
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

The role of PAK6 in HGF-induced prostate cancer cell migration

Fram, Sally

Awarding institution:
King's College London

Download date: 01. Jan. 2025



This electronic theses or dissertation has been 

downloaded from the King’s Research Portal at  

https://kclpure.kcl.ac.uk/portal/  

 

 

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information 

derived from it may be published without proper acknowledgement. 

 

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk 

providing details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENSE AGREEMENT                                                                         

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 

Unported License. http://creativecommons.org/licenses/by-nc-nd/3.0/  

You are free to: 

 Share: to copy, distribute and transmit the work  
 
Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in 
any way that suggests that they endorse you or your use of the work).  

 Non Commercial: You may not use this work for commercial purposes. 

 No Derivative Works - You may not alter, transform, or build upon this work. 
 

Any of these conditions can be waived if you receive permission from the author. Your fair dealings 

and other rights are in no way affected by the above. 

 

 

 

 

 

 

 

 

 

Title:The role of PAK6 in HGF-induced prostate cancer cell migration

Author:Sally Fram



1 
 

 

The role of PAK6 in HGF-induced prostate 

cancer cell migration  

 

 

Sally Teresa Fram 

 

 

 

Division of Cancer Studies 

King’s College London 

 

 

Submitted to fulfil the requirements of the degree of PhD 

 

 

 

I declare that the work presented in this thesis is the work of the author and 

others’ work is fully acknowledged where included 

 



2 
 

Acknowledgements  

I would like to thank my supervisor, Claire Wells, for her supervision and guidance as 

well as her invaluable advice throughout the course of my PhD. I would also like to 

thank my second supervisor Anne Ridley for all her help and advice. 

 

I would also like to thank Andrew Whale for all his technical assistance, particularly in 

the Molecular Biology aspect of the project. Thank you to all the members of the Wells’ 

lab - Anna Dart, Fariesha Hashim, Fahim Ismail, Helen King and Nicole Taylor; and to 

the many others that have helped in the completion of this work.  

 

To Anna and Fariesha – my fellow ‘powerpuff’ girls! I’ll miss all our laughs and jokes, 

this whole experience would not have been the same without you both. Thanks for 

being such great friends; I hope to share many more fun times with you both in the 

future. Fariesha, we did it! Anna, thank you so much for all your help and motivating 

words during the writing of this thesis – you’ve been amazing! 

 

I would also like to thank my friends and family for their constant love and support. I 

owe the greatest thank you to my mum and dad who always strived to provide the best 

for me, especially throughout my education. The opportunity of pursuing a PhD would 

not have been possible without them.  

 

Words cannot express how grateful I am to my husband, Stu. Thank you for believing in 

me and for all your patience, encouragement and unconditional love throughout the 

PhD. You have celebrated with me during the highs and comforted me during the lows - 

I could not have done this without you. 

 

To my late father, Freddy; you fought and lost your battle to cancer during my A-levels 

and what you endured led me to pursue a career in science and eventually a PhD in 

cancer research. You were the best dad anyone could wish for; always smiling, always 

caring. I know that this achievement would have made you so proud and happy and I 

wish that you could have been here to share it with me. I dedicate this thesis in the 

loving memory of my dad. 

 

 



3 
 

Abstract 

Cell migration plays a significant role in carcinoma metastasis in which cancer cells 

move from the primary site and establish tumours at a secondary location. During 

tumour progression cancer cells can assume a migratory phenotype which is 

characterised by cell-cell dissociation and single cells adopting a migratory 

morphology. Hepatocyte growth factor (HGF) signalling is known to induce cell-cell 

dissociation and is associated with prostate carcinoma progression.  

 

HGF-induced cell-cell dissociation and migration require the activity of the Rho family 

GTPases RhoA, Rac1 and Cdc42 and their effector proteins, p21-activated kinases 

(PAKs), which are a family of mammalian serine/threonine protein kinases. PAK6, a 

PAK family member, is over-expressed in prostate cancer but little is known about its 

function in cells. This project investigated the potential role of PAK6 downstream of 

HGF in DU145 colony-forming prostate cancer cells. These cells exhibit prominent 

epithelial-cadherin (E-cadherin)-associated cell-cell junctions and ‘scatter’ upon HGF 

stimulation.  

 

Studies described here show that HGF addition increases PAK6 autophosphorylation 

and that PAK6 depletion inhibits HGF-induced DU145 cell scattering where these cells 

retain junctional E-cadherin. Moreover, PAK6 over-expression induces cell elongation 

and colony escape in unstimulated DU145 cells and PAK6 localises to E-cadherin 

positive cell junctions. Functional studies identified IQ motif containing GTPase 

activating protein 1 (IQGAP1) as a PAK6 binding partner in DU145 cells. Furthermore, 

PAK6 interacts with IQGAP1 in an HGF-dependent manner and both proteins act 

synergistically to induce cell colony escape. Additional studies suggest a complex 

relationship between IQGAP1, PAK6 and E-cadherin during HGF-induced junctional 

disassembly where IQGAP1 mediates PAK6 activity. 

 

The work presented here demonstrates that PAK6 has an important function during 

HGF-induced cancer cell-cell dissociation. 
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Chapter 1 – Introduction 

1.1 Cell migration 

1.1.1 The importance of cell migration 

Cell migration is a dynamic process that is required during various physiological 

activities such as morphogenesis (Vasilyev et al., 2009; Zhang et al., 2011), wound 

healing (Krawczyk, 1971; Ortonne et al., 1981; Schneider et al., 2010) and immune 

responses (Tomura et al., 2010; Tomura et al., 2008). Moreover, cell movement is 

involved in several diseases including atherosclerosis (Prescott et al., 1989; Vogt et al., 

2008) and rheumatoid arthritis (McInnes et al., 1996; Shadidi et al., 2002). Cell 

migration also plays a significant role in carcinoma metastasis (Chaffer and Weinberg, 

2011).  

 

1.1.2 The role of the actin cytoskeleton during cell migration 

During cell migration, the ability to re-organise the actin cytoskeleton is a fundamental 

requirement as the actin cytoskeleton is responsible for the changes in cell shape and the 

generation of forces that are required for cells to migrate (Hall, 1998). Actin filament 

turnover is important for the regulation of the actin cytoskeleton. Actin exists in two 

forms, a monomeric form, termed globular actin (G-actin), and a polymeric form known 

as filamentous actin (F-actin) (Straub, 1943). The G-actin monomer acts as a position of 

nucleation to generate F-actin filaments in a process termed polymerisation 

(Mommaerts, 1952). The F-actin generated by polymerisation is in a head-to-tail 

orientation (Wegner, 1976). Furthermore, the nucleation of G-actin monomers occurs 

more readily at the ‘barbed’ end of actin filaments (Pollard and Borisy, 2003). Thus the 

actin filaments exhibit polarity and are arranged with their fast-growing ends pointing 

towards the plasma membrane and this enables directed actin extension (Small et al., 

1978).  

 

Lamellipodia and filopodia are both products of this actin dependent protrusion and 

contribute to cell motility (Ridley, 2011). Lamellipodia can be characterised by their flat 

and broad morphology; in contrast, filopodia are recognised as finger-like projections 

(Small et al., 2002). In the body of the cell actin filaments are arranged as anti-parallel 

fibers, termed stress fibers; these fibers create the contractile forces that are required 

during cell movement (Katoh et al., 2001). Indeed, experiments using photoactivatable 
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caged-fluorescent actin demonstrated the rapid turnover of actin subunits within the 

lamellipodium of migrating cells (Theriot and Mitchison, 1991). More recently, 

fluorescence localization after photobleaching (FLAP) was employed as a novel method 

to monitor actin localisation and dynamics at the leading edge of migrating cells (Dunn 

et al., 2002). Fluorescence recovery after photobleaching (FRAP) studies have also been 

used to show that actin and actin-related protein 2/3 (Arp2/3) complex turnover both 

occur at the lamellipodial tip of motile cells (Lai et al., 2008). The Arp2/3 complex is 

important in facilitating the extension of actin and the production of branched actin 

filaments at the front of a migrating cell (Mullins et al., 1998). To achieve prolonged 

cell migration the actin-rich membrane protrusions that are created in the direction of 

movement must be stabilised by attachment of the cell to the underlying extracellular 

matrix (ECM) at the leading edge (Friedl and Wolf, 2003; Ridley, 2011). These 

adhesions then go on to generate sites of cell contraction which propel the cell forward 

(Ridley et al., 2003). In conjunction, to allow translocation, cell-ECM adhesions must 

be disrupted at the rear of the cell (Lauffenburger and Horwitz, 1996).   

 

1.1.2.1 The role of cell-substratum adhesions during cell migration 

Integrin-mediated signalling plays an important role in cell attachment to the ECM 

during cell migration (Huttenlocher and Horwitz, 2011). Integrins are cell surface 

receptors for ECM proteins, such as collagen I (Di Lullo et al., 2002; Mizuno et al., 

2000) and fibronectin (Garćia and Boettiger, 1999), as well as collagen V (Ruggiero et 

al., 1994) and laminins (Kikkawa et al., 2000). Integrins are ubiquitously expressed 

(Virtanen et al., 1990) and the aberrant expression and behaviour of integrins has been 

associated with carcinoma metastasis including that of the breast (Taherian et al., 2011), 

prostate (Gorlov et al., 2009; McCabe et al., 2007) and pancreas (Hosotani et al., 2002).  

 

1.1.3 Carcinoma metastasis 

Although many biological processes require cell migration, this study is focussed on the 

movement of prostate cancer cells. Human cancers are mainly found to be epithelial in 

origin and this is true of prostate cancer; where the majority of prostate cancers manifest 

from the peripheral region of the prostate gland (McNeal, 1969) (figure 1.1A) and are 

predominantly adenocarcinoma in type, originating from the glandular epithelial tissue 

(figure 1.1B) (Shen and Abate-Shen, 2010). Cancer cell migration is a pre-requisite for 

metastasis and metastatic disease is the main cause of death in patients with malignant  
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Figure 1.1 The architecture of the prostate gland. A) Schematic illustrating the 

different regions within the prostate gland which can be divided into four main regions 

termed the peripheral zone, transitional zone, central zone and the anterior 

fibromuscular zone as indicated (McNeal, 1988; Timms, 2008). The location of the 

bladder, seminal vesicles and urethra in relation to the prostate are also marked. The 

prostate gland is adjoined to the upper portion of the urethra. This figure is adapted 

from (www.harvardprostateknowledge.org/prostate-basics). B) The prostate gland is 

composed of different types of epithelial cells. Basal cells rest on the underlying 

basement membrane, beneath columnar luminal cells (Long et al., 2005). 

Neuroendocrine cells are interspersed within the epithelium with predominant incidence 

within the basal cell layer (Hudson, 2004). This figure is adapted from (Wang et al., 

2009). 

A 

B 
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cancer (Jemal et al., 2008). Metastasis is a multi-stage process, as illustrated in figure 

1.2. At the primary site following oncogenic transformation, cancer cells proliferate 

aberrantly (Fidler, 2003). The growing tumour expands and eventually requires support 

from a new capillary network developed from pre-existing vasculature in a process 

termed angiogenesis (Folkman, 1971; Folkman et al., 1963; Greene, 1941). Within the 

primary tumour, a selective group of tumour cells may undergo an epithelial to 

mesenchymal transition (EMT)-like process (Gabbert et al., 1985); EMT involves the 

loss of intercellular adhesivity and the dissociation of cells from the primary tumour 

mass, where these cells subsequently adopt a motile phenotype (Yilmaz and Christofori, 

2009). Cells that have undergone EMT are then able to cross the basement membrane, 

migrate through the stroma and subsequently enter into the lymphatic or the vascular 

systems in a process termed intravasation (Wyckoff et al., 2000). Those cancer cells that 

survive the hostile environment of the circulatory system then exit into the surrounding 

tissue, in a process termed extravasation (Cameron et al., 2000; Luzzi et al., 1998). 

These cells must then instigate and sustain growth to produce micrometastases (Luzzi et 

al., 1998).  

 

The location of distal metastasis is often defined by the site of the primary tumour and 

in patients with prostate cancer there is a predominance of skeletal metastases 

(Bubendorf et al., 2000). Indeed, numerous reports have shown that bone marrow 

secondary micrometastasis is favoured by prostate cancers (Ellis et al., 2003; Pantel et 

al., 1995; Pantel et al., 1997; Tsingotjidou et al., 2001). The metastatic cascade is 

actually rather inefficient and only a small proportion of disseminating cells have the 

capacity to proliferate and generate a macroscopic tumour (Cameron et al., 2000; Luzzi 

et al., 1998). Nevertheless, metastasis is still incurable and deadly (Duffy et al., 2008) 

and thus it is important to establish the mechanisms involved in this process for the 

development of future anti-metastatic therapies.  

 

1.1.4 Differences in 2-Dimensional and 3-Dimensional cancer cell migration  

There are two principle methods by which cancer cells are observed to migrate in vivo; 

collective cell migration and single cell migration (Friedl and Gilmour, 2009). 

Collective migration can be characterised by the collective movement of cell clusters 

(Farooqui and Fenteany, 2005; Vaughan and Trinkaus, 1966). This clustering phenotype  
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Figure 1.2 The different stages involved in carcinoma metastasis. 1) In situ cancer is 

supported by the underlying basement membrane. 2) Changes in cell-cell adhesions and 

cell-matrix adhesions, re-organisation of the actin cytoskeleton and basement membrane 

degradation instigate tumour cell movement from the primary site. 3) The dissociated 

tumour cells can then disseminate via the lymphatic system or 4) the blood vasculature. 

5) The circulating tumour cells exit the circulation into the surrounding tissue 

(extravasation). 6) Occult micrometastases may develop and 7) gradually form 

metastases with angiogenic properties. This figure is adapted from (Steeg, 2003). 
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has been implicated in many invasive forms of cancer (Alexander et al., 2008; Friedl et 

al., 1995; Hegerfeldt et al., 2002; Iwanicki et al., 2011; Nabeshima et al., 2000). The 

migration of individual cancer cells has been extensively studied in vitro using 2-

Dimensional (2D) substratums, and more recently in 3-Dimensional (3D) matrices. 

Numerous studies have now established that there is variation in cancer cell behaviour 

between 2D and 3D substratums (Sahai, 2007). For example, cells can present different 

morphologies; PC3 prostate carcinoma cells are observed as single cells when seeded 

onto 2D surfaces (Bright et al., 2009) but these cells form spheroids when grown in a 

3D matrix (Härmä et al., 2010; Ivascu and Kubbies, 2006). In addition, changes in 

cancer cell polarity and morphogenesis (Itoh et al., 2007), gene expression (Ghosh et al., 

2005), tumour cell growth (Liu et al., 2004) and variations in the effects of growth 

factor stimulation (Brinkmann et al., 1995) have also been reported between 2D 

substratums and 3D matrices. 3D studies have also revealed that within single migration 

populations, cancer cells exhibit either an amoeboid motility where cells are 

phenotypically rounded or a mesenchymal mode of migration where cells are elongated 

in appearance; furthermore, cancer cells can switch between these two forms of motility 

(Sahai and Marshall, 2003). Such studies have highlighted the need for more 3D models 

of cell migration and invasion.  

 

In prostate cancer, a number of different cell lines have been routinely used to monitor 

migration in 2D including DU145 (Bright et al., 2009) and PC3 (Ahmed et al., 2008) 

cells. Moreover, more recently efforts have been made to develop 3D model systems. A 

3D model system was implemented to demonstrate that matrix metalloproteinases can 

change the morphology of LNCaP prostate cancer cells from multi-cellular structures to 

possessing a fibroblast-like phenotype (Cao et al., 2008), but there was no evidence of 

active migration. DU145 cells have been reported to migrate through a 3D matrix 

(Zaman et al., 2006) and following the studies presented here a recent publication 

demonstrated that DU145 cells can be stimulated to form elongated ‘sprouts’ in a 3D 

matrix (van Leenders et al., 2011); however again active migration was not reported.  
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1.2 Growth factor-stimulated cell migration in cancer 

1.2.1 Growth factor signalling in cancer 

Growth factor signalling is known to be involved in the aberrant regulation of cell 

migration that is characteristic of invasive cancer cells (Alper et al., 2001; Jeffers et al., 

1996; Lu et al., 2001). Specifically, epidermal growth factor (EGF) has been implicated 

in promoting cell movement in prostate carcinomas (Zhou et al., 2006) and the invasive 

potential of DU145 cells increases downstream of EGF (Turner et al., 1996). Other 

growth factors, such as hepatocyte growth factor (HGF), are also involved in cancer 

progression (Fujiuchi et al., 2003). 

 

1.2.2 HGF 

HGF is a multi-functional polypeptide that has both mitogenic (Clark, 1994; Gmyrek et 

al., 2001) and motogenic (Cantley et al., 1994; Niranjan et al., 1995) properties and was 

identified as a ligand for c-Met, a tyrosine kinase receptor (Bottaro et al., 1991; 

Nakamura et al., 1989). The binding of HGF to c-Met triggers receptor kinase activation 

and in turn initiates various signal transduction pathways that can affect, for example, 

cell adhesion status (Trusolino et al., 2000) and re-organisation of the actin cytoskeleton 

(Ridley et al., 1995; Royal et al., 2000; Wells et al., 2005). HGF is also involved in 

oncogenic signalling as illustrated in figure 1.3 (Peruzzi and Bottaro, 2006). Early 

studies indicated that HGF was important for liver regeneration in hepatocytes 

(Hamanoue et al., 1992; Ishii et al., 1995). Indeed, HGF knockout mice are embryonic 

lethal (Schmidt et al., 1995). Initial investigations implicated HGF in cell migration; 

HGF was originally termed as scatter factor for its ability to induce cell-cell dissociation 

in colony-forming epithelial cells, as well as promoting the migration potential of single 

cells (Stoker, 1989; Stoker et al., 1987; Stoker and Perryman, 1985).  

 

HGF elicits the scattering and invasion of pancreatic and bladder carcinoma cells into 

collagen gels (Weidner et al., 1990). A similar result was observed for Caco-2 colon 

carcinoma cells; these cells exhibited an increased ability to invade matrigel upon HGF 

addition (Kermorgant et al., 2001). It has also been demonstrated that HGF increases 

the invasiveness of breast cancer cells (Trusolino et al., 2000). In addition, HGF has 

been extensively studied in prostate carcinoma (Fujiuchi et al., 2003; Gmyrek et al., 

2001).  
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Figure 1.3 HGF and its receptor c-Met in oncogenic signalling. Oncogenic signalling 

through c-Met is associated with altered paracrine HGF levels and subsequent c-Met 

over-expression (Peruzzi and Bottaro, 2006). Signalling can also occur though the 

generation of autocrine HGF; pathway stimulation contributes to invasion, metastasis 

and tumour progression (Peruzzi and Bottaro, 2006). Tyrosine phosphorylation of 

residues Y1349 and Y1356 is required for the biological function of c-Met and mediates 

the interaction of multiple substrates with the receptor (Lai et al., 2009). This figure is 

adapted from (Peruzzi and Bottaro, 2006). 
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1.2.2.1 HGF signalling in prostate carcinoma 

Oncogenic signalling via c-Met commonly occurs through paracrine (Knowles et al., 

2009) or autocrine (Toiyama et al., 2011) HGF-induced activation of c-Met (figure 1.3). 

Moreover, c-Met is over-expressed in prostate cancer cells (van Leenders et al., 2002). 

More recently, it has been shown that an increase in the percentage of c-Met-expressing 

prostate cancer cells significantly correlates with the development of bone metastases 

(Colombel et al., 2011).  

 

HGF stimulation increases the proliferation of prostate cancer cells (Gmyrek et al., 

2001) and their ability to invade through a matrix (Fujiuchi et al., 2003; Nishimura et 

al., 1999; Parr et al., 2001). It has also been shown that HGF promotes the migration 

potential of prostate cancer cells (Ahmed et al., 2008; Parr et al., 2001). This growth 

factor has also been implicated in inducing cell scattering and migration in DU145 cells 

(Davies et al., 2004; Miura et al., 2001; Wells et al., 2005). 

 

1.2.2.2 HGF-induced cell scattering 

HGF-induced cell scattering requires the disruption of cell-cell junctions. Cell-cell 

contact disassembly is a process that occurs as a consequence of the re-organisation of 

the actin cytoskeleton and subsequent cell spreading (Ridley et al., 1995). A group of 

proteins, known as Rho GTPases, are activated by HGF and are pivotal in mediating the 

actin re-modelling that is required for the cell-cell dissociation in response to HGF 

(Royal et al., 2000). The binding of HGF to its receptor c-Met triggers a loss of stress 

fibres and a reduction in prominent actin filaments in colony-forming cells (Wells et al., 

2005). HGF-induced activation of c-Met also promotes the formation of filopodia and 

lamellipodia mediated by the Rho GTPases Cdc42 and Rac1, respectively (Royal et al., 

2000). These actin-rich protrusions are required for cell spreading, a process that 

precedes, and is important for, cell-cell junction disassembly (Ridley et al., 1995; Royal 

et al., 2000). 

 

It has also been demonstrated that c-Met co-localises with E-cadherin (Kamei et al., 

1999), a junctional protein central to the stabilisation of cell-cell adhesions (Gumbiner 

et al., 1988), at cell-cell contact sites in Madin-Darby Canine Kidney (MDCK) cells in 

the absence of HGF stimulation (Kamei et al., 1999). Upon HGF addition, cell-cell 

junction disassembly in these cells was coupled with the endocytosis of both c-Met and 
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E-cadherin and this process was mediated, in part, by phosphatidylinositol 3-kinase 

(PI3K) (Kamei et al., 1999). Similarly, other studies have shown that PI3K is required 

during HGF-induced cell spreading and subsequent cell-cell junction breakdown in 

MDCK cells (Potempa and Ridley, 1998; Royal et al., 2000; Royal and Park, 1995). 

Thus the re-modelling of the actin cytoskeleton, in addition to the localisation of c-Met 

and E-cadherin, are important factors during HGF-induced cell-cell adhesion disruption. 

 

Cell scattering can be characterised by the loss of cell-cell junctions and resultant cell-

cell dissociation, where cells that have escaped the cell colony are elongated and 

migratory in morphology (Clark, 1994; Stoker, 1989; Stoker et al., 1987; Stoker and 

Perryman, 1985). Cell scattering also involves the loss of junctional localisation of cell 

adhesion proteins (Bellovin et al., 2005; Miura et al., 2001). Since the cell scattering 

studies of Stoker and Perryman (Stoker and Perryman, 1985), a number of groups have 

reported that DU145 prostate cancer cells display these characteristics in response to 

HGF stimulation (Bright et al., 2009; Humphrey et al., 1995; Miura et al., 2001; Wells 

et al., 2005). Cell scattering as a result of HGF stimulation has also been reported in 

colony-forming HT29 colon adenocarcinoma cells (Herrera, 1998). The HGF-induced 

cell scatter assay is therefore a useful model that can be used to study cell-cell 

dissociation and cancer cell migration in response to HGF.  

 

1.3 Cell-cell dissociation in cancer metastasis 

During cell-cell dissociation and dissemination some cancer cells may exhibit properties 

reminiscent of EMT (Greenburg and Hay, 1982). EMT is important during normal 

development; for example, in vertebrates it is well established that EMT is necessary 

during neural crest cell migration (Ahlstrom and Erickson, 2009) and gastrulation 

(Nakaya et al., 2008).  

 

Non-transformed epithelial cells can be characterised by their non-motile phenotype 

combined with strong cell-cell adhesions and cell-substratum adhesions (Chaffer and 

Weinberg, 2011). It is thought that when these cells become transformed during cancer, 

apical-basal polarity is lost and intercellular cell-cell adhesion sites are weakened 

(Royer and Lu, 2011) (figure 1.4). The initial stages of the cell-cell dissociation process  
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Figure 1.4 A selection of cancer cells undergo an EMT-like process during 

carcinoma progression. 1) Initiating factors such as growth factors instigate the 2) and 

3) weakening of cell-cell junctions and the loss of cell polarity. 4) Degradation of the 

basement membrane and changes in cell-ECM adhesions allows 5) tumour cell escape 

from the primary site. This figure is adapted from (Levayer and Lecuit, 2008). 
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requires the disassembly of junctions between neighbouring cells and this is mediated, 

in part, by the re-organisation of junctional complexes.  

 

1.3.1 Adherens junctions  

Intercellular junctions are important in the maintenance of epithelial tissue structure; 

these junctional formations include tight junctions, adherens junctions (AJs) and 

desmosomes (Farquhar and Palade, 1963). AJs were initially identified in mammalian 

tissues using electron microscopy (Farquhar and Palade, 1963) and are responsible for 

cell adhesions between neighbouring epithelial cells (Gumbiner et al., 1988). Several 

reports have demonstrated that AJs are dynamic structures when examined in vitro and 

in vivo (Cavey et al., 2008; de Beco et al., 2009; Fujita et al., 2002; Pilot et al., 2006). 

The modulation of AJs is important during development (Shimamura and Takeichi, 

1992; Vestweber and Kemler, 1984) and during disease processes such as carcinoma 

metastasis (Ceteci et al., 2007; Perl et al., 1998). 

 

1.3.2 Structure of adherens junctions 

The type I transmembrane proteins of AJs, cadherins, were originally identified as 

molecules required for the formation of adhesive cell-cell contacts (Gallin et al., 1983; 

Takeichi, 1977; Tanihara et al., 1994; Yoshida and Takeichi, 1982). The cell surface 

protein epithelial-cadherin (E-cadherin), an extensively studied member of the cadherin 

family, is the principle component of AJs in epithelial cells (Boller et al., 1985; 

Gumbiner et al., 1988). The loss of E-cadherin expression has been linked to cancer 

progression (Birchmeier and Behrens, 1994). Early studies tracking the movement of E-

cadherin green fluorescent protein (GFP) fusion proteins using time-lapse microscopy 

and photobleach recovery analysis shed light on the steps thought to be required in 

epithelial cell-cell adhesion formation (Adams et al., 1998). This multi-stage process 

was shown to involve the assembly and development of E-cadherin clusters at adjoining 

cell membranes of adjacent cells, followed by the rapid re-organisation of actin and 

these E-cadherin clusters, thereby inducing tight cell colony formation (Adams et al., 

1998).  

 

E-cadherin possesses extensive intra- and extracellular domains and it has been 

established that the extracellular domain of one E-cadherin molecule associates with the 

extracellular domain of another E-cadherin molecule on an adjacent cell (Gumbiner et 
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al., 1988; Nose et al., 1988). In contrast, the cytoplasmic portion of E-cadherin interacts 

with cytosolic proteins such as catenins (Kemler and Ozawa, 1989). E-cadherin 

interacts with beta-catenin (β-catenin) (Aberle et al., 1994) and β-catenin sequentially 

binds to alpha-catenin (α-catenin) (Herrenknecht et al., 1991). Therefore, β-catenin acts 

as a linker between E-cadherin and α-catenin (Jou et al., 1995). α-catenin interacts with 

actin directly via its C-terminal region (Rimm et al., 1995) or indirectly via actin-related 

proteins such as alpha-actinin (α-actinin) (Knudsen et al., 1995), thereby linking E-

cadherin to the actin cytoskeleton. However, more recent studies have shown that α-

catenin is incapable of interacting with actin filaments whilst bound to the E-cadherin-

β-catenin complex (Drees et al., 2005; Yamada et al., 2005), even when α-actinin is 

present (Yamada et al., 2005). Thus it has been suggested that α-catenin possesses a 

dual mode of action in cell-cell adhesion dynamics (Drees et al., 2005). 

 

A third member of the catenin family, p120 catenin, also binds to E-cadherin (Daniel 

and Reynolds, 1995; Jou et al., 1995; Shibamoto et al., 1995) through the 

juxtamembrane domain within the cytoplasmic tail of E-cadherin (Ohkubo and Ozawa, 

1999; Reynolds et al., 1996; Thoreson et al., 2000; Yap et al., 1998). p120 catenin is 

thought to mediate the stabilisation of cadherin complexes; indeed, p120 depletion in 

A431 human cervical cancer colony-forming cells resulted in E-cadherin degradation 

and the loss of cell-cell adhesivity (Davis et al., 2003). The expression levels of α- and 

β-catenin were also diminished in p120 catenin depleted cells; p120 catenin is therefore 

required for the maintenance of E-cadherin-mediated adhesion (Davis et al., 2003). 

Moreover, when the interaction between E-cadherin and p120 catenin is uncoupled, 

p120 catenin no longer localises to cell-cell junctions (Thoreson et al., 2000). p120 

catenin modulates the strength of E-cadherin-mediated adhesions (Thoreson et al., 

2000) and knockdown of p120 catenin in prostate cancer cells leads to cell-cell junction 

dissolution (Kümper and Ridley, 2010). In contrast however, it has also been reported 

that p120 catenin may negatively modulate intercellular adhesiveness (Aono et al., 

1999; Ohkubo and Ozawa, 1999). The structure of adherens junctions encompassing E-

cadherin, β-catenin, α-catenin and p120 catenin is illustrated in figure 1.5.  

 

It is evident that the E-cadherin-catenin complex is important in the maintenance of 

AJs; aberrant expression or function of these proteins has been implicated in cancer cell 

dissemination. For example, in vitro work has shown that human cancer cells that are  
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Figure 1.5 The structure of adherens junctions. This schematic illustrates the dimeric 

association of E-cadherin and its interactions with the cytosolic proteins α-catenin, β-

catenin and p120 catenin to form an adhesive structure. It is historically thought that α-

catenin links the E-cadherin-β-catenin complex to the actin cytoskeleton. However, a 

recent study has shown that α-catenin is unable to bind β-catenin and actin 

simultaneously (Drees et al., 2005; Yamada et al., 2005). This figure is adapted from 

(D'Souza-Schorey, 2005).  
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epithelioid in appearance express E-cadherin and are typically non-invasive forms of 

cancer, whilst the loss of E-cadherin expression correlates with invasiveness and a 

fibroblastoid cell morphology (Frixen et al., 1991). In the presence of low forces that 

mimic those found in the lymphatic system, E-cadherin-negative cancer cells exhibit an 

increased propensity to dissociate from cell aggregates when compared to E-cadherin-

positive tumour cells (Byers et al., 1995). These results suggest that the absence of E-

cadherin would promote cell-cell dissociation from a tumour mass in the presence of 

forces that are characteristically detected in the lymphatic system (Byers et al., 1995). 

The loss of E-cadherin, β-catenin and α-catenin expression is thought to contribute to 

the development of breast carcinoma (de Leeuw et al., 1997) and the stabilisation of E-

cadherin and catenins at cell-cell contact sites reduces the invasiveness of cancer cells 

(Swaminathan and Cartwright, 2011). Whilst the assembly and disassembly of AJs is 

important during the cell-cell dissociation process, actin cytoskeletal re-organisation is 

also required for the detachment of adjacent cells and their subsequent ability to 

migrate. Both the re-organisation of the actin cytoskeleton associated with junctional 

disruption and the actin cytoskeletal dynamics associated with cell migration are known 

to be mediated by the activity of Rho family GTPases. 

 

1.4 Rho family GTPases are central to cell migration dynamics 

RhoA (Madaule and Axel, 1985), Rac1 (Didsbury et al., 1989) and Cdc42 (Munemitsu 

et al., 1990) are ~ 21 kDa small GTPase proteins of the Ras superfamily that act as 

‘molecular switches’ capable of regulating downstream signal transduction pathways by 

modulating their effector proteins (Ellenbroek and Collard, 2007). These proteins have 

been implicated in various cellular processes including cell growth and proliferation 

(Qiu et al., 1997), cytoskeletal re-organisation (Nobes and Hall, 1995; Ridley et al., 

1992), as well as adhesion and migration (Nobes and Hall, 1999; Zhao et al., 2000). In 

addition, these GTPases are also known to be regulated by HGF stimulation (Royal et 

al., 2000; Wells et al., 2005) and have been implicated in HGF-induced cell migration 

(Ridley et al., 1995; Wells et al., 2005). 

 

In initial Rho GTPase studies, Swiss 3T3 cells microinjected with activated RhoA 

exhibited changes in cell morphology where elongated protrusions from the cell body 

were observed (Paterson et al., 1990). Subsequently it was revealed that active mutants 
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of RhoA and Rac1 instigate the generation of stress fibers (Ridley and Hall, 1992) and 

lamellipodia (Ridley et al., 1992) respectively, in fibroblasts. Further investigations 

revealed a role for Cdc42 in the induction of filopodia (Kozma et al., 1995; Nobes and 

Hall, 1995). RhoA, Rac1 and Cdc42 are thus central in actin remodelling during cell 

movement. As cell migration is a pre-requisite for cancer cell progression, these Rho 

GTPases have been implicated in cancer invasion and metastasis (Ellenbroek and 

Collard, 2007).  

 

Rac1 is responsible for lamellipodial protrusion at the leading edge of the cell (Nobes 

and Hall, 1999) and for focal adhesion formation (Nobes and Hall, 1995), which are 

both required for cell movement. More recently, the fluorescence activation indicator 

for Rho proteins (FLAIR) system (Chamberlain et al., 2000; Kraynov et al., 2000) was 

used to show that active Rac1 also accumulates at the rear of motile neutrophils 

(Gardiner et al., 2002) and is required for retraction of the trailing edge in addition to 

the already established role of Rac1 at the leading edge of the cell (Gardiner et al., 

2002). Cdc42 induces filopodia generation at the front of a migrating cell (Nobes and 

Hall, 1995). The expression of dominant-negative Cdc42 disrupts chemotaxis, the 

directional sensing of a cell, in macrophages (Allen et al., 1998). It was originally 

thought that RhoA promoted the contractility of the motor protein myosin to induce the 

generation of stress fibers and cell-ECM adhesions at the rear of the cell 

(ChrzanowskaWodnicka and Burridge, 1996). Activated RhoA promotes detachment of 

the trailing edge of the cell by the modulation of these integrin-based cell-ECM 

adhesions (Alblas et al., 2001). However in recent biosensor studies active RhoA was 

detected at the protruding edge of moving cells (Heasman et al., 2010; Kurokawa and 

Matsuda, 2005; Pertz et al., 2006). In addition, RhoA, Rac1 and Cdc42 all accumulate 

in lamellipodia during protrusion of the cell (Machacek et al., 2009). It was postulated 

that RhoA functions in protrusion generation at the leading edge of motile cells by 

instigating actin polymerisation, whilst Rac1 and Cdc42 contribute to protrusion 

extension by modulating cell adhesion (Machacek et al., 2009). Figure 1.6 depicts the 

cell migration process regulated by Rac1, RhoA and Cdc42.  

 

1.4.1 GDP/GTP cycle  

Ligand-activated cell surface receptors can initiate Rho GTPase activation; G-protein 

coupled receptors (GPCRs) as well as cytokine, tyrosine kinase and adhesion receptors  
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Figure 1.6 RhoA, Rac1 and Cdc42 during single cell migration. Dashed arrows 

represent recent studies indicating that active Rac1 also localises and functions at the 

cell rear (Gardiner et al., 2002) and that active RhoA has been detected at the leading 

edge of a migrating cell (Heasman et al., 2010; Kurokawa and Matsuda, 2005; 

Machacek et al., 2009; Pertz et al., 2006). This figure is adapted from (Raftopoulou and 

Hall, 2004).  
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are known to be involved in this process (Parri and Chiarugi, 2010). Intracellularly, 

RhoA, Rac1 and Cdc42 switch between being bound to guanosine triphosphate (GTP) 

which renders them active or bound to guanosine diphosphate (GDP) which renders 

them inactive (Heasman and Ridley, 2008) (figure 1.7). In contrast to these typical Rho 

GTPases, Rnd proteins (Fiegen et al., 2002; Foster et al., 1996; Garavini et al., 2002; 

Nobes et al., 1998), RhoV (Aspenström et al., 2007) and RhoH (Li et al., 2002; 

Schmidt-Mende et al., 2010) are not regulated by a GDP/GTP switch.  

 

In the instance of RhoA, Rac1 and Cdc42, when signals are lacking from either the 

exterior or interior of the cell, these Rho GTPases are retained in their inactive GDP-

bound form in the cytoplasm by guanine nucleotide dissociation inhibitors (GDIs) 

(Tcherkezian and Lamarche-Vane, 2007). Receptor activation induces the release of the 

GTPases from GDIs, which in turn allows Rho GTPase translocation from the cytosol 

to the plasma membrane (DerMardirossian and Bokoch, 2005). Proximity to the 

membrane allows GDP/GTP exchange by guanine nucleotide exchange factors (GEFs) 

and triggers the association of activated RhoA, Rac1 and Cdc42 with their effector 

proteins (Rossman et al., 2005). A third group of proteins, GTPase activating proteins 

(GAPs), have the ability to accelerate the inherent GTPase activity of Rho family 

proteins resulting in the cessation of signal transduction (Bernards and Settleman, 

2004). In addition to their roles in cell motility, Rac1, Cdc42 and RhoA also have 

established roles in the modulation of AJs. 

 

1.4.2 Activity of Rho GTPases at cell-cell junctions 

1.4.2.1 Assembly and maintenance of junctions 

It is well established that Rac1 is involved in the assembly of E-cadherin-mediated cell-

cell adhesion sites (Ehrlich et al., 2002; Hoshino et al., 2004; Kovacs et al., 2002a; 

Kovacs et al., 2002b). RhoA has also been implicated in cell-cell junction formation; it 

was recently reported that RhoA depletion in neural progenitor cells induced the 

disruption of AJs (Katayama et al., 2011). The inhibition of RhoA by C3 transferase, a 

known inhibitor of endogenous Rho proteins, impaired the maintenance of E-cadherin-

based cell-cell adhesions in MDCK cells (Takaishi et al., 1997). The over-expression of 

a dominant-negative Rac1 mutant decreases the prevalence of E-cadherin and β-catenin 

at cell-cell junctions, whilst an activated Rac1 mutant elicits the opposite effect 

(Takaishi et al., 1997). In addition, Rac1 and RhoA are required for stable cell-cell 
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Figure 1.7 The GDP/GTP cycle. (Y represents the effector protein) (1) Binding of Rho 

GTPases releases intramolecular autoinhibition. Rho GTPase effectors regulated by 

autoinhibition include PAKs, WASP and Dia proteins. However, not all Rho GTPase 

effectors are regulated by an autoinhibitory mechanism. (2) GTP hydrolysis renders the 

effector inactive. (3) The effector may be modified by a phosphorylation event that 

stabilises effector activity even after the GTPase is removed. (4) The effector is 

inactivated through the removal of the modification thus rendering the effector inactive. 

This figure is adapted from (Bishop and Hall, 2000). 

 

 

 

 

 

 

 



33 
 

adhesion formation in human keratinocytes (Braga et al., 1997). In MDCK II cells, 

active Cdc42 increases E-cadherin and β-catenin levels at cell-cell junctions and inhibits 

HGF-induced disruption of intercellular junctions (Kodama et al., 1999).  

 

1.4.2.2 Disassembly of junctions 

There are several reports that implicate Rho GTPases in cell junction disassembly. 

Activation of Rac1 and Cdc42 abolished the multi-cellular organisation of T47D breast 

carcinoma cells in a 3D collagen matrix (Keely et al., 1997) and active Rac1 disrupts 

cell-cell adhesions in human keratinocytes (Braga et al., 2000) and pancreatic 

carcinoma cells (Hage et al., 2009). The induction of EMT in human proximal tubular 

epithelial cells, characterised by reduced E-cadherin expression and the adoption of a 

fibroblastic morphology, was dependent on RhoA, Rac1 and Cdc42 signalling (Patel et 

al., 2005). In contrast, it has been reported that the level of active Rac1 diminishes 

following HGF stimulation which is thought to be important during MDCK II cell-cell 

junction disassembly and cell-cell dissociation induction (Fukata et al., 2001; Palacios 

and D'Souza-Schorey, 2003). The discrepancy in the role of Rho GTPases in the 

assembly and disassembly of junctions indicates the complex nature of junctional 

dynamics. Nevertheless, Rac1 and Cdc42 are both known to interact with isoform 1 of 

the IQ motif containing GTPase activating protein (IQGAP) family of proteins (Kuroda 

et al., 1996), which has already been shown to play a role in cell-cell junction 

disassembly downstream of HGF (Fukata et al., 2001). 

 

1.5 IQGAP1 

1.5.1 IQGAP family of proteins 

The IQGAP group of proteins have been isolated in various organisms, such as yeast 

(Epp and Chant, 1997; Lippincott and Li, 1998), Xenopus (Yamashiro et al., 2003) and 

mammals (Weissbach et al., 1994) where they possess distinct functions. To date, three 

variants of human IQGAP have been identified – IQGAP1, IQGAP2 and IQGAP3; 

IQGAP1 was the first to be defined in 1994 (Weissbach et al., 1994), followed shortly 

by the discovery of IQGAP2 (Brill et al., 1996). IQGAP3 was the last to be described in 

2007 (Wang et al., 2007). The function of IQGAP1 in humans has been extensively 

studied (Briggs and Sacks, 2003; Brown and Sacks, 2006); this report will focus on 

human IQGAP1. 
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1.5.2 Domain structure of IQGAP1 

Human IQGAP1 is a large multi-domain protein (figure 1.8) that is 1657 amino acids 

(approximately 189 kDa) in size (Weissbach et al., 1994). This protein has numerous 

binding partners including extracellular receptor kinase 1 and 2 (ERK1 and ERK 2), 

mitogen- activated protein kinase/extracellular signal-regulated kinase kinase 1 and 2 

(MEK1 and MEK2) (Roy et al., 2004; Roy et al., 2005) and the EGF receptor (EGFR) 

(McNulty et al., 2011). 

 

IQGAP1 is composed of an N-terminal calponin homology domain (CHD), followed by 

a large coiled coil domain (Johnson et al., 2009). Downstream of the large coiled region 

is a polyproline interacting domain (WW domain) and an IQ domain, composed of four 

concurrent repeats of the IQ motif (Briggs and Sacks, 2003). The N-terminal region of 

IQGAP1 is thought to aid the homo-dimerisation of this protein (Ren et al., 2005). The 

GAP-related domain (GRD) is located downstream of the IQ region and encompasses 

the Cdc42 binding site (Mataraza et al., 2003a). It has been reported that IQGAP1 

interacts with both Cdc42 (Hart et al., 1996) and Rac1 (Kuroda et al., 1996). The most 

C-terminal region of IQGAP1 contains a RasGAP_C-terminus (RGCt) domain that is 

known to interact with a diverse range of proteins (White et al., 2011) including E-

cadherin (Kuroda et al., 1998; Li et al., 1999) and β-catenin (Kuroda et al., 1998). 

Although this domain is considerably similar in sequence to the catalytic region of Ras-

GAPs (Weissbach et al., 1994), IQGAP1 does not function as a traditional GTPase- 

activating protein; in fact in vitro studies have shown that IQGAP1 stabilises Cdc42 in 

its GTP-bound active conformation (Ho et al., 1999; Swart-Mataraza et al., 2002).  

 

1.5.3 IQGAP1 in cancer  

Changes in the localisation of IQGAP1, as well as elevated expression levels, have been 

documented in numerous cancer tissues and tumour cell lines (Johnson et al., 2009). 

IQGAP1 over-expression has been detected in colorectal (Nabeshima et al., 2002) and 

hepatocellular (Chen et al., 2010) cancer cells, as well as in head and neck squamous 

cancer cells (Patel et al., 2008). In addition, the highly metastatic MDA-MB-231 human 

breast cancer cells displayed a 2.7 fold elevation in IQGAP1 levels, when assessed 

against the less invasive MCF7 breast cancer cells (Jadeski et al., 2008). DNA array 

analysis of highly metastatic melanoma cells revealed genes, including IQGAP1, that  
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Figure 1.8 The domain structure of IQGAP1. Schematic illustrating the multi-

domain structure of IQGAP1 and some of the binding partners identified for this 

protein. This figure is adapted from (Johnson et al., 2009; White et al., 2011). 
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were associated with the development of metastasis (Clark et al., 2000). As well as 

increased expression of IQGAP1 in cancer, several studies have implicated IQGAP1 

specifically in cancer cell migration. In MCF7 breast cancer cells, the interaction 

between IQGAP1 and Cdc42 elevates the level of active Cdc42 (Mataraza et al., 

2003b). Furthermore, increased expression of IQGAP1 promotes cell motility and this 

event is reliant on Cdc42 and Rac1 (Mataraza et al., 2003b). IQGAP1 accumulates at 

the leading edge of HGF-stimulated cells (Hu et al., 2009) and depletion of this protein 

inhibits the migration of glioma (Hu et al., 2009), breast cancer (Mataraza et al., 2003b) 

and ovarian cancer (Bourguignon et al., 2005; Dong et al., 2008) cells. However, the 

role of IQGAP1 in prostate cancer cell migration has yet to be elucidated. 

 

1.5.4 IQGAP1 in cell junction modulation 

Studies have shown that IQGAP1 plays a significant role in the stability and integrity of 

AJs by its interaction with E-cadherin. Indeed, IQGAP1 co-localises with E-cadherin at 

cell junction sites in MCF7 breast cancer cells and is involved in the impairment of E-

cadherin-mediated adhesion (Li et al., 1999) and in cell junction dissociation 

downstream of HGF (Fukata et al., 2001). IQGAP1 also induces cell-cell dissociation in 

mouse L fibroblasts stably expressing E-cadherin (EL cells); in these cells, IQGAP1 

was shown to bind to β-catenin and displace α-catenin from the functional E-cadherin-

β-catenin junctional complex (Kuroda et al., 1998). It was therefore speculated that 

IQGAP1-mediated displacement of α-catenin resulted in a loss of intercellular 

adhesivity (Kuroda et al., 1998). Indeed, GTP-bound Cdc42 and Rac1 negatively 

regulate IQGAP1 function by inhibiting its interaction with β-catenin and in turn 

obstructing α-catenin dissociation (Fukata et al., 1999). However, more recently, 

evidence has emerged to suggest that the displacement of α-catenin from β-catenin 

might not be associated with junctional disruption (Drees et al., 2005). The role of the 

β-catenin-α-catenin interaction during junctional disassembly is therefore not fully 

elucidated. However others have shown that in the absence of functional α-catenin, 

mouse F9 teratocarcinoma cells exhibit a scattered phenotype (Maeno et al., 1999). 

 

In contrast to the proposed role of IQGAP1 in promoting cell-cell junction disassembly, 

it has also been shown that IQGAP1 actually enhances cell-cell adhesion in cells by its 

ability to cross-link actin filaments in the presence of high levels of Rac1/Cdc42 activity 

(Noritake et al., 2004); furthermore, the authors proposed a model for IQGAP1-
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mediated cell junction stabilisation as illustrated in figure 1.9. Thus the role of IQGAP1 

in junctional dynamics is still not clearly understood and furthermore, IQGAP1 activity 

downstream of HGF has yet to be investigated in colony-forming prostate cancer cells. 

 

Recently, a member of the p21-activated kinase (PAK) family, PAK6, was identified as 

a putative IQGAP1 binding protein (Kaur et al., 2008). PAKs are effectors of the Rho 

family GTPases Rac1 and Cdc42 (Manser et al., 1994). As such, these proteins have 

been implicated in the regulation of both cancer cell adhesion and migration (Whale et 

al., 2011).  

 

1.6 PAKs 

PAKs are a group of highly conserved mammalian serine/threonine protein kinases 

(Eswaran et al., 2008). To date, six human isoforms of PAK have been documented and 

these have been separated into two groups centred around their structure and function 

(Arias-Romero and Chernoff, 2008). PAKs 1–3 have been classified as group I and 

PAKs 4-6 constitute group II (Jaffer and Chernoff, 2002). PAKs are involved in various 

cellular events such as gene transcription (Stanley, 2007), hormone signalling (Holm et 

al., 2006; Lee et al., 2002; Rayala et al., 2006; Schrantz et al., 2004), cell morphology 

changes (Manser et al., 1997; Qu et al., 2001; Zeng et al., 2000), programmed cell death  

(apoptosis) (Cotteret et al., 2003; Huang et al., 2009) and cell migration (Ahmed et al., 

2008; Bright et al., 2009). 

 

1.6.1 Expression of PAKs 1-6 in cancer 

In human tissue, PAK expression has been observed in many different tissue types. 

PAK1 and PAK3 expression has been detected in the brain and PAK2 is ubiquitously 

expressed (Manser et al., 1995; Manser et al., 1994; Martin et al., 1995; Teo et al., 

1995). PAK4 is expressed in various tissues including that of the spleen, ovary, colon 

and prostate (Abo et al., 1998). PAK5 is highly expressed in the brain (Dan et al., 2002; 

Pandey et al., 2002) and PAK6 is found in the prostate, testis and brain, as well as in the 

kidney and placenta (Callow et al., 2002; Kaur et al., 2008; Yang et al., 2001). Altered 

expression of the group I PAK, PAK1, has been documented in many types of cancer 

including that of the brain (Aoki et al., 2007), breast (Bostner et al., 2007), liver (Ching 

et al., 2007), kidney (O'Sullivan et al., 2007), colon (Carter et al., 2004), bladder  
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Figure 1.9 A proposed model for the modulation of intercellular adhesion strength 

involving IQGAP1. This figure illustrates the potential function of IQGAP1, Rac1 and 

Cdc42 in conferring strong or weak cell-cell adhesions at junctional sites. IQGAP1 is 

thought to stabilise junctions by its actin cross-linking ability which is enhanced by its 

interaction with activated Rho GTPases. The actin cross-linking function of IQGAP1 

was postulated to link the E-cadherin-β-catenin complex to the actin cytoskeleton via α-

catenin. A reduction in activated Rac1 or Cdc42 levels releases IQGAP1 and allows this 

protein to bind to the E-cadherin-β-catenin complex. This triggers the release of α-

catenin from the complex, leading to weak cell-cell adhesions and subsequent cell-cell 

dissociation. This figure is adapted from (Noritake et al., 2005). 
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(Ito et al., 2007) and ovary (Davidson et al., 2008). Recently, elevated phospho-PAK2 

expression was reported in tumours of the ovary (Siu et al., 2010). Increased PAK4 

levels has been documented in various cancer cell lines including those of the breast and 

prostate (Callow et al., 2002). PAK5 over-expression has been observed in colorectal 

cancer (Gong et al., 2009). An increased level of PAK6 expression has been detected in 

both breast and prostate cancer cells (Kaur et al., 2008). In contrast, low PAK6 staining 

was reported in non-cancerous prostate epithelium (Kaur et al., 2008). 

 

The expression of PAK6 has been linked to prostate cancer-associated pathways. For 

example, the aberrant expression of PAK6 enhances the survival of prostate cancer cells 

which suggests that PAK6 may be involved in the modulation of apoptosis (Li et al., 

2005a), similar to other PAKs including PAK2 (Vilas et al., 2006), PAK4 (Gnesutta et 

al., 2001) and PAK5 (Cotteret et al., 2003). In addition, the suppression of PAK6, in 

conjunction with irradiation, reduces the survival of PC3 and DU145 prostate cancer 

cells (Zhang et al., 2009). PAK6 inhibition induces a decrease in the phosphorylation of 

a pro-apoptotic member of the B-cell lymphoma 2 (Bcl-2) family, bcl-2 antagonist of 

cell death (BAD), at serine 211, which may contribute to the survival of these cells in a 

PAK6 knockdown background (Zhang et al., 2009). In contrast, PAK6 may act as a 

tumour suppressor in prostate cancer (Wang et al., 2005) as the PAK6 gene was found 

to be hyper-methylated (Wang et al., 2005); hyper-methylated genes are frequently 

associated with the inhibition of tumour growth (He et al., 2003). Furthermore, in 

knockout studies, no defects were noted for PAK6 knockout mice, and PAK5/PAK6-

double-knockout mice were unaffected in their viability and fertility (Nekrasova et al., 

2008). However, these double-knockout mice were impaired in their learning and 

memory capabilities (Nekrasova et al., 2008). 

 

1.6.2 Structure of PAKs 1-6 

It is well established that PAKs 1-3 possess a distinctive N-terminal region that 

encompasses a conserved p21-binding domain (PBD) and an autoinhibitory domain 

(AID) (Burbelo et al., 1995; Manser et al., 1995; Manser et al., 1994; Teo et al., 1995). 

PAKs 1-3 are highly similar in sequence; they exhibit approximately 88% sequence 

homology in their PBD regions when compared to one another, whilst their kinase 

domains are over 90% identical in sequence (Jaffer and Chernoff, 2002). It has been 

shown that the AID overlaps with the PBD and is important in the regulation of basal 
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kinase activity for the group I proteins (Lei et al., 2000). Active Cdc42 and Rac1 are 

known to bind to the PBD (Bagrodia et al., 1995; Sells et al., 1997; Zhao et al., 1998) 

which increases PAK autophosphorylation and kinase activity (Manser et al., 1994; 

Martin et al., 1995). The N-terminal regulatory domain of PAKs 1-3 characteristically 

holds a number of proline-rich motifs, which act as binding sites for proteins that 

contain src-homology 3 (SH3) domains; for example, the motif located at the extreme 

N-terminal region of PAK1 promotes the binding of the adaptor protein Nck (Bokoch et 

al., 1996). The second proline-rich region is capable of interacting with growth-factor-

receptor-bound-protein 2 (Grb2) (Puto et al., 2003). PAK1 also interacts with the PAK-

interacting exchange factor (PIX) (Manser et al., 1998) which is thought to mediate the 

translocation of a PAK1-Nck complex to the plasma membrane upon receptor activation 

(Lu et al., 1997).  

 

Group II PAKs possess a C-terminal kinase domain and an N-terminal PBD domain, 

similar to group I PAKs (Abo et al., 1998; Dan et al., 2002; Lee et al., 2002). However, 

the sequences vary between the two groups. For example, the kinase region of PAK6 

resembles that of PAKs 1-5, whilst the homology of this protein to PAK1 is only 50% 

when compared to 80% with its group member, PAK4 (Lee et al., 2002). PAK6 and 

PAK4 are structurally different from group I PAKs and do not appear to have an 

identifiable AID (Jaffer and Chernoff, 2002). In contrast, PAK5 has been shown to 

possess an inhibitory region that is approximately 120 amino acids in size (Ching et al., 

2003).  

 

Whilst PAK6 and its group II family members do not possess any SH3 binding domains 

in their N-terminal regulatory region that is characteristic of PAKs 1-3 (Lee et al., 

2002), group II PAKs do possess a number of proline-rich regions between the PBD and 

the kinase domain of the protein (Wells and Jones, 2010). PAK4 possesses a GEF 

interacting domain via which GEF-H1 interacts (Callow et al., 2005). This GEF is able 

to promote GDP to GTP exchange for Rac1 and RhoA but not Cdc42 (Ren et al., 1998). 

Whilst a GEF interacting domain has not been identified in PAK6, this kinase is unique 

from PAKs 1-5 in that it possesses a FXXMF motif which associates directly with the 

androgen receptor (AR) ligand binding domain (LBD) (van de Wijngaart et al., 2006). 

Whilst PAK6 (Lee et al., 2002), similar to PAK1 (Wang et al., 2002), binds to the alpha 

isoform of the estrogen receptor (ER-α), PAK6 is the only PAK family member that 
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interacts with the AR (Yang et al., 2001). The AR is important in the differentiation of 

epithelial prostate cells (Donjacour and Cunha, 1993) and has been implicated in the 

development of prostate cancer (Han et al., 2005; Massie et al., 2011). The similarities 

and differences between the structures of group I and II PAKs are demonstrated in 

figure 1.10. 

 

1.6.3 Regulation of PAK activity 

It has been established that the kinase activity of PAKs 1-3 is enhanced by the binding 

of the active form of the Rho GTPases, Rac1 and Cdc42 to the PBD (Manser et al., 

1994; Martin et al., 1995). Group I PAKs exist as a dimer in an autoinhibited inactive 

state where the AID from one PAK molecule is bound to the catalytic domain of the 

other PAK within the dimer (Lei et al., 2000). The binding of active Cdc42 or Rac1 to 

the PBD relieves this autoinhibitory conformation and induces a number of 

conformational changes that trigger the release of the AID from the catalytic region, 

rendering the kinase active (Lei et al., 2000; Parrini et al., 2002). Group I PAKs can also 

be activated through pathways that do not require GTPases, for example by interacting 

with the lipid sphingosine (Bokoch et al., 1998).  

 

In contrast to group I PAKs, the mechanism of regulation for group II PAKs has yet to 

be fully elucidated. PAKs 4-6 preferentially interact with the active form of Cdc42, but  

kinase activity is not thought to be enhanced by this association (Abo et al., 1998; Dan 

et al., 2002; Lee et al., 2002); although there is one report that activated Cdc42 can 

increase the autophosphorylation levels of glutathione S-transferase (GST) tagged 

PAK5 (Ching et al., 2003). As the interaction between PAK6 and the GTP-bound form 

of Cdc42 does not increase PAK6 kinase activity (Schrantz et al., 2004), it is possible 

that this association modulates PAK6 localisation as observed for PAK4 (Abo et al., 

1998) and Xenopus PAK5 (X-PAK5), the Xenopus PAK4 homologue (Cau et al., 

2001). It has been reported that PAK6 interacts with the atypical Rho GTPase family 

member, RhoV (Shepelev and Korobko, 2012), which has 52% sequence homology to 

Cdc42 (Aronheim et al., 1998). However, RhoV does not change PAK6 

phosphorylation levels at the predicted autophosphorylation site, serine 560 (Schrantz et 

al., 2004; Shepelev and Korobko, 2012). Moreover, full-length PAK6 exhibits less 

kinase activity in comparison to a truncated version of PAK6 containing only the 

protein’s kinase domain (Yang et al., 2001).  



42 
 

 

 

 

 

 

 

 

 

 

Figure 1.10 The domain structure of Group I and II PAKs. PAKs 1-6 have been 

divided into two groups based on their sequence homology. All PAK isoforms possess 

an N-terminal PBD and C-terminal kinase domain. There is variation in structure in the 

region between the PBD and kinase domain of PAKs. This figure is adapted from 

(Arias-Romero and Chernoff, 2008; Wells and Jones, 2010). 

 

 

 

 

 

 



43 
 

PAK6 kinase activity can also be regulated by the p38 mitogen activated protein kinase 

(MAPK) signalling cascade (Kaur et al., 2005). Phosphorylation by p38 MAPK and 

mitogen activated protein kinase kinase 6 (MKK6) activates PAK6; furthermore 

autophosphorylation of PAK6 at serine 560 is required for MKK6-facilitated activation 

(Kaur et al., 2005). In addition, the results obtained from kinase activity studies suggest 

that the AR may also play a part in regulating PAK6 kinase activity (Lee et al., 2002).  

 

1.6.4 PAKs and cancer cell migration 

Group I PAKs were initially implicated in cell movement as a consequence of their 

aptitude to induce membrane ruffling (Sells et al., 1997) as well as the inhibitory effect 

on cell migration induced by a dominant-negative PAK1 mutant (Kiosses et al., 1999). 

PAK1 also phosphorylates cytoskeletal-associated proteins such as actin-related protein 

2/3 complex 41 kDa (p41-Arc), a component of the Arp2/3 complex which contributes 

to breast cancer cell migration (Vadlamudi et al., 2004).  

 

PAK1 has been shown to promote cell migration in colon cancer (Huynh et al., 2010). 

More recently, PAK1 was found to be over-expressed in gastric cancer cells and its 

presence enhances cell motility in these cells whilst the depletion of PAK1 inhibits this 

phenotype (Li et al., 2012). Group I PAKs have also been implicated in cancer cell 

motility downstream of growth factor stimulation. DU145 cell motility is inhibited in 

PAK1, but not PAK2, short interfering RNA (siRNA) knockdown cells upon HGF 

stimulation (Bright et al., 2009). In ovarian cancer cells, PAK1 and PAK2 are over-

expressed and cell motility is enhanced by their presence (Siu et al., 2010). In contrast, 

whilst it has been recently suggested that PAK3 somatic mutations may contribute to 

cancer tumourigenesis (Greenman et al., 2007), very little is known on the function of 

PAK3 in cancer cell migration. 

 

There is extensive evidence that supports a role for PAK4 in cancer cell motility. For 

example, PAK4 depletion reduces the velocity of migrating DU145 cells stimulated 

with HGF (Wells et al., 2010). In PC3 prostate carcinoma cells, PAK4 depletion 

induced a similar effect on cell motility upon HGF stimulation (Ahmed et al., 2008). 

Whilst PAK5 has been implicated in promoting neurite outgrowth downstream of Rho 

GTPases (Dan et al., 2002), and has also found to be localised in filopodia (Wu and 

Frost, 2006), the knowledge on PAK5 function in cancer cell migration is limited. 
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Nevertheless, PAK5 somatic mutations have been detected in a human cancer genome 

screen (Greenman et al., 2007) and increased PAK5 expression in colorectal cancer 

cells impairs cell adhesivity and promotes cell migration on collagen I (Gong et al., 

2009).  

 

PAK6 binds RhoV (Shepelev and Korobko, 2012), a protein that has been implicated in 

the modulation of cytoskeletal dynamics (Aronheim et al., 1998). Interestingly, HGF 

induces a reduction in RhoV gene expression in DU145 cells (van Leenders et al., 

2011); thus it could be speculated that RhoV may be involved in HGF signalling. There 

is also one report in the literature that PAK6 interacts with IQGAP1 in breast cancer 

cells (Kaur et al., 2008). Whilst these PAK6 binding proteins have been implicated in 

cancer cell migration, the role of PAK6 in this process has yet to be investigated. 

Nevertheless, PAK6 has been implicated in other cancer-related phenotypes. For 

example, prostate cancer progression and invasiveness was inhibited in PAK6 siRNA-

treated PC3, DU145 and LAPC4 prostate cancer cell lines (Wen et al., 2009). 

Furthermore, prostate cancer cell growth in vivo was suppressed upon PAK6 depletion; 

this effect was increased in the presence of the anti-tumour compound, docetaxel (Wen 

et al., 2009). As docetaxel acts as a microtubule stabilising agent (Altmann and Gertsch, 

2007), it was proposed that PAK6 may be involved in the modulation of cytoskeletal 

dynamics (Wen et al., 2009). Moreover, MKK6 activates PAK6 (Kaur et al., 2005) and 

the increased expression of MKK6 is associated with invasiveness in osteosarcoma 

(Nakano et al., 2003). Whilst there is emerging evidence for the involvement of PAK6 

in cancer, its role in cancer cell dissemination has yet to be defined.  

 

1.6.5 PAKs in cell junction modulation 

Whilst the role of group I PAKs in cancer cell migration has been studied extensively, 

their role in cell-cell dissociation has not been examined in such depth. However, it has 

been reported that activated group I PAKs can re-localise to cell-cell junctions 

(Stockton et al., 2004). PAK1 is thought to be an essential component in the modulation 

of E-cadherin integrity and junctional stabilisation downstream of Rac1 in keratinocytes 

(Lozano et al., 2008). PAK1 phosphorylates β-catenin and facilitates the disruption of 

the E-cadherin-β-catenin interaction (He et al., 2008). In addition, it has been shown 

that the presence of PAK1 kinase dead and constitutively active mutants can stimulate 

MDCK cell scattering (Zegers et al., 2003), a process that requires the dissolution of 
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intercellular adhesions. It has also been postulated that PAK1 is required for the 

intercellular breakdown of junctions downstream of HGF in DU145 cells (Bright et al., 

2009). 

 

Recent work has implicated group II PAKs in intercellular junction modulation. PAK4 

was found to be required for the maturation of nascent apical junctions in human 

bronchial epithelial cells (Wallace et al., 2010). Moreover, PAK4 accumulated at sites 

of cell contact and this junctional localisation was reliant on the presence of Cdc42 

(Wallace et al., 2010). It has been shown that the activated form of mushroom bodies 

tiny (Mbt), the Drosophila homologue of group II PAKs, is localised at AJs and is 

involved in the cell-cell dissociation process during eye maturation (Menzel et al., 2008; 

Menzel et al., 2007; Schneeberger and Raabe, 2003). Mbt activation interfered with the 

interaction between β-catenin and E-cadherin and thereby reduced intercellular adhesion 

in Drosophila (Menzel et al., 2008). In addition, X-PAK5 also localises at cell junction 

sites and modulates cell adhesion (Faure et al., 2005). A recent report has also 

demonstrated that PAK4 interacts with β-catenin, implicating this kinase in β-catenin 

re-localisation and signalling (Li et al., 2011). Additionally, an interaction with p120 

catenin and group II PAKs has been documented; this association was more pronounced 

with PAK5 when compared to PAK4 and PAK6 (Wong et al., 2010). Furthermore, p120 

catenin was phosphorylated by PAK4 and PAK5 both in vitro and in vivo, however the 

ability of PAK6 to phosphorylate p120 catenin was not tested (Wong et al., 2010). It has 

also been reported that the PAK6 binding protein RhoV (Shepelev and Korobko, 2012) 

modulates E-cadherin localisation at cell junctions in zebrafish (Tay et al., 2010). Thus 

whilst PAK6 interacts with proteins associated with the modulation of AJs, the potential 

role of PAK6 in this process has yet to be explored.  

 

It is known that PAK6 exhibits abundant localisation in the mitochondria (Cotteret et 

al., 2003). Additionally, intracellular localisation of PAK6 has been detected in the 

cytoplasm and at the plasma membrane of HeLa cells (Lee et al., 2002), as well as in the 

nucleus of prostate cells (Yang et al., 2001). It was recently shown that over-expressed 

PAK6 localises at punctate cytoplasmic structures in HeLa B and NCI-H1299 lung 

cancer cells (Shepelev and Korobko, 2012). However, PAK6 has yet to be localised to 

cell-cell junctions. 
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1.7 Hypothesis 

PAK6 is over-expressed in prostate cancer and this kinase interacts with IQGAP1, a 

scaffold protein implicated in cancer cell-cell dissociation and cell migration. 

Furthermore, PAKs have been implicated in cancer cell migration downstream of HGF 

stimulation. Thus it was hypothesised that PAK6 is involved during HGF-induced 

prostate cancer cell migration. 

 

1.8 Aims of the project 

The aim of this project is to investigate the importance of PAK6 downstream of growth 

factor-induced cell-cell dissociation and migration in prostate cancer cells. To facilitate 

studies of PAK6 biology, a 2D scatter assay will be optimised and subsequently 

developed into a 3D scatter assay. The effect of PAK6 over-expression and depletion on 

growth factor-induced prostate cancer cell-cell dissociation and migration will then be 

monitored using the scatter assay. In parallel, PAK6 interacting partner(s) which are 

relevant to cell-cell dissociation and migration will be isolated using GST pulldown 

assays and immunoprecipitation (IP) protocols. Finally, the relationship between PAK6 

and identified interacting partner(s) will be characterised and explored in the context of 

growth factor-induced cell scattering.  
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Chapter 2 – Materials and Methods 

2.1 Materials 

2.1.1 General materials 

2-Amino-2-hydroxymethyl-propane-1,3-diol (Tris)-Base/ 

Hydrochloric acid (HCL) (Sigma-Aldrich, UK) 

3-N-morpholino propane sulfonic acid (MOPs) (Sigma-Aldrich, UK) 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) (GIBCO®, Invitrogen, 

UK) 

4’, 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, UK) 

Acrylamide (30%) (Severn Biotech Ltd, UK) 

Adenosine triphosphate (ATP) (Millipore, UK) 

Agarose (Invitrogen, UK) 

Alexa Fluor® 488 goat anti-mouse (Invitrogen, UK) 

Alexa Fluor® 568 goat anti-mouse (Invitrogen, UK) 

Alexa Fluor® 633 Phalloidin (Invitrogen, UK) 

Ammonium persulfate (APS) (Sigma-Aldrich, UK) 

Ampicillin (Sigma-Aldrich, UK) 

Aprotinin (Sigma-Aldrich, UK) 

BD Matrigel
TM

 Matrix (BD Biosciences, UK) 

Beta (β)-mercaptoethanol (Sigma-Aldrich, UK) 

Bovine serum albumin (BSA) (VWR International, UK) 

Bromophenol blue (Bio-Rad, UK) 

Calcium phosphate transfection kit (Invitrogen, UK) 

Carbenicillin (Sigma-Aldrich, UK) 

Control siRNA oligonucleotide (non-silencing) (Qiagen Ltd, UK) 

Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, UK) 

Dithiothreitol (DTT) (Sigma-Aldrich, UK) 

DNA ladder (New England Biolabs, UK) 

Dulbecco's modified Eagle's medium (DMEM)+GlutaMAX
TM

 (GIBCO®, Invitrogen, 

UK) 

Dulbecco's phosphate-buffered saline (DPBS) (GIBCO®, Invitrogen, UK) 

EGF (Recombinant Human) (R&D systems, USA) 
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Enhanced chemiluminescence (ECL) Plus western blotting detection system 

(Amersham Biosciences, UK) 

Ethidium bromide (Thermo Fisher Scientific, UK) 

Ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich, UK) 

Fibronectin (Sigma-Aldrich.UK) 

FluorSave
TM 

Reagent (Calbiochem, UK) 

Foetal bovine serum (FBS) (GIBCO®, Invitrogen, UK) 

FuGene HD (Roche, UK) 

Fuji Medical X ray film, Super RX (Fuji Film, Japan) 

Gateway
TM

 LR and BP Clonase
TM

 Enzyme Mix (Invitrogen, UK) 

Gentamicin (Sigma-Aldrich, UK) 

Glutaraldehyde (Sigma-Aldrich, UK) 

Glutathione Sepharose
TM

 4 Fast Flow beads (Amersham Biosciences, UK) 

Glycerol (Sigma-Aldrich, UK) 

Glycine (Sigma-Aldrich, UK) 

Hepes, free acid, ULTROL grade (Calbiochem, UK) 

HGF (Recombinant Human) (R&D systems, USA) 

HiPerfect (Qiagen Ltd, UK) 

Histone H1 (Millipore, UK) 

Kanamycin (Invitrogen, UK) 

L-Arabinose (Sigma-Aldrich, UK) 

Leupeptin (Sigma-Aldrich, UK) 

Lipofectamine 2000 (Invitrogen, UK) 

Lithium chloride (LiCl) (Fisons Scientific Apparatus, UK ) 

Luria-agar (L-agar) (Sigma-Aldrich, UK) 

Luria-broth (L-broth) (Invitrogen, UK) 

Magnesium acetate (Sigma-Aldrich, UK) 

Magnesium chloride (MgCl2) (Sigma-Aldrich, UK) 

MAX Efficiency® DH5α
TM

 Competent Escherichia coli (E. coli) Cells (Invitrogen, UK) 

Molecular biology enzymes (New England Biolabs, UK) 

Nitrocellulose membrane (Perkin Elmer, USA) 

Octylphenoxypolyethoxyethanol/Nonidet
TM

 P40 substitute (NP-40) (Sigma-Aldrich, 

UK) 
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One Shot® BL21-AI Competent E. coli Cells (Invitrogen, UK) 

One Shot® TOP10 Chemically Competent E. coli Cells (Invitrogen, UK) 

OptiMEM (GIBCO®, Invitrogen, UK) 

PAK6 siRNA oligonucleotide 1 (Oligo 1) (Ambion, USA) 

PAK6 siRNA oligonucleotide 2 (Oligo 2) (Thermo Scientific Dharmacon, UK) 

Paraformaldehyde (PFA) (Sigma-Aldrich, UK) 

pDEST
TM

15 (Invitrogen, UK) 

pDONOR
TM 

207 (Invitrogen, UK) 

Penicillin/Streptomycin (Sigma-Aldrich, UK) 

Phenylmethylsulfonylfluoride (PMSF) (Sigma-Aldrich, UK) 

Phosphate buffered saline (PBS) tablets (Oxoid Limited, UK) 

Phusion enzyme (Finnzymes, UK) 

Pierce® ECL western blotting substrate (Thermo Scientific, USA) 

Protein G Sepharose
TM

 4 Fast Flow beads (Amersham Biosciences, UK) 

Protein marker (Biorad, USA) 

Purelink
TM

 Hi Pure Plasmid mini-prep kit (Invitrogen, UK) 

QIAGEN HiPerfect transfection reagent (Qiagen Ltd, UK) 

QIAGEN Plasmid maxi-prep kit (Qiagen Ltd, UK) 

QIAquick gel extraction kit (Qiagen Ltd, UK) 

QuikChange
TM 

Site-Directed mutagenesis Kit (Stratagene, USA) 

Rat tail collagen, Type I (BD Biosciences, UK) 

Roswell Park Memorial Institute (RPMI)-1640 medium (GIBCO®, Invitrogen, UK) 

Sodium chloride (NaCl) (Sigma-Aldrich, UK) 

Sodium dodecyl sulphate (SDS) (Sigma-Aldrich, UK) 

Sodium fluoride (NaF) (Alfa Aesar, UK) 

Sodium orthovanadate (Na3VO4) (Sigma-Aldrich, UK) 

Sodium pyrophosphate (BDH Chemicals, UK) 

Sucrose (Sigma-Aldrich, UK) 

Super optimal broth with catabolite repression (SOC) media (Invitrogen, UK) 

Tetramethylrhodamine isothiocyanate (TRITC)-Phalloidin (Sigma-Aldrich, UK) 

Tris-base (Sigma-Aldrich, UK) 

Triton X-100 (VWR International, UK) 

Trypsin/EDTA (GIBCO®, Invitrogen, UK) 

Tween 20 (VWR International, UK 
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2.1.2 Plasmids 

 

Construct Vector backbone Source 

GFP-PAK6 wild-type (WT) pEGFP-C1 (Clontech, UK) 

modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London) 

Generated by the 

author 

mRFP1/ RFP-PAK6 wild-type  pDEST (modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London) 

Generated by the 

author 

Myc-PAK6 wild-type  pCMV6-Myc Kind gift from 

Jonathan Chernoff, 

Fox Chase Cancer 

Center, Philadelphia, 

USA 

GST-PAK6 wild-type  pDEST
TM

15 (Invitrogen) Generated by the 

author 

GFP-PAK6 Kinase active 

(S531N) 

pEGFP-C1 (Clontech, UK) 

modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London 

Generated by the 

author 

GFP-PAK6 Kinase dead 

(K436A) 

pEGFP-C1 (Clontech, UK)  

modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London 

Generated by the 

author 

GFP-PAK6 predicted 

autophosphorylation site mutant 

(S560E) 

pEGFP-C1 (Clontech, UK)  

modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London 

Generated by the 

author 

HA-Cdc42-V12 pCMV5  Kind gift from Maddy 

Parsons, King’s 

College London 

GFP-IQGAP1 wild-type pEGFP-C1 Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

RFP-PAK6 C-terminal mutant pDEST (modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London) 

Generated by the 

author 

RFP-PAK6 N-terminal mutant pDEST
 
(modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London) 

Generated by the 

author 
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Myc-IQGAP1 N-terminal 

mutant 

pcDNA3 Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

Myc-IQGAP1 C-terminal 

mutant 

pcDNA3 Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

GFP-PAK6 C-terminal mutant pEGFP-C1 (Clontech, UK)  

modified for use in 

Gateway
TM 

Technology by 

Kerry Shea, King’s College 

London 

Generated by the 

author 

GST-IQGAP1 (amino acids 

717-863) 

pGEX4T Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

GST-IQGAP1 (amino acids 

162-671) 

pGEX4T Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

GFP-IQGAP1 dominant- 

negative  

pEGFP-C1 Kind gift from David 

Sacks, Department of 

Laboratory Medicine, 

NIH, Bethesda, USA 

Table 2.1 Construct list 

 

2.1.3 Antibodies 

 

Antibody Company Source Application Dilution 

Anti-c-Met (C-12) 

Cat# sc-10 

Santa Cruz Rabbit Western Blotting 1: 500 

Anti-c-Myc (9E10) 

Cat# sc-40 

Santa Cruz Mouse  Western Blotting and 

Immunoprecipitation 

1: 250 

Anti-Cdc42 

Cat# 2462 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 500 

Anti-E-cadherin 

(HECD-1) 

Cat# GTX21416 

GeneTex Mouse a) Western 

Blotting  

b) Immuno-

fluorescence  

a) 1: 500 

b) 1: 500   

Anti-EGFR 

Cat# 2232 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 500 

Anti-ERK1/2 

Cat# 9102 

 

 

Cell 

Signaling  

Technology 

Rabbit Western Blotting 1: 2000 



53 
 

Anti-GAPDH 

Cat# MAB374 

Millipore Mouse Western Blotting 1: 20000 

Anti-GFP 

Cat# 11814460001 

Roche Mouse Western Blotting and 

Immunoprecipitation 

1: 200 

Anti-GST (GST-2) 

Cat# G1160 

 

Sigma-

Aldrich 

Mouse Western Blotting 1: 10000 

Anti-HA (Y-11) 

Cat# sc-805 

Santa Cruz Rabbit Western Blotting 1: 500 

Anti-IQGAP1 

Cat# 2293 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 500 

Anti-PAK1 

Cat# 2602 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 1000 

Anti-PAK2 

Cat# 2608 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 2000 

Anti-PAK4 

Cat# 3242 

Cell 

Signaling 

Technology 

Rabbit Western Blotting  1: 500 

Anti-PAK4 In-house 

Affinity 

purified 

Rabbit Western Blotting 1: 2000 

Anti-PAK6  

Cat# ST1108 

Calbiochem Rabbit Western Blotting 1: 500 

Anti-Paxillin (349) 

Cat# 610051 

BD 

Transduction 

Laboratories 

Mouse Immunofluorescence 1: 50 

Anti-phospho-

ERK1/2 (p44/42 

MAPK, 

Thr202/Tyr204) 

(E10) 

Cat# 9106 

Cell 

Signaling 

Technology 

Mouse Western Blotting 1: 1000 

Anti-phospho-

PAK4 

(ser474)/PAK5 

(ser602)/PAK6 

(ser560) 

Cat# 3241 

Cell 

Signaling 

Technology 

Rabbit Western Blotting 1: 1000 

Anti-RFP 

Cat# 632393 

Living 

Colors 

Rabbit Western Blotting and 

Immunoprecipitation 

1: 1000 

Anti-β-tubulin 

(clone TUB 2.1) 

Cat#T4026 

Sigma-

Aldrich 

Mouse Western Blotting 1: 1000 

Table 2.2 Primary antibodies  
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 Table 2.3 Secondary antibodies 

 

2.1.4 Buffers 

Blocking solution: 5% w/v milk powder or 5% w/v BSA in Tris buffered saline (TBS)-

Tween  

 

DNA loading buffer: 40% w/v sucrose, 0.25% w/v bromophenol blue 

 

Freeze down buffer for GST protein beads: 50% v/v glycerol, 20 mM Tris-HCL pH 7.6, 

100 mM NaCl, 1 mM DTT 

 

NP-40 lysis buffer: 0.5% v/v NP-40, 30 mM sodium pyrophosphate, 50 mM Tris-HCL 

pH 7.6, 150 mM NaCl, 0.1 mM EDTA and protease inhibitor cocktail 

 

Protease inhibitor cocktail: 50 mM NaF, 1 mM Na3VO4, 1 mM PMSF, 10 µg/ml 

leupeptin, 1 µg/ml aprotinin and 1 mM DTT 

 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) running 

buffer (10x): 250 mM Tris-base, 1.92 M Glycine, 1% w/v SDS. Dilute to 1x with 

distilled water (dH2O) 

 

SDS-PAGE transfer buffer (10x): 250 mM Tris-base, 1.92 M Glycine. Make up 1x 

transfer buffer fresh on the day by diluting to 1x and adding methanol to a final 

concentration of 20% v/v. 

 

SDS-PAGE sample buffer (2x): 100 mM Tris-HCL pH 6.8, 4% w/v SDS, 20% v/v 

glycerol, 0.2% w/v bromophenol blue, 1: 50 β-mercaptoethanol 

 

Antibody Company Source Dilution 

Horseradish 

peroxidase (HRP)- 

conjugated anti 

mouse 

Dako Goat 1: 1000 - 1: 10000 

HRP-conjugated 

anti rabbit 

Dako Goat 1: 1000 - 1: 2000 
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Tris acetate EDTA (TAE) buffer (1x): 40 mM Tris acetate, 1 mM EDTA 

 

TBS-Tween: 25 mM Tris-HCL pH 7.6, 50 mM NaCl, 0.1% v/v Tween 20 

 

PBS-Tween: PBS, 0.1% v/v Tween 20 

 

Stripping buffer: 25 mM glycine pH 2, w/v 1% SDS 

 

Coomassie blue stain: 50% v/v methanol, 10% v/v acetic acid, 0.025% w/v coomassie 

blue 

 

Coomassie destain: 12.5% v/v isopropanol, 10% v/v acetic acid 

 

Kinase buffer: 50 mM Tris-HCL pH 7.5, 10 mM MgCl2, 1 mM DTT 

 

LiCl buffer: 0.5 M LiCl, 20 mM Tris pH 8 

 

Kinase cocktail solution: 2.5 mM Hepes pH 7.4 (Calbiochem, UK), 50 mM magnesium 

acetate, 0.5 mM ATP 

 

Kinase assay reaction buffer (5x): 40 mM MOPs pH 7, 1 mM EDTA 
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2.2 Methods 

2.2.1 Molecular biology  

Transformation of Escherichia coli cells 

The heat shock method was used to transform DH5α and Top10 strains of E. coli with 

DNA plasmids. These competent E. coli cells, typically stored at -80
o
C, were allowed to 

thaw out on ice prior to transformation. 1 µl of plasmid DNA was then added to the 

bacteria and this transformation mixture was placed on ice for 30 minutes, followed by 

incubation at 42
o
C for exactly 20 seconds or 30 seconds for DH5α or Top10 cells, 

respectively. The transformed bacteria were then placed on ice for a further 2 minutes, 

supplemented with 950 µl of SOC media (supplied with the competent cells) and 

incubated in a shaking incubator at 37
o
C for one hour. Subsequently, the transformed 

bacteria were plated onto L-agar containing the appropriate antibiotic and incubated at 

37
o
C overnight. 

 

Purification of plasmid DNA 

Plasmid DNA was isolated and purified from E. coli cells using the QIAGEN maxi-prep 

kit and the Purelink
TM 

mini-prep kit. L-broth supplemented with the appropriate 

antibiotic was inoculated with transformed bacteria and incubated in a shaking 

incubator overnight at 37
o
C. The concentrations of antibiotic used were typically 7 

µg/ml for gentamicin, 30 µg/ml for kanamycin and 100 µg/ml for ampicillin. Mini-prep 

kits were employed to purify up to 20 µg plasmid DNA from 5 ml L-broth. Maxi-prep 

kits were utilised to purify up to 500 µg plasmid DNA from 200 ml L-broth. The 

plasmid DNA was eluted in water and stored at -20
o
C for future use.  

 

Restriction digests of plasmid DNA 

A restriction digest reaction typically contained 0.5–1 µg of plasmid DNA, 10–20 units 

of restriction endonuclease (New England Biolabs (NEB)) and 1x NEB buffer in a total 

volume of 15 µl. The reaction was then incubated for one hour at the optimum 

temperature for the restriction endonuclease being used. 2 µl of DNA loading buffer 

was used to terminate the reaction. The restriction digest products were then resolved on 

an agarose gel.  
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Resolving DNA fragments on an agarose gel 

A 1% w/v TAE agarose gel supplemented with 0.5 µg/ml ethidium bromide was used to 

resolve DNA fragments. DNA loading buffer was added to the DNA products and 10–

20 µl of sample was loaded, alongside a DNA marker, into a well of the agarose gel. 

The gel was covered with 1x TAE buffer and the DNA was migrated through the gel at 

140V. The DNA marker was used to verify the size of the DNA fragments present and 

these fragments were visualised under ultraviolet (UV) light. 

 

Generation of tagged PAK6 constructs 

Polymerase chain reaction (PCR)  

The Gateway
TM

 Technology system (Invitrogen, UK) was used to generate tagged 

PAK6 constructs. Myc-PAK6 wild-type plasmid was used as the DNA template in the 

production of PAK6 DNA flanked by attB sequences; the addition of attB sequences 

was required to allow for subsequent cloning into Gateway
TM

 vectors. PAK6 DNA 

flanked by attB sequences was produced by PCR amplification (see Appendix 1 for 

primer sequences). The PCR reaction was performed using Phusion DNA polymerase in 

the supplied reaction buffer. Each reaction was set up using 500 ng template DNA, 5% 

v/v DMSO, 0.2 mM of each deoxyribonucleotide triphosphate (dNTP) and 300 nM of 

forward and reverse primers (primers were ordered from Thermo Fisher Scientific, 

Germany). The total reaction volume in a 0.2 ml PCR tube was 50 µl. The specific 

conditions used for the PCR reaction for DNA amplification are displayed in table 2.5.  

 

Cycle(s) Process Conditions  

1 Pre-incubation 95ºC, 5 minutes 

35 Denaturation 95ºC, 1 minute 

Annealing 48ºC and 55ºC, 1 minute 

Extension 74ºC, 1 minute 30 seconds 

1 Final Extension 74ºC, 10 minutes 

Table 2.4 Conditions for PCR amplification of PAK6 

 

PAK6 mutants were generated using the same conditions shown in table 2.5; however 

the extension times were varied depending on the size of the PAK6 region being 

amplified. PCR amplification was also used to generate GFP tagged C-terminal PAK6 
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and mRFP1 tagged N- and C-terminal PAK6 mutant constructs as appropriate (see 

Appendix 1 for primer sequences).  

 

Gel purification of DNA fragments 

PCR products were resolved on a 1% w/v TAE agarose gel supplemented with 0.5 

µg/ml ethidium bromide and the DNA was visualised under low intensity UV light.  

The fragment of interest was excised from the gel with a razor and the DNA purified 

from the agarose using a QIAquick gel extraction kit. The purified DNA was eluted in 

water and then stored at -20°C for subsequent use. 

 

Construction of PAK6 entry clone 

In order to generate a PAK6 entry clone, a Gateway
TM

 BP recombination reaction was 

conducted between the pDONR
TM 

207 vector and the attB sequence flanked PAK6 PCR 

product in accordance with the manufacturer’s instructions. The BP reaction was 

incubated for 1 hour at room temperature. Subsequently, proteinase K was added and 

the reaction mixture was incubated at 37 ºC for 10 minutes to terminate the reaction. 

The BP reaction mixture was then transformed into TOP10 E. coli cells and the bacteria 

were plated onto L-agar supplemented with the appropriate antibiotic and incubated 

overnight at 37
o
C. Colonies were then selected and the plasmid DNA was purified. The 

presence of PAK6 in individual colonies was verified by restriction digest. PAK6-

positive clones were subsequently sequenced by Eurofins MWG Operon using primers 

that anneal to the gateway sequence upstream of the PAK6 gene (primers 19 and 20, 

primers were ordered from Thermo Fisher Scientific, Germany, see Appendix 1 for 

primer sequences). An internal primer was also generated to sequence the entirety of 

PAK6 (see Appendix 1 for primer sequence). 

 

Construction of PAK6 expression clone 

In order to generate GST, GFP and RFP-PAK6 expression plasmids, a Gateway
TM 

LR 

recombination reactions were performed between the pENTR (PAK6) entry clone and 

pDEST
TM

15 (Invitrogen, UK), modified pEGFP-C1 (Clontech, UK) (for use in the 

Gateway
TM 

Technology system) and pDEST (mRFP1/RFP) in accordance with the 

manufacturer’s instructions. The LR reaction was incubated for 1 hour at room 

temperature. Subsequently, proteinase K was added and the reaction mixture was 

incubated at 37 ºC for 10 minutes to terminate the reaction.  The reaction was then 
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transformed into TOP10 E. coli cells as described in previously. The plasmid DNA 

purified from the individual colonies was then sequenced by Eurofins MWG Operon 

using sequencing primers (primers were ordered from Thermo Fisher Scientific, 

Germany, see Appendix 1 for primer sequences). 

 

Purification of GST-fusion proteins 

E. coli BL21-A1 cells were transformed with GST expression plasmids. The 

transformed bacteria were cultured in L-broth to which 100 µg/ml of ampicillin was 

added. The cultures were incubated overnight in a shaking incubator at 37ºC. The 

following day, the bacterial cultures were diluted 1 in 100 into 200 ml of L-broth and 

grown for approximately 2 hours for the optical density to reach 0.6. The bacterial 

cultures were subsequently induced overnight at 20ºC with the appropriate % of L-

Arabinose. The overnight cultures were then centrifuged at 6000 revolutions per minute 

(rpm) for 15 minutes to pellet the bacteria. The pelleted bacteria were re-suspended in 

15 ml of a PBS: protease inhibitor cocktail. Sonication was used to disrupt the cells and 

this was followed by the removal of cell debris using centrifugation (4800 rpm for 10 

minutes). GST beads were pre-washed three times with a PBS: protease inhibitor 

cocktail and added to the supernatant prior to incubation for two hours at 4ºC. The 

beads were then pelleted by centrifugation at 500 x gravity (x g) for 5 minutes and 

washed three times in a PBS: protease inhibitor cocktail at 2000 rpm for 2 minutes per 

wash. The beads were stored in freeze down buffer at -80
o
C. 

 

Site-Directed mutagenesis 

Site-Directed mutagenesis was used to construct potential kinase active (S531N and 

S560E) mutants and a kinase dead (K436A) mutant of PAK6. Mutagenic primers were 

designed using the Stratagene QuikChange® Site-Directed mutagenesis primer design 

programme (see Appendix 1 for primer sequences). 

 

The PCR reactions were performed using 1 μl of PfuTurbo DNA polymerase (2.5 U/μl) 

in the supplied reaction buffer. Each PCR reaction was performed using 100 ng of 

template DNA (PAK6 entry clone), 0.2 mM of each dNTP and 300 nM of mutagenic 

forward and reverse primers. The total reaction volume in a 0.2 ml PCR tube was 

typically 50 µl. The specific conditions used for the PCR reactions are shown in table 

2.5. 
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Cycle(s) Conditions  

1 95ºC, 30 seconds 

18 95ºC, 30 seconds 

55ºC, 1 minute 

68ºC, 1 min/ kilobase (kb) 

of plasmid length 

             Table 2.5 Conditions for Site-Directed mutagenesis PCR 

 

Following thermocycling, 1 µl of Dpn 1 restriction enzyme (10 U/µl) was added to the 

PCR reaction and mixed thoroughly. The reaction was then immediately incubated at 37 

ºC for 2 hours to digest the parental supercoiled double-stranded DNA. 1 µl of the 

Dpn1-treated DNA was transformed into separate 50 µl aliquots of XL1-Blue 

supercompetent cells. The XL1-Blue supercompetent cells, typically stored at -80
o
C, 

were thawed out slowly on ice prior to transformation. 1µl of plasmid DNA was then 

added to the bacteria and this transformation mixture was placed on ice for 30 minutes, 

followed by incubation at 42
o
C for exactly 45 seconds. The transformed bacteria were 

then returned to the ice for a further 2 minutes. 500 µl of SOC media was added to the 

transformed bacteria and incubated at 37
o
C with shaking for one hour. The bacteria 

were then plated onto L-agar containing the appropriate antibiotic and incubated at 37
o
C 

overnight. The plasmid DNA purified from the individual colonies was sequenced using 

sequencing primers (primers were ordered from Thermo Fisher Scientific, Germany, see 

Appendix 1 for primer sequences). DNA from positive colonies was then used to 

perform a Gateway
TM 

LR recombination reaction between the mutagenic pENTR 

(PAK6) entry clone and the pEGFP-C1 (Clontech, UK) destination vector, modified for 

use in the Gateway
TM 

Technology system, according to manufacturer’s instructions.  

 

2.2.2 Mammalian cell culture 

DU145 human prostate cancer cells (obtained from Claire Wells, King’s College 

London) and DU145 enhanced GFP (EGFP) cells (a kind gift from Yolanda Calle, 

King’s College London) were cultured in 10% FBS, 90% RPMI-1640 with L-

Glutamine and penicillin-streptomycin. HT29 human colon cancer cells and HEK293 

human embryonic kidney cells, both obtained from Claire Wells, King’s College 

London, were cultured in 10% FBS, 90% DMEM+GlutaMAX
TM

, penicillin-
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streptomycin, 4.5 g/L D-Glucose, 25 mM Hepes media. All media were warmed before 

use to 37
o
C. All cell lines were cultured at 37

o
C in a tissue culture incubator with 

humidified air, supplemented with CO2 to 5% over atmospheric levels. Cells were 

passaged and maintained at sub-confluent levels. During cell passaging the growth 

medium was removed and the cells were washed with 5 ml PBS prior to incubation with 

1 ml trypsin/EDTA at 37
o
C until the adherent cells had detached. 4 ml of 10% FBS in 

RPMI-1640 or 10% FBS DMEM+GlutaMAX
TM 

media (as appropriate) was then added 

to the cells. Cells were pelleted by centrifugation at 1000 rpm for 5 minutes. The media 

was carefully removed and the cell pellet re-suspended in 10% FBS media. An 

appropriate dilution of these cells was subsequently added to 10% FBS media in a fresh 

tissue culture flask to give a total volume of 10 ml. 

 

2.2.3 Transient transfection 

FuGene HD 

Cells were plated at an appropriate density the day before transfection (table 2.7) in 

10% FBS media. A transfection reaction was set up by the addition of a specific 

concentration of DNA to serum-free OptiMEM media and then incubated at room 

temperature for 5 minutes. Following this, typically three times the volume of FuGene 

HD to DNA was added. To allow for complex formation, the mixture was then 

incubated for 30 minutes at room temperature, in accordance with the manufacturer’s 

instructions. The serum-containing media was replaced with serum-free OptiMEM. 

After 30 minutes, the DNA: FuGene HD complexes were added to the cells. Following 

five hours, the OptiMEM media was replaced with fresh medium (containing 10% 

FBS). 

 

Lipofectamine 2000 

Cells were plated at an appropriate density the day before transfection (table 2.7) in the 

appropriate 10% FBS media. To set up a transfection reaction, 3 µl of lipofectamine 

2000 was diluted in 100 µl serum-free OptiMEM media. In a separate eppendorf, 3 µg 

of DNA was added to 100 µl serum-free OptiMEM media. The mixtures were left at 

room temperature for 5 minutes. Following this, the lipofectamine 2000: OptiMEM mix 

was added dropwise to the DNA: OptiMEM mix and then incubated at room 

temperature for 15 minutes. Prior to the addition of the DNA: lipofectamine 2000 

complexes to the cells, serum-containing media (10% FBS) was replaced with serum-
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free media. The cells were then incubated with the transfection reagents for seven hours 

before the replacement of the serum-free media with the appropriate 10% FBS media. 

 

 

Cells Cell 

Density 

Transfection 

Reagent 

Concentration 

of DNA (µg): 

Volume of 

FuGene HD 

used (µl) 

Constructs 

Transfected using 

this protocol 

 

DU145 

 

2x10
4
 /ml 

 

FuGene HD 

 

1: 3  

GFP control vector 

All GFP/RFP-tagged 

constructs used 

 

DU145 

 

5x10
4 

/ml 

 

FuGene HD 

 

1: 6 

GFP-IQGAP1 WT 

Co-expression of 

GFP-IQGAP1 WT 

and RFP-PAK6 WT 

 

HT29 

 

1x10
5 

/ml 

Lipofectamine 

2000 

 

N/A 

GFP control vector 

All GFP-tagged 

constructs used 

 

HEK293 

 

1x10
5 

/ml  

 

Calcium 

Phosphate 

 

N/A 

All tagged constructs 

transfected into 

HEK293 cells 

   Table 2.6 Optimised transient transfection protocols  

 

Calcium phosphate transfection 

Cells were seeded at a density of 1x10
5 

/ml (table 2.7) and then incubated at 37°C for 

24 hours. The medium was changed 3-4 hours prior to transfection. The transfection 

reaction was set up using the conditions described in table 2.8. 
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10cm tissue culture dish 

(10 ml) 

2cm tissue culture dish  

(2 ml) 

To tube A add: 

 

36 µl 2M CaCl2 

20 µg DNA 

Make volume to 300 µl 

with sterile water 

 

To tube B add: 

 

300 µl 2x Hepes buffered 

saline (HBS) 

 

To tube A add: 

 

7.2 µl 2M CaCl2 

4 µg DNA 

Make volume to 60 µl 

with sterile water 

 

To tube B add: 

 

60 µl 2x Hepes buffered 

saline (HBS) 

 

                       Table 2.7 Calcium phosphate transfection conditions 

 

The calcium chloride (CaCl2), DNA and water mixture was added dropwise to the 2x 

HBS with aeration until depleted. The transfection complex was then incubated at room 

temperature for 30 minutes. The transfection mix was then added dropwise to the cells, 

dispersed and incubated at 37°C overnight. The medium was then replaced with fresh 

medium and incubated for 24 hours.  

 

HiPerfect for siRNA transfections  

Cells were plated at an appropriate density the day before transfection (table 2.9) in 

10% FBS media. To set up a transfection reaction, 75 nM (for PAK6 siRNA oligo 1) or 

225 nM (for PAK6 siRNA oligo 2) was diluted in serum-free OptiMEM media to give a 

total volume of 100 µl (see Appendix 2 for siRNA target sequences). Equal 

concentrations of control siRNA as PAK6 siRNA were used. To this, 12 µl of HiPerfect 

was added. The transfection mix was then incubated at room temperature for 30 

minutes. The transfection mix was subsequently added dropwise to the cells and 

incubated at 37°C for 72 hours. 
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    Table 2.8 Optimised HiPerfect transfection protocol for siRNA transfections 

 

2.2.4 Cell lysis 

Cells were washed twice in PBS and lysed on ice in 0.5% NP-40 lysis buffer 

supplemented with a protease inhibitor cocktail for 10 minutes. The whole cell lysates 

were then scraped and centrifuged for 10 minutes at 13000 x g for 10 minutes to remove 

cell debris. The supernatant was removed and placed in a fresh tube for storage. 10 µl of 

2x SDS Gel sample buffer (GSB) was added to the lysates and the samples boiled at 

90ºC for 3 minutes. 

 

2.2.5 Immunoprecipitation 

Typically 5 µl of the appropriate IP antibody was added to the lysis supernatant (see 

section 2.2.4) and incubated overnight at 4ºC on a rotating wheel. The following day, 

protein G beads were washed three times in lysis buffer. The beads were re-suspended 

in an appropriate volume of lysis buffer prior to adding 30 µl of bead slurry to each IP 

sample. The samples were then incubated for 1 hour on a rotating wheel at 4˚C.  Each 

IP, and untransfected (UT) control, was pulse spun following incubation and washed 

three times with lysis buffer. 2x GSB was added to each sample and boiled at 90°C for 

3 minutes. 

 

2.2.6 Gel electrophoresis and immunoblotting 

Proteins were loaded onto appropriate % gels and electrophoresed. Proteins were then 

blotted onto nitrocellulose membranes. The blots were then blocked in 5% milk or 5% 

BSA/TBS-Tween as appropriate for one hour at room temperature and incubated with 

primary antibodies overnight at 4°C. Blots were then washed for three 10 minute 

  Scatter assay Whole cell 

lysates 

 

Cells 

siRNA 

oligonucleotide(s) 

 

Cell density 

 

Cell density 

 

DU145 

 

Control  

 

0.5x10
4 

/ml 

 

1x10
5 

/ml 

 

DU145 

 

Oligo 1 

 

1x10
4 

/ml 

 

1x10
5 

/ml 

 

DU145 

 

Oligo 2 

 

0.5x10
4 

/ml 

 

2x10
5 

/ml 

 

HT29 

 

Control and Oligo 1 

 

1x10
4 

/ml 

 

1x10
5 

/ml 
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washes with 0.1% TBS-Tween. Blots were then incubated with HRP-conjugated 

secondary antibodies for one hour at room temperature. Blots were then subjected to a 

further three 10 minute washes with 0.1% TBS-Tween. If re-probing was required, the 

blots were incubated in stripping buffer for 15 minutes which was then removed and 

replaced with fresh stripping buffer for a further 15 minutes. The blots were then 

washed with 0.1% PBS-Tween for 5 minutes. Subsequently the blots were blocked for 1 

hour in 5% milk or 5% BSA/TBS-Tween as appropriate and incubated overnight with 

primary antibodies at 4°C.  

 

2.2.7 In vitro kinase assay 

The immune complexes were prepared as described in section 2.2.5, washed three times 

with lysis buffer, once with lithium chloride wash buffer and once with a kinase buffer 

wash. A kinase cocktail solution was diluted 1:1 with dH2O. 10 µl per sample of this 

was transferred to a separate eppendorf. To a new eppendorf, 10 µl per sample of dH2O, 

5 µl of histone H1 and 5 µl of 5x reaction buffer per sample was added. 1.25 µl of 

gamma-phosphorus 32-labelled ([γ-
32

P]) ATP per sample was then added to the kinase 

cocktail: dH2O mix. 10 µl per sample from this was transferred to the reaction buffer: 

histone H1: dH2O mix, resulting in the complete kinase reaction mix. To each sample 

25 µl of the complete kinase reaction mix was added. The samples were then incubated 

at 30°C for 30 minutes with gentle mixing every 10 minutes. 10 µl of 2x GSB was 

added to each sample to stop the reaction and the samples were boiled at 100°C for 3 

minutes. Histone H1 or XFP-tagged immunoprecipitated proteins were used as 

substrates as appropriate. 

 

2.2.8 GST pulldown assays  

Cells were seeded at 2x10
5 

/ml
 
in each 10cm tissue culture dish and were grown in 10% 

FBS RPMI-1640 for 48 hours. Cells were then lysed with 1 ml lysis buffer (0.5% NP-40 

lysis buffer supplemented with a protease inhibitor cocktail) per 10cm tissue culture 

dish or serum-starved in 0.5% FBS RPMI-1640 for 24 hours prior to lysis. They were 

either unstimulated or stimulated with HGF (500 ng/ml) for specific time points as 

required before lysis. GST beads, pre-washed with the lysis buffer: protease inhibitor 

cocktail, were used to pre-clear the lysates for one hour prior to incubation with GST 

purified protein beads (also pre-washed in the lysis buffer: protease inhibitor cocktail) 

for two hours at 4ºC on a rotating wheel. Subsequently, the unbound fractions were 
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discarded and the beads were washed three times in the lysis buffer: protease inhibitor 

cocktail prior to the addition of 25 µl of 2x SDS sample loading buffer. The samples 

were then boiled for 10 minutes at 90ºC and loaded onto the appropriate % 

polyacrylamide gels and were immunoblotted (WB). 

 

For GST pulldown assays in the presence of over-expressed XFP-tagged constructs 

cells were seeded at 1x10
5 

/ml in each 10cm tissue culture dish and were grown in 10% 

FBS media for 24 hours and each dish was transfected with the appropriate XFP-tagged 

construct using the calcium phosphate transfection kit (see section 2.2.3). Following 24 

hours the media was replaced and incubated for a further 24 hours. Cells were then 

lysed as usual.  

 

Typically 5 µl of the GST alone expression plasmid or 200 µl of GST fusion proteins 

were used per sample in the GST pulldown assays. 

 

2.2.9 Immunofluorescence 

Preparation of coverslips 

13 mm diameter No. 1 glass coverslips were placed in a solution containing 40% of 1 M 

HCL and 60% of 96% ethanol overnight, gently rinsed three times in dH2O and then 

boiled. The coverslips were then rinsed a further six times with dH2O. Excess water was 

drained and the coverslips were incubated in an oven at 150°C overnight for sterilisation 

before being used.  

 

a. Rat tail collagen type I coated coverslips 

A 50 μg/ml solution of rat tail collagen type I (hereafter referred to as collagen I) was 

prepared in 20 mM acetic acid under sterile conditions. 100 µl of the mix was added to 

each 13 mm coverslip and incubated at room temperature for 1 hour. The coverslips 

were then washed twice with sterile PBS and were then ready for use. 

 

b. Fibronectin coated coverslips 

10 µl of fibronectin was added to 1 ml sterile PBS. 100 µl of the mix was added to each 

13 mm coverslip and incubated at room temperature for 45 minutes. The coverslips 

were then washed twice with sterile PBS and were then ready for use. 
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c. 2D matrigel coated coverslips 

Matrigel was allowed to thaw on ice. A 1 in 100 dilution of the matrigel in serum-free 

media was set up. 100 µl of the mix was added to each 13 mm coverslip and incubated 

at 37°C for 1 hour. The coverslips were then washed twice with sterile PBS and were 

then ready for use. 

 

Immunofluorescent labelling 

Cells were fixed with 4% PFA in PBS at room temperature for 20 minutes and washed 

three times with PBS before being permeabilised with 0.2% Triton X-100/PBS for 5 

minutes. Cells were then washed three times with PBS. For F-actin alone (this includes 

XFP-tagged expressing cells), cells were incubated at room temperature for 1 hour with 

TRITC-Phalloidin (1 in 1000 dilution in 3% BSA-PBS) or Phalloidin 633 (1 in 200 

dilution in 3% BSA-PBS). The coverslips were then washed twice with PBS and once 

with dH2O before being mounted in 10 µl FluorSave
TM 

Reagent on glass slides.  

 

For Paxillin or E-cadherin staining, cells were blocked in 3% BSA-PBS for 30 minutes. 

They were then washed three times with PBS and incubated at room temperature for 2 

hours with an anti-paxillin antibody (1 in 50 dilution in 3% BSA-PBS) or with an anti-

E-cadherin antibody (1 in 50 dilution in 3% BSA-PBS). Cells were then washed three 

times with PBS and incubated with Alexa Fluor® 488 or 568 goat anti-mouse antibody 

(1 in 200 dilution in 3% BSA-PBS) in addition to TRITC-Phalloidin (1 in 1000 in 3% 

BSA-PBS) or Phalloidin 633 (1 in 200 dilution in in 3% BSA-PBS). Coverslips were 

then washed and mounted as described for F-actin staining alone. Images were collected 

on an Olympus IX71 inverted microscope, or a Carl Zeiss LSM510 META laser 

scanning confocal microscope. 

 

2.2.10 Time-lapse microscopy 

Cells seeded into six-well plates and supplemented with 20 mM Hepes (Invitrogen, UK) 

were placed on the automated and heated stage of an Olympus IX71 microscope. Cell 

images were collected using a Retiga SRV CCD camera, where a frame was captured at 

5 minute intervals over 24 hours from each of the six wells using Image-Pro Plus 

software (supplied by MAG, UK). Following acquisition, the time-lapse sequences were 

displayed as a movie and saved as AVI files. These files could then be used to manually 

track cells for the whole of the time-lapse sequence using Motion Analysis software 
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(ANDOR IQ Technology, Belfast, UK). This resulted in the generation of a sequence of 

position co-ordinates corresponding to each cell in each frame which was subsequently 

saved as Cel files. A total of 30-60 cells were tracked over 3 independent films per 

condition. The Cel files were then subjected to mathematical analysis using 

Mathematica 6.0™ notebooks developed in-house by Prof. G. Dunn and Prof. G. Jones 

to obtain the mean migration speed and statistical significance, which was accepted for 

P ≤ 0.05. 

 

2.2.11 Cell scatter assay in a 3D matrix 

The Lab-Tek® chambered #1.0 8 chamber borosilicate coverglass system (Nunc, USA) 

was used. 100 µl of matrigel was added to the bottom of all 8 wells. This was allowed to 

set at 37ºC for 1 hour. 2 µl of matrigel and 98 µl of collagen I was mixed with 2.4x10
4
 

DU145 cells in a 100 µl suspension. This was left to set at 37ºC overnight. Once set, 

chamber wells were supplemented with 100 µl 10% FBS RPMI-1640 media and 

subsequently every other day. Following one week, media was removed and cells were 

fixed with 4% PFA and 0.25% glutaraldehyde in PBS at room temperature for 20 

minutes and washed three times with PBS before being permeabilised with 0.2% Triton 

X-100/PBS for 5 minutes. Cells were then washed three times with PBS and incubated 

at room temperature for 1 hour with TRITC-Phalloidin diluted 1 in 1000 in 3% BSA-

PBS for F-actin staining. For DAPI staining, cells were incubated with 3 µm DAPI 

diluted in PBS and left at room temperature for 5 minutes and washed three times with 

PBS. Images were collected on a Carl Zeiss LSM510 META laser scanning confocal 

microscope. 

 

For live-cell imaging of cells, the chamber was set up as described above. Following a 

week, the chamber wells were washed 3 times with PBS and serum-starved with 0.5% 

FBS RPMI-1640 media. Following 24 hours, cells were stimulated with HGF (500 

ng/ml) and left at 37ºC for a further 48 hours. Unstimulated cells were serum-starved 24 

hours prior to filming. The cells were then filmed for 24 hours using the set up 

described in section 2.2.10.  

 

2.2.12 HGF-and EGF-induced cell scatter assay on 2D substratum 

Cells were seeded onto coverslips at a density of 0.5x10
4 

/ml and allowed 48 hours to 

form colonies. Cells were serum-starved with 0.5% FBS media 24 hours. The media 
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was not changed prior to growth factor stimulation. Cells were then fixed with 4% PFA 

after 24 hours. 

 

HGF-induced cell scattering quantification 

Cells were counted and cell counts of starved versus starved plus HGF stimulation were 

compared. The % of scattered cells per experiment was calculated using the following: 

 

Unscattered + attempted scatter + scattered = n  

Scattered/n x 100 = % of scattered cells 

 

The % of attempted scatter cells per experiment was calculated using the following: 

Unscattered + attempted scatter + scattered = n  

Attempted scatter/n x 100 = % of attempted scatter cells 

 

2.2.13 Data analysis 

Image processing and cell shape analysis 

Image J software was used to elucidate the morphology of each cell by manually 

drawing around individual cells and then processing the data to give elongation ratios 

and cell spread areas. In order to determine the elongation ratio of a cell, Image J shape 

analysis software divides the shortest cell diameter by the longest. Therefore, the ratio 

for an elongated cell morphology generated by Image J is a small numerical value. 

Hence, in order to aid graphical representation of the results acquired, all elongation 

ratio values have been subtracted from one and all spread areas have been multiplied by 

1000.  

 

Densitometry Analysis 

The autoradiographs were saved as TIF files in Adobe Photoshop CS5 and ANDOR IQ 

Technology software was used to quantify desired protein levels. In this analysis system 

it was assumed that 0 is black and the maximal value is 255 at 8 bits per pixel. These 

values were then used to calculate the mean fold value.  
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Chapter 3 – Development of an HGF-induced 3D cell scatter assay  

3.1 Introduction 

It has long been established that growth factors can promote cell migration both in vitro 

and in vivo. Indeed, HGF is known to be a mitogenic (Clark, 1994) and motogenic  

(Cantley et al., 1994; Niranjan et al., 1995) growth factor that is important during 

normal development. HGF signalling is also implicated in prostate carcinoma metastasis 

(Fujiuchi et al., 2003; Gmyrek et al., 2001; Wells et al., 2005) and the HGF receptor c-

Met is known to be over-expressed in prostate cancer (van Leenders et al., 2002).  

 

HGF was found to induce cell scattering in colony-forming MDCK cells and was 

thereafter used as an EMT model (Stoker and Perryman, 1985). Subsequently, other 

cells have been shown to respond to HGF, including DU145 prostate cancer cells 

(Davies et al., 2004; Wells et al., 2005). Cell scattering involves cell-cell dissociation 

and the loss of junctional E-cadherin localisation (Miura et al., 2001). As such, the 

HGF-induced DU145 scatter model has been used in live-cell imaging to show the 

migration of single DU145 cells in response to HGF and to observe and track actin 

cytoskeletal changes, as well as modifications in intercellular adhesions, downstream of 

HGF stimulation (Bright et al., 2009; Wells et al., 2005).  

 

During tumour cell invasion and metastasis, cancer cells must acquire a migratory 

phenotype to move through the 3D environment of the ECM. It has been documented 

that tumour cells exhibit different properties in 2D and 3D substrata (Sahai, 2007). 

Therefore, 3D model systems are being employed to investigate cell migration in an 

environment similar to that found in vivo (Yamazaki et al., 2009; Zaman et al., 2006).  

 

In this chapter, the 2D HGF-induced scatter assay has been further optimised (Fram et 

al., 2011) and an attempt has been made to translate this assay into a 3D model. In 

addition, other cell types and growth factors have been tested for their cell scattering 

potential. 
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3.2 Results 

3.2.1 DU145 cells scatter in response to HGF stimulation 

It has been previously reported that HGF stimulation elicits scattering in colony-

forming DU145 cells (Wells et al., 2005). To confirm the ability of HGF to induce 

DU145 cell scattering, DU145 cells were maintained in low serum prior to HGF 

stimulation for 4 and 24 hours. DU145 cells grew as colonies in serum-starved 

conditions (minus HGF) with tight cell-cell junctions and prominent E-cadherin 

localisation at the junctions (figure 3.1). Following 4 hours HGF stimulation, colony 

edge cells began to dissociate and this was characterised by a change in their cell 

morphology and a reduction in E-cadherin staining localised at the cell-cell junctions 

(figure 3.1, arrows). Twenty four hours after HGF addition, the majority of the DU145 

cells had scattered and exhibited an elongated migratory phenotype with little or no E-

cadherin staining visible at cell-cell boundaries (figure 3.1). These observations were 

consistent with previous reports that E-cadherin re-localises from cell-cell junctions to 

the cytosol upon HGF stimulation (Miura et al., 2001).  

 

3.2.2 Optimal HGF-induced DU145 cell scattering occurs after 2-5 weeks of 

culturing 

A robust HGF-induced scatter assay requires cells that grow as tight colonies in the 

absence of HGF. The efficiency of HGF-induced DU145 cell scattering may be affected 

by continual cell culturing. Therefore, an optimal time window for tight colony 

formation in the absence of HGF, as well as cell scatter induction in the presence of 

HGF, needed to be defined. 

 

DU145 cells were plated at a low density to favour the growth of cell colonies (figure 

3.2A, minus HGF) (see section 2.2.12). Serum-starved DU145 cells were then 

stimulated with HGF to induce cell-cell dissociation and independent migration (figure 

3.2A, plus HGF). This experiment was repeated in exactly the same manner over 7 

weeks using cells from the same population. The efficiency of the DU145 cell scatter 

response to HGF stimulation was found to change with time. The optimum time for 

scattering was defined as the point at which the scattered cell count was at its lowest in 

the low serum conditions and the scatter response was at its highest following HGF 

addition (figure 3.2B). A time window for HGF-induced DU145 cell scattering of 
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Figure 3.1 HGF induces scattering in DU145 cells. Cells were serum-starved (minus 

HGF) for 24 hours prior to 4 hours or 24 hours HGF (10 ng/ml) stimulation (plus HGF). 

Cells were then fixed and labelled for E-cadherin and F-actin. Arrow marks point of 

cell-cell dissociation (plus HGF (4 hours), Actin) and reduction in junctional E-cadherin 

staining (plus HGF (4 hours), E-cadherin). Images shown are representative of 3 

independent experiments. Bar = 10 µm. 
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Figure 3.2 Optimisation of the HGF-induced scattering model in DU145 cells. A) 

The HGF-induced DU145 scatter assay was conducted. Cells were serum-starved for 24 

hours and were either left untreated (minus HGF) or were treated with HGF (plus HGF) 

(10 ng/ml). After 24 hours the cells were fixed and stained for F-actin. Images illustrate 

categorisation of the DU145 cells minus and plus HGF. Unscattered = cells in a colony 

as marked (minus HGF). One cell adjoined to another was also classed as within a cell 

colony, even if these cells were detached from the remainder of the colony. Attempted 

Scatter = cells remain attached to one another but also exhibit an elongated phenotype 

and there is some loss of cell-cell junctions as indicated in centre (plus HGF). Scattered 

= loss of cell-cell junctions and single cells with an elongated migratory phenotype as 

indicated at top right (plus HGF). B) The HGF-induced DU145 scatter assay was 

conducted over 7 weeks and the mean % of scattered cells was calculated. The optimum 

time for scattering was deduced as marked. Bar = 10 µm. 

 

B

A 

A 
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between 2-5 weeks of culturing following cell recovery from cryogenic storage was 

deemed optimal and therefore, was used in all subsequent experiments (Fram et al., 

2011). 

 

3.2.3 Effect of substratum on HGF-induced DU145 cell scattering 

It has been reported that the rigidity of the underlying ECM can affect the migratory 

behaviour of cells (Lo et al., 2000). Matrigel, collagen and fibronectin are commonly 

used in 2D and 3D in vitro cell migration assays to examine tumour cell migration and 

metastasis. The ECM environment of connective tissues is rich in collagen I; thus this 

type of collagen is the most commonly used for in vitro studies (Hooper et al., 2006). 

Matrigel is employed as its composition resembles that of basement membranes and is a 

mixture of various proteins that is particularly rich in collagen V and laminins (Hooper 

et al., 2006). Lastly, fibronectin is a suitable component in migration assays as this 

ECM protein is secreted by a number of cell types (Hershkoviz et al., 1992; Lam et al., 

2003; Peters et al., 1990; Tse et al., 2011). Prior to attempting to establish a 3D scatter 

assay, the effect of matrix composition on HGF-induced cell scattering was quantified 

using serum (glass coverslips placed in 10% FBS media for 48 hours prior to serum-

starving), fibronectin, collagen I and 2D matrigel coated coverslips.  

 

Serum-starved, unstimulated DU145 cells seeded on all the tested substrata possessed 

prominent actin fibers with paxillin-rich cell-substratum adhesion sites around the 

entirety of the cell colony (figure 3.3A). No obvious change in adhesions or 

morphology was visible between the different substrata. All of the tested substrata 

supported cell scattering upon addition of HGF to a significant level, notably on 

collagen I substratum, when compared to the minus HGF control cells (figure 3.3B).  

 

3.2.4 Effect of substratum on DU145 cell speed upon HGF stimulation 

Live-cell imaging was employed to directly examine the migration of single DU145 

cells in response to HGF and to compare the migration speed of these scattering cells on 

the different substrata. The migration paths for HGF-stimulated DU145 cells were 

manually tracked and processed. The migration of individual cell tracks were plotted 

and shifted to an origin of (x0, y0) (figure 3.4A). As a control, serum-starved DU145 

cells were filmed in the absence of HGF for all the substratum tested. In these 

conditions, cells within the colony were still in contact with each other following 24  
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Figure 3.3 Variation in HGF-induced DU145 cell scattering response on different 

2D substratum. A) DU145 cells seeded onto serum, fibronectin, 2D matrigel and 

collagen I coated coverslips were serum-starved for 24 hours, fixed and then labelled for 

paxillin and F-actin in the absence of HGF addition. B) The HGF-induced DU145 

scatter assay was conducted using serum, fibronectin, 2D matrigel and collagen I coated 

coverslips. Cells were serum-starved for 24 hours prior to HGF (10 ng/ml) stimulation. 

After 24 hours cells were fixed and stained for F-actin. Scattered = loss of cell-cell 

junctions and single cells with an elongated migratory phenotype. Cells were counted 

and cell counts of minus HGF versus plus HGF were compared. The mean % of 

scattered cells and the standard error of the mean were calculated over 3 independent 

experiments for each substratum. Statistical significance compared with minus HGF 

cells was calculated using Student’s t-test; *, P < 0.05 **, P < 0.005. Bar = 10 µm. 

B 

A 
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Figure 3.4 Effect of 2D substratum on DU145 cell migration speed upon HGF 

stimulation. A) DU145 cells seeded onto serum, fibronectin, 2D matrigel and collagen 

I coated coverslips were then serum-starved for 24 hours, stimulated with HGF (10 

ng/ml) and filmed for 24 hours at 5 minute intervals using phase-contrast time-lapse 

microscopy. All colony edge cells were then tracked using ANDOR IQ Technology 

software and processed in Mathematica©. Plots of individual cell tracks are displayed 

centered at (x0,y0). B) The mean migration speed and the standard error of the mean 

(SEM) for 3 independent experiments for each substratum were calculated for cells 

tracked in (A). Statistical significance compared with serum substratum was calculated 

using Student’s t-test; *, P ≤ 0.05 **, P ≤ 0.005. 

 

A 

B 
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hours filming (see movie 1 for representative movie and Appendix 3). DU145 cells 

displayed a significant increase in mean migratory speed following HGF addition on 

fibronectin (0.5 µm/min ± 0.027 SEM), 2D matrigel (0.5 µm/min ± 0.048 SEM) and 

collagen I (0.63 µm/min ± 0.077 SEM) when compared to serum-coated substratum 

(0.35 µm/min ± 0.036 SEM) (figure 3.4B and see movie 2 for representative movie and 

Appendix 3). DU145 cells seeded onto collagen I exhibited a higher mean migration 

speed when compared to all the substrata used, suggesting that collagen I, in the 

presence of HGF stimulation, increases the migration potential of DU145 cells. 

 

3.2.5 DU145 cells scatter in response to EGF stimulation 

EGF signalling is important in the progression of prostate cancer; indeed, the frequency 

of bone metastases was hindered upon the inhibition of EGFR signalling in vivo 

(Angelucci et al., 2006). EGF, like HGF, has been shown to enhance prostate cancer 

cell migration (Zhou et al., 2006). EGF has also been shown to enhance the invasive 

potential of DU145 prostate carcinoma cells (Turner et al., 1996) and, following the 

completion of these studies, this growth factor was reported to induce the disassembly 

of cell-cell boundaries in DU145 cells (Gan et al., 2010). However unlike HGF, EGF 

has not been tested in a prostate cancer cell scatter assay. Prior to performing the 

DU145 scatter assay with EGF, DU145 whole cell lysate was immunoblotted for EGFR 

to confirm its expression in this cell line. EGFR was found to be expressed in DU145 

cells (figure 3.5A).                                       

 

EGF was found to be able to induce cell scattering in DU145 cells (figure 3.5B, plus 

EGF). Serum, fibronectin and collagen I substratum all supported the scattering effect 

when compared to serum-starved control cells (minus EGF) (figure 3.5C). However 

unlike HGF, the addition of EGF was not enough to significantly increase the scattering 

potential of cells on 2D matrigel coated substratum, when compared to serum-starved 

conditions (minus EGF) (figures 3.3B and 3.5C).  

 

3.2.6 HGF induces cell scattering in HT29 cells 

It has been reported that HGF also induces the scattering of HT29 colon 

adenocarcinoma cells; however, this scattering effect induced by HGF was not 

quantified (Herrera, 1998). Therefore, to complement the use of DU145 cells, and to 

provide a scatter model from a different cell type, HT29 cells were tested for their  
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Figure 3.5 EGF induces DU145 cell scattering. A) DU145 whole cell lysate was 

immunoblotted for EGFR. B) The EGF-induced DU145 scatter assay was conducted. 

Cells seeded onto glass coverslips were serum-starved for 24 hours, and were then 

either left untreated (minus EGF) or were treated with EGF (plus EGF) (100 ng/ml). 

After 24 hours the cells were fixed and stained for F-actin. C) DU145 cells were seeded 

onto serum, fibronectin, 2D matrigel or collagen I coated coverslips and treated as 

described in (B). Cells were counted and scattered cell counts of serum-starved versus 

plus EGF stimulation were compared. Scattered = loss of cell-cell junctions and single 

cells with an elongated migratory phenotype as discernible in (B) (plus EGF). The mean 

% of scattered cells and the standard error of the mean were calculated over 3 

independent experiments for each substratum. Statistical significance compared with 

minus EGF cells was calculated using Student’s t-test; *, P < 0.05. Bar = 10 µm. 

A 

B 

C 
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scattering potential downstream of HGF. HT29 cells are morphologically similar to 

DU145 cells in that they form multi-cellular colonies. Expression of the HGF receptor, 

c-Met, was confirmed in the HT29 cell line (figure 3.6A). Initial assays using HGF at a 

concentration of 10 ng/ml induced a minimal scatter response (figure 3.6B). However it 

was evident that the cells were attempting to scatter upon addition of the growth factor 

when the serum-starved (minus HGF) and attempted scatter cell counts were compared 

(figure 3.6B). In order to optimise the HT29 scatter assay, the time of stimulation was 

increased from 24 hours to 48 hours. However no difference was observed when 

compared to 24 hours HGF addition (data not shown). 

 

Closer examination of western analysis revealed that a higher level of c-Met receptor 

expression was present in the HT29 cells when compared to DU145 cells (figure 3.6A). 

Thus it was speculated that an increased concentration of HGF may be required to 

occupy the higher level of c-Met receptor that was detected. Hence a range of HGF 

concentrations were tested for their affect on HT29 cell scattering (figure 3.6C). A P 

value of < 0.05 was obtained, when compared to control cells (0 ng/ml), when 

concentrations of 30 ng/ml and 120 ng/ml HGF were used. Moreover, a more 

significant P value of < 0.0005 following the addition of 60 ng/ml HGF was obtained 

when compared to control cells (0 ng/ml). Thus 60 ng/ml was used for subsequent 

HT29 cell investigations. Morphological changes were induced when HT29 cells were 

stimulated with HGF (60 ng/ml) and the scatter response was represented by cell-cell 

dissociation and independent migration (figure 3.6D, plus HGF). Whilst a higher 

expression level of c-Met was observed in the HT29 cells when compared to DU145 

cells, it could be speculated that the surface level of c-Met is lower on HT29 cells. This 

could in part account for the reduced scattering obsesrved in response to HGF treatment 

in this cell line when compared to DU145 cells. 

 

3.2.7 Effect of substratum on HGF-induced HT29 cell scattering 

Previous work showed that DU145 cell scattering was supported on multiple matrices 

(figure 3.3B). Therefore, the ability of the different matrices to support HGF-induced 

HT29 cell scattering was also tested. Serum-starved, unstimulated HT29 cells seeded on 

serum, fibronectin, 2D matrigel and collagen I coated coverslips all possessed 

prominent actin fibers with paxillin staining discernible around the entire edge of the  
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Figure 3.6 Optimisation of HGF-induced HT29 cell scattering. A) DU145 and HT29 

whole cell lysates were immunoblotted for c-Met expression and for β-tubulin as a 

loading control. B) The HGF-induced scatter assay was conducted using HT29 cells. 

Cells were seeded onto glass coverslips and serum-starved for 24 hours prior to 24 

hours HGF (10 ng/ml) stimulation. Cells were then fixed and stained for F-actin. Cells 

were counted and cell counts of serum-starved versus serum-starved plus HGF were 

compared. Attempted Scatter =  cells remain attached to one another but also exhibit an 

elongated phenotype and there is some loss of cell-cell junctions. Scattered = loss of 

cell-cell junctions and single cells with an elongated migratory phenotype. C) The 

HT29 scatter assay was repeated as described in (B) using varying concentrations of 

HGF as indicated. D) Serum-starved (minus HGF) and HGF-stimulated (plus HGF) (60 

ng/ml) HT29 cells were stained for F-actin as described in (B). In (B) the mean % of 

cells and in (C) the mean % of scattered cells and the standard error of the mean were 

calculated over 3 independent experiments. Statistical significance compared with 

minus HGF cells was calculated using Student’s t-test; *, P < 0.05 ***, P < 0.0005. Bar = 

10 µm. 

A 

C 

B 

D 
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cell colony (figure 3.7A). This was consistent with the morphology observed previously 

for DU145 cells (figure 3.3A). Analysis of the HGF-induced scatter assay results 

demonstrated that all substrata tested supported cell scattering, with the most significant 

level of scattering observed on serum and collagen I (figure 3.7B). Interestingly, the 

mean percentage of scattered cells in unstimulated conditions (minus HGF) was 

significantly lower for all the substrata tested using HT29 cells when compared to 

DU145 cells (figures 3.3B versus 3.7B).  

 

3.2.8 Optimisation of the HGF-induced scatter assay in a 3D matrix 

Although 2D cell migration assays can deliver useful characterisation of cell behaviour 

and help to identify key regulatory proteins, 2D assays do not closely reflect the in vivo 

environment. Therefore, to complement the 2D studies conducted, a 3D model of HGF-

induced cell migration was attempted. DU145 cells were chosen for the 3D model 

instead of HT29 cells as DU145 cells were more responsive to HGF in 2D (figure 3.3 

versus figures 3.6 and 3.7). HGF was chosen as the growth factor stimulant as it 

appeared to be a more effective cell scattering inducer than EGF (figure 3.3B versus 

figure 3.5C).  

 

The first objective was to identify a matrix composition that would support the 

formation of cell colonies and allow serum-starvation without significant cell scattering. 

Following matrix composition trials (data not shown), and based on the previous data 

obtained in chapter 3, it was established that a matrix of 98% collagen I and 2% 2D 

matrigel best supported colony growth (figure 3.8A, grow and minus HGF). Cell 

colonies were easily identified by prominent actin staining coupled with multiple DAPI 

stained nuclei in both basal and serum-starved conditions. Sometimes, in 3D matrix 

assays, the cells imaged are actually adhered to the bottom of the well. Therefore, to 

ensure that the cell colonies detected were fully embedded within the matrix, images 

were captured where cell colonies were found to be present across different planes 

within the same 3D matrix field of view (figure 3.8B). Whilst colonies of DU145 cells 

were detected in the 3D matrix, full lumen formation was not observed. DU145 cells are 

metastatic epithelial cells, thus it is possible that these cells have lost properties that are 

typical of non-transformed epithelial cells and have acquired mesenchymal-like 

characteristics. Therefore, DU145 cells may not be able to form a full lumen. In order to  
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Figure 3.7 Variation in HGF-induced HT29 cell scattering response on different 

2D substratum. A) HT29 cells seeded onto serum, fibronectin, 2D matrigel and 

collagen I coated coverslips were serum-starved for 24 hours, fixed and then labelled for 

paxillin and F-actin in the absence of HGF. B) The HGF-induced HT29 scatter assay 

was conducted using serum, fibronectin, 2D matrigel and collagen I coated coverslips. 

Cells were serum-starved for 24 hours prior to HGF (60 ng/ml) stimulation. After 24 

hours cells were fixed and stained for F-actin. Cells were counted and cell counts of 

starved versus starved plus HGF stimulation were compared. Scattered = loss of cell-

cell junctions and single cells with an elongated migratory phenotype. The mean % of 

scattered cells and the standard error of the mean were calculated over 3 independent 

experiments for each substratum. Statistical significance compared with minus HGF 

cells was calculated using Student’s t-test; **, P < 0.005, ***, P < 0.0005. Bar = 10 µm. 
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Figure 3.8 DU145 cells are able to form colonies and respond to HGF in a 3D 

matrix. A) DU145 cells were grown in a 98% collagen I and a 2% matrigel 3D matrix 

(see section 2.2.11). Following one week, cells were either left in growth conditions 

(Growth) (10% FBS), serum-starved (minus HGF) (0.5% FBS) for 24 hours or serum-

starved 24 hours prior to HGF stimulation (20 ng/ml) for 24 hours. Cells were then 

fixed and stained for F-actin and for cell nuclei. B) DU145 cells were treated as 

described in (A) but were maintained in 10% FBS grow media. Cells were fixed and 

stained for F-actin and for cell nuclei. The images displayed were captured in the same 

field of view but in a different plane in the matrix. In (A) and (B) the images were 

collected as single images using confocal microscopy and are representative of 3 

independent experiments. Bar = 10 µm.  

B 

A A 
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test this hypothesis, non-transformed epithelial cells could be used as a control in the 3D 

assay (for example, MDCK cells), as well as other metastatic epithelial cancer cell lines.  

 

The second objective was to be able to induce cell scattering within this 3D matrix. 

DU145 cell colonies in the 3D matrix were serum-starved and stimulated with HGF. 

Following 24 hours stimulation with 20 ng/ml HGF, there was some evidence of colony 

breakdown, where the F-actin distribution around the colony periphery was undulating 

in appearance (figure 3.8A, plus HGF). This may correspond to the ruffling of the 

colony edge cells that is known to occur following HGF stimulation in 2D DU145 

HGF-induced scatter assays (Wells et al., 2005). Live-cell imaging was then used to 

attempt to analyse cell migration of DU145 cells embedded in a 3D matrix. However, 

preliminary results were difficult to interpret due to the limitation of only being able to 

film these cells in phase-contrast (data not shown).  

 

3.2.9 HGF increases the migration potential of DU145 cells in a 3D matrix 

To mitigate technical difficulties associated with imaging cell scattering in phase-

contrast, DU145 cells stably expressing EGFP were employed. To confirm that these 

cells had the same morphology and response to HGF as wild-type DU145 cells, the 2D 

DU145 scatter assay was conducted as previously described (see section 3.2.2). In the 

absence of HGF these cells grew in tight colonies (figure 3.9A, minus HGF). Upon 24 

hours HGF stimulation (10 ng/ml), cell-cell contacts were diminished and single cells 

were visible and were exhibiting an elongated phenotype (figure 3.9A, plus HGF). 

Furthermore, there was significant scattering induction by HGF in these cells when 

compared to serum-starved conditions (figures 3.9A and 3.9B). These observations 

were consistent with the results obtained previously for wild-type DU145 cells on 

serum-coated substratum (figure 3.3B).  

 

The DU145 EGFP stable cell line was then used to assess the migration potential of 

DU145 cells in a 3D matrix in the absence and presence of HGF using live-cell 

imaging. Different HGF stimulation time points, as well as different concentrations of 

HGF were investigated in an attempt to induce cell migration in these cells (data not 

shown). The optimal concentration of HGF was found to be 500 ng/ml. In addition, 

DU145 EGFP cells embedded in the matrix were stimulated with HGF for 72 hours 

(filming occurred between 48-72 hours). 
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Figure 3.9 HGF increases the percentage of migrating DU145 cells. A) The HGF-

induced scatter assay was conducted using DU145 cells stably expressing an EGFP 

lentiviral vector. Cells seeded onto glass coverslips were serum-starved for 24 hours and 

then left untreated (minus HGF) or stimulated with HGF (plus HGF) (10 ng/ml). After 

24 hours cells were fixed and stained for F-actin. B) Cells from (A) were counted and 

cell counts of serum-starved cells versus plus HGF-stimulated cells were compared. 

Scattered = loss of cell-cell junctions and single cells with an elongated migratory 

phenotype as indicated in (A) (plus HGF). C) EGFP lentiviral vector expressing DU145 

cells were seeded into a 98% collagen I and a 2% matrigel 3D matrix and treated in 

preparation for live-cell imaging (see section 2.2.11). Serum-starved cells in the 

absence of HGF were also filmed. A migrating cell was measured by the translocation 

of one cell body and 90 cells for each condition were analysed. In (B) and (C) the mean 

% of scattered cells and the mean % of migrating cells, respectively, were compared 

between minus and plus HGF. The standard error of the mean was also calculated over 

3 independent experiments. Statistical significance compared with minus HGF cells was 

calculated using Student’s t-test; ***, P < 0.0005. Bar = 10 µm. 

 

C 

A 
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The percentage of migrating cells in the absence and presence of HGF was calculated. 

A migrating cell in the 3D matrix was measured by the translocation of one cell body. 

When compared to minus HGF control cells (figure 3.9C and see movies 3PC and 3G 

for representative movies and Appendix 3), a significantly higher percentage of cells 

stimulated with HGF were migrating (figure 3.9C and see movies 4PC and 4G for 

representative movies and Appendix 3).  
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3.3 Discussion 

In this chapter, the use of cell scatter assays has been further developed. The optimal 

culture time for the HGF-induced DU145 scatter assay has been determined and the 

assay has been extended to investigate different growth factors and a range of matrix 

compositions (Fram et al., 2011). It has been demonstrated that both HGF and EGF 

induce DU145 cell scattering. Moreover, HGF is able to induce cell scattering in the 

colon adenocarcinoma cell line, HT29, on different matrix compositions. Furthermore, 

all the substrata tested supported the HGF-induced cell scatter assay. The optimised 2D 

model system has also been expanded to develop a DU145 HGF-induced cell scattering 

assay in 3D. 

 

Studies described here have shown that serum-starved DU145 cells became more 

scattered over time and displayed a reduction in their ability to form multi-cellular 

colonies; thus a maximum culture time was established. It is possible that prolonged 

culturing of these cells induces the release of endogenous growth factors. This in turn 

may contribute to an increase in the activity of the cells, and hence reduce their ability 

to form cell colonies. In support of this, it has been published that DU145 cells exhibit 

self-sufficiency in growth factors such as EGF which contributes to the activation of 

DU145 cells in vitro (Tillotson and Rose, 1991). In addition, DU145 cells are known to 

possess the ability to secrete quantifiable levels of nerve growth factor (NGF) (Geldof et 

al., 1997), which is a key autocrine signal for cancer growth and metastasis (Dollé et al., 

2003).  

 

There is evidence that the scattering potency of HGF in cells is regulated by the 

extracellular and basement matrices that encompass the cells (Herrera, 1998). A pre-

requisite of the ability of colony-forming cells to induce the morphological 

modifications reminiscent of EMT is their capacity to spread on the underlying ECM 

(Ridley et al., 1995). Cell spreading is known to be modulated by Rho GTPases (Ridley 

et al., 1995) and integrin-mediated signalling (Herrera, 1998). Rho GTPases are 

required for the re-organisation of the actin cytoskeleton during cell movement (Ridley 

et al., 1995) and integrins play an important role in mediating the attachment of cells to 

the ECM (Huttenlocher and Horwitz, 2011).  
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HGF-induced DU145 cell scattering was maximal on a collagen I substratum. DU145 

cells are known to express a number of matrix interacting integrin proteins including α3, 

α5 and α6 integrin and the subunits β1, β3 and β4, where β1 is the most prevelant 

(Witkowski et al., 1993). Moreover, aberrant expression of integrins has been reported 

in prostate cancer (Bonkhoff et al., 1993; Schmelz et al., 2002). The differences 

observed in DU145 HGF-induced cell scattering may be as a result of varying integrin 

expression. Rabinovitz et al. demonstrated that higher expression levels of the α6 

integrin in DU145 cells elevated the cell migration velocity of these cells on a laminin 

substratum (Rabinovitz et al., 1995). Furthermore, HGF-induced MDCK cell scattering 

increases on collagen I; it was speculated that the integrin α2β1 may facilitate this effect 

(de Rooij et al., 2005; Sander et al., 1998).  

 

The HGF-induced DU145 cell migration speed was highest on collagen I substratum 

when compared to the DU145 cell velocity on serum substratum. A number of factors 

are involved in determining cell migration velocity including ligand and receptor levels 

and their affinity to bind to one another, as well as cytoskeletal interactions 

(Huttenlocher et al., 1996; Palecek et al., 1997). The turnover of integrin-mediated 

adhesions between the cell and ECM is necessary for cell migration to occur 

(Huttenlocher and Horwitz, 2011). It has been proposed that optimal cell migration 

velocity is achieved when integrins and ECM proteins are intermediately expressed, 

resulting in an intermediate level of adhesivity between the cell and ECM (DiMilla et 

al., 1993; Palecek et al., 1997). DU145 cells are known to express the fibronectin 

integrin α5β1 (Witkowski et al., 1993), as well as intermediate levels of the collagen I 

integrin, α2β1 (Patrawala et al., 2007). Therefore, the presence of an intermediate level 

of collagen I and this integrin may account for the maximal migration speed of DU145 

cells on this substratum. 

 

It has been proposed that the efficiency of cell scattering may be linked with cell 

adhesivity rather than the cell migration speed (de Rooij et al., 2005). MDCK cells 

exhibited the highest migration speed but the lowest cell scattering count on laminin 1 

substratum when compared to collagen I and fibronectin (de Rooij et al., 2005). 

However, this does not correlate with the work presented here, where high migration 

speed and increased cell scattering efficiency were both associated with the same matrix 

composition.    



90 
 

In order to develop the range of the 2D scatter assay, the scattering potential of the 

growth factor EGF was tested, as EGF is known to increase the invasiveness of DU145 

cells (Turner et al., 1996). All the substrata tested, except for 2D matrigel, supported the 

EGF-induced scatter assay to a significant level in DU145 cells. Indeed, following 

completion of these studies, it was reported that the addition of EGF stimulates cell-cell 

junction disassembly and leads to a reduction in E-cadherin localisation at junctional 

sites (Gan et al., 2010). On 2D matrigel substratum, a higher percentage of single 

DU145 cells were observed under serum-starved conditions when compared to the other 

substrata that were assessed. The matrigel used in the scatter assay was composed of a 

complex mixture of proteins and growth factors. Thus DU145 cells may have been 

activated by these growth signals and hence exhibited a reduced ability to form colonies 

on a 2D matrigel surface. This hypothesis could be tested by using a growth factor 

reduced form of matrigel. Nevertheless, the inability of EGF to induce cell scattering on 

2D matrigel when compared to HGF may suggest that EGF is a less effective cell 

scattering inducer than HGF. 

 

To support this theory, it has been demonstrated that HGF repeatedly elicited a stronger 

migratory response than EGF in primary rat hepatocytes (Stolz and Michalopoulos, 

1994). In addition, EGF-treated cells were morphologically less spread than those 

stimulated with HGF (Stolz and Michalopoulos, 1994). Moreover, HGF was found to 

stimulate the phosphorylation of two specific cytoskeletal-related proteins, whilst EGF 

showed a diminished ability to do so (Stolz and Michalopoulos, 1994). Thus it was 

speculated that in the hepatocyte cytoskeleton HGF and EGF activate different cell 

signalling pathways, and hence exhibit variation in motogenic capabilities (Stolz and 

Michalopoulos, 1994). This may account for the reduction in cell scattering observed 

here between HGF and EGF-treated DU145 cells.  

 

As HT29 cells grow as tight colonies with extensive cell-cell junctions and c-Met 

expression levels are elevated in these cells when compared to DU145 cells, a higher 

concentration of HGF was required to obtain efficient scattering. Consistent with 

DU145 cells, all substrata supported the HGF-induced scatter assay; however HT29 

cells did not scatter as effectively when compared to DU145 cells, possibly due to the 

tightness of these cells in the absence of HGF stimulation. HT29 cells were reported to 

scatter downstream of HGF stimulation on serum and collagen I coated substratum 
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(Herrera, 1998). However HT29 cells were unable to scatter on a laminin surface and 

this was linked to a defect in cell spreading (Herrera, 1998). The addition of phorbol 12-

myristate 13-acetate (PMA) was able to reinstate HT29 cell spreading on this 

substratum, and this process was integrin dependent (Herrera, 1998).  

 

In addition, HT29 cells exhibited the highest scattering potential on collagen I 

substratum, possibly due to an increase in integrin expression on HT29 cell surfaces that 

bind to collagen I. Indeed it has been shown that the highly metastatic form of HT29 

cells, HT29LMM cells express the collagen receptor integrin α2β1 (Rosenow et al., 

2008). In contrast, expression of the fibronectin binding integrin α5β1 was reduced in 

this cell line (Rosenow et al., 2008). 

 

It was demonstrated in this chapter that DU145 cells embedded in a predominantly 

collagen type I 3D matrix form multi-cellular colonies with distinct cell boundaries and 

discernible nuclei within the cell colony. Following completion of these studies, it was 

reported that DU145 cells exhibit similar morphologies in a type I collagen 3D matrix 

to those observed in chapter 3 (Sugiyama et al., 2010). The morphology of colony-

forming MDCK cells has been analysed in 3D gels for many years (McAteer et al., 

1987); moreover, in a recent study, the morphology of MDCK cells embedded in a type 

I collagen 3D matrix (Raghavan et al., 2010) was alike to that observed here for DU145 

cells.  

 

However, in contrast, it has also been shown that DU145 cells grown in a 100% 

collagen I 3D matrix form multi-cellular structures with a fibroblast-like morphology 

(Härmä et al., 2010). This contrast in morphology reported in Hӓrmӓ et al.’s study to the 

work presented here for DU145 cells embedded in a 3D collagen I matrix could be 

accounted for by a number of factors; the manner in which the type I collagen matrix is 

prepared, the concentration used and the conditions implemented for the 3D collagen I 

matrix to polymerise (Artym and Matsumoto, 2010). These factors will dictate how 

cells interact with the 3D matrix and the cell morphology they exhibit (Artym and 

Matsumoto, 2010). In addition, the time period that the cells are left in the 3D matrix 

may also influence their cell morphology. For example, it has been shown that prostate 

cancer PC3 cells in a 3D matrigel matrix form multi-cellular colonies following 9 days 
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incubation in a 3D matrix; however at day 13, these cells developed distinct and 

multiple projections (Härmä et al., 2010). 

 

In this chapter, increasing the concentration of HGF to 500 ng/ml and incubating the 

cells with HGF for up to 72 hours was required to achieve a detectable DU145 cell 

response. However, although cell locomotion could be observed, the magnitude of 

scattering was small. The muted responses in 3D could be due to some of the HGF 

binding to the 3D matrix, as was observed for HGF-stimulated MDCK cells; this would 

delay growth factor transportation through the matrix and subsequently the onset of 

HGF stimulation (Raghavan et al., 2010). Indeed, it has been demonstrated that MDCK 

cell colonies positioned at the bottom of a collagen I gel failed to respond to HGF 

stimulation, even after 72 hours, whilst projections were observed from cell colonies 

embedded in the upper planes of the 3D matrix (Raghavan et al., 2010). Alternatively, 

although serum-starved, DU145 cells embedded in the matrix in chapter 3 were exposed 

to small levels of growth factor from the matrigel. The use of growth factor reduced 

matrigel may have better synchronised the response of these cells to HGF stimulation.  

 

Due to time constraints, the 3D scatter assay could not be fully optimised. In the Zaman 

et al. study, 3D DU145 cell motility assays were conducted where the authors 

methodically changed matrigel and fibronectin concentrations, as well as β1 integrin 

expression levels (Zaman et al., 2006). From these assays it was proposed that the 

equilibrium of adhesion and contractile forces determines DU145 cell migration 

velocity at a certain matrigel density (Zaman et al., 2006). Thus in this chapter, although 

initial investigations have shown that DU145 cells can migrate in a 3D matrix 

downstream of HGF, it may be useful to, for example, examine integrin expression 

levels in relation to the matrix used in order to develop this assay further. 

 

In summary, EGF- and HGF-induced cell scattering models have been developed in 2D 

and an attempt has been made to establish a 3D DU145 cell scattering model 

downstream of HGF stimulation. 
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3.3.1 Future work 

In the future, it would be useful to optimise the 3D migration assay. In order to achieve 

an accurate representation of DU145 cell morphology and their response to HGF 

treatment in a 3D matrix, control cell lines, both metastatic and non-metastatic cells, 

would need to be analysed. In conjunction with this, the effect of changes in matrix 

rigidity on DU145 cell morphology in the absence and presence of HGF could be 

examined. This could be conducted by, for example, changing the pH and temperature 

at which collagen I polymerises; this will influence the thickness of the collagen fibers 

formed and in turn the rigidity of the matrix. 

 

In this chapter, the HGF-induced scatter response was reduced in the HT29 cells when 

compared to DU145 cells. Furthermore, the expression of the HGF receptor c-Met was 

increased in HT29 cells when compared to the level of expression in DU145 cells. Thus 

it could be speculated that whilst HT29 cells express a higher level of c-Met, a large 

proportion of the receptor may be internalised rather than located on the cell surface; 

this could thereby account for the reduced response to HGF treatment in the HT29 cells. 

Therefore, it would be useful to examine and compare the surface levels of c-Met in 

both these cell lines. Techniques such as biotinylation and antibody labelling could be 

used to deduce this.  
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PAK6 is required for HGF-induced  

cell-cell dissociation 

 

 

 

 

 

 

 

 

 



95 
 

Chapter 4 – PAK6 is required for HGF-induced cell-cell dissociation 

4.1 Introduction 

In chapter 3, in both 2D and 3D assays, HGF was chosen as the migration inducing 

stimulation. HGF is known to activate a variety of intracellular signalling cascades via 

activation of the c-Met receptor; many of which are related to actin cytoskeletal re-

organisation (Ridley et al., 1995). PAKs are known to regulate the actin cytoskeleton 

and it has been reported that some PAK family members are required for HGF-induced 

migration (Ahmed et al., 2008; Bright et al., 2009; Royal et al., 2000; Royal and Park, 

1995). Indeed, PAK1 knockdown but not PAK2 knockdown reduced HGF-induced cell 

scattering in DU145 cells (Bright et al., 2009). However the effect of PAK1 and PAK2 

over-expression on DU145 cell morphology and cell junction integrity was not 

assessed.  

 

PAK4 is also known to be activated upon HGF stimulation in MDCK cells (Wells et al., 

2002) and mediates HGF-induced prostate cancer cell migration (Ahmed et al., 2008). 

Furthermore, PAK4 knockdown blocks HGF-induced DU145 cell scattering (Wells et 

al., 2010). PAK4 knockdown cells were able to dissociate their junctions; however cell 

migration was inhibited due to an increase in the incidence and size of focal adhesions 

(Wells et al., 2010). In addition, the effect of PAK4 over-expression on cell morphology 

in MDCK cells in unstimulated and HGF-stimulated conditions was examined; a kinase 

active PAK4 mutant induced cell shape changes only in the presence of HGF (Wells et 

al., 2002).  

 

PAK6 is known to be expressed in DU145 cells (Wells et al., 2010; Yang et al., 2001). 

Furthermore, increased PAK6 expression has been detected in prostate cancer cells 

(Kaur et al., 2008). PAK6 was first detected in a screen to identify proteins that interact 

with the AR (Yang et al., 2001). In addition, it has been reported that siRNA 

knockdown of PAK6 inhibits prostate cancer growth (Wen et al., 2009). However, the 

role of PAK6 in cancer cell migration and more specifically HGF-induced migration 

has yet to be elucidated.  

 

In this chapter, the aim was to deduce whether PAK6 plays a role in cell migration 

downstream of growth factor stimulation. Wild-type and mutant PAK6 expression 
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vectors were constructed as tools to assay the morphological effects of PAK6 over-

expression in cells, whilst siRNA was used to examine the effects of PAK6 knockdown 

on cancer cell migration.  
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4.2 Results 

4.2.1 PAK6 is endogenously expressed in DU145 and HT29 cells 

Previous work had utilised an antibody that recognises both PAK4 and PAK6 to detect 

PAK6 in DU145 cells (Wells et al., 2010). Initial experiments aimed to identify a PAK6 

specific antibody able to efficiently detect endogenous PAK6. A panel of five 

commercial antibodies were screened and tested (data not shown). Of the antibodies 

tested, the anti-PAK4 antibody (Cell Signaling Technology) hereafter referred to as 

anti-PAK4/PAK6, recognised two distinct bands correlating to PAK4 and PAK6. The 

upper band detected with the anti-PAK4/PAK6 antibody was validated as PAK6 using 

Myc-tagged PAK6 over-expressed protein (figure 4.1A). The anti-PAK6 specific 

antibody (Calbiochem) detected one band at the correct size for PAK6 and hence did 

not cross react with PAK4. Both antibodies were selected for future studies.  

 

Both antibodies were utilised to investigate the levels of endogenous PAK6 protein 

expression in DU145 and HT29 cells. In these cell types, PAK6 was found to be present 

at 75 kDa using the anti-PAK4/PAK6 antibody (figure 4.1B). The anti-PAK6 specific 

antibody was able to detect endogenous PAK6 expression in HT29 and DU145 cells 

(figure 4.1C).  

 

4.2.2 HGF but not EGF stimulation increases PAK6 autophosphorylation levels 

PAKs have been implicated as important effector proteins downstream of growth factor 

induced signalling, where they are involved in various cellular processes such as cancer 

cell migration (Bright et al., 2009; Wells et al., 2010). DU145 and HT29 migration 

assays described previously (see sections 3.2.2, 3.2.5 and 3.2.6) rely on HGF or EGF 

stimulation. The effect of HGF and EGF stimulation on PAK6 autophosphorylation 

levels was therefore examined using a phospho-specific antibody from Cell Signaling 

Technology. This antibody detects phosphorylation of PAK6 at serine 560 in the kinase 

domain. This residue in PAK6 is thought to be an autophosphorylation site homologous 

to threonine 423 (T423) in PAK1 (Schrantz et al., 2004) and serine 474 (S474) in PAK4 

(Abo et al., 1998). Using this phospho-specific antibody, endogenous PAK6 

autophosphorylation levels increased upon HGF stimulation in DU145 cells (figure 

4.2A). This antibody also detects phosphorylation of PAK4 at S474 and PAK5 at serine 

602. The levels of PAK4 autophosphorylation were also elevated (figure 4.2A), which 
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Figure 4.1 Testing of PAK6 antibodies for detecting endogenous PAK6. A) (a) 

DU145 whole cell lysate (WCL) was immunoblotted for PAK4/PAK6 expression using 

an anti-PAK4 antibody that recognises PAK6 (anti-PAK4/PAK6 antibody). (b) 

HEK293 cells expressing WT Myc-PAK6 were lysed and the lysate immunoblotted for 

PAK6 expression using an anti-c-Myc antibody. B) Whole cell lysates for the indicated 

cell lines were immunoblotted using the anti-PAK4/PAK6 antibody. C) Whole cell 

lysates for the indicated cell lines were immunoblotted using an anti-PAK6 specific 

antibody. In (B) and (C) lysates were immunoblotted for GAPDH as a loading control. 

The blots shown are representative of 3 independent experiments. 
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Figure 4.2 HGF stimulation increases PAK6 autophosphorylation levels in DU145 

and HT29 cancer cell lines but EGF stimulation has no effect in DU145 cells. A) 
DU145 cells were seeded at a density that correlated with the HGF-induced scatter 

assay. Cells were serum-starved 48 hours after plating for 24 hours. Cells were then left 

unstimulated (0 minutes) or stimulated with HGF (10 ng/ml) for 5, 15 and 30 minutes 

prior to lysis. Lysates were immunoblotted for levels of PAK6 autophosphorylation at 

serine 560 using a phospho-PAK4/PAK5/PAK6 antibody. Blots were re-probed for total 

PAK6 expression using an anti-PAK4/PAK6 antibody. B) Changes in PAK6 

autophosphorylation levels at serine 560 were quantified from (A). C) DU145 cells 

were treated as in (A) but stimulated with EGF (100 ng/ml). Lysates were also 

immunoblotted for phospho-ERK1/2 levels. D) Changes in PAK6 autophosphorylation 

levels at serine 560 were quantified from (C). E) HT29 cells were seeded and treated as 

described in (A) but stimulated with 60 ng/ml HGF. F) Changes in PAK6 

autophosphorylation levels at serine 560 were quantified from (E). In (B), (D) and (F), 

the mean fold value representing the autophosphorylation of PAK6 in response to HGF 

or EGF stimulation and the standard error of the mean were calculated over 3 

independent experiments. Statistical significance compared with minus HGF (0 

minutes) cells was calculated using Student’s t-test: *, P < 0.05, **, P < 0.005.           
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is consistent with previous reports (Wells et al., 2010). The increase in PAK6 phospho 

levels was significant following 5, 15 and 30 minutes HGF stimulation when compared 

to serum-starved cells (0 minutes) (figure 4.2B). Interestingly, a relatively high level of 

PAK6 autophosphorylation was observed under serum-starved conditions (0 minutes) 

when compared to PAK4 autophosphorylation levels (figure 4.2A). 

 

In figure 4.2A, the dublet at 75 kDa was quantified as the total signal for phospho-

PAK6 due to the reduced sensitivity of the densitometry quantification method that was 

used. Thus there are some drawbacks with measuring and comparing the varying levels 

of protein from autoradiographs as was conducted for analysing the western blot data 

obtained in figure 4.2. Firstly, with densitometry analysis, there is a limited dynamic 

range, where protein bands with higher signals can become saturated. This therefore 

leads to inaccuracies in the quantification of the level of protein between different 

samples on the same autoradiograph. In order to more accurately quantify the level of 

protein on the same western blot, digital imaging can be used. For example, a charge-

coupled device (CCD) camera can be implemented. This alternative method of imaging 

allows for a wider linear dynamic range where higher signals are not saturated. Thus, a 

more accurate quantification of the level of protein expression on the same western blot 

can be achieved.  

 

In contrast to HGF, EGF stimulation did not increase endogenous phospho-PAK6 levels 

(figures 4.2C and 4.2D). As a control, the blot was also probed for phospho-ERK1/2, 

which is known to be activated downstream of EGF, to confirm that EGF signalling 

pathways were activated. Due to the lack of PAK6 autophosphorylation in response to 

EGF, as well as the decreased scattering potential of EGF in DU145 cells as described 

in chapter 1 (see section 3.2.5), this growth factor was excluded from future PAK6 

investigations in cell migration. The remainder of the project focussed on PAK6 

function downstream of HGF signalling. 

 

To validate the response of PAK6 to HGF observed in DU145 cells, colony-forming 

HT29 cells were also tested. Endogenous PAK6 phospho levels were significantly 

elevated when compared to serum-starved cells (0 minutes) following 15 and 30 

minutes HGF stimulation (figures 4.2E and 4.2F). This was consistent with the time 

points of increased phospho-PAK6 levels observed upon HGF addition in the DU145 
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cells (figures 4.2A and 4.2B). Whilst it is clear that HGF increases the phosphorylation 

status of PAK6 at serine 560, the identification of PAK6 substrates is lacking in the 

literature; only one study has shown that PAK6 is able to phosphorylate the AR 

(Schrantz et al., 2004).                                                                              

 

4.2.3 Sub-cloning of PAK6 into GFP, mRFP1 and GST expression vectors 

PAK6 is expressed in both DU145 and HT29 cells. Furthermore, PAK6 

autophosphorylation is elevated downstream of HGF in these cell lines. It might 

therefore be speculated that PAK6 plays a role in the cellular response to HGF observed 

in chapter 3. Therefore, to facilitate PAK6 functional studies, fluorophore-tagged PAK6 

expression constructs were generated. 

 

The Gateway
TM 

Technology system (see section 2.2.1) was utilised to generate GFP, 

mRFP1 and GST PAK6 expression constructs. In order to insert PAK6 DNA into the 

Gateway
TM 

Technology system, WT Myc-PAK6 was used as the DNA template for 

PCR. The PCR was performed using primers possessing a 25 base pair (bp) attB1 

sequence at the 5’ end and an attB2 sequence at the 3’ end of the sequence. The cloning 

of PAK6 and the Gateway
TM

 Technology system used is outlined in figure 4.3A. PAK6 

was successfully amplified by PCR and was visible as a 2046 bp product (figure 4.3B). 

In order to insert the amplified PAK6 PCR product into the pDONOR
TM

 207 entry 

clone, a BP recombination reaction was performed (see section 2.2.1). Restriction 

digest reactions were then carried out using the EcoRV restriction endonuclease to 

verify the presence of PAK6 in the entry clone (figure 4.3C). In addition, the PAK6 

containing entry clone was sequenced to confirm that no mutations had arisen in the 

DNA sequence during the cloning process. PAK6 was then shuttled into GFP and 

mRFP1 expression vectors using an LR recombination reaction as outlined in figure 

4.3A and then sequenced (see section 2.2.1). In addition, the Gateway
TM 

Technology 

cloning system was also used to generate C-terminal GFP and N- and C-terminal 

mRFP1 PAK6 truncated mutant constructs in order to assess the functions of the 

different domains of PAK6 (see Appendix 1 for primer sequences).  

 

Wild-type GST tagged PAK6 (GST-PAK6) was also generated using the Gateway
TM

 

methodology to investigate PAK6 protein-protein interactions in GST pulldown assays. 

GST-PAK6 and GST alone were protein purified following the shuttling of  
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Figure 4.3 Generation of PAK6 constructs using the Gateway
TM 

Technology 

system. A) Schematic representation of the Gateway
TM

 Technology system used to 

construct GFP and GST vectors expressing PAK6. BP and LR recombination reactions 

were used to shuttle the desired DNA into the expression vectors. att = attachment site, 
R 

= resistance. Figure adapted from (Gateway
TM

 Technology instruction manual, 2002). 

B) attB flanked gene specific primers were used to amplify human PAK6 DNA in a 

PCR reaction alongside positive (+) and negative controls (-) and subjected to gel 

electrophoresis. C) Restriction digest reactions were performed using the EcoRV 

restriction enzyme and subjected to gel electrophoresis to confirm the presence of PAK6 

following the BP reaction. This enzyme cuts the vector once to linearise it, and if PAK6 

is present, cuts PAK6 once resulting in the production of 2 fragments (4.4 kb and 1.4 

kb). D) E. coli BL21-A1 cells transformed with the GST and GST-PAK6 expression 

plasmids were grown to mid-log phase and protein expression was induced with 0.2% 

and 0.05% L-Arabinose, respectively, overnight at 20ºC. The gel was stained with 

coomassie blue to visualise the protein bands present. E) Induced GST-PAK6 from (D) 

was electrophoresed against an uninduced bacterial lysate. Blots were immunoblotted 

for detection of GST-PAK6 using a GST specific antibody and an anti-PAK4/PAK6 

antibody as indicated. 
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PAK6 into a GST expression vector using an LR recombination reaction (see section 

2.2.1). Protein expression was induced for both GST-PAK6 and GST (figure 4.3D). 

Induced GST-PAK6 was also visualised by immunoblotting, with an uninduced 

bacterial lysate as a control (figure 4.3E). 

 

4.2.4 Validation of wild-type, kinase active and kinase dead PAK6 kinase activity  

Kinase mutants are useful tools in characterising proteins that possess kinase activity. 

Thus GFP-PAK6 kinase active and kinase dead mutants were generated using Site-

Directed mutagenesis (see section 2.2.1) and were shuttled into suitable expression 

vectors using Gateway
TM

 Technology (see section 2.2.1). 

 

Three mutant PAK6 constructs were generated; S560E (serine to glutamic acid 

mutation) and S531N (serine to asparagine mutation) as potentially active forms of 

PAK6, and K436A (lysine to alanine mutation), a proposed kinase dead form of PAK6 

(Schrantz et al., 2004). As serine 560 is a predicted autophosphorylation site for PAK6 

(based on homology to PAK1), mutating this residue may induce an increase in PAK6 

kinase activity (Schrantz et al., 2004). The S531N mutation is thought to stabilise the 

catalytic loop region in the kinase domain of PAK6 (Schrantz et al., 2004) and is 

analogous to the PAK4 activation site (S445N) (Qu et al., 2001; Schrantz et al., 2004). 

The K436A residue change is located within the activation loop of the kinase domain 

and is thought to obstruct ATP binding and thereby inhibit PAK6 kinase activity 

(Schrantz et al., 2004). Whilst it has yet to be established, it has been predicted that 

PAK6, alike to its group members, is constitutively active (Kaur et al., 2005; Schrantz 

et al., 2004).     

 

A radioactive in vitro kinase assay confirmed that the kinase dead mutant possessed no 

exogenous or autophosphorylation kinase activity (figure 4.4), as has already been 

documented (Schrantz et al., 2004). The S560E PAK6 mutant construct did not exhibit 

an increase in kinase activity when compared to WT PAK6 (figure 4.4) even though 

this is accepted as the autophosphorylation site. In fact the activity of the S560E PAK6 

mutant was actually lower than WT PAK6. This is consistent with another study (Kaur 

et al., 2005). Interestingly however, autophosphorylation was detected for the S560E 

mutant which suggests that PAK6 possesses other autophosphorylation sites (figure 

4.4). In contrast, the S531N PAK6 mutant displayed an increase in its ability  
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Figure 4.4 Kinase activity of PAK6 mutants. HEK293 cells were transfected with the 

indicated full-length GFP-PAK6 mutants. The cells were lysed and PAK6 was 

immunoprecipitated using an anti-GFP antibody (IP) from cell lysates. The kinase 

activity of the PAK6 mutants was determined with an in vitro kinase assay in the 

presence of [γ-
32

P] ATP and using histone H1 as a substrate. Whole cell lysates (WCL) 

were immunoblotted using an anti-GFP antibody as a loading control. The blots shown 

are representative of 3 independent experiments. 
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to phosphorylate histone H1 when compared to WT PAK6 (figure 4.4). This mutant 

also exhibited an increased level of autophosphorylation when compared to WT PAK6, 

as consistent with previous reports (Schrantz et al., 2004). Therefore, the S531N mutant 

was used as the kinase active form of PAK6 and the K436A mutant was used as the 

kinase dead for future investigations. 

 

4.2.5 PAK6 interacts with constitutively active Cdc42  

Cdc42 is known to be activated by HGF (Royal et al., 2000) and the active form of 

Cdc42 is known to bind to PAK6 (Lee et al., 2002). Thus the PAK6 derivatives 

generated were tested for their ability to bind to Cdc42-V12 using an IP protocol. All of 

the PAK6 derivatives were able to bind Cdc42-V12 irrespective of the levels of kinase 

activity (figure 4.5). 

 

4.2.6 DU145 cell morphology is affected by PAK6 over-expression 

Having generated and characterised PAK6 expression constructs, PAK6 was over-

expressed in DU145 cells to monitor the effect on cell morphology. The levels of the 

over-expressed PAK6 mutants were approximately 50% higher than the level of 

endogenous PAK6. WT PAK6 expressing DU145 cells were found to be significantly 

more elongated in phenotype when compared to GFP control cells under serum-starved 

conditions (figures 4.6A and 4.6C). Importantly, GFP control transfected cells were not 

significantly different in shape when compared to untransfected cells (figures 4.6A and 

4.6B). Cells expressing the kinase active form of PAK6, S531N, were also significantly 

more elongated than GFP control cells, although not to the same degree as WT PAK6 

expressing cells (figures 4.6A and 4.6C). However, DU145 cells expressing the kinase 

dead mutant of PAK6, K436A, were not significantly elongated when compared to GFP 

control cells (figures 4.6A and 4.6C). Interestingly, cells expressing WT PAK6 

exhibited a further significant increase in cell elongation after HGF stimulation, when 

compared to WT PAK6 expressing cells in the absence of HGF (figure 4.6A). 

Interestingly, an increased level of active Cdc42 was co-immunoprecipitated with the 

K436A PAK6 mutant when compared to WT and S531N PAK6 (figure 4.5). Given that 

K436A PAK6 expressing DU145 cells did not exhibit an increase in cell elongation 

when compared to GFP control cells, unlike WT and S531N PAK6 (figures 4.6A and 

4.6C), it could be speculated that the K436A mutant may induce the inactivation of 

Cdc42. 
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Figure 4.5 Over-expressed PAK6 interacts with Cdc42-V12. HEK293 cells were co-

transfected with the indicated GFP-PAK6 mutants and HA-Cdc42-V12. The cells were 

lysed and over-expressed PAK6 was immunoprecipitated using an anti-GFP antibody 

(IP). IPs were immunoblotted using anti-GFP and anti-Cdc42 antibodies as indicated. 

Whole cell lysates (WCL) were immunoblotted using an anti-HA antibody as a loading 

control. The blots shown are representative of 3 independent experiments. 
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Figure 4.6 PAK6 over-expression induces morphological changes in DU145 cells. 

A) and B) DU145 cells were transfected with GFP control vector or GFP-PAK6 

mutants as indicated. Untransfected cells (UT) were treated in the same manner. After 

24 hours, cells were serum-starved for 24 hours. Cells were then either left unstimulated 

(minus HGF) or stimulated with HGF (plus HGF) for 5 minutes. Cells were then fixed 

and stained for F-actin. Shape analysis was performed on the cells using Image J to 

determine the elongation ratio and cell spread area as indicated. C) F-actin stained 

DU145 cells transfected as indicated were imaged using confocal microscopy. * = 

S531N PAK6 expressing cell with rounded phenotype. Arrow = S531N PAK6 

expressing cell with elongated phenotype. In (A) and (B) 110 cells over 3 independent 

experiments were analysed. Statistical significance compared with GFP control cells 

(unless otherwise indicated) was calculated using Student’s t-test; *, P < 0.05, *** P < 

0.0005. n.s. = not significant. Bar = 10 µm. 
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This could account for, in part, the difference in cell phenotype observed between the 

PAK6 mutants. In contrast, the cell spread area of WT PAK6 expressing cells was 

significantly reduced when compared to GFP control expressing cells, as was that of 

K436A PAK6 expressing cells (figures 4.6B and 4.6C). S531N PAK6 expressing cells 

also exhibited a decrease in cell spread area, and this effect was more pronounced when 

compared to WT PAK6 over-expression (figures 4.6B and 4.6C). This phenotype 

observed for the S531N PAK6 mutant is consistent with previous reports for the active 

form of PAK4 (Wells et al., 2002).  

 

4.2.7 PAK6 kinase activity is required for efficient cell colony escape 

Having established that WT PAK6 over-expression in DU145 cells induced 

morphological changes, the elongated phenotype of these cells was examined more 

closely. In contrast to GFP control expressing cells, it was discernible that WT PAK6 

expressing cells were detaching from neighbouring cells and were no longer contained 

within the cell colony (figure 4.6C). In order to investigate this observation further, 

untransfected DU145 cells and those expressing GFP control, WT, S531N, and K436A 

PAK6 mutant constructs were scored based on whether they were present in a cell 

colony versus escaping the cell colony. A cell escaping a colony was defined as either 

greater than 50% of the cell body perimeter detached from the neighbouring cell(s), 

cells already escaped from a colony and exhibiting 100% dissociation from the 

neighbouring cell(s) or cells in a different plane to the underlying cell colony (figure 

4.7A). The colony escape phenotype was classed as the same for cells escaping from the 

middle of periphery of the cell colony and they were quantified in the same manner.  

 

In serum-starved cells, GFP control expressing cells remained in colonies to a similar 

level as untransfected cells (data not shown). In contrast, the percentage of WT and 

S531N PAK6 expressing cells retained in colonies was significantly reduced when 

compared to GFP control cells (figure 4.7B). Furthermore, an increase in kinase activity  

was found to correlate with an increase in the induction of cell colony escape. Indeed, a 

greater percentage of WT PAK6 expressing cells were within a cell colony when 

compared to S531N PAK6 expressing cells, the latter being the more active derivative 

of PAK6 (figures 4.4 and 4.7B). Moreover, cells expressing the kinase dead mutant of 

PAK6, K436A, were found predominantly within a cell colony (figure 4.7B). In  
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Figure 4.7 PAK6 induces cell colony escape in DU145 cells. A) Schematic illustrating 

colony escape phenotypes observed upon PAK6 over-expression in DU145 cells. (1) = 

cells escaping a colony defined as greater than 50% of the cell body perimeter detached 

from the neighbouring cell(s). (2) = cells already escaped from a colony defined as cells 

exhibiting 100%  dissociation from the neighbouring cell(s) or cells in a different plane 

to the underlying cell colony. In (1) and (2) cells were quantified in the same manner. 

B) DU145 cells were transfected with GFP control vector or GFP-PAK6 mutants as 

indicated. After 24 hours, the cells were serum-starved for 24 hours and then fixed and 

stained for F-actin. The mean % of GFP expressing cells in colonies was calculated for 

110 cells per condition over 3 independent experiments. Statistical significance 

compared with GFP control cells was calculated using Student’s t-test; *, P < 0.05, **, P 

< 0.005. n.s. = not significant. Bar = 10 µm. 

B 
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addition, HT29 cells over-expressing WT PAK6 were also able to induce colony escape 

to a significant level when compared to GFP control cells (figure 4.8). To further 

investigate the cell colony escape phenotype of PAK6 expressing DU145 cells, time-

lapse microscopy was used to perform imaging of WT GFP-PAK6 cells to see if the cell 

colony escape event could be captured in live cells. Following 11 hours, it was 

discernible that a DU145 cell expressing PAK6 was elongated in shape (figure 4.9, 

arrows). Cell colony escape of the PAK6 expressing cell was difficult to detect as the 

majority of non-expressing DU145 cells exhibited a rounded phenotype leading to 

disrupted cell colony morphology. This is most likely due to the sub-optimal 

transfection-induced conditions that these cells were exposed to for a prolonged time 

frame. However, in contrast to non-expressing DU145 cells, the PAK6 expressing cell 

was still elongated and independently migrating 16 hours following transfection (figure 

4.9, arrows and see movies 5PC and 5G for representative movies and Appendix 3).  

 

Subsequently, attempts were made to see if the same effect could be captured using the 

3D assay described in chapter 3. However, whilst WT PAK6 expressing cells were 

successfully embedded in the matrix, no significant cell movement or cell shape 

changes were observed under serum-starved conditions during a 24 hour time-lapse 

movie (data not shown).  

 

4.2.8 HGF-induced cell scattering is inhibited in DU145 and HT29 PAK6 

knockdown cell populations 

HGF-driven cell scattering requires the dissolution of cell-cell adhesions (figure 3.1). 

Given that PAK6 can drive cell-cell dissociation, PAK6 may act downstream of HGF 

during a cell scatter response. Thus it might also be reasoned that a loss of PAK6 would 

hinder this process. Two different siRNA oligonucleotides were employed to 

knockdown PAK6 (figure 4.10). The level of PAK6 was significantly reduced when 

compared to PAK6 levels in control siRNA lysates and did not affect PAK1, PAK2 or 

PAK4 expression (figure 4.10). No significant difference in PAK6 expression levels 

was detected between untransfected mock and control siRNA-treated DU145 and HT29 

cells (figures 4.10B and 4.10D). However, whilst PAK6 knockdown was achieved, this 

was a challenging process that required the optimisation of siRNA concentrations and 

the cell densities used. Furthermore, PAK6 knockdown in the DU145 cells was  
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Figure 4.8 PAK6 induces cell colony escape in HT29 cells. A) HT29 cells were 

transfected with GFP control vector or WT GFP-PAK6. Following 24 hours, the cells 

were serum-starved for 24 hours. The cells were fixed and stained for F-actin. The % of 

GFP expressing cells present within a colony was calculated. A cell escaping a colony 

was defined as either greater than 50% of the cell body perimeter detached from the 

neighbouring cell(s), cells already escaped from a colony and exhibiting 100% 

dissociation from the neighbouring cell(s) or cells in a different plane to the underlying 

cell colony. B) Cells were treated as described in (A) and imaged using fluorescence 

microscopy. In (A) the mean % of GFP expressing cells in colonies was calculated for 

110 cells per condition over 3 independent experiments. Statistical significance 

compared with GFP control cells was calculated using Student’s t-test; ***, P < 0.0005. 

Bar = 10 µm. 
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Figure 4.9 Live-cell imaging of WT GFP-PAK6 in DU145 cells. DU145 cells were 

transfected with WT GFP-PAK6. Cells were immediately filmed for 24 hours at 5 

minute intervals using phase-contrast and GFP fluorescence time-lapse microscopy. 

Still images from the film at varying time points were taken to show a WT GFP-PAK6 

expressing cell elongating (arrows). The images shown are representative of 3 

independent experiments. Bar = 10 µm. 
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Figure 4.10 PAK6 siRNA knockdown in DU145 and HT29 cells. A) DU145 cells 

were transfected with PAK6 siRNA (Oligo 1 or 2) or control siRNA (Con siRNA), 

lysed after 72 hours and immunoblotted for PAK6 using a PAK6 specific antibody and 

for GAPDH as a loading control. Lysates were also immunoblotted for PAK4 using an 

in-house affinity purified PAK4 specific antibody and for PAK1 and PAK2 as controls 

for specific knockdown. B) Quantification of blots from (A). C) HT29 cells were 

treated as described in (A). D) Quantification of blots from (C). In (B) and (D) the mean 

fold value and the standard error of the mean were calculated over 3 independent 

experiments. Statistical significance compared between Con siRNA and UT Mock or 

PAK6 siRNA (Oligo 1 or 2) was calculated using Student’s t-test: *, P < 0.05, **, P < 

0.005. 
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particularly difficult when compared to the HT29 cell line. There are a number of 

reasons that could account for this. Firstly, PAK6 expression at an mRNA level may be 

significantly higher in the DU145 cells; indeed PAK6 protein expression was observed 

to be lower in the HT29 cell line when compared to DU145 cells (figures 4.1B and 

4.1C). Furthermore, it has been proposed that PAK6 has anti-apoptotic functions in 

prostate cancer cells (Zhang et al., 2009). Moreover, PAK6 was classed as a ‘difficult to 

silence’ gene in an siRNA screen where the central region of PAK6 mRNA was found to 

be highly difficult to target using siRNA knockdown (Bergauer et al., 2009).     

 

Control siRNA DU145 cells exhibited a normal degree of cell-cell dissociation upon 

HGF stimulation; however the ability of the PAK6 knockdown cell populations to 

scatter in response to HGF was significantly reduced (figures 4.11A and 4.11B). 

Moreover, PAK6 knockdown cells exhibited similar elongation ratios in the absence and 

presence of HGF (4 hours stimulation) (figure 4.11C), whilst untransfected and control 

siRNA cells were significantly more elongated following 4 hours HGF stimulation 

(figure 4.11C); a characteristic response of DU145 cells to HGF. Thus PAK6 

knockdown cells appeared to possess a defect in cell elongation upon HGF addition. 

Consistent with these findings in DU145 cells, HT29 cells transfected with control 

siRNA scattered upon HGF stimulation (figure 4.11D, Con siRNA). However PAK6 

siRNA-transfected HT29 cells exhibited a significantly diminished ability to scatter in 

response to HGF addition (figures 4.11D and 4.11E). 

 

4.2.9 PAK6 knockdown affects cell-cell junction integrity and E-cadherin 

localisation in DU145 cells 

Closer examination of PAK6 siRNA colonies in the presence of HGF suggested that 

these cells were not disassembling their cell-cell junctions, a normal initial HGF 

response (figure 3.1) (Fram et al., 2011; Wells et al., 2005). E-cadherin is a junctional 

epithelial marker and a key component of cell-cell junction integrity (Gumbiner et al., 

1988). Therefore, its distribution in control siRNA and PAK6 knockdown cells was 

examined downstream of HGF stimulation. 

 

Control siRNA cells were undergoing dissociation after 4 hours HGF stimulation, with 

minimal E-cadherin staining visible at sites of cell-cell contact (figure 4.12A). In 

addition, the control siRNA cells were elongated after 24 hours HGF addition, with no  

C 
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Figure 4.11 PAK6 siRNA knockdown reduces HGF-induced cell scattering in 

colony-forming cells. A) DU145 cells were transfected with PAK6 siRNA (Oligos 1 

and 2) or control siRNA (Con siRNA). Following 72 hours, cells were serum-starved 

for 24 hours and stimulated with HGF (10 ng/ml) for a further 24 hours. The cells were 

fixed and stained for F-actin. B) DU145 cells were counted and cell counts of Con 

siRNA versus PAK6 siRNA were compared. Scattered = loss of cell-cell junctions and 

single cells with an elongated migratory phenotype. C) Cells were seeded and treated as 

described in (A) but left unstimulated (minus HGF) or stimulated with HGF for 4 hours 

and were then fixed and stained for F-actin. Cells were subjected to Image J analysis to 

determine the cell elongation ratio. D) HT29 cells were treated as in (A) but stimulated 

with 60 ng/ml HGF. E) Scattered cells were quantified as in (B). In (B), (C) and (E) the 

mean values and the standard error of the mean were calculated over 3 independent 

experiments. Statistical significance compared with Con siRNA cells was calculated 

using Student’s t-test; *, P < 0.05, ***, P < 0.0005. n.s. = not significant. Bar = 10 µm. 
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Figure 4.12 PAK6 knockdown inhibits the re-distribution of E-cadherin from cell-

cell boundaries to the cytoplasm downstream of HGF in DU145 cells. A) and B) 

DU145 cells were transfected with control siRNA (Con siRNA) or PAK6 siRNA (Oligo 

1) as indicated. Following 72 hours, cells were serum-starved for 24 hours and 

stimulated with HGF (10 ng/ml) for 4 hours and 24 hours as indicated. The cells were 

then fixed and labelled for E-cadherin and F-actin. In (A) and (B) cells were imaged 

using confocal microscopy. The images shown are representative of 3 independent 

experiments. Bar = 10 µm. 
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E-cadherin staining detected (figure 4.12A). In contrast, the cell borders in PAK6 

knockdown cell populations were E-cadherin-positive, with distinct and extensive 

punctate staining following 4 hours stimulation with HGF (figure 4.12B). At the 24 

hour time point, the cell-cell boundaries in the PAK6 knockdown cell population were 

still E-cadherin-positive, with a distinct localisation pattern similar to that observed 

following 4 hours HGF stimulation (figure 4.12B).  

 

4.2.10 PAK6 localisation in DU145 cells 

Taken together, with the finding that PAK6 over-expression drives the disassembly of 

junctions, it might be speculated that PAK6 is localised at cell junctions. To investigate 

PAK6 localisation within DU145 colony cells, low level expressing WT PAK6 cells 

were imaged as high expressing WT PAK6 cells were already escaping the cell colony. 

PAK6 was found to be specifically localised at cell-cell boundaries with punctate and 

distinct localisation (figure 4.13, arrows) which correlated with the pattern of E-

cadherin localisation detected in these cells (figure 4.13, arrows). Thus, PAK6 can be 

detected at E-cadherin-positive cell-cell junctions. However, it is important to consider 

that there are potential artefacts of examining co-localisation with tagged proteins. For 

example, fluorophore tags such as GFP may potentially influence the localisation of a 

protein. In order to confirm that this is not the case between GFP-PAK6 and E-cadherin, 

the co-localisation between control cells transfected with GFP alone and E-cadherin 

could be analysed and compared to that of GFP-PAK6 expressing cells. Furthermore, Z-

sections could be taken at different focal planes through the cells where GFP-PAK6 and 

E-cadherin appear to be co-localised. This would further help confirm that the co-

localisation observed between GFP-PAK6 and E-cadherin is true.   

 

Subsequently, the localisation of other PAK6 mutants was investigated (figure 4.14). As 

expected, the localisation of GFP control cells was nuclear and cytoplasmic (figure 

4.14). The localisation could not be determined in colony cells expressing the S531N 

PAK6 mutant as even low expressing cells had already escaped from colonies (figure 

4.14). Furthermore, these cells exhibited a rounded phenotype, unlike WT PAK6 

expressing DU145 cells (figure 4.14). Cell rounding can be stimulated by different 

cellular mechanisms including the induction of contraction which leads to rounding of 
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Figure 4.13 Localisation of over-expressed PAK6 in DU145 cells.  DU145 cells were 

transfected with WT GFP-PAK6. After 24 hours, the cells were serum-starved for 24 

hours. Cells were then fixed and labelled for E-cadherin and F-actin. Low level WT 

GFP-PAK6 expression could be detected at E-cadherin-positive cell-cell junctions 

(arrows). Cells were imaged using confocal microscopy and the images shown are 

representative of 3 independent experiments. Bar = 10 µm. 
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Figure 4.14 Localisation of PAK6 mutants in DU145 cells. DU145 cells were 

transfected with GFP control vector or GFP-PAK6 mutants as indicated. After 24 hours, 

the cells were serum-starved for 24 hours. Cells were then fixed and stained for F-actin 

and imaged using confocal microscopy. The images shown are representative of 3 

independent experiments. Bar = 10 µm. 
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the cell body as well as during mitosis. In addition, cell rounding is characteristic of 

dying cells; this possibility could be excluded by the use of cell viability and 

cytotoxicity assays of S531N PAK6 expressing DU145 cells. 

 

In contrast, the kinase dead mutant of PAK6, K436A, which exhibited a reduced 

efficiency in colony escape induction (figure 4.7B), was diffusely localised in the cell 

cytoplasm (figure 4.14) and was not specifically detected at cell junctions. Taken 

together, these results suggest that PAK6 mediates cell-cell dissociation. 
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4.3 Discussion 

In this chapter, the potential role of the PAK family member PAK6 in growth factor-

induced cell migration has been investigated using the scatter assay from chapter 3 as a 

model system. It has been shown that PAK6 autophosphorylation levels are increased in 

response to HGF in DU145 and HT29 cells, but not in response to EGF stimulation. 

Moreover, it has been demonstrated for the first time that PAK6 over-expression is able 

to induce cell elongation and cell colony escape in DU145 and HT29 colony-forming 

cells. In addition, siRNA knockdown of PAK6 inhibited HGF-induced cell scattering 

and affected E-cadherin localisation downstream of HGF stimulation. These results 

suggest that PAK6 plays an important role in driving cell-cell dissociation downstream 

of HGF.  

 

PAK6 is known to be highly expressed in the testis and in prostate tissues, as 

demonstrated by Northern blot analysis (Yang et al., 2001). In this study, PAK6 was 

found to be expressed in DU145 prostate cancer cells, as consistent with previous 

reports (Callow et al., 2002; Wells et al., 2010; Yang et al., 2001), as well as in HT29 

colon adenocarcinoma cells. However, PAK6 expression was lower in the HT29 cells 

when compared to DU145 cells. This is consistent with the reported mRNA expression 

levels of PAK6 in HT29 and DU145 cells (Callow et al., 2002). PAK6 is also expressed 

in MCF7, HS578t and MDA-MB-231 breast cancer cells, with highest PAK6 

expression detected in the latter cell type (Kaur et al., 2008). 

 

PAK6 differs from its family members in its ability to bind to the LBD of the AR and 

induce the suppression of AR signalling (Schrantz et al., 2004). In addition, ectopic 

expression of PAK6 is thought to enhance the survival of prostate cancer cells (Li et al., 

2005a). In the literature, PAK6 knockdown was found to inhibit DU145 prostate cancer 

cell growth (Wen et al., 2009). However, the effect of PAK6 siRNA knockdown on cell 

migration has not been assessed. In addition, very little is known on the effect of PAK6 

over-expression and PAK6 localisation in cells.  

 

It is well established that HGF signalling plays a role in prostate cancer metastasis 

(Gmyrek et al., 2001). HGF stimulation significantly increased PAK6 

autophosphorylation in DU145 cells, as well as in HT29 cells. Whilst HGF is also 
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known to induce an increase in both PAK1 and PAK4 phosphorylation levels in DU145 

cells, these PAKs induce distinct functions downstream of HGF stimulation (Bright et 

al., 2009; Wells et al., 2010). Although phospho-PAK6 levels were increased upon HGF 

addition, the elevation in phospho-PAK6 detected was only modest in the DU145 cells. 

Interestingly, it has been shown that the HGF receptor c-Met is distributed on the 

basolateral membrane of polarised multi-cellular MDCK cells (Crepaldi et al., 1994). 

Thus it has been speculated that in colony-forming cells, only cells located at the 

periphery of the colony, and not those within the cell colony, have the ability to respond 

to HGF addition thereby accounting for a muted HGF response (Wells et al., 2002; 

Wells et al., 2010). Hence this theory could potentially account for, in part, the modest 

elevation in PAK6 phospho levels upon HGF stimulation.  

 

The regulation of group II PAK activity and the phosphorylation sites involved has yet 

to be fully discerned. PAK1, the most extensively studied group I PAK, is known to 

have multiple autophosphorylation sites (Chong et al., 2001). Thus it is possible that 

PAK6 is phosphorylated downstream of HGF on residues other than serine 560, which 

has been tested here, and thus these results may not reflect the complete activating 

potential of HGF signalling on PAK6. Indeed, it has been shown here that mutating this 

site does not increase the kinase activity of PAK6, as consistent with previous reports 

(Kaur et al., 2005; Schrantz et al., 2004). In contrast, mutating serine 531 increased 

PAK6 kinase activity as also observed in previous work (Schrantz et al., 2004). In 

addition, whilst serine 560 phosphorylation is known to be required for PAK6 activation 

via MKK6, PAK6 is also directly activated by MKK6 at tyrosine 566 (Kaur et al., 

2005). This supports a hypothesis that the phosphorylation of other residues on PAK6 is 

important for PAK6 activation. This hypothesis could be investigated further by 

designing in-house antibodies to different serine, threonine or tyrosine sites on PAK6. 

 

The potential of EGF to stimulate PAK6 was also investigated due to its ability to 

induce cell-cell junction breakdown in DU145 cells (Gan et al., 2010). In contrast to 

HGF, EGF was unable to induce a phospho-PAK6 response at serine 560 in DU145 

cells. This again may be due to the fact that PAK6 is more responsive to growth factor 

stimulation at other sites; or PAK6 may not be involved in EGF signalling in DU145 

cells.  
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In this chapter, PAK6 over-expression was found to induce morphological and 

phenotypical changes in DU145 cells. HGF stimulation was not required for the cell 

shape changes induced; indeed WT PAK6 expression in serum-starved conditions was 

sufficient to stimulate pronounced morphological effects. The elongated phenotype 

observed for WT PAK6 expressing DU145 cells is novel when compared to cell shape 

analyses of other PAKs. WT PAK4 over-expression exhibited no effects on MDCK cell 

morphology in unstimulated conditions, as well as upon stimulation with HGF (Wells et 

al., 2002). Furthermore, WT PAK4 expression induces no cell shape changes in DU145 

cells (personal communication with Dr. Wells). Consistent with this, WT PAK4 

expression in unstimulated conditions induced no cell shape changes in C2C12 mouse 

myoblast cells (Dan et al., 2001) or NIH 3T3 mouse embryo fibroblast cells (Qu et al., 

2001). The ability of WT PAK6 expressing cells to induce a morphological response 

may be related to the phosphorylation status of WT PAK6 and thus activity levels. WT 

PAK6 may be autophosphorylated under basal conditions, as has been speculated in the 

literature for group II PAKs (Abo et al., 1998; Pandey et al., 2002). Interestingly it has 

been shown here that at the residue serine 560, a predicted autophosphorylation site of 

PAK6, phospho-PAK6 levels are high in serum-starved DU145 cells. 

 

The majority of PAK induced cell shape changes have been detected when the 

constitutively active forms of PAK1, 2 and 4 were utilised (Manser et al., 1997; Qu et 

al., 2001; Zeng et al., 2000). DU145 cells over-expressing the kinase active form of 

PAK6 were predominantly rounded in the absence of HGF. This is consistent with the 

cell rounding reported upon expression of activated PAK4 in mouse embryo fibroblast 

cells in unstimulated conditions (Dan et al., 2001). However HGF stimulation was 

required to induce cell rounding in MDCK (Wells et al., 2002) and DU145 (Wells et al., 

2010) cells. The cell rounding phenotype observed for kinase active PAK6 expressing 

DU145 cells may be due to a defect in cell spreading. Indeed, it has been reported that 

Rat1 fibroblast cells expressing active PAK4 exhibited a diminished ability in cell 

spreading on fibronectin coated substratum (Qu et al., 2001). Moreover, there is 

evidence suggesting that PAKs play a role in cell-substratum adhesion (Manser et al., 

1997; Wells et al., 2002) and cell rounding induction in cells can also be as a 

consequence of aberrant focal adhesion turnover (Manser et al., 1997).  
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One of the first characteristics of HGF-induced DU145 cell scattering is that cells 

become more elongated (Fram et al., 2011; Wells et al., 2005). Following HGF 

stimulation, cell elongation becomes more pronounced, thereby inducing cell 

detachment and subsequent cell colony escape (Fram et al., 2011; Wells et al., 2005). 

WT PAK6 was found to induce cell elongation in serum-starved conditions and these 

cells exhibited the ability to escape from a cell colony in the absence of HGF 

stimulation. This colony escape phenotype was dependent on PAK6 kinase activity, as 

the kinase dead mutant failed to induce efficient cell colony escape. In addition, the 

kinase active PAK6 mutant, S531N, induced an increase in the percentage of cells 

escaping a colony, even when compared to WT PAK6 cells. This correlates with the 

kinase activity exhibited for these derivatives of PAK6 as shown in the radioactive in 

vitro kinase assay; the S531N mutant exhibited a substantial increase in 

autophosphorylation and substrate phosphorylation when compared to the kinase 

activity of WT PAK6, whilst the kinase dead PAK6 mutant, K436A, exhibited no 

kinase activity. The kinase activity profiles observed for these mutants are consistent 

with previous reports (Kaur et al., 2005; Schrantz et al., 2004). 

 

Colony escape mechanisms have been reported in epithelial cell colonies during 

epithelial cancer cell outgrowth. In one study, single cells induced to express oncogenes 

translocated out of the epithelial layer (Leung and Brugge, 2012). It was postulated that 

these cells were escaping the hostile environment of a developed epithelium (Leung and 

Brugge, 2012). This in turn allows for aberrant proliferation of these cells and thereby 

induces cancer cell progression (Leung and Brugge, 2012). In a second study, it was 

demonstrated that live epithelial cells are extruded from an overcrowded epithelial 

environment (Eisenhoffer et al., 2012). Moreover, MDCK cells expressing oncogenic 

Ras basally extrude from epithelial cell sheets in a model of tumour cell progression 

(Hogan et al., 2009). 

 

PAK6 knockdown cells were defective in cell junction disassembly downstream of 

HGF stimulation, whilst PAK6 over-expression induced cell colony escape. In addition, 

these phenotypes were reproducible in HT29 cells. This suggests that PAK6 may have a 

similar role in cell-cell dissociation in different colony-forming cancer cell types. Whilst 

HGF-induced cell scattering was also inhibited in PAK4 knockdown DU145 cells, these 
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PAK4-depleted cells did not possess a defect in junction disassembly (Wells et al., 

2010).  

 

PAK1 knockdown cells exhibited a similar phenotype to that of PAK6 in DU145 cells 

downstream of HGF stimulation (Bright et al., 2009) and it was speculated that the 

inhibition of scattering was related to cell-cell adhesion dynamics (Bright et al., 2009). 

In contrast, HGF-induced DU145 cell scattering was not inhibited in PAK2 knockdown 

cells and it was proposed that depletion of PAK2 in fact promoted cell scattering in 

DU145 cells (Bright et al., 2009). Unfortunately, there is significant variation in the 

methods used to measure cell scattering in the Bright et al. study, compared to the 

quantification system used here. Therefore, the inhibition in HGF-induced scattering as 

a result of PAK1 depletion cannot be directly compared to the PAK6 knockdown 

phenotype observed here.  

 

PAK6 knockdown cells retained strong localisation of E-cadherin at cell-cell junctions 

downstream of HGF stimulation. In addition, these cells were still in colonies following 

24 hours HGF stimulation. E-cadherin, a junctional marker (Gumbiner et al., 1988) that 

is commonly associated with cancer progression (van Roy and Berx, 2008), is normally 

re-distributed from cell-cell junctions to the cytoplasm during cell-cell dissociation 

(Miura et al., 2001). In the Bright et al. study, whilst E-cadherin localisation was also 

maintained at PAK1 knockdown cell junctions, these knockdown cells appeared to be 

partially scattered, rather than remaining within a tight cell colony (Bright et al., 2009). 

Thus it could be speculated that the roles of PAK1 and PAK6 during junctional 

disassembly are distinct.  

 

The work presented here suggests a novel role for PAK6 in the disruption of junctions 

that subsequently leads to cell-cell dissociation. Interestingly Mbt, a Drosophila PAK 

protein which shares close homology with human group II PAKs, localises at adherens 

junctions when activated and has been reported to induce the breakdown of these 

junctions during eye maturation (Menzel et al., 2008; Menzel et al., 2007; Schneeberger 

and Raabe, 2003). In addition, the Xenopus PAK4 homologue, X-PAK5, also localises 

at sites of cell contact and has been implicated in the cell-cell dissociation process 

(Faure et al., 2005). In DU145 cells, PAK4 is not required for cell-cell adhesion 

disassembly but is required for subsequent cell scattering (Wells et al., 2010). Thus both 
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of these group II PAKs may be present in the same HGF-induced signalling pathway 

where PAK6 lies upstream of PAK4. Indeed, in the group I PAKs, it has been 

hypothesised that PAK2 may exert its effects through PAK1 to modulate HGF-induced 

DU145 cell scattering (Bright et al., 2009).  

 

In DU145 cells, WT PAK6 was localised to cell-cell boundaries. Very little is known 

about PAK6 localisation in other cell types. However, full-length PAK6 was found to 

be localised predominantly in the cytoplasm of non-colony forming fibroblastic CV-1 

cells but PAK6 can also translocate to the nucleus with AR stimulation (Yang et al., 

2001). This cytoplasmic localisation pattern was similar to that described for the 

localisation of kinase active (S531N) PAK6 and kinase dead (K436A) PAK6 (Schrantz 

et al., 2004) and over-expressed WT PAK6 in HeLa cells, which exhibit a low level of 

cell-cell contact sites (Lee et al., 2002). PAK6 was also found localised at the plasma 

membrane in HeLa cells (Lee et al., 2002). More recent work has shown that over-

expressed PAK6 frequently localises to punctate formations in the cytoplasm of HeLa B 

cells and NCI-H1299 lung cancer cells (Shepelev and Korobko, 2012). The latter cell 

type is colony forming possessing high levels of cell-cell contacts, however PAK6 

localisation at cell-cell junctions was not observed (Shepelev and Korobko, 2012). The 

difference in cell elongation and colony escape phenotypes observed between WT 

PAK6 and PAK6 mutant constructs in this study could potentially be accounted for by 

the intracellular distribution of these mutants, as the kinase dead mutant of PAK6 

exhibited diffuse and cytoplasmic localisation. A junctional localisation for PAK4 in 

lung epithelial cells has also been reported (Wallace et al., 2010), but not in DU145 

cells; however PAK4 has been localised to focal adhesions in these cells (Wells et al., 

2010). 

 

In summary, a novel role for PAK6 in HGF-induced cell scattering has been identified 

using over-expression and knockdown strategies. Indeed, work presented here suggests 

that PAK6 may mediate cell-cell junction dissolution. 
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4.3.1 Future work 

Based on the in vitro kinase assay data in this chapter, it seems likely that PAK6 

possesses autophosphorylation sites other than serine 560. Thus it would be interesting 

to deduce the location of these sites within PAK6. This could be achieved by 

performing an in vitro kinase assay using wild-type PAK6 and/or PAK6 mutants and 

conducting mass spectrometry phosphorylation analysis on observed phosphorylation 

band(s). Furthermore, as the AR is the only PAK6 substrate that has been identified 

(Schrantz et al., 2004) it would be interesting to investigate other potential PAK6 

substrates that could potentially be involved in cell-cell junction disassembly signalling. 

Techniques such as mass spectrometry or a yeast two-hybrid screen could be 

implemented.                 

 

In this study, PAK6 knockdown in DU145 and HT29 cells led to a reduction in cell-cell 

junction disassembly. To confirm that this phenotype was PAK6-specific, a rescue 

experiment could be conducted. Furthermore, DU145 cells expressing the kinase dead 

mutant of PAK6, K436A, remained in cell colonies, unlike wild-type PAK6 and the 

kinase active form of PAK6, S531N. The localisation pattern of E-cadherin was similar 

to that of wild-type PAK6. Thus it would be beneficial to compare E-cadherin 

localisation in these cells to the other derivatives of PAK6, as well as to control cells 

transfected with GFP.  
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Chapter 5 – PAK6 interaction with IQGAP1 in DU145 cells 
5.1 Introduction 

In cells with reduced PAK6 expression, HGF does not induce cell-cell junction 

dissociation (chapter 4). Moreover, PAK6 over-expression induces cell elongation and 

cell colony escape (chapter 4). These results suggest that PAK6 plays a role in junction 

disassembly. Thus to better understand how PAK6 might regulate cell-cell boundaries, 

potential binding partners were investigated. 

 

There is one report in the literature that PAK6 can interact with IQGAP1 (Kaur et al., 

2008), a protein known to localise to MDCK (Kuroda et al., 1996) and MCF7 (Li et al., 

1999; Swart-Mataraza et al., 2002) cell-cell junctions. This putative interaction was 

detected in a breast cancer cell line using co-immunoprecipitation experiments (Kaur et 

al., 2008), but this finding has yet to be validated in other cell types. IQGAP1 is a multi-

domain protein that is thought to be involved in protein-protein interactions and various 

signal transduction pathways (White et al., 2011). Indeed, IQGAP1 binds to Cdc42 

(Kuroda et al., 1996) and is thought to act as a scaffold protein in the MAPK signalling 

cascade (Ren et al., 2007; Roy et al., 2005). 

 

IQGAP1 has also been implicated in cancer cell motility and siRNA knockdown of 

IQGAP1 significantly decreases cancer cell migration in MCF7 breast epithelial cells 

(Mataraza et al., 2003b). IQGAP1 also binds to junctional-associated molecules 

including actin (Erickson et al., 1997) and E-cadherin (Kuroda et al., 1998) and is 

thought to regulate cell-cell dissociation downstream of HGF in colony-forming MDCK 

II cells (Fukata et al., 2001). Moreover, it has been postulated that the GTP-bound 

forms of Rac1 and Cdc42 are involved in cell-cell dissociation downstream of HGF 

stimulation by modulating the interaction of IQGAP1 with an E-cadherin-containing 

junctional complex (Fukata et al., 2001).  

 

In this chapter, the aim was to further characterise the interaction between IQGAP1 and 

PAK6 and identify any functional relationship that may be associated with cell-cell 

dissociation. 
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5.2 Results 

5.2.1 IQGAP1 expression and localisation in DU145 cells 

IQGAP1 is a ubiquitously expressed protein (Weissbach et al., 1994); however its 

expression in prostate cancer cells has not been examined. IQGAP1 was found to be 

expressed in DU145 cells (figure 5.1A). It has been reported that IQGAP1 is enriched 

at cell-cell junctions in colony-forming MDCK II cells (Fukata et al., 2001). Therefore, 

the localisation of WT GFP-IQGAP1 was examined in DU145 cells. Consistent with 

previous reports (Kuroda et al., 1998), over-expressed WT IQGAP1 was detected and 

enriched at E-cadherin-positive junctions (figure 5.1B). Diffuse cytoplasmic expression 

was also discernible as has been observed previously (Fukata et al., 2001).  

 

5.2.2 PAK6 interacts with IQGAP1 

HEK293 cells were used for a structure-function analysis of the reported interaction 

between PAK6 and IQGAP1. IQGAP1 is a large (approximately 189 kDa) multi-

domain scaffold protein (Briggs and Sacks, 2003; Weissbach et al., 1994) that is known 

to have multiple binding partners (Brown and Sacks, 2006). PAK6 is structurally 

similar to its family members and possesses an N-terminal PBD and a C-terminal 

serine/threonine kinase domain (Wells and Jones, 2010). Endogenous (co)-

immunoprecipitation protocols were firstly employed, but these attempts were 

unsuccessful. However, endogenous PAK6 (which is expressed in HEK293 cells 

(figure 5.2A) was co-immunoprecipitated with over-expressed WT GFP-IQGAP1 in 

HEK293 cells (figure 5.2B). 

 

Both PAK6 and IQGAP1 are reported to interact with activated Cdc42 (Hart et al., 

1996; Kuroda et al., 1996; Lee et al., 2002). Thus, the interaction between IQGAP1 and 

PAK6 may not be direct but mediated through a joint interaction with Cdc42. 

Immunoprecipitation studies indicated that full-length WT IQGAP1, Cdc42-V12 and 

full-length WT PAK6 could be pulled down together (figure 5.3).  
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Figure 5.1 IQGAP1 expression and localisation in DU145 cells. A) DU145 whole 

cell lysate was immunoblotted for IQGAP1 expression using an anti-IQGAP1 antibody 

and for ERK1/2 using an anti-ERK1/2 antibody as a loading control. B) DU145 cells 

were transfected with WT GFP-IQGAP1. Cells were fixed and labelled for E-cadherin 

and F-actin and imaged using confocal microscopy. WT GFP-IQGAP1 expression 

could be detected at E-cadherin-positive cell-cell junctions (arrows). In (A) and (B) data 

are representative of 3 independent experiments. Bar = 10 µm. 
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Figure 5.2 PAK6 interacts with IQGAP1. A) HEK293 whole cell lysate was 

immunoblotted for endogenous PAK6 using a PAK6 specific antibody and for GAPDH 

as a loading control. B) HEK293 cells were transfected with WT GFP-IQGAP1. The 

cells were lysed and IQGAP1 was immunoprecipitated using an anti-GFP antibody (IP) 

from cell lysates. The samples were immunoblotted for endogenous PAK6 using a 

PAK6 specific antibody and anti-GFP for WT GFP-IQGAP1. The blots in (A) and (B) 

are representative of 3 independent experiments.  
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Figure 5.3 Co-immunoprecipitation of PAK6, IQGAP1 and Cdc42-V12. HEK293 

cells were transfected with WT Myc-PAK6, WT GFP-IQGAP1 and HA-Cdc42-V12 as 

indicated. The cells were lysed and WT Myc-PAK6 was immunoprecipitated using an 

anti-c-Myc antibody (IP) from cell lysates. The samples were immunoblotted for over-

expressed WT GFP-IQGAP1 using an anti-GFP antibody, for WT Myc-PAK6 using an 

anti-c-Myc antibody and for HA-Cdc42-V12 using an anti-HA antibody. Whole cell 

lysates (WCL) were immunoblotted using anti-HA and anti-GFP antibodies as loading 

controls. The blots shown are representative of 3 independent experiments. 
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The limitations of using co-immunoprecipitation techniques to investigate protein- 

protein interactions are that they do not confirm that proteins pulled down together are 

in fact directly interacting. For example, PAK6 may be in a binary complex with 

Cdc42-V12, as may IQGAP1 in figure 5.3. Alternative approaches that are more 

suitable for examining direct protein-protein interactions include protein fractionation, 

fluorescence resonance energy transfer (FRET) and yeast two-hybrid screening. 

 

5.2.3 Full-length IQGAP1 interacts with the N- and C-termini of PAK6 

In order to elucidate whether Cdc42 may mediate the interaction between IQGAP1 and 

PAK6, domain mutants of PAK6 were co-expressed with full-length WT IQGAP1 

(figure 5.4A). Co-immunoprecipitation experiments demonstrated that full-length WT 

IQGAP1 bound to both the N- and C-termini of PAK6 (figure 5.4B). The interaction 

between IQGAP1 and the N-terminal domain of PAK6 may be mediated by Cdc42. 

However, it is also possible that the ability of IQGAP1 to interact with both the N- and 

C-terminal of PAK6 is due to PAK6 and/or IQGAP1 forming homodimers. Indeed it 

has been demonstrated that IQGAP1 self-associates in cells (Ren et al., 2005). 

Nevertheless, the binding of IQGAP1 to the C-terminal region of PAK6 is likely to be a 

direct association. 

 

5.2.4 Full-length PAK6 interacts with the N-terminal region of IQGAP1 

Having established that IQGAP1 can bind to PAK6, the interaction between full-length 

PAK6 and IQGAP1 domain mutants was explored. Domain mutants of IQGAP1 were 

co-expressed with full-length wild-type PAK6 (figure 5.5A). Co-immunoprecipitation 

experiments demonstrated that full-length wild-type PAK6 selectively interacted with 

the N-terminal region of IQGAP1 (figure 5.5B). 

 

Subsequently, the interaction between the C-terminal region of PAK6 and a truncated 

N-terminal mutant of IQGAP1 was investigated. This mutant encompassed amino acids 

717-863 of the N-terminal region of IQGAP1 (IQGAP1
717-863

) (figure 5.6A) and was 

chosen as it included the IQ domain region of IQGAP1 (amino acids 746-856) (Brown 

and Sacks, 2006) but not the Cdc42 binding site (Hart et al., 1996; Mataraza et al., 

2003a). This domain is known to bind a number of proteins and kinases including 

calmodulin (Hart et al., 1996), MEK1 and MEK2 (Roy et al., 2005). Thus the 

IQGAP1
717-863 

mutant was used to examine the interaction between the C-terminal of  
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Figure 5.4 IQGAP1 interacts with the N- and C-termini of PAK6. A) Schematic 

illustrating full-length PAK6 (amino acids 1–682), N-terminal (amino acids 1–367) and 

C-terminal (amino acids 368–682) PAK6 generated constructs. These constructs were 

used in subsequent experiments. B) HEK293 cells were transfected with N- or C-

terminal RFP-PAK6 mutants and WT GFP-IQGAP1 as indicated. The cells were lysed 

and WT GFP-IQGAP1 was immunoprecipitated using an anti-GFP antibody (IP) from 

cell lysates. The samples were immunoblotted for WT GFP-IQGAP1 using an anti-GFP 

antibody and for N- and C-terminal PAK6 mutants using an anti-RFP antibody 

(arrows). Whole cell lysates (WCL) were immunoblotted using anti-GFP and anti-RFP 

antibodies as loading controls (arrows). The blots shown are representative of 3 

independent experiments.  
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Figure 5.5 PAK6 selectively binds to the N-terminal region of IQGAP1. A) 

Schematic illustrating full-length IQGAP1 (amino acids 1–1657), N-terminal IQGAP1 

(amino acids 2–863) and C-terminal IQGAP1 (amino acids 864-1657) constructs. These 

constructs were used in subsequent experiments. B) HEK293 cells were transfected 

with N- or C- terminal Myc-IQGAP1 mutants and WT GFP-PAK6 as indicated. The 

cells were lysed and N- and C-terminal IQGAP1 mutants were immunoprecipitated 

using an anti-c-Myc antibody (IP) from cell lysates. The samples were immunoblotted 

for WT GFP-PAK6 using an anti-GFP antibody and for N- and C-terminal Myc-

IQGAP1 mutants using an anti-c-Myc antibody. Whole cell lysates (WCL) were 

immunoblotted using an anti-GFP antibody as a loading control. The blots shown are 

representative of 3 independent experiments. 
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Figure 5.6 The C-terminal region of PAK6 interacts with amino acids 717-863 in 

the N-terminal region of IQGAP1. A) Schematic illustrating full-length IQGAP1 

(amino acids 1–1657) and the truncated N-terminal mutant of IQGAP1 (amino acids 

717–863). To protein purify GST-IQGAP1 (GST-IQGAP1
717-863

) E. coli BL21-A1 cells 

were transformed with the expression plasmid and grown to mid-log phase. Protein 

expression was induced with 0.05% L-Arabinose overnight at 20ºC. B) HEK293 cells 

were transfected with C-terminal GFP-PAK6 mutant as indicated. Cell lysates were 

subjected to a GST pulldown assay using GST-IQGAP1
717-863 

or GST-IQGAP1
162-671

.
 

GST was used as a control. The samples were immunoblotted for the C-terminal GFP-

PAK6 mutant using an anti-GFP antibody and for GST-IQGAP1
717-863

 or GST-

IQGAP1
162-671 

and GST alone (control) using an anti-GST antibody. Whole cell lysate 

samples (WCL) were immunoblotted using an anti-GFP antibody as a loading control. 

The blots shown are representative of 3 independent experiments.         

A 
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PAK6 and this region of IQGAP1.
 
 This truncated IQGAP1 mutant interacted with the 

C-terminal PAK6 mutant (figure 5.6B). In contrast, PAK6 did not interact with a 

truncated N-terminal mutant of IQGAP1 encompassing amino acids 162-671 figure 

5.6B. In summary, the C-terminal half of PAK6 interacts with amino acids 717-863 

within the N-terminal region of IQGAP1. Furthermore, Cdc42-V12 was co-

immunoprecipitated with PAK6 and IQGAP1. A potential structural conformation 

between these 3 proteins is illustrated in figure 5.7.  

 

Having confirmed the interaction between IQGAP1 and PAK6 in HEK293 cells, an 

interaction using DU145 cells was explored. Full-length GST-PAK6 bound to 

endogenous IQGAP1 when using DU145 cells (Figure 5.8). 

 

5.2.5 IQGAP1 induces morphological changes and colony escape when expressed 

alone and when co-expressed with PAK6 in DU145 cells 

PAK6 is localised to cell-cell junctions and PAK6 over-expression induces cell 

elongation in DU145 cells (chapter 4). IQGAP1 is also localised at cell-cell junctions 

(figure 5.1B) and has been found to interact with PAK6 (figure 5.8) in these cells. 

Therefore, the effect of WT IQGAP1 over- expression on DU145 cells was compared to 

the morphological changes already described for PAK6 (figure 4.6). Control cells 

transfected with GFP were not significantly different in shape when compared to 

untransfected cells (figure 5.9A). WT IQGAP1 expressing DU145 cells exhibited 

significantly higher elongation ratios when compared to GFP control cells under serum-

starved conditions (figures 5.9A and 5.9B). This was similar to the cell shape changes 

observed for WT PAK6 expressing cells (figures 4.6A and 4.6C). Moreover, when WT 

GFP-IQGAP1 was co-expressed with WT RFP-PAK6 under these conditions, this 

elongation phenotype was further enhanced to a significant level when compared to 

cells expressing WT GFP-IQGAP1 alone (figures 5.9A and 5.9B). WT RFP-PAK6 

exhibited similar elongation ratios and localisation as that of WT GFP-PAK6 in DU145 

cells (data not shown).  

 

Over-expression of WT PAK6 not only induced cell elongation but also cell colony 

escape (figure 4.7). Having established that WT IQGAP1 also induced cell elongation 

in DU145 cells, the effect on colony behaviour was also investigated. There was no  
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Figure 5.7 Schematic to illustrate the proposed conformation of the interaction 

between PAK6, IQGAP1 and active Cdc42. The C-terminal region of PAK6 interacts 

with IQGAP1 via amino acids 717-863. Cdc42-V12 was co-immunoprecipitated with  

these two proteins. GTP-bound Cdc42 is known to interact with PAK6 (Lee et al., 2002) 

presumably via its N-terminal region, similar to its family members (Abo et al., 1998). 

IQGAP1 interacts with active Cdc42 via its GRD region (amino acids 1025-1238) in the 

C-terminal domain (Hart et al., 1996; Mataraza et al., 2003a). Dashed lines represent 

interactions proposed in the literature as described. 
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Figure 5.8 PAK6 interacts with IQGAP1 in DU145 cells. DU145 cells were cultured 

in 10% FBS serum for 48 hours. Cells were then lysed and subjected to a GST-PAK6 

pulldown assay. GST was used as a control. The samples were immunoblotted for 

endogenous IQGAP1 using an anti-IQGAP1 antibody and for GST-PAK6 and GST 

alone (control) using an anti-GST antibody as indicated. The blots shown are 

representative of 3 independent experiments. 
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Figure 5.9 IQGAP1 over-expression and co-expression with PAK6 induces 

morphological changes in DU145 cells. A) DU145 cells were transfected with GFP 

control vector or WT GFP-IQGAP1 or co-transfected with WT RFP-PAK6 and WT 

GFP-IQGAP1. Untransfected cells (UT) were treated in the same manner. After 24 

hours, cells were serum-starved for 24 hours. Cells were then fixed and stained for F-

actin. Shape analysis was performed on the cells using Image J to determine the 

elongation ratio. B) F-actin stained DU145 cells transfected with WT GFP-IQGAP1 or 

co-transfected with WT RFP-PAK6 and WT GFP-IQGAP1 from (A) were imaged 

using confocal microscopy. In (A) the mean elongation ratio was calculated for 110 

cells per condition over 3 independent experiments. Statistical significance compared 

with GFP control cells (unless otherwise indicated) was calculated using Student’s t-

test; ***, P < 0.0005. Bar = 10 µm. 

B 
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significant difference in cell colony escape between untransfected and GFP control 

expressing cells (data not shown). However, reminiscent of WT PAK6 expressing 

DU145 cells (figure 4.7), WT IQGAP1 expressing cells and cells co-expressing WT 

IQGAP1 and WT PAK6 were uncoupled from neighbouring cells and were no longer 

within the cell colony (figure 5.10). Based on the cell shape and colony escape data, 

IQGAP1, like PAK6, may be driving colony escape in DU145 cells. 

 

5.2.6 There is an optimal interaction between PAK6 and IQGAP1 following 4 

hours HGF stimulation 

When cell colonies are responding to HGF, cell-cell dissociation is required (figure 

3.1). Given that PAK6 and IQGAP1 interact in DU145 cells, and that these proteins 

function additively to increase cell-cell dissociation, it might be speculated that PAK6 

and IQGAP1 interact in an HGF-dependent manner.  

 

Endogenous IQGAP1 was pulled down with GST-PAK6 when growing DU145 cells 

were used (figure 5.11A), as previously shown (figure 5.8). Upon serum-starvation, 

this interaction decreased, although not to a significant level (figures 5.11A and 5.11B). 

Earlier studies had shown that PAK6 autophosphorylation at serine 560 was elevated 

following 5, 15 and 30 minutes HGF stimulation (figures 4.2A and 4.2B). Therefore, 

the level of interaction between PAK6 and IQGAP1 was investigated during early HGF 

stimulation time points. Although not significant, a small increase in the level of 

interaction between GST-PAK6 and endogenous IQGAP1 was observed following 30 

and 60 minutes HGF stimulation when compared to serum-starved conditions (figures 

5.11A and 5.11B). However it is important to note that the input protein levels of 

endogenous IQGAP1 may be lower in serum-starved conditions when compared to 

grow conditions. This may influence the level of interaction observed between GST-

PAK6 and endogenous IQGAP1. Furthermore, there are limitations in using 

immobilized GST-PAK6 to detect endogenous protein interactions. Firstly, in contrast 

to endogenous IQGAP1, GST-PAK6 was not exposed to the variation in conditions, for 

example serum-starvation and HGF stimulation. In addition, GST-PAK6 may have 

become saturated with bound endogenous protein which will influence the GST-PAK6-

IQGAP1 binding profiles that were observed. Lastly, the GST-PAK6 used was 

expressed in bacteria and not mammalian cells and thus it could potentially be in quite 

an inert state. Taken together, there are a number of factors that may influence the  
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Figure 5.10 IQGAP1 over-expression and co-expression with PAK6 induces colony 

escape in DU145 cells. A) DU145 cells were transfected with GFP control vector or 

WT GFP-IQGAP1 or co-transfected with WT RFP-PAK6 and WT GFP-IQGAP1. After 

24 hours, cells were serum-starved for 24 hours and then fixed and stained for F-actin. 

The % of GFP expressing cells present within a colony for each condition was 

calculated. A cell escaping a colony was defined as either greater than 50% of the cell 

body perimeter detached from the neighbouring cell(s), cells already escaped from a 

colony and exhibiting 100% dissociation from the neighbouring cell(s) or cells in a 

different plane to the underlying cell colony. B) F-actin stained DU145 cells transfected 

with WT GFP-IQGAP1 or co-transfected with WT RFP-PAK6 and WT GFP-IQGAP1 

from (A) were imaged using confocal microscopy. In (A) the mean % of GFP 

expressing cells in colonies was calculated for 110 cells per condition over 3 

independent experiments. Statistical significance compared with GFP control cells 

(unless otherwise indicated) was calculated using Student’s t-test; *, P < 0.05, ***, P < 

0.005. Bar = 10 µm. 

A 
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Figure 5.11 PAK6 and IQGAP1 interact downstream of HGF stimulation. A) 

DU145 cells were serum-starved for 24 hours or replenished with 10% FBS media 

(Growth). Cells were then left unstimulated (Starve) or stimulated with HGF (500 

ng/ml) for the indicated time points. Cells were then lysed and subjected to a GST-

PAK6 pulldown assay, using GST as a control. The samples were immunoblotted for 

endogenous IQGAP1 and for GST-PAK6 using an anti-GST antibody as a loading 

control. B) The level of binding between PAK6 and IQGAP1 was quantified using 

ANDOR IQ Technology software. C) DU145 cells were treated as described in (A). D) 

The level of binding was quantified as in (B). In (A) and (C) GST alone controls were 

GST positive as demonstrated in figures 5.6 and 5.8. In (B) and (D), the mean fold 

value representing the amount of bound IQGAP1 was deduced. The standard error of 

the mean was calculated over 3 independent experiments. Statistical significance 

compared with serum-starved cells (Starve) was calculated using Student’s t-test: *, P < 

0.05. 

D 

B 

A 

C 
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interaction between GST-PAK6 and endogenous IQGAP1. As cell-cell dissociation in 

DU145 cells responding to HGF occurs approximately 4 hours post-stimulation (figure 

3.1), the interaction between PAK6 and IQGAP1 was also examined at later time 

points. A significant increase in the interaction between GST-PAK6 and endogenous 

IQGAP1 was observed following 4 hours HGF stimulation when compared to serum-

starved conditions (figures 5.11C and 5.11D), thereby correlating with HGF-induced 

cell-cell dissociation that occurs after 4 hours stimulation (figure 3.1). Furthermore, 

following 8 hours HGF stimulation, the interaction between these two proteins was 

reduced to near serum-starved levels (figures 5.11C and 5.11D). 

 

5.2.7 There is an optimal interaction between PAK6 and E-cadherin following 4 

hours HGF stimulation 

It has been demonstrated that the interaction between PAK6 and IQGAP1 is optimal 

following 4 hours stimulation with HGF (figures 5.11C and 5.11D) which correlates 

with E-cadherin cell junction disassembly (figure 3.1). IQGAP1 is known to interact 

with E-cadherin (Kuroda et al., 1998), and it has been shown that PAK6 can localise to 

E-cadherin-positive junctions (figure 4.13). Furthermore, E-cadherin is retained at cell-

cell junctions in PAK6 knockdown cells downstream of HGF (figure 4.12B). 

Therefore, the possibility of an interaction between PAK6 and E-cadherin was 

investigated. 

 

In serum-starved conditions, bacterially purified GST-PAK6 bound to endogenous E-

cadherin (figure 5.12A). Following 4 hours of HGF stimulation, where 

characteristically E-cadherin begins to move away from cell-cell junctions in DU145 

cells (figure 3.1) there was a significant increase in the level of interaction between 

GST-PAK6 and endogenous E-cadherin when compared to serum-starved cells (figures 

5.12A and 5.12B). Additionally, the interaction between GST-PAK6 and E-cadherin 

diminished following 8 hours HGF stimulation when compared to 4 hours stimulation 

(figures 5.12A and 5.12B), similar to the interaction trend observed between GST-

PAK6 and IQGAP1 (figures 5.11C and 5.11D). Furthermore, GST-PAK6, endogenous 

IQGAP1 and endogenous E-cadherin were pulled down together using serum-starved 

DU145 cells, as well as following 4 hours HGF stimulation (figure 5.12C). However, 
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Figure 5.12 PAK6 and E-cadherin interact downstream of HGF stimulation. A) 

Serum-starved DU145 cells were left unstimulated (Starve) or stimulated with HGF 

(500 ng/ml) for 4 or 8 hours. Cells were then lysed and subjected to a GST-PAK6 

pulldown assay. GST was used as a control. The samples were immunoblotted for 

endogenous E-cadherin and for GST-PAK6 using an anti-GST antibody as a loading 

control. B) The level of binding between PAK6 and E-cadherin was quantified using 

ANDOR IQ Technology software. C) DU145 cells were treated as described in (A) and 

immunoblotted for endogenous IQGAP1 and E-cadherin and for GST-PAK6 using an 

anti-GST antibody as a loading control. D) DU145 cells were seeded at a density that 

correlated with the HGF-induced scatter assay. Serum-starved DU145 cells were left 

unstimulated (Starve) or stimulated with HGF (10 ng/ml) for 60 minutes and 4 hours 

prior to lysis. Lysates were immunoblotted for levels of PAK6 autophosphorylation at 

serine 560 using a phospho-PAK4/PAK5/PAK6 antibody. Blots were re-probed for total 

PAK6 expression using an anti-PAK4/PAK6 antibody. E) Changes in the levels of 

autophosphorylation at serine 560 in (D) were quantified using ANDOR IQ Technology 

software. In (A) and (C) GST alone controls were GST positive as demonstrated in 

figures 5.6 and 5.8. In (B) the mean fold value representing the amount of bound E-

cadherin and in (E) the changes in the level of PAK6 autophosphorylation at serine 560 

were quantified. The standard error of the mean was calculated over 3 independent 

experiments. Statistical significance compared with serum-starved cells (Starve) was 

calculated using Student’s t-test: *, P < 0.05.  
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no significant change in PAK6 autophosphorylation at serine 560 was detected at longer 

HGF stimulation time points, including after 4 hours (figures 5.12D and 5.12E).  

 

5.2.8 PAK6 phosphorylation levels are elevated in the presence of IQGAP1  

IQGAP1 binds to the C-terminal region of PAK6 which encompasses the kinase domain 

(figure 5.6). Thus, it was hypothesised that IQGAP1 may be a substrate for PAK6. 

Indeed, it has been shown in the literature that IQGAP1 is phosphorylated at serine 

1443, potentially by the serine/threonine kinase protein kinase C (PKC) epsilon, and 

this in turn can alter the function of IQGAP1 (Grohmanova et al., 2004). This 

hypothesis was tested using a radioactive in vitro kinase assay. GST-PAK6 did not 

phosphorylate over-expressed WT IQGAP1 in vitro as incorporated [γ-
32

P] ATP was 

not detected at the size of WT GFP-IQGAP1 (approximately 220 kDa) or above. 

However, unexpectedly, the presence of WT IQGAP1 induced an increase in the 

phosphorylation levels of GST-PAK6, when compared to the phosphorylation levels of 

GST-PAK6 in the absence of WT IQGAP1 (figure 5.13A). Therefore, this suggests that  

IQGAP1 is not a PAK6 substrate but that the presence of IQGAP1 elevates the levels of 

PAK6 phosphorylation.  

 

IQGAP1 is able to interact with other kinases, such as MEK1 and MEK2, and in turn 

indirectly modulates their activation status (Roy et al., 2005). It has been demonstrated 

previously that PAK6 autophosphorylation levels at serine 560 increased upon HGF 

stimulation (figure 4.2). In addition, phosphorylation at this residue has been reported 

to be required for MKK6-mediated activation of PAK6 (Kaur et al., 2005). Therefore, 

WT or dominant-negative IQGAP1 were over-expressed with WT PAK6 and the levels 

of PAK6 autophosphorylation at serine 560 were examined (figure 5.13B). Dominant-

negative IQGAP1 lacks the GRD domain, where active Cdc42 binds, and thereby 

reduces the level of GTP-Cdc42 bound to IQGAP1 (Swart-Mataraza et al., 2002). 

However, phosphorylation levels at this residue were unaltered in the presence of the 

IQGAP1 constructs tested (figure 5.13B). Thus, the presence of IQGAP1 does not 

affect the levels of autophosphorylation at serine 560 on PAK6, implying that IQGAP1 

affects PAK6 phosphorylation levels on another site. 
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Figure 5.13 IQGAP1 expression increases PAK6 phosphorylation levels. A) 
HEK293 cells were transfected with WT GFP-IQGAP1 as indicated. The cells were 

lysed and IQGAP1 was immunoprecipitated using an anti-GFP antibody (IP) from cell 

lysates and mixed with or without GST-PAK6 as indicated. An in vitro kinase assay 

was performed using [γ-
32

P] ATP. GST-PAK6 alone was also subjected to the in vitro 

kinase assay and GST was used as a control. Whole cell lysates (WCL) were 

immunoblotted using an anti-GFP antibody as a loading control. B) HEK293 cells were 

transfected with WT Myc-PAK6, or co-transfected with WT Myc-PAK6 and WT GFP-

IQGAP1 or dominant-negative (dom –ve) GFP-IQGAP1. The cells were lysed and WT 

Myc-PAK6 was immunoprecipitated using an anti-c-Myc antibody (IP) from cell 

lysates. The samples were immunoblotted for GFP-IQGAP1 using an anti-GFP 

antibody and also for WT Myc-PAK6 using an anti-c-Myc antibody as a loading 

control. The IP samples were immunoblotted for levels of PAK6 autophosphorylation at 

serine 560 using a phospho-PAK4/PAK5/PAK6 antibody. In (A) and (B) the blots 

shown are representative of 3 independent experiments. 

A 
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5.3 Discussion 

In this chapter, an interaction between PAK6 and IQGAP1 has been established in 

DU145 cells for the first time. IQGAP1 was found to induce cell elongation and a cell 

colony escape phenotype in DU145 cells, similar to that observed for PAK6 expressing 

cells in chapter 4.  Endogenous E-cadherin and IQGAP1 were pulled down with PAK6 

and the association between PAK6 and these proteins was maximal following 4 hours 

HGF stimulation. In addition, it was demonstrated that the presence of IQGAP1 

increases PAK6 phosphorylation levels.  

 

IQGAP1 is known to be over-expressed in numerous types of cancer including 

colorectal (Nabeshima et al., 2002), hepatocellular (Chen et al., 2010) and ovarian 

carcinomas (Dong et al., 2006), as well as in breast cancer epithelial cells (Jadeski et al., 

2008); however its expression in prostate cancer cells has not been documented. In this 

study, IQGAP1 was found to be expressed in DU145 cells. 

 

IQGAP1 is known to bind to kinases such as ERK1/2 and MEK1/2 and these 

interactions are important for MAPK signalling (Roy et al., 2005). IQGAP1 also 

interacts with PAK6 in MCF7 breast cancer cells (Kaur et al., 2008); however the 

significance of this association has yet to be elucidated. An interaction between PAK6 

and IQGAP1 was confirmed using an endogenous IP protocol and a GST pulldown 

assay. This association was detected in the absence of HGF stimulation; consistent with 

this, the interaction between IQGAP1 and ERK2 did not require EGF stimulation (Roy 

et al., 2004). However, over-expressed IQGAP1 must associate with ERK2 for the 

regulation of EGF-induced ERK2 stimulation  (Roy et al., 2004). Therefore, it could be 

speculated that whilst IQGAP1 and PAK6 are able to interact in the absence of HGF 

stimulation, the presence of IQGAP1 may be required for HGF-induced PAK6 

activation and/or for the function of PAK6 downstream of HGF. 

 

In the GST pulldown assay, only endogenous IQGAP1, and not GST-PAK6, was 

exposed to serum-starved conditions and to HGF stimulation. The data presented 

indicates an increase in the association of IQGAP1 to GST-PAK6 upon HGF addition 

when compared to serum-starvation. This suggests that HGF may modulate IQGAP1 

and consequently enhance its interaction with GST-PAK6. For example, HGF may 
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modify the conformation of IQGAP1 and thereby make the PAK6 binding site on 

IQGAP1 more accessible. Additionally, the presence of HGF may induce the 

phosphorylation of IQGAP1; indeed EGF has been shown to induce the 

phosphorylation of IQGAP1 at serine 1443 via protein kinase C (McNulty et al., 2011). 

Moreover, phosphorylation of IQGAP1 at this site was also detected upon cell-cell 

junction disassembly (Grohmanova et al., 2004).       

 

Full-length IQGAP1 was found to interact with both the N- and C-terminal regions of 

PAK6. The N-terminal region of PAK6 possesses a PBD domain, to which the activated 

form of Cdc42 is known to interact (Lee et al., 2002). IQGAP1 is also known to interact 

with GTP-bound Cdc42 (Hart et al., 1996; Kuroda et al., 1996). It is likely that the 

association of full-length IQGAP1 with the N-terminal region of PAK6 is mediated by 

Cdc42, rather than a direct interaction. Furthermore, PAK6 may be associated with 

IQGAP1 and Cdc42. More recently, it has been shown that PAK6 interacts with the 

atypical Rho GTPase, RhoV (Shepelev and Korobko, 2012), which shares close 

sequence homology with Cdc42 (Aronheim et al., 1998). Thus, it could also be 

speculated that PAK6 may interact with both RhoV and IQGAP1. Furthermore, RhoV 

has also been implicated in cytoskeletal modulation (Aronheim et al., 1998). 

 

The C-terminal kinase domain containing region of PAK6 interacted with the N-

terminal of IQGAP1; this region of IQGAP1 also binds to the kinase domain of the 

EGFR (McNulty et al., 2011). IQGAP1 modulates the activation of the EGFR and 

subsequent signalling through this association (McNulty et al., 2011). Further binding 

studies in this chapter revealed that the C-terminal half of PAK6 bound to a region 

spanning the IQ domain, similar to the IQGAP1 binding reported for the kinases MEK1 

and MEK2 (Roy et al., 2005). In this interaction IQGAP1 acts as a scaffold where its 

interaction with ERK is speculated to induce a conformational change that triggers an 

increased association with MEK, thereby allowing subsequent MEK-mediated ERK 

activation (Roy et al., 2005). It could be speculated that IQGAP1 might play a similar 

scaffolding role where it allows the interaction between PAK6 and a downstream 

substrate/upstream regulator.  

 

This direct interaction of IQGAP1 is similar to that described for identified binding 

partners of other PAK family members. DGCR6L, a protein implicated in cancer 
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metastasis, is known to bind to the C-terminal region of PAK4 and modulate PAK4-

induced cell migration, via LIM kinase 1 (LIMK1), in gastric cancer cells (Li et al., 

2010). In addition, this association increased PAK4-mediated phosphorylation of 

LIMK1 (Li et al., 2010). In contrast, the intracellular protein nischarin modulates cell 

migration by binding to the C-terminal region of PAK1 in its activated conformation 

(Alahari et al., 2004). This in turn inhibits the ability of PAK1 to phosphorylate other 

proteins (Alahari et al., 2004). Thus interactions via the C-terminal of PAKs are 

important in signal transduction modulation.  

 

Once the interaction between PAK6 and IQGAP1 had been examined, the functional 

significance of the association between these two proteins was assessed. Over-expressed 

WT IQGAP1 was found to induce cell elongation and colony escape in serum-starved 

DU145 cells. Consistent with this cell-cell dissociation phenotype of IQGAP1 

expressing cells, cell-cell dissociation assays have shown that in EL cells the majority 

of IQGAP1 expressing cells were dissociated and visible as single cells (Kuroda et al., 

1998). In contrast, control cells did not dissociate and persisted in aggregates (Kuroda et 

al., 1998). Thus, Kuroda et al. demonstrated that expression of IQGAP1 increased the 

ability of epithelial cells to detach from one another, in the absence of growth factor 

stimulation. This is consistent with the colony escape phenotype observed here. 

IQGAP1 regulates actin dynamics and the over-expression of WT IQGAP1 is also 

known to induce actin microspikes and filopodia in MCF7 breast cancer cells (Swart-

Mataraza et al., 2002). Interestingly, IQGAP1-expressing cells appeared to exhibit a 

colony escape phenotype in the study by Swart-Mataraza et al.; however the authors did 

not comment on nor quantify this phenotype. 

 

In this chapter not only did over-expression of IQGAP1 drive cell colony escape, but 

co-expression with PAK6 increased the level of cell-cell dissociation. Thus there would 

appear to be a synergistic relationship between these two proteins. One possibility is 

that IQGAP1 is a PAK6 substrate. Indeed, phosphorylation of specific residues on 

IQGAP1 can modify its function by altering its association with other proteins, as well 

as its conformation or its dimerisation, and in turn affect its interaction with the actin 

cytoskeleton (Grohmanova et al., 2004; Li et al., 2005b). However, no phosphorylation 

of IQGAP1 was detected in the presence of PAK6 using a radioactive in vitro kinase 

assay. In contrast, the presence of over-expressed IQGAP1 increased the levels of GST-
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PAK6 phosphorylation in this in vitro kinase assay. It is unlikely that this increase in 

PAK6 phosphorylation levels is as a result of a second kinase bound to IQGAP1 in the 

immunoprecipitate as incorporation of radioactivity was not detected anywhere else on 

the blot. Thus, it is likely that the increase in phosphorylation of PAK6 observed in the 

presence of IQGAP1 is as a result of PAK6 phosphorylating itself. In addition, the 

presence of IQGAP1 may alter the conformation of the PAK6 kinase domain. 

Interestingly, a recent report has demonstrated the ability of IQGAP1 to regulate the 

activity of Aurora-A kinase (Yin et al., 2012), a serine/threonine kinase that has been 

associated with human malignancy (Wang et al., 2006). Similar to the results obtained 

here, over-expression of IQGAP1 is thought to increase Aurora-A phosphorylation 

levels (Yin et al., 2012).  

 

Whilst IQGAP1 does not possess the ability to phosphorylate proteins, it is known to 

modulate the activation status of other kinases through its ability to function as a 

scaffold protein, for example in the MAPK signalling pathway (Roy et al., 2005). In this 

pathway, IQGAP1 is able to directly interact with ERK2 and modulate its activity in 

MCF7 cells (Roy et al., 2004). In addition, IQGAP1 plays a pivotal role in regulating 

the activation of MEK1, upstream of ERK1 (Roy et al., 2005). The increased 

autophosphorylation detected in the in vitro kinase assay is unlikely to be focussed on 

serine 560 as co-expression of IQGAP1 and PAK6 does not modulate phosphorylation 

levels at this site. This suggests that there are other autophosphorylation sites on PAK6. 

Indeed, the correlation between serine 560 autophosphorylation and activity is not 

clearly defined. PAK6 autophosphorylation levels at serine 560 increased downstream 

of HGF at early time points as described in chapter 4; however, autophosphorylation 

levels at this residue did not increase to a significant level after 4 hours HGF addition, 

when IQGAP1 and E-cadherin interactions with PAK6 are maximal. Either PAK6 

activity is not regulated by phosphorylation at serine 560 or PAK6 activity is not 

elevated at later time points. Furthermore, an increase in PAK6 activity was not 

detected when point mutating the serine 560 residue (figure 4.4). It is also possible that 

transient phosphorylation of PAK6 via HGF is sufficient for downstream signal 

propagation or that initial serine 560 autophosphorylation induces the phosphorylation 

of PAK6 at other sites that are required for an optimal interaction with IQGAP1 and E-

cadherin.  
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Both IQGAP1 and PAK6 were found to be localised at E-cadherin-positive junctions in 

DU145 cells. This junctional localisation of IQGAP1 has been reported in different cell 

types including in MDCK cells (Kuroda et al., 1996) and MCF7 cells (Li et al., 1999; 

Swart-Mataraza et al., 2002), as well as its co-localisation with E-cadherin at sites of 

cell-cell contact (Kuroda et al., 1998; Li et al., 1999). Thus, data presented here would 

suggest that PAK6 and IQGAP1 both mediate the dissolution of cell-cell junctions 

downstream of HGF. Indeed, an increased interaction between PAK6 and IQGAP1 was 

detected following HGF stimulation which correlated in time with cell-cell dissociation 

(figure 5.11C and figure 3.1). This provides further evidence that PAK6 and IQGAP1 

are functioning in an HGF-dependent pathway. This is in contrast to EGF, which did 

not modify the association between ERK2 and IQGAP1 (Roy et al., 2004). Moreover, 

the maximal interaction between PAK6 and E-cadherin was also observed within the 

same time frame (figure 5.12A). Furthermore, PAK6 bound to IQGAP1 and E-cadherin 

downstream of HGF stimulation at this time point (figure 5.12C). 

 

Data presented here argue that IQGAP1 binds to and regulates PAK6 and that PAK6 

and IQGAP1 are involved in HGF-induced cell scattering in DU145 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 
 

5.3.1 Future work 

In this chapter, PAK6 was found to interact with IQGAP1. Cdc42-V12 was also co-

immunoprecipitated with these proteins. However, co-immunoprecipitation does not 

represent direct associations between proteins. An approach that could be implemented 

to directly examine protein-protein interactions includes subcellular fractionation. 

Furthermore, as PAK6 and IQGAP1 both interact with the GTP-bound form of Cdc42 

(Hart et al., 1996; Lee et al., 2002), it would be useful to try and elucidate if this 

interaction is important during the cell-cell dissociation process in DU145 cells.        

   

The presence of IQGAP1 was found to increase PAK6 autophosphorylation levels in 

the in vitro kinase assay that was conducted. However, this assay was performed in 

steady-state conditions; thus it would be useful to perform this experiment in the 

presence of HGF at different time points, particularly following 4 hours HGF 

stimulation, as this was identified as a significant time point during the cell-cell 

dissociation process. Furthermore, the levels of endogenous IQGAP1 and E-cadherin 

bound to GST-PAK6 were elevated 4 hours post-HGF stimulation. Moreover, as 

IQGAP1 is not a kinase, it would interesting to elucidate the mechanism by which 

IQGAP1 induces an increase in PAK6 autophosphorylation.   

 

Whilst PAK6 and IQGAP1 may function together during HGF-induced cell-cell contact 

disassembly, data from this study suggest that IQGAP1 is unlikely to be a PAK6 

substrate. Thus it would be useful to isolate PAK6 substrates that may be involved in 

this process. For example, a potential candidate as a PAK6 substrate is p120 catenin, a 

junctional protein that binds E-cadherin (Daniel and Reynolds, 1995) and is important 

in the maintenance of cell-cell adhesivity (Davis et al., 2003), is known to bind to PAK6 

and is also phosphorylated by both PAK4 and PAK5 (Wong et al., 2010).         
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Chapter 6 

Concluding Remarks 
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Chapter 6 - Concluding Remarks 

In this study it has been demonstrated that DU145 prostate cancer cells scatter in 

response to HGF stimulation and this is supported on a range of substrata. As a 

consequence, this scatter model was then used to investigate the potential role of PAK6 

in prostate cancer cell dissemination. Depletion of PAK6 expression was found to 

inhibit the HGF-induced cell-cell junction dissolution and subsequent cell scattering. In 

contrast, over-expression of PAK6 drove cell-cell dissemination; a process dependent 

on PAK6 kinase activity. Furthermore, PAK6 was localised at E-cadherin-positive 

junctions. Subsequently, PAK6 was found to interact with the junctional protein 

IQGAP1, in an HGF-dependent manner. Thus, PAK6 and IQGAP1 may collaborate 

downstream of HGF to induce cell-cell dissociation in DU145 prostate cancer cells.  

 

The question is how PAK6 and/or IQGAP1 achieve junction disassembly in DU145 

cells. There is already considerable evidence to suggest a key role for IQGAP1 in 

junction disassembly in other cell types. In gastric cancer cells, junctional localisation 

of IQGAP1 has been linked to a reduction in E-cadherin-mediated cell-cell adhesion 

(Takemoto et al., 2001). IQGAP1 also localises at cell-cell junctions in MCF7 breast 

cancer cells (Swart-Mataraza et al., 2002) and the increased junctional localisation of 

this protein correlates with a reduction in E-cadherin localisation at sites of cell-cell 

contact in breast cancer cells (Li et al., 1999). Moreover, IQGAP1 has been shown to 

negatively modulate cell-cell adhesion in MDCK II colony-forming cells downstream 

of HGF (Fukata et al., 2001).  

 

How IQGAP1 drives junction disassembly is not clearly elucidated. Historically, 

IQGAP1 was thought to contribute to a reduction in cell-cell adhesivity through its 

association with β-catenin (Kuroda et al., 1998). It was proposed that this interaction 

with β-catenin induces α-catenin displacement from the E-cadherin-β-catenin complex 

in vitro and in vivo (Kuroda et al., 1998) and that removal of α-catenin weakens these 

adhesions (Kuroda et al., 1998; Ozawa and Kemler, 1998), thereby inducing cell 

scattering (Fukata et al., 2001). However, more recently α-catenin dissociation from β-

catenin has been linked to junction stabilisation (Benjamin and Nelson, 2008; Drees et 

al., 2005). Nevertheless, several studies have shown that α-catenin expression is lost in 
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gastric and breast scirrhous adenocarcinomas (Ochiai et al., 1994) and in human lung 

adenocarcinoma PC9 cells (Watabe et al., 1994); furthermore, these cell types also 

exhibit a scattered phenotype (Ochiai et al., 1994; Watabe et al., 1994).  

 

Data presented here demonstrate that E-cadherin, IQGAP1 and PAK6 can be pulled 

down together. Thus what needs to be addressed is how PAK6 would fit into an E-

cadherin-IQGAP1 cell-cell junction dissociation model. There is no evidence to suggest 

that IQGAP1 is a PAK6 substrate; however, it could be speculated that β-catenin may 

be a potential substrate for PAK6. PAK1 (Zhu et al., 2011) and PAK4 (Li et al., 2011) 

both phosphorylate β-catenin at serine 675. Moreover, the hyper-phosphorylation of β-

catenin on serine/threonine residues has been shown to induce the loss of cell-cell 

junction sites in human epidermal cells (Serres et al., 1997) and Jun N-terminal kinase 

(JNK) phosphorylates β-catenin at serine 37 and threonine 41, which induces the loss of 

cell-cell contacts (Lee et al., 2009). In contrast, inhibition of JNK kinase activity leads 

to a reduction in the phosphorylation of β-catenin and promotes cell-cell adhesion (Lee 

et al., 2009). 

 

Furthermore, the junctional protein p120 catenin also binds E-cadherin (Jou et al., 1995) 

and is important for the stabilisation of cell-cell junctions (Ireton et al., 2002). Indeed it 

has been demonstrated that siRNA-induced depletion of p120 catenin lead to the rapid 

turnover and degradation of E-cadherin as well as the subsequent loss of cell-cell 

junctions (Davis et al., 2003). Interestingly, group II PAKs were recently reported to 

associate with this catenin family member (Wong et al., 2010). Wong et al. 

demonstrated that p120 catenin interacts with PAK5 with the highest affinity, followed 

by PAK6, whereas p120 catenin bound PAK4 with the lowest affinity (Wong et al., 

2010). However whilst an interaction between PAK6 and p120 catenin was detected, 

the authors only tested the phosphorylating potential of PAK4 and PAK5 (Wong et al., 

2010). Activated PAK4 phosphorylated p120 catenin in vitro and in vivo, as did wild-

type PAK5 (Wong et al., 2010). Thus it cannot be rules out that PAK6 may also 

phosphorylate p120 catenin and the interaction detected between PAK6 and p120 

catenin suggests a functional relationship between these two proteins. In addition to 

serine/threonine phosphorylation of p120 catenin (Wong et al., 2010; Xia et al., 2003) it 

has also been suggested that the N-terminal region of p120 catenin, encompassing the 

phosphorylation domain, confers an inhibitory effect on intercellular adhesivity (Aono 
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et al., 1999). Taken together, it could be speculated that PAK6 phosphorylates p120 

catenin which in turn triggers the degradation of E-cadherin and subsequent cell-cell 

dissociation.        

 

Given the strong link between PAKs, serine/threonine phosphorylation of β-catenin and 

cell-cell dissociation, it might be imagined that during HGF-induced cell scattering 

PAK6 functions as follows (figure 6.1). Stimulation through HGF of cells with strong 

E-cadherin-positive junctions induces serine 560 autophosphorylation of PAK6 (other 

sites on PAK6 may also be phosphorylated as a result of HGF addition). At 4 hours 

post-HGF stimulation, there is an optimal interaction between E-cadherin, PAK6 and 

IQGAP1 which correlates with cell-cell dissociation. During the interaction between 

PAK6 and IQGAP1, PAK6 autophosphorylation levels are increased, which may 

potentially allow for increased substrate phosphorylation. Thus, the interaction between 

PAK6 and IQGAP1 may induce an increase in exogenous PAK6 activity. Given that 

IQGAP1 and E-cadherin both interact with β-catenin (Kuroda et al., 1998), PAK6 may 

also potentially phosphorylate β-catenin. These events may in turn trigger α-catenin 

dissociation from the E-cadherin-β-catenin complex, thereby inducing cell-cell 

dissociation. This model does speculate that PAK6 phosphorylates β-catenin and that 

the phosphorylation of β-catenin leads to junctional breakdown. Moreover, it favours a 

model where IQGAP1-mediated dissociation of α-catenin from β-catenin promotes cell-

cell adhesion disassembly. However, it is important to clarify that the outcome of α-

catenin dissociation from the cadherin complex has yet to be fully established.  

 

PAK6 interacts with the GTP-bound form of Cdc42 (Lee et al., 2002) as does IQGAP1 

(Hart et al., 1996). However, the interaction of active Cdc42 does not enhance the 

activity of PAK6 (Lee et al., 2002), which is required for cell colony escape. GTP-

bound Cdc42 could potentially mediate the localisation of PAK6 at cell-cell junctions; 

indeed it has been reported that active Cdc42 induces the re-localisation of PAK4 (Abo 

et al., 1998) and X-PAK5 (Cau et al., 2001). Thus Cdc42 may be involved in the 

IQGAP1-PAK6-modulated cell-cell dissociation process. However, there are conflicting 

views as to how Cdc42 contributes to cell-cell adhesion strength modulation, which is 

clearly a tightly regulated and complex process (Keely et al., 1997; Kodama et al., 

1999).       
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Figure 6.1 A proposed model for the role of PAK6, acting with IQGAP1, in HGF-

induced cell-cell dissociation in DU145 prostate cancer cells. In the absence of HGF, 

there is a minimal interaction between E-cadherin-PAK6-IQGAP1 at cell-cell junctions. 

α-catenin is bound to β-catenin, which in turn is associated with E-cadherin, leading to 

strong intercellular adhesions. Upon HGF stimulation, PAK6 autophosphorylation 

levels are increased (other PAK6 sites may also be phosphorylated). A maximal 

interaction occurs between E-cadherin-PAK6-IQGAP1 (this interaction may also 

include β-catenin) 4 hours post-HGF stimulation. IQGAP1 increases PAK6 

autophosphorylation activity and PAK6 substrate phosphorylation may also be elevated. 

It has been speculated here that PAK6 phosphorylates β-catenin. These events may 

trigger α-catenin uncouplingthereby leading to the weakening of cell-cell adhesions and 

subsequent cell-cell dissociation. α-catenin is known to dissociate from β-catenin; 

however, the consequence of this dissociation is still unclear. Thus this model 

speculates that α-catenin dissociation leads to cell junction disassembly. 
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In future studies, it would be interesting to assess whether there is an interaction 

between PAK6 and β-catenin, as well as whether PAK6 phosphorylates β-catenin. In 

addition, the association between IQGAP1 and the junctional components α-catenin, β-

catenin and E-cadherin in PAK6 knockdown cells and the interaction between IQGAP1 

and kinase active and kinase dead PAK6 mutants could also be investigated. Moreover, 

Cdc42 and PAK6-IQGAP1 interactions downstream of HGF could be examined. This 

would help elucidate the intricacies of the mechanism involving IQGAP1 and PAK6 in 

cell-cell dissociation downstream of HGF in DU145 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 
 

References 

 

 Aberle, H., Butz, S., Stappert, J., Weissig, H., Kemler, R. and Hoschuetzky, 

H. (1994). Assembly of the cadherin catenin complex in-vitro with recombinant 

proteins Journal of Cell Science 107, 3655-3663. 

 Abo, A., Qu, J., Cammarano, M. S., Dan, C. T., Fritsch, A., Baud, V., 

Belisle, B. and Minden, A. (1998). PAK4, a novel effector for Cdc42Hs, is implicated 

in the reorganization of the actin cytoskeleton and in the formation of filopodia. Embo 

Journal 17, 6527-6540. 

 Adams, C. L., Chen, Y. T., Smith, S. J. and Nelson, W. J. (1998). 

Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-

resolution tracking of E-cadherin-green fluorescent protein. Journal of Cell Biology 

142, 1105-1119. 

 Ahlstrom, J. D. and Erickson, C. A. (2009). The neural crest epithelial-

mesenchymal transition in 4D: a 'tail' of multiple non-obligatory cellular mechanisms. 

Development 136, 1801-1812. 

 Ahmed, T., Shea, K., Masters, J. R. W., Jones, G. E. and Wells, C. M. 
(2008). A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of 

HGF. Cellular Signalling 20, 1320-1328. 

 Alahari, S. K., Reddig, P. J. and Juliano, R. L. (2004). The integrin-binding 

protein Nischarin regulates cell migration by inhibiting PAK. Embo Journal 23, 2777-

2788. 

 Alblas, J., Ulfman, L., Hordijk, P. and Koenderman, L. (2001). Activation of 

RhoA and ROCK are essential for detachment of migrating Leukocytes. Molecular 

Biology of the Cell 12, 2137-2145. 

 Alexander, S., Koehl, G., Hirschberg, M., Geissler, E. and Friedl, P. (2008). 

Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. 

Histochemistry and Cell Biology 130, 1147-1154. 

 Allen, W. E., Zicha, D., Ridley, A. J. and Jones, G. E. (1998). A role for 

Cdc42 in macrophage chemotaxis. Journal of Cell Biology 141, 1147-1157. 

 Alper, O., Bergmann-Leitner, E. S., Bennett, T. A., Hacker, N. F., 

Stromberg, K. and Stetler-Stevenson, W. G. (2001). Epidermal growth factor 

receptor signaling and the invasive phenotype of ovarian carcinoma cells. Journal of the 

National Cancer Institute 93, 1375-1384. 

 Altmann, K.-H. and Gertsch, J. (2007). Anticancer drugs from nature-natural 

products as a unique source of new microtubule-stabilizing agents. Natural Product 

Reports 24, 327-357. 

 Angelucci, A., Gravina, G. L., Rucci, N., Millimaggi, D., Festuccia, C., 

Muzi, P., Teti, A., Vicentini, C. and Bologna, M. (2006). Suppression of EGF-R 

signaling reduces the incidence of prostate cancer metastasis in nude mice. Endocrine-

Related Cancer 13, 197-210. 

 Aoki, H., Yokoyama, T., Fujiwara, K., Tari, A. M., Sawaya, R., Suki, D., 

Hess, K. R., Aldape, K. D., Kondo, S., Kumar, R. et al. (2007). Phosphorylated Pak1 

level in the cytoplasm correlates with shorter survival time in patients with 

glioblastoma. Clinical Cancer Research 13, 6603-6609. 

 Aono, S., Nakagawa, S., Reynolds, A. B. and Takeichi, M. (1999). p120ctn 

Acts as an Inhibitory Regulator of Cadherin Function in Colon Carcinoma Cells. The 

Journal of Cell Biology 145, 551-562. 

 Arias-Romero, L. E. and Chernoff, J. (2008). A tale of two Paks. Biology of 

the Cell 100, 97-108. 



162 
 

 Aronheim, A., Broder, Y. C., Cohen, A., Fritsch, A., Belisle, B. and Abo, A. 
(1998). Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is 

implicated in reorganizing the actin cytoskeleton. Current Biology 8, 1125-1128. 

 Artym, V. and Matsumoto, K. (2010). Imaging Cells in Three-Dimensional 

Collagen Matrix. Curr Protoc Cell Biol. 

 Aspenström, P., Ruusala, A. and Pacholsky, D. (2007). Taking Rho GTPases 

to the next level: The cellular functions of atypical Rho GTPases. Experimental Cell 

Research 313, 3673-3679. 

 Bagrodia, S., Taylor, S. J., Creasy, C. L., Chernoff, J. and Cerione, R. A. 
(1995). Identification of a mouse p21 (Cdc42/Rac) activated kinase Journal of 

Biological Chemistry 270, 22731-22737. 

 Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. and Mercurio, A. 

M. (2005). Altered Localization of p120 Catenin During Epithelial to Mesenchymal 

Transition of Colon Carcinoma Is Prognostic for Aggressive Disease. Cancer Research 

65, 10938-10945. 

 Benjamin, J. M. and Nelson, W. J. (2008). Bench to bedside and back again: 

Molecular mechanisms of alpha-catenin function and roles in tumorigenesis. Seminars 

in Cancer Biology 18, 53-64. 

 Bergauer, T., Krueger, U., Lader, E., Pilk, S., Wolter, I. and Bielke, W. 
(2009). Analysis of Putative miRNA Binding Sites and mRNA 3 ' Ends as Targets for 

siRNA-Mediated Gene Knockdown. Oligonucleotides 19, 41-52. 

 Bernards, A. and Settleman, J. (2004). GAP control: regulating the regulators 

of small GTPases. Trends in Cell Biology 14, 377-385. 

 Birchmeier, W. and Behrens, J. (1994). Cadherin expression in carcinomas: 

role in the formation of cell junctions and the prevention of invasiveness. Biochimica et 

Biophysica Acta (BBA) - Reviews on Cancer 1198, 11-26. 

 Bishop, A. L. and Hall, A. (2000). Rho GTPases and their effector proteins. 

Biochemical Journal 348, 241-255. 

 Bokoch, G. M., Reilly, A. M., Daniels, R. H., King, C. C., Olivera, A., 

Spiegel, S. and Knaus, U. G. (1998). A GTPase-independent mechanism of p21-

activated kinase activation - Regulation by sphingosine and other biologically active 

lipids. Journal of Biological Chemistry 273, 8137-8144. 

 Bokoch, G. M., Wang, Y., Bohl, B. P., Sells, M. A., Quilliam, L. A. and 

Knaus, U. G. (1996). Interaction of the Nck adapter protein with p21-activated kinase 

(PAK1). Journal of Biological Chemistry 271, 25746-25749. 

 Boller, K., Vestweber, D. and Kemler, R. (1985). Cell-adhesion molecule 

uvomorulin is localized in the intermediate junctions of junctions of adult intestinal 

epithelial cells Journal of Cell Biology 100, 327-332. 

 Bonkhoff, H., Stein, U. and Remberger, K. (1993). Differential expression of 

alpha-6 and alpha-2 very late antigen integrins in the normal, hyperplastic, and 

neoplastic prostate - simultaneous demonstration of cell-surface receptors and their 

extracellular ligands Human Pathology 24, 243-248. 

 Bostner, J., Waltersson, M. A., Fornander, T., Skoog, L., Nordenskjӧld, B. 

and Stål, O. (2007). Amplification of CCND1 and PAK1 as predictors of recurrence 

and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26, 6997-7005. 

 Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M. L., Kmiecik, T. E., 

Vandewoude, G. F. and Aaronson, S. A. (1991). Identification of the hepatocyte 

growth factor receptor as the c-met proto-oncogene product Science 251, 802-804. 

 Bourguignon, L. Y. W., Gilad, E., Rothman, K. and Peyrollier, K. (2005). 

Hyaluronan-CD44 Interaction with IQGAP1 Promotes Cdc42 and ERK Signaling, 



163 
 

Leading to Actin Binding, Elk-1/Estrogen Receptor Transcriptional Activation, and 

Ovarian Cancer Progression. Journal of Biological Chemistry 280, 11961-11972. 

 Braga, V. M. M., Betson, M., Li, X. D. and Lamarche-Vane, N. (2000). 

Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell 

adhesion in normal human keratinocytes. Molecular Biology of the Cell 11, 3703-3721. 

 Braga, V. M. M., Machesky, L. M., Hall, A. and Hotchin, N. A. (1997). The 

Small GTPases Rho and Rac Are Required for the Establishment of Cadherin-

dependent Cell-Cell Contacts. The Journal of Cell Biology 137, 1421-1431. 

 Briggs, M. W. and Sacks, D. B. (2003). IQGAP proteins are integral 

components of cytoskeletal regulation. Embo Reports 4, 571-574. 

 Bright, M. D., Garner, A. P. and Ridley, A. J. (2009). PAK1 and PAK2 have 

different roles in HGF-induced morphological responses. Cellular Signalling 21, 1738-

1747. 

 Brill, S., Li, S. H., Lyman, C. W., Church, D. M., Wasmuth, J. J., 

Weissbach, L., Bernards, A. and Snijders, A. J. (1996). The Ras GTPase-activating-

protein-related human protein IQGAP2 harbors a potential actin binding domain and 

interacts with calmodulin and Rho family GTPases. Molecular and Cellular Biology 16, 

4869-4878. 

 Brinkmann, V., Foroutan, H., Sachs, M., Weidner, K. M. and Birchmeier, 

W. (1995). Hepatocyte growth-factor/scatter factor induces a variety of tissue-specific 

morphogenic programs in epithelial-cells Journal of Cell Biology 131, 1573-1586. 

 Brown, M. D. and Sacks, D. B. (2006). IQGAP1 in cellular signaling: bridging 

the GAP. Trends in Cell Biology 16, 242-249. 

 Bubendorf, L., Schӧpfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., 

Gasser, T. C. and Mihatsch, M. J. (2000). Metastatic patterns of prostate cancer: An 

autopsy study of 1,589 patients. Human Pathology 31, 578-583. 

 Burbelo, P. D., Drechsel, D. and Hall, A. (1995). A conserved binding motif 

defines numerous candidate target proteins for both Cdc42 and Rac GTPases Journal of 

Biological Chemistry 270, 29071-29074. 

 Byers, S. W., Sommers, C. L., Hoxter, B., Mercurio, A. M. and Tozeren, A. 
(1995). Role of E-Cadherin in the response of tumor-cell aggregates to lymphatic, 

venous and arterial flow - measurement of cell-cell adhesion strength Journal of Cell 

Science 108, 2053-2064. 

 Callow, M. G., Clairvoyant, F., Zhu, S., Schryver, B., Whyte, D. B., 

Bischoff, J. R., Jallal, B. and Smeal, T. (2002). Requirement for PAK4 in the 

anchorage-independent growth of human cancer cell lines. Journal of Biological 

Chemistry 277, 550-558. 

 Callow, M. G., Zozulya, S., Gishizky, M. L., Jallal, B. and Smeal, T. (2005). 

PAK4 mediates morphological changes through the regulation of GEF-H1. Journal of 

Cell Science 118, 1861-1872. 

 Cameron, M. D., Schmidt, E. E., Kerkvliet, N., Nadkarni, K. V., Morris, V. 

L., Groom, A. C., Chambers, A. F. and MacDonald, I. C. (2000). Temporal 

progression of metastasis in lung: Cell survival, dormancy, and location dependence of 

metastatic inefficiency. Cancer Research 60, 2541-2546. 

 Cantley, L. G., Barros, E. J., Gandhi, M., Rauchman, M. and Nigam, S. K. 
(1994). Regulation of mitogenesis, motogenesis, and tubulogenesis by hepatocyte 

growth factor in renal collecting duct cells. American Journal of Physiology - Renal 

Physiology 267, F271-F280. 

 Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P. and Zucker, 

S. (2008). Membrane Type 1 Matrix Metalloproteinase Induces Epithelial-to-



164 
 

Mesenchymal Transition in Prostate Cancer. Journal of Biological Chemistry 283, 

6232-6240. 

 Carter, J. H., Douglass, L. E., Deddens, J. A., Colligan, B. M., Bhatt, T. R., 

Pemberton, J. O., Konicek, S., Hom, J., Marshall, M. and Graff, J. R. (2004). Pak-1 

expression increases with progression of colorectal carcinomas to metastasis. Clinical 

Cancer Research 10, 3448-3456. 

 Cau, J., Faure, S., Comps, M., Delsert, C. and Morin, N. (2001). A novel 

p21-activated kinase binds the actin and microtubule networks and induces microtubule 

stabilization. The Journal of Cell Biology 155, 1029-1042. 

 Cavey, M., Rauzi, M., Lenne, P.-F. and Lecuit, T. (2008). A two-tiered 

mechanism for stabilization and immobilization of E-cadherin. Nature 453, 751-756. 

 Ceteci, F., Ceteci, S., Karreman, C., Kramer, B. W., Asan, E., Gӧttz, R. and 

Rapp, U. R. (2007). Disruption of Tumor Cell Adhesion Promotes Angiogenic Switch 

and Progression to Micrometastasis in RAF-Driven Murine Lung Cancer. Cancer Cell 

12, 145-159. 

 Chaffer, C. L. and Weinberg, R. A. (2011). A Perspective on Cancer Cell 

Metastasis. Science 331, 1559-1564. 

 Chamberlain, C. E., Kraynov, V. S., Hahn, K. M., W.E. Balch, C. J. D. and 

Alan, H. (2000). Imaging spatiotemporal dynamics of Rac activation in vivo with 

FLAIR. In Methods in Enzymology, vol. Volume 325, pp. 389-400: Academic Press. 

 Chen, F., Zhu, H. H., Zhou, L. F., Wu, S. S., Wang, J. and Chen, Z. (2010). 

IQGAP1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation 

by Akt activation. Experimental and Molecular Medicine 42, 477-483. 

 Ching, Y. P., Leong, V. Y. L., Lee, M. F., Xu, H. T., Jin, D. Y. and Ng, I. O. 

L. (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma 

and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and 

paxillin phosphorylation. Cancer Research 67, 3601-3608. 

 Ching, Y. P., Leong, V. Y. L., Wong, C. M. and Kung, H. F. (2003). 

Identification of an autoinhibitory domain of p21-activated protein kinase 5. Journal of 

Biological Chemistry 278, 33621-33624. 

 Chong, C., Tan, L., Lim, L. and Manser, E. (2001). The mechanism of PAK 

activation - Autophosphorylation events in both regulatory and kinase domains control 

activity. Journal of Biological Chemistry 276, 17347-17353. 

 ChrzanowskaWodnicka, M. and Burridge, K. (1996). Rho-stimulated 

contractility drives the formation of stress fibers and focal adhesions. Journal of Cell 

Biology 133, 1403-1415. 

 Clark, E. A., Golub, T. R., Lander, E. S. and Hynes, R. O. (2000). Genomic 

analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535. 

 Clark, P. (1994). Modulation of scatter factor/hepatocyte growth-factor activity 

by cell-substratum adhesion Journal of Cell Science 107, 1265-1275. 

 Colombel, M., Eaton, C. L., Hamdy, F., Ricci, E., van der Pluijm, G., 

Cecchini, M., Mege-Lechevallier, F., Clezardin, P. and Thalmann, G. (2011). 

Increased expression of putative cancer stem cell markers in primary prostate cancer is 

associated with progression of bone metastases. The Prostate, n/a-n/a. 

 Cotteret, S., Jaffer, Z. M., Beeser, A. and Chernoff, J. (2003). p21-activated 

kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating 

BAD. Molecular and Cellular Biology 23, 5526-5539. 

 Crepaldi, T., Pollack, A. L., Prat, M., Zborek, A., Mostov, K. and Comoglio, 

P. M. (1994). Targeting of the SF/HGF receptor to the basolateral domain of polarized 

epithelial cells Journal of Cell Biology 125, 313-320. 



165 
 

 D'Souza-Schorey, C. (2005). Disassembling adherens junctions: breaking up is 

hard to do. Trends in Cell Biology 15, 19-26. 

 Dan, C., Kelly, A., Bernard, O. and Minden, A. (2001). Cytoskeletal changes 

regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and 

cofilin. Journal of Biological Chemistry 276, 32115-32121. 

 Dan, C., Nath, N., Liberto, M. and Minden, A. (2002). PAK5, a new brain-

specific kinase, promotes neurite outgrowth in N1E-115 cells. Molecular and Cellular 

Biology 22, 567-577. 

 Daniel, J. M. and Reynolds, A. B. (1995). The tyrosine kinase substrate 

p120cas binds directly to E-Cadherin but not to the adenomatous polyposis-coli protein 

or alpha-catenin Molecular and Cellular Biology 15, 4819-4824. 

 Davidson, B., Shih, I. M. and Wang, T. L. (2008). Different clinical roles for 

p21-activated kinase-1 in primary and recurrent ovarian carcinoma. Human Pathology 

39, 1630-1636. 

 Davies, G., Watkins, G., Mason, M. D. and Jiang, W. G. (2004). Targeting 

the HGF/SF receptor c-met using a hammerhead ribozyme transgene reduces in vitro 

invasion and migration in prostate cancer cells. Prostate 60, 317-324. 

 Davis, M. A., Ireton, R. C. and Reynolds, A. B. (2003). A core function for 

p120-catenin in cadherin turnover. Journal of Cell Biology 163, 525-534. 

 de Beco, S., Gueudry, C., Amblard, F. and Coscoy, S. (2009). Endocytosis is 

required for E-cadherin redistribution at mature adherens junctions. Proceedings of the 

National Academy of Sciences 106, 7010-7015. 

 de Leeuw, W. J. F., Berx, G., Vos, C. B. J., Peterse, J. L., Van de Vijver, M. 

J., Litvinov, S., Van Roy, F., Cornelisse, C. J. and Cleton-Jansen, A.-m. (1997). 

Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and 

lobular carcinoma in situ. The Journal of Pathology 183, 404-411. 

 de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A. and Waterman-

Storer, C. M. (2005). Integrin-dependent actomyosin contraction regulates epithelial 

cell scattering. Journal of Cell Biology 171, 153-164. 

 DerMardirossian, C. and Bokoch, G. M. (2005). GDIs: central regulatory 

molecules in Rho GTPase activation. Trends in Cell Biology 15, 356-363. 

 Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. and San 

Antonio, J. D. (2002). Mapping the Ligand-binding Sites and Disease-associated 

Mutations on the Most Abundant Protein in the Human, Type I Collagen. Journal of 

Biological Chemistry 277, 4223-4231. 

 Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. and Snyderman, R. 
(1989). Rac, a novel ras-related family of proteins that are botulinum toxin substrates 

SUBSTRATES. Journal of Biological Chemistry 264, 16378-16382. 

 DiMilla, P., Stone, J., Quinn, J., Albelda, S. and Lauffenburger, D. (1993). 

Maximal migration of human smooth muscle cells on fibronectin and type IV collagen 

occurs at an intermediate attachment strength. The Journal of Cell Biology 122, 729-

737. 

 Dollé, L., El Yazidi-Belkoura, I., Adriaenssens, E., Nurcombe, V. and 

Hondermarck, H. (2003). Nerve growth factor overexpression and autocrine loop in 

breast cancer cells. Oncogene 22, 5592-5601. 

 Dong, P.-X., Jia, N., Xu, Z.-J., Liu, Y.-T., Li, D.-J. and Feng, Y.-J. (2008). 

Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-

8910PM cells in vitro. Journal of Experimental & Clinical Cancer Research 27, 77. 

 Dong, P. X., Nabeshima, K., Nishimura, N., Kawakami, T., Hachisuga, T., 

Kawarabayashi, T. and Iwasaki, H. (2006). Overexpression and diffuse expression 



166 
 

pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian 

carcinomas. Cancer Letters 243, 120-127. 

 Donjacour, A. A. and Cunha, G. R. (1993). Assessment of prostatic protein 

secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium 

from normal or androgen-insensitive mice. Endocrinology 132, 2342-50. 

 Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. and Weis, W. I. (2005). α-

Catenin Is a Molecular Switch that Binds E-Cadherin-β-Catenin and Regulates Actin-

Filament Assembly. Cell 123, 903-915. 

 Duffy, M. J., McGowan, P. M. and Gallagher, W. M. (2008). Cancer invasion 

and metastasis: changing views. Journal of Pathology 214, 283-293. 

 Dunn, G. A., Dobbie, I. M., Monypenny, J., Holt, M. R. and Zicha, D. 
(2002). Fluorescence localization after photobleaching (FLAP): a new method for 

studying protein dynamics in living cells. Journal of Microscopy-Oxford 205, 109-112. 

 Ehrlich, J. S., Hansen, M. D. H. and Nelson, W. J. (2002). Spatio-Temporal 

Regulation of Rac1 Localization and Lamellipodia Dynamics during Epithelial Cell-

Cell Adhesion. Developmental Cell 3, 259-270. 

 Eisenhoffer, G. T., Loftus, P. D., Yoshigi, M., Otsuna, H., Chien, C. B., 

Morcos, P. A. and Rosenblatt, J. (2012). Crowding induces live cell extrusion to 

maintain homeostatic cell numbers in epithelia. Nature 484, 546-U183. 

 Ellenbroek, S. I. J. and Collard, J. G. (2007). Rho GTPases: functions and 

association with cancer. Clinical & Experimental Metastasis 24, 657-672. 

 Ellis, W. J., Pfitzenmaier, J., Colli, J., Arfman, E., Lange, P. H. and 

Vessella, R. L. (2003). Detection and isolation of prostate cancer cells from peripheral 

blood and bone marrow. Urology 61, 277-281. 

 Epp, J. A. and Chant, J. (1997). An IQGAP-related protein controls actin-ring 

formation and cytokinesis in yeast. Current Biology 7, 921-929. 

 Erickson, J. W., Cerione, R. A. and Hart, M. J. (1997). Identification of an 

actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. Journal of 

Biological Chemistry 272, 24443-24447. 

 Eswaran, J., Soundararajan, M., Kumar, R. and Knapp, S. (2008). 

UnPAKing the class differences among p21-activated kinases. Trends in Biochemical 

Sciences 33, 394-403. 

 Farooqui, R. and Fenteany, G. (2005). Multiple rows of cells behind an 

epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet 

movement. Journal of Cell Science 118, 51-63. 

 Farquhar, M. G. and Palade, G. E. (1963). Junctional complexes in various 

epithelia. Journal of Cell Biology 17, 375-412. 

 Faure, S., Cau, J., Barbara, P. D., Bigou, S., Ge, Q. Y., Delsert, C. and 

Morin, N. (2005). Xenopus p21-activated kinase 5 regulates blastomeres adhesive 

properties during convergent extension movements. Developmental Biology 277, 472-

492. 

 Fidler, I. J. (2003). Timeline - The pathogenesis of cancer metastasis: the 'seed 

and soil' hypothesis revisited. Nature Reviews Cancer 3, 453-458. 

 Fiegen, D., Blumenstein, L., Stege, P., Vetter, I. R. and Ahmadian, M. R. 
(2002). Crystal structure of Rnd3/RhoE: functional implications. Febs Letters 525, 100-

104. 

 Folkman, J. (1971). Tumor Angiogenesis: Therapeutic Implications. New 

England Journal of Medicine 285, 1182-1186. 

 Folkman, J., Becker, F. F. and Long, D. M. (1963). Growth and metastasis of 

tumor in organ culture Cancer 16, 453-467. 



167 
 

 Foster, R., Hu, K. Q., Lu, Y., Nolan, K. M., Thissen, J. and Settleman, J. 
(1996). Identification of a novel human rho protein with unusual properties: GTPase 

deficiency and in vivo farnesylation. Molecular and Cellular Biology 16, 2689-2699. 

 Fram, S. T., Wells, C. M. and Jones, G. E. (2011). HGF-Induced DU145 Cell 

Scatter Assay. Cell Migration, Methods in Molecular Biology 769, 31-40. 

 Friedl, P. and Gilmour, D. (2009). Collective cell migration in morphogenesis, 

regeneration and cancer. Nature Reviews Molecular Cell Biology 10, 445-457. 

 Friedl, P., Noble, P. B., Walton, P. A., Laird, D. W., Chauvin, P. J., Tabah, 

R. J., Black, M. and Zӓnker, K. S. (1995). Migration of coordinated cell clusters in 

mesenchymal and epithelial cancer explants in vitro Cancer Research 55, 4557-4560. 

 Friedl, P. and Wolf, K. (2003). Tumour-cell invasion and migration: Diversity 

and escape mechanisms. Nature Reviews Cancer 3, 362-374. 

 Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., 

Lӧchner, D. and Birchmeier, W. (1991). E-Cadherin-mediated cell-cell adhesion 

prevents invasiveness of human carcinoma cells Journal of Cell Biology 113, 173-185. 

 Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E. M., 

Behrens, J., Sommer, T. and Birchmeier, W. (2002). Hakai, a c-Cbl-like protein, 

ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4, 222-

231. 

 Fujiuchi, Y., Nagakawa, O., Murakami, K., Fuse, H. and Saiki, I. (2003). 

Effect of hepatocyte growth factor on invasion of prostate cancer cell lines. Oncology 

Reports 10, 1001-1006. 

 Fukata, M., Kuroda, S., Nakagawa, M., Kawajiri, A., Itoh, N., Shoji, I., 

Matsuura, Y., Yonehara, S., Fujisawa, H., Kikuchi, A. et al. (1999). Cdc42 and Rac1 

regulate the interaction of IQGAP1 with beta-catenin. Journal of Biological Chemistry 

274, 26044-26050. 

 Fukata, M., Nakagawa, M., Itoh, N., Kawajiri, A., Yamaga, M., Kuroda, S. 

and Kaibuchi, K. (2001). Involvement of IQGAP1, an effector of Rac1 and Cdc42 

GTPases, in cell-cell dissociation during cell scattering. Molecular and Cellular Biology 

21, 2165-2183. 

 Gabbert, H., Wagner, R., Moll, R. and Gerharz, C. D. (1985). Tumor 

dedifferentiation - an important step in tumor invasion. Clinical & Experimental 

Metastasis 3, 257-279. 

 Gallin, W. J., Edelman, G. M. and Cunningham, B. A. (1983). 

Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. 

Proceedings of the National Academy of Sciences 80, 1038-1042. 

 Gan, Y., Shi, C., Inge, L., Hibner, M., Balducci, J. and Huang, Y. (2010). 

Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling 

and motility in prostate cancer cells. Oncogene 29, 4947-4958. 

 Garavini, H., Riento, K., Phelan, J. P., McAlister, M. S. B., Ridley, A. J. and 

Keep, N. H. (2002). Crystal structure of the core domain of RhoE/Rnd3: A 

constitutively activated small G protein. Biochemistry 41, 6303-6310. 

 Garćia, A. J. and Boettiger, D. (1999). Integrin-fibronectin interactions at the 

cell-material interface: initial integrin binding and signaling. Biomaterials 20, 2427-

2433. 

 Gardiner, E. M., Pestonjamasp, K. N., Bohl, B. P., Chamberlain, C., Hahn, 

K. M. and Bokoch, G. M. (2002). Spatial and temporal analysis of Rac activation 

during live neutrophil chemotaxis. Current Biology 12, 2029-2034. 



168 
 

 Geldof, A. A., DeKleijn, M. A. T., Rao, B. R. and Newling, D. W. W. (1997). 

Nerve growth factor stimulates in vitro invasive capacity of DU145 human prostatic 

cancer cells. Journal of Cancer Research and Clinical Oncology 123, 107-112. 

 Ghosh, S., Spagnoli, G. C., Martin, I., Ploegert, S., Demougin, P., Heberer, 

M. and Reschner, A. (2005). Three-dimensional culture of melanoma cells profoundly 

affects gene expression profile: A high density oligonucleotide array study. Journal of 

Cellular Physiology 204, 522-531. 

 Gmyrek, G. A., Walburg, M., Webb, C. P., Yu, H. M., You, X. K., Vaughan, 

E. D., Woude, G. F. V. and Knudsen, B. S. (2001). Normal and malignant prostate 

epithelial cells differ in their response to hepatocyte growth factor/scatter factor. 

American Journal of Pathology 159, 579-590. 

 Gnesutta, N., Qu, J. and Minden, A. (2001). The Serine/Threonine Kinase 

PAK4 Prevents Caspase Activation and Protects Cells from Apoptosis. Journal of 

Biological Chemistry 276, 14414-14419. 

 Gong, W., An, Z., Wang, Y., Pan, X., Fang, W., Jiang, B. and Zhang, H. 
(2009). P21-activated kinase 5 is overexpressed during colorectal cancer progression 

and regulates colorectal carcinoma cell adhesion and migration. International Journal of 

Cancer 125, 548-555. 

 Gorlov, I. P., Byun, J., Gorlova, O. Y., Aparicio, A. M., Efstathiou, E. and 

Logothetis, C. J. (2009). Candidate pathways and genes for prostate cancer: a meta-

analysis of gene expression data. Bmc Medical Genomics 2. 

 Greenburg, G. and Hay, E. D. (1982). Epithelia suspended in collagen gels can 

lose polarity and express characteristics of migrating mesenchymal cells Journal of Cell 

Biology 95, 333-339. 

 Greene, H. S. N. (1941). Heterologous transplantation of mammalian tumors I. 

The transfer of rabbit tumors to alien species. Journal of Experimental Medicine 73, 

461-U3. 

 Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, 

G., Davies, H., Teague, J., Butler, A., Edkins, S. et al. (2007). Patterns of somatic 

mutation in human cancer genomes. Nature 446, 153-158. 

 Grohmanova, K., Schlaepfer, D., Hess, D., Gutierrez, P., Beck, M. and 

Kroschewski, R. (2004). Phosphorylation of IQGAP1 modulates its binding to Cdc42, 

revealing a new type of Rho-GTPase regulator. Journal of Biological Chemistry 279, 

48495-48504. 

 Gumbiner, B., Stevenson, B. and Grimaldi, A. (1988). The role of the cell 

adhesion molecule uvomorulin in the formation and maintenance of the epithelial 

junctional complex. The Journal of Cell Biology 107, 1575-1587. 

 Hage, B., Meinel, K., Baum, I., Giehl, K. and Menke, A. (2009). Rac1 

activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in 

pancreatic carcinoma cells. Cell Communication and Signaling 7. 

 Hall, A. (1998). Rho GTPases and the Actin Cytoskeleton. Science 279, 509-

514. 

 Hamanoue, M., Kawaida, K., Takao, S., Shimazu, H., Noji, S., Matsumoto, 

K. and Nakamura, T. (1992). Rapid and marked induction of hepatocyte growth factor 

during liver regeneration after ischemic or crush injury. Hepatology 16, 1485-1492. 

 Han, G., Buchanan, G., Ittmann, M., Harris, J. M., Yu, X., DeMayo, F. J., 

Tilley, W. and Greenberg, N. M. (2005). Mutation of the androgen receptor causes 

oncogenic transformation of the prostate. Proceedings of the National Academy of 

Sciences of the United States of America 102, 1151-1156. 



169 
 

 Härmä, V., Virtanen, J., Mäkelä, R., Happonen, A., Mpindi, J. P., 

Knuuttila, M., Kohonen, P., Lötjönen, J., Kallioniemi, O. and Nees, M. (2010). A 

Comprehensive Panel of Three-Dimensional Models for Studies of Prostate Cancer 

Growth, Invasion and Drug Responses. Plos One 5. 

 Hart, M. J., Callow, M. G., Souza, B. and Polakis, P. (1996). IQGAP1, a 

calmodulin-binding protein with a rasGAP-related domain, is a potential effector for 

cdc42Hs. Embo Journal 15, 2997-3005. 

 He, B., You, L., Uematsu, K., Zang, K. L., Xu, Z. D., Lee, A. Y., Costello, J. 

F., McCormick, F. and Jablons, D. M. (2003). SOCS-3 is frequently silenced by 

hypermethylation and suppresses cell growth in human lung cancer. Proceedings of the 

National Academy of Sciences of the United States of America 100, 14133-14138. 

 He, H., Shulkes, A. and Baldwin, G. S. (2008). PAK1 interacts with beta-

catenin and is required for the regulation of the beta-catenin signalling pathway by 

gastrins. Biochimica Et Biophysica Acta-Molecular Cell Research 1783, 1943-1954. 

 Heasman, S. J., Carlin, L. M., Cox, S., Ng, T. and Ridley, A. J. (2010). 

Coordinated RhoA signaling at the leading edge and uropod is required for T cell 

transendothelial migration. The Journal of Cell Biology 190, 553-563. 

 Heasman, S. J. and Ridley, A. J. (2008). Mammalian Rho GTPases: new 

insights into their functions from in vivo studies. Nature Reviews Molecular Cell 

Biology 9, 690-701. 

 Hegerfeldt, Y., Tusch, M., Brӧcker, E. B. and Friedl, P. (2002). Collective 

cell movement in primary melanoma explants: Plasticity of cell-cell interaction, ss 1-

integrin function, and migration strategies. Cancer Research 62, 2125-2130. 

 Herrenknecht, K., Ozawa, M., Eckerskorn, C., Lottspeich, F., Lenter, M. 

and Kemler, R. (1991). The uvomorulin-anchorage protein alpha catenin is a vinculin 

homologue. Proceedings of the National Academy of Sciences 88, 9156-9160. 

 Herrera, R. (1998). Modulation of hepatocyte growth factor-induced scattering 

of HT29 colon carcinoma cells - Involvement of the MAPK pathway. Journal of Cell 

Science 111, 1039-1049. 

 Hershkoviz, R., Alon, R., Gilat, D. and Lider, O. (1992). Activated T 

lymphocytes and macrophages secrete fibronectin which strongly supports cell 

adhesion. Cellular Immunology 141, 352-361. 

 Ho, Y. D., Joyal, J. L., Li, Z. G. and Sacks, D. B. (1999). IQGAP1 integrates 

Ca2+/calmodulin and Cdc42 signaling. Journal of Biological Chemistry 274, 464-470. 

 Hogan, C., Dupré-Crochet, S., Norman, M., Kajita, M., Zimmermann, C., 

Pelling, A. E., Piddini, E., Baena-López, L. A., Vincent, J. P., Itoh, Y. et al. (2009). 

Characterization of the interface between normal and transformed epithelial cells. 

Nature Cell Biology 11, 460-U234. 

 Holm, C., Rayala, S., Jirstrӧm, K., Stål, O., Kumar, R. and Landberg, G. 
(2006). Association between Pak1 expression and subcellular localization and 

tamoxifen resistance in breast cancer patients. Journal of the National Cancer Institute 

98, 671-680. 

 Hooper, S., Marshall, J. F. and Sahai, E. (2006). Tumor cell migration in 

three dimensions. In Methods in Enzymology, Vol 406, Regulators and Effectors of 

Small Gtpases: Rho Family, vol. 406 (eds W. E. Balch C. J. Der and A. Hall), pp. 625-

643. 

 Hoshino, T., Shimizu, K., Honda, T., Kawakatsu, T., Fukuyama, T., 

Nakamura, T., Matsuda, M. and Takai, Y. (2004). A novel role of nectins in 

inhibition of the e-cadherin-induced activation of Rac and formation of cell-cell 

adherens junctions. Molecular Biology of the Cell 15, 1077-1088. 



170 
 

 Hosotani, R., Kawaguchi, M., Masui, T., Koshiba, T., Ida, J., Fujimoto, K., 

Wada, M., Doi, R. and Imamura, M. (2002). Expression of Integrin [alpha]V[beta]3 

in Pancreatic Carcinoma: Relation to MMP-2 Activation and Lymph Node Metastasis. 

Pancreas 25, e30-e35. 

 Hu, B., Shi, B. H., Jarzynka, M. J., Yiin, J. J., D'Souza-Schorey, C. and 

Cheng, S. Y. (2009). ADP-Ribosylation Factor 6 Regulates Glioma Cell Invasion 

through the IQ-Domain GTPase-Activating Protien 1-Rac1-Mediated Pathway. Cancer 

Research 69, 794-801. 

 Huang, Y. T., Lai, C. Y., Lou, S. L., Yeh, J. M. and Chan, W. H. (2009). 

Activation of JNK and PAK2 Is Essential for Citrinin-Induced Apoptosis in a Human 

Osteoblast Cell Line. Environmental Toxicology 24, 343-356. 

 Hudson, D. L. (2004). Epithelial stem cells in human prostate growth and 

disease. Prostate Cancer Prostatic Dis 7, 188-194. 

 Humphrey, P. A., Zhu, X. P., Zarnegar, R., Swanson, P. E., Ratliff, T. L., 

Vollmer, R. T. and Day, M. L. (1995). Hepatocyte growth factor and its receptor c-

MET in prostatic carcinoma American Journal of Pathology 147, 386-396. 

 Huttenlocher, A., Ginsberg, M. H. and Horwitz, A. F. (1996). Modulation of 

cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. 

Journal of Cell Biology 134, 1551-1562. 

 Huttenlocher, A. and Horwitz, A. R. (2011). Integrins in Cell Migration. Cold 

Spring Harbor Perspectives in Biology 3. 

 Huynh, N., Liu, K. H., Baldwin, G. S. and He, H. (2010). P21-activated 

kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and 

AKT-dependent pathways. Biochimica Et Biophysica Acta-Molecular Cell Research 

1803, 1106-1113. 

 Ireton, R. C., Davis, M. A., van Hengel, J., Mariner, D. J., Barnes, K., 

Thoreson, M. A., Anastasiadis, P. Z., Matrisian, L., Bundy, L. M., Sealy, L. et al. 
(2002). A novel role for p120 catenin in E-cadherin function. The Journal of Cell 

Biology 159, 465-476. 

 Ishii, T., Sato, M., Sudo, K., Suzuki, M., Nakai, H., Hishida, T., Niwa, T., 

Umezu, K. and Yuasa, S. (1995). Hepatocyte Growth Factor Stimulates Liver 

Regeneration and Elevates Blood Protein Level in Normal and Partially Hepatectomized 

Rats. Journal of Biochemistry 117, 1105-1112. 

 Ito, M., Nishiyama, H., Kawanishi, H., Matsui, S., Guilford, P., Reeve, A. 

and Ogawa, O. (2007). P21-activated kinase 1: A new molecular marker for 

intravesical recurrence after transurethral resection of bladder cancer. Journal of 

Urology 178, 1073-1079. 

 Itoh, M., Nelson, C. M., Myers, C. A. and Bissell, M. J. (2007). Rap1 

integrates tissue polarity, lumen formation, and tumorigenic potential in human breast 

epithelial cells. Cancer Research 67, 4759-4766. 

 Ivascu, A. and Kubbies, M. (2006). Rapid generation of single-tumor spheroids 

for high-throughput cell function and toxicity analysis. Journal of Biomolecular 

Screening 11, 922-932. 

 Iwanicki, M. P., Davidowitz, R. A., Ng, M. R., Besser, A., Muranen, T., 

Merritt, M., Danuser, G., Ince, T. and Brugge, J. S. (2011). Ovarian Cancer 

Spheroids Use Myosin-Generated Force to Clear the Mesothelium. Cancer Discovery 1, 

144-157. 

 Jadeski, L., Mataraza, J. M., Jeong, H. W., Li, Z. G. and Sacks, D. B. 
(2008). IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast 

epithelial cells. Journal of Biological Chemistry 283, 1008-1017. 



171 
 

 Jaffer, Z. M. and Chernoff, J. (2002). p21-activated kinases: three more join 

the Pak. International Journal of Biochemistry & Cell Biology 34, 713-717. 

 Jeffers, M., Rong, S. and Vande Woude, G. F. (1996). Enhanced 

tumorigenicity and invasion-metastasis by hepatocyte growth factor scatter factor-met 

signalling in human cells concomitant with induction of the urokinase proteolysis 

network. Molecular and Cellular Biology 16, 1115-1125. 

 Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M. J. 
(2008). Cancer Statistics, 2008. CA: A Cancer Journal for Clinicians 58, 71-96. 

 Johnson, M., Sharma, M. and Henderson, B. R. (2009). IQGAP1 regulation 

and roles in cancer. Cellular Signalling 21, 1471-1478. 

 Jou, T. S., Stewart, D. B., Stappert, J., Nelson, W. J. and Marrs, J. A. 
(1995). Genetic and biochemical dissection of protein linkages in the cadherin-catenin 

complex Proceedings of the National Academy of Sciences of the United States of 

America 92, 5067-5071. 

 Kamei, T., Matozaki, T., Sakisaka, T., Kodama, A., Yokoyama, S., Peng, Y. 

F., Nakano, K., Takaishi, K. and Takai, Y. (1999). Coendocytosis of cadherin and c-

Met coupled to disruption of cell-cell adhesion in MDCK cells - regulation by Rho, Rac 

and Rab small G proteins. Oncogene 18, 6776-6784. 

 Katayama, K. I., Melendez, J., Baumann, J. M., Leslie, J. R., Chauhan, B. 

K., Nemkul, N., Lang, R. A., Kuan, C. Y., Zheng, Y. and Yoshida, Y. (2011). Loss 

of RhoA in neural progenitor cells causes the disruption of adherens junctions and 

hyperproliferation. Proceedings of the National Academy of Sciences of the United 

States of America 108, 7607-7612. 

 Katoh, K., Kano, Y., Amano, M., Onishi, H., Kaibuchi, K. and Fujiwara, K. 
(2001). Rho-kinase-mediated contraction of isolated stress fibers. Journal of Cell 

Biology 153, 569-583. 

 Kaur, R., Liu, X., Gjoerup, O., Zhang, A. H., Yuan, X., Balk, S. P., 

Schneider, M. C. and Lu, M. L. (2005). Activation of p21-activated kinase 6 by MAP 

kinase kinase 6 and p38 MAP kinase. Journal of Biological Chemistry 280, 3323-3330. 

 Kaur, R., Yuan, X., Lu, M. L. and Balk, S. P. (2008). Increased PAK6 

expression in prostate cancer and identification of PAK6 associated proteins. Prostate 

68, 1510-1516. 

 Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J. and Parise, L. V. 
(1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness 

through PI(3)K. Nature 390, 632-636. 

 Kemler, R. and Ozawa, M. (1989). Uvomorulin-catenin complex - cytoplasmic 

anchorage of a Ca 2+ dependent cell adhesion molecule. Bioessays 11, 88-91. 

 Kermorgant, S., Aparicio, T., Dessirier, V., Lewin, M. J. M. and Lehy, T. 
(2001). Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced 

motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. 

Carcinogenesis 22, 1035-1042. 

 Kikkawa, Y., Sanzen, N., Fujiwara, H., Sonnenberg, A. and Sekiguchi, K. 
(2000). Integrin binding specificity of laminin-10/11 : laminin-10/11 are recognized by 

alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. Journal of Cell Science 113, 

869-876. 

 Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. and Schwartz, M. A. 
(1999). A role for p21-activated kinase in endothelial cell migration. Journal of Cell 

Biology 147, 831-843. 

 Knowles, L. M., Stabile, L. P., Egloff, A. M., Rothstein, M. E., Thomas, S. 

M., Gubish, C. T., Lerner, E. C., Seethala, R. R., Suzuki, S., Quesnelle, K. M. et al. 



172 
 

(2009). HGF and c-Met Participate in Paracrine Tumorigenic Pathways in Head and 

Neck Squamous Cell Cancer. Clinical Cancer Research 15, 3740-3750. 

 Knudsen, K. A., Soler, A. P., Johnson, K. R. and Wheelock, M. J. (1995). 

Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via 

alpha-catenin. Journal of Cell Biology 130, 67-77. 

 Kodama, A., Takaishi, K., Nakano, K., Nishioka, H. and Takai, Y. (1999). 

Involvement of Cdc42 small G protein in cell-cell adhesion, migration and morphology 

of MDCK cells. Oncogene 18, 3996-4006. 

 Kovacs, E. M., Ali, R. G., McCormack, A. J. and Yap, A. S. (2002a). E-

cadherin Homophilic Ligation Directly Signals through Rac and Phosphatidylinositol 3-

Kinase to Regulate Adhesive Contacts. Journal of Biological Chemistry 277, 6708-

6718. 

 Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D. and Yap, A. S. 
(2002b). Cadherin-Directed Actin Assembly: E-Cadherin Physically Associates with the 

Arp2/3 Complex to Direct Actin Assembly in Nascent Adhesive Contacts. Current 

Biology 12, 379-382. 

 Kozma, R., Ahmed, S., Best, A. and Lim, L. (1995). The Ras-related protein 

Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and 

filopodia in swiss 3T3 fibroblasts Molecular and Cellular Biology 15, 1942-1952. 

 Krawczyk, W. S. (1971). Pattern of epidermal cell migration during wound 

healing Journal of Cell Biology 49, 247-263. 

 Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., 

Slabaugh, S. and Hahn, K. M. (2000). Localized Rac Activation Dynamics Visualized 

in Living Cells. Science 290, 333-337. 

 Kümper, S. and Ridley, A. J. (2010). p120ctn and P-Cadherin but Not E-

Cadherin Regulate Cell Motility and Invasion of DU145 Prostate Cancer Cells. Plos 

One 5, e11801. 

 Kuroda, S., Fukata, M., Kobayashi, K., Nakafuku, M., Nomura, N., 

Iwamatsu, A. and Kaibuchi, K. (1996). Identification of IQGAP as a putative target 

for the small GTPases, Cdc42 and Rac1. Journal of Biological Chemistry 271, 23363-

23367. 

 Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, 

T., Izawa, I., Nagase, T., Nomura, N., Tani, H. et al. (1998). Role of IQGAP1, a 

target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-

cell adhesion. Science 281, 832-835. 

 Kurokawa, K. and Matsuda, M. (2005). Localized RhoA activation as a 

requirement for the induction of membrane ruffling. Molecular Biology of the Cell 16, 

4294-4303. 

 Lai, A. Z., Abella, J. V. and Park, M. (2009). Crosstalk in Met receptor 

oncogenesis. Trends in Cell Biology 19, 542-551. 

 Lai, F. P., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, 

H. G., Stradal, T. E., Dunn, G. A., Small, J. V. and Rottner, K. (2008). Arp2/3 

complex interactions and actin network turnover in lamellipodia. Embo Journal 27, 

982-992. 

 Lam, S., Verhagen, N. A. M., Strutz, F., Van Der Pijl, J. W., Daha, M. R. 

and Van Kooten, C. (2003). Glucose-induced fibronectin and collagen type III 

expression in renal fibroblasts can occur independent of TGF-beta 1. Kidney 

International 63, 878-888. 

 Lauffenburger, D. A. and Horwitz, A. F. (1996). Cell migration: A physically 

integrated molecular process. Cell 84, 359-369. 



173 
 

 Lee, M. H., Koria, P., Qu, J. and Andreadis, S. T. (2009). JNK 

phosphorylates beta-catenin and regulates adherens junctions. Faseb Journal 23, 3874-

3883. 

 Lee, S. R., Ramos, S. M., Ko, A., Masiello, D., Swanson, K. D., Lu, M. L. 

and Balk, S. P. (2002). AR and ER interaction with a p21-activated kinase (PAK6). 

Molecular Endocrinology 16, 85-99. 

 Lei, M., Lu, W. G., Meng, W. Y., Parrini, M. C., Eck, M. J., Mayer, B. J. 

and Harrison, S. C. (2000). Structure of PAK1 in an autoinhibited conformation 

reveals a multistage activation switch. Cell 102, 387-397. 

 Leung, C. T. and Brugge, J. S. (2012). Outgrowth of single oncogene-

expressing cells from suppressive epithelial environments. Nature 482, 410-413. 

 Levayer, R. and Lecuit, T. (2008). Breaking down EMT. Nat Cell Biol 10, 

757-759. 

 Li, D., Liu, X., Richie, J. and Lu, M. (2005a). P21 activated protein kinase 6 

(PAK6) as novel target of prostate cancer ionizing radiation resistance. Journal of the 

American College of Surgeons 201, S94-S94. 

 Li, L., Luo, Q., Zheng, M., Pan, C., Wu, G., Lu, Y., Feng, B., Chen, X. and 

Liu, B. (2012). P21-activated protein kinase 1 is overexpressed in gastric cancer and 

induces cancer metastasis. Oncology Reports. 

 Li, X. D., Ke, Q., Li, Y. S., Liu, F. N., Zhu, G. and Li, F. (2010). DGCR6L, a 

novel PAK4 interaction protein, regulates PAK4-mediated migration of human gastric 

cancer cell via LIMK1. International Journal of Biochemistry & Cell Biology 42, 70-79. 

 Li, X. Y., Bu, X., Lu, B. F., Avraham, H., Flavell, R. A. and Lim, B. (2002). 

The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and 

modulates activities of other Rho GTPases by an inhibitory function. Molecular and 

Cellular Biology 22, 1158-1171. 

 Li, Y., Shao, Y., Tong, Y., Shen, T., Zhang, J., Li, Y., Gu, H. and Li, F. 
(2011). Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular 

translocation and signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell 

Research 1823, 465-475. 

 Li, Z. G., Kim, S. H., Higgins, J. M. G., Brenner, M. B. and Sacks, D. B. 
(1999). IQGAP1 and calmodulin modulate E-cadherin function. Journal of Biological 

Chemistry 274, 37885-37892. 

 Li, Z. G., McNulty, D. E., Marler, K. J. M., Lim, L., Hall, C., Annan, R. S. 

and Sacks, D. B. (2005b). IQGAP1 promotes neurite outgrowth in a phosphorylation-

dependent manner. Journal of Biological Chemistry 280, 13871-13878. 

 Lippincott, J. and Li, R. (1998). Sequential assembly of myosin II, an IQGAP-

like protein, and filamentous actin to a ring structure involved in budding yeast 

cytokinesis. Journal of Cell Biology 140, 355-366. 

 Liu, H., Radisky, D. C., Wang, F. and Bissell, M. J. (2004). Polarity and 

proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in 

breast epithelial tumor cells. Journal of Cell Biology 164, 603-612. 

 Lo, C. M., Wang, H. B., Dembo, M. and Wang, Y. L. (2000). Cell movement 

is guided by the rigidity of the substrate. Biophysical Journal 79, 144-152. 

 Long, R. M., Morrissey, C., Fitzpatrick, J. M. and Watson, R. W. G. (2005). 

Prostate epithelial cell differentiation and its relevance to the understanding of prostate 

cancer therapies. Clinical Science 108, 1-11. 

 Lozano, E., Frasa, M. A. M., Smolarczyk, K., Knaus, U. G. and Braga, V. 

M. M. (2008). PAK is required for the disruption of E-cadherin adhesion by the small 

GTPase Rac. Journal of Cell Science 121, 933-938. 



174 
 

 Lu, W. G., Katz, S., Gupta, R. and Mayer, B. J. (1997). Activation of Pak by 

membrane localization mediated by an SH3 domain from the adaptor protein Nck. 

Current Biology 7, 85-94. 

 Lu, Z. M., Jiang, G. Q., Blume-Jensen, P. and Hunter, T. (2001). Epidermal 

growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation 

and downregulation of focal adhesion kinase. Molecular and Cellular Biology 21, 4016-

4031. 

 Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., 

Chambers, A. F. and Groom, A. C. (1998). Multistep nature of metastatic inefficiency 

- Dormancy of solitary cells after successful extravasation and limited survival of early 

micrometastases. American Journal of Pathology 153, 865-873. 

 Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., 

Abell, A., Johnson, G. L., Hahn, K. M. and Danuser, G. (2009). Coordination of Rho 

GTPase activities during cell protrusion. Nature 461, 99-103. 

 Madaule, P. and Axel, R. (1985). A novel Ras-related gene family Cell 41, 31-

40. 

 Maeno, Y., Moroi, S., Nagashima, H., Noda, T., Shiozaki, H., Monden, M., 

Tsukita, S. and Nagafuchi, A. (1999). α-Catenin-Deficient F9 Cells Differentiate into 

Signet Ring Cells. The American Journal of Pathology 154, 1323-1328. 

 Manser, E., Chong, C., Zhao, Z. S., Leung, T., Michael, G., Hall, C. and 

Lim, L. (1995). Molecular coloning of a new member of the p21-Cdc42/Rac-activated 

kinase (PAK) family Journal of Biological Chemistry 270, 25070-25078. 

 Manser, E., Huang, H. Y., Loo, T. H., Chen, X. Q., Dong, J. M., Leung, T. 

and Lim, L. (1997). Expression of constitutively active alpha-PAK reveals effects of 

the kinase on actin and focal complexes. Molecular and Cellular Biology 17, 1129-

1143. 

 Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. and Lim, L. (1994). A 

brain serine threonine protein kinase activated by Cdc42 and Rac1 Nature 367, 40-46. 

 Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, 

I., Leung, T. and Lim, L. (1998). PAK kinases are directly coupled to the PIX family 

of nucleotide exchange factors. Molecular Cell 1, 183-192. 

 Martin, G. A., Bollag, G., McCormick, F. and Abo, A. (1995). A novel serine 

kinase activated by rac1/CDC42Hs-dependent autophosphorylation related to PAK65 

and STE20  Embo Journal 14, 4385-4385. 

 Massie, C. E., Lynch, A., Ramos-Montoya, A., Boren, J., Stark, R., Fazli, L., 

Warren, A., Scott, H., Madhu, B., Sharma, N. et al. (2011). The androgen receptor 

fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30, 

2719-2733. 

 Mataraza, J. M., Briggs, M. W., Li, Z., Frank, R. and Sacks, D. B. (2003a). 

Identification and characterization of the Cdc42-binding site of IQGAP1. Biochemical 

and Biophysical Research Communications 305, 315-321. 

 Mataraza, J. M., Briggs, M. W., Li, Z. G., Entwistle, A., Ridley, A. J. and 

Sacks, D. B. (2003b). IQGAP1 promotes cell motility and invasion. Journal of 

Biological Chemistry 278, 41237-41245. 

 McAteer, J. A., Evan, A. P. and Gardner, K. D. (1987). Morphogenetic clonal 

growth of kidney epithelial cell line MDCK. Anatomical Record 217, 229-239. 

 McCabe, N. P., De, S., Vasanji, A., Brainard, J. and Byzova, T. V. (2007). 

Prostate cancer specific integrin alpha v beta 3 modulates bone metastatic growth and 

tissue remodeling. Oncogene 26, 6238-6243. 



175 
 

 McInnes, I. B., AlMughales, J., Field, M., Leung, B. P., Huang, F. P., Dixon, 

R., Sturrock, R. D., Wilkinson, P. C. and Liew, F. Y. (1996). The role of interleukin-

15 in T-cell migration and activation in rheumatoid arthritis. Nature Medicine 2, 175-

182. 

 McNeal, J. E. (1969). Origin and development of carcinoma in prostate Cancer 

23, 24-34. 

 McNeal, J. E. (1988). Normal histology of the prostate American Journal of 

Surgical Pathology 12, 619-633. 

 McNulty, D. E., Li, Z. G., White, C. D., Sacks, D. B. and Annan, R. S. 
(2011). MAPK Scaffold IQGAP1 Binds the EGF Receptor and Modulates Its 

Activation. Journal of Biological Chemistry 286, 15010-15021. 

 Menzel, N., Melzer, J., Waschke, J., Lenz, C., Wecklein, H., Lochnit, G., 

Drenckhahn, D. and Raabe, T. (2008). The Drosophila p21-activated kinase Mbt 

modulates DE-cadherin-mediated cell adhesion by phosphorylation of Armadillo. 

Biochemical Journal 416, 231-241. 

 Menzel, N., Schneeberger, D. and Raabe, T. (2007). The Drosophila p21 

activated kinase Mbt regulates the actin cytoskeleton and adherens junctions to control 

photoreceptor cell morphogenesis. Mechanisms of Development 124, 78-90. 

 Miura, H., Nishimura, K., Tsujimura, A., Matsumiya, K., Matsumoto, K., 

Nakamura, T. and Okuyama, A. (2001). Effects of hepatocyte growth factor on E-

cadherin-mediated cell-cell adhesion in DU145 prostate cancer cells. Urology 58, 1064-

1069. 

 Mizuno, M., Fujisawa, R. and Kuboki, Y. (2000). Type I collagen-induced 

osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin 

interaction. Journal of Cellular Physiology 184, 207-213. 

 Mommaerts, W. (1952). The molecular transformation of actin .2. the 

polymerisation process. Journal of Biological Chemistry 198, 459-467. 

 Mullins, R. D., Heuser, J. A. and Pollard, T. D. (1998). The interaction of 

Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and 

formation of branching networks of filaments. Proceedings of the National Academy of 

Sciences of the United States of America 95, 6181-6186. 

 Munemitsu, S., Innis, M. A., Clark, R., McCormick, F., Ullrich, A. and 

Polakis, P. (1990). Molecular cloning and expression of a G25K cDNA, the human 

homolog of the yeast cell cycle gene CDC42. Molecular and Cellular Biology 10, 5977-

5982. 

 Nabeshima, K., Inoue, T., Shimao, Y., Okada, Y., Itoh, Y., Seiki, M. and 

Koono, M. (2000). Front-cell-specific expression of membrane-type 1 matrix 

metalloproteinase and gelatinase a during cohort migration of colon carcinoma cells 

induced by hepatocyte growth factor/scatter factor. Cancer Research 60, 3364-3369. 

 Nabeshima, K., Shimao, Y., Inoue, T. and Koono, M. (2002). 

Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: 

its overexpression in carcinomas and association with invasion fronts. Cancer Letters 

176, 101-109. 

 Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., 

Sugimura, A., Tashiro, K. and Shimizu, S. (1989). Molecular cloning and expression 

of human hepatocyte growth factor Nature 342, 440-443. 

 Nakano, T., Tani, M., Ishibashi, Y., Kimura, K., Park, Y. B., Imaizumi, N., 

Tsuda, H., Aoyagi, K., Sasaki, H., Ohwada, S. et al. (2003). Biological properties and 

gene expression associated with metastatic potential of human osteosarcoma. Clinical & 

Experimental Metastasis 20, 665-674. 



176 
 

 Nakaya, Y., Sukowati, E. W., Wu, Y. and Sheng, G. J. (2008). RhoA and 

microtubule dynamics control cell-basement membrane interaction in EMT during 

gastrulation. Nature Cell Biology 10, 765-775. 

 Nekrasova, T., Jobes, M. L., Ting, J. H., Wagner, G. C. and Minden, A. 
(2008). Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in 

learning and locomotion. Developmental Biology 322, 95-108. 

 Niranjan, B., Buluwela, L., Yant, J., Perusinghe, N., Atherton, A., 

Phippard, D., Dale, T., Gusterson, B. and Kamalati, T. (1995). HGF/SF: a potent 

cytokine for mammary growth, morphogenesis and development. Development 121, 

2897-2908. 

 Nishimura, K., Kitamura, M., Miura, H., Nonomura, N., Takada, S., 

Takahara, S., Matsumoto, K., Nakamura, T. and Matsumiya, K. (1999). Prostate 

stromal cell-derived hepatocyte growth factor induces invasion of prostate cancer cell 

line DU145 through tumor-stromal interaction. Prostate 41, 145-153. 

 Nobes, C. D. and Hall, A. (1995). Rho,Rac and Cdc42 GTPases regulate the 

assembly of multimolecular focal complexes associated with actin stress fibers, 

lamellipodia, and filopodia Cell 81, 53-62. 

 Nobes, C. D. and Hall, A. (1999). Rho GTPases control polarity, protrusion, 

and adhesion during cell movement. Journal of Cell Biology 144, 1235-1244. 

 Nobes, C. D., Lauritzen, I., Mattei, M. G., Paris, S., Hall, A. and Chardin, P. 
(1998). A new member of the Rho family, Rnd1, promotes disassembly of actin 

filament structures and loss of cell adhesion. Journal of Cell Biology 141, 187-197. 

 Noritake, J., Fukata, M., Sato, K., Nakagawa, M., Watanabe, T., Izumi, N., 

Wang, S. J., Fukata, Y. and Kaibuchi, K. (2004). Positive role of IQGAP1, an 

effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Molecular 

Biology of the Cell 15, 1065-1076. 

 Noritake, J., Watanabe, T., Sato, K., Wang, S. and Kaibuchi, K. (2005). 

IQGAP1: a key regulator of adhesion and migration. Journal of Cell Science 118, 2085-

2092. 

 Nose, A., Nagafuchi, A. and Takeichi, M. (1988). Expressed recombinant 

cadherins mediate cell sorting in model systems Cell 54, 993-1001. 

 O'Sullivan, G. C., Tangney, M., Casey, G., Ambrose, M., Houston, A. and 

Barry, O. P. (2007). Modulation of p21-activated kinase 1 alters the behavior of renal 

cell carcinoma. International Journal of Cancer 121, 1930-1940. 

 Ochiai, A., Akimoto, S., Shimoyama, Y., Nagafuchi, A., Tsukita, S. and 

Hirohashi, S. (1994). Frequent loss of alpha-catenin expression in scirrhous carcinomas 

with scattered cell growth. Japanese Journal of Cancer Research 85, 266-273. 

 Ohkubo, T. and Ozawa, M. (1999). p120(ctn) binds to the membrane-proximal 

region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion 

activity. Journal of Biological Chemistry 274, 21409-21415. 

 Ortonne, J.-P., Löning, T., Schmitt, D. and Thivolet, J. (1981). 

Immunomorphological and ultrastructural aspects of keratinocyte migration in 

epidermal wound healing. Virchows Archiv 392, 217-230. 

 Ozawa, M. and Kemler, R. (1998). Altered Cell Adhesion Activity by 

Pervanadate Due to the Dissociation of α-Catenin from the E-Cadherin-Catenin 

Complex. Journal of Biological Chemistry 273, 6166-6170. 

 Palacios, F. and D'Souza-Schorey, C. (2003). Modulation of Rac1 and ARF6 

Activation during Epithelial Cell Scattering. Journal of Biological Chemistry 278, 

17395-17400. 



177 
 

 Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. and 

Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed 

through cell-substratum adhesiveness. Nature 385, 537-540. 

 Pandey, A., Dan, I., Kristiansen, T. Z., Watanabe, N. M., Voldby, J., 

Kajikawa, E., Khosravi-Far, R., Blagoev, B. and Mann, M. (2002). Cloning and 

characterization of PAK5, a novel member of mammalian p21-activated kinase-II 

subfamily that is predominantly expressed in brain. Oncogene 21, 3939-3948. 

 Pantel, K., Aignherr, C., Kӧllermann, J., Caprano, J., Riethmüller, G. and 

Kӧllermann, M. W. (1995). Immunocytochemical detection of isolated tumour cells in 

bone marrow of patients with untreated stage C prostatic cancer. European Journal of 

Cancer 31A, 1627-1632. 

 Pantel, K., Enzmann, T., Kӧllermann, J., Caprano, J., Riethmüller, C. and 

Kӧllermann, M. W. (1997). Immunocytochemical monitoring of micrometastatic 

disease: Reduction of prostate cancer cells in bone marrow by androgen deprivation. 

International Journal of Cancer 71, 521-525. 

 Parr, C., Davies, G., Nakamura, T., Matsumoto, K., Mason, M. D. and 

Jiang, W. G. (2001). The HGF/SF-induced phosphorylation of paxillin, matrix 

adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF 

variant. Biochemical and Biophysical Research Communications 285, 1330-1337. 

 Parri, M. and Chiarugi, P. (2010). Rac and Rho GTPases in cancer cell 

motility control. Cell Communication and Signaling 8. 

 Parrini, M. C., Lei, M., Harrison, S. C. and Mayer, B. J. (2002). Pak1 kinase 

homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and 

Rac1. Molecular Cell 9, 73-83. 

 Patel, S., Takagi, K., Suzuki, J., Imaizumi, A., Kimura, T., Mason, R. M., 

Kamimura, T. and Zhang, Z. (2005). RhoGTPase activation is a key step in renal 

epithelial mesenchymal transdifferentiation. Journal of the American Society of 

Nephrology 16, 1977-1984. 

 Patel, V., Hood, B. L., Molinolo, A. A., Lee, N. H., Conrads, T. P., Braisted, 

J. C., Krizman, D. B., Veenstra, T. D. and Gutkind, J. S. (2008). Proteomic analysis 

of laser-captured paraffin-embedded tissues: A molecular portrait of head and neck 

cancer progression. Clinical Cancer Research 14, 1002-1014. 

 Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K. and Hall, A. 
(1990). Microinjection of recombinant p21rho induces rapid changes in cell 

morphology Journal of Cell Biology 111, 1001-1007. 

 Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R. and Tang, D. G. 
(2007). Hierarchical organization of prostate cancer cells in xenograft tumors: The 

CD44(+)alpha 2 beta 1(+) cell population is enriched in tumor-initiating cells. Cancer 

Research 67, 6796-6805. 

 Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. and Christofori, G. (1998). A 

causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 

190-193. 

 Pertz, O., Hodgson, L., Klemke, R. L. and Hahn, K. M. (2006). 

Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069-1072. 

 Peruzzi, B. and Bottaro, D. P. (2006). Targeting the c-Met signaling pathway 

in cancer. Clinical Cancer Research 12, 3657-3660. 

 Peters, J. H., Sporn, L. A., Ginsberg, M. H. and Wagner, D. D. (1990). 

Human endothelial cells synthesize, process, and secrete fibronectin molecules bearing 

an alternatively spliced type III homology (ED1) Blood 75, 1801-1808. 



178 
 

 Pilot, F., Philippe, J.-M., Lemmers, C. and Lecuit, T. (2006). Spatial control 

of actin organization at adherens junctions by a synaptotagmin-like protein. Nature 442, 

580-584. 

 Pollard, T. D. and Borisy, G. G. (2003). Cellular motility driven by assembly 

and disassembly of actin filaments. Cell 113, 549-549. 

 Potempa, S. and Ridley, A. J. (1998). Activation of both MAP kinase and 

phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor scatter 

factor-induced adherens junction disassembly. Molecular Biology of the Cell 9, 2185-

2200. 

 Prescott, M. F., McBride, C. K. and Court, M. (1989). Development of 

intimal lesions after leukocyte migration into the vascular wall American Journal of 

Pathology 135, 835-846. 

 Puto, L. A., Pestonjamasp, K., King, C. C. and Bokoch, G. M. (2003). p21-

activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth 

factor signaling. Journal of Biological Chemistry 278, 9388-9393. 

 Qiu, R. G., Abo, A., McCormick, F. and Symons, M. (1997). Cdc42 regulates 

anchorage-independent growth and is necessary for Ras transformation. Molecular and 

Cellular Biology 17, 3449-3458. 

 Qu, J., Cammarano, M. S., Shi, Q., Ha, K. C., De Lanerolle, P. and Minden, 

A. (2001). Activated PAK4 regulates cell adhesion and anchorage-independent growth. 

Molecular and Cellular Biology 21, 3523-3533. 

 Rabinovitz, I., Nagle, R. B. and Cress, A. E. (1995). Integrin alpha 6 

expression in human prostate carcinoma cells is associated with a migratory and 

invasive phenotype in vitro and in vivo Clinical & Experimental Metastasis 13, 481-

491. 

 Raftopoulou, M. and Hall, A. (2004). Cell migration: Rho GTPases lead the 

way. Developmental Biology 265, 23-32. 

 Raghavan, S., Shen, C. J., Desai, R. A., Sniadecki, N. J., Nelson, C. M. and 

Chen, C. S. (2010). Decoupling diffusional from dimensional control of signaling in 3D 

culture reveals a role for myosin in tubulogenesis. Journal of Cell Science 123, 2877-

2883. 

 Rayala, S. K., Talukder, A. H., Balasenthil, S., Tharakan, R., Barnes, C. J., 

Wang, R. A., Aldaz, M., Khan, S. and Kumar, R. (2006). P21-activated kinase 1 

regulation of estrogen receptor-alpha activation involves serine 305 activation linked 

with serine 118 phosphorylation. Cancer Research 66, 1694-1701. 

 Ren, J.-G., Li, Z., Crimmins, D. L. and Sacks, D. B. (2005). Self-association 

of IQGAP1. Journal of Biological Chemistry 280, 34548-34557. 

 Ren, J. G., Li, Z. G. and Sacks, D. B. (2007). IQGAP1 modulates activation of 

B-Raf. Proceedings of the National Academy of Sciences of the United States of 

America 104, 10465-10469. 

 Ren, Y., Li, R., Zheng, Y. and Busch, H. (1998). Cloning and characterization 

of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and 

Rho GTPases. Journal of Biological Chemistry 273, 34954-34960. 

 Reynolds, A. B., Daniel, J. M., Mo, Y. Y., Wu, J. and Zhang, Z. (1996). The 

novel catenin p120(cas) binds classical cadherins and induces an unusual morphological 

phenotype in NIH3T3 fibroblasts. Experimental Cell Research 225, 328-337. 

 Ridley, A. J. (2011). Life at the Leading Edge. Cell 145, 1012-1022. 

 Ridley, A. J., Comoglio, P. M. and Hall, A. (1995). Regulation of scatter 

factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells 

Molecular and Cellular Biology 15, 1110-1122. 



179 
 

 Ridley, A. J. and Hall, A. (1992). The small GTP-binding protein rho regulates 

the assembly of focal adhesions and actin stress fibers in response to growth factors Cell 

70, 389-399. 

 Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. and Hall, A. 
(1992). The small GTP-binding protein rac regulates growth factor-induced membrane 

ruffling Cell 70, 401-410. 

 Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., 

Borisy, G., Parsons, J. T. and Horwitz, A. R. (2003). Cell migration: Integrating 

signals from front to back. Science 302, 1704-1709. 

 Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. and Morrow, J. S. 
(1995). Alpha(1)(E)-catenin is an actin-binding and actin-bundling protein mediating 

the attachment of F-actin to the membrane adhesion complex. Proceedings of the 

National Academy of Sciences of the United States of America 92, 8813-8817. 

 Rosenow, F., Ossig, R., Thormeyer, D., Gasmann, P., Schlüter, K., Brunner, 

G., Haier, J. and Eble, J. A. (2008). Integrins as Antimetastatic Targets of RGD-

Independent Snake Venom Components in Liver Metastasis. Neoplasia 10, 168-176. 

 Rossman, K. L., Der, C. J. and Sondek, J. (2005). GEF means go: Turning on 

Rho GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular 

Cell Biology 6, 167-180. 

 Roy, M., Li, Z. G. and Sacks, D. B. (2004). IQGAP1 binds ERK2 and 

modulates its activity. Faseb Journal 18, C165-C165. 

 Roy, M., Li, Z. G. and Sacks, D. B. (2005). IQGAP1 is a scaffold for mitogen-

activated protein kinase signaling. Molecular and Cellular Biology 25, 7940-7952. 

 Royal, I., Lamarche-Vane, N., Lamorte, L., Kaibuchi, K. and Park, M. 
(2000). Activation of Cdc42, Rac, PAK, and Rho-kinase in response to hepatocyte 

growth factor differentially regulates epithelial cell colony spreading and dissociation. 

Molecular Biology of the Cell 11, 1709-1725. 

 Royal, I. and Park, M. (1995). Hepatocyte growth factor-induced scatter of 

Madin Darby canine kidney cells requires phosphatidylinositol 3-kinase Journal of 

Biological Chemistry 270, 27780-27787. 

 Royer, C. and Lu, X. (2011). Epithelial cell polarity: a major gatekeeper 

against cancer? Cell Death and Differentiation 18, 1470-1477. 

 Ruggiero, F., Champliaud, M. F., Garrone, R. and Aumailley, M. (1994). 

Interactions between cells and collagen V molecules or single chains involve distinct 

mechanisms Experimental Cell Research 210, 215-223. 

 Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews Cancer 7, 

737-749. 

 Sahai, E. and Marshall, C. J. (2003). Differing modes of tumour cell invasion 

have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. 

Nature Cell Biology 5, 711-719. 

 Sander, E. E., van Delft, S., ten Klooster, J. P., Reid, T., van der Kammen, 

R. A., Michiels, F. and Collard, J. G. (1998). Matrix-dependent Tiam1/Rac signaling 

in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by 

phosphatidylinositol 3-kinase. Journal of Cell Biology 143, 1385-1398. 

 Schmelz, M., Cress, A. E., Scott, K. M., Bürger, F., Cui, H. Y., Sallam, K., 

McDaniel, K. M., Dalkin, B. L. and Nagle, R. B. (2002). Different phenotypes in 

human prostate cancer: alpha 6 or alpha 3 integrin in cell-extracellular adhesion sites. 

Neoplasia 4, 243-254. 



180 
 

 Schmidt-Mende, J., Geering, B., Yousefi, S. and Simon, H. U. (2010). 

Lysosomal degradation of RhoH protein upon antigen receptor activation in T but not B 

cells. European Journal of Immunology 40, 525-529. 

 Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., 

Sharpe, M., Gherardi, E. and Birchmeier, C. (1995). Scatter factor/hepatocyte 

growth factor is essential for liver development Nature 373, 699-702. 

 Schneeberger, D. and Raabe, T. (2003). Mbt, a Drosophila PAK protein, 

combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 130, 

427-437. 

 Schneider, L., Cammer, M., Lehman, J., Nielsen, S. K., Guerra, C. F., 

Veland, I. R., Stock, C., Hoffmann, E. K., Yoder, B. K., Schwab, A. et al. (2010). 

Directional Cell Migration and Chemotaxis in Wound Healing Response to PDGF-AA 

are Coordinated by the Primary Cilium in Fibroblasts. Cellular Physiology and 

Biochemistry 25, 279-292. 

 Schrantz, N., Correia, J. D., Fowler, B., Ge, Q. Y., Sun, Z. J. and Bokoch, 

G. M. (2004). Mechanism of p21-activated kinase 6-mediated inhibition of androgen 

receptor signaling. Journal of Biological Chemistry 279, 1922-1931. 

 Sells, M. A., Knaus, U. G., Bagrodia, S., Ambrose, D. M., Bokoch, G. M. 

and Chernoff, J. (1997). Human p21-activated kinase (Pak1) regulates actin 

organization in mammalian cells. Current Biology 7, 202-210. 

 Serres, M., Grangeasse, C., Haftek, M., Durocher, Y., Duclos, B. and 

Schmitt, D. (1997). Hyperphosphorylation of beta-catenin on serine-threonine residues 

and loss of cell-cell contacts induced by calyculin A and okadaic acid in human 

epidermal cells. Experimental Cell Research 231, 163-172. 

 Shadidi, K. R., Thompson, K. M., Henriksen, J. E., Natvig, J. B. and 

Aarvak, T. (2002). Association of antigen specificity and migratory capacity of 

memory T cells in rheumatoid arthritis. Scandinavian Journal of Immunology 55, 274-

283. 

 Shen, M. M. and Abate-Shen, C. (2010). Molecular genetics of prostate 

cancer: new prospects for old challenges. Genes & Development 24, 1967-2000. 

 Shepelev, M. and Korobko, I. (2012). Pak6 protein kinase is a novel effector of 

an atypical Rho family GTPase Chp/RhoV. Biochemistry (Moscow) 77, 26-32. 

 Shibamoto, S., Hayakawa, M., Takeuchi, K., Hori, T., Miyazawa, K., 

Kitamura, N., Johnson, K. R., Wheelock, M. J., Matsuyoshi, N., Takeichi, M. et al. 
(1995). Association of p120, a tyrosine kinase substrate, with E-Cadherin/catenin 

complexes Journal of Cell Biology 128, 949-957. 

 Shimamura, K. and Takeichi, M. (1992). Local and transient expression of E-

cadherin involved in mouse embryonic brain morphogenesis Development 116, 1011-&. 

 Siu, M. K. Y., Wong, E. S. Y., Chan, H. Y., Kong, D. S. H., Woo, N. W. S., 

Tam, K. F., Ngan, H. Y. S., Chan, Q. K. Y., Chan, D. C. W., Chan, K. Y. K. et al. 
(2010). Differential expression and phosphorylation of Pak1 and Pak2 in ovarian 

cancer: effects on prognosis and cell invasion. International Journal of Cancer 127, 21-

31. 

 Small, J. V., Isenberg, G. and Celis, J. E. (1978). Polarity of actin at the 

leading edge of cultured cells Nature 272, 638-639. 

 Small, J. V., Stradal, T., Vignal, E. and Rottner, K. (2002). The 

lamellipodium: where motility begins. Trends in Cell Biology 12, 112-120. 

 Stanley, F. M. (2007). Insulin-increased prolactin gene expression requires actin 

treadmilling: Potential role for p21 activated kinase. Endocrinology 148, 5874-5883. 



181 
 

 Steeg, P. S. (2003). Metastasis suppressors alter the signal transduction of 

cancer cells. Nat Rev Cancer 3, 55-63. 

 Stockton, R. A., Schaefer, E. and Schwartz, M. A. (2004). p21-activated 

kinase regulates endothelial permeability through modulation of contractility. Journal of 

Biological Chemistry 279, 46621-46630. 

 Stoker, M. (1989). Effect of scatter factor on motility of epithelial cells and 

fibroblasts Journal of Cellular Physiology 139, 565-569. 

 Stoker, M., Gherardi, E., Perryman, M. and Gray, J. (1987). Scatter factor is 

a fibroblast-derived modulator of epithelial cell mobility Nature 327, 239-242. 

 Stoker, M. and Perryman, M. (1985). An epithelial scatter factor released by 

embryo fibroblasts Journal of Cell Science 77, 209-223. 

 Stolz, D. B. and Michalopoulos, G. K. (1994). Comparative effects of 

hepatocyte growth factor and epidermal growth factor on motility, morphology, 

mitogenesis, and signal transduction of primary rat hepatocytes Journal of Cellular 

Biochemistry 55, 445-464. 

 Straub, F. B. (1943). Actin, II. Stud. Inst. Med. Chem.Univ. Szeged, 23-37. 

 Sugiyama, N., Varjosalo, M., Meller, P., Lohi, J., Hyytiainen, M., Kilpinen, 

S., Kallioniemi, O., Ingvarsen, S., Engelholm, L. H., Taipale, J. et al. (2010). 

Fibroblast Growth Factor Receptor 4 Regulates Tumor Invasion by Coupling Fibroblast 

Growth Factor Signaling to Extracellular Matrix Degradation. Cancer Research 70, 

7851-7861. 

 Swaminathan, G. and Cartwright, C. A. (2011). Rack1 promotes epithelial 

cell-cell adhesion by regulating E-cadherin endocytosis. Oncogene 31, 376-389. 

 Swart-Mataraza, J. M., Li, Z. G. and Sacks, D. B. (2002). IQGAP1 is a 

component of Cdc42 signaling to the cytoskeleton. Journal of Biological Chemistry 

277, 24753-24763. 

 Taherian, A., Li, X. L., Liu, Y. Q. and Haas, T. A. (2011). Differences in 

integrin expression and signaling within human breast cancer cells. Bmc Cancer 11. 

 Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. and Takai, Y. (1997). 

Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. 

Journal of Cell Biology 139, 1047-1059. 

 Takeichi, M. (1977). Functional correlation between cell adhesive properties 

and some cell surface proteins Journal of Cell Biology 75, 464-474. 

 Takemoto, H., Doki, Y., Shiozaki, H., Imamura, H., Utsunomiya, T., 

Miyata, H., Yano, M., Inoue, M., Fujiwara, Y. and Monden, M. (2001). Localization 

of IQGAP1 is inversely correlated with intercellular adhesion mediated by e-cadherin in 

gastric cancers. International Journal of Cancer 91, 783-788. 

 Tanihara, H., Sano, K., Heimark, R. L., St john, T. and Suzuki, S. (1994). 

Cloning of five human cadherins clarifies characteristic features of cadherin 

extracellular domain and provides further evidence for 2 structurally different types of 

cadherin Cell Adhesion and Communication 2, 15-26. 

 Tay, H. G., Ng, Y. W. and Manser, E. (2010). A Vertebrate-Specific Chp-

PAK-PIX Pathway Maintains E-Cadherin at Adherens Junctions during Zebrafish 

Epiboly. Plos One 5, e10125. 

 Tcherkezian, J. and Lamarche-Vane, N. (2007). Current knowledge of the 

large RhoGAP family of proteins. Biology of the Cell 99, 67-86. 

 Teo, M., Manser, E. and Lim, L. (1995). Identification and molecular cloning 

of a p21 (Cdc42/Rac1)-activated serine/threonine kinase that is rapidly activated by 

thrombin in platelets Journal of Biological Chemistry 270, 26690-26697. 



182 
 

 Theriot, J. A. and Mitchison, T. J. (1991). Actin microfilament dynamics in 

locomoting cells Nature 352, 126-131. 

 Thoreson, M. A., Anastasiadis, P. Z., Daniel, J. M., Ireton, R. C., Wheelock, 

M. J., Johnson, K. R., Hummingbird, D. K. and Reynolds, A. B. (2000). Selective 

uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. Journal of Cell 

Biology 148, 189-201. 

 Tillotson, J. K. and Rose, D. P. (1991). Endogenous secretion of epidermal 

growth factor peptides stimulates growth of DU145 prostate cancer cells. Cancer 

Letters 60, 109-112. 

 Timms, B. G. (2008). Prostate development: a historical perspective. 

Differentiation 76, 565-577. 

 Toiyama, Y., Yasuda, H., Saigusa, S., Matushita, K., Fujikawa, H., Tanaka, 

K., Mohri, Y., Inoue, Y., Goel, A. and Kusunoki, M. (2011). Co-expression of 

hepatocyte growth factor and c-Met predicts peritoneal dissemination established by 

autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. International 

Journal of Cancer, 2912-2921. 

 Tomura, M., Honda, T., Tanizaki, H., Otsuka, A., Egawa, G., Tokura, Y., 

Waldmann, H., Hori, S., Cyster, J. G., Watanabe, T. et al. (2010). Activated 

regulatory T cells are the major T cell type emigrating from the skin during a cutaneous 

immune response in mice. The Journal of Clinical Investigation 120, 883-893. 

 Tomura, M., Yoshida, N., Tanaka, J., Karasawa, S., Miwa, Y., Miyawaki, 

A. and Kanagawa, O. (2008). Monitoring cellular movement in vivo with 

photoconvertible fluorescence protein "Kaede" transgenic mice. Proceedings of the 

National Academy of Sciences of the United States of America 105, 10871-10876. 

 Trusolino, L., Cavassa, S., Angelini, P., Ando, M., Bertotti, A., Comoglio, P. 

M. and Boccaccio, C. (2000). HGF/scatter factor selectively promotes cell invasion by 

increasing integrin avidity. Faseb Journal 14, 1629-1640. 

 Tse, J. M., Cheng, G., Tyrrell, J. A., Wilcox-Adelman, S. A., Boucher, Y., 

Jain, R. K. and Munn, L. L. (2011). Mechanical compression drives cancer cells 

toward invasive phenotype. Proceedings of the National Academy of Sciences 109, 911-

916. 

 Tsingotjidou, A. S., Zotalis, G., Jackson, K. R., Sawyers, C., Puzas, J. E., 

Hicks, D. G., Reiter, R. and Lieberman, J. R. (2001). Development of an animal 

model for prostate cancer cell metastasis to adult human bone. Anticancer research 21, 

971-8. 

 Turner, T., Chen, P., Goodly, L. J. and Wells, A. (1996). EGF receptor 

signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. 

Clinical & Experimental Metastasis 14, 409-418. 

 Vadlamudi, R. K., Li, F., Barnes, C. J., Bagheri-Yarmand, R. and Kumar, 

R. (2004). p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-

interacting substrate. Embo Reports 5, 154-160. 

 van de Wijngaart, D. J., van Royen, M. E., Hersmus, R., Pike, A. C. W., 

Houtsmuller, A. B., Jenster, G., Trapman, J. and Dubbink, H. J. (2006). Novel 

FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and 

specific interactions with the ligand-binding domain. Journal of Biological Chemistry 

281, 19407-19416. 

 van Leenders, G., van Balken, B., Aalders, T., Hulsbergen-van de Kaa, C., 

Ruiter, D. and Schalken, J. (2002). Intermediate cells in normal and malignant 

prostate epithelium express C-MET: Implications for prostate cancer invasion. Prostate 

51, 98-107. 



183 
 

 van Leenders, G. J. L. H., Sookhlall, R., Teubel, W. J., de Ridder, C. M. A., 

Reneman, S., Sacchetti, A., Vissers, K. J., van Weerden, W. and Jenster, G. (2011). 

Activation of c-MET Induces a Stem-Like Phenotype in Human Prostate Cancer. Plos 

One 6, e26753. 

 van Roy, F. and Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. 

Cellular and Molecular Life Sciences 65, 3756-3788. 

 Vasilyev, A., Liu, Y., Mudumana, S., Mangos, S., Lam, P.-Y., Majumdar, 

A., Zhao, J., Poon, K.-L., Kondrychyn, I., Korzh, V. et al. (2009). Collective Cell 

Migration Drives Morphogenesis of the Kidney Nephron. PLoS Biol 7, e1000009. 

 Vaughan, R. B. and Trinkaus, J. P. (1966). Movements of epithelial cell 

sheets in vitro Journal of Cell Science 1, 407-&. 

 Vestweber, D. and Kemler, R. (1984). Rabbit antiserum against a purified 

surface glycoprotein decompacts mouse preimplantation embryos and reacts with 

specific adult tissues Experimental Cell Research 152, 169-178. 

 Vilas, G. L., Corvi, M. M., Plummer, G. J., Seime, A. M., Lambkin, G. R. 

and Berthiaume, L. G. (2006). Posttranslational myristoylation of caspase-activated 

p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proceedings of 

the National Academy of Sciences of the United States of America 103, 6542-6547. 

 Virtanen, I., Korkohen, M., Laitinen, L., Ylӓnne, J., Kariniemi, A.-L. and 

Gould, V. E. (1990). Integrins in human cells and tumors. Cell Differentiation and 

Development 32, 215-227. 

 Vogt, F., Zernecke, A., Beckner, M., Krott, N., Bosserhoff, A.-K., 

Hoffmann, R., Zandvoort, M. A. M. J., Jahnke, T., Kelm, M., Weber, C. et al. 
(2008). Blockade of Angio-Associated Migratory Cell Protein Inhibits Smooth Muscle 

Cell Migration and Neointima Formation in Accelerated Atherosclerosis. J Am Coll 

Cardiol 52, 302-311. 

 Wallace, S. W., Durgan, J., Jin, D. and Hall, A. (2010). Cdc42 Regulates 

Apical Junction Formation in Human Bronchial Epithelial Cells through PAK4 and 

Par6B. Molecular Biology of the Cell 21, 2996-3006. 

 Wang, R. A., Mazumdar, A., Vadlamudi, R. K. and Kumar, R. (2002). P21-

activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and 

promotes hyperplasia in mammary epithelium. Embo Journal 21, 5437-5447. 

 Wang, S. J., Watanabe, T., Noritake, J., Fukata, M., Yoshimura, T., Itoh, 

N., Harada, T., Nakagawa, M., Matsuura, Y., Arimura, N. et al. (2007). IQGAP3, a 

novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of Cell Science 

120, 567-577. 

 Wang, X., Julio, M. K.-d., Economides, K. D., Walker, D., Yu, H., Halili, M. 

V., Hu, Y.-P., Price, S. M., Abate-Shen, C. and Shen, M. M. (2009). A luminal 

epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495-500. 

 Wang, X. X., Liu, R., Jin, S. Q., Fan, F. Y. and Zhan, Q. M. (2006). 

Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits 

apoptosis in esophageal squamous cell carcinoma cell line. Cell Res 16, 356-366. 

 Wang, Y. P., Yu, Q. J., Cho, A. H., Rondeau, G., Welsh, J., Adamson, E., 

Mercola, D. and McClelland, M. (2005). Survey of differentially methylated 

promoters in prostate cancer cell lines. Neoplasia 7, 748-760. 

 Watabe, M., Nagafuchi, A., Tsukita, S. and Takeichi, M. (1994). Induction of 

polarized cell-cell association and retardation of growth by activation of the E-cadherin-

catenin adhesion system in a dispersed carcinoma line Journal of Cell Biology 127, 247-

256. 



184 
 

 Wegner, A. (1976). Head to tail polymerization of actin Journal of Molecular 

Biology 108, 139-150. 

 Weidner, K. M., Behrens, J., Vandekerckhove, J. and Birchmeier, W. 
(1990). Scatter factor: molecular characteristics and effect on the invasiveness of 

epithelial cells Journal of Cell Biology 111, 2097-2108. 

 Weissbach, L., Settleman, J., Kalady, M. F., Snijders, A. J., Murthy, A. E., 

Yan, Y. X. and Bernards, A. (1994). Identification of a human RasGAP-related 

protein containing calmodulin-binding motifs Journal of Biological Chemistry 269, 

20517-20521. 

 Wells, C. M., Abo, A. and Ridley, A. J. (2002). PAK4 is activated via PI3K in 

HGF-stimulated epithelial cells. Journal of Cell Science 115, 3947-3956. 

 Wells, C. M., Ahmed, T., Masters, J. R. W. and Jones, G. E. (2005). Rho 

family GTPases are activated during HGF-stimulated prostate cancer-cell scattering. 

Cell Motility and the Cytoskeleton 62, 180-194. 

 Wells, C. M. and Jones, G. E. (2010). The emerging importance of group II 

PAKs. Biochemical Journal 425, 465-473. 

 Wells, C. M., Whale, A. D., Parsons, M., Masters, J. R. W. and Jones, G. E. 
(2010). PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. Journal 

of Cell Science 123, 1663-1673. 

 Wen, X. Q., Li, X. J., Liao, B., Liu, Y., Wu, J. Y., Yuan, X. X., Ouyang, B., 

Sun, Q. P. and Gao, X. (2009). Knockdown of p21-activated Kinase 6 Inhibits Prostate 

Cancer Growth and Enhances Chemosensitivity to Docetaxel. Urology 73, 1407-1411. 

 Whale, A., Hashim, F. N., Fram, S., Jones, G. E. and Wells, C. M. (2011). 

Signalling to cancer cell invasion through PAK family kinases. Frontiers in Bioscience-

Landmark 16, 849-864. 

 White, C. D., Erdemir, H. H. and Sacks, D. B. (2011). IQGAP1 and its 

binding proteins control diverse biological functions. Cellular Signalling 24, 826-834. 

 Witkowski, C. M., Rabinovitz, I., Nagle, R. B., Affinito, K. S. D. and Cress, 

A. E. (1993). Characterization of integrin subunits, cellular adhesion and tumorgenicity 

of four human prostate cell lines Journal of Cancer Research and Clinical Oncology 

119, 637-644. 

 Wong, L. E., Reynolds, A. B., Dissanayaka, N. T. and Minden, A. (2010). 

p120-catenin is a binding partner and substrate for Group B Pak kinases. Journal of 

Cellular Biochemistry 110, 1244-1254. 

 Wu, X. and Frost, J. A. (2006). Multiple Rho proteins regulate the subcellular 

targeting of PAK5. Biochemical and Biophysical Research Communications 351, 328-

335. 

 www.harvardprostateknowledge.org/prostate-basics. 

 Wyckoff, J. B., Jones, J. G., Condeelis, J. S. and Segall, J. E. (2000). A 

critical step in metastasis: In vivo analysis of intravasation at the primary tumor. Cancer 

Research 60, 2504-2511. 

 Xia, X., Mariner, D. J. and Reynolds, A. B. (2003). Adhesion-Associated and 

PKC-Modulated Changes in Serine/Threonine Phosphorylation of p120-

Cateninâ€ Biochemistry 42, 9195-9204. 

 Yamada, S., Pokutta, S., Drees, F., Weis, W. I. and Nelson, W. J. (2005). 

Deconstructing the Cadherin-Catenin-Actin Complex. Cell 123, 889-901. 

 Yamashiro, S., Noguchi, T. and Mabuchi, I. (2003). Localization of two 

IQGAPs in cultured cells and early embryos of Xenopus laevis. Cell Motility and the 

Cytoskeleton 55, 36-50. 

http://www.harvardprostateknowledge.org/prostate-basics


185 
 

 Yamazaki, D., Kurisu, S. and Takenawa, T. (2009). Involvement of Rac and 

Rho signaling in cancer cell motility in 3D substrates. Oncogene 28, 1570-1583. 

 Yang, F., Lio, X. Y., Sharma, M. J., Zarnegar, M., Lim, B. and Sun, Z. 
(2001). Androgen receptor specifically interacts with a novel p21-activated kinase, 

PAK6. Journal of Biological Chemistry 276, 15345-15353. 

 Yap, A. S., Niessen, C. M. and Gumbiner, B. M. (1998). The juxtamembrane 

region of the cadherin cytoplasmic tail supports lateral clustering, adhesive 

strengthening, and interaction with p129(ctn). Journal of Cell Biology 141, 779-789. 

 Yilmaz, M. and Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell 

invasion. Cancer and Metastasis Reviews 28, 15-33. 

 Yin, N., Shi, J., Wang, D., Tong, T., Wang, M., Fan, F. and Zhan, Q. (2012). 

IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer. 

Biochemical and Biophysical Research Communications. 

 Yoshida, C. and Takeichi, M. (1982). Teratocarcinoma cell adhesion: 

Identification of a cell-surface protein involved in calcium-dependent cell aggregation. 

Cell 28, 217-224. 

 Zaman, M. H., Trapani, L. M., Siemeski, A., MacKellar, D., Gong, H., 

Kamm, R. D., Wells, A., Lauffenburger, D. A. and Matsudaira, P. (2006). Migration 

of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix 

adhesion and proteolysis Proceedings of the National Academy of Sciences of the 

United States of America 103, 13897-13897. 

 Zegers, M. M. P., Forget, M. A., Chernoff, J., Mostov, K. E., ter Beest, M. 

B. A. and Hansen, S. H. (2003). Pak1 and PIX regulate contact inhibition during 

epithelial wound healing. Embo Journal 22, 4155-4165. 

 Zeng, Q., Lagunoff, D., Masaracchia, R., Goeckeler, Z., Cȏté, G. and 

Wysolmerski, R. (2000). Endothelial cell retraction is induced by PAK2 

monophosphorylation of myosin II. Journal of Cell Science 113, 471-482. 

 Zhang, L., Luo, J., Wan, P., Wu, J., Laski, F. and Chen, J. (2011). 

Regulation of cofilin phosphorylation and asymmetry in collective cell migration during 

morphogenesis. Development 138, 455-464. 

 Zhang, M., Siedow, M., Saia, G. and Chakravarti, A. (2009). Inhibition of 

p21-activated kinase 6 (PAK6) increases radiosentivity of prostate cancer cells. 

Proceedings of the American Association for Cancer Research Annual Meeting 50, 962. 

 Zhao, Z. S., Manser, E., Chen, X. Q., Chong, C., Leung, T. and Lim, L. 
(1998). A conserved negative regulatory region in alpha PAK: Inhibition of PAK 

kinases reveals their morphological roles downstream of Cdc42 and Rac1. Molecular 

and Cellular Biology 18, 2153-2163. 

 Zhao, Z. S., Manser, E., Loo, T. H. and Lim, L. (2000). Coupling of PAK-

interacting exchange factor PIX to GIT1 promotes focal complex disassembly. 

Molecular and Cellular Biology 20, 6354-6363. 

 Zhou, W., Grandis, J. R. and Wells, A. (2006). STAT3 is required but not 

sufficient for EGF receptor-mediated migration and invasion of human prostate 

carcinoma cell lines. British Journal of Cancer 95, 164-171. 

 Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A. and Wu, W. 
(2011). A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. 

Oncogene 31, 1001-1012. 

 

 

 

 



186 
 

Appendices 

Appendix 1 – PCR amplification primer sequences 

 

Full-length PAK6 (amino acids 1–682) 

attB1 Forward primer: 5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC TTG 

ATG TTC CGC AAG AAA AAG AAG AAA-3’ 

attB2 Reverse primer: 5’-GGGG A CCA CTT TGT ACA AGA AAG CTG GGT C 

TCA GCA GGT GGA GGT CTG CTT TCG-3’ 

 

N-terminal PAK6 mutant (amino acids 1–367) 

attB1 Forward primer: 5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC TTG 

ATG TTC CGC AAG AAA AAG AAG AAA-3’ 

attB2 Reverse primer: 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC 

TCA CTG GGG CAG GTA CAG GTT GCT GGT-3’ 

 

C-terminal PAK6 mutant (amino acids 368–682) 

attB1 Forward primer: 5’-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT 

GGA CCT GGA CCC CAC GGT TGC CAA GGG TGC C-3’ 

attB2 Reverse primer: 5’-GGGG A CCA CTT TGT ACA AGA AAG CTG GGT C 

TCA GCA GGT GGA GGT CTG CTT TCG-3’ 

 

Mutagenic primers 

S560E PAK6 mutant (predicted PAK6 autophosphorylation site) 

Forward primer: 5’-CGT CCC TAA GAG GAA GGA GCT GGT GGG AAC CCC CT-

3’ 

Reverse primer: 5’-AGG GGG TTC CCA CCA GCT CCT TCC TCT TAG GGA CG-

3’ 

 

S531N PAK6 mutant (Kinase active PAK6 mutant) 

Forward primer: 5’-GGG ACA TCA AGA GTG ACA ACA TCC TGC TGA CCC 

TCG-3’ 

Reverse primer: 5’-CGA GGG TCA GCA GGA TGT TGT CAC TCT TGA TGT CCC-

3’ 
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K436A PAK6 mutant (Kinase dead PAK6 mutant) 

Forward primer: 5’-CGC CAG GTG GCC GTC GCG ATG ATG GAC CTC AG-3’ 

Reverse primer: 5’-CTG AGG TCC ATC ATC GCG ACG GCC ACC TGG CG-3’ 

 

Sequencing Primers 

Primer Sequence 

P19 Forward 5’-GTA ACA TCA GAG ATT TTG AGA CAC-3’ 

P20 Reverse 5’-TCG CGT TAA CGC TAG CAT GGA TC-3’ 

Internal PAK6 5’-CCT AGC CCT AAG ACC CGG G-3’ 

GST GEX-5 Forward 5’-GGG CTG GCA AGC CAC GTT TGG TG-3’ 

GST T7 terminator Reverse Primer provided by Eurofins MWG Operon 

pEGFP-C1 Forward Primer provided by Eurofins MWG Operon 

pEGFP-C1 Reverse Primer provided by Eurofins MWG Operon 
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Appendix 2 - siRNA oligonucleotide sequences 

 

Control siRNA (non-silencing) 

Target sequence: AAT TCT CCG AAC GTG TCA CGT 

 

PAK6 siRNA (Oligonucleotide 1) 

Target sequence: GGC UAU UCC GAA GCA UGU Utt 

 

PAK6 siRNA (Oligonucleotide 2) 

Target sequence: CCA AUG GGC UGG CUG CAAA 
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Appendix 3 - Figure legends for movies 1-5  

 

Movie 1 

DU145 cells were left for 48 hours to form colonies and were then serum-starved for 24 

hours. Cells were then filmed for 24 hours at 5 minute intervals using phase-contrast 

time-lapse microscopy (see section 2.2.10). Movie is representative of 3 independent 

experiments.  

 

Movie 2 

DU145 cells were left for 48 hours to form colonies and were then serum-starved for 24 

hours. Cells were then stimulated with HGF (10 ng/ml) and filmed for 24 hours at 5 

minute intervals using phase-contrast time-lapse microscopy (see section 2.2.10). 

Movie is representative of 3 independent experiments.  

 

Movies 3PC and 3G 

EGFP lentiviral vector expressing DU145 cells were seeded into a 98% collagen I and a 

2% matrigel 3D matrix and left for one week to form colonies. Cells were then serum-

starved for 24 hours prior to filming. Cells were filmed for 24 hours at 5 minute 

intervals. Cells were filmed using phase-contrast (PC) and GFP fluorescence (G) time-

lapse microscopy (see section 2.2.10). Movies are representative of 3 independent 

experiments.  

 

Movies 4PC and 4G 

EGFP lentiviral vector expressing DU145 cells were seeded into a 98% collagen I and a 

2% matrigel 3D matrix and left for one week to form colonies. Cells were serum-

starved for 24 hours and then stimulated with HGF (500 ng/ml) for 48 hours. Cells were 

then filmed for 24 hours at 5 minute intervals using phase-contrast (PC) and GFP 

fluorescence (G) time-lapse microscopy (see section 2.2.10). Movies are representative 

of 3 independent experiments.  

 

Movies 5PC and 5G 

DU145 cells were transfected with WT GFP-PAK6. Cells were immediately filmed for 

24 hours at 5 minute intervals using phase-contrast (PC) and GFP fluorescence (G) 

time-lapse microscopy (see section 2.2.10). Movies are representative of 3 independent 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 


