t2),

where

Πω(t1, t2) = {ξ ∈ Λω : eiM(ω,ξ) ∈ arc(t1, t2)}.

The measure µm may be weakly singular at the point z = 1 in the following sense:

µm(T \ {1}) may be infinite, but by the estimate (1.28) we have

(1.30)

∫
T
|z − 1|`dµm(z) < +∞, ∀` > (d− 1)/(ρ− 1).

The main result of this section is as follows:

Theorem 1.9. Let V : Rd → R and let A : Rd → Rd both be infinitely differentiable

and satisfy the estimates (1.1). Then for the measures µk and µm defined in (1.5) and

(1.29) respectively,

(1.31) k1−dµk → µm weakly as k →∞.
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More explicitly, the result (1.31) may be expressed as follows: for any ϕ ∈ C∞(T\{1})
that vanishes in a neighbourhood of the point 1,

lim
k→∞

k1−d Trϕ(S(k)) = (2π)1−d
∫

Sd−1

∫
Λω

ϕ(eiM(ω,ξ))dξdω.

In fact, Theorem 1.9 holds true for a wider class of functions than mentioned above.

For example, by following the proof, it is easy to see that Theorem 1.9 holds true for

any function ϕ ∈ C(T) such that ϕ(z)|z − 1|−`0 is continuous, where `0 is the smallest

even integer greater than (d− 1)/m, m = min{1, ρ− 1}.

Remark 1.10. Our main interest for Theorem 1.9 is in the cases d = 2, 3. In dimension

d = 3, a magnetic vector-potential A satisfying (1.1) can be constructed for any smooth

magnetic field B : R3 → R3 (B = curlA) such that divB = 0 and

(1.32) |∂αB(x)| ≤ Cα〈x〉−ρ−1−|α|, ρ > 1.

Let us provide details of one such construction (see e.g. [32] for details). Firstly we

define a magnetic vector-potential Atr(x) = (Atr
1 (x), Atr

2 (x), Atr
3 (x)) which satisfies the

short range condition

|Atr(x)| ≤ C〈x〉−ρ, ρ > 1,

and the transversal gauge condition

〈Atr(x), x〉 = 0.

This is defined by the formula

Atr
1 (x) =

∫ 1

0

(B2(sx)x3 −B3(sx)x2)sds

and the components Atr
2 and Atr

3 are defined by cyclic permutations of the above. For

a magnetic field satisfying (1.32), then Atr(x) admits the representation

Atr(x) = A∞(x) + Areg(x)

where A∞(x) = (A∞1 (x), A∞2 (x), A∞3 (x)), Areg(x) = (Areg
1 (x), Areg

2 (x), Areg
3 (x)) and

A∞1 (x) = |x|−2

∫ ∞
0

(B2(sx̂)x3 −B3(sx̂)x2)sds,

Areg
1 (x) = −|x|−2

∫ ∞
|x|

(B2(sx̂)x3 −B3(sx̂)x2)sds.

Again the remaining components of A∞(x) and Areg(x) are obtained by cyclic permu-

tations of the above formulae. Then A∞(x) is a homogeneous function of degree −1

which satisfies the following two equations:

curlA∞(x) = 0,

〈A∞(x), x〉 = 0.
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The function Areg(x) satisfies the short-range condition

|Areg(x)| ≤ C〈x〉−ρ, ρ > 1.

Given a magnetic field B as defined above, we now construct a magnetic vector-potential

A(x) satisfying (1.1). Define the function U(x) for x 6= 0 as the curvilinear integral

(1.33) U(x) =

∫
Γx0,x

〈A∞(y), dy〉

taken between some fixed point x0 6= 0 and x, where Γx0,x is a contour which does not

contain 0. Clearly

A∞(x) = gradU(x)

and further it can be shown that U(x) is homogeneous of degree 1. Now choose R2 >

R1 > 0 and a function η ∈ C∞(R3) such that η(x) = 1 for |x| ≥ R2 and η(x) = 0 for

|x| ≤ R1. Then A(x) is constructed as

A(x) = Atr(x)− grad(η(x)U(x))

which satisfies (1.1) as required.

In dimension d = 2, if the magnetic field B satisfying the estimates (1.32) in addition

satisfies the zero flux condition

(1.34) Φ =

∫
R2

B(x)dx = 0, B(x) =
∂A2

∂x1

− ∂A1

∂x2

,

then a magnetic vector-potential A(x) satisfying the estimate (1.1) can be constructed

in the same way as above. The necessity for the zero flux condition for dimension d = 2

is to ensure U(x) in (1.33) does not depend on the choice of contour between x0 and

x. Let B : R2 → R be given which satisfies the estimates (1.32) but the flux Φ 6= 0.

Then any magnetic vector potential A(x) for this field will necessarily fail to be short-

range (i.e. (1.1) fails) but one can construct A(x) with the behaviour A(x) ∼ |x|−1 as

|x| → ∞ (here a ∼ b means a
b
→ 1). In this case scattering theory for the operators

H0 and H can still be constructed, but the difference S(k) − I will not be compact,

see [32] for a detailed discussion and a description of the essential spectrum of S(k). A

particularly well known example of this is the Aharonov-Bohm effect [2]. Thus, in this

case the eigenvalue counting measure (1.5) cannot even be defined and the question of

the spectral asymptotics of the scattering matrix cannot be approached in the same

way as above.

1.7. The method of proof. The proofs of all the results stated above follow a similar

general structure, which we shall outline here. The specifics of each proof we shall

introduce and explain further in the relevant chapters later in the text.

To begin, we note that it is known (see [1]) that off the diagonal ω = ω′, the integral

kernel s(ω, ω′; k) of the scattering matrix is a C∞ smooth function of ω, ω′ ∈ Sd−1 and
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it tends to zero faster than any power of k−1 as k → ∞. Thus, it suffices to describe

the structure of s(ω, ω′; k) in a neighbourhood of the diagonal ω = ω′.

Using this fact, we reduce the scattering matrix to a semiclassical pseudodifferential

operator (ΨDO) Opk−1 [σ] on the sphere in the form (2.1), with semiclassical parameter

h = k−1. The method used to do this is different for each case considered. For The-

orem 1.8 (of which Theorem 1.5 is a special case), we use the Born approximation to

the scattering matrix. For Theorem 1.9, we use an approximation obtained by Yafaev

in [31], which is derived from the eikonal approximation to solutions of the Schrödinger

equation. We remark here that when A ≡ 0, the first term of the eikonal approximation

becomes the Born approximation.

Using the ΨDO calculus (given in Section 2), we compute Tr(Opk−1 [σ])` (and similar

objects involving adjoints) for natural numbers `. This is extended to calculate the

asymptotics as k →∞ of Tr(S(k)− I)`1(S(k)∗ − I)`2 for natural numbers `1, `2. Then

the results follow in each case by an application of the Weierstrass approximation the-

orem.

We note here that we provide an alternate proof of Theorem 1.5 using the eikonal

approximation. Note that when the magnetic vector-potential A in Theorem 1.9 is

identically zero, the Schrödinger operators (and hence the associated scattering matri-

ces) in Theorems 1.5 and 1.9 are identical. Using this method, we are able to work

directly with the scattering matrix as opposed to the Born approximation. By rescal-

ing by the parameter k, as in Theorem 1.5, we are able to obtain the same spectral

asymptotics as provided by the result (1.19).

We note here that the result Theorem 1.5 appeared in [7], and Theorem 1.9 in [8].

1.8. Overview of related results. The limiting measures µe and µm (defined in (1.17)

and (1.29) respectively) of the corresponding eigenvalue counting measures arise via in-

tegration over straight lines, that is over the trajectories of the free dynamics. Let us

now mention some other works with similar characteristics. The classical result [28] by

A. Weinstein concerns the Schrödinger operator for the Laplace-Beltrami operator on

a compact Riemannian manifold with a smooth potential V . In the unperturbed case

where the Riemannian manifold is chosen to be the unit sphere Sd−1, the spectrum of

the Laplace-Beltrami operator consists solely of eigenvalues, and the pth eigenvalue is

of the form p(p + d − 1) with multiplicities growing as a polynomial of order d − 1 in

p. Due to the presence of the potential V , the eigenvalues of the ‘full’ operator form

clusters. Weinstein determined the asymptotic distribution of the eigenvalues in these

clusters which is expressed as an integral over trajectories of the free dynamics of the

bicharacteristic flow. The proof relied on the use of pseudodifferential operators on the

Riemannian manifold.

More recent work in this area includes [26], [27] and [16]. In particular, the work [16]

by A. Pushnitski, G. Raikov and C. Villegas-Blas describes the asymptotic density of
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eigenvalue clusters for the perturbed Landau Hamiltonian with a perturbation V satis-

fying the same conditions as the perturbation V of Theorem 1.5. The limiting density

obtained in this work is expressed in terms of the X-ray transform of V (1.14). Their

proof in part relies on the consideration of the asymptotics of a related pseudodiffer-

ential operator, similar in structure to that of the Born approximation. The proof of

Theorem 1.5 is inspired by the method of proof used in [16].

1.9. List of common notation. Here we summarise the common notation that we

use.

C∞0 (Rd) – the set of smooth scalar valued functions with a compact support in Rd.

C(Rd) – the set of continuous scalar valued functions on Rd.

Lp(Rd) – the set of measurable functions f : Rd → C such that

‖f‖pLp =

∫
Rd
|f |pdx < +∞.

L∞(Rd) – the set of measurable functions f : Rd → C such that

‖f‖L∞ = ess-sup |f | < +∞,

where ess-sup f denotes the essential supremum of f .

‖ · ‖` – the usual Schatten `-norm as described in Appendix A.

TrA – the trace of a trace class operator A as described in Appendix A.

ImA – for a bounded linear operator A,

ImA =
A− A∗

2i
.

ReA – for a bounded linear operator A,

ReA =
A+ A∗

2
.

〈x〉 – for x ∈ Rd, 〈x〉 = (1 + |x|2)
1
2 .
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2. Semiclassical pseudodifferential operators on the sphere

For every ω ∈ Sd−1, we identify the cotangent space T ∗ωSd−1 with the plane Λω =

{x ∈ Rd : 〈x, ω〉 = 0} in a standard way via the inner product in Rd. For a symbol

σ ∈ C∞0 (T ∗Sd−1) and a semiclassical parameter h ∈ (0, 1), the semiclassical ΨDO

Oph[σ] in L2(Sd−1) is defined via its integral kernel

(2.1) Oph[σ](ω, ω′) = (2πh)−d+1

∫
Λω

e−i〈ω−ω
′,ξ〉/hσ(ω, ξ)dξ,

where ω, ω′ ∈ Sd−1. This definition can be extended in a standard way to symbols σ

satisfying

(2.2) |∂αξ ∂βωσ(ω, ξ)| ≤ Cαβ〈ξ〉m−|α|, ω ∈ Sd−1, ξ ∈ Λω,

for some m ∈ R and all multi-indices α, β. For all m ≤ 0, the operator Oph[σ] is

bounded (cf. [23]). We will only be interested in the case m < 0, and by the Calderon-

Villancourt theorem (see e.g. [25]) combined with a scaling argument, we obtain the

estimate

(2.3) sup
0<h<1

‖Oph[σ]‖ ≤ C(σ).

Remark 2.1. If σ satisfies (2.2) with m < −(d − 1), then (see e.g. [23, 10]) Oph[σ]

is trace class and its trace can be computed by integrating the kernel (2.1) over the

diagonal:

(2.4) Tr(Oph[σ]) = (2πh)−d+1

∫
Sd−1

∫
Λω

σ(ω, ξ)dξdω.

Further, there exist constants C and N such that we have the following estimate on

the trace class norm

(2.5) ‖Oph[σ]‖1 ≤ C
∑

|α+β|≤N

∫
|∂αx∂βωσ(ω, ξ)|dξdω.

Then it follows by using abstract interpolation (see e.g.[18] Section IX.4) on the esti-

mates (2.3) and (2.5) that if σ satisfies (2.2) with m < −d−1
p

, then Oph[σ] belongs to

the Schatten class Sp and

(2.6) ‖Oph[σ]‖p ≤ Ch−(d−1)/p, h ∈ (0, 1).

We will also be interested in symbols which depend on h. For m < 0, let Sm(T ∗Sd−1)

be the class of C∞-smooth symbols σ = σ(ω, ξ, h), h ∈ (0, 1), satisfying the estimate

(2.2) uniformly in h ∈ (0, 1) for all multi-indices α, β. We will need a standard state-

ment about the leading term spectral asymptotics of a semiclassical ΨDO. We provide

two propositions here without proof - their proofs may be found in Appendix C. The

first proposition we provide is simply a variant of the composition formula for pseudo-

differential operators (see e.g.[23] Theorem 23.6).
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Proposition 2.2. Let a ∈ Sm(T ∗Sd−1), b ∈ Sk(T ∗Sd−1), m < 0, k < 0, and let p ≥ 1

be such that m+ k < −d−1
p

. Then

‖Oph[a] Oph[b]−Oph[ab]‖p = O(h−
d−1
p

+1), h→ +0.

Proposition 2.3. Let a ∈ Sm(T ∗Sd−1), m < 0, and let p ≥ 1 be such that m < −d−1
p

.

Then

‖(Oph[a])∗ −Oph[ā]‖p = O(h−
d−1
p

+1), h→ +0.

Proposition 2.4. Let σ ∈ Sm(T ∗Sd−1), m < 0, and let `1, `2, be two non-negative

integers such that m < − d−1
`1+`2

. Then (Oph[σ])`1
(
(Oph[σ])∗

)`2 belongs to the trace class

and

Tr
(
(Oph[σ])`1

(
( Oph[σ])∗

)`2) =

(2πh)−d+1

∫
Sd−1

∫
Λω

σ0(ω, ξ)`1σ0(ω, ξ)`2dξdω +O(h−d+2), h→ +0.

(2.7)

Proof. Let ` = `1 + `2. By Proposition 2.3,

‖(Oph[σ])∗ −Oph[σ̄]‖` = O(h−
d−1
`

+1), h→ +0.

Next, by Proposition 2.2,

‖(Oph[σ])2 −Oph[σ̄
2]‖`/2 = O(h−

2(d−1)
`

+1), h→ +0,

and by repeating this process we obtain

‖(Oph[σ])j −Oph[σ̄
j]‖`/j = O(h−

j(d−1)
`

+1), h→ +0,

for j = 1, 2, . . . , `1. In the same way, we get a similar result for the adjoint operator:

‖((Oph[σ])∗)j −Oph[σ̄
j]‖`/j = O(h−

j(d−1)
`

+1), h→ +0.

Thus, using Proposition 2.2 again,

‖(Oph[σ])`1(Oph[σ])∗)`2 −Oph[σ
`1σ̄`2 ]‖1 = O(h−(d−1)+1), h→ +0.

It now remains to apply the formula (2.4) for the trace of a pseudodifferential operator.

�

In our construction, the ΨDO will be defined in terms of their amplitudes rather

than their symbols. Thus, we need a statement which is standard in the ΨDO theory

(see e.g. [23]).

Proposition 2.5. Let m < 0, and let b = b(ω, ω′, ξ, h) be a smooth function of the

variables (ω, ξ) ∈ T ∗Sd−1, ω′ ∈ Sd−1 and h ∈ (0, 1). Assume that b satisfies the estimates

(2.8) |∂αξ ∂βω∂
γ
ω′b(ω, ω

′, ξ, h)| ≤ Cαβγ〈ξ〉m−|α|
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for all multi-indices α, β, γ uniformly in h ∈ (0, 1) . Then for any N > 0, the operator

with the integral kernel

(2.9) (2πh)−d+1

∫
Λω

e−i〈ω−ω
′,ξ〉/hb(ω, ω′, ξ, h)dξ

can be represented as Oph[σ] +RN(h), where the following conditions are met:

(i) The symbol σ can be written as σ = σ0 + hσ1 with σ0, σ1 ∈ Sm(T ∗Sd−1) and

σ0(ω, ξ, h) = b(ω, ω, ξ, h).

(ii) The operator RN(h) has the integral kernel in CN(Sd−1 × Sd−1) with CN -norm

satisfying O(hN) as h→ 0.
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3. Proof of Theorem 1.8

We shall here provide the proof of Theorem 1.8 (and as a direct consequence Theo-

rem 1.5). We begin by discussing the limiting absorption principle for the Schrödinger

operator H = −∆ + αV , where the coupling constant α > 0. We shall then provide

the stationary representation of the scattering matrix together with some important

estimates.

The proof begins by assuming that V ∈ C∞0 (Rd). The scattering matrix is then ex-

pressed (via the Born approximation) as a semiclassical ΨDO on the sphere. We obtain

the leading spectral asymptotics as k →∞ for the scattering matrix in this case. The

result is then extended to cover all continuous potentials satisfying the short-range

condition (1.2), and Theorem 1.8 is proved by an application of the Weierstrass ap-

proximation theorem.

3.1. The limiting absorption principle and its consequences. We shall here state

the limiting absorption principle for the Schrödinger operator H = −∆ + αV where

α > 0. We then provide the stationary representation of the scattering matrix, and

derive some important estimates. Let us begin by defining some notation. Let Bρ be the

normed linear space of all continuous potentials V satisfying the short-range condition

(1.2) with the norm

(3.1) ‖V ‖Bρ = sup
x∈Rd
|V (x)|〈x〉ρ.

By T (z;α) we denote the sandwiched resolvent

(3.2) T (z;α) = 〈x〉−ρ/2(H − zI)−1〈x〉−ρ/2, Im z > 0.

The statement of the limiting absorption principle is as follows (see e.g. [30] Proposi-

tion 7.1.4)

Proposition 3.1. Let H = −∆+αV , where V satisfies the short-range condition (1.2).

Let z ∈ C \ [0,+∞) with |z| ≥ c > 0. If the coupling constant α satisfies α = o(|z| 12 ) as

|z| → ∞, then

(3.3) ‖T (z;α)‖ ≤ C|z|−
1
2 , Im z > 0.

In order to give the stationary representation of the scattering matrix S(k) associated

with the operators H0 = −∆ and H = −∆ + αV where α satisfies the condition (1.21)

for δ ∈ [0, 1), we shall require some more notation. Let us factorize V as

(3.4) V = 〈x〉−ρ/2J〈x〉−ρ/2
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where J = J(ρ) is the bounded operator of multiplication by 〈x〉ρV (x). Next, for k > 0

and ρ > 1 we define the operator Γρ(k) : L2(Rd)→ L2(Sd−1) by

(3.5) (Γρ(k)u)(ω) =
1√
2
k(d−2)/2(2π)−d/2

∫
Rd
u(x)〈x〉−ρ/2e−ik〈x,ω〉dx, ω ∈ Sd−1,

(that is, Γρ(k) is the composition of the operators Γ0 in (1.11) and 〈x〉−ρ/2 for a given

value of k > 0). We claim that this operator is well defined. To see this, first consider

a map T1 : L2(Rd)→ Hρ(Rd) given by

(T1u)(p) =

∫
Rd
u(x)〈x〉−ρ/2e−ip·xdx, ρ > 1.

Next consider the operator of restriction T2 : Hρ(Rd)→ Hρ(Sd−1
k ) onto the sphere Sd−1

k

of radius k. It then follows from the Sobolev trace theorem that the operator T2 is a

bounded operator in the space L2(Sd−1) since ρ > 1. The operator Γρ(k) is given by

the composition of operators T1 and T2 and hence the above claim is justified. Then

the scattering matrix may be expressed in the stationary representation by

(3.6) S(k)− I = −2πiαΓρ(k)[J − αJT (k2 + i0;α)J ]Γρ(k)∗, k > 0,

where the limit T (k2 + i0;α) = limε→0 T (k2 + iε;α) exists courtesy of Proposition 3.1.

We next provide an estimate in the Schatten norm for the operator Γρ(k): this result

is well known (see e.g. [30, Lemma 8.1.2]).

Lemma 3.2. For ρ > 1 and any ` ≥ 1 such that ` > d−1
ρ−1

, the following estimate holds:

(3.7) sup
k≥1

k
`+1−d
` ‖Γρ(k)‖2

2` ≤ C(`, ρ, d).

Proof. Let us first prove (3.7) for ` = 1. From (3.5) and the formula (A.2) for the

Hilbert-Schmidt norm, we see that

‖Γρ(k)‖2
2 = 2−1kd−2(2π)−d

∫
Rd
〈x〉−ρdx.

The above integral is finite exactly when ρ > d and hence

(3.8) sup
k≥1

k2−d ‖Γρ(k)‖2
2 ≤ C(`, ρ, d), ρ > d.

We now prove (3.7) for the operator norm i.e. when ` = ∞. From the spectral repre-

sentation of H0, it follows that

‖Γρ(k)f‖2 = π−1(ImR0(k2 + i0)〈x〉−ρ/2f, 〈x〉−ρ/2f), f ∈ L2(Rd).

Hence it follows that

(3.9) ‖Γρ(k)f‖2 ≤ C‖T0(k2 + i0)‖ ‖f‖2

where T0(z) is the sandwiched resolvent

T0(z) = 〈x〉−ρ/2(H0 − zI)−1〈x〉−ρ/2, Im z 6= 0.
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Thus combining estimates (3.3) and (3.9) it follows that

(3.10) sup
k≥1

k‖Γρ(k)‖2 ≤ C.

By using abstract interpolation (see e.g. [18] Section IX.4) on the estimates (3.8) and

(3.10), the estimate (3.7) follows for ` > d−1
ρ−1

as required. �

For ease of notation, from here onwards we shall denote by Υ = Υ(α) the quantity

(3.11) Υ = kα−1, α = O(kδ), δ ∈ [0, 1).

We now give a norm estimate on the difference S(k)− I in (3.6).

Lemma 3.3. For ρ > 1 and any ` ≥ 1 such that ` > d−1
ρ−1

, the following estimate holds:

(3.12) sup
k≥1

k
1−d
` ‖Υ(S(k)− I)‖` ≤ C(`, ρ, d)‖V ‖Bρ .

Proof. From (3.6) and the usual Hölder-type inequality for the Schatten norm (see the

Appendix A), we have that

‖S(k)− I‖` ≤ Cα‖Γρ(k)‖2
2`[‖J‖+ α‖J‖2‖T (k2 + i0;α)‖]

Since ‖J‖ = ‖V ‖Bρ , we have that

k
1−d
` ‖Υ(S(k)− I)‖` ≤ C(`, ρ, d)

(
k
`+1−d
` ‖Γρ(k)‖2

2`

) [
‖V ‖Bρ + ‖T (k2 + i0;α)‖‖V ‖2

Bρ

]
and the result follows by applying (3.3) and (3.7) to the above. �

Recall that the spectral asymptotics for the scattering matrix when α = O(kδ),

δ ∈ [0, 1) as k →∞ are derived from the Born approximation, which is defined as

SB(k) = I − 2πiαΓρ(k)JΓρ(k)∗.

We shall in fact consider the imaginary part of the Born approximation, which is given

by

(3.13) ImSB(k) = −2παΓρ(k)JΓρ(k)∗.

Proposition 3.4. Let V ∈ Bρ with ρ > 1 and let α = O(kδ) for δ ∈ [0, 1) as k → ∞.

Then for any ` ≥ 1 such that ` > d−1
ρ−1

sup
k≥1

k
1−d
` ‖ΥImSB(k)‖` ≤ C(`, ρ, d)‖V ‖Bρ ,(3.14)

sup
k≥1

k
1−d
` ‖Υ2Im (SB(k)− S(k))‖` ≤ C(`, ρ, d, V ),(3.15)

sup
k≥1

k
1−d
` ‖ΥImS(k)‖` ≤ C(`, ρ, d, V ).(3.16)
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Proof. Let us prove each estimate in turn. First, by (3.13) and the usual Hölder-type

inequality for the Schatten norm (see the Appendix A),

‖ImSB(k)‖` ≤ Cα‖Γρ(k)‖2
2`‖J‖.

Note that

(3.17) ‖J‖ = ‖V ‖Bρ .

Then the result (3.14) follows from (3.7) and by recalling the value of Υ.

Next, it is easily shown that

Im (SB(k)− S(k)) = −2πα2(Γρ(k)J)ReT (k2 + i0;α)(Γρ(k)J)∗.

Thus

‖Im (SB(k)− S(k))‖` ≤ Cα2‖Γρ(k)‖2
2`‖J‖‖ReT (k2 + i0;α)‖,

where the result (3.15) follows from (3.3), (3.7) and by recalling the value of Υ.

Finally, the estimate (3.16) follows by combining (3.14) and (3.15). �

Lemma 3.5. Let V ∈ Bρ with ρ > 1 and let α = O(kδ) for δ ∈ [0, 1) as k →∞. Then

for any integer ` ≥ 1 satisfying ` > d−1
ρ−1

, one has

|Tr(ΥImS(k))` − Tr(ΥImSB(k))`| = O(kd−2+δ), δ ∈ [0, 1), k →∞.

Proof. We begin by stating the following factorization for linear operators:

A` −B` =
`−1∑
j=0

Aj(A−B)B`−1−j.

Next since |TrA| ≤ ‖A‖1,

(3.18) |Tr(A` −B`)| ≤
`−1∑
j=0

‖Aj(A−B)B`−1−j‖1.

Note that by the Hölder inequality for trace ideals (A.1), for ` operators A1, . . . , A` ∈ S`,
we have the estimate

‖A1A2 . . . A`‖1 ≤ ‖A1‖`‖A2 . . . A`‖ `
`−1

where in (A.1) we have chosen `1 = `, `2 = `
`−1

. By using this repeatedly we obtain

‖A1A2 . . . A`‖1 ≤
∏̀
i=1

‖Ai‖`, A1, . . . , A` ∈ S`.

It follows from the above estimate that

(3.19) ‖Aj(A−B)B`−1−j‖1 ≤ ‖A‖j`‖A−B‖`‖B‖
`−1−j
` .
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Combining (3.18) and (3.19) yields

(3.20) |Tr(A` −B`)| ≤ `‖A−B‖` max{‖A‖`−1
` , ‖B‖`−1

` }, A,B ∈ S`.

Thus, it suffices to prove the relation

‖ΥIm (S(k)− SB(k))‖`×

×max{‖ΥImS(k)‖`−1
` , ‖ΥImSB(k)‖`−1

` } = O(kd−2+δ), k →∞.

The latter relation follows by combining (3.14)–(3.16) and recalling Υ−1 = O(kδ−1) as

k →∞. �

3.2. The Born approximation. We begin by assuming that V ∈ C∞0 (Rd) and ex-

pressing the imaginary part of the Born approximaton ImSB(k) as a semiclassical ΨDO

on the sphere with semiclassical parameter h = k−1 and symbol X(ω, ξ). We then prove,

using Proposition 2.4 that for any ` ∈ N,

(3.21) lim
k→∞

k1−d Tr(ΥImSB(k))` =

∫ ∞
−∞

t`dµe(t), α = O(kδ), δ ∈ [0, 1),

where the measure µe is defined in (1.6). By applying an approximation argument we

extend the result (3.21) to all V ∈ Bρ with ρ > 1 and any ` ≥ 1 satisfying ` > d−1
ρ−1

.

Proposition 3.6. Let V ∈ C∞0 (Rd) and let α = O(kδ) for δ ∈ [0, 1) as k →∞. Then

the Born approximation may be expressed as

(3.22) ΥImSB(k) = Opk−1 [σ] +R(k)

where the following conditions are met:

1)The symbol σ can be represented as

(3.23) σ = σ0 + k−1σ1

where σ0, σ1 ∈ C∞0 (T ∗Sd−1) are uniformly bounded in k together with all derivatives.

Here T ∗Sd−1 denotes the cotangent bundle of the sphere, as discussed in Section 2.

Further, we have the relation

(3.24) σ0(ω, ξ) = X(ω, ξ)

with the function X as in (1.14).

2)The operator R(k) has integral kernel which belongs to C∞(Sd−1 × Sd−1) and its

C(Sd−1 × Sd−1)-norm is O(k−∞) as k →∞.

Before giving the proof, let us note that we only require the C(Sd−1×Sd−1)-norm for

the operator R(k) and not any of its derivatives since we shall only be taking the trace

of R(k) and not requiring any norm estimates.
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Proof. 1) For ease of notation, we shall write Q(k) = ΥImSB(k). By (3.5) and (3.13),

Q(k) is the integral operator in L2(Sd−1) with the integral kernel

(3.25) Q(k)(ω, ω′) = −2−1kd−1(2π)1−d
∫

Rd
e−ik〈ω−ω

′,x〉V (x)dx, ω, ω′ ∈ Sd−1.

Let us introduce a function χ0 ∈ C∞(Sd−1 × Sd−1) such that χ0(ω, ω′) = 1 in a neigh-

bourhood of the diagonal ω = ω′ and whose support is the set{
(ω, ω′) ∈ Sd−1 × Sd−1 : 〈ω, ω′〉 ≥ γ

}
for some γ ∈ (

√
2

2
, 1). Denote χ1 = 1− χ0 and let

Q(k) = Q0(k) +Q1(k)

where Qj(k) is the operator with integral kernel χj(ω, ω
′)Q(k)(ω, ω′). By the fast decay

of the Fourier transform of V , and by the fact that |ω−ω′| is separated away from zero

on the support of χ1, we see that

sup
ω,ω′
|Q1(k)(ω, ω′)| = O(k−∞), k →∞.

Thus, it suffices to concern ourselves with Q0(k).

2) Let us change integration variables in Q0(k). For fixed ω, ω′ ∈ Sd−1 such that

ω + ω′ 6= 0, we define the vector

(3.26) ν = ν(ω, ω′) =
ω + ω′

|ω + ω′|
∈ Sd−1.

We set

(3.27) x = tν + ξ, ξ ∈ Λω, t =
〈x, ω〉
〈ν, ω〉

.

By the orthogonality relation (ω − ω′) ⊥ ν, one has

〈ω − ω′, x〉 = 〈ω − ω′, ξ〉.

Using this change of variables in the definition of Q0(k) yields

Q0(k)(ω, ω′) = kd−1(2π)1−d
∫

Λω

e−ik〈ω−ω
′,ξ〉b(ω, ω′, ξ)dξ, ω, ω′ ∈ Sd−1,

where

b(ω, ω′, ξ) = −2−1χ0(ω, ω′)J(ω, ω′)

∫ ∞
−∞

V (tν + ξ)dt

and J(ω, ω′) denotes the Jacobian obtained from the change of variables (3.27). It is

easy to see that J(ω, ω′) is a smooth function of ω, ω′ ∈ suppχ0. Let us calculate

J(ω, ω′) on the diagonal ω = ω′. In this case, the change of variables (3.27) becomes

x = tω + ξ, ω ∈ Sd−1, ξ ∈ Λω, t = 〈x, ω〉.
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This is simply an orthogonal change of variables, and it is straightforward to see that

(3.28) J(ω, ω) = 1.

3) In order to complete the proof, by Proposition 2.5 it suffices to check the estimate

(3.29) |∂αx∂βω∂
γ
ω′b(ω, ω

′, ξ)| ≤ Cαβγ〈ξ〉m−|α|

for some m < 0 and all multi-indices α, β, γ uniformly over k ≥ 1, and to check the

identity

(3.30) b(ω, ω, ξ) = X(ω, ξ).

The estimate (3.29) is almost immediate from the fact that V ∈ C∞0 (Rd) and since

the amplitude b is smooth in all variables. The identity (3.30) is also apparent from

recalling the definition of the function X from (1.14), the equation (3.28) and noting

that χ0(ω, ω) = 1 and ν(ω, ω) = ω. �

Lemma 3.7. Let V ∈ C∞0 (Rd) and let α = O(kδ) for δ ∈ [0, 1) as k → ∞. Then for

any natural number `, we have

(3.31) lim
k→∞

k1−d Tr(ΥImSB(k))` =

∫ ∞
−∞

t`dµe(t)

where the measure µe is defined in (1.6).

Proof. First let ` = 1. From (3.22), we have

(3.32) Tr ΥImSB(k) = Tr Opk−1 [σ] + TrR(k).

Since the operator R(k) has an integral kernel belonging to the class C∞(Sd−1 × Sd−1)

with corresponding C(Sd−1 × Sd−1)-norm equal to O(k−∞) as k →∞, it follows that

(3.33) lim
k→∞

k1−d TrR(k) = 0.

Consequently, by applying (2.7) to (3.32) and recalling the equation (3.23) for σ,

lim
k→∞

k1−d Tr(ΥImSB(k)) = (2π)1−d
∫

Sd−1

∫
Λω

X(ω, ξ)dξdω.

The result (3.31) follows in the case ` = 1 from the above and the definition (1.6) of

the measure µe.

Now suppose that ` ≥ 2. Note that by (2.7),

lim
k→∞

k1−d Tr(Opk−1 [σ])` = (2π)1−d
∫

Sd−1

∫
Λω

[X(ω, ξ)]`dξdω.

Thus in order to prove (3.31), recalling (3.22) it suffices to prove that

(3.34) lim
k→∞

k1−d|Tr(ΥImSB(k))` − Tr(Opk−1 [σ])`| = 0.
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Applying the binomial theorem and the statement

(3.35) |Tr(AB)| ≤ ‖A‖2‖B‖2, A,B ∈ S2,

to (3.34) yields

(3.36) |Tr(ΥImSB(k))` − Tr(Opk−1 [σ])`| ≤ C(`) max
1≤n≤`

‖R(k)‖n2‖Opk−1 [σ]‖`−n2 .

We easily obtain by direct calculation that

(3.37) ‖R(k)‖2 = O(k−∞), k →∞.

The result (3.34) follows from (3.36) together with the estimates (2.6) and (3.37). �

Lemma 3.8. Let V ∈ Bρ with ρ > 1 and let α = O(kδ) for δ ∈ [0, 1) as k →∞. Then

for any integer ` ≥ 1 satisfying ` > d−1
ρ−1

, we have

(3.38) lim
k→∞

k1−d Tr(ΥImSB(k))` =

∫ ∞
−∞

t`dµe(t)

where the measure µe is defined in (1.6).

Proof. Let B0
ρ denote the closure of C∞0 (Rd) in Bρ. For any ` > d−1

ρ−1
, set

g`(V ) =

∫ ∞
−∞

t`dµe(t),

g+
` (V ) = lim sup

k→∞
k1−d Tr(ΥImSB(k))`,

g−` (V ) = lim inf
k→∞

k1−d Tr(ΥImSB(k))`.

Let us first show that g`, g
±
` are continuous functionals on Bρ. We begin by showing

g`(V ) is continuous. Let V1, V2 ∈ Bρ. Denote by Xj(ω, ξ) the function X(ω, ξ) in (1.14)

with V replaced by Vj, j = 1, 2. By definition,

(3.39) g`(V1)− g`(V2) = (2π)1−d
∫

Sd−1

∫
Λω

(
[X1(ω, ξ)]` − [X2(ω, ξ)]`

)
dξdω.

We write

(3.40) [X1(ω, ξ)]` − [X2(ω, ξ)]` = (X1 −X2)(ω, ξ)
`−1∑
p=0

(X1(ω, ξ))p(X2(ω, ξ))`−1−p.

We here note the estimate

(3.41) |Xj(ω, ξ)| ≤ C‖Vj‖Bρ〈ξ〉1−ρ, j = 1, 2,

and further since Bρ is a linear space,

(3.42) |(X1 −X2)(ω, ξ)| ≤ C‖V1 − V2‖Bρ〈ξ〉1−ρ.
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By inserting (3.40) into (3.39) and applying the estimates (3.41), (3.42),

|g`(V1)− g`(V2)| ≤ C(d, `)‖V1 − V2‖Bρ×

×max
{
‖V1‖`−1

Bρ
, ‖V2‖`−1

Bρ

}∫
Λω

〈ξ〉−`(ρ−1)dξ.

We note that the integral in the above estimate is bounded above since `(ρ−1) > d−1,

which suffices to prove that g` is a continuous functional on Bρ.

Next let us show that g+
` (V ) is continuous on Bρ. Denote by SjB(k) the corresponding

Born approximation for the potential Vj, j = 1, 2. Then we may write

(ΥImS1
B(k))` − (ΥImS2

B(k))` =

=
`−1∑
j=0

[
ΥImS1

B(k)
]j [

Υ
(
Im (S1

B(k)− S2
B(k))

)] [
ΥImS2

B(k)
]`−1−j

Applying the formula (3.20) to the above, we have

|Tr(ΥImS1
B(k))` − Tr(ΥImS2

B(k))`| ≤

≤ `‖ΥIm (S1
B(k)− S2

B(k))‖` ×max{‖ΥImS1
B(k)‖`−1

` , ‖ΥImS2
B(k)‖`−1

` }.

It follows from the above that

|g+
` (V1)− g+

` (V2)| ≤ C lim sup
k→∞

k1−d‖ΥIm (S1
B(k)− S2

B(k))‖`×

×max{‖ΥImS1
B(k)‖`−1

` , ‖ΥImS2
B(k)‖`−1

` }.
(3.43)

Using the estimate (3.14), by the linearity of ImSB(k) in V it follows from (3.43) that

|g+
` (V1)− g+

` (V2)| ≤ C(`, ρ, d)‖V1 − V2‖Bρ max{‖V1‖`−1
Bρ
, ‖V2‖`−1

Bρ
},

which suffices to demonstrate the continuity of g+
` (V ) on Bρ. The continuity of g−`

follows in a similar manner.

Next, note that by Lemma 3.7 for any V ∈ C∞0 (Rd),

(3.44) g−` (V ) = g`(V ) = g+
` (V );

we would like to extend this to all V ∈ Bρ. By choosing some V ∈ B0
ρ , there exists a

sequence {Vn}∞n=1 ⊂ C∞0 (Rd) such that

lim
n→∞

‖Vn − V ‖Bρ = 0.

By the continuity of the functionals g`, g
±
` and the statement (3.44) for V ∈ C∞0 (Rd), it

follows that (3.44) holds for all V ∈ B0
ρ . Finally, for any V ∈ Bρ and a given ` > d−1

ρ−1
,

choose ρ1 such that 1 < ρ1 < ρ with ` > d−1
ρ1−1

. Then Bρ ⊂ B0
ρ1

and the previous

argument proves (3.44) for all V ∈ B0
ρ1

which suffices. �

3.3. From the Born approximation to the full scattering matrix.
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Lemma 3.9. Let V ∈ Xρ with ρ > 1 and let α = O(kδ) for δ ∈ [0, 1) as k →∞. Then

for any integer ` ≥ 1 satisfying ` > d−1
ρ−1

,

lim
k→∞

k1−d
∫ ∞
−∞

t`dµ̃k(t) =

∫ ∞
−∞

t`dµe(t).

Proof. By Lemmas 3.5 and 3.8, it suffices to prove

(3.45) lim
k→∞

k1−d
∣∣∣∣∫ ∞
−∞

t`dµ̃k(t)− Tr(ΥImS(k))`
∣∣∣∣ = 0.

Recalling the definition (1.6) of the measure µ̃k, one sees that (3.45) is equivalent to

(3.46) lim
k→∞

k1−dΥ`

∣∣∣∣∣
∞∑
n=1

[(θn(k))` − (sin θn(k))`]

∣∣∣∣∣ = 0.

By (1.22), for δ ∈ [0, 1) we have 0 < |θn(k)| < π/4 for all sufficiently large k and all

n. From the elementary estimates |θn| ≤ 2| sin θn| and |θn − sin θn| ≤ C| sin θn|3 which

hold for |θn| < π/4, it follows that for all sufficiently large k

k1−dΥ`

∞∑
n=1

|(θn)` − (sin θn)`| ≤ k1−dΥ`

∞∑
n=1

(
|θn − sin θn|

`−1∑
j=0

|θn|j| sin θn|`−1−j

)
≤

≤ k1−dΥ`C(`)
∞∑
n=1

| sin θn|`+2 = k1−dΥ`C(`)‖ImS(k)‖`+2
`+2 = k−d−(1−2δ)C(`)‖ΥImS(k)‖`+2

`+2.

Now (3.46) follows by combining the estimate (3.16) for ‖ΥImS(k)‖`+2 with the result

just obtained and noting that δ ∈ [0, 1). �

3.4. Proof of Theorem 1.8. By the estimate (1.22), for δ ∈ [0, 1) the supports of µ̃k

are bounded uniformly in k ≥ 1. On the other hand, by the boundedness of V , the

support of µe is also bounded. Thus, we may choose T > 0 such that

suppµe ⊂ [−T, T ] and supp µ̃k ⊂ [−T, T ] ∀k ≥ 1, δ ∈ [0, 1).

Next, fix ϕ ∈ C∞0 (R\{0}), and let `0 be an even natural number satisfying `0 >
d−1
ρ−1

.

Since ϕ(t) vanishes near t = 0, the function ϕ(t)/t`0 is smooth. By the Weierstrass

approximation theorem, for any ε > 0 there exists a polynomial ϕ0(t) such that

|ϕ(t)t−`0 − ϕ0(t)| ≤ ε, ∀t ∈ [−T, T ].

Denoting ϕ±(t) = (ϕ0(t)± ε)t`0 , we obtain

ϕ−(t) ≤ ϕ(t) ≤ ϕ+(t), ∀t ∈ [−T, T ],(3.47)

ϕ+(t)− ϕ−(t) = 2εt`0 .(3.48)

By (3.47), we get

(3.49)

∫ ∞
−∞

ϕ−(t)dµ̃k(t) ≤
∫ ∞
−∞

ϕ(t)dµ̃k(t) ≤
∫ ∞
−∞

ϕ+(t)dµ̃k(t).
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By construction, ϕ±(t) are polynomials which involve powers tm with m ≥ `0. Thus,

we can apply Lemma 3.9 to (3.49), which yields

lim sup
k→∞

k1−d
∫ ∞
−∞

ϕ(t)dµ̃k(t) ≤
∫ ∞
−∞

ϕ+(t)dµe(t),

lim inf
k→∞

k1−d
∫ ∞
−∞

ϕ(t)dµ̃k(t) ≥
∫ ∞
−∞

ϕ−(t)dµe(t).

On the other hand, by (3.47), (3.48),∫ ∞
−∞

ϕ−(t)dµe(t) ≤
∫ ∞
−∞

ϕ(t)dµe(t) ≤
∫ ∞
−∞

ϕ+(t)dµe(t)

and ∫ ∞
−∞

ϕ+(t)dµe(t)−
∫ ∞
−∞

ϕ−(t)dµe(t) = 2ε

∫ ∞
−∞

t`0dµe(t).

By (1.18), the integral in the right hand side of the last estimate is finite; denote this

integral by C. Combining the above estimates, we obtain

lim sup
k→∞

k1−d
∫ ∞
−∞

ϕ(t)dµ̃k(t) ≤
∫ ∞
−∞

ϕ(t)dµe(t) + 2εC,

lim inf
k→∞

k1−d
∫ ∞
−∞

ϕ(t)dµ̃k(t) ≥
∫ ∞
−∞

ϕ(t)dµe(t)− 2εC.

Since ε > 0 can be taken arbitrary small, we obtain the required statement. �
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4. Proof of Theorem 1.9

For the magnetic case, that is H0 = −∆ and H = (i∇+A)2 + V (x) with A 6= 0, the

Born approximation is no longer valid, and instead we turn to work by D. Yafaev in

[31], which concerns an approximation at high energy to the corresponding scattering

matrix S(k). The approximation is derived from approximate solutions to the station-

ary Schrödinger equation Hu = k2u. Using Yafaev’s approximation, we express the

scattering matrix as a semiclassical ΨDO on the sphere with semiclassical parameter

h = k−1 and symbol eiM(ω,ξ). The result of Theorem 1.9 follows by using Proposition 2.4

to prove that for any integers `1 ≥ 0, `2 ≥ 0 such that `1 + `2 >
d−1
m

, m = min{1, ρ−1},

lim
k→∞

k1−d Tr[(S(k)− I)`1(S(k)∗ − I)`2 ] =

∫
T
(z − 1)`1(z − 1)`2dµm(z)

where the measure µm is given in (1.29). The result then follows by an application of

the Weierstrass approximation theorem.

4.1. Approximate solutions to the Schrödinger equation. Here we recall the

construction of approximate solutions to the Schrödinger equation Hu = k2u from [31]

where V and A are both infinitely smooth and satisfy the estimates (1.1). The solutions

u are sought as functions

u = u(x, p), x ∈ Rd, p ∈ Rd, |p| = k.

We denote p̂ = p|p|−1 ∈ Sd−1. We set

u(x, p) = eiΘ(x,p)υ(x, p),

where the functions υ and Θ are to be determined. We note the Schrödinger operator

H is equal to

H = −∆ + 2i〈A(x),∇〉+ i divA(x) + |A(x)|2 + V (x).

We now plug the function u into the Schrödinger equation

Hu = k2u.

By direct calculation,

2i〈A(x),∇〉u = −2〈A,∇Θ〉u+ 2ieiΘ〈A,∇υ〉,

−∆u = −(i∆Θ)u+ |∇Θ|2u− ieiΘ∇υ − ieiΘ〈∇Θ,∇υ〉 − eiΘ∆υ,

and hence we obtain

[|∇Θ|2−2〈A,∇Θ〉+ |A(x)|2 + V (x)]u+

+ eiΘ[−2i〈∇Θ,∇υ〉+ 2i〈A,∇υ〉 −∆υ + (−i∆Θ + i divA)υ] = k2u.

As a consequence, we obtain the eikonal equation

(4.1) |∇Θ|2 − 2〈A,∇Θ〉+ (V (x) + |A(x)|2) = k2
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for the phase function Θ and the transport equation

(4.2) −2i〈∇Θ,∇υ〉+ 2i〈A,∇υ〉 −∆υ + (−i∆Θ + i divA)υ = 0

for the amplitude function υ. We seek the function Θ in the form

(4.3) Θ±(x, p) = 〈x, p〉+ Φ±(x, p)

where we solve the eikonal equation by iterations. We set for N0 ∈ N

(4.4) Φ±(x, p) = Φ
(N0)
± (x, p) =

N0∑
n=0

(2k)−nφ±n (x, p̂)

and plug (4.3),(4.4) into the eikonal equation (4.2). By comparing coefficients at the

same powers of (2k)−n, n = −1, 0, . . . , N0 − 1, the following solution is obtained:

(4.5) 〈p̂,∇φ±0 〉 = 〈p̂, A〉, n = −1,

(4.6) 〈p̂,∇φ±1 〉+ |∇φ±0 |2 − 2〈A,∇φ±0 〉+ |A(x)|2 + V (x) = 0, n = 0,

(4.7) 〈p̂,∇φ±n+1〉+
n∑

m=0

〈∇φ±m,∇φ±m−n〉 − 2〈A,∇φ±n 〉 = 0, n ≥ 1.

The error associated with the approximate solution Φ
(N0)
± (x, p) is given by

q0(x, p) =
∑

n+m≥N0

(2k)−n−m〈∇φ±n ,∇φ±m〉 − 2(2k)−N0〈A,∇φ±N0
〉.

The equations (4.5) - (4.7) all have the form

(4.8) 〈p̂,∇φ±n (x, p̂)〉+ fn(x, p̂) = 0

which can be explicitly solved as

φ±n (x, p̂) = ±
∫ ∞

0

fn(x± tp̂, p̂)dt.

We now solve the transport equation (4.2) by a similar method. For a given N ∈ N, the

approximate solution to the transport equation is constructed as the asymptotic series

(4.9) υ±(x, p) = υ
(N)
± (x, p) =

N∑
n=0

(2ik)−nυ̃±n (x, p̂),

We plug this function into the transport equation and compare coefficients at the same

powers of (2ik)−n to obtain the recurrence relations

〈p̂,∇υ̃±n+1〉 = 2i〈A−∇Φ±,∇υ̃±n 〉−∆υ̃±n + (−i∆Φ±+ i divA+ q0)υ̃±n , n = 0, 1, . . . , N.

Again all the above equations have the form

〈p̂,∇υ̃±n+1(x, p)〉+ fn+1(x, p) = 0
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which may be solved explicitly as

υ̃
(±)
n+1(x, p̂) = ∓

∫ ∞
0

f
(±)
n+1(x+ tp̂, p̂)dt,

where

f (±)
n = 2i〈A−∇Φ±,∇ṽ(±)

n 〉 −∆ṽ(±)
n + (|∇Φ±|2 − 2〈A,∇Φ±〉+ V1 − i∆Φ±)ṽ(±)

n ,

and

V1 = V + |A|2 + i divA.

Let us now recall the definition of the function u. We may write u = eiΘ(x,p)υ(x, p)

where

(4.10) Θ±(x, p) = 〈x, p〉+ φ±(x, p̂).

The function φ±(x, p̂) is just the first term of Φ± given in (4.4), that is

(4.11) φ±(x, p̂) = φ±0 (x, p̂) = ∓
∫ ∞

0

〈A(x± tp̂), p̂〉dt.

The rest of the terms in (4.4) tend to zero for large k. By expanding the exponential

function containing such terms in a power series, it may be seen that they can be

absorbed into the definition of υ±(x, p) given by (4.9). Note in particular, υ±0 (x, p̂) ≡ 1.

This is the form of u we shall consider. When considering the functions φ± and υ±n ,

we will always exclude a conical neighbourhood of the direction x̂ = −p̂ (for the sign

“+”) or x̂ = p̂ (for the sign “−”). That is, we shall consider them only in the region

Γ±(ε, R) ⊂ Rd×Rd distinguished by the following condition: (x, p) ∈ Γ±(ε, R) if either

|x| ≤ R or ±〈x̂, p̂〉 ≥ −1 + ε for some ε > 0 and R > 0. Outside these neighbourhoods,

the functions φ± and υ±n , n ≥ 1, decay at infinity in the x-variable and provide good

approximations to the eikonal and transport equations. More precisely, the following

statement is proven in [31]:

Proposition 4.1. [31] Let both the electric potential V and the magnetic vector-

potential A be infinitely differentiable and satisfy the estimates (1.1). Let (x, ω) ∈
Rd×Sd−1 be such that (x, ω) ∈ Γ±(ε, R) for some ε > 0 and R > 0. Then the functions

φ± and υ±n , n ≥ 1, satisfy the estimates

(4.12) |∂αx∂βωφ±(x, ω)| ≤ Cαβ(ε, R)〈x〉1−ρ−|α|,

(4.13) |∂αx∂βωυ±n (x, ω)| ≤ Cαβ(ε, R)〈x〉−n−|α|,

for all multi-indices α, β.

We will write

(4.14) u
(N)
± (x, p) = u±(x, p) = eiΘ±(x,p)υ

(N)
± (x, p).
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4.2. Approximation to the scattering matrix. Here we recall the approximation to

the scattering matrix obtained in [31]. It is known (see [1]) that off the diagonal ω = ω′,

the integral kernel s(ω, ω′; k) of the scattering matrix S(k) is a C∞-smooth function

of ω, ω′ ∈ Sd−1 and it tends to zero faster than any power of k−1 as k → ∞. Thus,

it suffices to describe the structure of s(ω, ω′; k) in a neighbourhood of the diagonal

ω = ω′. Let ω0 ∈ Sd−1 be an arbitrary point and for δ ∈ (0, 1), let Ω = Ω(ω0, δ) ⊂ Sd−1

be the conical neighbourhood of ω0 given by

(4.15) Ω(ω0, δ) = {ω ∈ Sd−1 : 〈ω, ω0〉 > δ}.

Let u± be as in (4.14). We set

x = ω0z + y, z ∈ R, y ∈ Λω0 ,

and

(∇ω0u)(x, p) =
∂

∂z
u(ω0z + y, p).

For ω, ω′ ∈ Ω, define

s
(N)
0 (ω, ω′; k) = −iπkd−2(2π)−d×

×
(∫

Λω0

[
u

(N)
+ (x, kω)(∇ω0u

(N)
− )(x, kω′)− (∇ω0u

(N)
+ )(x, kω)u

(N)
− (x, kω′)

]
dx−

− 2i

∫
Λω0

〈A(x), ω0〉u(N)
+ (x, kω)u

(N)
− (x, kω′)dx

)
.

(4.16)

The integrals in (4.16) do not converge absolutely and should be understood as os-

cillatory integrals. In other words, (4.16) should be understood as a distribution on

Ω× Ω.

Proposition 4.2. [31] For any q ∈ N there exists N = N(q) ∈ N such that for any

ω0 ∈ Sd−1, the kernel

s̃(N)(ω, ω′; k) = s(ω, ω′; k)− s(N)
0 (ω, ω′; k)

belongs to the class Cq(Ω× Ω) and its Cq-norm is O(k−q) as k →∞.

4.3. The scattering matrix as a ΨDO on the sphere. Below we represent the

scattering matrix S(k) as a semiclassical ΨDO on the sphere with semiclassical param-

eter h = k−1. The statements almost identical to Proposition 4.3 can be found in [31,

Propositions 6.1 and 6.4] and [30, Section 8.4]. Note that Proposition 4.3 is similar

to Proposition 3.6 where the imaginary part of the Born approximation for a smooth,

compactly supported potential V was also expressed as a semiclassical ΨDO on the

sphere with semiclassical parameter h = k−1. There, the explicit form of the Born

approximation was used to obtain the representation, whereas here we use the kernel

function (4.16) derived by Yafaev.
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Proposition 4.3. Suppose that the electric potential V and the magnetic vector-

potential A are both infinitely differentiable and satisfy the estimates (1.1). Let

m = min{1, ρ− 1}. Then for any q ∈ N, the scattering matrix can be written as

(4.17) S(k) = I + Opk−1 [σ] +Rq(k),

where:

(i) the symbol σ can be represented as

(4.18) σ = σ0 + k−1σ1,

where σ0, σ1 ∈ S−m(T ∗Sd−1) and

(4.19) σ0(ω, ξ) = exp(iM(ω, ξ))− 1;

(ii) the operator Rq(k) has an integral kernel in the class Cq(Sd−1 × Sd−1) and its

Cq-norm is O(k−q) as k →∞.

Proof. 1) Let φ, ψ ∈ C∞(Sd−1) be functions with disjoint supports. Then φS(k)ψ has a

C∞-smooth integral kernel which decays faster than any power of k−1 as k →∞. The

same comment applies to φOpk−1 [a]ψ with a ∈ S−m(T ∗Sd−1). This shows that using

a sufficiently fine partition of unity on the sphere, one easily reduces the problem to

approximating the integral kernel of S(k) locally in any conical neighbourhood Ω of the

form (4.15). Thus, we can use Proposition 4.2.

2) Let us rearrange the integrand in (4.16). Denote

(4.20) w
(N)
± (x, p) = eiφ±(x,p̂)υ

(N)
± (x, p),

(4.21) w̃
(N)
± (x, p) = keiφ±(x,p̂)(υ

(N)
± (x, p)− 1),

so that from (4.14),

u
(N)
± (x, kω) = eik〈x,ω〉w

(N)
± (x, kω) = eik〈x,ω〉(eiφ±(x,ω) + k−1w̃

(N)
± (x, kω)),

(∇ω0u
(N)
± )(x, kω) = eik〈x,ω〉[ik〈ω0, ω〉eiφ±(x,ω) + i〈ω0, ω〉w̃(N)

± (x, kω) + (∇ω0w
(N)
± )(x, kω)].

The variables ω and ω′ belong to the set Ω(ω0, δ) for some fixed choice of δ. Now some

elementary algebra shows that formula (4.16) can be rewritten as

(4.22) s
(N)
0 (ω, ω′; k) = kd−1(2π)1−d

∫
Λω0

e−ik〈ω−ω
′,x〉a(N)(ω, ω′, x)dx,

where

(4.23) a(N)(ω, ω′, x) = 2−1〈ω0, ω + ω′〉 exp[iφ−(x, ω′)− iφ+(x, ω)] + k−1a
(N)
1 (ω, ω′, x),
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2a
(N)
1 (ω, ω′, x) = 〈ω, ω0〉(eiφ−(x,ω′)w̃

(N)
+ (x, kω) + w

(N)
+ (x, kω)w̃

(N)
− (x, kω′))

+〈ω′, ω0〉(e−iφ+(x,ω)w̃
(N)
− (x, kω′) + w̃

(N)
+ (x, kω)w

(N)
− (x, kω′))

+i(∇ω0w
(N)
+ )(x, kω)w

(N)
− (x, kω′)− iw(N)

+ (x, kω)(∇ω0w
(N)
− )(x, kω′)

−2〈A(x), ω0〉w(N)
+ (x, kω)w

(N)
− (x, kω′).

(4.24)

Note that the choice a(N)(ω, ω′, x) = 1
2
〈ω+ω′, ω0〉 in (4.22) yields a δ-function on the

sphere. Thus, we can write

(4.25)

s
(N)
0 (ω, ω′; k)− δ(ω − ω′) = kd−1(2π)1−d

∫
Λω0

e−ik〈ω−ω
′,x〉(a0 + k−1a

(N)
1 )(ω, ω′, x)dx,

where

(4.26) a0(ω, ω′, x) = 2−1〈ω0, ω + ω′〉[exp(iφ−(x, ω′)− iφ+(x, ω))− 1].

3) Let us change variables in the integral (4.25). In step 2) of the proof of Propo-

sition 3.6, we wrote x ∈ Rd in the form (3.30) so that the variable ξ was orthogonal

to the difference ω − ω′. This motivates the following change of variables. Instead of

integrating over x ∈ Λω0 , we shall integrate over ξ ∈ Λω, where

(4.27) x = ξ − 〈ξ, ω0〉
〈ω + ω′, ω0〉

(ω + ω′).

Recall that ω, ω′ ∈ Ω(ω0, δ) and hence the denominator of (4.27) does not vanish. An

easy calculation shows that

〈x, ω − ω′〉 = 〈ξ, ω − ω′〉.

Thus, we obtain

(4.28) s
(N)
0 (ω, ω′; k)− δ(ω − ω′) = kd−1(2π)1−d

∫
Λω

e−ik〈ω−ω
′,ξ〉b(ω, ω′, ξ)dξ,

where b = b0 + k−1b1 with

(4.29) bj(ω, ω
′, ξ) = J(ω, ω′)aj(ω, ω

′, x(ξ))

and J(ω, ω′) denotes the Jacobian of the linear map (4.27) considered as a map from

Λω to Λω0 . It is easy to see that J(ω, ω′) is a smooth function of ω, ω′ ∈ Ω. We shall

need the value of J(ω, ω′) on the diagonal ω = ω′, in which case the change of variables

(4.27) is given by

x = t〈ω, ω0〉−1ω + ξ, t = −〈ξ, ω0〉.

Let us define a basis for Λω0 and Λω as follows. Let (x1, . . . , xd−2) ⊂ Rd−2. Let us define

a vector x′ as a projection of ω onto Λω0 by

x′ = ω − 〈ω, ω0〉−1ω0
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where we note that 〈ω, ω0〉 > 0. We choose the basis of Λω0 to be (x1, . . . , xd−2, x
′).

Next, we define a vector x′′ as a projection of ω0 onto Λw by

x′′ = ω0 − 〈ω, ω0〉ω

and choose the basis of Λω to be (x1, . . . , xd−2, x
′′). Note that x′ = −〈ω, ω0〉−1x′′.

Then the Jacobian J(ω, ω) is given by a lower triangular matrix with diagonal

(1, . . . , 1,−〈ω, ω0〉−1). Since the Jacobian matrix is lower triangular, the Jacobian de-

terminant is given by the absolute value of the product of the diagonal entries, that

is

(4.30) J(ω, ω) = 〈ω, ω0〉−1.

4) The right hand side of equation (4.28) is a semiclassical ΨDO with the amplitude

b, see (2.8). In order to complete the proof, by Proposition 2.5 if suffices to check the

estimates

(4.31) |∂αξ ∂βω∂
γ
ω′bj(ω, ω

′, ξ)| ≤ Cαβγ〈ξ〉−m−|α|,

for j = 0, 1 and all multi-indices α, β, γ uniformly over k ≥ 1, and to check the identity

(4.32) b0(ω, ω, ξ) = exp(iM(ω, ξ))− 1.

Let us first check (4.32). Recalling the definition (1.27) of M and the definition (4.11)

of φ±, we get

M(ω, ξ) = φ−(ξ, ω)− φ+(ξ, ω).

From this and (4.26), (4.29) and (4.30),

b0(ω, ω, ξ) = J(ω, ω)a0(ω, ω, x(ξ)) = exp(iM(ω, x(ξ)))− 1,

where x(ξ) is the linear map (4.27). Next, by the definition of the map x(ξ), for ω = ω′

it takes the form x(ξ) = ξ + cω, and by the definition of the function M we have

M(ω, ξ + cω) = M(ω, ξ).

Thus, we obtain (4.32).

5) It remains to check that the estimates (4.31) are satisfied. This is essentially a

consequence of Proposition 4.1; let us check this. Recall that m = min{1, ρ − 1}. In

what follows we make reference to Appendix B, and we denote by α and β multi-indices.

Firstly, it is clear from (4.12) that φ±(x, ω) ∈ S−m(T ∗Sd−1), so that

(4.33) |∂αx∂βωφ±(x, ω)| ≤ Cαβ〈x〉−m−|α|.
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Next let us consider ∂αx∂
β
ωw̃±(x, kω). It follows from the fact that φ±(x, ω) ∈

S−m(T ∗Sd−1) and Lemma B.2 that the function eiφ±(x,kω) ∈ S0(T ∗Sd−1). Further,

υ
(N)
± (x, kω)− 1 =

N∑
n=1

(2ik)−nυ±n (x, kω)

where the functions υ±n satisfy the estimates (4.13). As a result, the function

k(υ
(N)
± (x, kω)− 1) ∈ S−1(T ∗Sd−1). Therefore by Lemma B.1,

(4.34) |∂αx∂βωw̃±(x, kω)| ≤ Cαβ〈x〉−m−|α|.

We next consider ∂αx∂
β
ω(∇ω0w±)(x, kω). Again it follows from Lemma B.2 that

(4.35) |∂αx∂βω(∇ω0w±)(x, kω)| ≤ Cαβ〈x〉−m−|α|.

Finally, we consider the function w±(x, kω), which we write as

w±(x, kω) = eiφ±(x,kω) + k−1w̃±(x, kω).

Since eiφ±(x,kω) ∈ S0(T ∗Sd−1) by Lemma B.2, it follows from (4.34) that

(4.36) |∂αx∂βωw±(x, kω)| ≤ Cαβ〈x〉−|α|.

All of the above estimates are uniform in k ≥ 1. It follows from the estimates (4.33) -

(4.36) together with Lemma B.1 that the function a1(ω, ω′, x) defined in (4.24) satisfies

(4.37) |∂αx∂βω∂
γ
ω′a1(ω, ω′, x)| ≤ Cαβ〈x〉−m−|α|,

uniformly in k ≥ 1. Next, we recall that φ±(x, ω) ∈ S−m(T ∗Sd−1). Therefore it follows

easily from Lemma B.3 that the function a0(ω, ω′, x) defined by (4.26) satisfies

(4.38) |∂αx∂βω∂
γ
ω′a0(ω, ω′, x)| ≤ Cαβ〈x〉−m−|α|,

uniformly in k ≥ 1. Now from (4.37), (4.38), (4.29) and (4.27), by an elementary

calculation we obtain (4.31). �

4.4. The case of a monomial ϕ.

Lemma 4.4. Suppose that the electric potential V and the magnetic vector-potential A

are both infinitely differentiable and satisfy the estimates (1.1). Then for any integers

`1 ≥ 0, `2 ≥ 0 such that `1 + `2 > (d− 1)/m, m = min{1, ρ− 1}, one has

(4.39) lim
k→∞

k1−d Tr[(S(k)− I)`1(S(k)∗ − I)`2 ] =

∫
T
(z − 1)`1(z − 1)`2dµm(z)

where the measure µm is given in (1.29).

Remark. This lemma is similar in structure to that of Lemma 3.7. There, similar

asymptotics to (4.39) were determined for ImSB(k). However here we have to consider

the products (S(k) − I)`1(S(k)∗ − I)`2 . This is due to the use of the Weierstrass

approximation theorem and is explained further in Section 4.5.
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Proof. By Lemma 4.3, we have

(4.40) (S(k)− I)`1(S(k)∗ − I)`2 = (Opk−1 [σ] +Rq(k))`1
(
(Opk−1 [σ])∗ +Rq(k)∗

)`2 ,
where σ, Rq(k) are as described in Lemma 4.3. Expanding the brackets in (4.40), we

obtain

(4.41) (S(k)− I)`1(S(k)∗ − I)`2 = (Opk−1 [σ])`1
(
(Opk−1 [σ])∗

)`2 +Qq(k),

where Qq(k) is the sum of the products of operators, to be estimated below. For the

first term in the r.h.s in (4.41), by Proposition 2.4, we have

lim
k→∞

(
k

2π

)−d+1

Tr
(
(Opk−1 [σ])`1

(
(Opk−1 [σ])∗

)`2)
=

∫
Sd−1

∫
Λω

(
eiM(ω,ξ) − 1

)`1(e−iM(ω,ξ) − 1
)`2dξdω.

Recalling the definition of the measure µm, we see that the right hand side of the above

is equivalent to the right hand side of (4.39). Let us check that by a suitable choice

of q we can ensure that the error term TrQq(k) remains bounded as k → ∞; this will

yield the desired asymptotics (4.39). By choosing q sufficiently large, if follows from

Proposition A.4 that we can make sure the estimate (‖·‖1 is the trace norm)

(4.42) ‖Rq(k)‖1 = O(1), k →∞,

holds true. Next, using the estimates

|Tr(AB)| ≤ ‖A‖‖B‖1 and ‖C‖ ≤ ‖C‖1

for trace class operators B and C and bounded operator A and recalling that Qq(k)

arose as a remainder term in the expansion of the brackets in the l.h.s. of (4.40), we

obtain

(4.43) |Tr(Qq(k))| ≤ C(`1, `2)‖Rq(k)‖1 ‖Opk−1 [σ]‖`1+`2−1 .

By (2.3), we have

‖Opk−1 [σ]‖ = O(1), k →∞.

Combining the last inequality with (4.42), we obtain that Tr(Qq(k)) is bounded as

k →∞, as required. �

4.5. Proof of Theorem 1.9. It now remains to extend Lemma 4.4 to all permissible

functions ϕ. We begin by stating a version of the Weierstrass approximation theorem

concerning polynomials on the circle in the complex plane. We then state and prove a

lemma which uses this result. The proof of Theorem 1.9 is a trivial consequence of this

lemma.

The following result is well known (see e.g. [22] Section 4.24, and in particular Theo-

rem 4.25)
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Proposition 4.5 (Weierstrass approximation theorem). The set of polynomials on the

unit circle is dense in C(T).

Lemma 4.6. Let `0 be an even natural number and let ν, νk (k ≥ 1) be σ-finite measures

on T \ {1} such that

(4.44)

∫
T
|z − 1|`0dν(z) <∞,

∫
T
|z − 1|`0dνk(z) <∞,

for all k. Suppose that for all integers `1 ≥ 0, `2 ≥ 0 such that `1 + `2 ≥ `0, the relation

(4.45) lim
k→∞

∫
T
(z − 1)`1(z − 1)`2dνk(z) =

∫
T
(z − 1)`1(z − 1)`2dν(z)

holds true. Then for any ϕ ∈ C(T) such that ϕ(z)|z − 1|−`0 is continuous on T, we

have

(4.46) lim
k→∞

∫
T
ϕ(z)dνk(z) =

∫
T
ϕ(z)dν(z).

Proof. Applying Proposition 4.5 to the continuous function ϕ(z)|z−1|−`0 , for any ε > 0

we obtain a polynomial ϕ0(z) in z, z such that

|ϕ(z)|z − 1|−`0 − ϕ0(z)| ≤ ε, ∀z ∈ T.

Let us define ϕ±(z) = (Reϕ0(z)± ε)|z − 1|`0 , then it follows from the above that

(4.47) ϕ−(z) ≤ Reϕ(z) ≤ ϕ+(z) ∀z ∈ T,

(4.48) ϕ+(z)− ϕ−(z) = 2ε|z − 1|`0 .

By the construction of ϕ±, it can be represented as a polynomial in w = z−1, w = z−1

involving only products w`1w`2 with `1 + `2 ≥ `0. Thus, by (4.47), (4.48) we can write∫
T
ϕ−(z)dν(z) ≤

∫
T

Reϕ(z)dν(z) ≤
∫

T
ϕ+(z)dν(z),(4.49) ∫

T
ϕ+(z)dν(z)−

∫
T
ϕ−(z)dν(z) = 2ε

∫
T
|z − 1|`0dν(z),(4.50)

where all integrals are absolutely convergent by (4.44). Denote by C the value of the

integral in the r.h.s. of (4.50). Similarly to (4.49), we get

(4.51)

∫
T
ϕ−(z)dνk(z) ≤

∫
T

Reϕ(z)dνk(z) ≤
∫

T
ϕ+(z)dνk(z)

for all k ≥ 1. Now we can use (4.45) to pass to the limit in (4.51). This yields

lim sup
k→∞

∫
T

Reϕ(z)dνk(z) ≤
∫

T
ϕ+(z)dν(z) ≤

∫
T
ϕ(z)dν(z) + 2εC,

lim inf
k→∞

∫
T

Reϕ(z)dνk(z) ≥
∫

T
ϕ−(z)dν(z) ≥

∫
T
ϕ(z)dν(z)− 2εC.
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Since ε > 0 may be taken arbitrary small, we obtain

lim
k→∞

∫
T

Reϕ(z)dνk(z) =

∫
T

Reϕ(z)dν(z).

Since the same argument can be applied to the imaginary part of ϕ, we obtain the

required statement. �

Proof of Theorem 1.9. Recall that the measures µk and µm are defined in (1.5) and

(1.29) respectively. Hence the result (4.39) can be expressed as

lim
k→∞

k1−d
∫

T
(z − 1)`1(z − 1)`2dµk(z) =

∫
T
(z − 1)`1(z − 1)`2dµm(z).

Now it remains to apply Lemma 4.6 with νk = k1−dµk and ν = µm. �

Remark 4.7. As mentioned in Section 4.4, the difference between Lemma 4.4 and

Lemma 3.7 is due to the use of the Weierstrass approximation theorem in Lemma 4.6

and Section 3.4. Note that the set of polynomials {t`}`≥0 are complete in the space

C([−T, T ]) for any T > 0, but the polynomials {(z − 1)`}`≥0 are not complete in the

space C(T). By using instead the polynomials {(z− 1)`1(z− 1)`2}`1,`2≥0 we do obtain a

complete system in C(T) and the Weierstrass approximation theorem is therefore valid

in this case.
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5. Proof of Theorem 1.5 using Yafaev’s expansion

We here provide another proof of Theorem 1.5 using the methods discussed in the

proof of Theorem 1.9. Note that the Schrödinger operators (and hence the associated

scattering matrices) as defined in Theorems 1.5 and 1.9 are equivalent when the mag-

netic vector-potential A is identically zero. By using the methods of Theorem 1.9, we

may work directly with the scattering matrix as opposed to the Born approximation.

We denote by S(k) the scattering matrix associated with the Schrödinger operators

H0 = −∆, H = −∆ + V where V denotes the operator of multiplication by a real

valued potential function V (x). Let us now provide a statement of the main result of

this section.

Proposition 5.1. Suppose that the magnetic vector-potential A ≡ 0 and the electric

potential V is infinitely differentiable and satisfies the estimate

(5.1) |V (x)| ≤ Cα〈x〉−ρ−|α|, ρ > 1.

Let m = min{1, ρ− 1}. Then for any q ∈ N, the scattering matrix can be written as

(5.2) k[S(k)− I] = iOpk−1 [σ] +Rq(k),

where:

(i) The symbol σ can be represented as

(5.3) σ = σ0 + k−1σ1,

where σ0, σ1 ∈ S−m(T ∗Sd−1) and

(5.4) σ0(ω, ξ) = X(ω, ξ);

(ii) the operator Rq(k) has an integral kernel in the class Cq(Sd−1 × Sd−1) and its

Cq-norm is O(k−q) as k →∞.

Indeed, the statement of Proposition 5.1 is the representation of the scattering matrix

as a semiclassical ΨDO on the sphere with semiclassical parameter k, similarly to

Proposition 4.3 and Propositon 3.6.

Then Theorem 1.5 follows from this statement by repeating (with minor modifications)

arguments found elsewhere in the text, specifically Lemmas 4.4, 3.8 and 3.9 together

with the arguments of Section 3.4.

We begin by recalling from Section 4.1 the approximate solutions to the Schrödinger

equation Hu = k2u when the magnetic vector-potential A ≡ 0 and the corresponding

approximation to the scattering matrix. Using this approximation, we express the

scattering matrix as a semiclassical ΨDO on the sphere with semiclassical parameter

h = k−1 and symbol iX(ω, ξ), where X(ω, ξ) is defined in (1.14).
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5.1. Approximation to the scattering matrix. Let us briefly recall from Section 4.1

the approximate solutions to the Schrödinger equation Hu = k2u when the magnetic

vector-potential A ≡ 0. For each N ∈ N, the approximate solution is written as

(5.5) u
(N)
± (x, p) = u±(x, p) = eiΘ(x,p)υ

(N)
± (x, p), x ∈ Rd, p ∈ Rd, |p| = k,

where the function υ
(N)
± is expressed as an asymptotic series

(5.6) υ
(N)
± (x, p) =

N∑
n=0

(2ik)−nυ±n (x, p̂)

and we choose Θ(x, p) to be just the first term of (4.10) i.e.

Θ(x, p) = 〈x, p〉.

In particular, we note that Proposition 4.1 holds for the functions υ±n and

υ±0 (x, p̂) ≡ 1

(5.7) υ±1 (x, p̂) = ∓
∫ ∞

0

V (x± tp̂)dt.

By recalling the notation of Section 4.2, we may write the kernel of the approximation

to the scattering matrix as

s
(N)
0 (ω, ω′; k) = −iπkd−2(2π)−d×

×
∫

Λω0

[
u+(x, kω)(∂zu−)(x, kω′)− (∂zu+)(x, kω)u−(x, kω′)

]
dx

(5.8)

for ω, ω′ ∈ Ω. In particular, Proposition 4.2 holds for the kernel (5.8)

5.2. The scattering matrix as a ΨDO on the sphere. We now provide the proof

of Proposition 5.1 stated earlier.

Proof. We shall make reference to the proof of Proposition 4.3 wherever possible and

highlight only the significant differences. By repeating the same argument 1) from that

proof, we reduce the problem to approximating the integral kernel of S(k) locally in

any conical neighbourhood Ω, and hence we can use Proposition 4.2.

1) We rewrite the integral in (5.8). We rescale by the parameter k, and by a simple

calculation we see that (5.8) may be expressed as

ks0
(N)(ω, ω′; k) = (2i)−1kd−1(2π)1−d

∫
Λω0

e−ik〈ω−ω
′,x〉[ik〈ω + ω′, ω0〉υ(N)

+ (x, kω)υ
(N)
− (x, kω′)

+ υ
(N)
+ (x, kω)(∂zυ

(N)
− )(x, kω′)− υ(N)

− (x, kω′)(∂zυ
(N)
+ )(x, kω)]dx.

Let us denote by g the function

(5.9) g(x, kω, kω′) = k2[υ
(N)
+ (x, kω)υ

(N)
− (x, kω′)− 1− (2ik)−1(υ−1 (x, ω′)− υ+

1 (x, ω))]
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where the functions υ±1 are explicitly stated in (5.6). Then we may instead write

(5.10) ks
(N)
0 (ω, ω′; k) = kd−1(2π)1−d

∫
Λω0

e−ik〈ω−ω
′,x〉a(ω, ω′, x)dx

where

(5.11) a(ω, ω′, x) = 2−1k〈ω+ω′, ω0〉[1+(2ik)−1(υ−1 (x, ω′)−υ+
1 (x, ω))]+k−1a1(ω, ω′x),

2a1(ω, ω′, x) = g(x, kω, kω′) + iυ
(N)
− (x, kω′)(∂zυ

(N)
+ )(x, kω)−

− iυ(N)
+ (x, kω)(∂zυ

(N)
− )(x, kω′).

(5.12)

Note that the choice of a(ω, ω′, x) = 1
2
〈ω + ω′, ω0〉 in (5.10) yields a δ-function on the

sphere. Thus, we can write

(5.13)

k[s
(N)
0 (ω, ω′; k)− δ(ω − ω′)] = kd−1(2π)1−d

∫
Λω0

e−ik〈ω−ω
′,x〉(a0 + k−1a1)(ω, ω′, x)dx

where

(5.14) a0(ω, ω′, x) =
1

2
〈ω + ω′, ω0〉(2i)−1(υ−1 (x, ω′)− υ+

1 (x, ω)).

2) By changing variables in (5.10) in the same manner as 3) in the proof of Proposi-

tion 4.3, we obtain

(5.15) k[s
(N)
0 (ω, ω′; k)− δ(ω − ω′)] = kd−1(2π)1−d

∫
Λω

e−ik〈ω−ω
′,ξ〉b(ω, ω′, ξ)dξ,

where b = b0 + k−1b1 with

(5.16) bj(ω, ω
′, ξ) = J(ω, ω′)aj(ω, ω

′, x(ξ))

and J(ω, ω′) denotes the Jacobian of the linear map (4.27) considered as a map from

Λω to Λω0 . It is easy to see that J(ω, ω′) is a smooth function of ω, ω′ ∈ Ω and

(5.17) J(ω, ω) = 〈ω, ω0〉−1.

3) The right hand side of equation (5.15) is a semiclassical ΨDO with the amplitude

b, see (2.8). In order to complete the proof, by Proposition 2.5 if suffices to check the

estimates

(5.18) |∂αx∂βω∂
γ
ω′bj(ω, ω

′, ξ)| ≤ Cαβγ〈ξ〉−m−|α|,

for j = 0, 1 and all multi-indices α, β, γ uniformly over k ≥ 1, and to check the identity

(5.19) b0(ω, ω, ξ) = iX(ω, ξ).

Let us first check (5.19). Recalling the definition (1.14) of X(ω, ξ) and the definition

(5.6) of υ±1 , we get

iX(ω, ξ) = (2i)−1[υ−1 (ξ, ω)− υ+
1 (ξ, ω)].
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From this and (5.14), (5.16) and (5.17),

b0(ω, ω, ξ) = J(ω, ω)a0(ω, ω, x(ξ)) = iX(ω, x(ξ)),

where x(ξ) is the linear map (4.27). Next, by the definition of the map x(ξ), for ω = ω′

it takes the form x(ξ) = ξ + cω, and by the definition of the function X we have

X(ω, ξ + cω) = X(ω, ξ).

Thus, we obtain (5.19).

4) It remains to check that the estimates (5.18) are satisfied. This is essentially a

consequence of Proposition 4.1; let us check this. Recalling that m = min{1, ρ−1} and

using the estimates (4.13), we obtain

|∂αx∂βω∂
γ
ω′g(x, ω, ω′)| ≤ Cαβγ〈x〉−m−1−|α|,

k|∂αx∂βω∂
γ
ω′υ

(N)
± (x, kω)(∂zυ

(N)
∓ )(x, kω′)| ≤ Cαβγ〈x〉−m−|α|.

where all the estimates are uniform in k ≥ 1. It follows that a0 and a1, defined by

(5.14), (5.12) respectively, satisfy

(5.20) |∂αx∂βω∂
γ
ω′aj(ω, ω

′, x)| ≤ Cαβγ〈x〉−m−|α|

uniformly in k ≥ 1. Now from (5.20), (5.17) and (5.16), by an elementary calculation

we obtain (5.18). �
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Appendix A. Schatten-class operators

We begin by noting that all of the following information may be found in [4] Supple-

ment 1.

Let H be a Hilbert space and let T : H → H be a compact linear operator. By the

Hilbert Schmidt theorem, there exists a countable ordered set

λ1(T ∗T ) ≥ λ2(T ∗T ) ≥ · · · ≥ 0

with λn(T ∗T ) → 0 as n → ∞. The values λn(T ∗T ) represent the eigenvalues of the

operator T ∗T . Let us define the singular numbers

sn(T ) =
√
λn(T ∗T )

of T . For any ` ∈ [1,∞), we define the Schatten `-norm of T to be

‖T‖` =

(∑
n≥1

[sn(T )]`

) 1
`

.

The class S∞ denotes the set of all compact operators on H with the usual norm

‖T‖∞ = ‖T‖ = max
n∈N

sn(T ).

In particular, if 1 ≤ p < q ≤ +∞, we have the inclusion Sp ⊂ Sq.

We denote by L(H) the space of all bounded linear operators on H. Let us now describe

some standard properties of the Schatten norm:

‖BA‖` ≤ ‖B‖‖A‖`, A ∈ S`(H), B ∈ L(H),

‖AB‖` ≤ ‖B‖‖A‖`, A ∈ S`(H), B ∈ L(H),

‖A‖` = ‖A∗‖`, A ∈ S`(H).

Next, let ` ∈ [1,∞], and let `1 ∈ [1,∞], `2 ∈ [1,∞] be chosen such that `−1 = `−1
1 +`−1

2 .

Then we have the following Holder-type inequality:

(A.1) ‖AB‖` ≤ ‖A‖`1‖B‖`2 , A ∈ S`1(H), B ∈ S`2(H).

We next describe two important Schatten classes. The first is S2(H), which corresponds

to the space of all Hilbert Schmidt operators on H. We have the following important

proposition which enables us to calculate directly the Hilbert Schmidt norm.

Proposition A.1. Let H1 = L2(M1, dσ1), H2 = L2(M2, dσ1), where Mi is a measure

space and dσi the corresponding measure for i = 1, 2. Then T : H1 → H2 is a Hilbert-

Schmidt operator if and only if there exists a function

τ(m2,m1) ∈ L2(M2 ×M1, dσ2 × dσ1)
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called the integral kernel of T such that T is expressed via τ(m2,m1) in the form

(Tf)(m2) =

∫
M1

τ(m2,m1)f(m1)dσ1.

The function τ(m2,m1) is uniquely defined (to within values on a set of (dσ2 × dσ1)-

measure zero) and

(A.2) ‖T‖2
2 =

∫ ∫
|τ(m2,m1)|2dσ2dσ1.

The second class of note is S1(H), which corresponds to the space of all trace class

operators on H. A trace class operator A is a linear operator of the form

A =
∑

1≤j≤N

BjCj, Bj, Cj ∈ S2(H),

where N depends on A.

Definition A.2. Let A ∈ S1(H) and let {eα} be an orthonormal basis in H. Then the

trace of A, TrA, is defined as

TrA =
∑
α

〈Aeα, eα〉.

The trace of A is independent of the choice of orthonormal basis {eα}.

We now give a formula for the trace of a trace class operator A in L2(X) where X is

a measure space with measure dx. Note that since A is trace class, A is also a Hilbert

Schmidt operator. Hence Amay be expressed in terms of the kernel A(x, y) ∈ L2(X×X)

as

Au(x) =

∫
A(x, y)u(y)dy.

Then the trace of A may be expressed as

TrA =

∫
A(x, x)dx.

Next, we state a proposition which describes the relationship between the trace and the

eigenvalues for a self-adjoint trace class operator T .

Proposition A.3. Let T be a compact self-adjoint operator with {λn}n∈N denoting the

set of all its non-negative eigenvalues being repeated the same number of times as its

multiplicity. Then T ∈ S1(H) if and only if∑
n∈N

|λn| < +∞

and

TrT =
∑
n∈N

λn,

where TrT denotes the trace of T .
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We write the trace norm in terms of the trace as

‖T‖1 = Tr
(√

T ∗T
)
.

We end with a result on the trace norm of an integral operator.

Proposition A.4. Let Q ⊂ Rd be a cube and let K ∈ L2(Q) be an integral operator

with an integral kernel K(x, y). Let ` be the smallest even integer such that l > d/2.

Assume that

(A.3) M = max
|α|≤`

∫
Q

∫
Q

|∂αxk(x, y)|2dxdy < +∞.

Then K ∈ S1 and

(A.4) ‖K‖S1 ≤ C(Q)M,

where C(Q) depends only on the dimension d and on the size of the cube Q.

Proof. Consider the operator −∆ in L2(Q) with the Dirichlet boundary conditions on

the boundary of Q. This operator can be explicitly diagonalised by Fourier series. As

a consequence, it is easy to establish that (−∆)−`/2 ∈ S2 and the norm ‖(−∆)−`/2‖2

depends only on d and the size of Q. Now write

K = (−∆)−`/2(−∆)`/2K.

By (A.3), the operator (−∆)−`/2 belongs to S2 and further we have the estimate

‖(−∆)`/2K‖S2 ≤ C(d)M.

This completes the claim. �

Remark A.5. One can make this proposition sharper by considering non-integer values

of `; then (A.3) has to be formulated in terms of Sobolev spaces.

Corollary A.6. Let Q ⊂ Rd be a cube and let K ∈ L2(Q) be an integral operator with

an integral kernel K(x, y). Let ` be the smallest even integer such that ` > d/2. Assume

that C`(Q×Q). Then K ∈ S1 and

‖K‖S1 ≤ C(Q)‖K‖C` .

Remark A.7. By using a smooth atlas and a partition of unity, the above corollary can

be extended to the case when Q is a smooth compact manifold, where dimQ = d.

Appendix B. Symbol calculus

We here define the symbol calculus necessary for Section 4. We begin by defining the

class Sm = Sm(T ∗Sd−1) as the set containing functions f ∈ C∞(T ∗Sd−1) satisfying the

estimates

(B.1) |∂αx∂βωf(x, ω)| ≤ Cf
αβ〈x〉

m−|α|, m ∈ R,
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for all multi-indices α and β, where Cf
αβ is a constant depending only on α, β and f .

Lemma B.1. If f ∈ Sm(T ∗Sd−1) and g ∈ Sn(T ∗Sd−1), then fg ∈ Sm+n(T ∗Sd−1).

Proof. By using the product rule, it follows that

∂βω(fg)(x, ω) =
∑

β1+β2=β

β!

β1!β2!
(∂β1
ω f)(∂β2

ω g).

By using the product rule again on the above equation, we obtain

(B.2) ∂αx∂
β
ω(fg)(x, ω) =

∑
β1+β2=β
α1+α2=α

α!β!

α1!β1!α2!β2!
(∂α1
x ∂

β1
ω f)(∂α2

x ∂
β2
ω g).

Applying estimate (B.1) to the two terms in (B.2) yields

|∂αx∂βω(fg)(x, ω)| ≤ Cfg
αβ〈x〉

m−|α1|〈x〉n−|α2| = Cfg
αβ〈x〉

(m+n)−|α|

where Cfg
αβ is a polynomial combination of the constants Cf

αβ and Cg
αβ. �

Lemma B.2. If f ∈ S−m(T ∗Sd−1) for m > 0 then eif ∈ S0(T ∗Sd−1).

Proof. Firstly, note that in the case α = β = 0 it is trivial that eif ∈ S0(T ∗Sd−1).

So now suppose that |α + β| ≥ 1. Then by using the chain rule together with the

product rule, it follows that

∂βωe
if(x,ω) = eif(x,ω)

∑
(β1+···+β|β|=β)

|β|∏
i=1

(∂βiω f).

Repeating this procedure yields

∂αx∂
β
ωe

if(x,ω) = eif(x,ω)
∑

(α1+···+α|α|=α)

(β1+···+β|β|=β)

|α+β|∏
i=1

(∂αix ∂
βi
ω f).

Since f ∈ S−m(T ∗Sd−1) with m > 0, then

|∂αx∂βωeif(x,ω)| ≤ Cf
αβ〈x〉

−m−|α| ≤ Cf
αβ〈x〉

−|α|

so that eif ∈ S0(T ∗Sd−1) as required. �

Lemma B.3. If f ∈ S−m(T ∗Sd−1) with m > 0 then eif − 1 ∈ S−m(T ∗Sd−1).

Proof. Note first that for the case α = β = 0, we have the estimate

|eif − 1| ≤ C|f | ≤ C〈x〉−m,

since f ∈ S−m(T ∗Sd−1). Then for the case |α + β| ≥ 1, we may repeat the arguments

of Lemma B.2 and the result follows. �
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Appendix C. Proof of Proposition 2.4

C.1. Semiclassical ΨDO in Rn. Let Smcomp(R3n) be the class of amplitudes A =

A(x, y, ξ) that are compactly supported in x and y and which satisfy the estimates

|∂αξ ∂βx∂γyA(x, y, ξ)| ≤ Cαβγ〈ξ〉m−|α|

for multi-indices α, β and γ. This is a subset of a more general class defined in [23]

Definition 23.3. In the class defined in [23], there is no assumption of compact support.

For an amplitude function A ∈ Smcomp(R3n) we define the semiclassical pseudodifferential

operator Oph[A] : L2(Rn)→ L2(Rn) with semiclassical parameter h > 0 as

(Oph[A]u)(x) =

∫
Rn

∫
Rn
ei(x−y)·ξ/hA(x, y, ξ)u(y)dydξ.

We now state various norm estimates for the operator Oph[A] for A ∈ Smcomp(R3n).

Firstly, for m ≤ 0, the operator Oph[A] is bounded (cf. [23]). We will only be interested

in the case m < 0, and by the Calderon-Villancourt theorem (see e.g. [25]) combined

with a scaling argument, we obtain the estimate

sup
0<h<1

‖Oph[A]‖ ≤ C(A).

Next, for m < −n the operator Oph[A] belongs to the trace class and the trace norm

can be estimated by

‖Oph[A]‖1 ≤ Ch−n, m < −n.

This can be found for example in [23] Proposition A.2.4. Finally, by applying abstract

interpolation to the two estimates above, we have that Oph[A] belongs to the Schatten

class Sp for m < −n
p

and

(C.1) ‖Oph[A]‖p ≤ Ch−n/p, m < −n
p
.

Next, for A ∈ Smcomp(R3n) we define the left symbol AL of A as

AL(x, x′, ξ) = A(x, x, ξ)

and the right symbol AR of A as

AR(x, x′, ξ) = A(x′, x′, ξ).

Note that although the left and right symbols no longer enjoy the assumption of compact

support, the operators Oph[AL] and Oph[AR] are still well defined, see for instance [23]

Section 23. Further, the Schatten p-norm estimates (C.1) are still applicable to these

operators; see for instance [23] Proposition A.2.3 for the operator norm estimate and

[24] Section 3.4 for the trace class estimates.

Lemma C.1. Let A ∈ Smcomp(R3n), m < 0, and let p ≥ 1 with m < −n
p
. Then

‖Oph[A]−Oph[AL,R]‖p = O(h−
n
p

+1), h→ +0,



SPECTRAL DENSITY OF THE SCATTERING MATRIX 53

where the above refers to two separate estimates, one for the left symbol and one for the

right symbol.

Proof. By Taylor’s formula,

A(x, x′, ξ)− A(x, x, ξ) =
n∑
j=1

(x′j − xj)
∫ 1

0

∂

∂νj
A(x, ν, ξ)|ν=x+t(x′−x)dt.

It follows from this formula that the integral kernel of Oph[A]−Oph[AL] can be expressed

as
n∑
j=1

∫ 1

0

∫
Rn

(x′j − xj)ei(x−x
′)·ξ/h ∂

∂νj
A(x, ν, ξ)|ν=x+t(x′−x)dξdt

= ih

n∑
j=1

∫ 1

0

∫
Rn

(
∂

∂ξj
ei(x−x

′)·ξ/h
)
∂

∂νj
A(x, ν, ξ)|ν=x+t(x′−x)dξdt

= −ih
n∑
j=1

∫ 1

0

∫
Rn
ei(x−x

′)·ξ/hAj(x, x+ t(x′ − x), ξ)dξdt,

where

Aj(x, x+ t(x′ − x), ξ) =
∂2

∂νj∂ξj
A(x, ν, ξ)|ν=x+t(x′−x).

The result follows by applying the estimate (C.1) to the above. �

Lemma C.2. Let A ∈ Smcomp(R3n), m < 0, B ∈ Skcomp(R3n), k < 0 and let C ∈
Sm+k

comp(R3n) be such that

A(x, x, ξ)B(x, x, ξ) = C(x, x, ξ).

Then for p ≥ 1, m+ k < −n
p
, we have

‖Oph[A] Oph[B]−Oph[C]‖p = O(h−
n
p

+1), h→ +0.

Proof. First let

D(x, x′, ξ) = A(x, x, ξ)B(x′, x′, ξ).

Then by a direct calculation using the Fourier inversion formula (see e.g.[23], proof of

Theorem 23.6)

(C.2) Oph[AL] Oph[BR] = Oph[D].

Next, notice that DL = CL. Let r, q be such that r ≥ 1, q ≥ 1, with r−1 + q−1 = p−1

and m < −n
r
, k < −n

q
. Then by (C.2),

Oph[A] Oph[B]−Oph[C] = (Oph[A]−Oph[AL]) Oph[B]+

+ Oph[AL](Oph[B]−Oph[BR]) + (Oph[D]−Oph[DL]) + (Oph[CL]−Oph[C]).
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Now, using the Hölder type inequality for Schatten norms (A.1), we get using

Lemma C.1:

‖(Oph[A]−Oph[AL]) Oph[B]‖p ≤ ‖Oph[A]−Oph[AL]‖r‖Oph[B]‖q

= O(h−
n
r

+1)O(h−
n
q ) = O(h−

n
p

+1),

‖Oph[AL](Oph[B]−Oph[BR]‖p ≤ ‖Oph[AL]‖r‖Oph[B]−Oph[BR]‖q

= O(h−
n
r )O(h−

n
q

+1) = O(h−
n
p

+1),

‖Oph[D]−Oph[DL]‖p = O(h−
n
p

+1),

‖Oph[CL]−Oph[C]‖p = O(h−
n
p

+1).

Combining the above four estimates gives the required result. �

C.2. Change of variables. We now describe a change of variables for a pseudodiffer-

ential operator Oph[a] with symbol a ∈ Sm(T ∗Sd−1) with m < 0, to an operator Oph[A]

with A ∈ Smcomp(Λν × Λν × Λν) for ν ∈ Sd−1.

Fix ν ∈ Sd−1; we will denote by φν : Rn → Λν the orthogonal projection onto the plane

Λν . Explicitly,

φν(x) = x− 〈x, ν〉ν, x ∈ Rd.

Next, consider the hemispherical domain

Hν = {ω ∈ Sd−1 : 〈ω, ν〉 > 1/2}.

We denote Yν = φν(Hν); the set Yν forms a ball in Λν with the radius
√

3/2 centered at

the origin. The map φν restricted to Hν generates a unitary operator Uν : L2(Hν) →
L2(Yν),

(Uνf)(x) = 〈ν, ω〉−1/2f(ω), x = φν(ω).

Let a ∈ Sm(T ∗Sd−1) with m < 0. Assume that a(ω, ξ) = 0 for ω outside a ‘small’

compact set Ω with Ω ⊂ Hν for some ν ∈ Sd−1. Let χ ∈ C∞0 (Sd−1) be a function with

support in Hν such that χ = 1 on Ω. Then, by using repeated integration by parts, one

can check that the operator Oph[a](1−χ) has a smooth kernel and all partial derivatives

of this kernel are O(h∞). Thus, by the trace norm estimate for integral operators (A.4),

‖Oph[a](1− χ)‖1 = O(h∞), h→ 0.

This reduces our consideration to Oph[a]χ. By an explicit calculation, one checks that

(C.3) Uν Oph[a]χU∗ν = Oph[A],

where A ∈ Smcomp(Λν × Λν × Λν) and

(C.4) A(x, x, ξ) = a(ω, η), x = φν(ω), ξ = φω(η).
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Proof of Proposition 2.2. Let {µj} be a sufficiently fine smooth partition of unity on

the sphere, that is

1 =
∑
j

µj.

Writing

a(ω, ξ) =
∑
j

µj(ω)a(ω, ξ),

b(ω, ξ) =
∑
j

µj(ω)b(ω, ξ),

we can reduce the question to the case when both a and b are supported on some

hemispherical domain Hν . Now, as above we can choose χ such that χ ∈ C∞0 (Hν) and

χ = 1 on the support of a and b. With an O(h∞) error, we can replace Oph[a] by

Oph[a]χ, Oph[b] by Oph[b]χ and Oph[ab] by Oph[ab]χ. So we need to prove

‖(Oph[a]χ)(Oph[b]χ)− (Oph[ab]χ)‖p = O(h−
d−1
p

+1), h→ 0.

This is equivalent to

‖(Uν Oph[a]χU∗ν )(Uν Oph[b]χU
∗
ν )− (Uν Oph[ab]χU

∗
ν )‖p = O(h−

d−1
p

+1), h→ 0.

By the explicit formulas (C.3) and (C.4), this follows from Lemma C.2. �

Proof of Proposition 2.3. Clearly, Oph[a]∗ has the right symbol ā. Following the proce-

dure of change of variables in Section C.2 with obvious modifications, we obtain

‖(1− χ) Oph[a]∗‖1 = O(h∞), h→ 0,

UνχOph[a]∗Uν = Oph[A1],

where A1 ∈ Smcomp(Λν × Λν × Λν) and

A1(x, x, ξ) = A(x, x, ξ).

Thus by Lemma C.1,

‖Oph[A1]−Oph[Ā]‖p = O(h−
d−1
p

+1), h→ 0,

and the result follows. �
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