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Abstract: 36 

Alzheimer’s disease (AD) and sleep-disordered breathing (SDB) are prevalent conditions with 37 

rising burden. It is suggested that SDB may contribute to cognitive decline and advanced aging. 38 

Here, we assessed the link between self-reported SDB and gray matter volume in patients with 39 

AD, mild cognitive impairment (MCI) and healthy controls (HC). We further investigated 40 

whether SDB was associated with advanced brain aging. We included a total of 330 participants, 41 

divided based on self-reported history of SDB, and matched across diagnoses for age, sex and 42 

presence of the ApoE4 allele, from the Alzheimer’s Disease Neuroimaging Initiative. Gray-43 

matter volume was measured using voxel-wise morphometry and differences reflecting SDB, 44 

cognitive status, and their interaction were evaluated. Further, using an age-prediction model 45 

fitted on gray-matter data of external datasets, we predicted study participants’ age from their 46 

structural scans. Cognitive decline (MCI/AD diagnosis) and advanced age were associated with 47 

lower gray matter volume in various regions, particularly in the bilateral temporal lobes. 48 

BrainAGE was well predicted from the morphological data in HC and, as expected, elevated in 49 

MCI and particularly in AD. However, there was neither a significant difference between 50 

regional gray matter volume in any diagnostic group related to the SDB status nor an SDB-by-51 

cognitive status interaction. Also, we found neither a significant difference in BrainAGE gap 52 

(estimated - chronological age) related to SDB nor an SDB-by-cognitive status interaction. In 53 

summary, contrary to our expectations, we were not able to find a general nor a diagnostic 54 

specific effect on either gray-matter volumetric or brain aging. 55 

Statement of significance: Dementia syndromes including Alzheimer’s disease (AD), are a 56 

major global concern, and unraveling modifiable predisposing risk factors is indispensable. 57 

Sleep-disordered breathing (SDB) and its most prevalent form, obstructive sleep apnea, are 58 
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suggested as modifiable risk factors of AD, but their contribution to AD hallmarks, like brain 59 

atrophy and advanced brain aging, is not clear to this day. While self-reported SDB is suggested 60 

to propagate aging process and cognitive decline to AD in clinical studies, here, we demonstrated 61 

that, SDB might not necessarily associate to brain atrophy and the advanced brain aging assessed 62 

by morphological data, in AD progession. However, multimodal longitudinal studies with 63 

polysomnographic assessment of SDB are needed to confirm such fundings. 64 

Keywords: Sleep-disordered breathing; Obstructive Sleep Apnea; Alzheimer’s disease; Mild 65 

cognitive impairment; Age prediction; BrainAGE; Gray matter volume; Alzheimer’s Disease 66 

Neuroimaging Initiative 67 

68 
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Introduction: 69 

Dementia syndromes including Alzheimer’s disease (AD), are a major global concern, with 70 

prevalence of 712 cases per 100,000 population in 2016, affecting 40-50 million people 71 

worldwide1. Considering that the numbers of AD patients have been more than doubled during 72 

past three decades1, it is critical to unravel the predisposing risk factors 2. These include 73 

advanced aging of the world population, but also modifiable risk factors such as cardiovascular 74 

disease, diabetes2, obesity3, and potentially sleep-disordered breathing (SDB)4. SDB ranges from 75 

partial (episodical) to complete airway obstruction leading to intermittent hypoxia, sleep 76 

fragmentation and intrathoracic pressure swings5. A bidirectional relationship has been proposed 77 

for SDB, including its most common form, obstructive sleep apnea (OSA), and AD. In 78 

particular, it has been suggested that patients with OSA are more likely to develop mild cognitive 79 

impairment (MCI) or dementia6,7. Moreover, a meta-analysis demonstrated that prevalence of 80 

OSA is five times higher in patients with AD than cognitively unimpaired individuals of the 81 

same age4.  82 

Gray matter atrophy is a prime feature of pathologic brain aging8 and a well-known 83 

finding in AD, starting primarily in the medial temporal region and then globally affecting the 84 

brain as the disease progresses9–11. Morphometric analysis of the structural magnetic resonance 85 

images (MRI) has shown to reliably reveal this effect12. While some studies have shown gray 86 

matter atrophy in brain regions like the hippocampus, a key region involved in AD, to be 87 

associated with SDB in non-demented subjects13–16, others have shown either null results17 or 88 

paradoxical hypertrophy or thickening of gray matter in SDB18–24. Discrepancy between these 89 

findings is attributed to variations in cognitive status of participants, definitions of SDB severity, 90 

and method of gray matter volume assessment14–16,18–24. Thus, it remains unclear, whether SDB 91 
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may result in brain atrophy similar to the volume changes in AD and hence contribute to its 92 

pathophysiology. 93 

Aside from regional atrophy of the medial temporal lobe, AD is associated with advanced 94 

multivariate patterns of brain aging. In particular, it has been shown that individual subjects’ age 95 

can be predicted from gray matter morphometry in the cognitively normal population using 96 

machine-learning approaches25. That is, models trained to predict individuals ages based on 97 

larger cohorts of reference scans allow to estimate the age of a new person with a mean accuracy 98 

of 4-5 years26, while neurodegenerative disorders show a reliable pattern of advanced aging, i.e., 99 

a positive BrainAGE score (difference between age predicted based on the morphometric pattern 100 

and chronological age)25,27–29. Whether accelerated brain aging as seen in AD and to a lesser 101 

degree MCI is also present in potentially related conditions such as SDB is still an open question. 102 

The aim of the current study is to shed further light on the potential relationship between 103 

brain atrophy patterns in SDB and AD at the regional and global level, answering two questions. 104 

1) Do patients with SDB show grey matter atrophy across or in interaction with cognitive status 105 

(healthy control (HC), MCI, AD)? 2) Do patients with SDB show advanced brain aging across or 106 

in interaction with cognitive status (HC, MCI, AD)? To this end, we used data from the 107 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), and established the validity of our 108 

methods by replicating previous findings for both aims in MCI and AD, and then assessed gray 109 

matter volume and BrainAGE differences between SBD+ and SBD-, including interactions with 110 

cognitive status.  111 
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Methods: 112 

Participants 113 

Subjects were drawn from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 114 

database (adni.loni.usc.edu)30 based on their cognitive status and the medical history regarding 115 

SDB7. Diagnoses of MCI and AD were based on the ADNI criteria. Subjects with self-reported 116 

“sleep apnea” or “obstructive sleep apnea” or “OSA” symptoms or receiving treatment with 117 

“Continuous Positive Airway Pressure” (or “CPAP”) or “Bilevel Positive Airway Pressure” (or 118 

“BiPAP”/“BPAP”) were labeled as “SDB+”. wo independent physicians reviewed medical 119 

history to confirm diagnosis and grouping the subjects. Demographic and clinical variables were 120 

extracted for all individuals, missing covariate data were assessed and imputation was used for 5 121 

participants with missing data-points. Using 1:1 propensity score matching method, we 122 

assembled 6 distinct sub-groups according to their cognitive (HC, MCI, AD) and SDB (SDB+ 123 

and SDB-) status. Covariates included in the matching were age, sex, years of education, body-124 

mass index, cognitive status (AD/MCI/HC), presence of the Apolipoprotein E4 (ApoE4) allele, 125 

history of SDB treatment (only when matching between SDB+ subjects), T1 imaging protocol 126 

and, field strength (Table 1). Only subjects that passed the quality assessment tools of the CAT 127 

toolbox, including weighted image quality rating based on basic image properties and noise and 128 

geometric distortions, as well as checking homogeneity through the sample, were considered. 129 

Imaging acquisition and preprocessing 130 

Participants had undergone a standardized protocol for high-resolution MRI T1 scans of 131 

the brain as previously described31. T1 imaging acquisition parameters were: TR= 2400 ms, 132 

minimum full TE, TI=1000 ms, flip angle= 8°, 24 cm field of view, acquisition matrix of 192 133 

×192 ×166 and with 1.25 ×1.25 ×1.2 mm3 slice size. We used Computational Anatomy Toolbox 134 
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(CAT) v1232 and SPM12 (www.fil.ac.uk/spm) to perform voxel-based morphometry (VBM). 135 

This included correcting the bias-field distortions and noise removal, skull stripping, 136 

normalization to standard space and brain tissue segmentation into grey matter, white matter, and 137 

cerebrospinal fluid. Grey matter segments were modulated to represent actual gray matter 138 

volume. We then performed a biologically informed compression of the VBM data to 637 gray 139 

matter parcels based existing in-vivo brain parcellation33,34. Thus, grey matter volume of each 140 

participant was represented by 637 features each representing an individual parcel volume of that 141 

participant. All consecutive analyses were performed on this data. 142 

 143 

Statistical analysis of gray matter volume 144 

Statistical analysis of gray matter volume of parcels included three consecutive parts, 145 

similar to approach used by Bludau et. al35; generating reference statistics, permuted statistics, 146 

and a family-wise error (FWE) correction for multiple comparisons. Here we used an n-way 147 

analysis of variance, to test effect of age, cognitive status (AD/MCI/HC), SDB status and SDB-148 

by-cognitive status interaction, separately as independent variables (factors), on gray matter 149 

volume of each parcel as dependent variable. The F values (per parcel) of this ANOVA were 150 

considered as the reference statistics. In the subsequent permutation statistics for each factor, we 151 

randomly shuffled the labels for that factor 10,000 times, replicated the analysis and recorded the 152 

F-values to build a null-distribution. The comparison of the reference statistic with this 153 

distribution then allows non-parametric inference per parcel and factor, yielding uncorrected p-154 

values. Importantly, however, we also recorded, per replication of the permutation, the highest 155 

statistics in the random data across the entire set, i.e., 637 brain regions, building a null-156 
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distribution for family-wise error correction. The threshold corresponding to pFWE < 0.05 was 157 

then provided by the (set-wise maximum) value exceeded only in 5% of the replications. 158 

Age prediction 159 

Brain age was estimated from the atlas-based representations of individual brain anatomy 160 

using a support vector machine (SVM) ensemble model. An independent (reference) large 161 

dataset consisting of 2089 (Figure 1A.1) subjects (between 55 and 85 years old) was compiled 162 

from several large public and private datasets including 1000Brains36, Cambridge Centre for 163 

Ageing and Neuroscience or Cam-CAN 37, OpenfMRI38, Dallas Lifespan Brain Study or DLBS, 164 

Consortium for Reliability and Reproducibility or CoRR39, IXI, and Enhanced Nathan Kline 165 

Institute-Rockland Sample or eNKI-RS40. Given the imbalance between age brackets, sites, and 166 

sex, we performed a stratified subsampling, choosing the same number of men and women, as 167 

well as similar numbers across age-brackets and a maximum of 30 subjects per age-bracket and 168 

sex per site. The actual subjects sampled in each replication from the overall database were 169 

drawn from the pool independently at random without replacement. Each of these sampled sets 170 

was then used to fit an individual SVM providing a weak learner for the ensemble which was 171 

applied to the test-data, i.e., the ADNI sample. The process was repeated 10,000 times, yielding 172 

10,000 age predictions based on models trained on (different) balanced subsamples of the multi-173 

cohort reference data. These predictions were then averaged (“bagging”) to yield the final age 174 

prediction based on the 637-parcel representation of the VBM data41. Each subjects BrainAGE 175 

score was finally calculated as bagged predicted age minus chronological age for each subject 176 

(Figure 1).   177 
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Results 178 

Both SDB+ and SDB- groups comprised of 24 AD, 111 MCI, and 30 HC participants, 179 

respectively. As enforced through the matching, there was no statistically significant difference 180 

in demographic variables, cognitive status, and presence of the ApoE4 allele between SDB 181 

groups. Table 1 summarizes the characteristics of all study groups. 182 

Effects on grey matter volume 183 

As noted in the methods, association of parcel-wise gray matter volume with age, 184 

cognitive status, SDB status, and SDB-by-cognitive status interaction was assessed using non-185 

parametric inference with FWE correction for multiple comparisons. There were strong (PFWE 186 

<0.001) and widespread negative associations of regional grey matter volume with age, in 187 

particular in the bilateral temporal lobes, bilateral prefrontal, middle and superior frontal areas, 188 

bilateral medial and lateral occipital areas, cerebellum and thalamus, caudate and putamen in the 189 

subcortical gray matter (Figure 2A). The cognitive status was significantly associated with 190 

reduced gray matter volume in many bilateral parcels with dominancy in the left hemisphere 191 

(PFWE<0.001). Bilateral temporal lobes including fusiform gyri, medial temporal lobes and 192 

hippocampal formations, and inferior and middle temporal lobes had significantly lower volume 193 

in participants with MCI and particularly AD. Moreover, reduced gray matter volume was seen 194 

in bilateral insula, middle frontal, and cingulate cortices, as well as left superior frontal cortex 195 

(Figure 2B). In turn, when testing for effects of SDB status and SDB-by-cognitive status 196 

interaction, we found no significant regions anywhere in the brain (all PFWE > 0.05). 197 

Effects on estimated brain age 198 
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The mean absolute error between predicted and chronological age in the HC group was 199 

3.59 years, indicative of the very good performance of the ensemble prediction model. We then 200 

calculated the BrainAGE score as the per-subject difference between predicted and chronological 201 

age and tested for its association with cognitive status, SDB status, and the SDB-by-cognitive 202 

status interaction. As it is shown in Figure 3, participants with MCI and in particular AD showed 203 

an advanced brain age (on average 4.0 and 9.1 years, respectively), in line with previous studies. 204 

However, there was no significant effect on BrainAGE scores associated with SDB status, nor 205 

was there a positive SDB-by-cognitive status interaction suggesting that SDB may not lead to 206 

advanced brain aging (Figure 3C).   207 
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Discussion 208 

Our findings confirmed previously reported gray matter atrophy and accelerated 209 

biological brain aging in patients with MCI and AD, corroborating the robustness and validity of 210 

our analytical approach. Importantly, we were not able to demonstrate any effect of SDB, 211 

independently or in interaction with cognitive status, on either regional grey matter volume or 212 

brain aging score. Several limitations however, may compromise the interpretation of our results. 213 

Sample sizes of SDB+ subjects in the HC and AD groups were small. Moreover, the groups were 214 

heterogeneous in terms of clinical characteristics and imaging specifications. We used 215 

propensity-score matching and stratified subsampling of external datasets to minimize the effects 216 

of heterogeneity. As previously mentioned on publications using the ADNI database7,42, the self-217 

reported measure of SDB can be influenced by both the recall bias of cognitively impaired 218 

subjects as well as by a high prevalence of undiagnosed OSA in the general population, therefore 219 

increasing the probability of false negative cases in the SDB- groups7.  Moreover,  assessment of 220 

the severity of SDB and disease duration were not available.   221 

Grey matter volume alterations in AD and SDB 222 

One of the main characteristics of MCI and AD is generalized gray matter loss in the 223 

brain, which mostly starts in the medial temporal lobe and multimodal association areas8–10. 224 

Neuroimaging meta-analyses have demonstrated atrophy in the medial temporal lobe, limbic 225 

regions (left parahippocampl gyrus, left posterior cingulate gyrus, amygdala and uncus), 226 

thalamus, temporal, parietal, frontal and cingulate cortices43,44. A similar but milder distribution 227 

of gray matter atrophy is evident in brain of patients with MCI43,45. In accordance with the 228 

previous brain volumetric studies, we found diffuse gray matter loss in MCI and AD. The 229 
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atrophy was mainly located in the bilateral temporal lobe and medial temporal areas with higher 230 

intensity in AD compared to MCI. 231 

Assessing the volumetric changes due to SDB, we did not observe any significant 232 

alteration in gray matter volume, neither in HC subjects, nor in patients with MCI or AD. 233 

Furthermore, self-reported SDB interaction with cognitive status  (i.e. HC, MCI or AD) showed 234 

no associations with gray matter volume. Historically, there has been an inability to replicate 235 

results among the brain imaging studies of SDB in non-demented populations. While several 236 

studies have reported gray matter atrophy in the insula, amygdala, middle and lateral temporal 237 

regions, and cerebellum in non-demented populations with SDB13–16,46–48, others have either 238 

shown no associations17,49 or paradoxical enhancement in the gray matter volume of regions like 239 

the motor cortices, prefrontal cortex, thalamus, putamen, and the hippocampus20–24,47. In 240 

addition, there is a general lack of longitudinal studies, which would enable the study of non-241 

linear associations between SDB and cortical atrophy as suggested by these cross-sectional 242 

findings. Despite these important gaps in the literature, three meta-analyses have concluded that 243 

OSA is associated with gray matter atrophy in a few selected regions including the cingulate, 244 

amygdala, hippocampus, right central insula, right middle temporal gyrus, right premotor cortex, 245 

and cerebellum13,50,51.  246 

The observed null association between SDB and gray matter volume should however be 247 

interpreted with caution. First, it has been suggested that aging may have partially protective 248 

mechanisms against SDB, such as reduced production of oxidative stress after apneas and 249 

decreased blood pressure and heart rate responses after arousals23. The average old age of ADNI 250 

subjects (~75 years-old) could therefore explain this non-significant association between SDB 251 

and brain morphometry. Despite numerous studies and meta-analyses focused on the changes in 252 
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gray matter in middle-aged patients with OSA, there are few studies on gray matter changes in 253 

older adults with SDB and neither have found any decreases in thickness or volume in cortical 254 

gray matter52–54. Second, it is possible that SDB-related brain damage impacts more selectively 255 

brain function55 or amyloid burden17 than gray matter volume alone, or that differential diagnosis 256 

between SDB-related and age-related brain atrophy is difficult in single-point observational 257 

studies, particulary in those cases in which groups are matched by age and cognitive status. 258 

Third,  this could also be a sign of: a) survival bias, as most SDB+ may have transitioned to AD 259 

and only those with very low cortical atrophy or high in cognitive reserve at disease onset would 260 

remain as HC or MCI at cross-section; or, b) selection bias due to matching by the ApoE4 allele, 261 

as it has been reported that the ApoE4 allele interacts with brain aging scores measured by the 262 

BrainAGE method, revealing potential neuronal compensation in healthy ApoE4+ adults73, 263 

which could also result in null findings. Fourth, we did not account for other comorbidities and 264 

possible confounders alongside age or presence of the ApoE4 allele in the prediction models72. 265 

Finally, previous MRI studies mostly recruited patients with PSG-diagnosed OSA from sleep 266 

clinics, which might be a different population from those recruited in memory clinics with self-267 

reported assessment of SDB based on clinical interview. 268 

We were also not able to demonstrate any interaction between SDB and MCI or AD with 269 

brain atrophy. This is indicative that despite the frequent clinical co-occurrence of SDB and AD, 270 

there may be no synergy between them in accelerating gray matter atrophy. Recent investigations 271 

using cerebrospinal fluid and PET imaging suggest an interplay between amyloid 272 

production/clearance and SDB17,42,56–58. These include an impairment in the cerebrospinal fluid–273 

interstitial fluid exchange60, cerebral edema secondary to an intermittent hypoxia61 (similar to the 274 

increase in brain  volume and pseudoatrophy observed in multiple sclerosis), and compensatory 275 
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excessive neuronal synaptic activity62 in SDB, all of which could potentially lead to an increase 276 

in beta-amyloid deposition and its clearance reduction. It is therefore possible that the presence 277 

of SDB is associated with AD risk only through beta-amyloid deposition42,58 or altered brain 278 

function63–65 , but an interaction should have been observed in MCI or AD where it is generally 279 

accepted that neuronal loss follows amyloid deposition. More studies are needed to better 280 

understand the compensatory increase in gray matter volume in SDB  suggested by several 281 

studies, as well as the precise progression of brain atrophy in AD, as both may have contributed 282 

to obtaining such negative findings.  283 

 284 

BrainAGE prediction in AD and SDB 285 

Brain age prediction methods have been used in cognitively normal subjects26,66 and 286 

several studies have used the ADNI dataset with mean absolute error (MAE) ranging from 3 to 6 287 

years25,27. We implemented an advanced sensitive BrainAGE estimation method to detect 288 

pathologic brain aging, using repeated SVM models fitted on parcel-wise gray matter volume 289 

data of on stratified subsamples from external cohorts, making the model less sensitive to 290 

heterogeneity in images25. Compared to previous studies, while using multiple datasets for 291 

training prediction model, our age prediction results were accurate with an MAE of 3.6 years in 292 

HCs. Replication of previous findings in AD, taken together with acceptable MAE, is indicative 293 

of reliability of our proposed method in gray matter volume assessment and age estimation 294 

While there is no exact definition for accelerated brain aging, BrainAGE score has been 295 

shown to be a sensitive predictor of disease progression in dementia27–29. Previous findings on 296 

increased BrainAGE score in MCI and AD course67–69, are in agreement with the reported 297 

accelerated aging of the demented brain shown in-vivo and ex-vivo studies70. The BrainAGE 298 
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score in studies using ADNI ranged from almost zero for patients with stable MCI, to 5.7–6.2 299 

years for patients with progressive MCI, and reached up to 10 years for patients with AD27. We 300 

found the average 4.1 and 9 BrainAGE scores in patients with AD and MCI, in agreement to 301 

previous findings using ADNI data. Since we did not distinguish patients with progressive from 302 

stable MCI, our results in the MCI group were modest compared to other studies including 303 

patients with late or progressive MCI. 304 

Conclusions 305 

In summary, we have confirmed the acceleration of brain atrophy and advanced brain 306 

aging in MCI and AD participants from the ADNI cohort compared to healthy controls. We 307 

further found that self-reported SDB in subjects with a diagnosis of HC, MCI or AD was neither 308 

associated with gray matter volume reduction, nor with accelerated brain aging. While SDB is 309 

suggested to propagate the aging process, amyloid burden and cognitive decline to AD, it may 310 

not necessarily associate to brain atrophy and the estimated brain age in AD progession. 311 

312 
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Table 1. Characteristics of the study subjects 

SDB- SDB+ P value 

N: 165 n:165 
 

Age (Mean (SD)) 73.99 (7.70) 74.91 (7.18) 0.26 

Sex, Female (%) 61 (37.0) 48 (29.1) 0.16 

Cognitive status (%) 
  

1.00 

   AD 24 (14.5) 24 (14.5) 
 

   MCI 111 (67.3) 111 (67.3) 
 

   HC 30 (18.2) 30 (18.2) 
 

BMI (Mean (SD)) 28.97 (5.95) 29.08 (5.45) 0.86 

Education years (Mean 

(SD)) 
16.07 (2.75) 16.16 (2.65) 0.74 

Handedness = Left (%) 18 (10.9) 18 (10.9) 1.00 

Apoe4 allele count (%) 
  

0.13 

   0 71 (46.7) 94 (58.0) 
 

   1 64 (42.1) 53 (32.7) 
 

   2 17 (11.2) 15 (9.3) 
 

MMSE (Mean (SD))* 26.07 (4.13) 25.44 (4.93) 0.25 

CPAP/Surgery (%)* 0 (0.0) 56 (33.9) – 

Protocol, MP-RAGE (%) 118 (71.5) 124 (75.2) 0.53 

SDB: Sleep-disordered breathing, AD: Alzheimer’s disease, MCI: Mild cognitive impairment, 

HC: healthy control, BMI: Body-mass index, MMSE: Mini-mental state examination, MP-

RAGE: 3D magnetization prepared rapid gradient echo, CPAP: Continuous positive airway 

pressure 

*Not included in the matching  
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Figures’ legends 

 

Figure 1. Main processing steps for parcel based volumetric study and age prediction based on 

gray matter morphometry. A1. T1 brain images of 2089 non-demented age, sex, and site 

stratified subjects were acquired through several imaging databases for development of age-

prediction model (Training images). To obtain voxel-based gray matter volume data, standard 

pre-processing steps including normalization, segmentation and modulation for non-linear 

transformations have been done using Computational Anatomical Toolbox 12 (CAT12). A 

biologically informed compression of the voxel-wise gray matter volume data to 600 cortical and 

37 subcortical regions was applied accordingly. B. Parcel-based results were then used as input 

for training the support vector machine (SVM) used for age-prediction model. 

A2. Similar pre-processing steps were done on T1 brain images of study-specific SDB+ and 

SDB- subjects (Study-specific images). Parcel-based results were used in two parallel analyses; 

1) C. inputted to partial ANOVA tests for gray matter volume assessment according to presence 

of SDB and cognitive status as contrasts and 2) D. Decomposed with an OPNMF approach and 

inputted in the age prediction SVM model developed on the training images. 

 

Figure 2. Association between volumetric data of cortical and subcortical parcels and age and 

cognitive status of subjects. Gray matter volume differences in 600 cortical parcels and 37 

subcortical volume was assessed using three steps of using F value of an n-way analysis of 

variance as reference statistics, running 10,000 permutations per randomly shuffling different 

parcels, under assumption of label exchangeability, and correction of p values using family wise 

error (FWE) method. Significant parcels are illustrated as the heated areas on the brain maps 

considering (A) age and (B) cognitive status. Since there were no significant results regarding 

SDB presence or SDB-by-diagnosis interaction, results according these factors have not been 

illustrated here.  

 

Figure 3. Results of the BrainAGE prediction method based on the presence of SDB and 

cognitive status. A. Relationship between chronological age and the predicted age from T1 

images in the AD, MCI and HC groups. There is an evident higher predicted age for the 

participants AD and MCI compared to HC group, in accordance with advanced pathological 
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brain aging in the AD course. B. The BrainAGE score shows positive and bigger deviation from 

chronological age in the AD and MCI groups. C. Despite the significantly higher BrainAGE 

deviation associated with AD and MCI, no significant deviation was seen between BrainAGE 

score of SDB subgroups. 
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