
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Molecular regulation of neuroblast migration in the postnatal brain

Gajendra, Sangeetha

Awarding institution:
King's College London

Download date: 25. Dec. 2024



1 

 

 

 

 

Molecular regulation of neuroblast 

migration in the postnatal brain 

 

 

 

A thesis for the degree of Doctor of Philosophy 

 

 

Sangeetha Gajendra 

 

 

 

 

 Wolfson Centre for Age-Related Diseases  

King’s College London 

 

 



2 

 

Abstract 

The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal 

brain. Neural precursors derived from SVZ stem cells migrate in chains to the 

olfactory bulb (OB) via the rostral migratory stream (RMS) through channels (glial 

tubes) formed by the processes of astrocytes. Importantly, these precursors have 

the capacity to migrate away from their native route to areas of pathological 

damage in the adult brain. Therefore, studying the migratory properties of these 

cells is essential, not only to understand basic aspects of adult neurogenesis, but 

also to exploit the potential of adult neural stem cells in neuroregenerative 

strategies. Whilst considerable progress has been made in the field of SVZ neural 

precursor migration, the exact molecular mechanisms regulating this process 

remain to be fully elucidated.  

 

The endocannabinoid system is known to play an important role in the regulation of 

neural stem cell proliferation. Here, we show that CB signalling also regulates the 

migration of SVZ-derived neural precursors. In addition, stimulation of G-protein 

coupled cannabinoid receptors, CB1 and CB2, leads to significant activation of RalA, 

a Ras-like GTPase involved in the control of neuronal morphology and polarity. 

siRNA-mediated knockdown of RalA or the expression of dominant negative RalA 

abolished cannabinoid-induced stimulation of migration. Time-lapse imaging 

revealed that depletion of RalA strongly impaired nucleokinesis: a crucial step for 

efficient migration. Analysis of RalA function in vivo, using wild type and mutant 

constructs electroporated into the SVZ, showed that the loss of RalA function 

results in both altered morphology and direction of migration. Finally, selective 

deletion of RalA in RMS neuroblasts in vivo further confirms that RalA is required 

for correct polarised morphology of migrating neuroblasts in the RMS. 

 

In summary, RalA is activated by CB agonists, and is required for CB-promoted 

migration of RMS neuroblasts. Furthermore, RalA expression is necessary for 

polarised morphology and efficient migration of RMS neuroblasts both in vitro and 

in vivo.  



3 

 

Acknowledgements 

I would like to take this opportunity to thank my supervisor Dr Giovanna Lalli for 

her support, advice, and encouragement throughout the four years of my PhD. I am 

extremely grateful for the time and effort she has taken to train me in the lab, and 

for passing on her passion and enthusiasm for Science. I would also like to express 

my deepest gratitude to my second supervisor Professor Patrick Doherty, who gave 

me the BBSRC studentship that has funded this PhD. I am especially thankful for his 

invaluable advice, which has helped to guide this project. 

 

I would also like to thank all the staff at the Wolfson, namely Brenda Williams, John 

Chesson and Ralph Wilson. You have all gone out of your way to help me on more 

than one occasion, for which I am extremely grateful.  Also, a special thanks to Carl 

Hobbs for the endless supply of antibodies, and for his help and contribution to this 

thesis. 

 

I would also like to express my gratitude to my husband Myuran. It was his 

encouragement that led me to undertake this PhD, and it has been his endless 

support that has made this journey that much easier. Thank you. 

 

Finally, I would like to express my sincerest thanks to Martina Sonego and 

Katarzyna Falenta from the Lalli Lab; Fiona Howell, Melina Reisenberg, Madeleine 

Oudin, Praveen Singh, Zhou Ya, Rachel Lane and Dr Gareth Williams from the 

Doherty Lab; and all my colleagues on the 3
rd

 floor. I have enjoyed the laughs, the 

banter, and the great food and wine that seem to be a part of life at the Wolfson. 

You have all made my PhD a memorable experience and I will miss you all. 

 

 

 



4 

 

Contents 

Abstract ............................................................................................................... 2 

Acknowledgements ............................................................................................. 3 

Contents .............................................................................................................. 4 

List of Figures ...................................................................................................... 9 

Abbreviations .................................................................................................... 14 

 

 

Chapter 1: Introduction ..................................................................................... 18 

1.1 Adult neurogenesis .......................................................................................... 18 

1.1.1 Adult neurogenesis: A brief history .......................................................... 18 

1.1.2 Neurogenic regions of the adult CNS: Subventricular zone and 

Hippocampus ..................................................................................................... 19 

1.1.3 SVZ neurogenesis ...................................................................................... 24 

The identity of the adult SVZ neural stem cell ................................................ 24 

On the origin of adult NS cells ........................................................................ 25 

The neurogenic niche ..................................................................................... 26 

1.1.4 The structure and cell types of the OB ..................................................... 30 

1.1.5 The function of adult SVZ neurogenesis ................................................... 32 

1.1.6 Evidence of SVZ neurogenesis in the human brain................................... 33 

1.2 Neuronal migration .......................................................................................... 35 

1.2.1 Neuronal migration in the developing CNS .............................................. 35 

1.2.2 Neuronal migration in the adult CNS ........................................................ 39 

1.2.3 Pathological influences on neuronal migration in the adult SVZ .............. 40 

1.3 What's guiding neuroblast migration in the RMS? .......................................... 43 

1.3.1 Architectural guides .................................................................................. 43 

The flow of cerebrospinal fluid ....................................................................... 43 

Astrocytes ....................................................................................................... 44 

Vasculature .................................................................................................... 45 

1.3.2 Adhesion molecules .................................................................................. 46 

PSA-NCAM ...................................................................................................... 46 

Integrins ......................................................................................................... 47 

1.3.3 Guidance molecules .................................................................................. 48 

Slit proteins ..................................................................................................... 48 



5 

 

Growth factors ............................................................................................... 49 

Neurotransmitters .......................................................................................... 51 

Olfactory bulb derived chemoattractants ...................................................... 52 

1.4 The role of endocannabinoids in the CNS ........................................................ 55 

1.4.1 Synthesis and degradation ........................................................................ 55 

1.4.2 CB receptors .............................................................................................. 58 

1.4.3 CB receptor signalling ............................................................................... 58 

1.4.4 Functions of the eCB system in the CNS ................................................... 59 

eCB function in the adult CNS ........................................................................ 59 

eCB function in the developing brain ............................................................. 61 

eCB function in adult neurogenesis ................................................................ 61 

1.5 Molecular regulation of neuronal migration ................................................... 63 

1.5.1 Leading process extension ........................................................................ 63 

1.5.2 Nucleokinesis ............................................................................................ 65 

PAR complex ................................................................................................... 65 

Dynein motor complex ................................................................................... 65 

Cyclin-dependent kinase 5.............................................................................. 66 

1.6 Ral GTPases ...................................................................................................... 69 

1.6.1 Ral GTPase: History, structure and function ............................................. 69 

1.6.2 Regulation of Ral GTPase activation ......................................................... 72 

1.6.3 Effectors of Ral GTPases ............................................................................ 75 

1.6.4 Biological functions of Ral GTPases .......................................................... 78 

Cell morphology ............................................................................................. 78 

Cell polarity .................................................................................................... 78 

Cell migration ................................................................................................. 79 

Secretion ......................................................................................................... 80 

1.7 Aim: Investigate the molecular mechanisms that regulate RMS neuroblast 

migration in the postnatal brain ............................................................................ 82 

 

 

Chapter 2: Materials and Methods ..................................................................... 83 

2.1 Materials .......................................................................................................... 83 

2.1.1 Animals ...................................................................................................... 83 

2.1.2 General solutions ...................................................................................... 83 

2.1.3 Cell culture ................................................................................................ 83 



6 

 

2.1.4 Western Blotting ....................................................................................... 85 

2.1.5 Pull down assay reagents .......................................................................... 87 

2.1.6 Molecular Biology ..................................................................................... 87 

2.1.7 Drugs and factors ...................................................................................... 89 

2.1.8 Immunocytochemistry .............................................................................. 90 

2.1.9 Immunohistochemistry ............................................................................. 92 

2.2 Methods ........................................................................................................... 93 

2.2.1 Cell culture ................................................................................................ 93 

2.2.2 Nucleofection and electroporation ........................................................... 94 

2.2.3 Western Blotting ....................................................................................... 95 

2.2.4 RalA/Rap1 pulldown assay ........................................................................ 96 

2.2.5 Fluorescence resonance energy transfer (FRET) ...................................... 96 

2.2.6 Migration assays ....................................................................................... 97 

2.2.7 Immunocytochemistry .............................................................................. 99 

2.2.8 Immunohistochemistry ........................................................................... 100 

2.2.9 Statistical analysis ................................................................................... 101 

 

 

Chapter 3: Endocannabinoids regulate RMS neuroblast migration .................... 102 

3.1 Introduction ................................................................................................... 102 

3.2 Results ............................................................................................................ 103 

3.2.1 Activation of CB receptors increases the motility of Cor-1 cells ............ 103 

3.2.2 Stimulation of CB receptors promotes migration of Cor-1 cells in the 

scratch wound assay ........................................................................................ 106 

3.2.3 Establishing an in vitro migration assay using primary RMS neuroblast 

cultures ............................................................................................................. 114 

3.2.4 Activation of CB receptors increases migration of mouse RMS neuroblasts 

in vitro .............................................................................................................. 120 

3.2.5 Activation of CB receptors increases the migration of mouse RMS 

neuroblasts in situ ............................................................................................ 123 

3.2.6 Comparison of rat and mouse RMS cultures .......................................... 130 

3.3 Discussion ....................................................................................................... 139 

 

 

Chapter 4: RalA is required for CB-promoted migration of RMS neuroblasts ..... 144 

4.1 Introduction ................................................................................................... 144 



7 

 

4.2 Results ............................................................................................................ 145 

4.2.1 RalA is expressed in rat RMS neuroblasts ............................................... 145 

4.2.2 CB agonists activate RalA in rat RMS neuroblasts .................................. 145 

4.2.3 RalA can be knocked down with a siRNA oligo in rat RMS neuroblasts . 155 

4.2.4 RalA is required for CB1 receptor-promoted migration of rat RMS 

neuroblasts in vitro .......................................................................................... 159 

4.2.5 RalA is required for CB-promoted migration of rat RMS neuroblasts in situ

 .......................................................................................................................... 159 

4.2.6 Growth factors (HGF and GDNF) known to regulate RMS neuroblast 

migration also activate RalA ............................................................................ 165 

4.3 Discussion ....................................................................................................... 168 

 

 

Chapter 5: RalA is required for RMS neuroblast migration in vitro and in vivo ... 171 

5.1 Introduction ................................................................................................... 171 

5.2 Results ............................................................................................................ 172 

5.2.1 RalA depletion inhibits RMS neuroblast migration in vitro .................... 172 

5.2.2 Stable knockdown of RalA with a shRNA plasmid vector ....................... 181 

5.2.3 Ectopic expression of dominant negative RalA affects orientation and 

morphology of RMS neuroblasts in vivo but not in vitro ................................. 195 

5.2.4 Overexpression of RalA enhances RMS neuroblast migration in situ .... 204 

5.2.5 Deletion of RalA and RalB affects orientation and morphology of 

neuroblasts in vivo ........................................................................................... 204 

5.3 Discussion ....................................................................................................... 220 

 

 

Chapter 6: Potential effectors and activators of RalA........................................ 225 

6.1 Introduction ................................................................................................... 225 

6.2 Results ............................................................................................................ 226 

6.2.1 Activators of RalA: Rap GTPases ............................................................. 226 

6.2.2 Signalling downstream of RalA: Regulation of nucleokinesis ................. 227 

6.2.3 Signalling downstream of RalA: Pak1 ...................................................... 231 

6.2.4 Signalling downstream of RalA: CDK5 ..................................................... 237 

6.2.5 Signalling downstream of RalA: N-Cadherin ........................................... 239 

6.2.6 Signalling downstream of RalA: The exocyst complex ............................ 244 

6.3 Discussion ....................................................................................................... 251 



8 

 

Chapter 7: General discussion .......................................................................... 255 

7.1 Modelling RMS neuroblast migration ............................................................ 256 

7.2 The role of endocannabinoid signalling in postnatal neurogenesis .............. 258 

7.3 A cannabinoid-RalA signalling pathway regulates RMS neuroblast migration

 .............................................................................................................................. 262 

7.4 The redundant and exclusive functions of RalA and RalB in adult neurogenesis

 .............................................................................................................................. 263 

 

Publications arising from this thesis ................................................................. 266 

 

References ...................................................................................................... 267 

 
Supplementary movies on accompanying CD (Full description of legends for 

movies available on the CD)  

Supplementary movie 1 - Interkinetic Nuclear Movement in Cor-1 cells 

Supplementary movie 2 - Contact mediated inhibition of locomotion in Cor-1 cells 

Supplementary movie 3 - Mouse RMS explant in Matrigel 40x 

Supplementary movie 4 - GFP labelled neuroblasts in mouse brain slice 

Supplementary movie 5 - Control siRNA aggregate in Matrigel 20X 

Supplementary movie 6 - RalA siRNA aggregate in Matrigel 20X 

Supplementary movie 7 - Control siRNA aggregate in Matrigel 40X 

Supplementary movie 8 - RalA siRNA aggregate in Matrigel 40X 

 

 

 

 

 

 

 

 

 

 

 



9 

 

List of Figures 

Chapter 1: Introduction 

Figure 1.1: Neurogenesis in the adult SVZ ................................................................. 21 

Figure 1.2: Neurogenesis in the adult hippocampus ................................................. 23 

Figure 1.3: The neurogenic niche of the adult SVZ .................................................... 29 

Figure 1.4: Structure of the olfactory bulb neural circuit .......................................... 31 

Figure 1.5: Formation of the six layers of the neocortex by radially migrating cells . 36 

Figure 1.6: Tangential migration by precursors of the subcortical telencephalon 

during corticogenesis ................................................................................................. 38 

Figure 1.7: The synthetic pathways of endocannabinoids ........................................ 57 

Figure 1.8: Retrograde signalling by endocannabinoids ............................................ 60 

Figure 1.9: Nucleokinesis in neuronal migration ....................................................... 68 

Figure 1.10: Structure and activation cycle of RalA ................................................... 71 

Figure 1.11: Regulation of Ral GTPases activation ..................................................... 74 

Figure 1.12: Ral-Exocyst interaction .......................................................................... 77 

Table 1.1: Regulators of RMS neuroblast migration..................................................53 

 

Chapter 2: Materials and methods 

Figure 2.1: Electroporation ........................................................................................ 95 

 

Chapter 3: Endocannabinoids regulate RMS neuroblast migration 

Figure 3.1: Cor-1 cells express markers of neural precursors and eCB 

synthesising/metabolising enzymes ........................................................................ 105 

Figure 3.2: A CB2 agonist increases random migration of Cor-1 cells ..................... 108 

Figure 3.3: Scratch wound assay .............................................................................. 110 

Figure 3.4: Rate of migration is independent of proliferation in the scratch wound 

assay ......................................................................................................................... 112 

Figure 3.5: CBs regulate Cor-1 cell migration in the scratch wound assay .............. 113 

Figure 3.6: Mouse RMS neuroblasts migrate out of explants as chains when 

embedded in Matrigel.............................................................................................. 115 



10 

 

Figure 3.7: Mouse RMS explants cultures express markers of migratory neuroblasts

 .................................................................................................................................. 117 

Figure 3.8: Mouse RMS cultures consist mostly of migratory neuroblasts ............. 117 

Figure 3.9: Mouse RMS neuroblasts express DAG-L and CB1/CB2 receptors ......... 118 

Figure 3.10: Dissociated RMS neuroblasts can be successfully nucleofected and re-

aggregated ............................................................................................................... 119 

Figure 3.11: CB agonists promote migration of mouse RMS neuroblasts in vitro... 122 

Figure 3.12: Labelling migratory neuroblasts by in vivo electroporation ................ 124 

Figure 3.13: Snapshots of pCX-EGFP-expressing neuroblasts migrating in a living 

brain slice ................................................................................................................. 127 

Figure 3.14: Cannabinoids increase migration of neuroblasts in the brain slice assay

 .................................................................................................................................. 129 

Figure 3.15: CB agonists do not affect persistence in the brain slice assay ............ 132 

Figure 3.16: Comparison of rat and mouse RMS explants in Matrigel .................... 134 

Figure 3.17: Rat RMS cultures express markers of migratory neuroblasts ............. 135 

Figure 3.18: Rat RMS astrocytes have distinct morphology and do not express 

neuronal marker βlll tubulin .................................................................................... 136 

Figure 3.19: CB agonists promote migration of rat RMS neuroblasts in vitro ......... 138 

 

Chapter 4: RalA is required for CB-promoted migration of RMS neuroblasts 

Figure 4.1: RalA is expressed in rat RMS neuroblasts .............................................. 146 

Figure 4.2: RalB can be detected in the SVZ, Cor-1 cells, and embryonic rat cortex, 

but not in the RMS ................................................................................................... 147 

Figure 4.3: Stimulation of CB receptors activates RalA in rat primary neuroblasts 148 

Figure 4.4: Activation of RalA by CB1 or CB2 agonist is not inhibited by CB1 

antagonist AM-251 and CB2 antagonist JTE-907 ..................................................... 149 

Figure 4.5: Activation of RalA by CB1 agonist is blocked by CB1 antagonist LY-

320135 ...................................................................................................................... 151 

Figure 4.6: Schematic diagram of the RalA FRET sensor (Raichu-RalA) ................... 152 

Figure 4.7 Raichu RalA is expressed in rat RMs neuroblasts ................................... 153 

Figure 4.8 CB1 agonist does not increase FRET efficiency in rat RMs neuroblasts . 154 



11 

 

Figure 4.9: RalA expression can be knocked down with siRNA oligos in rat RMS 

neuroblasts (1) ......................................................................................................... 156 

Figure 4.10: RalA expression can be knocked down with siRNA oligos in rat RMS 

neuroblasts (2) ......................................................................................................... 157 

Figure 4.11: Knockdown of RalA does not affect viability of rat RMS neuroblasts . 158 

Figure 4.12: RalA is required for CB1 receptor-promoted migration of rat RMS 

neuroblasts in vitro .................................................................................................. 161 

Figure 4.13: Not all RMS neuroblasts express both GFP and myc-tagged DN RalA 

following co-electroporation of DN RalA + pCX-EGFP in a 3:1 ratio ........................ 162 

Figure 4.14: CB-promoted migration of RMS neuroblasts is inhibited by DN RalA in 

the brain slice assay ................................................................................................. 164 

Figure 4.15: HGF and GDNF activate RalA in rat primary neuroblasts .................... 167 

 

Chapter 5: RalA is required for RMS neuroblast migration in vitro and in vivo 

Figure 5.1: RalA is required for migration of rat RMS neuroblasts in vitro ............. 174 

Figure 5.2: RalA knockdown alters the morphology of rat RMS neuroblasts in vitro

 .................................................................................................................................. 175 

Figure 5.3: Time-lapse imaging of RalA depleted rat RMS neuroblast aggregates . 176 

Figure 5.4: RalA depletion significantly impairs RMS neuroblast migration in vitro

 .................................................................................................................................. 178 

Figure 5.5: RalA depletion impairs efficient nucleokinesis in rat RMS neuroblasts in 

vitro .......................................................................................................................... 180 

Figure 5.6: Impaired migration caused by RalA siRNA can be rescued with a siRNA-

resistant WT RalA ..................................................................................................... 183 

Figure 5.7: RalA expression can be partially knocked down with RalA shRNA (4) in 

rat RMS neuroblasts ................................................................................................. 185 

Figure 5.8: RalA expression cannot be knocked down with RalA shRNA (1) or RalA 

shRNA (2) in rat RMS neuroblasts ............................................................................ 186 

Figure 5.9: RalA shRNA (4) does not impair the migration of rat RMS neuroblasts in 

vitro .......................................................................................................................... 187 

Figure 5.10: RalA shRNA does not affect process length of mouse RMS neuroblasts 

in vivo ....................................................................................................................... 190 



12 

 

Figure 5.11: RalA shRNA (4) does not affect migration of neuroblasts in vivo ........ 192 

Figure 5.12: RalA shRNA (4) does not affect persistence in vivo ............................. 194 

Figure 5.13: Rat RMS neuroblasts nucleofected with pCAG-DN RalA-IRES-EGFP 

express both GFP and myc-tagged DN RalA ............................................................ 196 

Figure 5.14: Expression of DN RalA does not affect migration of rat RMS neuroblasts 

in vitro ...................................................................................................................... 198 

Figure 5.15: Mouse RMS neuroblasts electroporated with pCAG-DN RalA-IRES-EGFP 

express both GFP and myc-tagged DN RalA ............................................................ 200 

Figure 5.16: RalA is important for neuroblast morphology and directionality in vivo 

(1) ............................................................................................................................. 202 

Figure 5.17: RalA is important for neuroblast morphology and directionality in vivo 

(2) ............................................................................................................................. 203 

Figure 5.18: Overexpression of RalA promotes neuroblast migration in the brain 

slice assay ................................................................................................................. 205 

Figure 5.19: Deletion of RalA/RalB disrupts neuroblast polarised morphology and 

directionality (1) ....................................................................................................... 208 

Figure 5.20: Deletion of RalA/RalB disrupts neuroblast polarised morphology and 

directionality (2) ....................................................................................................... 211 

Figure 5.21: Effect of RalA/RalB deletion on neuroblast migration ........................ 213 

Figure 5.22: Cre-GFP expression in RMS neuroblasts in WT mice ........................... 214 

Figure 5.23: Cre-GFP expression in RMS neuroblasts in RalA
lox/lox 

mice .................. 215 

Figure 5.24: Cre-GFP expression in RMS neuroblasts in RalA
lox/lox

/RalB
-/-

 mice ...... 216 

Figure 5.25: Neuroblast morphology and migration appears normal in RalB deficient 

mice .......................................................................................................................... 218 

Figure 5.26: RMS morphology of WT, RalA
lox/lox

, and RalA
lox/lox

/RalB
-/-

 mice ........... 219 

 

Chapter 6: Potential effectors and activators of RalA 

Figure 6.1: Rap1 A/B expression in rat RMS neuroblasts, SVZ, rat embryonic cortex 

and Cor-1 cells .......................................................................................................... 228 

Figure 6.2: Expression of Rap1B in rat embryonic cortex and rat RMS neuroblasts 

after treatment with CB1 agonist ............................................................................ 228 

Figure 6.3: Depletion of RalA does not alter the position of the centrosome ........ 230 



13 

 

Figure 6.4: MLC2 and p-MLC2 expression after RalA knockdown in rat RMS 

neuroblasts ............................................................................................................... 232 

Figure 6.5: CB treatment or knockdown of RalA causes increased expression of an 

unknown band when probed for Pak1 (αPak c-19; Santa Cruz) .............................. 234 

Figure 6.6: Treatment with CB1 agonist, CDK5 inhibitor, or both causes an increase 

in the expression of an unknown band when probed for Pak1 (αPak c-19; Santa 

Cruz) ......................................................................................................................... 235 

Figure 6.7: Expression of Pak family members after RalA knockdown and treatment 

with CB1 agonist ACEA ............................................................................................. 236 

Figure 6.8: Pak 1, 2, 3 expression after RalA knockdown and treatment with CB1 

agonist ACEA ............................................................................................................ 238 

Figure 6.9: Pak1 expression after RalA knockdown and treatment with CDK5 

inhibitor Roscovitine ................................................................................................ 238 

Figure 6.10: Inhibition of CDK5 enhances migration out of explants and enhances 

the pro-migratory effects of CB1 agonist ACEA ....................................................... 241 

Figure 6.11: P-27kip1 and p-P27kip1 expression after RalA knockdown and 

treatment with CB1 agonist ACEA ........................................................................... 242 

Figure 6.12: N-Cadherin is strongly expressed in the mouse RMS .......................... 243 

Figure 6.13: N-Cadherin expression in rat RMS neuroblast after RalA depletion ... 246 

Figure 6.14: External N-Cadherin expression in rat RMS neuroblast after RalA 

depletion .................................................................................................................. 247 

Figure 6.15: Perturbing Exo84 function affects orientation and migration of RMS 

neuroblasts ............................................................................................................... 250 

 

Chapter 7: General discussion 

Figure 7.1: The multiple roles of the eCB system in the CNS .................................. 261 

  

 

 

 



14 

 

Abbreviations 

2/3D  2/3-dimensional 

2-AG   2-arachidonoylglycerol 

a.a  Amino acid 

Ang1  Angiopoietin1 

AEP  Anterior entopeduncular area  

aPKC  Atypical protein kinase C 

BDNF   Brain derived neurotrophic factor  

BL  Basal Lamina 

BMP  Bone Morphogenetic Protein 

BrdU   Bromodeoxy-Uridine 

CA   Constitutively active 

Ca
2+

   Calcium  

CAM   Cell adhesion molecule  

cAMP   Cyclic adenosine monophosphate 

CB  Cannabinoid  

CB1   Cannabinoid receptor 1  

CB2   Cannabinoid receptor 2  

CDK5  Cyclin-Dependent Kinase 5 

cDNA   Complementary deoxyribonucleic acid  

CFP  Cyan fluorescent protein 

CNS   Central nervous system  

CP  Choroid plexus 

Cre  Cyclic Recombinase 

CSF  Cerebrospinal Fluid 

DAG   Diacylglycerol  

DAG-L   Diacylglycerol lipase  

DCX   Doublecortin  

DG  Dentate Gyrus 

Dlx2  Distal-Less Homeobox 2 

DMEM  Dulbecco’s modified eagle medium 



15 

 

DNA  Deoxyribonucleic Acid 

DN   Dominant negative  

DSE   Depolarization-induced suppression of excitation  

DSI   Depolarization-induced suppression of inhibition  

E  Embryonic day 

EV  Empty vector 

eCB   Endocannabinoid  

ECL  Enhanced chemiluminescence 

ECM  Extracellular Matrix 

EGF   Epidermal growth factor  

EGFP  Enhanced green fluorescent protein 

EGFr   Epidermal growth factor receptor 

EPL   External plexiform layer  

FAAH   Fatty acid amide hydrolase  

FAK  Focal adhesion kinase 

FC  Fast cycling 

FCS   Foetal calf serum  

FGF   Fibroblast growth factor  

FRET  Fluorescence resonance energy transfer 

GABA   γ-Aminobutyric acid 

GAP  GTPase-activating protein  

GC   Granule cell  

GCL   Granule cell layer  

GDNF   Glial cell line derived neurotrophic factor 

GEF  Guanine nucleotide exchange factor  

GFAP   Glial fibrilliary astrocyte protein  

GFP   Green fluorescent protein  

GL   Granular layer  

GPCR  G-Protein Coupled Receptor 

GPR55   G-protein coupled receptor 55  

GSK3β  Glycogen Synthase Kinase3β 

HGF   Hepatocyte growth factor  



16 

 

IGF   Insulin growth factor 

INM  Inter-kinetic nuclear migration 

IRES  Internal ribosome entry site 

LGE  Lateral Ganglionic Eminence 

MAG-L  Monoacylglycerol lipase  

MAPK  Mitogen-Activated Protein Kinase 

MC  Mitral cell 

MGE  Medial Ganglionic Eminence 

mGluR   Metabotropic glutamate receptor  

MI  Migratory Index (Total displacement/Total distance) 

ML  Molecular Layer 

MLC   Myosin light chain  

MMPs   Matrix metalloproteinases  

MRI  Magnetic Resonance Imaging 

mRNA  Messenger RNA 

NAPE   N-arachidonoylphosphatidylethanolamine  

NAT   N-Acyltransferase  

NCAM   Neural cell adhesion molecule 

NMDA   N-methyl-D-aspartate  

nIPC  neural intermediate progenitor cell 

NRK  Normal Rat Kidney cells 

NS cell  Neural stem cell 

OB   Olfactory bulb  

OD   Optical density  

OE  Olfactory Epithelia 

OPCs   Olfactory precursor cells  

OSN  Olfactory Sensory Neuron 

P   Postnatal day  

PAK  p21-activated kinase 

PAR  Partitioning defective 

PBS   Phosphate buffered saline  

PCR  Polymerase Chain Reaction 



17 

 

PET  Positron emission tomography 

PGC   Periglomerular cell  

PI   Phosphatidylinositol  

PIP2  Phosphatidylinositol 4,5-bisphosphate 

PI3K   Phosphatidylinositide-3 kinase  

PKA   Protein kinase A 

PKC  Protein kinase C  

PLC   Phospholipase C 

PLD  Phospholipase D 

PNS  Peripheral Nervous System 

PSA  Polysialic Acid 

PSA-NCAM  Polysialylated neural cell adhesion molecule  

Ral  Ras-like GTPase 

RalBP1  Ral binding protein 1 

Ral-GDS Ral guanine nucleotide dissociation stimulator 

RG  Radial glia 

RMS   Rostral migratory stream 

RNA  Ribonucleic Acid 

RRP  Readily releasable pool 

SDF-1  Stromal-derived factor 

SGZ   Subgranular zone  

shRNA  Small hairpin ribonucleic acid 

siRNA   Short interfering ribonucleic acid  

SVZ   Subventricular zone 

TBS  Tris-Buffer Saline 

TGFα   Transforming growth factor α  

TH  Tyrosine hydroxylase 
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Chapter 1: Introduction 

1.1 Adult neurogenesis 

1.1.1 Adult neurogenesis: A brief history 

The absence of mitosis in neurones of higher vertebrate adults, coupled with the 

complexity and specificity of neural networks, had created the long held belief that 

the adult human central nervous system (CNS) is an immutable structure (Gage 

2002). As a result, the concept of neurogenesis had been viewed as a process 

largely restricted to embryonic, foetal, and early postnatal development. However, 

ground breaking work during the last few decades has questioned this dogmatic 

view and replaced it with one in which ongoing cell replacement occurs in specific 

regions of the CNS (Ortega-Perez et al. 2007). 

 

In 1962, Joseph Altman of the Massachusetts Institute of technology published his 

findings that incorporation of [
3
H]-thymidine (a marker of cell proliferation) could 

be detected in hippocampal neurones of young adult rats. He went on further to 

suggest that these labelled neurones are likely to have been generated by 

undifferentiated precursors, and that the absence of “mitotic figures” in neurones 

may not be sufficient to rule out neurogenesis entirely (Altman 1962). Over a 

decade later, Michael Kaplan also documented the presence of adult neurogenesis 

in the hippocampus and olfactory bulb, this time proving the neuronal nature of the 

labelled cells using electron microscopy. Unlike Altman, Kaplan suggested the 

existence of dividing neurones (Kaplan and Hinds 1977). His work was therefore 

received by the scientific community with considerable scepticism, since the notion 

of mature neurones undergoing mitosis did not seem feasible (Kempermann 2006). 

Despite continued reports of adult neurogenesis in rodents, cats, and songbirds 

throughout the 60’s, 70’s and 80’s (Altman 1962; Altman 1963; Altman and Das 

1965; Altman 1969; Kaplan and Hinds 1977; Goldman and Nottebohm 1983; 

Alvarez-Buylla and Nottebohm 1988), little progress was made in establishing this 

radical concept as also applying to primates and humans (Rakic 1985). The pivotal 

point in the history of adult neurogenesis came about during the 1990s, an era 



19 

 

coined “the decade of the brain”, when newborn neurones were identified in the 

dentate gyrus of cancer patients (Eriksson et al. 1998). Coupled with isolation and 

characterisation of adult NS cells (Reynolds and Weiss 1992; Gage et al. 1995), the 

concept of ongoing neurogenesis in the mammalian brain was finally acknowledged 

and accepted as scientific fact.  

 

1.1.2 Neurogenic regions of the adult CNS: Subventricular zone and Hippocampus 

The subventricular zone (SVZ) of the lateral ventricles and the subgranular zone 

(SGZ) of the dentate gyrus (DG) of the hippocampus are now recognised as the two 

neurogenic regions of the adult CNS. Of the two compartments, the SVZ is by far 

the most mitotically active (Abrous et al. 2005) and houses four different types of 

cells: SVZ astrocytes (type B cells), transient amplifying progenitors (type C cells), 

migrating neuroblasts (type A cells), and multi-ciliated ependymal cells (type E cells) 

(Figure 1.1). The SVZ astrocyte, currently believed to be the resident stem cell of 

this neurogenic region, slowly divides to give rise to transient amplifying 

progenitors. These daughter cells undergo rapid proliferation to generate 

neuroblasts, which leave the SVZ and migrate tangentially to the olfactory bulb (OB) 

via the rostral migratory stream (RMS). Employing a unique mode of migration, 

SVZ-derived neuroblasts migrate collectively in chains through a channel (glial tube) 

formed by astrocytes (Figure 1). Upon reaching the OB, neuroblasts leave the glial 

tube and migrate radially to their eventual destination, where they differentiate 

into granule and periglomerular interneurones, and integrate into the existing 

neural circuitry (Doetsch et al. 1997). Each of the different SVZ cells types can be 

distinguished by their distinctive morphology, behaviour, location, and expression 

of markers. For example, type B cells express astrocytic marker glial fibrilliary acidic 

protein (GFAP) (Bignami and Dahl 1974), neural precursor marker vimentin 

(Cochard and Paulin 1984; Alvarez-Buylla et al. 1987; Sancho-Tello et al. 1995), have 

a stellate morphology, and divide asymmetrically  (Doetsch et al. 1997). Migratory 

neuroblasts on the other hand can be identified by their expression of PSA-NCAM, a 

cell adhesion molecule commonly expressed in regions of neuronal plasticity 

(Rousselot et al. 1995); neuron specific β tubulin (β lll tubulin), a marker of 

immature neurones (Easter et al. 1993); doublecortin (DCX), a microtubule 
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associated protein expressed by migrating neurones during embryonic and 

postnatal development (Gleeson et al. 1999; Yang et al. 2004; Koizumi et al. 2006; 

Ocbina et al. 2006); and Dlx2, a transcription factor known to be involved in the 

development of GABAergic neurones (Porteus et al. 1994; Doetsch et al. 2002; 

Panganiban and Rubenstein 2002). Neuroblasts typically have an elongated cell 

body with either a single leading process or bipolar morphology, and can undergo 

limited cell division (Doetsch et al. 1997). Transient amplifying progenitors express 

Dlx2 (Doetsch et al. 2002), as well as pro-neural transcription factor Mash1 

(Casarosa et al. 1999; Horton et al. 1999; Parras et al. 2004). They are the most 

proliferative cells of the SVZ, dividing symmetrically at a rate 10 times greater than 

that of type B cells, and are found in clusters scattered along the tangential network 

of neuroblasts in the SVZ, but are absent in the RMS (Doetsch et al. 1997).  
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Figure 1.1: Neurogenesis in the adult SVZ. A schematic diagram of a sagittal cross 

section of a rodent brain showing the migratory path undertaken by neuroblasts 

from the SVZ to the OB (top left), the cell types found in the SVZ/RMS/OB (top 

right), different stages in SVZ neurogenesis (middle), and markers expressed by 

different neuronal lineages (bottom). Adapted from Ming and Song (2011). 
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The second neurogenic region of the adult brain, the subgranular zone (SGZ), is 

located at the border between the granule cell layer (GCL) and hilus of the dentate 

gyrus of the hippocampus (Abrous et al. 2005) (Figure 1.2). In the SGZ a specialised 

astrocyte, which extends a radial process through the GCL and contacts the 

molecular layer (ML), has been identified as the stem cell of this region. These 

radial astrocytes (type B cells) give rise to rapidly dividing transient amplifying 

progenitors (type D cells), which in turn generate neuroblasts (Seri et al. 2001; Seri 

et al. 2004). Unlike SVZ-derived neuroblasts, those originating in the SGZ do not 

undergo extensive tangential migration. Instead, neuroblasts of the SGZ move 

radially into the adjacent GCL as they differentiate and mature into mostly 

glutamatergic dentate granule cells. These newly formed neurones extend 

dendrites into the ML and axons into the CA3 region of the hippocampus, forming 

synaptic connections with resident cells (Ehninger and Kempermann 2008).  
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Figure 1.2: Neurogenesis in the adult hippocampus. A sagittal cross section of the 

rodent hippocampus showing the neurogenic niche in the dentate gyrus (top left), 

the different cells types in this region (top right), stages of neurogenesis in the DG 

(middle), and markers expressed by different cell types (bottom). Adapted from 

Ming and Song (2011).  
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1.1.3 SVZ neurogenesis 

The identity of the adult SVZ neural stem cell 

Adult NS cells, like their embryonic counterpart, are multipotent cells capable of 

giving rise to all three constituents of the CNS: neurones, astrocytes and 

oligodendrocytes. Unlike the NS cells of the developing brain, which undergo rapid 

cell division to give rise to the entire nervous system, it appears that those residing 

in the adult CNS are relatively quiescent. Progenitor cells, the offspring of NS cells, 

although more proliferative than their predecessors, are more limited in terms of 

their capacity for self-renewal and differentiation (Doetsch et al. 1997). One of the 

greatest challenges in the field of NS cell research, has been uncovering the nature 

of the adult NS cell. The lack of specific markers has been a significant drawback 

which has hindered progress in this area of research, and led to much debate over 

the identity of these cells.  

 

Based on the known dormant nature and multipotency of adult NS cells, transient 

amplifying progenitors and proliferating neuroblasts were ruled out early on as 

potential candidates. This left the SVZ astrocyte and ependymal cell as the main 

contenders for this role. Initially, ependymal cells were suggested as the source of 

newly generated neurones in the SVZ (Johansson et al. 1999). This assumption was 

based on incorporation of BrdU by cells in the ependymal layer, and in vitro studies 

demonstrating self-renewal and multipotency of isolated ependymal cells. 

However, not long after the publication of these results, contradictory evidence 

questioning the proliferative ability of ependymal cells came to light. Doetsch et al. 

(1999) demonstrated that the NS cell of this region is in fact a specialised astrocyte. 

Here, the authors show using electron microscopy, that BrdU-incorporating cells in 

the SVZ are in fact astrocytes and not ependymal cells. Proliferating astrocytes were 

found to reside close to the ventricular wall, and easily mistaken for being in the 

ependymal layer when viewed by light microscopy alone. Compelling evidence, 

which include selective ablation and fate mapping studies performed in transgenic 

mice (Imura et al. 2003; Morshead et al. 2003; Garcia et al. 2004), now point to 

GFAP expressing SVZ astrocytes as the main source of neurones in the adult OB.  
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On the origin of adult NS cells 

In the developing mammalian brain, NS cells correspond to neuroepithelium-

derived radial glia (RG) found in the ventricular zone (VZ). During the neurogenic 

phase of development, RG proliferate asymmetrically to self-renew and generate a 

lineage-restricted neural intermediate progenitor cell (nIPC) or differentiated 

neuron (Kriegstein and Alvarez-Buylla 2009). The embryonic SVZ is now also 

acknowledged as a major site of neurogenesis (Noctor et al. 2004). Here, RG-

derived nIPCs proliferate symmetrically to either expand the progenitor population 

or generate neurones. This raises the important question, as to whether NS cells 

residing in the adult SVZ (B cells) are direct descendents of ventricular zone RG, or 

nIPCs of the embryonic SVZ.  

 

Early studies of mammalian CNS development had indicated that the VZ is lost 

following birth, with RG differentiating into astrocytes or ependymal cells that line 

the ventricle (Schmechel and Rakic 1979; Voigt 1989). Thus, nIPCs of the embryonic 

SVZ were thought to be a likely source of adult NS cells. However, recent data in 

which the cytoarchitecture of the SVZ was examined in detail, revealed that a 

subtype of B cell (B1) resides immediately beneath ependymal cells and makes 

direct contact with the ventricles through an apical process (Mirzadeh et al. 2008). 

Also, in some instances, rather than extending an apical process, part of the B1 cell 

body itself was found squeezed between ependymal cells, making direct contact 

with the ventricle. Interestingly, the presence of these B1 apical processes causes a 

conformational change in the surrounding ependymal cells, resulting in a formation 

resembling a pinwheel, with the B1 process at its centre. Ventricle contacting B1 

cells were found only in neurogenic regions and were found to divide 

asymmetrically. The authors also describe for the first time, a basal process arising 

from B1 cells which wrap around chains of neuroblasts, continue for several 

hundred µm along the chains, and eventually terminate on blood vessels. These 

observations draw remarkable similarities to RG which also possess a short 

ventricle contacting apical process, a long basal process extending to the pial 

surface, and specialised endfeet terminating on blood vessels (Takahashi et al. 

1990; Mission et al. 1991). Thus, it appears that the adult NS cell provides a 
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supportive structure for neuroblast migration in a similar manner to which RG 

provide a migratory scaffold for newborn neurones in development. In stark 

contrast, nIPC of the embryonic SVZ are multipolar cells that have no contact with 

the ventricle, divide symmetrically, and have no role as a migratory scaffold 

(Haubensak et al. 2004). Furthermore, during proliferation, B1 cells display 

evidence of interkinetic nuclear migration (INM) (Tramontin et al. 2003), a 

characteristic feature of RG cells in which the nucleus travels back and forth in 

response to cell cycle progression (Kosodo 2012).  In light of these data, the concept 

that the ventricular zone ceases to exist in the adult may need to be revised. 

Instead, there is an accumulation of evidence pointing to the existence of a 

modified ventricular zone containing RG-derived adult NS cells.          

       

The neurogenic niche 

Although stem cells have been shown to exist throughout the CNS, only those that 

reside in the SVZ and SGZ appear to be involved in neurogenesis in the adult (Gould 

2007). Interestingly, transplantation of SGZ astrocytes induces neurogenesis in 

conventionally non-neurogenic regions of the CNS, as well as from differentiated 

neurones in culture (Alexanian and Kurpad 2005; Jiao and Chen 2008). Moreover, 

SGZ precursors transplanted into the RMS differentiate into tyrosine hydroxylase-

positive interneurones in the OB (Suhonen et al. 1996). Thus it appears that 

neurogenic regions of the CNS house a specialised niche that not only permits stem 

cell proliferation, but also instructs resident and transplanted precursors to take on 

a specific neuronal fate (Gage 2000). 

 

One of the unique features of the neurogenic niche is the extensive interaction 

between different populations of resident cells (Doetsch et al. 1997) (Figure 1.3). 

Astrocytes in particular, which contain multiple processes that make contact with 

all neighbouring cells, and are extensively coupled via gap junctions, are well 

adapted to receive and translate signals from cells in the germinal region. The 

processes of astrocytes have also been known to occasionally extend between 

ependymal cells, and make direct contact with the lateral ventricles, thereby 

allowing the capture of factors secreted by the choroid plexus (Doetsch et al. 1999; 
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Doetsch 2003; Mirzadeh et al. 2008). In addition, astrocytes isolated from the 

neurogenic regions are able to promote proliferation of neural precursors as well as 

direct their differentiation into a neural fate. This property is absent from 

astrocytes of non-neurogenic sites, and therefore appears to be essential for the 

creation of the neurogenic niche (Lim and Alvarez-Buylla 1999; Song et al. 2002). 

The ependymal cells also promote lineage restriction to a neural fate by secreting 

noggin, an antagonist of gliogenesis inducing molecule bone morphogenetic protein 

(BMP) (Lim et al. 2000).  

 

Another notable feature of the SVZ and SGZ is the close physical association 

between endothelial cells and neural precursors. Mature endothelial cells secrete 

mitogens and survival factors that influence the survival and differentiation of both 

groups of precursors (Leventhal et al. 1999; Palmer et al. 2000; Yang et al. 2011). 

This suggests that neurogenesis and angiogenesis may be co-regulated to some 

extent. In support of this hypothesis, disruption of the neuro-angiogenic 

relationship by radiation, results in the cessation of neurogenesis and the 

differentiation of remaining precursors into a glial fate. The fact that irradiated 

neural precursors form neurones, when grown in culture, suggests that the absence 

of neurogenesis arises from the disruption of the microvasculature, and is not due 

to alterations in the properties of the stem cells (Monje et al. 2002). 

 

An additional feature of the SVZ is the presence of a specialised basal lamina (mats 

of extracellular matrix) which extends from the blood vessels, makes contact with 

all cell types in the region, and terminates in bulbs near the ependymal cell layer 

(Mercier et al. 2002). In peripheral organs such as the liver, bone marrow, and 

mammary glands, the basal lamina is an essential component of the 

microenvironment that is required for cell proliferation, migration, and 

differentiation (Kruegel and Miosge 2010). Similarly, in the SVZ the basal lamina 

forms an integral part of the extracellular matrix (ECM) and is believed to anchor 

cells as well as sequester factors - such as laminins, tenascin-C, collagen-1, heparan 

sulphate proteoglycans, and chondroitin sulphate proteoglycans - that regulate the 

migration and proliferation of neural precursors (Gates et al. 1995; Jankovski and 
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Sotelo 1996; Jacques et al. 1998; Kerever et al. 2007; Mercier and Arikawa-Hirasawa 

2012). Recent studies have shown that SVZ NS cells upregulate their expression of 

laminin receptor α6β1 integrin when they are stimulated to become mitotically 

active (Kazanis et al. 2010). Thus, interaction with the ECM appears to be a crucial 

event in the regulation of SVZ neurogenesis.  

 

The neurogenic zones of the CNS are structurally unique. The resident cells and the 

peculiar architecture of these regions results in the creation of a specialised niche 

that is permissive of neurogenesis. Thus, measures undertaken to comprehend the 

role of this complex environment, will heighten our understanding of the factors 

that are essential for neurogenesis, and assist in developing effective 

transplantation techniques.     
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Figure 1.3: The neurogenic niche of the adult SVZ. A diagram showing the 

organisation of the ependymal cells (E), astrocytes (B), neural progenitors (C) and 

migrating neuroblasts (A) in relation to the lateral ventricles (LV), blood vessels 

(BV), and basal lamina (BL) in the SVZ. Taken from Doetsch (2003). 
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1.1.4 The structure and cell types of the OB 

A single odorant receptor, from a family of over 1000 subtypes, is expressed by 

each olfactory sensory neurone (OSN) in the nasal epithelium (Buck and Axel 1991). 

Groups of OSNs expressing the same receptor converge onto one glomerulus, 

which contains the axonal terminals of mitral cells and tufted cells that project to 

the olfactory cortex (Shepherd 1972) (Figure 1.4). Neuronal activity in the OB is 

tightly regulated by two populations of inhibitory interneurones - periglomerular 

cells (PGC) and granule cells (GC) - that are replenished throughout adulthood 

(Lledo et al. 2008). Two morphologically distinct subtypes of GCs (deep and 

superficial) make dendrodendritic synapses with projection neurones in the 

external plexiform layer (EPL). Deep GCs project into the deep lamina of the EPL 

synapsing with mitral cells, whereas superficial GCs project into the superficial 

lamina of the EPL and contact tufted cells (Orona et al. 1983). PGCs on the other 

hand are found within the glomerular layer and can synapse with cells within a 

single glomerulus or from different glomeruli. They can be classified into three 

subtypes based on their expression of tyrosine hydroxylase (TH), calbindin, or 

calretinin (Parrish-Aungst et al. 2007). The majority of newly generated neurones in 

the adult OB are GABAergic granule cells, with a small percentage (1-25%) 

differentiating into either GABAergic or dopaminergic periglomerular cells (Luskin 

1998; Petreanu and Alvarez-Buylla 2002). Interneuron identity in the OB is 

regulated both temporally and spatially. For example, TH+ and calbindin+ PGC 

production is greatest during embryogenesis and declines postnatally, whilst 

calretinin+ GC and PGC generation increases (Batista-Brito et al. 2008). Also, dorsal 

regions of the adult SVZ have been shown to give rise to primarily superficial GC 

and TH+ PGC, whereas ventral regions generate mostly deep GC and Calbindin+ 

PGC (Young et al. 2007). The majority of calretinin+ neurones are generated from 

an embryonic cortex-derived region of the adult SVZ (Young et al. 2007). 

Interestingly, SVZ precursors from specific regions continue to generate the same 

subtypes of interneurones when cultured in vitro or grafted heterotopically (Merkle 

et al. 2007). Thus, the production of specific interneurones by adult NS cells is an 

intrinsic property determined by the region of origin in the SVZ, and is independent 

of environmental influences.   
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Figure 1.4: Structure of the olfactory bulb neural circuit. Olfactory sensory 

neurones (OSN) in the olfactory epithelium that express a particular odorant 

receptor project onto one or more glomeruli (GL). The two types of SVZ derived 

interneurones, periglomerular cells (PGC) and granule cells (GC), are shown in 

purple. PGC synapse with cells within a glomerulus or between glomeruli whilst GC 

form dendrodentritic synapses with Mitral cells (MC) that project to the olfactory 

cortex.  Adapted from Lledo et al. (2008) 
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1.1.5 The function of adult SVZ neurogenesis 

Adult neurogenesis in the SVZ produces a surplus of neurones destined for the OB. 

Following arrival and maturation in the OB, almost 50% of newborn neurones are 

eliminated from the bulbar circuit within 45 days from birth, in an activity 

dependent manner (Petreanu and Alvarez-Buylla 2002). Even fewer cells (10%) 

survive within a year (Winner et al. 2002). The exact role of this continual 

replacement of interneurones and refinement of its circuits on OB function is still 

not fully understood. Currently, an overwhelming number of publications 

investigating the function of adult neurogenesis and reporting numerous olfactory 

deficits, often contradictory to one another, has led to much confusion over the 

real function of newborn olfactory neurones in adulthood. Changes in response to 

predator odours and olfaction dependent sexual behaviour (Sakamoto et al. 2011); 

diminished fear responses to conditioned odours (Valley et al. 2009); reduced 

short-term olfactory memory only (Breton-Provencher et al. 2009; Sultan et al. 

2010); reduced long-term olfactory memory only (Lazarini et al. 2009); and 

increased survival of newborn neurones in odour rich environments (Rochefort et 

al. 2002) are amongst the list of attributes currently ascribed to adult neurogenesis. 

More recently, a study in which selective activation of adult born interneurones 

was paired with an odour discrimination task, revealed that high frequency 

activation of adult born interneurones facilitates learning and improves memory 

(Alonso et al. 2012). Here, the authors used injection of a lentiviral vector encoding 

channel rhodopsin-YFP (yellow fluorescent protein) under the control of the 

synapsin 1 promoter and a miniature LED implanted over the dorsal bulb to 

specifically label and activate adult born interneurones. Interestingly, activation of 

early postnatal born interneurones had no effect on learning of difficult tasks, 

implying that adult born OB neurones have a specific role in fine tuning recognition 

of odours (Alonso et al. 2012). Similarly, another group showed increased survival 

of newborn inhibitory neurones following learning of odour discrimination tasks, 

with learning being delayed if neurogenesis was inhibited before or after the 

training period (Moreno et al. 2009).  
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Differences in the techniques used to inhibit neurogenesis, variations in the 

behavioural tests used to assess olfactory behaviour, as well as the specific 

behaviour being examined may account for the different conclusions drawn from 

these studies. In addition, it is worthy to note that most of these studies look at 

global activation or elimination of a heterogenous population of olfactory 

neurones. Whether each subtype of newborn neurone contributes to a distinctive 

olfactory function is yet to be examined, and may shed some light on this issue.    

 

1.1.6 Evidence of SVZ neurogenesis in the human brain 

Despite numerous reports of ongoing neurogenesis in the mammalian and non-

human primate brains (Altman and Das 1965; Altman 1969; Morest 1970; Kaplan 

and Hinds 1977; Goldman and Nottebohm 1983; Alvarez-Buylla and Nottebohm 

1988; Eriksson et al. 1998; Pencea et al. 2001; Sawamoto et al. 2011), the existence 

of active neurogenic regions in the adult human brain remains a topic of 

controversy. In 1998 Eriksson et al. (1998), described for the first time, the 

existence of neurogenesis in the hippocampus of adult human brains. In this study, 

post-mortem analysis of cancer patients, who had received BrdU as part of their 

therapy, showed incorporation of BrdU by neurones in the hippocampus. Before 

long, similar reports of neurogenesis in the SVZ, and anatomical descriptions of the 

human RMS were also published (Curtis et al. 2007). Here, the authors 

demonstrated the presence of dividing neural progenitors in the SVZ, and described 

the existence of an RMS organised around a ventricular extension, which takes a 

ventro-caudal route before joining the olfactory tract. However, a recent study 

examining neurogenesis in human brains, from ages 1 week to 84 years, shows a 

steep decline in neurogenic potential with age (Sanai et al. 2011). The infant SVZ 

(up to 6 months) was found to contain chains of migrating neuroblasts that 

converge to form a prominent RMS extending to the olfactory peduncle. Similar to 

rodents, neuroblast chains were encased by glial tubes and were closely associated 

with blood vessels. However, between the ages of 6 - 18 months, a steady decline 

in neurogenesis results in the loss of migratory neuroblasts and the formation of a 

hypocellular gap in the region once occupied by the SVZ. Importantly, no evidence 

of chain migration was observed in the SVZ or RMS of adults or children over 2 
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years, though single or pairs of migratory neuroblasts were found occasionally. This 

limited neurogenic capacity of the adult human brain was also demonstrated in 

another study using post-mortem human tissue and a novel technique measuring 

14
C levels in DNA to assess the age of OB neurones (Spalding et al. 2005; Bhardwaj 

et al. 2006). This study suggests that all OB neurones may be produced at around 

the time of birth. However, the authors also emphasise the limitations of their 

method, which may not be sensitive enough to detect potential low levels of 

neurogenesis in adulthood. In addition, data from rodent studies suggests that 

unlike OB neurones born during development, those born in adulthood do not 

survive long-term, but are continually replaced (Winner et al. 2002). Coupled with 

the information that neurogenesis also declines with age (Sanai et al. 2011), it is not 

altogether surprising that only neurones formed at birth could be detected in this 

study.  

 

Though neurogenesis has been shown to be extremely restricted in the adult 

human brain, the existence of even limited neurogenesis itself is a monumental 

leap from the once held belief that “the nerve paths are something fixed, ended 

and immutable”(May 1991). Moreover, evidence of proliferation and recruitment 

of neural progenitors in humans following CNS injury, raises the possibility of 

activating a typically dormant system to aid neuronal repair (Arvidsson et al. 2002; 

Jin et al. 2006; Martino and Pluchino 2006; Sohur et al. 2006; Ekonomou et al. 2011; 

Ekonomou et al. 2012).  Though we are far from achieving this somewhat ambitious 

task, detailed research of the individual stages of neurogenesis - proliferation, 

migration, and differentiation – is essential for progress in this field.   
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1.2 Neuronal migration 

1.2.1 Neuronal migration in the developing CNS 

The migration of cells in response to extracellular cues is a highly regulated process 

that is fundamental to the evolution, development, and maintenance of multi-

cellular organisms (Wedlich 2005). This complex interplay between cells and their 

environment is nowhere more apparent than in the central nervous system (CNS). 

During mammalian brain development, neural precursors migrate from their point 

of origin to their eventual residence via one of two distinct forms of migration: 

radial (in a direction perpendicular to the surface of the brain) and tangential (in a 

direction parallel to the surface of the brain) (Park et al. 2002). Both forms of 

migration are particularly evident during corticogenesis. In the early stages of 

cortical development, when the cerebral wall is relatively thin, neurones that give 

rise to the plexiform layer or preplate, undergo a form of radial migration known as 

nuclear translocation.  In this mode of migration, terminally differentiated neurones 

that initially contact both the ventricular and pial surfaces lose contact with the 

ventricle and translocate their soma towards the pial surfaces. (Nadarajah et al. 

2001; Nadarajah et al. 2003). The subsequent group of migrating neuroblasts also 

use nuclear translocation to invade the plexiform layer, splitting it into the subplate 

and marginal zone, and giving rise to the first layer of glutamatergic projection 

neurones (pyramidal neurones) in the cortical plate (Gupta et al. 2002). As the size 

of the cerebral wall increases, neuroblasts are no longer able to translocate across 

the rapidly expanding width of the neocortex (Nadarajah et al. 2003). Thus, an 

alternative form of radial migration, known as locomotion, is adopted by precursors 

in the latter stages of corticogenesis. Neurones that migrate by locomotion crawl 

along a glial scaffold formed by the processes of radial glia which extend from the 

ventricular zone to the pial membrane. Each wave of migrating neurones, travel 

past the existing layers, thus generating the six layers of the neocortex in an inside-

out manner (Figure 1.5)  (Hatten 1999; Nadarajah et al. 2001; Kanatani et al. 2005).  
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Figure 1.5: Formation of the six layers of the neocortex by radially migrating cells. 

A schematic diagram showing the formation of the six layers of the neocortex 

during mammalian brain development. By embryonic day 11 (E11), the first wave of 

neuroblasts have migrated from the ventricular zone (VZ) to the pial surface (PS) 

forming the preplate (PP). At E13, the PP has been split into the marginal zone (MZ) 

and subplate (SP) by a second wave of migrating neuroblasts. During E14 to E18, 

the remaining layers of the cortical plate are generated in an inside-out manner by 

neuroblasts migrating along the processes of glia (vertical lines). In the adult, the SP 

degenerates to leave behind a six layered neocortex. Adapted from Gupta et al. 

(2002).  
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Although the majority of neurones in the developing cortex undergo radial 

migration, a small pool of tangentially migrating neurones have also been described 

in corticogenesis (Austin and Cepko 1990; Walsh and Cepko 1992; Reid et al. 1995). 

It is now believed that nearly all GABAergic interneurones of the cortex are derived 

from tangentially migrating neurones born from precursors in the subpallial 

telencephalon (Anderson et al. 1997; Stuhmer et al. 2002). Several proliferative 

zones in this region, which include the lateral ganglionic eminence (LGE), medial 

ganglionic eminence (MGE) and anterior entopeduncular area (AEP), all give rise to 

populations of neurones with distinct migratory routes that are spatially and 

temporally regulated (Marin and Rubenstein 2001) (Figure 1.6). Unlike radially 

migrating neurones of the cortical plate, tangentially migrating interneurones move 

independently of a glial scaffold (O'Rourke et al. 1995). Exactly how these cells are 

guided via multiple tangential pathways to distinct CNS regions is still unclear, 

though there is some evidence to suggest that axons of other neurones may act as 

a physical guide (Metin et al. 2000).  
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Figure 1.6: Tangential migration by precursors of the subcortical telencephalon 

during corticogenesis. A schematic diagram of transverse sections of an embryonic 

telencephalon showing the routes of tangential migration undertaken by neurones 

of the subcortical telencephalon at embryonic day 12 (a), 13.5 (b) and 15.5 (c). AEP, 

anterior entopeduncular area; H, hippocampus; LGE, lateral ganglionic eminence; 

MGE, medial ganglionic eminence; NCx, neocortex; PCx, piriform cortex; Str, 

striatum; SVZ, subventricular zone; VZ, ventricular zone. Adapted from Marin and 

Rubenstein (2001). 
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1.2.2 Neuronal migration in the adult CNS 

Long-distance tangential migration of neural precursors in the adult brain is 

restricted to the subventricular zone of the lateral ventricles, one of two sites 

known to accommodate ongoing neurogenesis (Luskin 1993; Lois and Alvarez-Buylla 

1994). Within the SVZ, running parallel to the walls of the lateral ventricles exist a 

network of interconnected tangential chains composed of migratory neuroblasts 

encased by a tube formed by the processes of SVZ astrocytes. These migratory 

chains of cells can vary in their thickness from just a single line of neuroblasts to 

thick bundles formed of 10 or more cells (Doetsch and Alvarez-Buylla 1996; Doetsch 

et al. 1997). As they approach the anterior horn, the majority of chains converge to 

form the rostral migratory stream (RMS), a highly restricted path running from the 

SVZ to the olfactory bulb (OB) (Doetsch and Alvarez-Buylla 1996). Migratory 

neuroblasts are mostly unipolar, having a characteristic elongated cell body and a 

single leading process tipped with a dynamic lamellipodium. Occasionally they may 

also have a trailing process or display bipolar morphology (Nam et al. 2007). 

Neuroblasts move towards the bulb using a unique form of collective migration, 

whereby the cells in a chain slide over one another (Lois et al. 1996). Despite the 

presence of a glial tube extending from the SVZ to the entrance of the OB, current 

evidence suggests that this structure is not required to guide neuroblasts along the 

stream (Wichterle et al. 1997; Law et al. 1999). Hence neuroblasts of the adult brain 

are capable of migrating between 4-8 mm through the complex environment of the 

adult CNS independently of a glial scaffold. It is most likely that a multitude of 

factors acting at different points along the RMS are required to guide neuroblast 

along this highly restricted path. Over the last decade a considerable effort has 

been made to uncover these mechanisms and a picture of how neuroblasts are 

regulated along the stream is slowly beginning to emerge (discussed in depth in 

Section 1.3). 

 

Similar to the developing brain, radial migration of neurones also persist in the 

adult. Upon reaching the OB, neuroblasts exit the glial tube, detach from the RMS 

chain, and migrate radially as single cells into the layers of the bulb (Alvarez-Buylla 

1997; Luskin 1998; Carleton et al. 2003). Although much of the research on 
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neuroblast migration in the adult CNS has focused primarily on tangential migration 

in the stream, there is an increasing amount of work investigating the transition 

from tangential to radial migration and the cues that direct neurones to their final 

position in the layers of the bulb. Hack et al. (2002) recently showed that reelin, a 

secreted extracellular matrix protein, acts as a detachment signal. Reelin was found 

to be expressed in an increasing gradient from the granule cell to the mitral cell 

layer and was absent in the RMS. Most notably, addition of reelin to explants 

cultures induced neuroblasts to migrate as single cells rather than in chains, whilst 

an accumulation of precursors was observed in the entrance to the OB in the reeler 

mouse (transgenic mouse line deficient of reelin). Similarly tenascin-R, another ECM 

protein, is also exclusively expressed in the granule and plexiform layers of the OB 

and induced detachment of neuroblasts from chains in vitro (Saghatelyan et al. 

2004). In addition to promoting single cell migration, tenascin-R was also found to 

behave as a chemoattractant, since ectopic expression of the protein re-routed 

neuroblasts away from the RMS and towards these sites. Furthermore, the 

expression of tenascin-R was found to be activity-dependent since odour 

deprivation caused a significant reduction in expression of the protein and a 

subsequent reduction in BrdU labelled neuroblasts being recruited to the bulb 

(Saghatelyan et al. 2004). Thus, in addition to promoting detachment and providing 

directional guidance, activity-dependent regulation of tenascin-R expression may be 

a mechanism of regulating neuroblast recruitment to the OB. More recently, 

prokineticin 2, a diffusible secreted protein that acts via G-protein coupled 

receptors, has also been proposed as both a detachment signal and 

chemoattractant in the OB (Ng et al. 2005).  

 

1.2.3 Pathological influences on neuronal migration in the adult SVZ 

A remarkable feature of SVZ neuroblasts is that they can be recruited away from 

their native migratory path to sites of injury or degeneration in the CNS. For 

example, in the R6/2 mouse and quinolinic acid lesion rat models of Huntington’s 

disease, which is characterised by neurodegeneration of GABAergic medium spiny 

neurones in the striatum, proliferation of NS cells in the SVZ is increased. Moreover, 

in these models, SVZ NS cell-derived neuroblasts migrate into the striatum and 
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differentiate into neurones (Tattersfield et al. 2004; Batista et al. 2006). Similarly in 

the 6-hydroxydopamine lesion induced model of Parkinson’s disease, neuroblasts 

were recruited into the adjacent striatum (Winner et al. 2008). Multiple 

observations of compensatory neurogenesis and long-distance migration of SVZ 

neuroblasts to areas of focal ischaemia have also been documented in rodent 

models of stroke (Nakatomi et al. 2002; Zhang et al. 2004; Ohab et al. 2006; 

Massouh and Saghatelyan 2010). Studies investigating the specific mediators that 

divert neural precursors to sites of pathological insult showed that brain derived 

neurotrophic factor (BDNF), caused progenitor cell expansion as well as recruitment 

of new neurones into the neostriatum when infused into the CNS or expressed after 

adenoviral transfection (Benraiss et al. 2001). In addition, there is now a body of 

evidence to suggest that chemotactic factors, such as stromal-derived factor (SDF-

1), and angiopoietin 1 (Ang1) secreted by newly formed un-perfused branches of 

the vascular endothelium in the peri-infarct region, may recruit neuroblasts through 

activation of CXCR4 and Tie2 receptors respectively (Ohab et al. 2006; Robin et al. 

2006; Thored et al. 2006). Interestingly, SDF-1 is also an important chemoattractant 

for migrating neurones in the developing brain (Stumm et al. 2003; Stumm and 

Hollt 2007), and thus implies that adult neural precursors have the potential to 

respond to guidance cues traditionally associated with development. Also, close 

examination of peri-infarct areas in models of stroke has revealed that newborn 

neuroblasts (BrdU/DCX
+
) specifically associate with areas of active vascular re-

modelling in this region (Ohab et al. 2006). Furthermore, inhibiting angiogenesis 

with endostatin caused a drastic reduction in stroke-induced recruitment of 

neuroblasts (Ohab et al. 2006). Hence, an association between neural and 

endothelial precursors appears to regulate NS cell proliferation in both the 

neurogenic niches of the SVZ and SGZ (Leventhal et al. 1999; Palmer et al. 2000; 

Doetsch 2003), as well as at sites of CNS injury, thus highlighting the importance of 

the relationship between angiogenesis and neurogenesis.  

 

Whether SVZ NS cell proliferation and migration in response to CNS injury also 

occurs in humans, or is a unique feature of rodent brains has been an extensively 

discussed topic. Evidence from post-mortem analysis of human brains following 
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stroke has revealed both an increase in SVZ NS cell proliferation, as well as 

migration of SVZ neuroblasts to the infarct area, with some cells displaying markers 

of differentiated neurones (Jin et al. 2006; Ekonomou et al. 2011; Ekonomou et al. 

2012). Thus, the adult human CNS is permissive to NS cell recruitment and neuronal 

replacement following injury, and contains an existing pool of NS cells which may 

be exploited in neuroregenerative strategies.  
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1.3 What's guiding neuroblast migration in the RMS? 

The RMS is not an easy path to follow: it is a tortuous route that dips and curves 

steeply before reaching the OB. Yet neuroblasts along the stream adhere tightly to 

its constraints, never venturing beyond its boundaries. Given the restrictive nature 

of the RMS, it is highly unlikely that this form of long-distance migration is reliant on 

a single factor. Instead, research carried out during the last two decades, suggests 

the existence of multiple chemorepulsive, chemoattractive, motogenic, and 

physical guidance cues acting at different points along the stream to co-ordinate 

the migration of neuroblasts to their eventual destination in the bulb (Cayre et al. 

2009; Leong and Turnley 2011). Here we review a comprehensive but not 

exhaustive list of the proposed guidance molecules recognised for their 

contribution to postnatal neuroblast migration. A detailed list of factors involved in 

RMS neuroblast migration can be found in Table 1.1 below. 

 

1.3.1 Architectural guides 

The flow of cerebrospinal fluid 

The flow of cerebrospinal fluid (CSF) is now recognised as an important factor 

directing neuroblast migration in the SVZ (Sawamoto et al. 2006). Fluoroscopic 

imaging reveals that the orientation of ependymal cilia beating correlates with CSF 

flow, which runs rostrally along the dorsal section of the lateral ventricle before 

turning ventrally in the anterior SVZ (Sawamoto et al. 2006). The concentration of 

the chemorepellent Slit, which is secreted by the choroid plexus (CP) and septum 

and is known to repel SVZ neuroblasts (Wu et al. 1999; Nguyen-Ba-Charvet et al. 

2004), was also found to be dictated by CSF flow, with the gradient becoming 

weaker rostrally. Interestingly, the orientation of neuroblasts was found to be 

determined specifically by the flow of CSF and not the relative position of the RMS 

or OB. For example, in the anterior SVZ neuroblasts are oriented ventrally, away 

from the RMS, but in line with CSF flow. Furthermore, disruption of cilia beating 

resulted in loss of the Slit concentration gradient, gross disorientation of 

neuroblasts in the SVZ, and significantly fewer neuroblasts entering the RMS 

(Sawamoto et al. 2006). However, once neuroblasts entered the stream, they 
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remained strictly oriented towards the bulb and migrated normally despite the loss 

of the chemorepulsive gradient, which suggests the existence of different guidance 

cues present in the SVZ and RMS. Thus, directed migration at the beginning of the 

stream is highly reliant on CP- and septum-derived chemorepulsive gradients 

created by the beating of ependymal cilia. 

 

Astrocytes 

Chains of migrating neuroblasts in the SVZ and RMS of the adult brain are encased 

within a glial tube formed by the processes of astrocytes (Lois et al. 1996). To date, 

the exact role of these astrocytes, as far as neuroblast migration is concerned, is 

still unclear. At first glance, it may appear as if the astrocytic tube may be 

responsible for the chain-like structure of migrating neuroblasts. However, the glial 

tube itself does not form until after P7 in mice, yet chain migration of neuroblasts is 

evident in the SVZ and RMS well before this period (Law et al. 1999; Peretto et al. 

2005). In addition neuroblasts are able to migrate as chains in vitro in the absence 

of any glial scaffold (Wichterle et al. 1997; Ward and Rao 2005). Another possibility 

is that the vasculature may act as a physical barrier to contain migrating 

neuroblasts or concentrate signalling molecules. However, microscopic analysis 

shows that the ensheathing astrocytes do not form a continuous barrier, and the 

density of astrocytic processes is in fact greater within the RMS than around it, as 

would not be expected of a physical barrier (Whitman et al. 2009). Interestingly, the 

average speed of migrating neuroblast is greater in the glial tube containing adult 

RMS (31 µm/hour) than in the RMS of P5 mice (24 µm/hour) (Bovetti et al. 2007). 

One suggestion for this observed difference in migratory speed is that, in the 

absence of the astrocytic tunnel neuroblasts have to migrate through the 

extracellular matrix to reach the OB (Bovetti et al. 2007). Instead, formation of the 

astrocytic tube creates a path of low resistance, which may facilitate neuroblast 

migration and account for the perceived increase in speed. This theory is supported 

by the fact that inhibitors of matrix metalloproteinases (MMP), proteolytic enzymes 

that re-model the extracellular matrix (ECM), perturb neuroblast migration in the 

early postnatal brain, but not in the adult brain (Bovetti et al. 2007). This 

observation raises the question as to why neuroblasts need to increase their 
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migration speed at all if they are perfectly capable of migrating to the OB in the 

absence of a glial tube. One possibility is that, as the brain develops, the distance 

between the SVZ and OB becomes ever-greater. Thus faster migration speeds may 

be required to maintain the population of newborn neurones arriving at the bulb 

each day. Thus, greater speeds necessary for long distance migration in the adult 

brain may be achieved via the creation of a path of low resistance by astrocytes. 

 

Vasculature 

The vasculature within the RMS is highly organised. Unlike the rest of the CNS 

where blood vessels appear to be randomly arranged, in the RMS they run parallel 

to the direction of the stream and are considerably denser here than in the 

surrounding areas (Snapyan et al. 2009; Whitman et al. 2009). This organisation is 

unique to the adult RMS as it is absent in the embryonic brain, and only starts to 

emerge during the late stages of development (Nie et al. 2010).  In the adult brain, 

neuroblasts form a close association with the vasculature, with the majority being 

less than 3 µm distance from a neighbouring blood vessel (Snapyan et al. 2009). 

Similarly, the processes of astrocytes are also closely associated, often forming a 

barrier between neuroblasts and endothelial cells (Whitman et al. 2009).  The close 

association of migrating neuroblasts with the vasculature suggests several 

possibilities. One is that being in close proximity to blood vessels facilitates the 

supply of diffusible guidance signals, as well as oxygen and nutrients to support the 

high metabolic demand of migrating cells, or the vasculature itself acts as a physical 

guide to migrating neuroblasts. Time lapse imaging has revealed that neuroblasts 

do in fact use the vasculature as a scaffold, and can be seen migrating along blood 

vessels throughout the RMS. In addition, Snapyan et al. (2009) also demonstrated 

that endothelial cells in the RMS release BDNF, which enhances migration by 

activation of p75NTR on neuroblasts. Contrary to these findings, Nie et al. (2010) 

published data showing that proliferating cells in the RMS are juxtaposed  to blood 

vessels, and proliferation not migration is reliant on the vasculature. However, it is 

important to note that whilst studies demonstrating migration of neuroblasts along 

blood vessels in the RMS were performed in adult brains (> 2months old), those 

performed by Nie et al. (2010) were done on P4 mice based on observations that 



46 

 

organisation of blood vessels in the RMS is complete by this stage. However, new 

evidence now suggests that the architecture of the vasculature in the RMS is re-

modelled following the emergence of the glial tube, which does not take place until 

after P7 (Bozoyan et al. 2012). Secretion of vascular endothelial growth factor 

(VEGF) by glial tube astrocytes has now been shown to be important for the 

formation of the parallel arrangement of blood vessels characteristic of the adult 

RMS (Bozoyan et al. 2012). In addition, several studies have demonstrated that 

different modes of migration are utilised by neuroblasts before and after formation 

of the glial tube (Bovetti et al. 2007; Bozoyan et al. 2012), and that feedback 

mechanisms involving neuroblasts, astrocytes and endothelial cells may be 

important for this difference (Snapyan et al. 2009). Hence, failure to see vasculature 

guided migration of neuroblasts in P4 mice may be due to the difference in the 

glial-blood vessel architecture of the stream at this point in development, and does 

not rule out the vasculature as a migratory scaffold for neuroblasts in the adult 

brain. 

 

1.3.2 Adhesion molecules 

PSA-NCAM 

Neural cell adhesion molecule (NCAM) is a homophilic receptor involved in cell-cell 

interactions and has been implicated in several developmental functions including 

axon guidance and neural crest cell migration (Doherty et al. 1990; Doherty et al. 

1990; Bronner-Fraser et al. 1992).  Post-translational modification of this molecule 

by the addition of polysialic acid (PSA) reduces its adhesiveness and is necessary for 

NCAM’s role in regulating morphogenesis and cell migration in the developing CNS 

(Rutishauser et al. 1985). In the adult brain, the SVZ/RMS is one of few regions 

where PSA-NCAM expression persists. Here, it is exclusively expressed by migrating 

neuroblasts (Seki and Arai 1993). Interestingly, the RMS in NCAM-deficient mice still 

forms a continuous stream, and although less pronounced, migrating chains of 

neuroblasts can still be observed (Chazal et al. 2000). Thus, chain formation itself 

does not appear to be reliant on the expression of PSA-NCAM. However, the OB in 

these mice is notably smaller despite no obvious defect in proliferation in the SVZ. 

Also, fewer BrdU-labelled neuroblasts reach the OB in mutant mice, hence 
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suggesting the existence of a migration defect (Tomasiewicz et al. 1993; Cremer et 

al. 1994). Similarly, enzymatic removal of PSA in vivo with Endo N also resulted in 

fewer BrdU positive cells reaching the OB, thus phenocopying the migratory defect 

seen with NCAM deficient mice, and implying that the glycosylation of NCAM is 

essential for its function in the RMS (Ono et al. 1994). Surprisingly, NCAM deficient 

neuroblasts migrate normally when transplanted into a WT postnatal SVZ, whilst 

WT neuroblasts struggle to migrate in an NCAM deficient or PSA deficient SVZ 

environment (Hu et al. 1996). Given that neuroblasts migrate by sliding over each 

other, glycosylation of NCAM and a consequent reduction in adhesiveness may be a 

requirement for this process to occur. So, it appears that although PSA-NCAM is not 

a necessity for the formation of neuroblast chains and does not regulate intrinsic 

motility, the reduced adhesiveness of NCAM following addition of PSA may allow 

neuroblasts to use each other as a substrate for migration.  

 

Integrins 

Integrins are heterophilic binding receptors consisting of an α and β chain. They are 

involved in cell-cell and cell-ECM interactions and play an important role in 

transducing information about the ECM to the cell (Hynes 2002). There is now an 

increasing amount of evidence to suggest that the integrin family of cell adhesion 

molecules play a vital role in neuroblast migration in the SVZ. Belvindrah et al. 

(2007) showed that β1 integrins are expressed by neuroblasts throughout the RMS. 

Interestingly, the authors also found that the expression of α1, α6, and α7 subunits, 

which dimerise with β1 subunits to form laminin receptors, was increased in the 

RMS in comparison to the SVZ. Furthermore, laminin was found to be concentrated 

around the surface of neuroblasts. Analysis of Itgb1-CNSKo mice - where β1 

deficiency is restricted to nestin expressing cells – revealed an RMS in which cells 

failed to assemble in chains. A similar defect was also seen in laminin α2 and α4 

deficient mice where the chains of neuroblasts were less compact (Belvindrah et al. 

2007). Moreover, in vitro migration assays also showed that neuroblasts from Itgb1-

CNSKo mice migrate as single cells without any change to the distance migrated 

(Belvindrah et al. 2007). The concept that the interaction between integrins and 

laminin is required for the formation of chains is further supported by observations 
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that neuroblast migration in a collagen matrix can be switched from single cell to 

chain migration by the introduction of laminin (Belvindrah et al. 2007), whilst 

neutralising antibodies to α6β1 integrin reduces the cohesive nature of neuroblasts 

(Emsley and Hagg 2003). More recently, a role for β8 integrin has also been 

suggested based on a loss of migrating chains in β8-/- and nestin-Cre β8 flox/flox 

mutants. In these mice, neuroblasts fail to form chains and are found as rosette-

shaped aggregates throughout the RMS (Mobley et al. 2009). Though there seems 

to be a general consensus that integrins are involved in neuroblast migration, there 

is still considerable dispute as to which integrins are the key players in this system. 

For example, Murase and Horwitz (2002) showed using immunohistochemistry that 

the expression of different integrin subunits by neuroblasts changed throughout 

development. This study found that β1 and β8 were only expressed in the early 

postnatal period (up to P10), whilst β6 and β10 persisted into adulthood. They also 

showed that function blocking antibodies to the individual integrin subunits 

perturbed neuroblast migration in slice cultures, but only if used at the time of 

expression. Contrary to these findings, Belvindrah et al. (2007) detected β1 and β5 

subunits in FACS sorted neuroblasts from the adult RMS. Another group has also 

reported the expression of β1, β5, and β8 subunits in neuroblasts from P14 mice 

(Mobley and McCarty 2011). Taken together, most studies implicate β1 and β8 

integrins as the main forms responsible for neuroblast migration in the adult brain.  

 

PSA-NCAM and integrins are emerging as important regulators of RMS neuroblast 

migration, each with distinctive roles in this process. Whilst integrins seem to be 

responsible for the formation of chains, PSA-NCAM appears to create an 

environment that is permissive to migration.    

 

1.3.3 Guidance molecules 

Slit proteins 

The discovery that cultures of the septum and CP repel SVZ neuroblasts in vitro led 

to the identification of the Slit proteins as one of the major regulators of neuroblast 

migration in the SVZ (Hu and Rutishauser 1996; Hu 1999; Wu et al. 1999). In the 

developing brain, the repulsive activity of Slit proteins plays a vital role in axon 
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guidance (Brose et al. 1999; Kidd et al. 1999; Nguyen Ba-Charvet et al. 1999; 

Nguyen-Ba-Charvet et al. 2002). In a similar way, a gradient of Slit created by the 

beating of cilia in the lateral ventricles is believed to propel neuroblasts from the 

SVZ into the RMS (Sawamoto et al. 2006). A role for Slit proteins as a 

chemorepellent in the SVZ is further supported by evidence that migrating 

neuroblasts re-orient their leading process in the opposite direction when 

presented with a source of Slit (Ward et al. 2003), whilst cultures of septum and 

choroid plexus derived from Slit1 and Slit2 deficient mice fail to show 

chemorepulsive activity towards neuroblasts in vitro (Nguyen-Ba-Charvet et al. 

2004). Moreover, neuroblasts migrate outside their putative route and invade the 

corpus callosum in Slit1
-/-

 mice, thus confirming the role of Slits as a chemorepulsive 

cue for SVZ neuroblasts (Nguyen-Ba-Charvet et al. 2004).  

 

Growth factors 

Several growth factors are now recognised as important chemoattractants and/or 

motogens regulating neuroblast migration in the RMS. Both glial derived 

neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) have been 

proposed as chemoattractants directing neuroblasts to the OB (Paratcha et al. 

2006; Garzotto et al. 2008). Indeed, neuroblasts express receptors for GDNF and 

HGF (GFRα1 and Met respectively), and the expression of both factors follows a 

rostro-caudal gradient, with the highest expression being in the bulb. In vitro 

chemotaxis assays also confirmed the roles of GDNF and HGF as chemoattractants 

to neuroblasts (Paratcha et al. 2006; Garzotto et al. 2008).  

 

Another study showed that vascular endothelial growth factor (VEGF) acts as both a 

chemoattractant and motogen for RMS neuroblasts. Here the authors show that 

VEGF acts specifically through VEGFR2, and that expression of this receptor was 

reliant on the presence of FGF-2 (Zhang et al. 2003). FGF-2 itself did not have a 

chemotactic or motogenic effect in this study, which contradicts reports by Garcia-

Gonzalez et al. (2010) who report that FGF-2 was a motogen for neuroblasts. Insulin 

like growth factor (IGF) is another molecule whose function in regulating neuroblast 

migration is also unclear. Whilst exogenous addition of IGF significantly enhanced 
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neuroblast migration from explants cultures, IGF
-/-

 explants show no disruption of 

migration (Hurtado-Chong et al. 2009).  

 

Brain derived neurotrophic factor (BDNF), which is known for directing long-

distance migration of tangentially migrating cortical interneurones in development 

(Polleux et al. 2002), has also been recognised as a regulator of neuroblast 

migration in the RMS. BDNF has been shown to behave as a motogen when 

presented in a uniform concentration (Chiaramello et al. 2007), and as a 

chemoattractant to neuroblasts when presented in a gradient (Chiaramello et al. 

2007; Snapyan et al. 2009).  While some studies report a higher expression of BDNF 

and its receptor in the OB in comparison to the RMS, and suggest that the primary 

function of this growth factor is as a chemoattractant (Chiaramello et al. 2007), 

others have shown a uniform expression of BDNF along the stream (Petridis and El 

Maarouf 2011). This is consistent with reports that blood vessels are the main 

source of BDNF in the RMS and would therefore lead to the creation of a uniform 

concentration of BDNF along the length of the RMS (Snapyan et al. 2009). In theory 

BDNF could act as both chemoattractant and motogen in this situation. For 

example, BDNF secreted by blood vessels may help to draw neuroblasts towards 

the vasculature, an association that has been shown to be important for neuroblast 

migration (Snapyan et al. 2009); while the motogenic activity of BDNF may help to 

enhance migration of cells towards the bulb. There is currently some dispute as to 

which receptors are responsible for mediating the effects of BDNF. Snapyan et al. 

(2009) suggest that neuroblasts predominantly express p75NTR. They also report 

that GABA released by neuroblasts activates GABAA receptors on astrocytes, which 

in turn express the high affinity Trk receptor that leads to sequestering of BDNF in 

the RMS. This mechanism has been suggested as a means by which neuroblasts 

negatively regulate their own migration. In contrast to these findings, others have 

shown that neuroblasts mostly express Trk receptors and that activation of this 

receptor and subsequent stimulation of the PI3K and MAPK pathways is responsible 

for the migratory effects of BDNF (Chiaramello et al. 2007; Bagley and Belluscio 

2010). Hence, despite the general agreement that BDNF has a vital role in the 
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regulation of RMS neuroblast migration, the specifics as to how this is achieved is 

yet to be established. 

 

In contrast to most growth factors, epidermal growth factor receptor (EGFr) 

activation has been suggested as a negative regulator of neuroblast migration (Kim 

et al. 2009). Previous reports show that EGFr is predominantly expressed by C cells 

in the SVZ and is not expressed by neuroblasts. Recently Kim et al. (2009) showed 

that a subpopulation of cells in the RMS display low expression of EGFr (EGFr
low

) 

negatively correlating with the expression of neuroblast markers (PSA-NCAM, DCX, 

and βlll tubulin), possibly indicative of the transition stage from C cell to neuroblast. 

EGFr
low

 neuroblasts display a slower less directed migration compared to EGFr 

negative neuroblasts. Exogenous addition of the EGFr ligand TGF-α to brain slice 

cultures caused a drastic reduction in the number of motile cells and a small 

increase in proliferative cells in the RMS, though the authors did not investigate 

exactly which cells in the RMS were proliferating (Kim et al. 2009). The role of EGFr 

in migration is complicated by the fact that activation of this receptor can change 

committed neural progenitors into a more premature state (Doetsch et al. 2002; 

Gonzalez-Perez et al. 2009). Thus, it is not clear whether the observed reduction in 

motile cells is caused by a change in the identity of EGFr
low

 neuroblasts into a 

progenitor type phenotype or whether it directly affects motility without cell fate. 

 

Neurotransmitters 

Migrating neuroblasts in the RMS express both glutamate and GABA receptors in a 

mosaic fashion. Whilst nearly all neuroblasts express the ionotropic GABAA 

receptor, a small population of these cells express either GLUk5 or mGluR or both 

(Platel et al. 2008). Exogenous application of GABA significantly reduces the 

migration speed of neuroblasts (Bolteus and Bordey 2004). Interestingly, 

neuroblasts themselves are the source of GABA in the stream, and regulate their 

own migration via GABA-mediated activation of GABAA receptors and subsequent 

inhibition of Ca
2+

 release from IP3 sensitive intracellular stores. Astrocytes within 

the RMS express the high affinity GABA transporter GAT4, and thereby influence 

neuroblast migration indirectly by managing the availability of GABA (Bolteus and 
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Bordey 2004). The lack of a glial tube in the OB, and hence the loss of GABA 

transporters may expose neuroblasts to higher concentrations of GABA in the bulb, 

which may be a mechanism by which differentiating neurones eventually stop 

migrating. Surprisingly, exogenous administration of glutamate, which increases 

intracellular Ca
2+

, also inhibited neuroblast migration when applied exogenously to 

slice cultures. This effect is specifically mediated by GLUk5 receptors and is 

independent of mGluR activation (Platel et al. 2008).   

 

Olfactory bulb derived chemoattractants 

It seems only natural that long-distance migration, such as that seen in the adult 

RMS, should require a chemoattractant at the final destination. Hence, there was 

much surprise upon the discovery that neuroblasts continue to migrate along the 

entire length of the RMS even after surgical removal of the OB (Kirschenbaum et al. 

1999). Given that the RMS is a meandering path approximately 5 mm in length (Lois 

et al. 1996), it is highly unlikely that neuroblast migration is regulated by a single OB 

derived attractant. Instead it is most probable that gradients of several factors at 

different parts of the stream direct neuroblasts towards the bulb (Cayre et al. 2009; 

Leong and Turnley 2011). Hence, a chemoattractant secreted by the OB may only 

be involved in regulating the final leg of this journey. In support of this concept, Liu 

and Rao (2003) have published data showing the existence of an OB derived 

chemoattractant. This factor seems to arise from the glomerular and mitral cell 

layers of the OB and its properties do not fit with any of the known 

chemoattractants. The authors also show that although the OB is not an absolute 

necessity for neuroblasts from the SVZ to migrate along the stream, loss of the OB 

increases the number of cells migrating in the opposite direction. Thus, an OB-

derived chemoattractant may be involved in guiding neuroblasts in the final stage 

of their migration. 
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Table 1.1: Regulators of RMS neuroblast migration 

Regulators of RMS neuroblast migration Reference 

CSF flow (Sawamoto et al. 2006) 

Matrix metalloproteinases (Bovetti et al. 2007) 

Vasculature 
(Snapyan et al. 2009; Whitman et al. 2009; 

Bozoyan et al. 2012) 

DCX (Koizumi et al. 2006; Ocbina et al. 2006) 

Drebrin (Song et al. 2008) 

PSA-NCAM 

(Tomasiewicz et al. 1993; Cremer et al. 

1994; Ono et al. 1994; Hu et al. 1996; Chazal 

et al. 2000) 

Integrins 

(Emsley and Hagg 2003; Belvindrah et al. 

2007; Mobley et al. 2009; Mobley and 

McCarty 2011) 

ADAM2 (Murase et al. 2008) 

Galectin-3 (Comte et al. 2011) 

Connexins (Marins et al. 2009) 

Slit 

(Hu and Rutishauser 1996; Hu 1999; Wu et 

al. 1999; Nguyen-Ba-Charvet et al. 2002; 

Ward et al. 2003; Nguyen-Ba-Charvet et al. 

2004) 

Ephrins (Conover et al. 2000) 

Neuroregulins (Anton et al. 2004) 

Netrin1 
(Murase and Horwitz 2002; Hakanen et al. 

2011) 

Ganglioside 9-O-acetyl GD3 (Miyakoshi et al. 2012) 

ApoER2/VLDL receptor (Andrade et al. 2007) 

GDNF (Paratcha et al. 2006) 

HGF (Garzotto et al. 2008) 

BDNF (Chiaramello et al. 2007) 

VEGF (Zhang et al. 2003; Wittko et al. 2009) 

FGF-2 (Garcia-Gonzalez et al. 2010) 

IGF (Hurtado-Chong et al. 2009) 
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EGF (Kim et al. 2009) 

GABA (Bolteus and Bordey 2004) 

Glutamate (Platel et al. 2008; Platel et al. 2008) 

MIA (Mason et al. 2001) 

Tenascin-R (Saghatelyan et al. 2004) 

Reelin (Hack et al. 2002) 

Prokineticin-2 (Ng et al. 2005) 
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1.4 The role of endocannabinoids in the CNS 

Cannabis Sativa has been used throughout history for both medicinal and 

recreational purposes (Aggarwal et al. 2009). We now know that Δ-

tetrahydrocannabinol, the main bioactive compound in cannabis (Mechoulam and 

Gaoni 1965), exerts its many biological effects through the activation of 

cannabinoid (CB) receptors (Matsuda et al. 1990; Munro et al. 1993), and that 

endogenous cannabinoids or endocannabinoids (eCBs) play vital roles in both the 

developing and adult CNS (Harkany et al. 2007; Mechoulam and Parker 2012). In 

recent years, the eCB system has also been implicated in the regulation of adult 

neurogenesis (Oudin et al. 2011). The expression of a functional eCB system in adult 

SVZ neural precursors (Aguado et al. 2006; Palazuelos et al. 2006; Goncalves et al. 

2008; Gao et al. 2010), coupled with the ability of eCBs to regulate the migration of 

both cortical interneurones during development and immune cells (Berghuis et al. 

2005; Miller and Stella 2008), suggests a possibility for this system to be involved in 

RMS neuroblast migration. Here we provide a brief overview of the eCB system and 

outline some of its recognised functions in the CNS. 

  

1.4.1 Synthesis and degradation 

Endocannabinoids (eCB), 2-arachidonyl-glycerol (2-AG) and anandamide, are lipid 

mediators synthesised on-demand from membrane phospholipids (Figure 1.7). 

Anandamide synthesis is a multi-step process involving conversion of 

phosphatidylethanolamine (PE) into N-arachidonyl-PE (NAPE) by the enzyme N-

acetyl-transferase, and subsequent hydrolysis by phospholipase D (PLD) (Di Marzo 

et al. 1994; Cadas et al. 1997). 2-AG, the most abundant eCB in the brain, is 

generated from hydrolysis of 1,2-diacylglycerol (DAG) by the enzyme DAG-lipase 

(DAG-L) (Farooqui et al. 1989; Bisogno et al. 2003). The precursor DAG is 

synthesised by the actions of PLC on PIP2 to generate DAG and IP3, both of which 

are secondary messengers. Whist IP3 induces release of Ca
2+

 from intracellular 

stores; DAG activates protein kinase C (PKC). Thus, DAG is both the end-product of 

one pathway, and the precursor of another (Piomelli 2003). The secondary 

messenger activity of DAG is regulated by the enzyme DAG-kinase, which converts 
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the precursor into phosphatidic acid, thus terminating its biological activity (Kanoh 

et al. 2002). The synthesis of both anandamide and 2-AG are Ca
2+

 dependent 

processes and can be initiated artificially in cultured neurones by increasing 

intracellular Ca
2+

 using Ca
2+ 

ionophore ionomycin (Cadas et al. 1996). eCB synthesis 

has also been linked to activation of G protein coupled receptors (GPCRs) such as 

muscarinic acetylcholine and metabotropic glutamate receptors (Varma et al. 2001; 

Kim et al. 2002). Interestingly, high frequency stimulation in hippocampal cultures 

increases 2-AG levels but not anandamide, whereas dopamine receptor 2 activation 

in the striatum specifically increases anandamide production without affecting 2-AG 

(Stella et al. 1997; Stella and Piomelli 2001). Thus the production of each eCB can 

be regulated independently in neurones. Unlike Δ-tetrahydrocannabinol, the main 

bioactive component of cannabis, the eCBs are rapidly degraded following synthesis 

(Giuffrida et al. 2001). Whist anandamide is hydrolysed by fatty acid amide 

hydrolase (FAAH) to arachidonic acid and ethanolamine (Cravatt et al. 1996), 2-AG 

is degraded by both FAAH and monoacylglycerol lipase (MAG-L) into fatty acid and 

glycerol (Dinh et al. 2002). 
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Figure 1.7: The synthetic pathways of endocannabinoids. A diagram showing the 

main synthetic pathways for anandamide and 2-AG from membrane phospholipids. 

Adapted from Piomelli (2003). Abbreviations: Diacylglycerol lipase (DAG-L), 

phospholipase C (PLC), phospholipase D (PLD). 
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1.4.2 CB receptors 

The many diverse functions of the eCBs are mediated through the activation of G-

protein coupled receptors CB1 and CB2, both of which couple to the Gi/o family of 

monomeric G proteins. The CB1 receptor, the most abundant GPCR in the brain, is 

expressed as early as E11 in the neural tube, and in the adult is found throughout 

the central and peripheral nervous systems (Buckley et al. 1998). The CB2 receptor 

on the other hand is absent in the developing nervous system and is most 

abundantly expressed in the liver during embryogenesis (Buckley et al. 1998). In the 

adult, CB2 receptors are predominantly expressed by cells of the immune system, 

and have been shown to modulate migration of these cells (Cabral et al. 2008; 

Miller and Stella 2008). However, the discovery that select groups of neurones in 

the brainstem and cerebellum, as wells as  neural progenitors in the subventricular 

zone (SVZ)  express the CB2 receptor, has instigated newfound interest into its role 

in the brain (Palazuelos et al. 2006; Goncalves et al. 2008). CB receptors can be 

activated by local production of eCBs. Due to the hydrophobic nature of 2-AG and 

anandamide, they have a tendency to remain within the lipid membrane following 

synthesis. This unusual property allows them to activate CB receptors within the 

same cell by a process of lateral membrane diffusion (Song and Bonner 1996; Xie et 

al. 1996). At the same time, eCBs have also been shown to activate CB receptors on 

the terminals of adjacent axons (Kreitzer and Regehr 2001; Wilson and Nicoll 2001). 

Exactly how they are transported through the aqueous environment is still 

unknown, though there is some speculation that lipid binding proteins may be 

involved in facilitating this process (Piomelli 2003).   

 

1.4.3 CB receptor signalling 

Activation of either CB1 or CB2 receptor results in classical signalling associated 

with the Gi/o family of G proteins. In neurones, CB1 receptor activation leads to 

inhibition of N and P/Q type voltage gated Ca
2+

 channels and opening of K
+
 

channels. The effect on Ca
2+

 channels is believed to occur through direct interaction 

of the βγ subunit of the G protein with the channel, whilst the effect on K
+
 channels 

result from attenuation of PKA activity following inhibition of adenyl cyclase and 

subsequent reduction in intracellular cAMP. This is the main mechanism by which 
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CB receptors inhibit neurotransmitter release in the adult CNS (Pertwee 2006). 

Another feature of CB receptor signalling, is the activation of several kinases 

including focal adhesion kinase (FAK), extracellular signal related kinase (ERK), PI3K, 

and the MAPK pathway (Derkinderen et al. 1996; Adams and Sweatt 2002; 

Derkinderen et al. 2003). Interestingly, in the absence of Gi/o proteins, CB receptors 

can couple to Gs proteins, thus resulting in an increase in cAMP and activation of 

PKA (Glass and Felder 1997).  

 

1.4.4 Functions of the eCB system in the CNS 

eCB function in the adult CNS 

In the adult brain, the main function of the CB1 receptor is inhibition of 

neurotransmitter release via retrograde signalling (Pertwee 2006; Uchigashima et 

al. 2007) (Figure 1.8). Here, 2-AG produced post-synaptically, acts on pre-synaptic 

CB1 receptors to inhibit neurotransmitter release via its actions on Ca
2+

 and K
+
 ion 

channels.  The majority of CB1 receptors are located on cholecystokinin-8 (CCK-8) 

positive GABA interneurones (Tsou et al. 1998). In the hippocampus, depolarisation 

of pyramidal neurones leads to postsynaptic synthesis of eCBs, activation of 

presynaptic CB1 receptor on GABAergic interneurones, and inhibition of 

neurotransmitter release that ultimately increases the excitability of the target cell 

(Wilson and Nicoll 2001). This process, termed depolarisation-induced suppression 

of inhibition (DSI), is thought to be a mechanism by which synaptic plasticity and 

long term potentiation is achieved in the hippocampus (Alger 2002). In contrast, 

activation of CB1 receptors on glutamatergic presynaptic terminals has the opposite 

effect and is known as depolarisation induced suppression of excitation (DSE) (Alger 

2002). Much of the characteristics effects of cannabis (altered perception, 

euphoria, hallucination, enhanced appetite, reduced spontaneous motor activity, 

immobility, analgesia and impairment of short-term memory) can be attributed to 

regulation of neurotransmitter release by CB1 receptors in discrete regions of the 

CNS (Piomelli 2003). 
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Figure 1.8: Retrograde signalling by endocannabinoids. Membrane depolarisation 

in pyramidal neurones in the hippocampus leads to activation of DAG-L and 

synthesis of 2-AG. Activation of CB receptors on adjacent GABAergic and 

glutamatergic neurones leads to suppression of neurotransmitter release via 

retrograde signalling.  Adapted from Piomelli (2003). 
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eCB function in the developing brain 

During development, the eCB system actively participates in axon growth and 

guidance through its actions on the CB1 receptor (Williams et al. 2003). In fact, the 

appearance of CB1 receptor expression throughout the developing brain coincides 

with differentiation of cells into a neuronal fate (Begbie et al. 2004). Thus it appears 

that CB1 receptor expression may be required by cells taking on a neuronal 

phenotype in order to guide their growing axons to the correct target. The function 

of the CB1 receptor in axonal guidance occurs downstream of signalling through cell 

adhesion molecules (Williams et al. 1994; Williams et al. 2003). Specifically, 

information regarding the extracellular environment is transduced via activation of 

the FGF receptor by FGF or adhesion molecules NCAM, N-Cadherin and L1 (Williams 

et al. 2001; Sanchez-Heras et al. 2006). Classical signalling associated with this 

receptor tyrosine kinase ultimately leads to the activation of PLC and production of 

the precursor DAG. An unknown mechanism couples FGF receptor signalling to the 

activation of DAG-L, which results in the production of the eCB 2-AG (Williams et al. 

2003). In contrast to the adult nervous system, the eCB synthetic enzyme and CB1 

receptor are both expressed within the growing axon terminal, which allows locally 

produced lipid mediators to activate receptors within the same membrane, and 

thus creates a local signalling circuit. Interestingly, activation of the CB1 receptor 

during development leads to opening of voltage gated Ca
2+

 channels which may 

arise from the ability of CB receptors to couple to different signalling molecules 

under certain conditions (Glass and Felder 1997). The following increase in 

intracellular Ca
2+

 has been shown to be a pivotal step in steering axonal growth 

(Doherty et al. 1991; Williams et al. 1994).  

 

eCB function in adult neurogenesis 

The eCB system is now recognised as having an important role in the regulation of 

adult neurogenesis. An underlying eCB tone in the SVZ regulates the proliferation of 

NS cells through the activation of CB1 and CB2 receptors on dividing cells (Jin et al. 

2004; Aguado et al. 2006; Palazuelos et al. 2006; Goncalves et al. 2008). 

Furthermore, DAG-Lα knockout animals have severely reduced neurogenesis, 

suggesting that 2-AG is the main eCB contributing to this process (Gao et al. 2010). 
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Interestingly, in young animals, where neurogenesis is maximal, administration of a 

CB2 agonist did not increase NS cell proliferation any further (Goncalves et al. 

2008). However, in older animals, where proliferation of NS cells has declined, 

administration of a CB2 agonist was able to restore neurogenesis to levels similar to 

those seen in young animals (Goncalves et al. 2008). Much of the scepticism 

surrounding the therapeutic potential of adult neural stem cells, has arisen from 

the limited neurogenesis present in the adult human brain (Sanai et al. 2011). Thus, 

these findings raise the exciting possibility that neurogenesis may possibly be re-

activated in the adult brain through stimulation of the eCB system. 
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1.5 Molecular regulation of neuronal migration 

Like all migratory cells, neuroblasts undergo a series of cytoskeletal re-

arrangements to mediate motion. The initiating step, polarisation of the cell and 

extension of a leading process, occurs in response to the integration of extracellular 

signals, resulting in a polarised distribution of intracellular signalling molecules and 

preferential polymerisation of actin on one side of the cell (Lambert de Rouvroit 

and Goffinet 2001). This is followed by forward movement of the soma and its 

organelles, a process termed somal translocation or nucleokinesis, and results in 

net movement of the cell (Lambert de Rouvroit and Goffinet 2001).  Uncovering the 

signalling cascade regulating neuronal migration has been complicated by the 

existence of diverse morphologies and modes of migration adopted by different 

populations of migrating neural precursors. For example, SVZ neuroblasts have a 

short compact single leading process, precerebellar neurones in the pons have long 

leading processes extending for several hundred µm, whilst cortical interneurones 

have branched leading processes (Marin et al. 2006). Thus, it was largely believed 

that a unique migratory mechanism was responsible for each form of migration. 

However, recent evidence showing that the same neurones can switch between 

radial and tangential migration (Lois and Alvarez-Buylla 1994; Nadarajah et al. 2002; 

Nadarajah and Parnavelas 2002), as well as alter their morphology at different 

stages of migration (Kriegstein and Noctor 2004; Noctor et al. 2004; Marin et al. 

2006), suggests the existence of a common underlying mechanism that is 

modulated  to achieve the diverse modes and morphologies observed by migrating 

neural precursors. Thus, although very little is known about the molecular 

regulation of SVZ neuroblast migration, our current understanding of neuronal 

migration in other contexts may assist in elucidating the key players controlling 

migration in the adult CNS.    

 

1.5.1 Leading process extension 

The leading process in SVZ migratory neuroblasts is tipped with a dynamic 

lamellipodial structure that resembles growth cones in axons (Nam et al. 2007). 

Finger-like filopodial protrusions, found at the edges of lamellipodia, constantly 



64 

 

probe the extracellular environment for guidance cues. Both lamellipodia and 

filopodia are based on an underlying actin framework, and are required for 

translating differences in extracellular chemical gradients into polarisation of 

signalling molecules within the cell (Luo 2000; Lambert de Rouvroit and Goffinet 

2001; Marin et al. 2006). Ultimately, polymerisation of actin monomers, a process 

regulated by numerous actin binding proteins, generates the protrusive force 

required for leading process extension (Ridley et al. 2003), whilst microtubule 

assembly helps to stabilise and establish the leading process (Schliwa et al. 1999; 

Gopal et al. 2010). In addition, adherence to the extracellular matrix via formation 

of adhesion complexes is also required to generate force for migration to occur 

(Ridley et al. 2003). We now know from studies in neuronal and non-neuronal cells 

that selective activation of PI3K at the leading front following G-protein coupled 

receptor or tyrosine kinase receptor activation is a crucial event in directed 

migration (Funamoto et al. 2002; Weiner 2002). For example, the motogenic effects 

of BDNF and HGF in cortical interneurones, as well as the chemotactic effect of 

reelin on radially migrating projection neurones, are both dependent on localised 

activation of PI3K (Beffert et al. 2002; Polleux et al. 2002; Segarra et al. 2006). Both 

Rac1 and Cdc42, members of the Rho family of GTPases responsible for the 

formation of lamellipodia and filopodia (respectively) in other cell types, act 

downstream of PI3K in migrating neurones (Konno et al. 2005). In non-neuronal 

cells, both Rac1 and Cdc42 are found at the leading front, where Cdc42 is believed 

to orient the MTOC ahead of the nucleus and Rac1 is involved in formation of 

protrusions (Ridley et al. 2003; Marin et al. 2006). Inhibition of Rac1 or Cdc42 

activity in radially migrating cortical neurones perturbs migration (Konno et al. 

2005). In migrating cortical neurones Rac1 is distributed along the plasma 

membrane, and expression of mutant Rac1 leads to the loss of the leading process. 

Instead, Cdc42 is concentrated in the perinuclear region and may be involved in 

regulating orientation of the microtubule organising centre (MTOC) (Konno et al. 

2005). In line with these observations, the chemorepellent activity of Slit proteins 

on SVZ neuroblasts was shown to occur through local suppression of Cdc42 

following activation of Rho GAPs (GTPase activating proteins) (Wong et al. 2001). 
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Thus, Rac1 and Cdc42 may be involved in leading process formation and 

centrosome positioning in RMS neuroblasts, respectively. 

 

1.5.2 Nucleokinesis 

Nucleokinesis is regarded as a two-step process. The first step is characterised by 

the occurrence of a cytoplasmic swelling directly in from of the nucleus. This results 

from transmission of force generated in the leading process to the centrosome, 

which moved forward to form a dilatation that contains the Golgi apparatus, 

mitochondria, and rough endoplasmic reticulum. A microtubule cage that 

surrounds the nucleus keeps it constantly attached to the centrosome. In the 

second step, pulling forces generated by the dynein motor complex, as well as acto-

myosin contraction and loss of cell-substrate adhesion at the rear of the cell propel 

the nucleus forward and completes the migration cycle (Tsai and Gleeson 2005) 

(Figure 1.9).  

 

PAR complex 

There are now several lines of evidence to suggest that the PAR3-PAR6-aPKC 

complex, which is known for its role in establishing cell polarity (Etienne-Manneville 

and Hall 2003; Henrique and Schweisguth 2003; Goldstein and Macara 2007), is 

involved in localisation of the centrosome during neuronal migration. Studies 

investigating glial-guided migration of cerebellar granule cells have highlighted that 

mPar6α and PKCζ are required for correct positioning of the centrosome (Solecki et 

al. 2004). In SVZ neuroblasts, Slit mediated repulsion is associated with formation of 

a new leading process in the opposite direction, and re-orientation of the 

centrosome towards the new leading process. Furthermore, pharmacological 

inhibition of PKCζ or its target glycogen synthase kinase 3 β (GSK3β), specifically 

results in the loss of centrosome re-orientation (Higginbotham et al. 2006).  

 

Dynein motor complex 

The forward movement of the nucleus in the final step of nucleokinesis is achieved 

by the dynein motor complex, a minus-end directed microtubule motor that is 

fundamental for the regulation of nuclear movement in fungi and animals (Morris 
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2003). Mutations in genes coding for dynein-interacting proteins in humans, such as 

Lis1 and doublecortin (DCX), are responsible for the condition Lissencephaly, which 

is characterised by abnormal neuronal migration. DCX is expressed by migrating 

neurones during development, as well as RMS neuroblasts, and is thought to 

regulate neuronal migration via its ability organise and stabilise microtubules 

(Gleeson et al. 1999). Investigations in migrating cerebellar granule cells revealed 

that Lis1 was localised to the MTOC, whilst DCX was localised along the microtubule 

cage enveloping the nucleus (Tanaka et al. 2004). This study also showed that 

inhibition of dynein or deletion of Lis1 resulted in centrosome-nuclear uncoupling, 

as evidenced by an increase in the distance between the centrosome and nucleus. 

Interestingly, overexpression of DCX was able to rescue this migratory defect. In 

RMS neuroblasts, loss of DCX also resulted in a migratory defect associated with 

centrosome-nuclear uncoupling. In addition, neuroblasts also displayed a 

shortening of the leading process and an increase in secondary branching (Koizumi 

et al. 2006). Hence, DCX may participate in two aspects of neuroblast migration by 

regulating centrosome-nuclear coupling through an interaction with the dynein 

motor complex, and maintaining the morphology of RMS neuroblasts through its 

ability to stabilise microtubules (Tanaka et al. 2004; Koizumi et al. 2006). 

 

Cyclin-dependent kinase 5 

Cyclin dependent kinase 5 (CDK5) is a serine/threonine kinase that regulates the 

activity of a diverse range of proteins, and is therefore able to participate in 

numerous cell functions which include regulation of the actin cytoskeleton, 

microtubule stability, axon guidance, membrane transport, synaptic function, 

dopamine signalling and drug addiction (Dhavan and Tsai 2001). However, it is most 

well known for its regulation of the CNS cytoarchitecture as evidenced by the gross 

morphological abnormalities seen in CDK5 knockout mice (Ohshima et al. 1996; 

Chae et al. 1997). One of the most striking phenotypes in these mice is the inverted 

layering of the cortex, which is believed to arise from failure of neuronal migration 

during development (Ohshima et al. 1996; Chae et al. 1997). More recently, a role 

for CDK5 in tangentially migrating cortical neurones (Rakic et al. 2009) as well as 

SVZ neuroblast has also been demonstrated (Hirota et al. 2007). Also, the pro-
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migratory effect of GDNF on RMS neuroblasts appears to be reliant on the activity 

of CDK5 (Paratcha et al. 2006). 

 

The exact mechanism by which CDK5 regulates neuroblast migration is yet to be 

determined. Since CDK5 can regulate a vast number of proteins involved in actin 

and microtubule dynamics, there are several potential target proteins that may be 

downstream of CDK5 in neuroblast migration. One such example is p27kip1. The 

phosphorylation of this protein by CDK5 has been suggested as a mechanism by 

which CDK5 regulates F-actin dynamic in the leading processes of migrating cortical 

neurones (Kawauchi et al. 2006). CDK5 also induces hyperphosphorylation and 

subsequent inhibition of p21-activated kinase 1 (Pak1), a Rac effector involved in 

the control of neuronal morphology through the regulation of actin and 

microtubule dynamics (Rashid et al. 2001; Jacobs et al. 2007; Nikolic 2008). 

Furthermore, cortical neuron migration is now recognised as being dependent on 

the activity of Pak1 (Causeret et al. 2009). CDK5 also phosphorylates focal adhesion 

kinase (FAK), a regulator of cell adhesion in migrating non-neuronal cells (Hanks et 

al. 1992; Schaller et al. 1992). Importantly, FAK has been shown to regulate glia-

dependent cortical neuron migration by promoting neuron-radial glia interaction 

through regulation of Connexin-26-containing gap junctions (Valiente et al. 2011). 

In cultured neurones, FAK was found localised to the microtubule fork that contacts 

the nucleus. Moreover phosphorylation of FAK by CDK5 was found to be crucial for 

efficient nucleokinesis as well as the specific localisation of FAK to the microtubule 

fork (Xie et al. 2003). In addition, CDK5 can phosphorylate proteins associated with 

the dynein motor complex such as the Lis1 interacting protein Nudel (Niethammer 

et al. 2000), whilst phosphorylation of DCX has been shown to regulate its 

localisation to the perinuclear microtubule cage of migrating neurones (Tanaka et 

al. 2004). Thus, CDK5 may single headedly orchestrate several stages of the 

migratory cycle by activating or inactivating target proteins that regulate different 

aspects of neuronal migration.   
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Figure 1.9: Nucleokinesis in neuronal migration. In the first stage of nucleokinesis, 

the centrosome and Golgi move into a cytoplasmic swelling directly in front of the 

nucleus (top). In the second part, actomyosin contraction at the rear of the cell and 

pulling forces generated by the dynein motor complex propels the nucleus forward 

towards the leading process (bottom). The molecules believed to regulate each of 

these stages are shown above. The green arrow indicates the direction of motion. N 

= nucleus. Adapted from Marin et al. (2010) 
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1.6 Ral GTPases 

1.6.1 Ral GTPase: History, structure and function 

Small GTPases are monomeric G proteins that play a pivotal role in the regulation of 

signal transduction, and modulate a diverse range of cell biological functions. Over 

100 identified G proteins have been categorised into 5 main families based on their 

structural similarity: Ras, Rho, Gα, Arf and Rab. Members of the Ras family are 

generally known to regulate gene expression, cell proliferation, and adhesion (Takai 

et al. 2001). The Rho family members are most well known for their regulation of 

the actin cytoskeleton, with formation of stress fibres, lamellipodia, and filopodia 

being associated with the activities of RhoA, Rac1 and Cdc42, respectively (Ridley et 

al. 2003; Jaffe and Hall 2005). Rab and Arf family members are involved in the 

management of vesicle trafficking, whilst Ran family members, which constitute a 

branch of the Rab family, co-ordinate nucleocytoplasmic transport during mitosis 

(Takai et al. 2001). All GTPases cycle between a GDP bound inactive and GTP bound 

active form (Figure 1.10). The exchange of GDP for GTP initiates binding and 

modulation of the biological activity of an effector molecule, which is responsible 

for mediating the unique cellular functions of each G protein. Association with the 

effector in turn activates the catalytic domain, resulting in hydrolysis of GTP, and 

return of the small GTPase into its inactive state. This cycling process is under tight 

spatial and temporal regulation by a specific set of guanine nucleotide exchange 

factors (GEFs) that promote the exchange of GDP for GTP, and GTPase activating 

proteins (GAPs) that stimulate the hydrolysis of GTP (Feig 2003; Bos et al. 2007). 

Thus, GTPase activity can be locally “turned on and off” by GEFs and GAPs 

respectively, and are often referred to as molecular switches for this reason. 

 

Ras-like GTPase A (RalA) is a monomeric G-protein belonging to the Ras family. It 

shares almost 85% identity with its closely related family member RalB, and only 

differs in the C-terminal region, the site of post-translational modification that is 

believed to be responsible for the localisation of  RalA mainly on the plasma 

membrane and RalB mostly on endomembranes (Shipitsin and Feig 2004; Fenwick 

et al. 2009). A large portion of the Ral protein comprises the catalytic GTPase 
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domain, which contains 4 GTP binding motifs and an effector-binding region (switch 

l and switch ll). Whilst the N-terminus contains a PLC/PLD binding domain that acts 

independently of GTP loading, the C-terminus contains a Ca
2+

 dependent 

calmodulin binding site, and a RalA specific phosphorylation site for Aurora kinase A 

(van Dam and Robinson 2006) (Figure 1.10). Though much of the early work on Ral 

GTPases did not distinguish between the two isoforms, RalA and RalB are now 

recognised for having both distinct and overlapping functions (Oxford et al. 2005; 

Martin and Der 2012). So far several Ral-GEFs such as Ral-GDP dissociation 

stimulator (Ral-GDS), Rgl1, Rgl2/Rlf, Rgl3, Rgr, and RalGPS1-2 have been identified 

(Feig et al. 1996; Quilliam et al. 2002). Although the nature of the GAPs that 

regulate Ral activity is less well known, recent studies have identified large 

heteromeric complexes resembling the tuberous sclerosis tumor suppressor 

complex as potential GAPs for Ral GTPases (Shirakawa et al. 2009). 
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Figure 1.10: Structure and activation cycle of RalA. (Top) A schematic 

representation of the different domains of RalA showing PLD1 and PLC δ1 binding 

domains at the N-terminal region, four GTP binding motifs (l-lV), effector binding 

regions (switch l and switch ll), calmodulin binding site, post translational lipid 

modification site at the C terminus, and an Aurora kinase A phosphorylation site at 

Ser194 which is unique to RalA. Adapted from van Dam and Robinson (2006). 

(Bottom) Schematic representation of the Ral activation/inactivation cycle. Adapted 

from Bodemann and White (2008) 
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1.6.2 Regulation of Ral GTPase activation 

Ras GTPases are now recognised as important activators of RalA and RalB. This 

unexpected discovery was made following identification of Ral-GDS as one of the 

main effectors for active Ras. Since Ras proteins can be activated by a range of 

extracellular signals such as growth factors and GPCR agonists, as well as second 

messengers which include DAG and Ca
2+

, Ras proteins are aptly placed to couple Ral 

activation to several signalling pathways (Feig et al. 1996). Besides delivering Ral-

GDS to Ral proteins in the plasma membrane, Ras regulation of PI3K is also believed 

to be a simultaneous mechanism of enhancing Ral activation. Here, PI3K promotes 

the association of PDK1 with the N-terminus of Ral-GDS. Formation of this complex 

relieves autoinhibition of the catalytic domain of Ral-GDS by its N-terminal domain, 

and thus enhance intrinsic GEF activity in a manner that is independent of the 

kinase activity of PDK1 (Tian et al. 2002). Rap proteins, another member of the Ras 

GTPase family, have also been suggested as regulators of Ral activity. In Drosophila 

Rap GTPases have a higher affinity for Ral-GEFs than Ras, and are the main 

upstream regulators of Ral proteins in this system (Mirey et al. 2003). Although the 

reverse appears to be true in mammalian cells, recent evidence suggests that at 

least in some contexts, such as neurite outgrowth, Rap GTPases may be responsible 

for the activation of Ral (He et al. 2005).   

 

Ral GTPases can also be stimulated by mechanisms that are independent of Ras 

(Figure 1.11). For example, growth factor-induced activation of PLC and subsequent 

increase in intracellular Ca
2+

 has also been shown to be responsible for initiation of 

Ral activity under certain conditions (Hofer et al. 1998). Exactly how an increase in 

Ca
2+

 is translated to Ral activation is not entirely clear, though there is some 

thought that this effect may be mediated by an unknown Ca
2+ 

sensitive GEF 

(Wolthuis et al. 1998). In addition, Ral GTPases also have a calmodulin binding site 

at the C-terminus, suggesting a possible mechanism for coupling changes in 

intracellular Ca
2+ 

concentrations to Ral activity. Although the interaction of 

calmodulin with RalA and RalB has been shown to be Ca
2+

 dependent, whether this 

interaction is directly involved in activating the GTPases has not yet been 

demonstrated (Clough et al. 2002). Signalling via certain GPCRs can also lead to Ral 
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activation in a Ras-independent manner. β-arrestins, which are responsible for 

agonist-mediated desensitisation of GPCRs, can exist in the cytosol as a complex 

with Ral-GDS. Activation of GPCRs that lead to recruitment of β arrestins, results in 

translocation of the complex to the plasma membrane and dissociation of Ral-GDS, 

which is then able to bind and activate RalA (Bhattacharya et al. 2002). In addition, 

Ral function can be negatively regulated by phosphorylation of the N-terminal 

domain of Ral-GDS by PKC. This in turn prevents removal of the inhibitory N-

terminal domain from the catalytic region of the GEF and hence prevents Ral 

activation (Rusanescu et al. 2001).   
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Figure 1.11: Regulation of Ral GTPases activation. (a) Ras dependent mechanisms 

of Ral GTPase activation. Active Ras binds Ral-GDS and delivers it to Ral in the 

plasma membrane. Simultaneous activation of PI3K promotes the association of 

PDK1 and Ral-GDS, resulting in enhancement of GEF activity. (b) Ras independent 

mechanisms of Ral activation. Ral-GDS and β arrestin form an inactive complex in 

the cytosol. Signalling via GPCR leads to recruitment of the complex to the plasma 

membrane followed by dissociation, thus releasing Ral-GDS (i). A rise in intracellular 

Ca
2+

 activates Ral, either through a Ca
2+

 sensitive GEF or Calmodulin (ii). Adapted 

from (Feig 2003). 
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1.6.3 Effectors of Ral GTPases 

Ral binding protein 1 (RalBP1), the first molecule identified as an effector of Ral 

GTPases, associates with AP2, POB1, and Reps1, which regulate endocytic 

pathways. Regulation of endocytosis by RalA is now primarily attributed to its 

association with RalBP1 (Cantor et al. 1995; Jullien-Flores et al. 2000; Han et al. 

2009). In addition to its established function in endocytosis, RalBP1 has also been 

found to negatively regulate Rho GTPases Cdc42 and Rac1 through a GAP domain 

(Cantor et al. 1995; Park and Weinberg 1995). Although this suggests a possible 

mechanism of actin cytoskeletal regulation via RalBP1, the consequences of its 

negative regulation of the Rho GTPases remains unclear.    

 

The exocyst is another major effector of RalA. This protein complex, which is found 

in regions of the plasma membrane undergoing expansion or secretion is formed of 

8 subunits (sec3, sec5, sec6, sec8, sec10, sec15, Exo70 and Exo84), and was 

originally recognised for its role in the delivery of secretory vesicles to the plasma 

membrane in the budding yeast Saccaharomyces cerevisiae, and Golgi-derived 

vesicles to the basolateral membrane in polarised epithelial cells (TerBush et al. 

1996; Grindstaff et al. 1998). Current evidence suggests that the exocyst is a 

dynamic complex formed of two subcomplexes: a targeting unit on the plasma 

membrane (Sec3, Sec5, Sec6, Sec8 and Exo70) and a vesicle-associated unit (Sec10, 

Sec 15, and Exo84), which directs and tethers secretory vesicles to the plasma 

membrane (Moskalenko et al. 2003). Two subunits of the complex, Sec5 and Exo84, 

bind active Ral in a competitive manner (Figure 1.12). The association of Ral with 

the exocyst subunits appears to be involved in both assembly and stabilisation of 

the full octameric complex (Moskalenko et al. 2002; Jin et al. 2005). The Ral-exocyst 

interaction has also been linked to the formation of filopodia in fibroblasts. 

Interestingly, this function was found to be due to direct regulation of the actin 

cytoskeleton since dominant negative RalA inhibited filopodia formation induced by 

Cdc42, whilst blockade of general secretion with brefeldin A did not affect RalA-

induced protrusions (Sugihara et al. 2002). Although both RalA and RalB have been 

implicated in Ral-exocyst mediated processes, RalA has been shown to have a 

greater affinity for this complex than RalB (Shipitsin and Feig 2004). Ral GTPases 
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may also regulate actin cytoskeletal dynamics through another effector molecule, 

the actin binding protein filamin, which has been implicated in the formation of 

filopodia (Ohta et al. 1999). Recently the transcription factor ZONAB, which 

regulates cell proliferation, was identified as a novel effector of Ral GTPases 

(Frankel et al. 2005). Association of active RalA with ZONAB was found to relieve its 

transcriptional repression. This mechanism has been proposed as a method by 

which the oncogenic effects of the Ras proteins may be translated via RalA.  
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Figure 1.12: Ral-Exocyst interaction. A schematic model of the localisation of the 

exocyst subunits as predicted by published reports. RalA/B regulates exocyst 

assembly and function through binding of the Exo84 or Sec5 subunits. Other 

GTPases may also modulate exocyst activity by binding to specific subunits. 

Adapted from Camonis and White (2005). 
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1.6.4 Biological functions of Ral GTPases 

Ral GTPases are multifunctional proteins involved in a variety of cellular functions 

including endocytosis, exocytosis, cell migration, proliferation, and cell polarity 

(Jullien-Flores et al. 2000; Feig 2003; Wang et al. 2004; Lalli and Hall 2005; van Dam 

and Robinson 2006; de Gorter et al. 2008; Lalli 2009; Chen et al. 2011). Recently, an 

additional role for Ral GTPases has been described in the regulation of 

mitochondrial fission (Kashatus et al. 2011). Here we examine a few of the known 

functions of Ral GTPases, particularly focussing on roles in neurones and events 

related to cell migration.     

 

Cell morphology  

Besides influencing cytoskeletal remodelling in non-neuronal cells (Ohta et al. 1999; 

Sugihara et al. 2002), Ral GTPases have also been shown to regulate neuronal cell 

morphology. For example, neurite branching in cortical and sympathetic neurones 

has been shown to be reliant on the effects of both RalA and RalB (Lalli and Hall 

2005). Here, active RalA or RalB enhanced the formation of neurite branches, which 

were enriched in actin filaments. Ral activation also correlated with PKC-mediated 

phosphorylation of growth-associated protein GAP-43, which regulates branching 

and axonal regeneration. Interestingly, RalA appeared to preferentially act through 

the exocyst complex to induce neurite branching possibly downstream of integrin 

signalling, whilst RalB promoted neurite branching mainly through its association 

with PLD (Lalli and Hall 2005). Thus, although both Ral isoforms appear to 

contribute to modelling of the actin cytoskeleton, the end result appears to be 

achieved via different effector molecules 

 

Cell polarity 

Several studies have highlighted an important role for the Ral-exocyst interaction in 

cell polarity (Moskalenko et al. 2002; Shipitsin and Feig 2004; Lalli 2009). In 

polarised epithelial cells, inhibiting Ral function or its interaction with the Sec5 

subunit of the exocyst, results in mislocalisation of basolateral membrane proteins 

to the apical surface. This suggests that the Ral-exocyst interaction does not 

influence fusion of vesicles itself, but specifically directs them to the appropriate 
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location   (Moskalenko et al. 2002). Detailed investigation has revealed that RalA is 

the isoform that associates with Sec5 to regulate vectorial delivery. This 

preferential association with RalA over RalB was found to be due to a greater 

affinity of RalA for the exocyst as well as differences in the localisation of the two 

proteins. Whilst both RalA and RalB were enriched at the plasma membrane, only 

RalA was enriched at recycling endosomes (Shipitsin and Feig 2004). 

 

Regulation of the exocyst by Ral has also been implicated in initial axon 

specification in neurons. Depletion of RalA, but not RalB, in developing cortical 

neurones inhibited axon establishment, and resulted in unpolarised cells capable of 

extending only minor neurites. Interestingly, RalA was found at the tips of growing 

axons where it co-localised with exocyst complex subunits as well as the 

component of the polarity complex PAR-3. Perturbing the function of either RalA or 

the exocyst inhibited localisation of PAR-3 to the tips of growing neurites, thus 

impairing neuronal polarisation. Importantly, biochemical studied revealed an 

interaction between the exocyst and PAR-3, which was reliant on the activity of 

RalA. These results imply that RalA may influence neuronal polarity by controlling 

the localisation of the PAR (polarity) complex via an interaction with the exocyst to 

initiate axon growth (Lalli 2009).  

 

Cell migration 

Directed cell migration requires dynamic changes to the cell cytoskeleton as well as 

alterations to the cell membrane, key events that can be regulated by Ral GTPases. 

However, the specific isoform responsible for modulating migration as well as the 

effector that the Ral proteins associate with appear to differ depending on the 

system being examined. For example, chemotaxis of myoblasts in response to FGF-

2, HGF or IGF-1 is mediated via Ras activation of Ral. In particular, the motogenic 

effect on myoblasts and activation of Ral by IGF-1 was also reliant on a rise in 

intracellular Ca
2+

. Mutant Ral proteins unable to bind RalBP1 or PLD abolished 

chemotaxis of myoblasts in response to growth factors, thus pointing to RalBP1 and 

PLD as the main Ral effectors involved myoblast migration (Suzuki et al. 2000). In 

contrast, Rosse et al. (2006) found that a RalB-exocyst interaction was required for 
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directed migration of Normal Rat Kidney (NRK) cells in a scratch-wound migration 

assay. Here the authors report a need for RalB to bring about exocyst assembly and 

localisation to the leading edge, and therefore suggest that the delivery of secretory 

vesicles to the plasma membrane via RalB is a mechanism of bringing about the 

necessary morphological changes to promote cell migration (Rosse et al. 2006).  

 

Migration of B cells and multiple myeloma cells in response to stromal cell-derived 

factor-1 (SDF-1) is also linked with activation of RalB. However, in this system 

induction of RalB activity was independent of both Ras and PI3K signalling (de 

Gorter et al. 2008). A similar observation was made in invasive human prostate and 

bladder cancer cell lines, in which depletion of RalB but not RalA inhibited motility 

(Oxford et al. 2005). Unexpectedly, depleting cells of both RalA and RalB did not 

affect migration, a phenomenon also observed in migrating NRK cells by an 

independent group (Rosse et al. 2006). These findings propose a possible 

antagonistic relationship between RalA and RalB in certain forms of migration.  

 

One of the key steps that underlie metastasis is the loss of adhesiveness. In a 

prostate cancer cell line, loss of E-Cadherin resulted in re-location of the exocyst 

complex from Cadherin based adherens junctions found at the lateral membranes 

between adjacent cells, to the leading edge of migrating cells. In this situation, an 

interaction between RalA or RalB with the Sec5 subunit was found to be necessary 

for delivery of Golgi-derived vesicles containing α5 integrin to the leading edge. This 

study proposes a novel mechanism for Ral GTPases in migration, where the invasive 

phenotype of metastatic cells is achieved via Ral-mediated formation of new cell-

substratum adhesions at the advancing edge (Spiczka and Yeaman 2008).  

 

Secretion 

The identification of the exocyst as an effector for Ral GTPases as well as the 

enrichment of Ral proteins on secretory vesicles soon instigated a flood of research 

investigating the potential role of Ral proteins in secretion. To date, a diverse range 

of cell types and extracellular signals have been associated with Ral-mediated 

secretion. These include exocytosis of secretory granules in response to membrane 
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depolarisation in PC12 cells (Moskalenko et al. 2002), thrombin induced release of 

Weibel-palade bodies containing von Willebrand factor by endothelial cells (Rondaij 

et al. 2004), and secretion of dense granules by platelets (Kawato et al. 2008). In all 

systems, an interaction between Ral and the Sec5 exocyst subunit was necessary to 

mediate this role of Ral GTPases. The regulation of secretion appears to be a role 

that is predominantly associated with RalA rather than RalB. Indeed, only RalA is 

specifically expressed by pancreatic β cells, and membrane depolarisation which 

leads to insulin secretion, activates RalA in a Ral-GDS dependent manner. Depletion 

of RalA inhibited insulin secretion in response to both depolarisation and glucose, 

and closer examination revealed fewer insulin containing vesicles docked at the 

plasma membrane (Lopez et al. 2008; Ljubicic et al. 2009).  

 

RalA has also been implicated in the regulation of neurosecretion. The pre-synaptic 

terminal is abundant in secretory vesicles, yet only those docked at the plasma 

membrane, known as the readily releasable pool (RRP), are involved in secretion. It 

is currently believed that the size of this pool is regulated by both PKC and Ca
2+

. 

Whilst activation of PKC via metabotropic glutamate receptors is thought to 

increase the size of the RRP, Ca
2+

 entry following depolarisation is thought to 

enhance refilling of the pool. In transgenic mice expressing DN RalA, glutamate 

release following membrane depolarisation was unaffected. However, PKC 

mediated enhancement of glutamate release, a mechanism thought to be involved 

in regulating synaptic plasticity, was markedly reduced. Similar to the findings in 

pancreatic β cells, there was a marked reduction in the number of glutamate 

vesicles docked at the plasma membrane in cells lacking RalA. In this manner, RalA 

may participate in regulating synaptic plasticity mediated by PKC by orchestrating 

the docking of glutamate vesicles to the pre-synaptic membrane (Polzin et al. 2002).   
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1.7 Aim: Investigate the molecular mechanisms that regulate RMS 

neuroblast migration in the postnatal brain  

The vast majority of research examining neuroblast migration in the postnatal/adult 

brain has focussed on determining the extracellular signals present in the SVZ and 

RMS. We were particularly interested in how these diverse signals are interpreted 

and co-ordinated by migrating neuroblasts in this region. Since the eCB system is 

involved in the control of adult neurogenesis (Aguado et al. 2006; Palazuelos et al. 

2006; Goncalves et al. 2008; Gao et al. 2010) and is instrumental in translating 

extracellular signals to direct axonal growth (Williams et al. 2003), we questioned 

whether it could also regulate RMS neuroblast migration. During our studies we 

also investigated signalling downstream of the CB receptors by examining a 

functional role for Ral GTPases in neuroblast migration, since these proteins can co-

ordinate a number of biological processes including neuronal polarisation and 

migration (Lalli and Hall 2005; Lalli 2009; Jossin and Cooper 2011).  

 

Thus, our primary aim was to investigate whether eCB-signalling and Ral GTPases 

regulate the migration of RMS neuroblasts in the postnatal brain. To achieve our 

goal we aimed to establish a range of in vitro and in vivo migration assays, which 

could be used to screen and validate regulators of neuroblast migration.  
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Animals 

P2-P3 mouse pups were bred from CD1 mice obtained from Charles River. P5-P7 

Sprague Dawley Rat pups were obtained from Harlan. RalA
lox/lox

, RalA
lox/lox

/RalB
-/-

, 

and wild type mice were a kind gift from Chris Marshall and Pascal Peschard 

(Institute of Cancer Research, London). Details regarding the generation of the 

transgenic mice can be found in Peschard et al, 2012, Current Biology, in press. All 

procedures were performed in accordance with U.K. Home Office regulations 

(Animals Scientific Procedures Act, 1986).  

 

2.1.2 General solutions 

Phosphate Buffered Saline (PBS) 

One PBS tablet (Oxoid) dissolved in a 100 ml of water and autoclaved: KCl (0.20 g/l), 

KH2PO4 (0.2 g/l), NaCl (8 g/l) and Na2HPO4 (1.15 g/l). 

 

Tris-buffered saline (10x) 

0.5 M Tris-HCl pH 8, 1.5 M NaCl 

 

TBS-T 

1X TBS containing 0.1% Tween20 

 

2.1.3 Cell culture 

Cor-1 cell line 

The Cor-1 cell line was kindly provided by the laboratory of Austin Smith (University 

of Cambridge, UK). Details regarding the derivation of this cell line can be found in 

Conti et al. (2005). 
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NS cell media 

NS-A medium (Euroclone) supplemented with EGF (10 ng/ml; Peprotech), FGF-2 (10 

ng/ml; Peprotech), 2 mM L-glutamine (Invitrogen), and N2 supplement (Invitrogen). 

 

Dissection media 

Hank’s Buffered Salt Solution (HBSS; Invitrogen) containing 5 mM HEPES (Sigma), 

100 units/ml penicillin G and 100 µg/ml streptomycin (Invitrogen). 

 

Dissociation media 

HBSS containing 0.25% trypsin (Gibco) and 40 µl of DNAse l (1 mg/ml; 

Worthington). 

 

Neurobasal complete media 

Neurobasal medium (Gibco) containing B27 supplement, 2 mM L-glutamine 

(Invitrogen), and 0.6% glucose (Sigma). 

 

3D migration gel 

BD Matrigel
TM

 (Basement Membrane Matrix, Growth Factor Reduced (GFR), Phenol 

Red-free; BD Bioscience) and Neurobasal complete media mixed in a 3:1 ratio 

respectively. 

 

Brain slice collection media 

Gey's Balanced Salt Solution (Invitrogen) supplemented with 0.45% glucose 

(Invitrogen)  

 

Brain slice imaging media 

Phenol red-free Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

0.5% glucose, B27 supplement, 4 mM L-glutamine, 10 mM HEPES (pH 7.4), 100 

units/ml penicillin G and 100 µg/ml streptomycin (Invitrogen) and 5% foetal calf 

serum (FCS). 
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2.1.4 Western Blotting 

General lysis buffer 

50 mM Tris-HCl (pH 8), 150 mM NaCl, 10 mM MgCl2, 1% Triton-X, 5% glycerol, and 2 

mM CaCl2 supplemented with 10 mM NaF, 1 mM Na3VO4, 1 mM PMSF, and 

complete protease inhibitors (Roche) prior to use. 

 

4x Laemmli (Loading sample buffer) 

100 mM Tris pH 6.8, 30% glycerol, 4% SDS, 0.2% bromophenol blue, 0.1 M DTT 

 

SDS polyacrylamide gel 

% Separating Gel 7% 8% 10% 12% 

1.5 M Tris pH 8.8 5 ml 5 ml 5 ml 5 ml 

Water 10.03 ml 9.37 ml 8.03 ml 6.7 ml 

Acrylamide 30%  4.67 ml 5.33 ml 6.67 ml 8 ml 

SDS 10% 200 µl 200 µl 200 µl 200 µl 

APS 10% 75 µl 75 µ 75 µ 75 µ 

TEMED 20 µl 20 µl 20 µl 20 µl 

 

Stacking Gel 4% 

0.5 M Tris pH 6.8 1.25 ml 

Water 3 ml 

Acrylamide 30% 0.70 ml 

SDS 10% 20 µl 

APS 10% 37.5 µl 

TEMED 10 µl 

 

Running buffer (10x) 

0.25 M Tris, 1.92 M Glycine, 1% SDS (Flowgen Bioscience) 

 

Transfer buffer 

25 mM Tris, 0.19 M glycine, 20% methanol, and 0.01% SDS. 
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Blocking/Primary antibody/Secondary antibody solution 

TBS-T containing 5% semi-skimmed milk. 

 

Antibody stripping solution 

Re-blot plus strong (Millipore) 

 

Antibodies used for Western blot analysis 

Antibody Source Species/Conjugate Dilution 

Actin Cell signalling Rabbit 1:4000 

RalA BD Bioscience Mouse 1:4000 - 1:5000 

RalB R&D systems Rat 1:500 

Rap1 A/B Cell signalling Rabbit 1:1000 

Rap1B Sigma Rabbit 1:1000 

PAK1 Cell signalling Rabbit 1:4000 

PAK2 Cell Signalling Rabbit 1:1000 

PAK3 Cell signalling Rabbit 1:1000 

PAK4 Cell signalling Rabbit 1:1000 

PAK1 (αPak C-19) Santa Cruz Rabbit 1:500 

Total Pak (Pak 1,2,3) Santa Cruz Rabbit 1:1000 

P27kip1 Santa Cruz Rabbit (SC-528) 1:100 – 1:500 

p-P27kip1 Abcam Rabbit (S10) 1:2000 

MLC2 Cell Signalling Rabbit 1:1000 

P-MLC2 (ser19) Cell Signalling Mouse 1:1000 

DAG-Lα 
Gift from Dr. 

Masahiko Watanabe 
Goat 1:3000 

DAG-Lβ 
(Bisogno et al., 

2003) 
Rabbit 1:5000 

FAAH Abcam Mouse 1:1000 

MAG-L Abcam Rabbit 1:100 

Goat-Anti Mouse Thermo Scientific HRP 1:5000 

Goat-Anti Rabbit Thermo Scientific HRP 1:5000 

Goat- Anti Rat Thermo scientific HRP 1:5000 
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2.1.5 Pull down assay reagents 

RalA pull down lysis buffer 

50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 200 mM NaCl, 2% NP-40, 10% glycerol, 

supplemented with 1 mM PMSF, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM 

Na3VO4 and 1 mM DTT prior to use.  

 

RalA pull down wash buffer 

25 mM Tris-HCl pH 7.5, 30 mM MgCl2, 40 mM NaCl, 1% NP-40, supplemented with 1 

mM PMSF, 10 µg/ml aprotinin, 10 µg/ml leupeptin, and 1 mM DTT prior to use. 

 

Rap1 pull down lysis/wash buffer 

50 mM Tris-HCl pH 7.4, 2.5 mM MgCl2, 500 mM NaCl, 1% NP-40, 10% glycerol 

supplemented with 10 μg/ml aprotinin and 10 μg/ml leupeptin prior to use. 

 

GTPase activation assay 

Ral assay reagent (300 µg of RalBP1 in 600 µl of agarose slurry; Millipore). Rap1 

assay reagent (650 µg of Ral GDS-RBD in 1 ml glutathione-agarose slurry; Millipore). 

 

2.1.6 Molecular Biology 

Small interfering RNA 

RalA siRNA: AGACTACGCTGCAATTAGA (Dharmacon) (Lalli and Hall 2005) 

 

Small hairpin RNA (shRNA) plasmid vectors 

The following shRNA sequence duplexes (designed on the Ambion website) were 

cloned in-between the ApaI and EcorV sites of the pCA-b-EGFPm5 silencer 3 

expression vector (Bron et al. 2004), a kind gift from Matthieu Vermeren. The 

control was based on a published sequence (Kawauchi et al. 2006). The Ral shRNA 

sequences were chosen in order to target RalA in different regions. Ral (3) was 

designed to target the same region as the RalA siRNA. 

Control:  CGCGCATAAGATTAGGGAATTCAAGAGATTCCCTAATCTTATGCGCGTATTTTTT 

CCGGGCGCGTATTCTAATCCCTTAAGTTCTCTAAGGGATTAGAATACGCGCATAAAAAA 

Target sequence: TACGCGCATAAGATTAGGGAA 
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RalA (1): GTGCAGATCGACATCTTAGTTCAAGAGACTAAGATGTCGATCTGCACTTTTTT 

CCGGCACGTCTAGCTGTAGAATCAAGTTCTCTGATTCTACAGCTAGACGTGAAAAAA 

Target sequence: AAGTGCAGATCGACATCTTAG 

 

RalA (2): CAAGAGAATCAGAGAAAGATTCAAGAGATCTTTCTCTGATTCTCTTGGCTTTTTT 

CCGGGTTCTCTTAGTCTCTTTCTAAGTTCTCTAGAAAGAGACTAAGAGAACCGAAAAAA 

Target sequence: GCCAAGAGAATCAGAGAAAGA 

 

RalA (3):   ACTATGCTGCAATTAGAGATTCAAGAGATCTCTAATTGCAGCATAGTCCTTTTTT 

CCGGTGATACGACGTTAATCTCTAAGTTCTCTAGAGATTAACGTCGTATCAGGAAAAAA 

Target sequence: GGACTATGCTGCAATTAGAGA 

 

RalA (4): GGCAGGTTTCTGTAGAAGATTCAAGAGATCTTCTACAGAAACCTGCCTTTTTT 

CCGGCCGTCCAAAGACATCTTCTAAGTTCTCTAGAAGATGTCTTTGGACGGAAAAAA 

Target sequence: AAGGCAGGTTTCTGTAGAAGA 

 

pCAG vectors 

pCX-EGFP was a kind gift from Dr Masaru Okabe (Osaka University, Japan).   

 

Human WT RalA, constitutively active RalA (RalA72L), fast cycling RalA (RalA39L), 

and dominant negative RalA (RalA28N) sequences were obtained by PCR from a 

pRK5-myc construct (Lalli and Hall 2005; Lalli 2009) using the following primers:  

5'GAATTGGCTAGCATGGAGCAGAAGCTGATCTCCGAGGAGG3’ 

5’TCTGCAGATCGATTTATAAAATGCAGCATCTTTCTCTG3’ 

PCR products were inserted into a pCAG-IRES-EGFP plasmid vector (Jacobs et al. 

2007; Causeret et al. 2009), a kind gift from Dr Meggie Nikolic (Imperial College 

School of Medicine, London, UK).  

 

pCAG-Cre-IRES2-EGFP (plasmid 26646; Addgene) (Woodhead et al. 2006). 
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RalA FRET sensor 

Raichu-RalA was kindly provided by M. Matsuda (Takaya et al. 2004; Yoshizaki et al. 

2006) 

 

2.1.7 Drugs and factors 

List of drugs used 

Drug Description 
Concentration 

Range 
Source 

ACEA CB1 receptor agonist 0.5 µM-1 µM Tocris Bioscience 

AM-251 CB1 receptor antagonist 0.5 µM-1 µM Tocris Bioscience 

LY-320135 CB1 receptor antagonist 0.5 µM Tocris Bioscience 

JWH-133 CB2 receptor agonist 0.5 µM-1 µM Tocris Bioscience 

JWH-056 CB2 receptor agonist 1 µM Tocris Bioscience 

JTE-907 CB2 receptor antagonist 0.5 µM-1 µM Tocris Bioscience 

AM-630 CB2 receptor antagonist 0.5 µM Tocris Bioscience 

HGF Growth factor 50 ng/ml Peprotech 

GDNF Growth factor 100 ng/ml Peprotech 

Roscovitine CDK5 antagonist 1 µM Sigma 

Mitomycin C Applichem 50-100 ng/ml Applichem 
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Pharmacology of eCB drugs 

Agonist/ 

Antagonist 
Drug 

Ki value 

(nM) at 

CB1 

Ki value 

(nM) at 

CB2 

Selectivity Reference 

CB1 agonist ACEA 1.4 >2000 
1400 fold 

selectivity over CB2 

(Hillard et al. 

1999) 

CB1 

antagonist 
AM-251 7.49 2290 

300 fold selectivity 

over CB2 

(Gatley et al. 

1996; Gatley et al. 

1997) 

CB1 

antagonist 

LY-

320135 
141 14900 

100 fold selectivity 

over CB2 

(Felder et al. 

1998) 

CB2 agonist 
JWH-

056 
10000 32 

312 fold selectivity 

over CB1 

(Molina-Holgado 

et al. 2007) 

CB2 agonist 
JWH-

133 
677 3.14 

200 fold selectivity 

over CB1 

(Huffman et al. 

1999) 

CB2 

antagonist 
JTE-907 1050 0.38 

2760 fold 

selectivity over CB1 

(Iwamura et al. 

2001) 

CB2 

antagonist 
AM-630 5152 31.2 

165 fold selectivity 

over CB1 
(Ross et al. 1999) 

 

2.1.8 Immunocytochemistry 

Fixative 

4% paraformaldehyde (PFA) in PBS, pH 7.4 

 

Blocking/Permeabilising solution 

2% bovine serum albumin (BSA), 0.25% porcine skin gelatin type A (Sigma), 0.2% 

glycine, 15% FCS, 0.1% Triton-X. 

 

Primary/Secondary antibody solution 

1% BSA, 0.25% porcine skin gelatin type A (Sigma) 

 

Blocking/Permeabilising/primary/secondary antibody solution for explants in 

Matrigel 

15% goat serum, 0.3% Triton-X, 0.1% BSA in PBS  

 

Mounting media 

Fluorescent mounting media (Dako) 
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Antibodies for immunocytochemistry and other fluorescent reagents 

Antibody/Dye Source Species/Conjugate Dilution 

PSA-NCAM Sigma Mouse monoclonal 1:100 

DCX Abcam Rabbit polyclonal 1:100 

βlll Tubulin Sigma Mouse monoclonal 1:100 

GFAP Dako Rabbit polyclonal 1:200 

RalA BD Bioscience Mouse monoclonal 1:250 

GFP Invitrogen Rabbit polyclonal 1:4000 

N-Cadherin 

(cytoplasmic) 
BD Bioscience Mouse monoclonal 1:200 

N-Cadherin (external) Sigma Mouse monoclonal 1:100 

Pak1 (αPak c-19) Santa Cruz Rabbit polyclonal 1:100 

γ tubulin Sigma Mouse monoclonal 1:400 

DAG-Lα Abcam Goat 1:100 

CB1 receptor 
Gift from Dr. 

Maurice Elphick 
Rabbit 1:100 

CB1 receptor 
Gift from Dr. Ken 

Mackie 
Rabbit 1:100 

CB2 receptor Cayman Rabbit 1:300 

Cleaved caspase 3 Cell signaling Rabbit 1:1600 

cMyc Abcam Mouse 1:1000 

Phalloidin A488 Invitrogen N/A 1:400 

Phalloidin Texas  Red Invitrogen N/A 1:400 

Hoechst Sigma (B-2883) N/A 1:10000 

Goat Anti-Mouse Invitrogen Alexa 488 1:200 

Goat Anti-Mouse Invitrogen Texas Red 1:200 

Goat Anti-Rabbit Invitrogen Alexa 488 1:200 

Goat Anti-Rabbit Invitrogen Texas red 1:200 

 

 

 



92 

 

2.1.9 Immunohistochemistry 

Fixative for gelatine embedding 

4% PFA in PBS 

Block/Permeabilising/Primary antibody/Secondary antibody solution for PFA fixed 

gelatine embedded slices 

1% BSA, 0.1% Triton-X, 0.1% sodium azide in PBS 

 

Mounting media for gelatine embedded slices 

Fluorescent mounting media (Dako) 

 

Blocking buffer/Primary/Secondary antibody solution 

1% BSA in 50 mM TBS pH7.6 and 0.1 % sodium azide 

 

Dewaxing/Dehydrating  

Xyelene and industrial methylated spirits (IMS) were used. 

 

Antigen Retrieval Solutions  

Stock solution: 20 g citric acid dissolved in 500ml of water. For working solutions of 

citric acid, stock solutions were diluted 1:100 and adjusted to pH6 using 5 M 

sodium hydroxide.  

 

StreptABComplex/HRP  

Equal parts of streptavidin and biotinylated HRP were mixed.  

 

DAB Stock Solution (10%)  

5 g of Diaminobenzidine tetrahydrochloride (Sigma D5637) were gradually dissolved 

in a fume hood in 50 ml of water heated to 45
0
C. For a working solution 10% DAB 

stock was mixed with 200 μl hydrogen peroxide and 0.1 M Tris buffer (pH 7.6). 
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Antibodies for immunohistochemistry 

Antibody/Dye Source Species/Conjugate Dilution 

Anti-GFP Invitrogen Rabbit polyclonal 1:1000 

Hoechst Sigma (B-2883) N/A 1:5000 

N-Catherin cytoplasmic ECM Biosciences Mouse monoclonal 1:1000 

N-Catherin a.a 811-824 ECM Biosciences Rabbit polyclonal 1:1000 

Goat anti-rabbit Invitrogen Alexa488 1:1000 

Goat anti-rabbit Dako biotinylated HRP 1:200 

Goat anti-mouse Dako biotinylated HRP 1:200 

 

2.2 Methods 

2.2.1 Cell culture 

Cor-1 Cell line 

Cor-1 cells were cultured in 0.1% gelatine-coated T75 flasks (Nunc), and maintained 

at 37
0
C and 8% CO2 (standard conditions), in NS cell media. To passage confluent 

flasks, cells were trypsinised and collected in NS-A medium. The cell suspension was 

centrifuged at 13,000 rpm for 3 minutes, and the resulting pellet was re-suspended 

in 500 µl of NS cell media. Cells were plated out at a density of approximately 2x10
6
 

cells per flask, and passaged every 2-3 days or upon reaching 80% confluency. For 

immunofluorescence, cells were plated onto 0.1% gelatin-coated glass coverslips at 

a density of 30,000-40,000 cells per well. 

 

Primary RMS neuroblasts/explants 

CD1 mice/Sprague Dawley rat pups, postnatal day 5-7 (P5-P7), were sacrificed by 

cervical dislocation and then decapitated. Brains were collected in dissection 

medium. The most caudal third of the brain was removed and discarded. The 

remaining section of the brain was cut into 1.4 mm coronal slices using a Mcllwain 

Tissue Chopper. Slices were separated and the RMS was isolated from the tissue 

with the aid of a dissecting microscope. RMS explants were cut into fragments 

approximately 200-300 µm in diameter (Ward and Rao 2005).  



94 

 

Dissociated RMS neuroblasts 

To obtain dissociated neuroblasts, RMS fragments were triturated with 2 ml of 

HBSS containing 0.25% trypsin (Gibco) and 40 µl of DNAse l (1 mg/ml; 

Worthington), and left at 37
0
C for 2 minutes. The trypsin was inactivated with 5 ml 

of DMEM (Gibco) containing 10% FCS and the solution was centrifuged at 1,500 

rpm for 5 minutes. After another two washes with DMEM + 10% FCS to remove any 

traces of trypsin, the pellet was re-suspended in pre-equilibrated (37
0
C/5% CO2) 

Neurobasal complete medium (Gibco) containing B27 supplement, 2mM L-

glutamine (Invitrogen), and 0.6% glucose (Sigma). Cells were plated onto 6 well 

plates (1,000,000 cells/well) or glass coverslips (30,000-50,000 cells/coverslip) 

coated with polyornithine (0.5 mg/ml; Sigma) and laminin (10 µg/ml; Sigma). Cells 

were maintained in Neurobasal complete medium at 37
0
C/5% CO2 for 48-72 hours. 

 

2.2.2 Nucleofection and electroporation 

Nucleofection of RMS neuroblasts 

Dissociated neuroblasts were obtained as previously described. Cells were pelleted 

and re-suspended in rat neuron nucleofection solution (Lonza) at a final 

concentration of approximately 3.5x10
6 

cells/100 µl for each nucleofection. Each 

sample was mixed with 3-9 µg of a DNA/shRNA vector or siRNA oligonucleotides, 

and transfected using program G-013 on the Nucleofector
TM

 2 device (Lonza). Each 

nucleofected sample was transferred to a Falcon tube containing DMEM + 10% FCS 

and centrifuged at 1,500 rpm for 5 minutes. For Western blot analysis, the resulting 

pellet was re-suspended in Neurobasal complete medium and cells were plated 

onto polyornithine (0.5 mg/ml; Sigma) and laminin (10 µg/ml; Sigma) coated 6 wells 

plates at a density of 1,000,000 cells/well. To create aggregates for 3D migration 

assays, the pellet was re-suspended in 30 µl of DMEM + 10% FCS, pipetted as a drop 

onto the inside of a p35 dish lid, and inverted over a dish containing 2 ml of 

Neurobasal complete medium. Hanging drops were transferred from the lid into 

the dish 5 hours later and cultured in suspension for 24-48 hours before embedding 

in Matrigel. 
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Electroporation of mouse pups 

Postnatal day 2 (P2) mouse pups were anaesthetised with isofluorane (0.6 L/min). 

DNA vectors (approximately 3 µg) were injected into right ventricle using a pulled 

glass capillary (diameter 1.5mm; Clark) and electroporated using the following 

settings: 5 pulses 99.9 V, pulse on 50 ms, and pulse off 850 ms. Pups were returned 

to the mother and sacrificed 3-14 days later by cervical dislocation.  

 

 

Figure 2.1: Electroporation. A schematic diagram showing the point of injection 

into the lateral ventricle. An imaginary line (red line) running from the bregma to 

the right eye was used as a positional marker. The injection site was determined as 

the point which is 1/3
 
of this distance from the bregma. Lateral ventricle (LV). 

Adapted from Boutin et al. (2008). 

 

2.2.3 Western Blotting 

Cells cultured in 6-well plates were placed on ice, washed with ice cold PBS three 

times, and lysed in 50-100 µl of the following lysis buffer: 50 mM Tris pH 8.0, 150 

mM NaCl, 10 mM MgCl2, 1 mM CaCl2, 1% Triton-X-100, 5% glycerol, 10 mM NaF, 1 

mM Na3VO4, 1 mM PMSF, and complete protease inhibitors (Roche). A higher 

concentration of NaF (15 mM) was used for analysis of phosphorylated proteins. 

For Cor-1 cell lysates, samples were rotated for 30 minutes at 4
0
C, and then 

centrifuged at 12,000 rpm for 10 minutes at 4
0
C. Protein concentration of the 

supernatant was determined using a BCA protein assay kit (Thermo Fisher 

Scientific). For primary RMS neuroblast cultures whole cell lysates were used. 

Samples were run on 7-12% SDS-polyacrylamide gel for 2 hours at 100 V, 

transferred onto PVDF membranes (Millipore) for 1 hour at 100 V, and blocked with 

5% milk in TBS-T for 1 hour. All primary antibodies were diluted in 5% milk in TBS-T 

Eye 

LV 

Bregma 
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and incubated overnight at 4
0
C. Horseradish peroxidase (HRP)-conjugated 

secondary antibodies were also diluted in 5% milk in TBS-T and incubated for 1 hour 

at room temperature. Protein bands were visualised with Amersham Enhanced 

Chemiluminescence Western Blotting reagent (GE Healthcare) and Amersham 

hyperfilm (GE Healthcare). 

 

2.2.4 RalA/Rap1 pulldown assay 

RMS neuroblasts plated onto polyornithine and coated 6 well plates were lysed in 

100 µl of RalA pull down lysis buffer or Rap1 pull down lysis/wash buffer. Lysates 

were collected and centrifuged at 14,000 rpm at 4
0
C for 2 minutes. For each 

sample, 5 µl of the supernatant (input) was transferred to a clean tube, boiled with 

loading sample buffer at 100
0
C for 5 minutes, and stored at -20

0
C until required. 

The remaining supernatant was incubated with either 15 µl of Ral assay reagent or 

40 µl of Rap1 assay reagent. A further 600 µl of lysis buffer was added to each 

sample before being subjected to gentle agitation on a rotator for 1 hour at 4
0
C. 

The samples were then centrifuged for 5 seconds at 14,000 rpm to pellet the beads. 

The supernatant was discarded and the beads were washed with 900 µl of RalA pull 

down wash buffer or Rap1 pull down lysis/wash buffer. The beads were pelleted 

and washed 3 times before being boiled with loading sample buffer at 100
0
C for 5 

mins and stored at -20
0
C until ready to be run on an SDS-PAGE gel. 

 

2.2.5 Fluorescence resonance energy transfer (FRET)  

FRET analysis was performed on fixed neuroblasts embedded in Matrigel expressing 

the Raichu-RalA construct. The acceptor photobleaching method (Kenworthy 2001) 

was used to evaluate FRET efficiency. The CFP and YFP fluorophores were excited 

with 458 nm and 514 nm lasers respectively. Bleaching of the acceptor fluorophore 

was achieved using the 514 nm laser set to 100% and 30 iterations. Pre- and post-

bleaching images were captured on the LSM 710 Zeiss confocal microscope, and at 

least 15 or more cells were analysed per condition for each independent 

experiment. FRET efficiency was calculated using the AccPbFRET plugin in Image J 

software.  
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The following formula was used to calculate FRET efficiency: 

FRETEfficiency = (DonorPost – BkGrdPost) – (DonorPre – BkGrdPre)      x 100 

        _________________________________________ 

 

             (DonorPost – BkGrdPost) 

 

DonorPost = Donor emission after photobleach 

BkGrdPost = Background emission after photobleach 

DonorPre = Donor emission prior to photobleach 

BkGrdPre = Background emission prior to photobleach 

 

2.2.6 Migration assays 

Scratch wound assay 

Cor-1 cells were plated onto 0.1% gelatin-coated 24 well image-lock plates (Essen 

Instruments) containing 1 ml of growth medium, at a density of 800,000 cells/well. 

Cells were allowed to attach at room temperature for 30 minutes prior to 

incubation at 37
0
C/8% CO2 to reduce clumping. Once cells had become fully 

confluent (typically after 24 hours), a single uniform scratch (~800 µm in width) was 

made along the centre of each well using a scratch wound device (Essen 

Instruments). The medium was removed and the wells were washed twice with PBS 

to remove cell debris. NS cell medium containing drugs or vehicle was added to the 

wells immediately before filming. Three pre-determined points along each scratch 

were imaged using the Incucyte automated imaging platform (Essen Instruments) 

every 2 hours for 24 hours. The area of the wound infiltrated by migrating cells at 

12 hours was calculated from the data generated by the Essen Incucyte software.  

 

Explant migration assay/ Aggregate migration assay 

RMS explants/aggregates were embedded in growth factor-reduced phenol red-

free Matrigel (BD) on sterile glass coverslips and allowed to migrate for 24 hours in 

Neurobasal complete medium at 37
0
C/5% CO2. Drugs were added to the Matrigel 

solution as well as the culture media and were present throughout the incubation 

period. Images of fixed and immunostained explants/aggregates were captured on 
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the Zeiss Apotome at 5X, 10X and 20X objectives. For quantification of distance 

migrated, the distance from the edge of the explant/aggregate to the furthest 

migrated neuroblast perpendicular to the edge, was measured at 6 points around 

the periphery of the explant/aggregate using ImageJ software. Approximately 10 to 

20 explants/aggregates were measured for each independent experiment. 

Explants/aggregates in direct contact with other explants/aggregates were 

excluded from the analysis. Explants/aggregates of varying sizes were used in the 

analysis, since we did not find a correlation between explant/aggregate size and 

distance migrated (verbal communication from Madeleine Oudin).  

  

For live imaging of explant migration, RMS explants were embedded in Matrigel in a 

4 chamber 35mm Hi-Q4 culture dish (Nikon). Images were captured on the Nikon 

Biostation (an automatic multipoint time-lapse imaging system with controlled 

environment maintained at 37
0
C/5% CO2) with a 20X and 40X objectives every 3 

minutes for 24 hours. Frames were played at a frequency of 10 frames per second. 

Tracking analysis was performed using Volocity software (Perkin Elmer), and limited 

to the first 9 hours of filming. Since neuroblasts from within the explant emerged at 

different times during the filming period, cells were tracked for the first 4 hours of 

migration upon exiting the explant core. At least 40 cells were tracked for each 

condition in each experiment.  

 

Migration in living brain slices 

Mouse pups were sacrificed by cervical dislocation followed by decapitation 3-7 

days post-electroporation. Brains were hemisected, and the right hemisphere 

(electroporated side) was mounted (midline face down) onto the Vibratome 

platform (Leica) using Roti Coll. Brains were cut into 300 µm-thick sagittal sections, 

and slices containing the olfactory bulb were examined under a microscope for GFP 

positivity along the RMS. Slices with a GFP signal were cultured on a Milli cell insert 

(30 mm Organotypic PTFE 0.4µm; Millipore) submerged in brain slice imaging media 

in a p35 dish for 1 hour. Milli cell inserts were then transferred to a p35 glass 

bottom dish (MatTek), containing the same media, for imaging. Z-stack (every 2-4 

µm) images of GFP positive cells in the RMS were taken every 3 minutes for 3 hours 
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at 20X magnification on a Perkin Elmer UltraView VoX spinning disk system 

equipped with an inverted Nikon Ti-E microscope using a Nikon CFI Super Plan Fluor 

ELWD 20X/0.45 objective and a Hamamatsu Orca R2 camera. Movies were acquired 

and analysed using the Perkin Elmer Volocity software. For tracking analysis only 

cells that were present within the imaging area for the entire duration of the movie 

were analysed. Between 15 to 30 cells were tracked for each experiment.  

 

2.2.7 Immunocytochemistry 

Immunocytochemistry on cells in 2D 

Coverslips were washed with PBS three times and fixed with 4% PFA for 20 minutes 

at room temperature. Cells were quenched with 50 mM ammonium chloride for 20 

minutes, then permeabilised and blocked at room temperature for 15 minutes with 

PBS containing 0.1% Triton-X-100, 1% BSA, 0.1% Sodium Azide, 0.025% gelatin, and 

10% FCS. Primary antibodies were diluted in PBS containing 1% BSA and 0.025% 

gelatin, and incubated overnight at 4
0
C. Coverslips were then rinsed with PBS and 

incubated with Alexa Fluor 488 or Texas red-conjugated secondary antibody and 

Hoechst for 25 minutes. Coverslips were mounted using a commercial mounting 

solution (Dako). 

 

Immunocytochemistry on Matrigel-embedded explants (3D) 

Coverslips were fixed in 4% PFA at room temperature for 40 minutes, washed three 

times with PBS, and blocked and permeabilised with 15% goat serum, 0.3% Triton-

X, 0.1% BSA in PBS for 1 hour at room temperature. Primary antibodies were 

diluted in the same solution and incubated overnight at 4
0
C. Coverslips were 

washed three times with PBS and incubated with secondary antibodies and Hoechst 

(1:10,000; Sigma) - diluted in the same solution - for 2 hours at room temperature. 

Coverslips were washed with PBS and mounted using a fluorescent mounting 

medium (Dako). For the detection of external N-Cadherin, Triton-X-free 

block/antibody solution was used.  
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2.2.8 Immunohistochemistry 

Gelatin-embedded sections 

Electroporated brains were hemisected, fixed in 4% PFA overnight at 4
0
C, and then 

embedded in 4% gelatine, which was left to set overnight at 4
0
C. Gelatin-embedded 

brains were fixed in 4% PFA overnight at 4
0
C to harden the gelatin, and then cut on 

a Vibratome into 75 µm-thick sagittal sections. Slices were blocked and 

permeabilised  for 1 hour at room temperature in 1% BSA, 0.1% Triton-X, 0.1% 

sodium azide in PBS, and incubated with primary antibody overnight at 4
0
C in the 

same solution. Secondary antibodies were also diluted in the same solution and 

incubated for 2 hours at room temperature. Slices were washed in PBS, mounted 

onto glass slides using Dako mounting media, and covered with a 22x50 mm 

coverslip. Z-stack (every 0.5 – 1.5 µm) images of the stream were captured on a 

Zeiss LSM 710 confocal microscope using a 40X objective. 

 

For the purpose of quantification, the RMS was classified into four anatomically 

distinct regions (Region A: injection site; Region B: descending arm of the RMS; 

Region C: “elbow” preceding the RMS just before the OB; Region D: within the OB) 

as previously described (Belvindrah et al. 2011). Process length was measured as 

the distance from the base of the cell body to the tip of the leading process using 

ImageJ software. Measurements were taken from all cells in each image. To 

determine orientation, all cells with their leading process outside a 180
0
 angle 

relative to the position of the OB were considered to be misoriented. 

 

Paraffin-embedded section 

Formalin-fixed P8 mouse brains were embedded in paraffin and cut into 6 µm-thick 

sagittal sections. Slices were deparaffinised and rehydrated prior to heat-induced 

antigen retrieval using a sodium citrate buffer. Slices were then blocked and 

incubated with the primary antibody overnight at 4
0
C. Biotinylated secondary 

antibodies were incubated at room temperature and detected with 

StreptABComplex/HRP, and subsequently developed in DAB solution and counter 

stained with haematoxylin. Sections were dehydrated in 100% IMS, cleared in 

Xyelene and mounted in DPX plastic. 
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2.2.9 Statistical analysis 

Student’s 2-sided T-test was used for all statistical analysis where variance was 

equal, or a Mann Whitney U test was used if equal variance was not present. Where 

shown, * P < 0.05, ** P < 0.01, *** P < 0.001. For all graphs, the error bars 

represent the standard error of the mean (SEM). We have used the SEM in order to 

describe the confidence in the estimated value of the mean, rather than the use of 

the standard deviation (SD) to describe the variability within the data set (Altman 

and Bland 2005).  
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Chapter 3: Endocannabinoids regulate RMS neuroblast 

migration 

3.1 Introduction 

The eCB system has been previously implicated as a regulator of cell migration 

(Song and Zhong 2000; Berghuis et al. 2005; Miller and Stella 2008). Whilst CB2 

receptor activation in immune cells has been associated with both enhancement 

and inhibition of migration depending on the specific cell type (Miller and Stella 

2008), activation of the CB1 receptor appears to be necessary for chemotaxis of 

GABAergic cortical interneurones (Berghuis et al. 2005). During CNS development, 

signalling via the CB1 receptor is a crucial event in the guidance of axons to their 

target regions (Williams et al. 1994; Williams et al. 2003). Both axon guidance and 

neural precursor migration are closely related processes, and rely on cytoskeletal 

changes in response to extracellular cues (Lambert de Rouvroit and Goffinet 2001). 

Moreover, molecules traditionally associated with axon guidance, such as Slits and 

netrin-1, have also been shown to regulate the migration of adult neural precursors 

(Hu 1999; Wu et al. 1999; Murase and Horwitz 2002; Ward et al. 2003; Hakanen et 

al. 2011). The evidence of a functional eCB tone regulating neurogenesis in the 

adult SVZ (Jin et al. 2004; Aguado et al. 2006; Palazuelos et al. 2006; Goncalves et 

al. 2008; Gao et al. 2010), and the expression of both CB1 and CB2 receptors on 

adult neural precursors (Jiang et al. 2005; Palazuelos et al. 2006; Molina-Holgado et 

al. 2007), raises the question as to whether CB signalling also regulates the 

migration of neural precursors in the adult brain. Thus, based on the ability of the 

eCB system to participate in cell migration and axon guidance, and the existence of 

a functional eCB system in the SVZ, we set up a series of in vitro and in vivo 

migration assays to explore whether the eCB system may also regulate RMS 

neuroblast migration.  
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3.2 Results  

3.2.1 Activation of CB receptors increases the motility of Cor-1 cells 

In the first stage of this project, we used the Cor-1 NS cell line as a model system to 

assess the ability of CB receptor agonists to regulate neural precursor migration. 

Even though the range of transcription factors present in these cells may be 

influenced by the in vitro environment, and may not reflect the true neural 

progenitor state, this cell line represent a valuable model system for initial studies 

that can be further validated in primary neural progenitors. The Cor-1 cell line is a 

NS cell line derived from the cortex of E16.5 mouse embryos, and can be 

continuously expanded in the presence of epidermal growth factor (EGF) and 

fibroblast growth factor-2 (FGF-2). Cor-1 cells express markers that are 

characteristic of neurogenic radial glia (nestin, RC2, vimentin, 3CB2, SSEA1/Lex1, 

Pax6, and prominin), are comparable to NS cells derived from ES cells and the adult 

SVZ, and can be differentiated into both neurones and astrocytes (Conti et al. 2005; 

Pollard et al. 2006). In addition, they display an elongated bipolar morphology and 

migratory ability with inter-kinetic nuclear movement similar to neuroepithelial and 

radial glia cells in vivo (Conti et al. 2005). Interestingly, Cor-1 cells express 

neuroblast markers (DCX, βlll tubulin, and PSA-NCAM) (Doetsch et al. 1997; Koizumi 

et al. 2006; Ocbina et al. 2006) (Figure 3.1A), as well as components of the eCB 

system including DAG-Lα/β, MAG-L, FAAH (Figure 3.1B), and CB1/CB2 receptors (Dr 

Phillip Sutterlein et al, Molecular and Cellular Neuroscience, in press). Hence, this 

cell line lends itself as a useful model for screening potential regulators of neural 

progenitor migration and can be used to evaluate the role of CB signalling in this 

process. 

 

To test the hypothesis that the CB system regulates neuronal migration, we 

examined the effect of CB2 receptor activation on random cell motility using time-

lapse imaging of Cor-1 cells treated with the CB2 agonist JWH-056 (1 µM) (Arevalo-

Martin et al. 2007; Molina-Holgado et al. 2007). Our initial assessment was focused 

on the CB2 receptor due to the fact that activation of this CB receptor alone 

enhanced neurogenesis in the aged SVZ (Goncalves et al. 2008). 
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Figure 3.1: Cor-1 cells express markers of neural precursors and eCB 

synthesising/metabolising enzymes. (A) Cor-1 cells show positive staining for 

markers of neural precursors (DCX, βlll-Tubulin, and PSA-NCAM). Bar = 20 µm. (B) 

Western blot analysis of Cor-1 cell lysates shows expression of eCB synthesising 

enzymes (DAG-Lα and DAG-Lβ) and metabolising enzymes (MAG-L and FAAH)  (PhD 

thesis of Madeleine Oudin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

Since cells from different flasks showed variation in basal motility (general 

observation), each treatment group was compared against control cells derived 

from the same flask. The experiment was repeated on two separate occasions (Test 

1 and Test 2). As previously described by the creators of the cell line, Cor-1 cells 

display a bipolar morphology and show evidence of inter-kinetic nuclear movement 

(Supplementary movie 1). Interestingly, contact-mediated inhibition of locomotion 

can also be observed in these cells (Supplementary movie 2): a phenomenon first 

described by Michael Abercrombie (Abercrombie and Heaysman 1953; 

Abercrombie and Heaysman 1954) and now attributed to adhesion molecules and 

signaling via Rho GTPases (Huttenlocher et al. 1998; Grosheva et al. 2001). The 

trajectories of all cells tracked from Test 1 are shown in Figure 3.2A. Though at first 

glance the trajectories of JWH-056 treated Cor-1 cells appear longer than those of 

the control, it was not possible to compare the lengths of trajectories between 

groups since tracking was terminated if the cells underwent division or collided with 

one another, and was only resumed once the cells were moving freely. This resulted 

in the software program registering more than one trajectory for the same cell. 

Hence, in reality, the trajectories are actually longer than those shown. The mean 

velocity of JWH-056 treated Cor-1 cells in Test 1 (1.33 µm/min ± 0.06), was 

significantly greater (71%) than that of its control (0.78 µm/min ± 0.07) (Figure 

3.2B). Similarly, the mean velocity of Cor-1 cells treated with JWH-056 in Test 2 

(1.58 µm/min ± 0.03) was also significantly greater (22%) than its corresponding 

control (1.29 µm/min ± 0.04) (Figure 3.2B). Despite considerable variability in basal 

motility in the two tests, on both occasions the CB2 agonist significantly enhanced 

Cor-1 cell migration. 

 

3.2.2 Stimulation of CB receptors promotes migration of Cor-1 cells in the scratch 

wound assay 

The scratch wound assay is a simple, effective, and well-established method for 

studying the migration of cells in vitro (Liang et al. 2007). In this assay, a scratch is 

made in a confluent monolayer of cells, and the rate of wound closure is used as a 

measure of migration. One of the advantages of using this assay, is that it is a 

reconstruction of in vivo migration of cells in response to a wound, and is also  
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Figure 3.2: A CB2 agonist increases random migration of Cor-1 cells. Cor-1 cells 

plated onto P35 dishes at a density of 70,000 cells per dish, were imaged every 3 

minutes using time-lapse microscopy ± CB2 agonist JWH-056 (1 µM). The 

experiment was repeated on 2 separate occasions (Test 1 and Test 2). The 

trajectory of every cell imaged during the first 6 hours was tracked manually using 

the Andor tracking software and analysed with the Mathematica software. Tracking 

was terminated if the cells stopped to divide or if they were in direct contact with 

another cell. Tracking was resumed once the cell was freely moving. (A) Trajectories 

of control and JWH-056 treated cells from a single experiment (Test 1) with the 

origin set at 0 are shown as vector plots with the x and y axis scaled in µm.  (B) 

Mean velocity of tracked cells from Test 1 and Test 2. Cor-1 cells treated with JWH-

056 have a greater average velocity in comparison to the control in both Test 1 and 

2. Each bar represents the mean ± SEM; ***P < 0.001; 331 ≥ n ≥ 63, where n is the 

number of cells. 
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useful for investigating cell-cell interactions as well as the interaction of cells with 

the extracellular matrix (Liang et al. 2007). We used the Essen Instruments scratch 

wound device to achieve uniform scratches in all wells of a 24 well Essen image-lock 

plate (Figure 3.3, please refer to Methods page 97), and used the automated 

Incucyte imaging platform (Essesn Instruments) to acquire images of the wounds 

every 2 hours. In order to verify that the closure of the wound is a result of cell 

migration and not proliferation, we investigated the effects of the anti-proliferative 

agent Mitomycin C (Tomasz and Palom 1997) on the scratch wound test using Cor-1 

cells. When Cor-1 cells are plated at approximately 10% confluence, Mitomycin C 

(50 ng/ml and 100 ng/ml) is able to inhibit proliferation by 70% (Figure 3.4A-B). 

Cells appear healthy and show no morphological evidence of toxicity following 

treatment with 100 ng/ml of Mitomycin C (Figure 3.4B). The same concentrations of 

the anti-proliferative drug had no effect on the rate of wound closure (Figure 3.4C), 

thereby proving that in our conditions the scratch wound assay is a measure of 

migration and not proliferation. It is also worthy to note that the rate of 

proliferation plateaus when cells approach 100% confluence. Therefore, it is 

unlikely that proliferation would have an impact in this assay, where the cells are 

already at maximum confluence. 

 

The scratch wound test was used to examine the role of CB receptors in Cor-1 cell 

migration. Visual inspection of scratch wounds at 12 hours and 24 hours (Figure 

3.5B), reveals that the CB1 agonist ACEA (0.75 µM) (Pertwee 2006) increases the 

migration of cells into the wound area in comparison to the control. This is 

particularly evident at 24 hours where the wound is entirely closed in CB1 agonist-

treated wells. Quantification of the relative rate of migration (wound area 

infiltrated by migrating cells) (Figure 3.5A), shows that CB1 (ACEA 0.75 µM) and CB2 

(JWH-133 1 µM) (Pertwee 2006) agonists enhance rate of wound closure, and this 

effect is inhibited by their respective antagonists (AM-251 1 µM and JTE-907 1 µM) 

(Gatley et al. 1997; Iwamura et al. 2001). Notably, the CB1 antagonist not only 

inhibited the pro-migratory effect of ACEA, but also inhibited the rate of wound 

closure to a level significantly lower than that of the control, thus suggesting the 

existence of an intrinsic eCB tone. 
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Figure 3.3: Scratch wound assay. (A) Schematic representation of the Essen 

Instruments scratch wound device. (B) Cor-1 cells were plated at a density of 

800,000 cells/well in 24 well image-lock plates (Essen Instruments) and incubated 

for 24 hours. A single uniform scratch (~ 800 µm in width) was made in each well 

using the Essen Instruments scratch wound device, and the wounds were imaged 

every 2 hours using the Incucyte automated imaging platform (Essen Instruments). 

Images show snapshots of a well before (left) and immediately after (right) a 

scratch. 
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Figure 3.4: Rate of migration is independent of proliferation in the scratch wound 

assay. (A) Cor-1 cells plated at a density of 100,000 cells/well in 24 well plates were 

incubated with the anti-proliferative agent Mitomycin C and imaged every 2 hours 

for 24 hours. Mitomycin C 100 ng/ml inhibits proliferation by approximately 70%. 

(B) Snapshots of control Cor-1 cells and Mitomycin C (100 ng/ml) treated Cor-1 cells 

taken 24 hours after addition of pharmacological agents. (C) Cor-1 cells were plated 

at a density of 500,000 cells/well in 24 well image-lock plates (Essen Instruments), 

and cultured overnight to obtain a confluent monolayer. Wells were scratched the 

following day and incubated with the indicated concentrations of Mitomycin C. 

Wounds were imaged every 2 hours for 24 hours. The rate of migration, as 

measured by the rate of wound closure, is unaffected by Mitomycin C. Each bar 

represents the mean ± SEM; n = 3 independent experiments. (Data from the PhD 

thesis of Madeleine Oudin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

      

Figure 3.5: CBs regulate Cor

cells were plated at a density of 800,000 cells/well in image lock plates (Essen 

Instruments) and incubated overnight under standard condition to achieve a 

confluent monolayer of cells. The we

wounds were imaged every 2 hours after addition of the indicated pharmacological 

agents: ACEA 0.75 µM (CB1 agonist), JWH

(CB1 antagonist), and JTE

of migration (wound area infiltrated by migrating cells) reveals that CBs significantly 

increase the rate of migration of Cor

their respective antagonists 

and 24 hours after the scratch show that ACEA causes faster closure of the wound. 

Grey regions indicate the area infiltrated by migrating cells. Each bar represents the 

mean ± SEM; *P < 0.05; **P < 0.01; 
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regulate Cor-1 cell migration in the scratch wound assay

cells were plated at a density of 800,000 cells/well in image lock plates (Essen 

Instruments) and incubated overnight under standard condition to achieve a 

confluent monolayer of cells. The wells were scratched the following day and the 

wounds were imaged every 2 hours after addition of the indicated pharmacological 

agents: ACEA 0.75 µM (CB1 agonist), JWH-133 1 µM (CB2 agonist), AM

(CB1 antagonist), and JTE-907 1 µM (CB2 antagonist). (A) Quantification of the rate 

of migration (wound area infiltrated by migrating cells) reveals that CBs significantly 

increase the rate of migration of Cor-1 cells. This effect is successfully inhibited by 

their respective antagonists (B) Snapshots of control and ACEA treated cells at 0, 12 

and 24 hours after the scratch show that ACEA causes faster closure of the wound. 

Grey regions indicate the area infiltrated by migrating cells. Each bar represents the 

*P < 0.05; **P < 0.01; n = 3 independent experiments
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3.2.3 Establishing an in vitro migration assay using primary RMS neuroblast 

cultures 

Having ascertained that CB signalling can regulate the migration of a NS cell line in a 

2-dimensional (2D) migration assay, we then decided to establish migration assays 

using primary cultures of RMS neuroblasts. This would provide a suitable model 

system to validate the role of CB signaling in RMS neuroblast migration, and also 

allow us to investigate the signaling cascade regulating migration downstream of 

the CB receptors.  

 

We followed a published protocol describing a 3-dimensional (3D) neuroblast 

migration assay which can recapitulate the typical chain migration seen in vivo 

(Ward and Rao 2005). We isolated the RMS of P5-P6 mice (Figure 3.6A), which was 

cut into explants and embedded in the 3D matrix Matrigel. RMS explants cultures 

embedded in Matrigel show substantial migration of neuroblasts out of cultures 

after 24 hours (Figure 3.6B). Time-lapse imaging of these cultures shows that 

neuroblasts migrate mostly as chains, sliding over one another, and have a highly 

dynamic single leading process that extends and retracts as it senses the external 

environment (Supplementary movie 3). Once the leading process becomes 

established, a swelling forms in front of the nucleus, which then jumps towards the 

leading process, thereby propelling the cell forward (Schaar and McConnell 2005) 

(Figure 3.6C and Supplementary movie 3). Neuroblasts also display periods of 

immobility, during which the leading process extends and retracts, apparently 

sensing the extracellular environment. They can also change direction rapidly by re-

organising the leading process and can migrate back into the explants as well as out 

(Supplementary movie 3). When cultured in Matrigel, these primary neuroblasts do 

not show evidence of proliferation (Supplementary movie 3), as confirmed by the 

virtual absence of immunoreactivity for the proliferation marker Ki67 (Madeleine 

Oudin, unpublished observations). However, evidence of neuroblast proliferation 

within the RMS in vivo has been described by several groups (Thomas et al. 1996; 

Doetsch et al. 1997; Nie et al. 2010).  
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Figure 3.6: Mouse RMS neuroblasts migrate out of explants as chains when 

embedded in Matrigel. Mouse RMS explants were embedded in Matrigel, and 

allowed to migrate for 24 hours prior to fixation. (A) High magnification view of a 

mouse olfactory bulb (left) and coronal sections (~1.5mm in diameter) of the 

olfactory bulb (right). The dotted line outlines the RMS, which can be seen as a 

triangular, translucent, area in the centre of the section. Adapted from (Ward and 

Rao 2005) (B) Representative image of an RMS explants in Matrigel stained for the 

migratory neuroblast marker DCX. Neuroblasts migrate out of explants as chains, 

similar to their migratory behaviour in vivo. Bar = 50 µm. (C) Phase contrast images 

from time-lapse movies demonstrating the characteristic movement of a neuroblast 

migrating in Matrigel: (left) Establishment of a single leading process and swelling in 

front of the nucleus; (middle) movement of the nucleus towards the leading 

process (nucleokinesis); (right) extension of a new leading process.  
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Characterisation of RMS explant cultures by immunostaining for markers of 

migratory neuroblasts (DCX and PSA-NCAM) reveals that virtually all cells within the 

cultures are positive for both proteins (Figure 3.7). To assess the purity of the 

cultures, cells were stained for the neuronal marker βlll tubulin and the astrocytic 

marker GFAP (Bignami and Dahl 1974; Easter et al. 1993). The vast majority of cells 

isolated from the RMS express βlll tubulin. Very few cells express GFAP, and the 

expression of GFAP and βlll tubulin is mutually exclusive. GFAP-positive astrocytes 

are also morphologically distinct from βlll tubulin positive neuroblasts, having a 

typical astrocytic stellate morphology (Figure 3.8). RMS neuroblasts also express 

DAG-L, the enzyme responsible for the synthesis of the main eCB 2-AG, as well as 

both CB1 and CB2 receptors (Figure 3.9 A-B).  

 

In order to examine the functional role of signaling pathways in neuroblast 

migration, we decided to establish a 3D migration assay using transfected primary 

neuroblasts. We initially optimized our experimental conditions by transfecting 

dissociated RMS neuroblasts with GFP via nucleofection. Cells were then re-

aggregated into clusters using the hanging drop procedure (see Methods page 94). 

These re-aggregated cells successfully migrate out of clusters when embedded in 

Matrigel (Figure 3.10). Inspection of GFP expression reveals a high level of 

transfection, with more than 70% of neuroblasts expressing GFP (Figure 3.10). 

Importantly, nucleofection and expression of GFP does not impair neuroblast 

migration, as shown by comparison of the distance migrated by transfected and 

untransfected cells (Refer to chapter 5 Figure 5.14). 

 

In summary, we successfully established a 3D in vitro migration assay, which allows 

us to assess the influence of pharmacological agents on RMS neuroblast migration, 

as well as perturb signaling cascades using nucleofection and re-aggregation 

procedures. 
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Figure 3.7: Mouse RMS explants cultures express markers of migratory 

neuroblasts. Mouse RMS explants were embedded in Matrigel, and allowed to 

migrate for 24 hours prior to fixation. All cells migrating out of RMS explants 

cultures express markers of migratory neuroblasts (DCX and PSA-NCAM). Bar = 20 

µm.  

 

 

Figure 3.8: Mouse RMS cultures consist mostly of migratory neuroblasts. 

Dissociated mouse RMS cultures were plated on polyornithine/laminin coated 

coverslips and stained for markers of SVZ astrocytes (GFAP) and neuroblasts (βlll 

tubulin) 24 hours after plating. Cell nuclei are visualised by DAPI. GFAP and βlll 

tubulin expression are mutually exclusive, with the great majority of cells 

expressing βlll tubulin. White arrowheads point to GFAP positive astocytes. Bar = 20 

µm 
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Figure 3.9: Mouse RMS neuroblasts express DAG-L and CB1/CB2 receptors. (A) 

Mouse RMS explants were embedded in Matrigel and allowed to migrate for 24 

hours prior to fixation. Migratory neuroblasts show positive immunostaining for 

DAG-L (red), the enzyme that synthesises the endocannabinoid 2-AG. Bar = 20 µm. 

(B) Dissociated mouse RMS neuroblasts plated on polyornithine/laminin-coated 

coverslips were immunostained for DAG-L (red), CB1 receptor (green, top middle 

panel), and CB2 receptor (green, bottom panel). (Top right panel) High 

magnification image of the boxed area showing punctuate staining for both DAG-L 

and CB1 receptor that does not co-localise. Bars = 4 µm (top left and top right 

panel), 10 µm (bottom panel). Images in (B) are adapted from the PhD thesis of 

Madeleine Oudin.  
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Figure 3.10: Dissociated RMS neuroblasts can be successfully nucleofected and re-

aggregated. Mouse RMS explants were dissociated with trypsin and nucleofected 

with GFP. Neuroblasts were re-aggregated into clusters using the hanging drop 

procedure. Clusters were embedded in Matrigel and allowed to migrate for 6 hours 

prior to fixation. Re-aggregated neuroblasts are able to migrate out of embedded 

clusters (top panel) and show a high efficiency of transfection (bottom panel). Bar = 

20 µm. 
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3.2.4 Activation of CB receptors increases migration of mouse RMS neuroblasts in 

vitro 

Having established the necessary tools to study primary neuroblast migration, we 

tested whether the CB system can regulate this process using specific CB receptor 

agonists and antagonists. Both CB1 and CB2 agonist (ACEA and JWH-133 

respectively) significantly promoted the migration of RMS neuroblasts, and this 

effect was inhibited by their respective antagonists AM-251 and JTE-907 (Figure 

3.11A and Figure 3.11B). Although combined addition of both CB1 and CB2 agonists 

enhanced migration out of explants, this effect was not greater than either one of 

the agonists on their own (Figure 3.11B). This could be due to either saturation of a 

shared pathway or a limit in the migratory capacity of RMS neuroblasts in this in 

vitro system.  Analysis of the number of neuroblasts at set distances from the edge 

of the explant reveals that CB1 activation significantly increases the number of 

neuroblasts migrating out of the explants at all set distances from the border 

(Figure 3.11C). Similarly, CB2 activation also caused a significant increase in the 

number of neuroblasts migrating out of explants (Figure 3.11C). This effect was 

inhibited by the corresponding CB1 and CB2 antagonists. 

 

More detailed analysis of the CB system in RMS neuroblasts migration revealed that 

CB1 antagonists, CB2 antagonists, and DAG-L inhibitors, were all capable of 

inhibiting neuroblast migration in vitro (Oudin et al. 2011). On the other hand, a 

MAG-L inhibitor, which prevents degradation of the endocannabinoid 2-AG, 

mimicked the effect of the CB agonists and increased migration of neuroblasts out 

of RMS explants. This increase in migration could not be inhibited by either CB1 or 

CB2 antagonist on their own, and required either a DAG-L inhibitor or both 

antagonists to fully counter the effect of the MAG-L inhibitor (Oudin et al. 2011). 

These results provide further evidence for the existence of an eCB tone in our 

system, and also suggest that RMS neuroblast migration can be regulated by both 

CB1 and CB2 receptors, which appear to exhibit a degree of redundancy. 

 

Time-lapse imaging of explant cultures in Matrigel revealed that treatment with CB 

agonists or MAG-L inhibitor increased the number of saltatory nuclear movements  
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Figure 3.11: CB agonists promote migration of mouse RMS neuroblasts in vitro. 

Mouse RMS explants were embedded in Matrigel, incubated with the indicated 

drugs, and allowed to migrate for 24 hours prior to fixation. Drugs were left in the 

medium throughout the duration of the experiment. (A) Representative images of 

explants in Matrigel showing enhanced migration of RMS neuroblasts caused by the 

CB1 agonist ACEA. Bar = 200 µm. (B) Both CB1 agonist (ACEA 0.5 µM) and CB2 

agonist (JWH-133 0.5 µM) significantly increase migration of RMS neuroblasts. This 

effect is blocked by their respective antagonists AM251 (1 µM) and JTE-907 (1 µM). 

(C) Quantification of the number of cells at set distances from the edge of the 

explant. The CB1 agonist ACEA (0.5 µM) significantly increase the number of cells 

migrating out of the explant. This effect is blocked by the CB1 antagonist AM251 (1 

µM). Each bar represents the mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; n = 

4 independent experiments.  
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(nuclear movement > 5 µm), whilst CB antagonists caused a significant reduction in 

large nuclear translocations (Oudin et al. 2011). Interestingly, CB antagonists also 

caused a 3-5 fold increase in the number of secondary branches originating from 

the leading process; whereas CB agonist or MAG-L treated neuroblasts often 

extended just a single leading process in a similar fashion to control cells. In 

contrast to CB antagonists, which caused a significant reduction to average process 

length, CB agonists notably increased the length of the leading process (Oudin et al. 

2011).  

 

Together, this data suggests the presence of an eCB tone in RMS explant cultures, 

which regulates neuroblast migration and polarised morphology via the CB1 and 

CB2 receptors.  

 

3.2.5 Activation of CB receptors increases the migration of mouse RMS 

neuroblasts in situ 

Having verified a role for the CB system in primary neuroblast migration in vitro, we 

proceeded to investigate whether this role is conserved in vivo. To achieve this, we 

labelled RMS neuroblasts by electroporating a pCX-EGFP plasmid (a kind gift from 

Dr. Masaru Okabe, Osaka University, Japan) into the lateral ventricle of P2 mouse 

pups (Figure 3.12, left). This procedure has been previously validated as an efficient 

method of labelling SVZ neuroblasts, with transgene expression being robust for at 

least 15 days post electroporation (Boutin et al. 2008).  Several days later (3-7 

days), brains were fixed, sectioned, and stained for GFP to visualise neuroblasts 

migrating in the stream (Figure 3.12, right). For the purpose of quantification, the 

RMS was classified into four anatomically distinct regions (Region A: injection site; 

Region B: descending arm of the RMS; Region C: “elbow” preceding the RMS just 

before the OB; Region D: within the OB) (Figure 3.12, left), as previously described 

(Belvindrah et al. 2011). We have recently shown that systemic administration of CB 

antagonists, following GFP-labelling of neuroblasts in the RMS, resulted in a shorter 

process length and increased secondary branching, as observed in fixed brain slices 

(Oudin et al. 2011). These results mirror our observations in vitro, and provide 

evidence that eCBs are important for maintaining correct neuroblast morphology 



 

 

                                                                   

Figure 3.12: Labelling migratory neuroblasts by 

EGFP plasmid was electroporated into the right lateral ventricle of P2 mouse pups. 

(Left) A schematic diagra

RMS (dotted lines) was divided into anatomically distinct regions for the purpose of 

quantification. Region 

RMS, region C is the RM

(Right) A fixed brain slice (7 days after electroporation) immunostained for GFP 

showing labelled neuroblasts migrating from the SVZ along the RMS to the OB. 

(Bottom enlarged panel) The vast majori

directed towards the OB in the direction of migration.

 

 

 

 

 

A 

B 

C

                                                                   

Figure 3.12: Labelling migratory neuroblasts by in vivo electroporation

EGFP plasmid was electroporated into the right lateral ventricle of P2 mouse pups. 

(Left) A schematic diagram showing the site of injection in the lateral ventricle. The 

RMS (dotted lines) was divided into anatomically distinct regions for the purpose of 

quantification. Region A is the injection site, region B is the descending arm of the 

is the RMS “elbow” preceding the OB, and region 

(Right) A fixed brain slice (7 days after electroporation) immunostained for GFP 

showing labelled neuroblasts migrating from the SVZ along the RMS to the OB. 

(Bottom enlarged panel) The vast majority of neuroblasts have their leading process 

directed towards the OB in the direction of migration. 
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(Right) A fixed brain slice (7 days after electroporation) immunostained for GFP 

showing labelled neuroblasts migrating from the SVZ along the RMS to the OB. 
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in vivo, and may therefore also be important for proper neuroblast migration.   

 

To validate this hypothesis, we labelled RMS neuroblasts by in vivo electroporation 

of pCX-EGFP, and used time-lapse spinning disk confocal microscopy to monitor 

their migration in acute brain slice cultures (Figure 3.13). Supplementary movie 4 

shows GFP-labelled neuroblasts migrating in region B of the RMS. Neuroblasts 

move in a similar manner to that observed in the in vitro explant migration assay: 

cells extend a single leading process, followed by swelling of the region in front of 

the nucleus, and forward propulsion of the nucleus in the direction of migration 

(Supplementary movie 4). Neuroblasts also showed alternation between periods of 

rapid migration and immobility, and were able to change direction rapidly by 

retracting and re-forming their leading process. In contrast to observations made 

from the Matrigel migration assay, neuroblasts migrating within the brain slice 

were also able to change direction by drastically curving their leading process in 

another direction. This may be due to the highly compacted nature of the RMS, 

where neuroblasts may be forced to curve their processes around adjacent cells. 

Interestingly, neuroblasts did not move uni-directionally in the stream, often going 

backwards or in circles and occasionally leaving the stream altogether 

(Supplementary movie 4). However, this is unlikely to be the case in vivo since in 

fixed brain slices almost all neuroblasts in the RMS are oriented towards the bulb 

and are tightly contained within the RMS (Figure 3.12). Hence, this effect is likely to 

be an artefact of either compromising the architecture of the RMS or dilution of the 

regulatory molecules guiding neuroblast migration in vivo. Nevertheless, this assay 

provides a useful tool to study the effects of pharmacological agents and their 

downstream targets on the dynamics of neuroblast migration in an environment as 

close as possible to native RMS.  

 

Figure 3.14 shows the combined effect of CB1 and CB2 agonists (ACEA and JWH-133 

1 µM each) on neuroblast migration in the brain slice assay. RMS neuroblasts in 

slices treated with CB agonists migrated a greater distance (190.8 µm ± 9.6) than 

control neuroblasts (129.6 µm ± 10.9) and also had a greater average velocity (63.6 

µm/hour ± 3.1) than control cells (43.3 µm/hour ± 3.6). 
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Figure 3.13: Snapshots of pCX-EGFP-expressing neuroblasts migrating in a living 

brain slice. A pCX-EGFP plasmid was electroporated into the right lateral ventricle 

of P2 mouse pups. Animals were sacrificed 3 – 7 days later, the right hemispheres 

were cut into 300 µm thick sagittal sections, and GFP-positive slices were cultured 

for imaging. Z-stack images (2-4 µm) of RMS neuroblasts in cultured brain slices 

were acquired every 3 mins for 3 hours using the UltraVIEW VoX System (Perkin 

Elmer). Migrating cells were tracked and analysed using Volocity software (Perkin 

Elmer). Panels show snapshots taken at the start (top panel) and end (middle panel) 

of filming. Coloured asterisks indicate the start and end positions of neuroblasts. 

Coloured tracks shown in the bottom panel show the trajectory of neuroblasts that 

were tracked for analysis (Supplementary movie 4). 
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Figure 3.14: Cannabinoids increase migration of neuroblasts in the brain slice 

assay. Brain slices with GFP-labelled neuroblasts were prepared 3-7 days after in 

vivo electroporation of pCX-EGFP. Slices were incubated with or without 

cannabinoid agonists (ACEA 1 µM + JWH-133 1 µM) for 1 hour prior to imaging. 

Slices were imaged at the beginning of the stream (region B) every 3 minutes for 3 

hours. Drugs were present throughout the imaging period. CB receptor agonists 

increase the distance migrated (top) and velocity (middle), and reduce the length of 

time spent immobile (bottom). Each bar represents the mean ± SEM; **P < 0.01; 

***P < 0.001; n = 8 for control; n = 9 for CB agonists, where n = independent 

experiments. Approximately 15 to 30 cells were tracked for each experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 

 

Neuroblasts in CB agonists-treated slices also spent significantly less time immobile 

(41.2 min ± 3.7) compared to control samples (60.7 min ± 5.2). Comparison of the 

parameters that describe persistence of directional motility (Figure 3.15) reveals 

that there was no significant difference between control and CB agonists-treated 

slices. The total displacement, although slightly greater with CB agonists (94.7 µm ± 

6.3) was not statistically different from the control (77.9 µm ± 8.6) (Figure 3.15, top 

panel). The average meandering index (MI; total displacement/total distance) was 

also similar between the two groups (control: 0.53 ± 0.026; CB agonists: 0.50 ± 

0.021) (Figure 3.15, middle panel). Based on the MI, neuroblasts were also classified 

as migratory (MI > 0.6), intermediate (MI 0.4 – 0.6) or exploratory (MI < 0.4) using 

the same parameters defined by published reports describing neuroblast migration 

in the RMS (Nam et al. 2007). No significant difference was observed in the 

percentages of cells that were migratory, intermediate, or exploratory between 

control and CB agonists treated neuroblasts (Figure 3.15, bottom panel). From 

these results we conclude that CBs have a motogenic effect on RMS neuroblasts in 

vivo. Although we did not observe an effect of CBs on displacement or the MI in the 

brain slice assay, we cannot say with certainty that CBs have no effect on 

persistence since there appears to be a loss of directionality even in control cells, 

probably arising from disruption of the stream architecture and dilution of native 

migratory signals. 

 

3.2.6 Comparison of rat and mouse RMS cultures 

One of the main limitations of using mouse RMS cultures is the relatively low yield 

of neuroblasts obtained per brain: approximately 500,000 cells per brain of a P5-P7 

mouse. Transfection procedures with reasonably high efficiency such as 

nucleofection, which facilitate the functional study of candidate 

molecules/signalling pathways in neuroblasts, require at least 3,000,000 cells per 

nucleofection. Rat RMS cultures on the other hand, can produce more than 

1,000,000 neuroblasts per brain of a P5-P7 rat pup. Since the organisation of the rat 

and mouse SVZ and RMS are remarkably similar (Peretto et al. 2005), we can 

assume that the two species are interchangeable, at least in this context. For this 

reason, we examined rat RMS explants as an alternative source of neuroblasts.  
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Figure 3.15: CB agonists do not affect persistence in the brain slice assay. The 

persistence of neuroblast movement was analysed using the meandering index (MI; 

total displacement/total distance). The migratory behaviour of neuroblasts was 

classified as exploratory (MI < 0.4), intermediate (MI 0.4 – 0.6) or migratory (MI > 

0.6). Cannabinoid agonists did not significantly affect the displacement (top); 

average meandering index (middle); or the % of neuroblasts with exploratory, 

intermediate, or migratory phenotype (bottom). Each bar represents the mean ± 

SEM; n = 8 for control; n = 9 for CB agonists, where n = independent experiments. 

Approximately 15 to 30 cells were tracked for each experiment. 
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Rat RMS neuroblasts migrate out of explants embedded in Matrigel in a similar 

manner to neuroblasts derived from the mouse RMS (Figure 3.16A). The distance 

migrated out of explants by rat RMS neuroblasts over a 24 hour period (224.2 µm ± 

7.4) is marginally greater, but not significantly different from that observed in 

mouse explants (204.2 µm ± 10.8) (Figure 3.16B). The vast majority of cells in rat 

RMS explant cultures are migratory neuroblasts, as confirmed by the expression of 

neuroblast markers DCX and βlll tubulin (Figure 3.17). As seen in mouse RMS 

explant cultures, the few astrocytes that are occasionally present, have a distinctive 

star-like morphology, and do not express the neuronal marker βlll tubulin (Figure 

3.18). As a final confirmation that rat RMS cultures can be used for our 

investigations as an alternative to mouse cultures, we treated rat RMS explants 

with CB agonists and antagonists to see if we could reproduce the same results 

seen with the mouse model. Figure 3.19A-B shows that both CB1 (ACEA) and CB2 

(JWH-133) agonists were able to significantly increase neuroblast migration, and 

this effect was inhibited by their corresponding antagonists. Thus, we can conclude 

that rat RMS neuroblast cultures are similar to those derived from the mouse brain 

in both their composition and response to CBs, and can therefore be used as an 

alternative model system. 
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Figure 3.16: Comparison of rat and mouse RMS explants in Matrigel. The RMS was 

dissected from P5-P7 rat and mouse pups. Explants were embedded in Matrigel, 

and allowed to migrate for 24 hours prior to fixation. Explants were stained for F-

actin to allow comparison of morphology. (A) Representative images of rat and 

mouse explants after 24 hours of migration in Matrigel. Both mouse and rat 

neuroblasts migrate in a similar manner, although mouse neuroblasts appear to 

form thicker chains. (B) Rat and mouse neuroblasts migrate to a similar extent, as 

shown by quantitative comparison of their migration distance over a period of 24 

hours. Bar = 200 µm. Each bar represents the mean ± SEM; n = 33 and 39 explants 

for rat and mouse respectively. 
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Figure 3.17: Rat RMS cultures express markers of migratory neuroblasts. Rat RMS 

explants were dissociated and plated onto polyornithine/laminin-coated coverslips. 

Cells were fixed and stained 48 hours after plating. Like mouse RMS cultures, the 

vast majority of cells in rat RMS explants cultures express markers of migratory 

neuroblasts (DCX and βlll tubulin). Bar = 20 µm. 
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Figure 3.18: Rat RMS astrocytes have distinct morphology and do not express 

neuronal marker βlll tubulin. (Top panel) Rat RMS explants embedded in Matrigel 

were stained for F-actin. Astrocytes (left) have a distinctive star-like morphology, 

whereas neuroblasts (right) have a single leading process.  Bar = 20 µm. (Bottom 

panel) Dissociated rat explants cultures nucleofected with GFP and embedded in 

Matrigel were stained for GFP and neuronal marker βlll tubulin. Occasional 

astrocytes that are present in cultures can be recognised by their lack of βlll tubulin 

expression. White arrowhead points to astrocyte. Bar = 20 µm. 
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Figure 3.19: CB agonists promote migration of rat RMS neuroblasts in vitro. Rat 

RMS explants were embedded in Matrigel, incubated with the indicated drugs, and 

allowed to migrate for 24 hours prior to fixation. (A) Both CB1 agonist (ACEA 0.5 

µM) and CB2 agonist (JWH-133 0.5 µM) significantly increase migration of RMS 

neuroblasts, and this effect is blocked by their respective antagonists AM251 (1 

µM) and JTE-907 (1 µM). Each bar represents the mean ± SEM. *P < 0.05; **P < 

0.01; n = 4 independent experiments.  (B) Representative images of explants in 

Matrigel showing enhanced migration of RMS neuroblasts by CB1 agonist ACEA (0.5 

µM) and CB2 agonist JWH-133 (0.5 µM), and inhibition of this effect by their 

respective antagonists AM251 (1 µM) and JTE-907 (1 µM). Bar = 200 µm. 
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3.3 Discussion 

The primary objective for the first part of this study was to determine whether the 

CB system can regulate the migration of neural precursors in the post-natal brain. In 

order to investigate this hypothesis, we devised a number of migration assays, 

using the Cor-1 NS cell line and primary neuroblast cultures. 

 

Our initial observations showed that pharmacological activation of the CB2 receptor 

significantly enhanced random migration of Cor-1 cells. Similarly, polarised cell 

migration, as measured by the rate of wound closure in the scratch wound assay, 

was also significantly increased following activation of the CB1 or CB2 receptor. 

Although CB receptor agonists have been shown to increase proliferation in these 

cells (Goncalves et al. 2008), the increased rate of wound closure observed here is 

unlikely to arise from this effect since the high cell density used in this assay is 

inhibitory to proliferation (Figure 3.4).  

 

To extrapolate our initial findings in Cor-1 cells to primary neuroblasts, we 

established a 3D migration assay using RMS explants derived from postnatal mouse 

brains and embedded in Matrigel (Ward and Rao 2005). Our results show that all 

constituents of the eCB system are expressed by RMS neuroblasts. Notably, DAG-L 

appears to be exclusively expressed by neuroblasts in the native RMS, and is absent 

in GFAP-positive astrocytes (Oudin et al. 2011). This suggests that eCBs may have an 

autocrine function in this system. Indeed, due to their hydrophobic nature, eCBs 

are known to remain within the phospholipid bilayer following synthesis and 

activate CB receptors within the same membrane by means of lateral membrane 

diffusion (Song and Bonner 1996; Xie et al. 1996; Piomelli 2003). In addition, the 

close association between neuroblasts, arising from the formation of chains, may 

facilitate the interaction between 2-AG and CB receptors on neighbouring cells, 

thereby achieving a paracrine effect. Given the short half life of 2-AG (Giuffrida et 

al. 2001), it is highly unlikely that a diffusion gradient of this molecule is present in 

the stream. Instead, eCBs are more likely to be involved in short-range signalling, 

acting on cells near their site of production (Piomelli 2003).   
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Treatment of neuroblasts with a CB1 or CB2 agonist significantly increased the 

distance migrated out of explants. Interestingly, the combined effect of the agonists 

was not greater than either agonist alone. This could either suggest that the CB1 

and CB2 receptors share a common downstream signalling pathway which is 

already saturated with just one agonist, or that there is a physical limit to the extent 

to which migration can be enhanced. In addition, both the CB1 and CB2 agonist 

increased the number of cells migrating out of explants. Thus, CB receptor 

activation not only enhances the speed of migration, but also appears to have a 

motogenic effect. This is particularly interesting since these two attributes are not 

necessarily interconnected. For example, BDNF is able to enhance the number of 

cells migrating out of explant cultures, but has no effect on the migrated distance 

(Chiaramello et al. 2007). This implies that CB receptor activation may be involved 

in two distinct pathways: one that stimulates migration and one that enhances 

speed.  

 

Next, we sought to confirm the existence of an active endogenous eCB tone in 

primary neuroblasts using pharmacological tools. We found that inhibiting DAG-L 

activity significantly reduced neuroblast migration, whilst enhancing eCB tone with 

an inhibitor of MAG-L, the main enzyme responsible for the hydrolysis of 2-AG in 

the brain (Blankman et al. 2007), drastically increased neuroblast migration. 

Importantly, enhancement of migration in response to a MAG-L inhibitor could not 

be blocked by either a CB1 or CB2 antagonist alone, and required both CB 

antagonists to fully counter this effect (Oudin et al. 2011). Thus, regulation of 

neuroblast migration appears to be reliant on both CB1 and CB2 receptors. 

Moreover, our results also suggest that 2-AG may be the main eCB involved in this 

process. 

 

We turned to time-lapse imaging of RMS explants in Matrigel to further analyse the 

effect of CB receptor activation on the dynamics of neuroblast migration. Activation 

of CB receptors or enhancement of endogenous eCB tone increased the number of 

large saltatory nuclear movements; whilst CB receptor antagonists significantly 

reduced the frequency of productive nuclear translocation events. Moreover, CB 
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receptor antagonists significantly disrupted unipolar neuroblast morphology, 

causing a 3-5 fold increase in the number of secondary branches formed per hour, 

as well as a shortening of the leading process (Oudin et al. 2011). Consistent with 

these observations, a single systemic administration of CB receptor antagonists was 

able to drastically disrupt the polarised morphology of neuroblasts in vivo, causing a 

shortening of their leading process and substantially increasing secondary 

branching (Oudin et al. 2011). Taken together, these findings show that an eCB tone 

is present in the RMS, and is involved in the regulation of neuroblast morphology 

and migration in vitro and in vivo. In the context of axonal guidance, information 

regarding the extracellular environment is relayed to the eCB system, which in turn 

mediates changes that promote axonal growth (Williams et al. 2003). If a similar 

mechanism exists in neuroblast migration, antagonising CB receptors would in 

effect inhibit the responses to extracellular guidance signals, thus leading to a loss 

of polarised migration. This may explain the phenotype seen here, and suggests the 

requirement of the eCB system to translate extracellular guidance cues.   

 

Finally, we sought to provide evidence that the regulation of neuroblast migration 

by eCBs also occurs within the native architecture of the stream, and is not an 

artefact of explant cultures in Matrigel. To achieve this, we labelled SVZ neuroblasts 

by electroporation of a GFP-expressing plasmid (Boutin et al. 2008), and 

administered pharmacological agents targeting the endocannabinoid system, either 

systemically for analysis of fixed brain slices, or directly to brain slices cultured for 

time-lapse imaging. Tracking analysis of neuroblasts migrating in the RMS revealed 

that they move in a similar manner to that observed in the explant migration assay, 

and to that described by others using the slice culture assay (Nam et al. 2007; 

Martinez-Molina et al. 2011). Although these studies report that neuroblasts 

adhere within the constraints of the RMS boundary (Nam et al. 2007; Martinez-

Molina et al. 2011), we found that they occasionally migrated out of the stream 

altogether. One possible explanation for this anomaly could be that whilst we have 

conducted our studies in early postnatal mouse pups (P5-P9), the mentioned 

reports have used adult mouse brains. Since the glial tube and associated 

vasculature only begins to form after P7, the tendency to migrate out of the RMS in 
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our system may be accounted for by the lack of this physical structure, which has 

been shown to be an important guide for neuroblast migration (Saghatelyan 2009; 

Snapyan et al. 2009; Whitman et al. 2009). Thus, in the early postnatal mouse brain, 

neuroblast migration may be more reliant on diffusible guidance cues, which are 

lost in the slice culture assay. In line with the observations of others, we also found 

that neuroblasts did not always move towards the OB, with a significant proportion 

moving in the opposite direction or in circles (Nam et al. 2007; Martinez-Molina et 

al. 2011). However, analysis of fixed brain slices show that neuroblasts are strictly 

oriented towards the OB, with few, if any oriented in the wrong direction. Again, 

this may be indicative of the loss of guidance factors associated with this assay. 

Nevertheless, the slice culture assay is a close representation of neuroblast 

migration in the RMS, and provides a system in which the dynamic behaviour of 

neuroblasts may be examined in their native environment.  

 

We report that activation of CB receptors significantly increased the average 

distance travelled by neuroblasts. Whilst control neuroblasts were stationary for 

almost an hour during a 3 hour filming period, treatment with CB receptor agonists 

reduced the length of the stationary period by a third. In addition, CB agonists 

significantly enhanced the speed of migration. These results are consistent with our 

findings in the explant migration assay, and further confirm that CB agonists 

enhance the speed of migration as well as having a motogenic effect on RMS 

neuroblasts. Although the eCB system is known to be involved in cell adhesion 

molecule-mediated axon guidance (Williams et al. 1994; Saffell et al. 1997; Williams 

et al. 2003), we did not observe any changes in the persistence of directional 

motility following activation of the CB receptors. However, in axon guidance, 

activation of the CB receptors is restricted to specific regions of the growth cone 

(Bisogno et al. 2003; Harkany et al. 2007; Oudin et al. 2011). Thus, a function for CB 

signalling in directional guidance of RMS neuroblasts may require activation of the 

CB receptors to be confined to localised regions, rather than the global activation 

occurring in the slice assay. 
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In summary, the CB system is an important regulator of RMS neuroblast migration 

both in vitro and in vivo. CB receptor agonists have a motogenic effect on RMS 

neuroblasts, and also increase the speed of migration. Moreover, the eCB system 

appears to be essential for correct polarised morphology of migrating neuroblasts.  
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Chapter 4: RalA is required for CB-promoted migration 

of RMS neuroblasts 

4.1 Introduction 

A diverse range of guidance molecules are involved in regulating neuroblast 

migration in the RMS. Our recent work on the eCB system has now established 

these lipid mediators as important contributors to this process (Oudin et al. 2011). 

Whilst considerable progress has been made in identifying the various guidance 

cues present in the RMS, exactly how these signals are translated to the cell’s 

migratory machinery is still not fully understood. We know from current studies 

that the chemoattractive effect of BDNF is reliant on activation of both the MAPK 

and PI3K pathways (Chiaramello et al. 2007), whilst GDNF interaction with NCAM is 

believed to activate CDK5 (Paratcha et al. 2006), and the effects of HGF is reliant on 

signalling via MAPK but not PI3K (Garzotto et al. 2008). In order for these diverse 

extracellular signals to be relayed to the molecular components that mediate cell 

migration, there may be a common pathway(s) on which different signalling 

cascades can converge. Here, we propose the small GTPase RalA as an ideal 

candidate for this role. 

 

Ras-like GTPases (Ral) are members of the Ras family of small G proteins that are 

known to regulate a number of biological functions, including cell polarity, 

exocytosis, endocytosis, proliferation and migration (Feig 2003; Lalli and Hall 2005; 

van Dam and Robinson 2006; Lalli 2009; Chen et al. 2011). The two Ral isoforms, 

RalA and RalB, share over 85% sequence identity and are known for having both 

distinct and overlapping biological functions (Takai et al. 2001). Ral activation has 

been previously linked to polarisation events in neurones (Lalli and Hall 2005; Lalli 

2009), as well as migration of cortical neurones during development (Jossin and 

Cooper 2011). Moreover, activation of Ral GTPases downstream of CB signalling has 

also been suggested as a potential mechanism regulating neurite outgrowth (He et 

al. 2005). These observations prompted us to investigate whether Ral activation 
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occurs downstream of CB signalling in the regulation of RMS neuroblast migration 

in the postnatal brain. 

 

4.2 Results 

4.2.1 RalA is expressed in rat RMS neuroblasts 

To date, the expression of RalA and its closely related family member RalB, have not 

been examined in RMS neuroblasts. Immunostaining reveals that RalA is strongly 

expressed in rat RMS neuroblasts, and is enriched at sites along the surface of the 

cell membrane (Figure 4.1). Western blot analysis also confirms the presence of 

RalA in neuroblast lysates, with a single band being detectable at 25 kDa as 

expected (Figure 4.2A). In contrast, RalB could not detected in neuroblast lysates, 

was weakly expressed in SVZ and embryonic rat cortex homogenates, and showed 

strong expression in Cor-1 cells (Figure 4.2B). The apparently different abundance 

of RalA and RalB in the SVZ and RMS, suggests the existence of distinct roles for the 

two Ral isoforms in these brain areas. Moreover, it implicates RalA as the main Ral 

isoform present in RMS neuroblasts. 

 

4.2.2 CB agonists activate RalA in rat RMS neuroblasts 

Next, we sought to investigate whether RalA acts downstream of CB receptors. To 

verify our hypothesis, we performed a pulldown assay where dissociated rat RMS 

lysates treated with CB1 or CB2 agonist (ACEA 0.5 µM and JWH-133 0.5 µM 

respectively, for 5 minutes, 30 minutes and 1 hour) were incubated with agarose 

beads bound to the RalA effector RalBP1 (Ral-binding protein 1), which only binds 

the active form of RalA (RalA-GTP) (Goi et al. 1999). Figure 4.3 shows that a basal 

level of active RalA is present in control conditions; however, CB agonists increase 

activation of RalA beyond basal levels at all time points, with statistical significance 

occurring after 30 minutes and 1 hour of incubation with ACEA 0.5 µM. Surprisingly, 

pre-treatment of neuroblasts with a CB1 antagonist (AM-251 1 µM) or a CB2 

antagonist (JTE-907 1 µM) for 1 hour prior to the addition of their respective 

agonists (ACEA 0.5 µM and JWH-133 0.5 µM for 30 minutes), resulted in an increase 

in RalA activation that was greater than either agonist alone (Figure 4.4). 
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Figure 4.1: RalA is expressed in rat RMS neuroblasts. RMS explants from P5-P7 rat 

pups were embedded in Matrigel and allowed to migrate for 24 hours prior to 

fixation. Explants were stained for RalA (green) and F-Actin (red). RalA is strongly 

expressed in migratory neuroblasts and shows areas of accumulation along the 

surface of the cell membrane. Bar = 20 µm for top right panel. Bar = 10 µm for all 

other panels. 
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Figure 4.2: RalB can be detected in the SVZ, Cor-1 cells, and embryonic rat cortex, 

but not in the RMS. (A) RalA is strongly expressed in lysates of dissociated RMS 

neuroblasts from a P5 rat pup. (B) Lysates of dissociated rat RMS neuroblasts (P5), 

Cor-1 cells, SVZ homogenate, and rat embryonic cortex homogenate were analysed 

via Western blotting for RalB expression. RalB is highly expressed in Cor-1 cells and 

can be detected in lysates from postnatal SVZ and developing rat cortex, but not in 

lysates from rat RMS neuroblasts. 
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Figure 4.3: Stimulation of CB receptors activates RalA in rat primary neuroblasts. 

Dissociated RMS neuroblasts from P5-P7 rat pups were cultured for 48 hours on 

polyornithine/laminin coated plates. Neuroblasts were treated with CB1 agonist 

(ACEA 0.5 µM) or CB2 agonist (JWH-133 0.5 µM) for the indicated time and lysed. 

Active RalA was extracted from lysates using agarose beads bound to the RalA 

effector RalBP1. Samples were run on a Western blot and the amount of active RalA 

was measured compared to total RalA. (A) Western blot quantitative densitometric 

analysis shows that stimulation of CB receptors activates RalA in neuroblasts. Each 

bar represents the mean ± SEM; **P < 0.01; n = 6 for control and ACEA; n = 3 for 

JWH-133, where n = independent experiments. (B) Representative Western blot 

showing increased levels of active RalA (Ral-GTP) following treatment with CB 

agonists.  

 

 

 

R
a

lA
-G

T
P

/T
o

ta
l 

R
a

lA

0

2

4

6

8

10

**

**

Control ACEA

5min 30min 1hr

JWH-133

5min 30min 1hr

*

* *

A 

B 

RalA-GTP 

RalA 

Cont 

25 kDa 

25 kDa 

ACEA JWH-133 

5min  30min  1hr 5min  30min  1hr 



149 

 

 

 

 

 

 

Figure 4.4: Activation of RalA by CB1 or CB2 agonist is not inhibited by CB1 

antagonist AM-251 and CB2 antagonist JTE-907. Rat primary neuroblasts were pre-

incubated with CB1 antagonists (AM-251 1µM), CB2 antagonist (JTE-907 1µM), or 

vehicle control for 1 hour prior to addition of CB1 agonist (ACEA 0.5 µM) and CB2 

agonist (JWH-133 0.5 µM) for 30 minutes. Active RalA was pulled down from lysates 

and analysed by Western blot. (A) Quantitative densitometric analysis shows that 

RalA activation by the CB1 and CB2 agonist cannot be inhibited by AM-251 and JTE-

907, respectively. Each bar represents the mean ± SEM; *P < 0.05; n = 3 

independent experiments. (B) Representative Western blot showing levels of active 

RalA following treatment with CB agonists and antagonists. 
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One possible explanation for this unexpected result is that AM-251 is also a potent 

agonist for the GPR55 receptor, which is currently believed to be a novel CB 

receptor capable of activating Rho GTPases RhoA, Rac1, and Cdc42 (Ryberg et al. 

2007). Thus, AM-251 may activate RalA through GPR55. However, it is still unclear 

as to why the CB2 antagonist JTE-907 enhances RalA activation in the presence of 

the CB2 agonist JWH-133. A different CB1 antagonist (LY-320135 1 µM), which is 

structurally dissimilar to AM-251, was able to suppress activation of RalA by ACEA 

and did not increase RalA activation when used on its own (Figure 4.5).  

Unexpectedly, the CB2 antagonist AM-630 enhanced RalA activation when used 

alone (Figure 4.5). Again, the reason for this still remains unclear, but it seems CB2 

receptor signalling may be more complex than previously understood. For this 

reason, much of our subsequent work was focused on the CB1 receptor. 

 

To further confirm that RalA is indeed activated following CB1 receptor stimulation, 

and to investigate the spatio-temporal regulation of RalA, we nucleofected rat RMS 

neuroblasts with a RalA FRET sensor (Raichu-RalA, kindly provided by M. Matsuda). 

This sensor consists of yellow fluorescent protein (YFP), RalA, the RalA binding 

domain for RalBP1, cyan fluorescent protein (CFP), and the C-terminal region for 

RalA (Figure 4.6) (Takaya et al. 2004; Yoshizaki et al. 2006). Binding of active RalA to 

the RalBP1 domain in the sensor induces a conformational change that brings the 

fluorophores into close proximity, thus resulting in FRET and enhancing YFP 

emission (Figure 4.6). FRET efficiency was measured using the acceptor 

photobleaching method, where the increase in CFP emission following bleaching of 

the acceptor (YFP) is used as a measure of FRET (Kenworthy 2001). Rat RMS 

neuroblasts show robust expression of the FRET sensor and show increase in CFP 

fluorescence following bleaching of the acceptor in both control and ACEA treated 

cells (Figure 4.7). Also, the FRET sensor appears to accumulate in highly fluorescent 

vesicular compartments in the dilation forming in front of the nucleus (Figure 4.7). 

However, there was no significant increase in FRET efficiency following treatment 

with ACEA for 30 minutes or 24 hours (Figure 4.8).   
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Figure 4.5: Activation of RalA by CB1 agonist is blocked by CB1 antagonist LY-

320135. Rat primary neuroblasts were pre-incubated with a CB1 antagonist (LY-

320135 1µM), a CB2 antagonist (AM-630 1µM), both CB1 and CB2 antagonist, or 

vehicle control for 1 hour prior to addition of the CB1 agonist (ACEA 0.5 µM) for 30 

minutes. Active RalA was pulled down from lysates and analysed by Western blot. 

(A) Densitometric quantification of Western blots showing that RalA activation by 

CB1 agonist can be inhibited by the CB1 receptor antagonist LY-320135. Each bar 

represents the mean ± SEM; *P < 0.05; n = 3 independent experiments. (B) 

Representative Western blot showing activation of RalA by the CB1 agonist ACEA 

and inhibition of this activation by the CB1 antagonist LY-320135. 
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Figure 4.6: Schematic diagram of the RalA FRET sensor (Raichu-RalA). The sensor 

consists of yellow fluorescent protein (YFP), RalA, the RalA binding domain for 

RalBP1, cyano fluorescent protein (CFP), and the C-terminal region for RalA. When 

in the inactive state, exposing the sensor to light of wavelength 430 nm, results in 

emission of CFP only at 475 nm. Upon GTP loading (activation) of RalA, the effector 

RalBP1 binds to RalA, inducing a conformational change that brings the 

fluorophores into close proximity, thus allowing the YFP fluorophore to absorb CFP 

emission and emit fluorescence. Adapted from Yoshizaki, Aoki et al. (2006). 
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Figure 4.7 Raichu RalA is expressed in rat RMs neuroblasts. Rat RMS neuroblasts 

nucleofected with the RalA FRET sensor were embedded in Matrigel with or 

without CB1 agonist ACEA 0.5 µM. Neuroblasts were fixed 24 hours later, and  FRET 

was measured using the acceptor photobleaching method. Panels show the levels 

of CFP and YFP in control and ACEA treated neuroblasts before and after bleaching 

of the acceptor (YFP). Bottom panels show CFP intensity as visualised by a heat map 

(low – high: blue – red). Red line indicates the area selected for bleaching. Imaging 

and bleaching were performed using the Zeiss LSM 710 confocal microscope. 
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Figure 4.8 CB1 agonist does not increase FRET efficiency in rat RMs neuroblasts. 

Rat RMS neuroblasts nucleofected with the RalA FRET sensor were re-aggregated 

overnight and then embedded in Matrigel. Cultures were treated with CB1 agonist 

ACEA 0.5 µM for 24 hours during the entire migration period, or for 30 minutes 24 

hours post embedding in Matrigel. FRET was measured in fixed cells using the 

acceptor photobleaching method. No significant difference was observed in FRET 

efficiency between control and neuroblasts treated with ACEA for 24 hours or 30 

minutes. Note that FRET efficiency appears to be quite variable even between the 

two control groups at the two different time points. Each bar represents the mean 

± SEM; n = 4 for 24 hours; n = 2 for 30 min, where n = independent experiments. 

Between 15 -20 cells were analysed per condition in each experiment. 
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Throughout these experiments we noticed a fair degree of variability in FRET 

efficiency even between control cells from both time points (9.3% ± 0.9 for 24 hours 

and 5.0% ± 1.0 for 30 min) (Figure 4.8). Further optimisation of the 

experimental/transfection conditions and of the criteria for FRET efficiency 

detection may be needed to establish whether FRET can be reliably applied for the 

study of GTPase activation in primary neuroblasts. 

 

4.2.3 RalA can be knocked down with a siRNA oligo in rat RMS neuroblasts 

In order to investigate RalA function in neuroblast migration, we first attempted to 

inhibit RalA expression using nucleofection of siRNA oligos. Rat RMS neuroblasts 

nucleofected with a validated RalA siRNA oligo (Lalli and Hall 2005) display a visible 

reduction in RalA immunoreactivity 72 hours after nucleofection when compared 

with control cells (Figure 4.9). The efficiency of RalA knockdown, as analysed by 

Western blotting, was approximately 50% and 70%, 48 hours and 72 hours post 

nucleofection, respectively (Figure 4.10). To confirm that inhibition of RalA 

expression does not affect cell viability, we stained control and RalA siRNA oligo 

nucleofected RMS neuroblasts for cleaved caspase 3, a marker of apoptosis 

(Fernandes-Alnemri et al. 1994). There was no significant difference in cleaved 

caspase 3-positivity between control and RalA-depleted cells, with approximately 

5% of neuroblasts being positive for activated caspase in both groups (Figure 4.11). 

The small percentage of neuroblasts undergoing apoptosis in these cultures is most 

likely due to the nucleofection procedure itself, and does not appear to be due to 

RalA depletion. Hence, RalA does not appear to be required for neuroblast viability, 

and any potential effects caused by RalA knockdown on migration would be a 

reflection of the protein’s function rather than a consequence of reduced cell 

viability.  
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Figure 4.9: RalA expression can be knocked down with siRNA oligos in rat RMS 

neuroblasts (1). Dissociated rat RMS neuroblasts from P5-P7 pups were 

nucleofected with a control or RalA siRNA oligo and re-aggregated into clusters. 

Aggregates were embedded in Matrigel 48 hours post nucleofection and allowed to 

migrate for 24 hours. Neuroblasts were fixed and stained for RalA (red) and βlll 

tubulin (green). RalA expression is significantly reduced following nucleofection 

with RalA siRNA oligo in comparison with a control siRNA oligo. Bar = 20 µm. 
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Figure 4.10: RalA expression can be knocked down with siRNA oligos in rat RMS 

neuroblasts (2). Dissociated rat RMS neuroblasts from P5-P7 pups were 

nucleofected with a control or RalA siRNA oligo and cultured for 48-72 hours. 

Lysates were probed for RalA expression via Western blot analysis. (A) Western blot 

showing reduced expression of RalA at both 48 and 72 hours post nucleofection 

with a RalA siRNA oligo. (B) Densitometric quantitative analysis shows significant 

reduction in RalA expression at both 48 and 72 hours after nucleofection of a RalA 

siRNA oligo. Each bar represents the mean ± SEM; *P < 0.05; n = 4 independent 

experiments. 
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Figure 4.11: Knockdown of RalA does not affect viability of rat RMS neuroblasts. 

Dissociated rat RMS neuroblasts from P5-P7 pups were nucleofected with a control 

or RalA siRNA oligo and cultured for 48 hours on coverslips coated with 

polyornithine/laminin. (A) Coverslips were fixed and stained for F-Actin (red) and 

cleaved caspase 3 (green). Arrowheads point to cleaved caspase 3 positive cells. Bar 

= 50 µm  (B) Quantification of cleaved caspase 3 positive cells after nucleofection 

with control or RalA siRNA oligo shows no difference in the % of cells undergoing 

apoptosis. Each bar represents the mean ± SEM; n = 3 independent experiments. 
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4.2.4 RalA is required for CB1 receptor-promoted migration of rat RMS 

neuroblasts in vitro 

Next, we attempted to test our hypothesis that RalA is necessary for CB1-promoted 

migration of rat RMS neuroblasts in vitro. To do this, neuroblasts nucleofected with 

a control or RalA siRNA oligo were re-aggregated into clusters and embedded in 

Matrigel 48 hours post nucleofection.  Aggregates were left to migrate for 24 hours 

± CB1 agonist ACEA 0.5 µM, after which aggregates were fixed, and the distance 

migrated by neuroblasts was measured (refer to page 97 in the Methods for details 

of the quantification procedure). Representative images for each condition (Figure 

4.12A) show that siRNA-mediated knockdown of RalA abolishes CB1 agonist-

induced migration of neuroblasts out of aggregates. Quantification of the distance 

migrated (Figure 4.12B) also confirms that ACEA significantly increases the distance 

migrated by neuroblasts, and this effect is lost when RalA is depleted.  

 

4.2.5 RalA is required for CB-promoted migration of rat RMS neuroblasts in situ 

To further validate the requirement of active RalA for CB-promoted migration of 

neuroblasts, we prepared brain slice cultures from mice electroporated with a 

pCAG-IRES-EGFP plasmid expressing a myc-tagged dominant negative RalA (pCAG-

DN RalA-IRES-EGFP), incubated them with CB1+CB2 agonists (1 µM), and performed 

time-lapse analysis of labelled neuroblasts in the RMS. Since GFP expression in cells 

electroporated with pCAG-DN RalA-IRES-EGFP was not sufficient enough to be 

detected by our spinning disk microscope, we co-electroporated pCAG-DN RalA-

IRES-EGFP with a pCX-EGFP plasmid in a 3:1 ratio. To verify the expression of myc-

tagged DN RalA following co-electroporation with pCX-EGFP, we performed double 

immunostaining of neuroblasts for cMyc and GFP. Although not all transfected cells 

express both GFP and DN RalA when co-electroporated (Figure 4.13), perturbing 

RalA function in at least some cells appears to be sufficient to significantly 

antagonise CB1 and CB2 agonist-mediated increases in the distance migrated (129.6 

µm ± 10.9 for GFP; 190.8 µm ± 9.6 for GFP + CB agonists; 156.8 µm ± 20.4 for DN 

RalA + CB agonists) (Figure 4.14 top panel) and velocity (43.3 µm/hour ± 3.6 for 

GFP; 63.6 µm/hour ± 3.1 for GFP + CB agonists; 51.5 µm/hour ± 7.1 for DN RalA + 

CB agonists) (Figure 4.14 middle panel), as well as the reduction in the time spent  
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Figure 4.12: RalA is required for CB1 receptor-promoted migration of rat RMS 

neuroblasts in vitro. Dissociated rat RMS neuroblasts from P5-P7 pups were 

nucleofected with a control or RalA siRNA oligo and re-aggregated into clusters. 

Aggregates were embedded in Matrigel 48 hours post nucleofection and allowed to 

migrate for 24 hours with or without the CB1 agonist ACEA (0.5 µM), which was 

present throughout the migration period. (A) Images of aggregates 24 hours post 

embedding in Matrigel. Bar = 50 µm.  (B) Quantification of the distance migrated 

shows that enhancement of neuroblast migration by the CB1 agonist ACEA is 

inhibited by RalA knockdown. Each bar represents the mean ± SEM; *P < 0.05; ***P 

< 0.001; n = 4 independent experiments. 
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Figure 4.13: Not all RMS neuroblasts express both GFP and myc-tagged DN RalA 

following co-electroporation of DN RalA + pCX-EGFP in a 3:1 ratio. P2 mouse pups 

were electroporated with a plasmid expressing a myc-tagged dominant negative 

(DN) RalA and pCX-EGFP in a 3:1 ratio. Mice were sacrificed 5 days later, and RMS 

neuroblasts were dissociated and plated onto polyornithine/laminin-coated 

coverslips. Neuroblasts were fixed and stained for GFP and the myc tag 48 hours 

later. Only some cells expressing GFP also express the myc-tagged DN RalA. Bar = 10 

µm. 
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Figure 4.14: CB-promoted migration of RMS neuroblasts is inhibited by DN RalA in 

the brain slice assay. P2 mice were electroporated in the right ventricle with pCX-

EGFP or pCAG-DN RalA-IRES-EGFP + pCX-EGFP in a 3:1 ratio. Animals were sacrificed 

3-7 days later, and brain slices with GFP positive neuroblasts in the RMS were 

incubated with or without CB agonists (ACEA 1 µM + JWH-133 1 µM) for 1 hour 

prior to imaging. Slices were imaged every 3 minutes for 3 hours in the presence of 

CB agonists throughout the imaging period. Enhancement of distance migrated (top 

panel) and velocity (middle panel), and reduction in time spent immobile (bottom 

panel) caused by CB agonists are inhibited by DN RalA. Each bar represents the 

mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001; n = 8 for control; n = 9 for CB 

agonists; n = 3 DN RalA + pCX-EGFP, where n = independent experiments. 

Approximately 15 to 30 cells were tracked for every experiment. 
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immobile (60.7 min ± 5.2 for GFP;  41.2 min ± 3.7 for GFP + CB agonists; 57.0 min ± 

9.2 for DN RalA + CB agonists) (Figure 4.14 bottom panel) to some degree. The 

failure to completely inhibit the effects of the CB agonists in this assay is most 

probably due to the presence of neuroblasts only expressing pCX-EGFP, and 

therefore does not reflect the full extent to which perturbing RalA function affects 

CB-promoted neuroblast migration. Collectively, our data provides compelling 

evidence for a role for RalA in regulating CB-promoted migration of RMS 

neuroblasts. 

 

4.2.6 Growth factors (HGF and GDNF) known to regulate RMS neuroblast 

migration also activate RalA 

The RMS does not take a simple straight route from the SVZ to the OB; instead it 

follows a tortuous path to its final destination. How neuroblasts are guided so 

precisely along the stream still remains a mystery. The current school of thought 

assumes that various chemoattractants, and signalling molecules act at different 

points in the stream to continuously guide neuroblasts to the OB (Cayre et al. 2009; 

Leong and Turnley 2011). For example, the chemorepellent Slit is thought to be 

active specifically in the caudal part of the RMS where it is believed to propel 

neuroblasts from the SVZ into the stream (Hu 1999; Wu et al. 1999; Ward et al. 

2003). Numerous chemoattractants, growth factors and signalling molecules have 

been demonstrated to influence RMS neuroblast migration. In order to respond to 

these signals, not only must RMS neuroblasts express the appropriate receptor, 

they must also transduce the signal to the cytoskeleton to elicit the correct 

response. So how do neuroblasts co-ordinate such a large variety of signals? We 

hypothesised that multiple signals arising from different receptors may converge 

onto specific “hub” molecules that can orchestrate the regulation of the 

cytoskeleton. RalA may represent one of these molecules operating downstream of 

different stimuli and signalling pathways. 

 

In order to validate this hypothesis, we treated rat RMS neuroblasts with growth 

factors known to regulate RMS neuroblast migration, such as HGF and GDNF, 

(Paratcha et al. 2006; Wang et al. 2011), and measured RalA activation using a 



166 

 

pulldown assay. Figure 4.15 shows that both HGF 50 ng/ml and GDNF 100 ng/ml 

activate RalA after 5 mins, 30 mins, and 1 hour of incubation. This effect is 

statistically significant with 30 minutes of HGF 50 ng/ml. Although the extent of 

activation is variable, as observed by the large SEM, both HGF and GDNF increase 

RalA activation beyond basal levels at all time points. This degree of variability in 

the proportion of active RalA at any one time is not surprising given that GTPases 

are in constant equilibrium between the active and inactive forms. In summary, 

growth factors known to promote neuroblast migration, such as HGF and GDNF, 

may also be able to activate RalA.  

 

Together, our results suggest a model in which different migratory signals present 

in the RMS may converge onto a molecular switch, such as RalA, which in turn could 

participate in the regulation of neuroblast migration. 
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Figure 4.15: HGF and GDNF activate RalA in rat primary neuroblasts. Dissociated 

RMS neuroblasts cultured for 48 hours on polyornithine/laminin coated plates were 

treated with HGF 50 ng/ml or GDNF 100 ng/ml for the indicated time and lysed. 

Active RalA was examined with a pulldown assay. (A) Densitometric quantification 

of Western blots showing that both HGF and GDNF activate RalA in neuroblasts. 

Each bar represents the mean ± SEM; *P < 0.05; n = 5 for HGF and GDNF 30 min; n = 

3 for all other treatments, where n = independent experiments. (B) Representative 

Western blot showing increased levels of active RalA (Ral-GTP) following treatment 

with HGF or GDNF.  
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4.3 Discussion 

In Chapter 3, we showed that CB signalling regulates the migration of Cor-1 cells, as 

well as mouse and rat RMS neuroblasts. Moreover, we demonstrated for the first 

time that an eCB tone controls neuroblast migration in vivo, thus adding these lipid 

mediators to the already existing list of factors that influence the migration of 

neuroblasts in the RMS. In this chapter, we address the question of the 

downstream target of the CB receptors that could be involved in neuroblast 

migration.  Here, we propose that the small GTPase RalA is an ideal candidate for 

this role, and examine whether CB-promoted migration of neuroblasts is reliant on 

RalA activity.  

 

Since the Ral-GTPases comprise two closely related members, RalA and RalB, which 

are often associated with overlapping functions, we examined the expression of 

both isoforms in RMS neuroblasts. We find that RalA is abundant in migratory 

neuroblasts and has a unique pattern of expression, with diffuse punctuate staining 

throughout the cell body and leading process, and areas of accumulation at sites 

along the plasma membrane. In contrast, RalB could not be detected in RMS 

neuroblasts by Western blot analysis. Unfortunately due to the lack of a reliable 

RalB antibody suitable for immunocytochemistry, we were not able to investigate 

the expression and localisation of RalB in isolated neuroblasts. Intriguingly, RalB 

expression was particularly high in the motile and proliferative Cor-1 cell line, and 

was also detectable in SVZ homogenates. This could either suggest that RalB is 

expressed in proliferative regions such as the SVZ but not in the RMS, or that a 

weaker expression of RalB in neuroblasts requires loading of larger quantities of 

protein for detection. Either way, the preferential expression of RalA in RMS 

neuroblasts, suggests that this isoform may act as the principal functioning Ral 

protein in these cells.  

 

We also show that both CB1 (ACEA) and CB2 (JWH-133) agonists consistently 

increase the activation of RalA beyond basal levels by 3 - 6 folds, even up to an hour 

after addition of the agonists. Unexpectedly, the CB1 antagonist AM251, and the 
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CB2 antagonist JTE-907 were not able to inhibit RalA activation by the CB1 and CB2 

agonists, respectively. In fact, the combined effect of the CB2 agonist and 

antagonist (JTE-907) was greater than the agonist alone. On the other hand, a 

different CB1 antagonist, LY-320135, which is structurally dissimilar to AM-251, was 

able to block activation of RalA in response to ACEA. To our surprise, the CB2 

antagonist AM-630 increased RalA activation in neuroblasts when used alone. 

However, AM-630 has been shown to act as a weak partial agonist at the CB1 

receptor, which may account for these observations (Ross et al. 1999; Howlett et al. 

2002). It is particularly puzzling that neither AM-251 nor JTE-907 could inhibit RalA 

activation in this assay, but were capable of inhibiting neuroblast migration 

stimulated by the CB1 and CB2 agonists in the Matrigel migration assay (Chapter 3). 

There are several factors that may have contributed to this discrepancy. Firstly, for 

technical reasons we were forced to perform the pulldown assay to detect active 

RalA on isolated neuroblasts plated on polyornithine/laminin-coated plates, a 

substrate on which they do not migrate. Thus the signalling cascades associated 

with migration in Matrigel may be altered or not active in this assay. Secondly, 

AM251 is also known to be an agonist for the orphan receptor GPR55, which is 

currently believed to be a novel CB receptor capable of activating RhoA, Rac1, and 

Cdc42 (Ryberg et al. 2007). Thirdly, all the CB antagonists used in this study are in 

fact classified as inverse agonists, and are therefore capable of inducing CB receptor 

signalling, albeit in an opposite manner to the agonists (Rodriguez de Fonseca et al. 

2005). Another fact to consider is that RalA can mediate distinct effects 

simultaneously by coupling to different effectors (Feig 2003; van Dam and Robinson 

2006). For example, RalA binding to different subunits of the exocyst complex has 

been suggested to account for discrete aspects of cell polarisation (Hazelett and 

Yeaman 2012). So, although several of the antagonists appear to activate RalA, or 

enhance the activation of RalA by the agonists, we cannot discern from this assay 

whether the spatial regulation or choice of target effector is the same as with the 

agonist alone.   

 

In an effort to visualise the spatial activation of RalA in migrating neuroblasts, we 

attempted to perform FRET imaging using the Raichu-RalA sensor, a tool 
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successfully used in other cellular models to examine spatio-temporal regulation of 

RalA (Takaya et al. 2004; Yoshizaki et al. 2006). Unfortunately, we found that the 

expression levels of the sensor, as well as the FRET efficiency was considerably 

variable even amongst control neuroblasts, which may lead to artefacts and 

confuse the interpretation of the results. However, we noticed that in neuroblasts 

apparently undergoing nucleokinesis, the Raichu-RalA sensor had a tendency to 

accumulate in highly fluorescent vesicular compartments in the dilatation in front 

of the nucleus, an area known to be a site of active endocytic/exocytic traffic (Shieh 

et al. 2011). Understanding whether these areas can truthfully reflect real sites of 

active RalA in migrating neuroblasts will require further optimisation of the 

experimental conditions and imaging parameters.  

 

To investigate the importance of RalA in CB agonist-promoted migration of RMS 

neuroblasts, we used a previously validated siRNA oligo targeted against RalA to 

inhibit protein expression in neuroblasts by almost 70% without any effect on cell 

viability. Importantly, CB-promoted migration of neuroblasts in Matrigel was 

completely abolished following depletion of RalA, and was in fact marginally lower 

than the control. This observation led us to speculate whether RalA was also 

important, not only for CB-promoted migration, but also for basal motility 

(examined in detail in Chapter 5). We further validated these observations using ex 

vivo cultures, where we show that CB-promoted migration of neuroblasts in the 

brain slice assay is also reliant on the activity of RalA.  

 

In conclusion, RalA is the main isoform expressed by migrating neuroblasts. 

Stimulation of either the CB1 or CB2 receptor leads to activation of RalA, which 

appears to be important for CB-promoted migration of neuroblasts both in vitro 

and ex vivo. Finally, other growth factors known to regulate neuroblast migration in 

the RMS, such as GDNF and HGF (Paratcha et al. 2006; Garzotto et al. 2008), also 

activate RalA. Thus, different signalling cascades that influence neuroblast 

migration may impinge on RalA as a common target. 
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Chapter 5: RalA is required for RMS neuroblast 

migration in vitro and in vivo 

5.1 Introduction 

Due to the capacity of Ral GTPases to be activated by a number of upstream 

signalling cues, as well as couple to several effector molecules - such as RalBP1, the 

exocyst complex, the actin binding protein filamin, and the transcription factor 

ZONAB – Ral proteins are able to participate in a wide variety of biological functions 

(Cantor et al. 1995; Ohta et al. 1999; Moskalenko et al. 2002; Frankel et al. 2005). 

The discovery that Ral-GEFs were effectors for Ras GTPases, and that Ral proteins 

were able to mediate oncogenic transformation downstream of Ras, led to these 

previously less well-known Ras family members becoming a topic of much interest 

(Urano et al. 1996; White et al. 1996). Ral GTPase interaction with RalBP1 is now 

believed to be responsible for its function in endocytosis, and has been shown to be 

a mechanism by which receptor mediated endocytosis of the EGF receptor is 

achieved (Shen et al. 2001). Instead, interaction with the exocyst complex is 

recognised as the mechanism regulating exocytosis of secretory vesicles. Currently, 

delivery of basolateral membrane proteins in polarised epithelial cells (Moskalenko 

et al. 2002), secretion of dense granules by platelets (Kawato et al. 2008), insulin 

release by pancreatic β cells (Lopez et al. 2008), as well as glutamate secretion by 

neurones (Polzin et al. 2002), have all been shown to be reliant on a Ral-exocyst 

interaction. With regards to morphology, RalA is responsible for the formation of 

lamellipodia mediated by EGF in Cos cells (Takaya et al. 2004), and can also induce 

filopodia formation in fibroblasts by recruiting the actin binding protein filamin 

(Ohta et al. 1999), or by directly regulating the actin cytoskeleton through an 

interaction with the exocyst (Sugihara et al. 2002). Similarly, a Ral-exocyst 

relationship has been implicated in neurite branching and is believed to mediate 

changes to the actin cytoskeleton in response to integrin mediated signalling (Lalli 

and Hall 2005). In addition, the RalA-exocyst pathway also participates in neuronal 

polarity by targeting the delivery of the Par complex to initiate axon polarisation 

(Lalli 2009). Hence, Ral proteins have an inherent ability to regulate morphology, 
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polarity, adhesion, and cytoskeletal dynamics, all of which are also necessary for 

cell migration. Indeed, the migration of myoblasts in response to chemotactic 

factors, such as FGF-2, HGF, and IGF-1, is reliant on Ras activation of Ral (Suzuki et 

al. 2000), whilst the migration of human prostate cancer cells was found to be 

dependent on the interaction of RalA with the exocyst complex (Hazelett and 

Yeaman 2012). In addition, in a metastatic cancer cell line, Ral-exocyst was found to 

promote migration by delivery of α5 integrin, an adhesion molecule necessary for 

formation of cell-substratum interaction, to the leading edge (Spiczka and Yeaman 

2008). 

 

To this point we have determined that RalA is required for CB-promoted migration 

of neuroblasts, and that other factors known to regulate neuroblast migration in 

the RMS also activate RalA. These observations, together with the recognised 

functions of RalA in other systems, led us to ask whether RalA is simply required to 

enhance migration in response to motogens and chemoattractants, or whether it 

has a more fundamental role in neuroblast migration. Using several molecular 

biological approaches, as well as genetic deletion of RalA, we show that this GTPase 

is required for polarised migration and correct morphology of neuroblasts both in 

vitro and in vivo. We also demonstrate that RalB is not necessary for neuroblast 

migration and cannot fully compensate for the loss of RalA.  

 

5.2 Results 

5.2.1 RalA depletion inhibits RMS neuroblast migration in vitro 

We have shown in Chapter 4 that RalA is required for CB-promoted migration of 

RMS neuroblasts, and that other pro-migratory molecules known to regulate 

neuroblast migration in the RMS can also activate RalA. We also know that RMS 

neuroblasts have an innate capacity to migrate when cultured in Matrigel, and that 

a basal level of active RalA is present in this system. Here, we turn our attention to 

examining the role of RalA in intrinsic neuroblast migration.  
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Firstly, to determine whether RalA is necessary for intrinsic neuroblast migration, 

we inhibited RalA expression using a siRNA oligo, and examined the ability of RMS 

neuroblasts to migrate in vitro using the Matrigel migration assay. Representative 

images and quantification of the results show that migration of neuroblasts out of 

aggregates is inhibited following RalA depletion by almost 40% (Figure 5.1). Close 

examination of neuroblast morphology reveals that loss of RalA expression leads to 

elongation of the leading process (Figure 5.2A), resulting in a significant increase in 

the average process length (Figure 5.2B). To further examine the effect of RalA 

knockdown on migration and to ascertain the reason for this change in morphology, 

we analysed time-lapse movies of control and RalA-depleted neuroblasts migrating 

in Matrigel. Knocking down RalA significantly impaired neuroblast migration (Figure 

5.3 and Supplementary movie 5 & 6). Quantitative tracking analysis of neuroblasts 

confirmed that RalA-depleted neuroblasts migrated significantly less than control 

cells (distance migrated: 100.7 µm ± 5.9 for control, and 66.0 µm ± 2.9 for RalA 

deficient cells) and had a slower speed of migration (Velocity: 24.8 µm/hour ± 1.3 

for control and 16.7 µm/hour ± 0.7 for RalA deficient cells) (Figure 5.4A-B and 

Supplementary movie 5 & 6). Also, RalA-depleted neuroblasts spent a significantly 

greater period of time immobile (94.6 mins ± 3.9) during the 4 hour tracking period 

when compared with control cells (82.1 mins ± 4.2) (Figure 5.4C). Analysis of time-

lapse movies at high magnification (40X) shows that RalA-depleted neuroblasts are 

still able to extend a highly dynamic leading process, even though this seems to 

undergo retraction more frequently compared to control cells. As a consequence, 

the nuclei of RalA depleted neuroblasts fail to move forward (Supplementary movie 

7 & 8). Based on this observation, we performed detailed tracking analysis of 

nuclear movement to identify defects in nucleokinesis. A sample trace showing the 

movement of a nucleus of a control and RalA-depleted neuroblast (Figure 5.5A) 

illustrates that control nuclei undergo periods of inactivity followed by large 

saltatory movements (jumps > 5 µm). In RalA-depleted neuroblasts, these large 

saltatory nuclear movements appear to be absent. Indeed, our results reveal that 

RalA depletion caused a 6-fold reduction in the % of “productive” saltatory nuclear 

movements (jumps > 5 µm) from a norm of 3% to approximately 0.5% (Figure 5.5B). 

In addition, classification of each nuclear movement made by every tracked cell  
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Figure 5.1: RalA is required for migration of rat RMS neuroblasts in vitro. Rat RMS 

neuroblasts nucleofected with a control or RalA siRNA oligo were re-aggregated 

into clusters, embedded in Matrigel 48 hours post nucleofection, and allowed to 

migrate for 24 hours. (A) Images of a control and RalA siRNA oligo nucleofected 

aggregate 24 hours post embedding in Matrigel. Bar = 50 µm.  (B) Quantification of 

the distance migrated shows that neuroblast migration is inhibited by RalA 

knockdown. Each bar represents the mean ± SEM; ***P < 0.001; n = 3 independent 

experiments. 
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Figure 5.2: RalA knockdown alters the morphology of rat RMS neuroblasts in 

vitro. Rat RMS neuroblasts nucleofected with a control or RalA siRNA oligo were re-

aggregated into clusters, embedded in Matrigel 48 hours post nucleofection, and 

allowed to migrate for 24 hours. (A) High magnification images of a control and 

RalA siRNA oligo nucleofected aggregate embedded in Matrigel. Arrowheads 

highlight leading processes of control and RalA depleted neuroblasts. Bar = 50 µm. 

(B) Quantification of process length reveals that neuroblasts depleted of RalA have 

significantly longer processes. Each bar represents the mean ± SEM; *P < 0.05; n = 3 

independent experiments. A total of 362 cells were measured for control 

neuroblasts and 268 cells were measured for RalA depleted neuroblasts. 
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Figure 5.3: Time-lapse imaging of RalA depleted rat RMS neuroblast aggregates. 

Control and RalA depleted neuroblast aggregates were embedded in Matrigel in a 4 

chamber 35mm Hi-Q4 culture dish (Nikon) 48 hours after nucleofection. Images 

were captured on a Nikon Biostation with a 20X objective every 3 minutes for 24 

hours. The figure shows snapshots from movies of control and RalA depleted 

aggregates taken after 9 hours of migration. Please also see supplementary movie 5 

and 6 - playing speed: 5 frames/second. 
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Figure 5.4: RalA depletion significantly impairs RMS neuroblast migration in vitro. 

Time-lapse images of control and RalA depleted rat neuroblast aggregates, 

migrating in Matrigel in a 4 chamber 35mm Hi-Q4 culture dish (Nikon), were 

captured on the Nikon Biostation with a 20X objective every 3 minutes for 24 hours. 

The movement of individual cells was tracked using Volocity software (Perkin 

Elmer) for a period of 4 hours during the first 9 hours of filming. (A) Mean distance 

migrated by neuroblasts is significantly decreased in RalA depleted neuroblasts in 

comparison to the control. (B) Similarly, the mean velocity of RalA depleted 

neuroblasts is significantly lower than that of control neuroblasts. (C) The time 

spent immobile is significantly greater in RalA depleted neuroblasts. Each bar 

represents the mean ± SEM; *P < 0.05; ***P < 0.001; n = 80 cells from 2 

independent experiments.    
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Figure 5.5: RalA depletion impairs efficient nucleokinesis in rat RMS neuroblasts 

in vitro. Quantitative tracking analysis of control and RalA-depleted neuroblast 

aggregates migrating in Matrigel. Nuclei were tracked using Volocity software 

(Perkin Elmer) for a period of 4 hours during the first 9 hours of filming. (A) Sample 

trace showing the nuclear movement of a control and RalA depleted neuroblast. (B) 

RalA knockdown significantly decreases the percentage of “productive” nuclear 

jumps greater than 5 µm. (C) The jumps made by each tracked nucleus over a 4 

hour period were classified according to their length. RalA depleted cells had a 

greater number of pauses (0 µm), and made significantly fewer jumps that were 2.5 

– 5 µm or > 5µm.   Each bar represents the mean ± SEM; *P < 0.05; **P < 0.01; ***P 

< 0.001; n = 80 cells from 2 independent experiments. 
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shows that RalA knockdown resulted in fewer nuclear jumps that were between 2.5 

µm – 5 µm (9.9% ± 0.7 for control and 6.7% ± 0.5 for RalA knockdown), a similar % 

of jumps that were between 0 µm – 2.5 µm (52.8% ± 1.6 for control and 53.1% ± 1.4 

for RalA knockdown), and a greater number of pauses (34.3% ± 1.8 for control and 

39.7% ± 1.6) (Figure 5.5C). These results lead us to believe that RalA may be 

involved in regulating nucleokinesis, and is required for efficient migration of 

neuroblasts in vitro.  

 

To prove that inhibition of neuroblast migration is specifically due to the loss of 

RalA, we attempted to rescue the migratory defect caused by RalA knockdown 

using a pCAG-IRES-EGFP plasmid (Jacobs et al. 2007; Causeret et al. 2009) 

containing a wild type (WT) RalA version that is resistant to siRNA-mediated 

knockdown (please refer to Methods, page 88). Neuroblasts were co-transfected 

with a control or RalA siRNA oligo together with a GFP plasmid or WT RalA. 

Neuroblasts transfected with RalA siRNA oligo are visibly impaired in their ability to 

migrate out of aggregates compared to control siRNA transfected cells (GFP-

positive cells in Figure 5.6A top and middle panels). Internal control cells (GFP-

negative) migrate to a similar extent in all conditions (Figure 5.6A-B). This implies 

that the migratory defect induced by RalA depletion is a cell autonomous effect. 

Moreover, co-transfection of RalA siRNA and the siRNA-resistant WT RalA restored 

neuroblast migration to control levels (Figure 5.6A-B). Altogether, this data 

validates our initial findings that RalA is involved in regulating RMS neuroblasts in 

vitro, possibly through co-ordination of events that regulate nucleokinesis.    

 

5.2.2 Stable knockdown of RalA with a shRNA plasmid vector 

We have been able to successfully demonstrate the function of RalA in neuroblast 

migration in vitro using siRNA oligos as a method of gene silencing. However, siRNA 

based approaches are limited by the fact that they only exert their effect for a few 

days before being degraded (Hasuwa et al. 2002). Achieving successful inhibition of 

protein expression in vivo may be more difficult and require a more efficient and 

continuous inhibition of protein expression over longer periods. Hence, to gain 

further evidence to support a role for RalA in neuroblast migration in vivo, we used 
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Figure 5.6: Impaired migration caused by RalA siRNA can be rescued with a siRNA-

resistant WT RalA. (A) Rat RMS neuroblasts were nucleofected with control siRNA + 

GFP, RalA siRNA + GFP, or RalA siRNA + pCAG-WT RalA-IRES-EGFP construct 

resistant to knockdown. Images show transfected (green) and non-transfected (red 

only) neuroblasts migrating out of aggregates 24 hours post embedding in Matrigel. 

Bar = 50 µm. (B) Distance migrated out of aggregates was quantified for both 

transfected (GFP positive) and non-transfected (internal control) neuroblasts. 

Inhibition of migration by RalA siRNA oligo is successfully rescued by siRNA-

resistant WT RalA. Each bar represents the mean ± SEM; **P < 0.01; ***P < 0.001; n 

= 3 independent experiments. 
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a vector-based approach to achieve stable knockdown of our protein. We cloned 

four RalA shRNA sequences ((1), (2), (3) and (4)) targeting different regions of RalA, 

and one control shRNA sequence into the pCA-b-EGFPm5 silencer 3 (a kind gift from 

Matthieu Vermeren) (Bron et al. 2004). The efficiency of RalA depletion by each 

shRNA construct was evaluated using Western blot analysis. Nucleofection of rat 

neuroblasts with 3 µg of RalA shRNA (4) results in a 25% reduction in RalA 

expression at 48 hours, and a 30% reduction by 72 hours (Figure 5.7). Higher 

amounts of plasmid (5 µg) produced a 30% reduction in RalA expression by 72 

hours, but did not have an effect at 48 hours (Figure 5.7). In contrast, 5 µg of RalA 

shRNA (1) had no effect on protein expression by 48 hours, and caused a 30% 

reduction by 72 hours (Figure 5.8). 5 µg of RalA shRNA (2) caused a 40% reduction 

in protein expression by 48 hours, but unexpectedly caused a 3-fold increase in 

RalA expression by 72 hours (Figure 5.8). Although we were able to achieve some 

degree of protein knockdown, RalA targeting shRNA plasmid vectors were not as 

efficient as siRNA oligos. Nevertheless, we assessed the effects of RalA targeting 

shRNA on neuroblast migration using the in vitro Matrigel experiment. Since this 

assay measures the migratory ability of neuroblasts between 48 to 72 hours post 

nucleofection, and RalA shRNA (4) produced reasonable knockdown (30%) of 

protein expression by 72 hours, this construct was selected for analysis.     

 

Neuroblasts expressing either control or RalA shRNA vector (GFP-positive cells) 

migrate to a similar extent after 24 hours in Matrigel (Figure 5.9A). Quantification 

reveals no significant difference in the relative distance migrated by control 

neuroblast and RalA shRNA expressing neuroblasts (Figure 5.9B).  

  

Next, we sought to determine whether prolonged expression (5 days) of the shRNA 

plasmid vectors could affect neuroblast migration in vivo. To test this we 

electroporated constructs into the right lateral ventricles of P2 mouse pups. Mice 

were sacrificed 5 days later and brains were fixed, sliced, and stained for GFP, or 

live slices were cultured for time-lapse imaging of GFP labelled neuroblasts 

migrating in the RMS.      
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Figure 5.7: RalA expression can be partially knocked down with RalA shRNA (4) in 

rat RMS neuroblasts. Dissociated rat RMS neuroblasts from P5-P7 pups were 

nucleofected with a GFP expressing control shRNA or RalA shRNA (4) construct and 

cultured for 48-72 hours. Lysates were probed for RalA expression via Western blot 

analysis. (A) Western blot showing reduced expression of RalA at both 48 and 72 

hours post nucleofection. (B) Quantification of Western blot. n = 1 experiment. 
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Figure 5.8: RalA expression cannot be knocked down with RalA shRNA (1) or RalA 

shRNA (2) in rat RMS neuroblasts. Dissociated rat RMS neuroblasts from P5-P7 

pups were nucleofected with 5 µg of a GFP expressing control shRNA, RalA shRNA 

(1), or RalA shRNA (2) construct and cultured for 48-72 hours. Lysates were probed 

for RalA expression via Western blot analysis. (A) Western blot showing expression 

of RalA at both 48 and 72 hours post nucleofection. (B) Quantification of Western 

blot. n = 1 experiment. 
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Figure 5.9: RalA shRNA (4) does not impair the migration of rat RMS neuroblasts 

in vitro. Dissociated rat RMS neuroblasts were nucleofected with either a control 

shRNA or RalA shRNA (4) vector also expressing GFP. Neuroblasts were re-

aggregated into clusters and embedded in Matrigel 48 hours post nucleofection. 

The distance migrated by GFP positive neuroblasts was measured. (A) Aggregates 

expressing control shRNA and RalA shRNA (4) 24 hours after embedding in Matrigel. 

Bar = 50 µm. (B) Quantification of the distance migrated shows no significant 

difference between control shRNA and RalA shRNA (4) expressing neuroblasts. Each 

bar represents the mean ± SEM; n = 3 independent experiments. 
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Control and RalA shRNA ((1), (2), (3) or (4)) constructs show robust expression 5 

days after electroporation as observed by GFP immune reactivity in fixed brain 

slices (Figure 5.10A). The great majority of neuroblasts from all conditions displayed 

a single leading process oriented towards the OB (Figure 5.10A). Quantitative 

analysis of morphology shows that none of the RalA shRNA constructs had a 

notable effect on process length (Figure 5.10B). In all conditions labelled 

neuroblasts were present throughout the entire stream (general observation - data 

not shown). 

 

Analysis of time-lapse movies reveals that RalA shRNA (4) expressing neuroblasts 

have a slightly reduced average migrated distance (136.4 µm ± 8.7 for control 

shRNA and 119.1 µm ± 7.2 for RalA shRNA (4)) and velocity (45.4 µm/hour ± 2.9 for 

control shRNA and 39.6 µm/hour ± 2.3 for RalA shRNA) in comparison to control 

shRNA expressing cells (Figure 5.11 top and middle). Neuroblasts expressing RalA 

shRNA (4) also spent a longer time immobile (78.8 mins ± 5.5) than control cells 

(68.2 ± 2.6) (Figure 5.11 bottom). However, none of these effects were statistically 

significant. Parameters describing persistence of movement for control and RalA 

shRNA (Figure 5.12) were similar for both groups (Displacement: 59.6 µm± 8.2 for 

control shRNA and 61.7 µm ± 6.2 for RalA shRNA; Meandering Index: 0.48 ± 0.025 

for control shRNA and 0.48 ± 0.027 for RalA shRNA). Categorisation of neuroblasts 

into migratory phenotypes also showed no difference between the two groups in 

the percentage of neuroblasts that were exploratory, intermediate, or migratory 

(Figure 5.12 bottom). 

 

In summary, we were not able to perturb neuroblast migration, either in vitro or in 

vivo, using a RalA targeting shRNA plasmid vector. This is most likely due to the 

moderate inhibition of protein expression (30% knockdown) achieved with our 

constructs. Thus, further approaches to study the function of RalA in vivo and long-

term need to take into account the robust expression of endogenous RalA in this 

system. 
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Figure 5.10: RalA shRNA does not affect process length of mouse RMS neuroblasts 

in vivo. Constructs expressing GFP and control shRNA or RalA shRNA (1-4) were 

electroporated into the right ventricle of P2 mouse pups. Animals were sacrificed 5 

days later and brains were fixed, sliced and stained for GFP. (A) Representative 

images of neuroblasts expressing control, RalA (1), RalA (2), RalA (3) and RalA (4) 

shRNA constructs. Yellow asterisks indicate relative position of OB. Bar = 50 µm. (B) 

Quantification of process length shows no significant difference between control 

shRNA and RalA shRNA (1-4) expressing neuroblasts. Each bar represents the mean 

± SEM; n = 4 for control shRNA; n = 3 for RalA shRNA (1); n = 4 for RalA shRNA (2); n 

= 1 for RalA shRNA (3); n = 4 for RalA shRNA (4), where n = number of brains 

analysed. 
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Figure 5.11: RalA shRNA (4) does not affect migration of neuroblasts in vivo. 

Constructs expressing GFP and control shRNA or RalA shRNA (4) were 

electroporated into the right ventricle of P2 mouse pups. Animals were sacrificed 3-

7 days later and brain slices with GFP positive neuroblasts in the RMS were cultured 

for 1 hour prior to imaging. Slices were imaged at the end of the stream (region C) 

every 3 minutes for 3 hours. The distance (top), velocity (middle) and time spent 

immobile (bottom) were not significantly different between RalA shRNA (4) and 

control shRNA expressing neuroblasts. Each bar represents the mean ± SEM; n = 3 

for control shRNA, n = 5 for RalA shRNA (4), where n = independent experiments. 
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Figure 5.12: RalA shRNA (4) does not affect persistence in vivo. Constructs 

expressing GFP and control shRNA or RalA shRNA (4) were electroporated into the 

right ventricle of P2 mouse pups. Animals were sacrificed 3-7 days later and brain 

slices with GFP positive neuroblasts in the RMS were cultured for 1 hour prior to 

imaging. Slices were imaged at the end of the stream (region C) every 3 minutes for 

3 hours. The persistence of neuroblast movement was analysed using the 

meandering index (MI; total displacement/total distance). The migratory behaviour 

of neuroblasts was classified as being exploratory (MI < 0.4), intermediate (MI 0.4 – 

0.6) or migratory (MI > 0.6). RalA shRNA (4) did not significantly affect the 

displacement (top); meandering index (middle); or the % of neuroblasts with 

exploratory, intermediate, or migratory phenotype (bottom). Each bar represents 

the mean ± SEM; n = 3 for control shRNA, n = 5 for RalA shRNA (4) where n = 

independent experiments. 
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5.2.3 Ectopic expression of dominant negative RalA affects orientation and 

morphology of RMS neuroblasts in vivo but not in vitro 

As an alternative to knockdown with shRNA vectors, we attempted to disrupt RalA 

signalling in vitro and in vivo by expressing myc-tagged mutant RalA proteins (wild 

type (WT RalA), dominant negative (DN RalA), constitutively active (CA RalA) and 

fast cycling (FC RalA)) previously used to perturb RalA function in neurones (Lalli 

and Hall 2005; Lalli 2009). Due to poor expression of the pRK5-myc plasmids in RMS 

neuroblasts (data not shown), we re-cloned WT and mutant RalA proteins obtained 

from the original pRK5 vector into a pCAG-IRES-EGFP plasmid suitable for 

expression in neuroblasts both in vitro and in vivo (Jacobs et al. 2007; Causeret et 

al. 2009). 

 

First, we tested the effect of RalA mutants on the migration of rat RMS neuroblasts 

in vitro. To confirm that neuroblasts successfully express both the mutant RalA 

protein and GFP, we performed double immunostaining for the myc tag and GFP in 

rat neuroblasts nucleofected with pCAG-DN RalA-IRES-EGFP. Figure 5.13 shows that 

all cells expressing GFP also express myc-tagged DN RalA. This expression is robust 

48 hours post nucleofection and there appears to be a transfection efficiency of 

approximately 50% (Figure 5.13). Hence, this construct allows robust, simultaneous, 

expression of both GFP and the myc tagged mutant protein with a reasonably high 

efficiency of transfection. Comparison of the distance migrated out of aggregates 

by rat neuroblasts embedded in Matrigel shows that there was no significant 

difference in the distance migrated between neuroblasts expressing just pCX-EGFP 

or empty pCAG-IRES-EGFP vector (EV), and untransfected internal control cells, thus 

demonstrating that nucleofection of the vector per se has no effect on basal 

neuroblast migration (Figure 5.14). However, there was also no significant 

difference in the migration of neuroblasts expressing WT RalA or DN RalA, and cells 

expressing just GFP or EV (Figure 5.14). Hence, expression of either WT or DN RalA 

proteins does not appear to affect rat RMS neuroblast migration in vitro. 

 

Although the Matrigel migration assay is a useful in vitro tool for identifying and 

examining candidate molecules that influence neuronal migration, we must bear in  
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Figure 5.13: Rat RMS neuroblasts nucleofected with pCAG-DN RalA-IRES-EGFP 

express both GFP and myc-tagged DN RalA. Rat RMS neuroblasts were 

nucleofected with a pCAG-DN RalA-IRES-EGFP plasmid expressing a myc-tagged 

dominant negative (DN) RalA. Neuroblasts were plated onto polyornithine/laminin-

coated coverslips and were fixed and stained for GFP and the myc tag 48 hours 

after plating. As expected, all GFP-expressing cells also express myc-tagged DN 

RalA. Bar = 50 µm. 
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Figure 5.14: Expression of DN RalA does not affect migration of rat RMS 

neuroblasts in vitro. Rat RMS neuroblasts were nucleofected with pCX-EGFP or one 

of the following pCAG-IRES-EGFP constructs: empty vector (EV), wild type (WT) 

RalA, or dominant negative (DN) RalA. Neuroblasts were re-aggregated into clusters 

and embedded into Matrigel 24 hours post nucleofection. (A) Representative 

Images of GFP, EV, WT and DN RalA nucleofected aggregates, immunostained for 

GFP (green) and βlll tubulin (red), 24 hours after embedding in Matrigel. Bar = 50 

µm (B) Quantification of distance migrated shows no significant difference in 

migration between the nucleofected cells (GFP positive cells) and non-nucleofected 

cells (internal control) in all samples. Each bar represents the mean ± SEM; n = 3 

independent experiments. 
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mind that this model does not fully re-capitulate the complex architecture and 

signalling cues present in the RMS. Thus, failure of RalA mutants to disrupt 

migration in vitro does not necessarily exclude a role for RalA in neuroblast 

migration.  

 

To verify a role for RalA in neuroblast migration in vivo, we electroporated myc-

tagged RalA mutants (WT, DN, CA, and FC) cloned in the pCAG-IRES-EGFP vector, 

the empty pCAG-IRES-EGFP vector (EV), or pCX-EGFP into the lateral ventricles of P2 

mouse pups. Brains were collected 5 days post electroporation, fixed, sliced, and 

stained for GFP. As expected, following electroporation of DN RalA, all mouse 

neuroblasts expressing GFP are also immune-reactive for myc-tagged DN RalA 

(Figure 5.15), thereby verifying the concomitant expression of both myc-tagged 

RalA mutants and GFP in vivo. Neuroblasts expressing GFP, EV, WT RalA, CA RalA or 

FC RalA appear very similar in morphology, with the majority of neuroblasts 

extending their leading process towards the OB (Figure 5.16). However, neuroblasts 

expressing DN RalA have noticeably shorter leading processes, with many cells 

oriented away from the OB (Figure 5.16). Quantitative morphological analysis 

shows that the expression of DN RalA leads to a 26% reduction in average process 

length (25.7 µm ± 2.1) when compared with GFP expressing neuroblasts (34.7 µm ± 

0.6) (Figure 5.17A). Interestingly, over-expression of RalA (WT RalA) did not cause a 

change in the average process length (38.1 µm ± 1.7) when compared with GFP 

(34.7 µm ± 0.6) or EV (36.8 µm ± 0.8) (Figure 5.17A). In contrast, a significant 

increase in the average process length was seen with both CA RalA (43.1 µm ± 2.1) 

and FC RalA (45.2 µm ± 1.9) mutants, consistent with the idea that RalA has to be in 

the active form to elicit a response (Figure 5.17A). Thus, simply over-expressing the 

WT protein is not enough to elicit a morphological response, and only the active (FC 

RalA and CA RalA) or inactive (DN RalA) mutants cause a change in morphology. The 

vast majority of GFP, EV, CA RalA, or FC RalA-expressing neuroblasts are highly 

polarised towards the OB. Indeed, only a small % (< 5.5%) is oriented away from the 

OB in these conditions (Figure 5.17B). In sharp contrast, expression of DN RalA 

caused a substantial increase in the % of misoriented neuroblasts (16.5% ± 2.7) 

(Figure 5.17B). Remarkably, despite the dramatic change in morphology and  
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Figure 5.15: Mouse RMS neuroblasts electroporated with pCAG-DN RalA-IRES-

EGFP express both GFP and myc-tagged DN RalA. P2 mouse pups were 

electroporated with a pCAG-DN RalA-IRES-EGFP plasmid expressing a myc-tagged 

dominant negative (DN) RalA. Mice were sacrificed 5 days later, and RMS explants 

were embedded in Matrigel, fixed and stained for GFP and the myc tag 24 hours 

after embedding. All cells expressing GFP also express myc-tagged DN RalA. Bar = 

10 µm. 
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Figure 5.16: RalA is important for neuroblast morphology and directionality in 

vivo (1). P2 mice were electroporated with pCX-EGFP or one of the following pCAG-

IRES-EGFP constructs: empty vector (EV), wild type (WT) RalA, dominant negative 

(DN) RalA, constitutively active (CA) RalA, or fast cycling (FC) RalA. Mice were 

sacrificed 5 days later and brains were fixed, sliced, and immunostained for GFP. 

Representative projections from confocal z-stacks of 75 µm-thick brain slices. 

Yellow asterisks indicate relative position of the OB. White arrowheads indicate 

misoriented neuroblasts. Bar = 50 µm. 
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Figure 5.17: RalA is important for neuroblast morphology and directionality in 

vivo (2). P2 mice were electroporated with pCX-EGFP or one of the following pCAG-

IRES-EGFP constructs: empty vector (EV), wild type (WT) RalA, dominant negative 

(DN) RalA, constitutively active (CA) RalA, or fast cycling (FC) RalA. Mice were 

sacrificed 5 days later and brains were fixed, sliced, and stained for GFP. (A) 

Expression of DN RalA leads to a significant reduction in process length, whereas 

expression of CA or FC RalA results in an increase in process length. (B) Expression 

of DN RalA disrupts the polarised orientation of neuroblasts towards the OB. Each 

bar represents the mean ± SEM; **P < 0.01; n = 6 for GFP, n = 8 for EV, n = 5 for WT, 

DN, and FC, n = 3 for CA, where n = number of brains analysed. 
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orientation caused by DN RalA, labelled neuroblasts were found throughout the 

RMS (general observation – data not shown). In conclusion, our data suggests that 

RalA is important for correct morphology and orientation of RMS neuroblasts in 

vivo.  

 

5.2.4 Overexpression of RalA enhances RMS neuroblast migration in situ 

To further investigate the effects of RalA on the migratory properties of 

neuroblasts, brains of mice electroporated with RalA mutants were sliced and 

cultured for time-lapse imaging. However, the intensity of the GFP signal in 

neuroblasts electroporated with the pCAG-RalA mutant-IRES-EGFP constructs was 

too weak to be detected by our spinning disk microscope. Therefore, we co-

electroporated the RalA mutants with pCX-EGFP in a 3:1 ratio to ensure expression 

of the mutant RalA construct and pCX-EGFP. However, even with these conditions, 

immunostaining for the myc tag and GFP shows that not all neuroblasts that 

express GFP also express mutant RalA (Chapter 4, Figure 4.13). Despite the fact that 

only some neuroblasts express both constructs, overexpressing RalA with the WT 

mutant in at least some cells significantly enhanced the migrated distance (129.6 

µm ± 10.9 for control and 178.8 µm ± 13.7 for WT RalA) and velocity (43.3 µm/hour 

± 3.6 for control and 60.0 µm/hour ± 4.4 for WT RalA) in comparison to pCX-EGFP 

only expressing controls (Figure 5.18 top and middle). The time spent immobile was 

also reduced from 60.7 min ± 5.2 for the control, to 46.9 min ± 4.5 for WT RalA 

(Figure 5.18 bottom). Thus, overexpression of RalA significantly enhances RMS 

neuroblast migration in the brain slice assay. 

 

5.2.5 Deletion of RalA and RalB affects orientation and morphology of neuroblasts 

in vivo 

So far we have demonstrated a role for RalA in regulating neuroblast migration in 

vitro using siRNA based gene silencing, we have confirmed that overexpressing RalA 

enhances RMS neuroblast migration in situ, and we have also shown that RalA 

regulates morphology and directionality in vivo using RalA mutants. However, given 

that RalA is so abundant in RMS neuroblasts, it is unlikely that partial inhibition of  
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Figure 5.18: Overexpression of RalA promotes neuroblast migration in the brain 

slice assay. P2 mice were electroporated in the right ventricle with pCX-EGFP or 

pCAG-WT RalA-IRES-EGFP + pCX-EGFP in a 3:1 ratio. Animals were sacrificed 3-7 

days later, and brain slices with GFP positive neuroblasts in the RMS were cultured 

and imaged every 3 minutes for 3 hours. Overexpression of RalA increases the 

distance migrated (top panel) and velocity (middle panel), and reduced the time 

spent immobile (bottom panel). Each bar represents the mean ± SEM; *P < 0.05; 

**P < 0.01; n = 8 brain slices for control; n = 5 brain slices for WT RalA. 
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protein expression with siRNA oligos or perturbing endogenous RalA function with 

the DN mutant will reveal the full extent of RalA function in neuroblast migration. 

The only way to obtain a complete picture of RalA function in our system is to 

delete the RalA gene itself. For this reason we extended our research to Ral 

conditional knockout models, which were kindly provided by Dr. Pascal Peschard 

and Prof. Chris Marshall (Institute of Cancer Research, London).  

 

In our studies, we used RalA conditional knockout mice based on the Cre-lox system 

(RalA
lox/lox

) (Peschard et al, in press), as this allows us to selectively delete RalA from 

a subpopulation of RMS neuroblasts. Also, since RalA null mice display embryonic 

lethality (Peschard et al, in press), the Cre-lox system allows us to specifically 

investigate RalA function in neuroblast migration without affecting development. 

Although we were not able to detect significant expression of RalB in RMS 

neuroblasts (Chapter 4), we also used a RalA conditional knockout mouse based on 

a RalB null mouse background (RalA
lox/lox

/RalB
-/-

) (Peschard et al, in press)  to 

eliminate potential compensation of RalA loss by RalB. Deletion of RalA was 

achieved by electroporation of a pCAG-Cre-IRES2-EGFP plasmid (Woodhead et al. 

2006) into the lateral ventricle of P2 mouse pups. The expression of Cre in cells 

derived from RalA
lox/lox

 and RalA
lox/lox

/RalB
-/-

 mice has been previously shown by our 

collaborators to result in the successful loss of RalA expression (Peschard et al, in 

press). Mice were sacrificed 5 days post electroporation, and brains were fixed, 

sliced and stained for GFP. 

 

Representative images of Cre-GFP expressing neuroblasts in wild type (WT), 

RalA
lox/lox

, and RalA
lox/lox

/RalB
-/-

 mice 5 days post electroporation show that cells 

lacking RalA appear to have a shorter leading process, with several neuroblasts 

lacking a leading process altogether (Figure 5.19). In addition, a greater number of 

neuroblasts were oriented away from the OB when compared with wild type. The 

phenotype is even more striking in RalA
lox/lox

/RalB
-/-

 mice, with neuroblasts having 

very short leading processes or no process at all, and a substantially large number 

of neuroblasts oriented away from the OB (Figure 5.19). Quantitative morphological 

analysis reveals that the leading process is significantly shorter 
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Figure 5.19: Deletion of RalA/RalB disrupts neuroblast polarised morphology and 

directionality (1). A pCAG-Cre-IRES2-EGFP plasmid was electroporated into the 

right lateral ventricle of WT, RalA
lox/lox

, or RalA
lox/lox

/RalB
-/-

 P2 mouse pups. Mice 

were sacrificed 5 days later and the right hemisphere was fixed, sliced and stained 

for GFP. Representative images of RMS neuroblasts expressing the Cre-GFP 

construct in WT, RalA
lox/lox

, or RalA
lox/lox

/RalB
-/-

 mice. Yellow asterisks indicate the 

relative position of the OB, white arrowheads point to misoriented neuroblasts, and 

blue arrowheads point to neuroblasts lacking a leading process. Both RalA
lox/lox

 and 

RalA
lox/lox

/RalB
-/-

 animals have a greater number of neuroblasts oriented away from 

the bulb, as well as a significantly higher proportion of neuroblasts without a 

leading process. Bar = 50 µm.   
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in RalA
lox/lox

 mice (39.5 µm ± 1.6), when compared with WT animals (49.8 µm ± 1.1), 

and is almost halved in RalA
lox/lox

/RalB
-/-

 mice (25.5 µm ± 0.7) (Figure 5.20, top 

panel). Only 1.1% ± 0.5 of neuroblasts are either oriented in the wrong direction or 

have no process in WT animals, whereas in RalA
lox/lox

 and RalA
lox/lox

/RalB
-/- 

mice this 

figure is increased to 7.2% ± 1.3 and 7.8% ± 1.2, respectively (Figure 5.20, middle 

panel). Looking exclusively at the number of neuroblasts without a process, just 

0.1% ± 0.1 of cells do not have a process in WT neuroblasts, whereas 3.5% ± 1.0 of 

RalA
lox/lox

 neuroblasts and 28.5% ± 3.3 of RalA
lox/lox

/RalB
-/-

 neuroblasts lack a leading 

process (Figure 5.20, bottom panel).  

 

To determine whether RalA/RalB deletion affects neuroblast migration, we divided 

the RMS into distinct anatomical regions (Figure 5.21A) as previously described by 

others (Belvindrah et al. 2011), and counted the number of labelled cells in regions 

B, C and D of the RMS. Looking at the total number of labelled neuroblasts in the 

stream, we find that there is no major difference between RalA
lox/lox 

(299 ± 71) and 

WT mice (282 ± 20) (Figure 5.21B). However, the number of labelled neuroblasts 

entering the stream in RalA
lox/lox

/RalB
-/-

 mice
 
(119 ± 18) is less than half that of WT 

(Figure 5.21B). Looking at the average number of labelled neuroblasts in regions B, 

C, and D (Figure 5.21C), we saw no significant difference between WT and RalA
lox/lox

 

mice (Region B: 49 ± 12 for WT and 40 ± 24 for RalA
lox/lox

; Region C: 76 ± 8 for WT 

and 105 ± 35 for RalA
lox/lox

; Region D: 158 ± 8 for WT and 154 ± 34 for RalA
lox/lox

). 

However, there are far fewer labelled neuroblasts present in all regions for 

RalA
lox/lox

/RalB
-/-

 mice (Region B: 24 ± 5; Region C: 38 ± 6; Region D: 57 ± 11) when 

compared with WT, with the greatest difference being in the OB (region D). Though 

there is some variation between experiments in the quantity of plasmid injected 

into the lateral ventricle and electroporation efficiency, the difference seen 

between WT and RalA
lox/lox

/RalB
-/-

 samples is far too great to be attributed to these 

differences. In addition, looking at Cre-GFP electroporated RalA
lox/lox

/RalB
-/- 

brain 

slices (Figure 5.24), we can see that despite the lack of GFP positive neuroblasts in 

the RMS, there is considerable labelling of cells at the injection site, which appears 

greater than that seen in WT (Figure 5.22) and RalA
lox/lox

 (Figure 5.23) brain slices.  
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Figure 5.20: Deletion of RalA/RalB disrupts neuroblast polarised morphology and 

directionality (2). A pCAG-Cre-IRES2-EGFP plasmid was electroporated into the 

right lateral ventricle of WT, RalA
lox/lox

, or RalA
lox/lox

/RalB
-/-

 P2 mouse pups. Mice 

were sacrificed 5 days later and the right hemisphere was fixed, sliced and stained 

for GFP.  Deletion of RalA, or RalA and RalB, causes a significant reduction in 

process length (top panel), and an increase in the % neuroblasts oriented away 

from the OB (middle panel) or without a leading process (bottom panel). Each bar 

represents the mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001; n = 4 brains for 

WT, n = 5 brains for RalA
lox/lox

, n = 11 brains for RalA
lox/lox

/RalB
-/-

. 
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Figure 5.21: Effect of RalA/RalB deletion on neuroblast migration. A pCAG-Cre-

IRES2-EGFP plasmid was electroporated into the right lateral ventricle of WT, 

RalA
lox/lox

, or RalA
lox/lox

/RalB
-/-

 P2 mouse pups. Mice were sacrificed 5 days later and 

the right hemisphere was fixed, sliced and stained for GFP. (A) A schematic diagram 

showing the site of injection in the lateral ventricle. The RMS (dotted lines) was 

divided into anatomically distinct regions for the purpose of quantification. Region 

A is the injection site, region B is the descending arm of the RMS, region C is the 

RMS “elbow” preceding the OB, and region D is within the OB. (B) The total number 

of labelled cells within the stream is significantly less in RalA
lox/lox

/RalB
-/-

 mice in 

comparison to WT mice. (C) There are far fewer neuroblasts in all regions of the 

stream of RalA
lox/lox

/RalB
-/-

 mice in comparison to the control. Each bar represents 

the mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001; n = 4 brains for WT, n = 4 

brains for RalA
lox/lox

, n = 10 brains for RalA
lox/lox

/RalB
-/-

. 
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Figure 5.22: Cre-GFP expression in RMS neuroblasts in WT mice. A PCAG-Cre-

IRES2-EGFP plasmid was electroporated into the right lateral ventricle of WT P2 

mouse pups. Mice were sacrificed 5 days later and the right hemisphere was fixed, 

sliced and stained for GFP. Representative image of a WT mouse brain slice showing 

Cre-GFP labelled neuroblasts in the RMS. There is robust labelling of cells at the 

injection site and GFP-expressing cells can be seen throughout the RMS. White 

arrowhead indicates the site of injection. Bar = 500 µm. 
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Figure 5.23: Cre-GFP expression in RMS neuroblasts in RalA
lox/lox 

mice. A PCAG-Cre-

IRES2-EGFP plasmid was electroporated into the right lateral ventricle of RalA
lox/lox

 

P2 mouse pups. Mice were sacrificed 5 days later and the right hemisphere was 

fixed, sliced and stained for GFP. Representative image of a RalA
lox/lox

 mouse brain 

slice showing Cre-GFP labelled neuroblasts in the RMS. The number of GFP labelled 

neuroblasts entering the stream appears to be comparable to wild type mice. White 

arrowhead indicates the site of injection. Bar = 500 µm. 
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Figure 5.24: Cre-GFP expression in RMS neuroblasts in RalA
lox/lox

/RalB
-/-

 mice. A 

PCAG-Cre-IRES2-EGFP plasmid was electroporated into the right lateral ventricle of 

RalA
lox/lox

/RalB
-/-

 P2 mouse pups. Mice were sacrificed 5 days later and the right 

hemisphere was fixed, sliced and stained for GFP. Representative image of a 

RalA
lox/lox

/RalB
-/-

 mouse brain slice showing Cre-GFP labelled neuroblasts in the 

RMS. Although there is robust expression of GFP at the injection site, there are 

considerably fewer GFP positive neuroblasts in the stream in comparison to wild 

type animals and RalA
lox/lox 

animals. White arrowhead indicates the site of injection. 

Bar = 500 µm. 
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To examine the function of RalB loss on RMS neuroblast migration, we 

electroporated pCX-EGFP into the lateral ventricles of RalA
lox/lox

/RalB
-/-

 mice. 

Preliminary observations show that deletion of RalB does not noticeably affect 

morphology, orientation, or the extent of migration along the RMS (Figure 5.25) (Dr 

Katarzyna Falenta – work in progress). Interestingly, analysis of DAPI nuclear 

staining shows that the gross RMS morphology and cell density appears to be 

comparable between RalA
lox/lox

, RalA
lox/lox

/RalB
-/-

, and WT mice (Figure 5.26). Taken 

together, these observations suggest that deletion of RalB alone does not affect the 

generation or migration of RMS neuroblasts.     
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Figure 5.25: Neuroblast morphology and migration appears normal in RalB 

deficient mice. Comparison of a pCAG-Cre-IRES2-EGFP plasmid electroporated into 

the right lateral ventricle of a WT mouse, and pCX-EGFP electroporated into the 

lateral ventricle of a RalA
lox/lox

/RalB
-/-

 mouse. Mice were sacrificed 5 days later and 

the right hemisphere was fixed, sliced and stained for GFP. Representative images 

of RMS neuroblasts expressing the Cre-GFP construct in WT mice (left) and 

neuroblasts expressing pCX-EGFP in RalA
lox/lox

/RalB
-/-

 mice (right). Yellow asterisks 

indicate the relative position of the OB. The morphology of neuroblasts lacking RalB 

is comparable to that of WT neuroblasts, with the majority of neuroblasts being 

oriented towards the OB. Bar = 50 µm. Images kindly provided by Dr Katarzyna 

Falenta.   
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Figure 5.26: RMS morphology of WT, RalA
lox/lox

, and RalA
lox/lox

/RalB
-/-

 mice. Brain 

slices of P7 WT, RalA
lox/lox

, and RalA
lox/lox

/RalB
-/- 

mice were fixed and incubated with 

the nuclear stain DAPI to visualise the morphology of the RMS. Representative 

images show that the RMS forms of RalA
lox/lox

 and RalA
lox/lox

/RalB
-/- 

mice is 

morphologically similar to WT samples. 
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5.3 Discussion 

The Ral GTPases are important regulators of migration in a number of cell types, 

including myoblasts, B cells, multiple myeloma, and prostate cancer cells (Suzuki et 

al. 2000; Oxford et al. 2005; de Gorter et al. 2008; Spiczka and Yeaman 2008). Our 

earlier findings demonstrate that the RalA isoform is highly expressed by migrating 

neuroblasts. Not only is this GTPase activated by both motogenic and chemotactic 

factors, it is also required for CB-promoted migration. In this part of the study, using 

the techniques we established in Chapters 3 and 4, we focus our attention on 

investigating whether RalA has a more fundamental role in neuroblast migration in 

the RMS.  

 

Here we show using a siRNA based approach, that RalA depleted neuroblasts are 

significantly impaired in their ability to migrate in vitro. These neuroblasts have a 

lower velocity, show a dramatic reduction in the migrated distance, and spend a 

greater amount of time immobile. Furthermore, despite having a dynamic leading 

process, RalA depleted neuroblasts have a significantly lower frequency (6-fold 

reduction) of productive nuclear movements, and appear to “struggle” during 

nucleokinesis. This apparent uncoupling of leading process extension and 

nucleokinesis, also appears to lead to a substantial increase in the average process 

length of RalA deficient cells. Time-lapse experiments show that these protrusions 

undergo cycles of extension and collapse, as if failing to adhere properly to the 

matrix. This is particularly interesting since RalA has been shown to regulate the 

migration of non-neuronal cells by co-ordinating the delivery of integrin subunits 

required for cell-substratum adhesion (Spiczka and Yeaman 2008). Moreover, both 

β1 and β8 integrins have been shown to play a vital role in the chain migration of 

neuroblasts in the RMS (Belvindrah et al. 2007; Mobley and McCarty 2011).  

 

We also demonstrate that this impairment in migration specifically arises from the 

loss of RalA, since inhibition of migration is fully rescued by co-transfection of a 

siRNA-resistant WT RalA version. Moreover, we show that the function of RalA is 
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cell autonomous, since untransfected neuroblasts in RalA siRNA-nucleofected 

cultures are comparable to control cells in their ability to migrate.  

 

To translate our in vitro findings to an in vivo model, we cloned control and RalA-

targeting shRNA sequences (RalA shRNA 1-4) into an expression vector. These 

plasmids were used to inhibit RalA expression in the Matrigel migration assay, and 

were also electroporated in vivo for analysis of neuroblast morphology in fixed 

brains slices as well as time-lapse analysis of cultured slices. Unfortunately, we did 

not observe any significant difference between control and RalA shRNA expressing 

neuroblasts in any of the assays examined. The most likely explanation for this 

failure of RalA shRNA constructs to inhibit neuroblast migration is that they only 

produced relatively moderate knockdown (25-40%) of RalA. In comparison, the RalA 

siRNA oligo, which produced dramatic changes in morphology and migration, could 

inhibit RalA expression by up to 70%. Since RalA is abundant in these cells, it may be 

necessary to inhibit protein expression by a considerable amount before any 

migratory defects begin to manifest. Therefore, we decided to try an alternative 

approach based on the expression of mutant RalA proteins previously shown to 

perturb RalA function in different types of neurones (Lalli and Hall 2005; Lalli 2009). 

Analysis of fixed brain slices from mouse pups that had been electroporated with 

the RalA mutants revealed that neuroblasts expressing DN RalA were misoriented 

and showed a significant reduction in leading process length. On the other hand, 

cells expressing CA or FC RalA showed a slight, but significant increase in the leading 

process length without any change to orientation. Thus, the expression of RalA 

appears to be important for correct neuroblast morphology as wells as orientation. 

Surprisingly, despite the striking results seen with the DN RalA mutant in vivo, the 

same construct did not perturb migration in vitro. In addition, whilst disturbing RalA 

function with DN RalA caused a shortening of the leading process in vivo, depletion 

of RalA with siRNA caused a significant increase in leading process length in vitro. 

One possibility for these differences could be that all Matrigel migration assays 

were performed with rat RMS cultures, which were necessary for the greater 

amount of starting material required for nucleofection procedures, as opposed to 

the mouse model used for in vivo electroporation studies. There has been some 



222 

 

suggestion of subtle differences between the migration of mouse and rat RMS 

neuroblasts in slice cultures. For instance, Nam et al. (2007) describe that mouse 

RMS neuroblasts only move by translocation (leading process extension and nuclear 

translocation occur as distinct consecutive steps) and not by locomotion (leading 

process extension and nuclear translocation occur simultaneously). Instead, Kakita 

and Goldman (1999) showed that rat neuroblasts migrate by both translocation and 

locomotion. Another possibility is that these observed discrepancies may have 

arisen from the differences between neuroblast migration in Matrigel versus 

migration in the native RMS. Indeed, neuronal precursors can switch their mode of 

migration as well as morphology when faced with different environments. For 

example, during development, migrating cortical neurones adopt a multipolar 

morphology after entering the SVZ, and then switch to a bipolar form before 

commencing towards the cortical plate (Noctor et al. 2004). Furthermore, the 

migration of RMS neuroblasts is also subject to subtle changes that occur both 

spatially and temporally. For instance, neuroblasts transition from vasculature-

independent to vasculature-dependent migration in the early stages of postnatal 

development (Bovetti et al. 2007; Saghatelyan 2009; Snapyan et al. 2009; Bozoyan 

et al. 2012), and from chain to single cell migration in response to detachment 

signals present in the OB (Hack et al. 2002; Saghatelyan et al. 2004; Ng et al. 2005). 

Hence, the morphological differences seen following impairment of RalA function in 

these two assays may arise from distinct modes of migration adopted by 

neuroblasts in these specific environments. Nevertheless, perturbing RalA activity in 

vitro with siRNA and in vivo with DN RalA significantly impairs RMS neuroblast 

morphology and migration, thus supporting a role for RalA in this process.  

 

To examine the full significance of RalA function in the RMS, we deleted RalA using 

electroporation of Cre-GFP into the lateral ventricle of RalA
lox/lox

 and RalA
lox/lox

/RalB
-

/-
 mice (Peschard et al, in press). Neuroblasts in the RMS are strictly polarised 

towards the OB, with only 1% of cells in wild type mice being misoriented.  Here, 

we show that deletion of RalA results in a significant increase in the percentage of 

misoriented neuroblasts in the RMS (7%). Moreover, loss of RalA leads to significant 

shortening of the leading process, with some neuroblasts completely lacking a 
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leading process altogether. Deletion of both RalA and RalB leads to an even more 

striking phenotype, with an even greater reduction in the leading process length 

and % of cells without a process. The number of misoriented neuroblasts however 

is similar to that of RalA
lox/lox

 mice, with approximately 8% of cells facing away from 

the OB in both cases. In addition, the loss of RalB alone does not appear to affect 

neuroblast morphology or orientation, suggesting that RalA is primarily responsible 

for regulating these functions. Despite this drastic change in morphology and 

orientation, Cre-GFP expressing neuroblasts, including those lacking a leading 

process, can be seen throughout the RMS in RalA
lox/lox

 and RalA
lox/lox

/RalB
-/-

 mice. 

One possible explanation could be that due to the compact nature of the stream, 

the subpopulation of labelled neuroblasts get “carried along” by the continuous 

current of migrating cells. Future work will therefore need to include time-lapse 

imaging of these neuroblasts in the stream to characterise their capacity to migrate. 

 

Intriguingly, deletion of both Ral isoforms results in a striking reduction of labelled 

neuroblasts found in the RMS when compared with wild type and RalA
lox/lox

 animals, 

despite a similar extent of cell labelling at the injection site. This could suggest one 

of several possibilities (discussed in detail in Chapter 7.4). Firstly, the loss of RalA 

and RalB may severely impair the migration of RMS neuroblasts causing them to be 

“trapped” in the SVZ. If this is the case, both RalA and RalB would be needed for 

proper migration of neuroblasts. Another possibility is that the loss of both Ral 

proteins could lead to a defect in the proliferation of SVZ NS cells, which normally 

give rise to migratory neuroblasts (Doetsch et al. 1997; Garcia-Verdugo et al. 1998; 

Doetsch et al. 1999), and is the main cell type labelled by electroporation (Boutin et 

al. 2008). Our initial finding that RalB was abundant in highly proliferative cells such 

as the Cor-1 NS cell line led us to speculate whether RalB could be involved in 

neural precursor proliferation in the SVZ. However, the morphology of the RMS in 

RalA
lox/lox

/RalB
-/-

 mice is comparable to that of wild type littermates, thus suggesting 

that RalB per se is not absolutely necessary for proliferation of SVZ neural stem 

cells, though we cannot rule out the possibility that RalA may compensate for the 

loss of RalB. Finally, the loss of both Ral isoforms could adversely affects cell 

viability or cell fate. Work in progress in the lab is aimed at analysing these 
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possibilities by establishing the identity of cells lacking RalA and RalB following Cre 

electroporation, as well as assessing potential effects on proliferation and viability 

arising from the deletion of RalA and/or RalB. 
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Chapter 6: Potential effectors and activators of RalA 

6.1 Introduction 

The migration of neural precursors is regarded as a cyclic process involving 

extension of a leading process in response to integration of extracellular guidance 

cues, followed by translocation of the nucleus in the direction of migration 

(Lambert de Rouvroit and Goffinet 2001; Marin et al. 2006). Each of these distinct 

steps is co-ordinated by a number of proteins that regulate specific aspects of cell 

migration (reviewed in detail in Introduction Chapter 1.5). In our search to elucidate 

the molecular control of cell migration in the RMS, we have identified RalA as a 

regulator of neuroblast migration. To further our understanding of the RalA 

signalling mechanism in this system, we focus our attention in this chapter on 

uncovering the potential activators and effectors of RalA.        

 

Ral-GTPases can be activated by one of several mechanisms. Other members of the 

Ras superfamily, including Ras and Rap GTPases, have been shown to regulate Ral 

function by activating Ral specific GEFs (Bos et al. 2007). Although Rap GTPases 

appear to have a higher affinity for Ral-GEFS than Ras, in mammalian cells Ral-GEFS 

are recognised as the primary effectors for Ras proteins (Ferro and Trabalzini 2010). 

However, under certain circumstances, Rap GTPases have been shown to be 

responsible for GEF-mediated activation of Ral (Wolthuis et al. 1996). For example, 

CB1 receptor mediated neurite outgrowth as well as orientation of multipolar 

neurones in the developing cortex have been shown to be reliant on the activation 

of Ral by Rap1 (He et al. 2005; Jossin and Cooper 2011). Ral GTPases can also be 

activated by rises in intracellular Ca
2+

, although it is not yet clear as to whether this 

occurs through the actions of a Ca
2+

 sensitive GEF or through binding of Ral by 

calmodulin, which occurs in a Ca
2+

 dependent manner (Hofer et al. 1998; Wolthuis 

et al. 1998; Clough et al. 2002). In addition, the mitotic kinase Aurora A has been 

shown to directly activate Ral proteins by phosphorylation of Ser-194 at the C-

terminus, a mechanism that is specific to RalA (Kashatus et al. 2011). 
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Once activated, Ral GTPases can participate in a variety of signalling cascades 

through the regulation of their effectors, which include RalBP1, the exocyst 

complex, filamin, and ZONAB (Cantor et al. 1995; Ohta et al. 1999; Moskalenko et 

al. 2002; Frankel et al. 2005). Hence, to narrow our search, we specifically examined 

the relationship between RalA and molecules known to be involved in neuronal 

migration such as CDK5 (Hirota et al. 2007; Rakic et al. 2009), Pak1 (Nikolic 2008; 

Causeret et al. 2009; Kreis and Barnier 2009), p27-kip1 (Nguyen et al. 2006), MLC-2 

(Bellion et al. 2005), and N-Cadherin (Jossin and Cooper 2011), as well as a Ral 

effector the exocyst complex (Moskalenko et al. 2002). 

 

6.2 Results 

6.2.1 Activators of RalA: Rap GTPases 

Rap GTPases are able to bind and activate Ral-GEFs, and have been shown to be the 

primary activators of Ral proteins in Drosophila (Mirey et al. 2003). Furthermore, CB 

receptor-mediated neurite outgrowth and reelin-induced migration of cortical 

neurones in the developing brain are both dependent on a Rap-Ral relationship (He 

et al. 2005; Jossin and Cooper 2011). Since we found that CB agonists-promoted 

migration of RMS neuroblasts was reliant on RalA (Chapter 4), we speculated that 

Rap1 may be responsible for coupling CB receptor signalling to RalA activation, as 

seen in neurite outgrowth (He et al. 2005). To confirm this hypothesis, we 

examined rat RMS neuroblast lysates by Western blotting for Rap1A/B expression. 

Figure 6.1 shows that Rap1A/B is hardly detectable in neuroblast lysates. In 

contrast, SVZ and rat embryonic cortex homogenates, as well as Cor-1 cell lysates 

all show strong expression of Rap1. To determine whether Rap1 could act 

downstream of the CB1 receptor, we tested whether the CB1 agonist ACEA could 

activate Rap1 using a pulldown assay, where dissociated rat RMS neuroblasts 

treated with ACEA 0.5 µM for 5 minutes, 30 minutes and 1 hour, were subsequently 

lysed and incubated with agarose beads bound to the Rap binding domain of Ral-

GDS (a Ral-specific GEF), which only binds the active form of Rap (Rap-GTP) (van 

Triest et al. 2001). Using a Rap1B specific antibody, we were not able to detect 

protein expression in either the input or the pulldown samples (Figure 6.2). As a 
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positive control, the same antibody detected a single band at 21 kDa in rat 

embryonic cortex corresponding to the expected band for Rap1B (Figure 6.2). A 

Rap1A antibody was also tested in the same assay but failed to detect any bands in 

the input or pulldown samples (data not shown). Hence, Rap1 appears to be weakly 

expressed in rat neuroblasts, and unfortunately it was not possible to measure 

activation of this GTPase due to limitations in the sensitivity of the pulldown assay 

and the low available starting material (primary neuroblasts).  

  

6.2.2 Signalling downstream of RalA: Regulation of nucleokinesis 

In the first part of nucleokinesis in migrating neuronal cells, the centrosome and 

Golgi move into a swelling in front of the nucleus in the direction of migration, a 

process that has been demonstrated to be important for SVZ neural precursor 

migration (Higginbotham et al. 2006). We showed previously that RalA depletion 

causes a nucleokinesis defect in vitro (Chapter 5, Figure 5.5), whilst deletion of RalA 

led to misorientation of neuroblasts in vivo (Chapter 5, Figure 5.21). Thus, to assess 

whether lack of RalA impairs centrosome polarisation, we examined the orientation 

of the centrosome in relation to the leading process in control and RalA-depleted 

RMS neuroblasts migrating in Matrigel, by immunostaining for the centrosomal 

marker γ tubulin (Wiese and Zheng 2006). The centrosome can be visualised as a 

bright spot and is usually located between the nucleus and the leading process 

(Figure 6.3A). For the purpose of quantification, the cell body was divided into four 

quadrants, with quadrant 1 representing the area between the nucleus and leading 

process (Figure 6.3B). The number of cells with centrosomes in each quadrant was 

counted for both control and RalA-depleted neuroblasts. Figure 6.3C shows that the 

centrosome is nearly always positioned between the nucleus and leading process 

(quadrant 1) with 89.7 % ± 0.5 of control neuroblasts and 97.0 % ± 0.3 of RalA-

depleted neuroblasts having their centrosome in quadrant 1. Thus, positioning of 

the centrosome does not appear to be impaired following RalA depletion in these 

experimental conditions. However, since we are examining a snapshot in time using 

fixed samples, we noticed that only a few cells were actively undergoing 

nucleokinesis, as identified by the appearance of a characteristic swelling in front of 

the nucleus (Figure 6.3A, white arrowheads). 
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Figure 6.1: Rap1 A/B expression in rat RMS neuroblasts, SVZ, rat embryonic cortex 

and Cor-1 cells. Dissociated rat RMS neuroblasts were plated in 6 well plates coated 

with polyornithine/laminin at a density of 1,000,000 cells/well. Neuroblasts were 

lysed after 48 hours in culture. Different volumes of RMS lysates (5-40 µl), SVZ 

homogenate, rat embryonic cortex homogenate and Cor-1 cell lysate were analysed 

by Western blotting for expression of Rap1 A/B. 

 

 

                   

 

Figure 6.2: Expression of Rap1B in rat embryonic cortex and rat RMS neuroblasts 

after treatment with CB1 agonist. Dissociated rat RMS neuroblasts plated on 

polyornithine/laminin-coated wells were cultured for 48 hours before treatment 

with the CB1 agonist ACEA (0.5 µM for 5 min, 30 min and 1 hr). Lysates were 

incubated with agarose beads bound to the Ral GDS-Rap binding domain to extract 

active Rap1. Input and pulldown samples were run on a SDS-polyacrylamide gel 

alongside an embryonic rat cortex homogenate as a positive control. Western blots 

were probed for Rap1B expression. Rap1B is not detectable in input or pulldown 

samples derived from rat RMS neuroblasts, whereas it is abundant in rat embryonic 

cortex with a single band being detected at 21 kDa. 
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Figure 6.3: Depletion of RalA does not alter the position of the centrosome. Rat 

RMS neuroblasts were nucleofected with either a control or RalA siRNA, re-

aggregated and embedded in Matrigel 48 hours post nucleofection. Cells were fixed 

24 hours later and immunostained for the centrosomal marker γ-tubulin. (A) 

Representative images of control (left) and RalA-depleted cells (right). The 

centrosome can be seen as a bright spot between the nucleus and leading process. 

White arrowheads point to neuroblasts that are midway through nucleokinesis as 

evidenced by the cytoplasmic swelling in front of the nucleus. Bar = 20 µm. (B) 

Schematic representation showing how each neuroblast was divided into quadrants 

to quantify the position of the centrosome in relation to the leading process. (C) A 

graph showing the % of neuroblasts that had their centrosome located in quadrant 

1, 2, 3 or 4. The centrosome is nearly always located between the nucleus and 

leading process (quadrant 1) in both control and RalA depleted cells. Each bar 

represents the mean ± SEM; n = 261 cells for control and 460 cells for RalA siRNA.  
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The second part of nucleokinesis, the forward movement of the nucleus, relies on 

pulling forces associated with the dynein motor complex as well as actomyosin 

contraction at the rear of the cell (Bellion et al. 2005; Schaar and McConnell 2005; 

Tsai and Gleeson 2005). Hence, we examined the phosphorylation state of myosin ll 

light chain (MLC2), the actin-based motor protein responsible for contraction of the 

cell rear (Schaar and McConnell 2005). Unexpectedly, antibodies for MLC2 and p-

MLC2 detected a single band at 65 kDa rather than the expected 18 kDa (Figure 

6.4A). To rule out possible aggregation of the protein after lysis, samples were 

sonicated before Western analysis. However, this produced a triplet of bands 

around 60 - 70 kDa for MLC2, and no detectable bands for p-MLC2 (Figure 6.4B). 

Similarly, our analysis of the phosphorylation states of proteins associated with the 

dynein motor complex, such as DCX and Nudel, which may be involved in 

generating the pulling forces necessary for nuclear translocation (Niethammer et al. 

2000; Sasaki et al. 2000; Shu et al. 2004; Tanaka et al. 2004) proved inconclusive 

(data not shown). 

 

6.2.3 Signalling downstream of RalA: Pak1 

The p21-activated kinase (Pak) family members are serine/threonine kinases known 

to regulate both actin and microtubule dynamics, and have established roles in 

neuronal polarity, axon guidance, and cortical neuron migration during 

development (Fan et al. 2003; Shekarabi et al. 2005; Jacobs et al. 2007; Smith et al. 

2008; Causeret et al. 2009). The Pak family consist of 6 members divided into group 

l (Pak 1, 2, and 3) and group ll (Pak 4, 5, and 6) Paks based on their sequence, 

structure, and biochemical properties (Kreis and Barnier 2009). Though they are the 

major effectors for the Rho GTPases Rac and Cdc42, they can also be activated by a 

number of molecules through phosphorylation at various sites. For example, the 

T212 site which is specifically found on Pak1, is the target residue for CDK5 (Chong 

et al. 2001; Thiel et al. 2002). Importantly, perturbing Pak1 function in cortical 

neurones leads to misorientation of migrating cells and a disorganised leading 

process (Causeret et al. 2009), reminiscent of the phenotype seen with RalA 

deletion in RMS neuroblasts (Chapter 5). 
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Figure 6.4: MLC2 and p-MLC2 expression after RalA knockdown in rat RMS 

neuroblasts. Dissociated rat RMS neuroblasts were nucleofected with a control or 

RalA siRNA oligo, plated onto polyornithine/laminin-coated wells and cultured for 

48 hours. (A) Lysates were analysed by Western blotting for expression of MLC2 

and p-MLC2. A single band is detected for both antibodies, but at a much higher 

molecular weight than the expected 18 kDa. (B) Control and RalA-depleted 

neuroblasts were lysed and centrifuged to obtain just the supernatant, or whole cell 

lysates were used. Samples were sonicated before Western analysis. A triplet of 

bands can be detected for MLC2, although the band is not of the expected 

molecular weight. No bands were detected with the p-MLC2 antibody.  
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In addition, the actin-binding protein filamin, an effector for RalA, has also been 

shown to activate Pak (Vadlamudi et al. 2002).  Hence, we speculated whether RalA 

mediated its effects through regulation of Pak activity. We sought to address this 

issue primarily by analysing Pak1 phosphorylation as a marker of activation using 

Western blot analysis (Nikolic 2008; Kreis and Barnier 2009).  

 

To test the hypothesis that Pak1 acts downstream of CB signalling and RalA, we 

investigated Pak1 expression and phosphorylation in rat RMS neuroblasts following 

treatment with CB1 agonist, in control and RalA-depleted cells using Western blot 

analysis. Using an antibody recognising an epitope on the C-terminus of PAK1 (αPak 

c-19; Santa Cruz) we detected two bands in rat neuroblast lysates (Figure 6.5A). The 

lower band at 65 kDa corresponds to the molecular weight of Pak1, whilst the 

identity of the upper band at 70 kDa is not clear. Interestingly, treatment of 

neuroblasts with ACEA, or RalA knockdown, or RalA knockdown followed by ACEA 

treatment results in upregulation of this unknown protein (Figure 6.5A-B). Although 

Pak1 has multiple phosphorylation sites which specifically regulate activation and 

inactivation of its catalytic domain, it is unlikely that the upper band is a result of 

Pak phosphorylation given the 5 kDa difference between the two bands. 

Nevertheless, to further examine whether the upper band was due to 

phosphorylation of the protein we also tested the effects of an inhibitor of CDK5, a 

kinase known to phosphorylate Pak (Rashid et al. 2001; Banerjee et al. 2002). 

Unexpectedly, the CDK5 inhibitor Roscovitine (Leitch et al. 2009) significantly 

upregulated the expression of the unknown protein when used alone or in 

combination with ACEA (Figure 6.6A-B).     

 

In an attempt to determine the identity of the unknown band, we examined 

expression of other Pak family members following knockdown of RalA, treatment 

with ACEA, or knockdown of RalA followed by ACEA treatment. A Pak2 antibody 

detected a doublet of bands (at around 61 kDa) in neuroblasts (Figure 6.7A). A 

Pak3-specific antibody detected a band at 65 kDa (Figure 6.7B), and a Pak4-specific 

antibody detected a single band at 72 kDa (Figure 6.7C). 
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Figure 6.5: CB treatment or knockdown of RalA causes increased expression of an 

unknown band when probed for Pak1 (αPak c-19; Santa Cruz). Dissociated rat RMS 

neuroblasts nucleofected with control or RalA siRNA oligo were plated onto 

polyornithine/laminin coated wells and cultured for 48 hours before being treated 

with either vehicle or ACEA 0.5 µM for 30 minutes. Lysates were analysed by 

Western blot for expression of Pak1 using an antibody that recognises the c-

terminus of Pak1 (αPak c-19; Santa Cruz). (A) Representative Western blot showing 

control and RalA siRNA nucleofected neuroblasts probed for Pak1 shows an 

increase in the expression of an unknown band (70 kDa) following knockdown with 

RalA siRNA, treatment with ACEA, or both. (B) Densitometric analysis of the 

Western blot. Each bar represents the mean ± SEM; *P < 0.05; n = 4 independent 

experiments. 
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Figure 6.6: Treatment with CB1 agonist, CDK5 inhibitor, or both causes an increase 

in the expression of an unknown band when probed for Pak1 (αPak c-19; Santa 

Cruz). Dissociated rat RMS neuroblasts were plated onto polyornithine/laminin 

coated wells and cultured for 48 hours before being treated with the indicated 

drugs. CDK5 inhibitor Roscovitine 1 µM was pre-incubated for 1 hour before 

addition of CB1 agonist ACEA 0.5 µM. Lysates were analysed by Western blot for 

expression of using an antibody that recognises the C-terminus of Pak1 (αPak c-19; 

Santa Cruz). (A) Western blot probed for Pak1 showing an increase in the 

expression of an unknown band (70 kDa) following knockdown treatment with 

ACEA, Roscovitine, or both drugs. (B) Densitometric analysis of the Western blot 

shows that there is a significant increase in the expression of the 70 kDa unknown 

protein after CDK5 inhibition, CB1 receptor activation, or both. Each bar represents 

the mean ± SEM *P < 0.05; **P < 0.01; n = 4 independent experiments. 
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Figure 6.7: Expression of Pak family members after RalA knockdown and 

treatment with CB1 agonist ACEA. Dissociated rat RMS neuroblasts were 

nucleofected with a control or RalA siRNA oligo, plated onto polyornithine/laminin-

coated wells and cultured for 48 hours. Neuroblasts were treated with vehicle or 

ACEA 0.5 µM for 30 minutes prior to being lysed and analysed by Western blotting 

for expression of the p21 activated family of kinases: Pak 2 (A), Pak 3 (B), and Pak 4 

(C). 
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A pan antibody that recognises Pak 1, 2, and 3 detected a single band at 90 kDa and 

a doublet of bands at around 70 kDa (Figure 6.8). None of these bands showed 

upregulation following RalA depletion or ACEA treatment. Finally an alternative 

Pak1 antibody that recognises an epitope on the N-terminus was tested (Cell 

signalling). This antibody produced a doublet of closer bands (Figure 6.9), running at 

approximately 68 kDa. Given the close proximity of the two bands, the upper band 

detected by this Pak1 antibody could very well be phospho-Pak1. However, a 

change in band intensity was not observed following RalA depletion. On visual 

inspection alone, there does not seem to be a reduction in the band intensity of 

phosphorylated Pak1 following treatment with CDK5 inhibitor Roscovitine (1 µM) 

(Figure 6.9), suggesting that other kinases may have a role in regulating the 

phosphorylation state of Pak1 in RMS neuroblasts. The stark differences seen 

between the two Pak1 antibodies together with the screening analysis we 

performed on other Paks, indicate that the upper band we originally detected using 

the first Pak1 antibody is unlikely to be a Pak family member. 

 

6.2.4 Signalling downstream of RalA: CDK5  

CDK5 is best recognised for its regulation of the CNS cytoarchitecture. Loss of CDK5 

function results in disruption of neuronal migration, leading to abnormal layering of 

several brain structures, including the cerebral cortex, cerebellum, hippocampus 

and olfactory bulb (Ohshima et al. 1996; Chae et al. 1997; Gilmore et al. 1998; Kwon 

and Tsai 1998). Due to its ability to phosphorylate a number of microtubule 

associated proteins, it is currently believed that disrupting CDK5 activity adversely 

affects neuronal migration as a result of impaired nucleokinesis (Marin et al. 2010). 

Since time-lapse analysis of RalA depleted neuroblasts in Matrigel showed evidence 

of a nucleokinesis defect (Chapter 5), and CDK5 has been implicated in RMS 

neuroblast migration (Hirota et al. 2007), we speculated whether CB signalling, 

RalA, and CDK5 may co-operate to regulate RMS neuroblast migration. To test this 

hypothesis, we treated rat RMS explants embedded in Matrigel with the CDK5 

inhibitor Roscovitine (1 µM) and measured the distance migrated after 9 hours. 
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Figure 6.8: Pak 1, 2, 3 expression after RalA knockdown and treatment with CB1 

agonist ACEA. Dissociated rat RMS neuroblasts were nucleofected with a control or 

RalA siRNA oligo, plated onto polyornithine/laminin-coated wells and cultured for 

48 hours. Neuroblasts were treated with vehicle or ACEA 0.5 µM for 30 minutes 

prior to being lysed and analysed by Western blotting for expression of total Pak 

1,2,3. 

 

 

 

Figure 6.9: Pak1 expression after RalA knockdown and treatment with CDK5 

inhibitor Roscovitine. Dissociated rat RMS neuroblasts were nucleofected with a 

control or RalA siRNA oligo, plated onto polyornithine/laminin-coated wells and 

cultured for 48 hours. Neuroblasts were treated with vehicle or Roscovitine 1 µM 

for 1 hour prior to being lysed and analysed by Western blotting for expression of 

Pak1 using a cell signalling antibody that recognises the amino terminus of Pak1. 
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A shorter migration period of 9 hours was chosen, as opposed to the usual 24 hour 

period, since inhibition of migration is more notable at this time point (general 

observation from time lapse imaging). Unexpectedly, Roscovitine did not inhibit 

neuroblast migration out of explants. Intriguingly, the combined effect of ACEA and 

Roscovitine on the distance migrated by neuroblasts was significantly greater than 

the control (Figure 6.10A-B). We were not able to examine CDK5 activity by 

Western analysis of the phosphorylated protein in relation to RalA expression, due 

to technical difficulties using the phospho-antibody (Data not shown). 

 

Although we were not able to come to a definitive conclusion as to the role of CDK5 

in RMS neuroblast migration using the CDK5 inhibitor Roscovitine, we attempted to 

examine other targets associated with nucleokinesis, some of which are also 

substrates of CDK5. One such example is p27kip1, which relies on phosphorylation 

by CDK5 to regulate cortical neuron migration in development (Kawauchi et al. 

2006; Nguyen et al. 2006). However, our results showed no significant change in 

the phosphorylation of p27kip1 following treatment with ACEA, RalA depletion, or 

both (Figure 6.11). 

 

6.2.5 Signalling downstream of RalA: N-Cadherin 

Another potential downstream target of Ral GTPases we examined was N-Cadherin. 

In development, the migration of multipolar cortical neurones in response to reelin 

depends on the delivery of N-Cadherin to the plasma membrane by Rap1, a process 

that was also suggested to involve the activation of Ral (Jossin and Cooper 2011). 

Since Ral GTPases have long been known to regulate polarised delivery of 

membrane proteins (Shipitsin and Feig 2004), and adhesion molecules have been 

shown to be crucial for chain migration of RMS neuroblasts (Emsley and Hagg 2003; 

Belvindrah et al. 2007; Mobley and McCarty 2011), we examined whether RalA may 

regulate neuroblast migration by regulating N-Cadherin trafficking. 

Immunohistochemical analysis of P8 mouse brains showed that N-Cadherin 

(cytoplasmic) is enriched along the entire RMS (Figure 6.12A-B).  
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Figure 6.10: Inhibition of CDK5 enhances migration out of explants and enhances 

the pro-migratory effects of CB1 agonist ACEA. Rat RMS explants were embedded 

in Matrigel and allowed to migrate for 9 hours in the presence of vehicle control, 

ACEA 0.5 µM, Roscovitine 1 µM, or both drugs. (A) Representative images of 

explants after 9 hours of migration. (B) Quantification of the distance migrated out 

of explants. ACEA and Roscovitine promote migration of neuroblasts out of 

explants, and appear to have a synergistic effect when applied together. Each bar 

represents the mean ± SEM; *P < 0.05; n = 4 independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



242 

 

 

 

 

 

 

 

 

Figure 6.11: P-27kip1 and p-P27kip1 expression after RalA knockdown and 

treatment with CB1 agonist ACEA. Dissociated rat RMS neuroblasts were 

nucleofected with a control or RalA siRNA oligo, plated onto polyornithine/laminin 

coated wells and cultured for 48 hours. (A) Neuroblasts were treated with vehicle 

or ACEA 0.5 µM for 30 minutes prior to being lysed and analysed by Western 

blotting for expression of the p-P27kip1 and P27kip1. (B) Quantification of p-P27kip 

(normalised to P27kip1) relative to control. Each bar represents the mean ± SEM; n 

= 2 independent experiments. 
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Figure 6.12: N-Cadherin is strongly expressed in the mouse RMS. Sagittal sections 

of P8 mouse brain containing the RMS were examined for N-Cadherin expression 

using immunohistochemical analysis. Images correspond to the beginning section of 

the RMS just adjacent to the SVZ. The RMS shows robust expression of N-Cadherin 

as detected with an antibody recognising the cytoplasmic domain (A), and an 

antibody recognising amino acid sequence 811-824 (B). Yellow asterisks indicate 

direction of the OB and hence direction of migration. 
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We were not able to examine the expression of N-Cadherin in migrating 

neuroblasts in vitro due to technical difficulties associated with the use of some 

antibodies with Matrigel embedded cultures (data not shown). Thus, to analyse 

potential changes in N-Cadherin distribution and/or expression following RalA 

depletion, we stained control and RalA depleted rat neuroblasts plated on 

polyornithine/laminin-coated coverslips for cytoplasmic and external N-Cadherin 

(Figure 6.13A and 6.14 respectively). Cytoplasmic N-Cadherin showed punctuate 

staining along the cell body and protrusion. Although initial visual inspection from 

preliminary experiments seemed to indicate a change in the intensity of 

cytoplasmic N-Cadherin following RalA knockdown, quantification of N-Cadherin 

mean intensity relative to F-Actin showed no change in expression levels of the 

adhesion molecule (Figure 6.13B). Also, no change in the distribution of N-Cadherin 

was apparent after RalA depletion (Data not shown). An external N-Cadherin 

antibody showed punctuate staining that was localised to the cell body. Upon visual 

inspection, we observed no apparent change in external N-Cadherin distribution 

following RalA depletion (Figure 6.14).  

 

6.2.6 Signalling downstream of RalA: The exocyst complex 

The exocyst complex, one of the major Ral effectors, is responsible for mediating 

the functions of RalA in migration, secretion, polarity, and cytoskeletal dynamics 

(Moskalenko et al. 2002; Sugihara et al. 2002; Lalli and Hall 2005; Oxford et al. 

2005; Spiczka and Yeaman 2008; Lalli 2009). Our lab has previously shown that RalA 

activation promotes an association between the exocyst and the PAR complex. This 

interaction is required for the proper targeting of the PAR complex to the tips of 

nascent axons, and is an essential event in neuronal polarisation (Lalli 2009). Solecki 

et al. (2004) also showed that the positioning of the centrosome during cerebellar 

granule cell migration is dependent on the PAR complex. Current work by other 

members of the Lalli Lab (Dr Katarzyna Falenta) indicates that an exocyst-PAR 

association may also be involved in regulating the polarised migration of RMS 

neuroblasts. This association appears to be mediated by a specific region of the 

Exo84 exocyst subunit, which is able to directly bind the PAR complex component 

Par6.  
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Figure 6.13: N-Cadherin expression in rat RMS neuroblast after RalA depletion. 

Dissociated rat RMS neuroblasts were nucleofected with a control or RalA siRNA 

oligo, plated onto polyornithine/laminin-coated wells and cultured for 48 hours. 

Cells were then fixed, permeabilised, and stained with an N-Cadherin antibody 

recognising the cytoplasmic region of the protein. Bar = 10 µm. (A) Representative 

images of control and RalA depleted neuroblasts stained for N-Cadherin. (B) 

Quantification of N-Cadherin intensity (normalised to actin) relative to the control. 

No significant difference was observed in the intensity of N-Cadherin staining 

between control and RalA-depleted cells. Each bar represents the mean ± SEM; n = 

3 independent experiments. Approximately 12-20 images were analysed per 

condition per experiment. 
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Figure 6.14: External N-Cadherin expression in rat RMS neuroblast after RalA 

depletion. Dissociated rat RMS neuroblasts were nucleofected with a control or 

RalA siRNA oligo, plated onto polyornithine/laminin-coated wells and cultured for 

48 hours. Cells were then fixed and stained for external N-Cadherin (Sigma). 

External N-Cadherin expression appears punctate and is mainly localised to the cell 

body. Bar = 10 µm.  
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Importantly, active RalA promotes this interaction in vitro (Amlan Das and Wei Guo, 

unpublished). Our preliminary results imply that this interaction may also be 

functional in neuroblast migration in vivo. A pCAG-IRES-EGFP construct expressing 

the Par6-binding fragment of Exo84 (Exo84 Int Frag) was electroporated into the 

lateral ventricles of P2 mouse pups. Brains were collected 5 days post 

electroporation, fixed, sliced, and stained for GFP. Perturbing the Exo84-Par6 

association caused a significant increase in the % of misoriented neuroblasts (5.5% 

± 0.4 for GFP control and 12.7% ± 3.0 for Exo84 Int Frag) (Figure 6.15B). These 

results imply that an exocyst-Par6 association may be involved in the polarised 

migration of RMS neuroblasts. 
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Figure 6.15: Perturbing Exo84 function affects orientation and migration of RMS 

neuroblasts. A pCX-EGFP or pCAG-Exo84 Int Frag-IRES-EGFP was electroporated 

into the right lateral ventricle of P2 mouse pups. Mice were sacrificed 5 days later 

and the right hemisphere was fixed, sliced and stained for GFP. (A) A schematic 

diagram showing the site of injection in the lateral ventricle. The RMS (dotted lines) 

was divided into anatomically distinct regions for the purpose of quantification. 

Region A is the injection site, region B is the descending arm of the RMS, region C is 

the RMS “elbow” preceding the OB, and region D is within the OB. Perturbing the 

Exo84-Par6 interaction significantly increases the % of misoriented cells (B). Each 

bar represents the mean ± SEM; *P < 0.05; n = 4 independent experiments. (Data 

kindly provided by Dr Katarzyna Falenta). 
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6.3 Discussion 

During the course of this study we have uncovered a role for RalA in RMS 

neuroblast migration. In this final chapter, we attempted to identify upstream 

activators as well as downstream targets of RalA.  

 

Rap GTPases have been shown to act upstream of Ral in neuronal migration during 

development and CB-promoted neurite outgrowth (He et al. 2005; Jossin and 

Cooper 2011). Here we show that Rap1 is weakly expressed by RMS neuroblasts. 

However, due to the low sensitivity of the pulldown assay used to measure Rap 

activation, and the limited amount of starting material that is available to us, we 

were not able to examine Rap activity in relation to CB receptor activation. 

 

Since our time-lapse analysis of RalA depleted cells in Matrigel showed an 

impairment of nucleokinesis, we looked for defects in the two stages of this 

process: movement of the centrosome in the direction of migration, and 

translocation of the nucleus from pulling forces generated by the dynein motor 

complex and actomyosin contraction at the rear of the cell (Tsai and Gleeson 2005). 

Analysis of centrosome position revealed no difference in orientation between RalA 

depleted and control cells. However, since our analysis was conducted in fixed 

neuroblast cultures, and only looks at a snapshot in time, very few neuroblasts in 

our analysis were undergoing nuclear translocation. Hence time-lapse imaging of 

neuroblasts expressing a fluorescently-tagged centrosomal marker, a common 

method used to track centrosomal movement (Solecki et al. 2004), may be 

necessary to fully analyse whether RalA regulates centrosome polarisation and 

movement. Although we attempted to examine the activation state of molecules 

associated with the dynein motor complex (Nudel), and those localised to the 

perinuclear microtubule cage (DCX), as well as those involved in actomyosin 

contraction (MLC-2) (Tsai and Gleeson 2005), we were not able to arrive at a 

conclusion as to whether there is impairment of these molecular regulators of 

nuclear translocation following RalA knockdown due to technical difficulties 

associated with the phospho-antibodies for these targets. 
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Next, we examined a range of molecules (CDK5, Pak, p27kip1, N-Cadherin) shown 

to regulate RMS neuroblast migration or the migration of other neuronal cell types 

(Gilmore et al. 1998; Ohshima et al. 1999; Xie et al. 2003; Nikolic 2004; Kawauchi et 

al. 2006; Nguyen et al. 2006; Hirota et al. 2007; Causeret et al. 2009; Jossin and 

Cooper 2011; Valiente et al. 2011). Even though we showed that Pak 1-4 were 

expressed by RMS neuroblasts, we could not obtain convincing evidence supporting 

their activation downstream of CB/RalA signalling. 

 

Despite the recent report that CDK5 is required for RMS neuroblasts migration 

(Hirota et al. 2007), inhibiting CDK5 activity with Roscovitine did not perturb 

neuroblast migration out of explants in our studies. One possible explanation for 

this difference may be that inhibition of CDK5 activity in our experiment was 

achieved with Roscovitine, which may have off-target effects, as opposed to the 

more robust genetic approach used by Hirota et al. (2007). Although Roscovitine 

was shown to inhibit RMS neuroblast migration in Matrigel by Paratcha et al. 

(2006), this study used a particularly high concentration of 20 µM compared with 1 

µM used by us. Since the IC50 of Roscovitine is only 200 nM, the concentration we 

used should have been sufficient to inhibit CDK5 activity without the occurrence of 

drastic off-target effects. Unexpectedly, treatment with ACEA combined with 

inhibition of CDK5 activity with Roscovitine enhanced migration of neuroblasts. 

Based on our results, the role of CDK5 is not particularly clear. Measurement of 

kinase activity or the use of a siRNA-mediated strategy may be a more effective 

method for examining a potential relationship between CDK5 and CB/RalA 

signalling. 

 

Ral GTPases can regulate the delivery of N-Cadherin to the plasma membrane 

during neuronal migration in the developing cortex (Jossin and Cooper 2011). 

Though we were able to show robust expression of N-Cadherin in the RMS of 

neonatal mice, we did not observe any change in the distribution of N-Cadherin 

following knockdown of RalA. However, due to technical difficulties arising from the 

use of N-Cadherin antibodies with Matrigel-embedded cultures, N-Cadherin 

expression was examined in neuroblasts cultured on polyornithine/laminin coated-



253 

 

coverslips, a plating condition that allows immunostaining but on the other hand 

does not favour migration. Thus, the signalling and trafficking mechanisms 

associated with migrating neuroblasts may not be present in this system, and may 

therefore not truthfully reflect the state of neuroblasts migrating in Matrigel or 

within the RMS. Consistent with this idea, a recent report demonstrates that the 

role of adhesion molecules in cell migration is different in a 2D and 3D environment 

(Fraley et al. 2010). Alternatively, to determine whether a relationship between 

RalA and N-Cadherin exists in RMS neuroblasts, one could examine the localisation 

of N-Cadherin in Cre-GFP electroporated RalA
lox/lox

 and RalA
lox/lox

/RalB
-/-

 brain slices. 

 

Finally, we investigated whether perturbing the function of a well-known Ral 

effector, the exocyst complex, would re-capitulate the phenotype observed 

following genetic deletion of RalA. Given the newly discovered ability of Exo84 to 

interact with Par6 in a Ral-dependent fashion (Wei Guo and Amlan Das, 

unpublished observations), and the fact that disrupting such an interaction impairs 

neuronal polarisation (Lalli, unpublished), we asked whether disrupting this 

association could also impair polarised neuroblast migration in vivo. Interestingly, 

the expression of the Par6-binding region of the Exo84 exocyst subunit closely 

mimics the polarisation defect observed after genetic deletion of RalA (compare 

Figure 6.15B with Figure 5.20 middle panel). Almost 12.7% ± 3.0 of neuroblasts 

were misoriented following disruption of the Exo84-Par6 association, whilst 5.5% ± 

0.4 of neuroblasts were misoriented in control samples. These results suggest that 

an association between Exo84 of the exocyst complex and Par6 of the polarity 

complex may have a role in regulating the polarised migration of neuroblasts.  

Future work is aimed at investigating whether RalA may regulate neuroblast 

polarisation by favouring an Exo84-Par6 association. This could be validated in vivo 

by electroporation of RalA mutants uncoupled from specific exocyst subunits, such 

as Sec5 and Exo84 (Fukai et al. 2003).  
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In summary, we have attempted to elucidate the Ral signalling cascade in RMS 

neuroblast migration. Our preliminary data suggests that a well known effector of 

Ral GTPases, the exocyst complex, may also have a role in this system. Further work 

will be required to validate a potential role for Ral-exocyst in adult neurogenesis.   
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Chapter 7: General discussion 

The acceptance of ongoing neurogenesis has revolutionised our understanding of 

the mammalian brain from an immutable structure to one which is permissive to 

change and adaptation. The two recognised neurogenic regions of the adult brain, 

the SVZ of the lateral ventricles and the DG of the hippocampus, contain a unique 

niche that facilitates the continued existence and proliferation of NS cells. In the 

SVZ, slowly proliferating adult NS cells give rise to chains of migratory neuroblasts 

that undergo long-distance tangential migration to the OB via the highly restricted 

route of the RMS. Remarkably, these cells are able to migrate to sites of injury in 

the rodent and human brains, where they appear to contribute to CNS repair 

(Arvidsson et al. 2002; Zhang et al. 2004; Ohab et al. 2006; Ekonomou et al. 2011; 

Ekonomou et al. 2012). These findings have brought to light exciting new 

possibilities of employing stem cells existing within the CNS as a tool for 

regenerative therapies. However, the concept of neuronal replacement from adult 

NS cells is still viewed by many as a formidable task, mostly due to the limited 

neurogenic capacity of the adult human brain (Sanai et al. 2011). Yet our 

understanding of the CNS is still in its infancy, and to dismiss the regenerative 

potential of adult NS cells may be as detrimental to the progress of neuroscience as 

refuting the works of Altman and Kaplan was to neurogenesis some decades ago 

(Kaplan 2001). Thus, to further the possibility of employing NS cells residing in the 

adult brain for therapeutic purposes, it is imperative to study the mechanisms that 

govern the different stages of neurogenesis:  proliferation, migration and 

differentiation.  

 

The primary goal of this thesis was to investigate the guidance of RMS neuroblast 

migration and the molecular mechanisms regulating this process in the postnatal 

brain. In doing so, we have uncovered a novel role for the eCB system in RMS 

neuroblast migration. In addition, we show that CB signalling may promote 

migration through the activation of the small GTPase RalA. Moreover, other 

guidance molecules previously shown to regulate RMS neuroblast migration, such 

as HGF and GDNF, also activate RalA. We demonstrate for the first time that RalA is 
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required for correct neuroblast orientation and morphology. Based on the analysis 

of genetic mouse models, we demonstrate that deleting both RalA and RalB leads 

to a dramatic reduction of neuroblasts in the RMS as well as impairment of 

polarised morphology. 

 

7.1 Modelling RMS neuroblast migration 

The study of RMS neuroblast migration is a relatively new field, which has emerged 

over the last few decades since the discovery of long distance migration in the adult 

CNS (Lois and Alvarez-Buylla 1994; Lois et al. 1996). In our attempt to investigate 

the molecular mechanisms that regulate this process, we established a range of 

migration assays based on widely used published protocols. Our initial studies were 

performed on the Cor-1 cell line, a highly proliferative and motile NS stem cell 

model which expresses markers of neurogenic radial glia (Conti et al. 2005; Pollard 

et al. 2006) as wells as markers of migratory neuroblasts. Although this model has 

proven useful as a tool for high throughput screening and was used to identify the 

eCB system as a regulator of neuroblast migration, there are several notable 

differences between Cor-1 cell and RMS neuroblast migration which may lead to 

discrepancies between these two systems. For example, Cor-1 cells migrate on 2D 

surfaces, and show evidence of inter-kinetic nuclear movement and contact 

mediated inhibition of locomotion. In contrast, primary RMS neuroblasts are only 

motile in a 3D matrix such as Matrigel, and migrate in chains, forming close 

associations with neighbouring cells. Nevertheless, the Cor-1 cell line provides a 

useful screening tool that may be used as a first step in identifying regulators of 

neural precursor migration.  

 

The in vitro Matrigel migration assay is currently the most widely used tool for 

studying the significance of potential guidance cues regulating the migration of 

RMS neuroblasts. This technique provides a 3D environment which recapitulates 

the chain migration of neuroblasts in vivo, and is a simple effective method that can 

be used to examine the effects of motogens, attractants, repellents and inhibitors 

of neuroblast migration (Ward et al. 2003; Ward and Rao 2005). We adapted this 



257 

 

technique to assess the migratory capacity of neuroblasts following 

transfection/nucleofection with siRNA or mutant proteins. This method has been 

pivotal in furthering our understanding of neuroblast migration, but also comes 

with certain limitations and subtle differences from the in vivo situation, which we 

discovered during the course of our investigation. For example, disruption of RalA 

function leads to migration defects in vitro and in vivo but with different changes to 

morphology (increase in leading process length in vitro Vs reduction in leading 

process length in vivo). Also, in contrast to the situation in vivo, neuroblasts in 

Matrigel do not proliferate. Hence, although the Matrigel migration assay has 

proven to be a useful model system, and has led to the identification of several key 

molecules, including Slit, BDNF and eCBs, which have all been shown to influence 

neuronal migration in vivo, it is necessary to validate in vitro findings in an in vivo/ex 

vivo model where possible. 

 

More recently, the development of electroporation procedures to efficiently 

transfect SVZ neuroblasts has greatly facilitated the study of neuroblast migration 

in the native architecture of the RMS (Boutin et al. 2008). Analysis of fixed brain 

slices following electroporation is a useful method for studying the role of target 

proteins on neuroblast migration, and is the method that most closely reflects the 

in vivo situation. However, the limitations of this procedure lies in the fact that it 

only provides a snapshot of a given time-point and does not fully reflect the 

dynamic nature of neuroblast migration. Due to the RMS being located deep within 

the CNS, conventional fluorescence time-lapse microscopy is not compatible for 

imaging this region in the intact brain. Whilst magnetic resonance imaging (MRI) of 

iron-oxide labelled neuroblasts, and positron emission tomography (PET) have been 

used to monitor neuroblast migration in vivo, these techniques are limited by low 

resolution and slower acquisition times (Vreys et al. 2009; Nieman et al. 2010; 

Granot et al. 2011; Vande Velde et al. 2012). Hence, time-lapse imaging of 

fluorescently labelled migratory neuroblasts is currently only possible in cultured 

brains slices (approximately 300 µm thick). This assay has the advantage of 

containing all cellular and matrix components of the stream, and has a resolution 

and speed of acquisition that is good enough to visualise even the highly dynamic 
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changes of the growth cone on the tips of the leading processes. However, during 

our studies we observed one main difference between neuroblasts in fixed brains 

slices and those in live slice cultures. In fixed brain slices, nearly all neuroblasts are 

oriented towards the OB. However, in the brain slice assay, many cells often turn 

and migrate in the opposite direction. Whilst several papers have described this as 

“normal behaviour” of neuroblasts and have used this as evidence to suggest that 

the same occurs in vivo (Kakita and Goldman 1999; Nam et al. 2007), our data from 

fixed brain slices suggests that this is most likely an artefact of the slice preparation 

and may arise from the loss or dilution of diffusible guidance cues in this assay. 

Another method in which a fibre optic probe was used to image labelled 

neuroblasts in the intact brain has been suggested as a less invasive alternative, and 

also described migration of neuroblasts in the opposite direction (Davenne et al. 

2005). Despite the fact that this is probably the least disruptive technique, we 

cannot rule out tissue damage from the insertion of the probe, which may influence 

neuroblast migration.  

 

In summary, a variety of in vitro and in vivo migration assays are currently available 

for the study of neuroblast migration. Whilst in vitro studies are useful for the 

identification of compounds that have potential to regulate this process, it is 

necessary to validate these results in a more physiological context to identify the 

true regulators of migration in the RMS. While in vivo electroporation has become a 

very valuable tool to achieve this objective, the development of new imaging 

technologies will undoubtedly be instrumental in understanding the dynamics of 

neurogenesis in the intact brain.   

 

7.2 The role of endocannabinoid signalling in postnatal neurogenesis 

The eCB system has long been recognised for its ability to inhibit neurotransmitter 

release via retrograde signalling in the adult brain (Pertwee 2006). The numerous 

psychoactive properties of cannabis (altered perception, euphoria, hallucination, 

enhanced appetite, reduced spontaneous motor activity, immobility, analgesia and 

impairment of short-term memory) have now been attributed to regulation of 
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GABA and glutamate release by the CB1 receptor (Wilson and Nicoll 2001; Alger 

2002; Piomelli 2003) (Figure 7.1B). In the developing brain, the CB1 receptor 

partakes in axon guidance by coupling signalling via the FGF receptor to axonal 

growth (Williams et al. 2003) (Figure 7.1A). Recently, the Doherty lab has also 

demonstrated a role for the eCB system in regulating the proliferation of adult SVZ 

neural stem cells (Gao et al. 2010) (Figure 7.1C). Importantly, genetic deletion of 

DAG-L resulted in a significant reduction in SVZ neurogenesis, thus highlighting 2-

AG as the primary eCB regulating the proliferation of adult NS cells (Gao et al. 

2010). In addition, the decline in neurogenesis associated with ageing could be 

rescued by pharmacological activation of the CB2 receptor (Goncalves et al. 2008). 

These findings have significant implications since much of the scepticism 

surrounding the therapeutic potential of adult NS cells arises from the limited 

neurogenic capacity of the adult human brain (Spalding et al. 2005; Sanai et al. 

2011; Bergmann et al. 2012). Hence, the discovery that neurogenesis can be 

reactivated in the aged brain via restoration of an eCB tone raises the possibility of 

reactivating neurogenesis in the otherwise dormant adult human SVZ.    

 

In this study, we sought to assess a role for CB signalling in regulating another 

aspect of SVZ neurogenesis: the migration of neural progenitors along the RMS. Our 

results demonstrate that an endogenous cannabinoid tone regulates this process 

through both the CB1 and CB2 receptors. Pharmacological inhibition of eCB 

signalling leads to a loss of polarised neuroblast morphology and impairs efficient 

nucleokinesis (Oudin et al. 2011). Interestingly, we found several similarities 

between eCB signalling in RMS neuroblast migration and axon guidance during 

development. Firstly, both DAG-L, the enzyme responsible for the synthesis of 2-AG, 

and the CB receptors are both expressed by migratory neuroblasts (Figure 7.1D), 

suggesting the existence of an autocrine/paracrine signalling loop as seen with axon 

guidance (Bisogno et al. 2003). Secondly, preliminary data suggests that signalling 

via the FGF receptor may be responsible for driving eCB tone in the RMS (PhD thesis 

of Madeleine Oudin). In the context of contact-mediated axon guidance, cell 

adhesion molecules - N-Cadherin, L1 and NCAM – stimulate the production of 2-AG 

via activation of the FGF receptor (Williams et al. 2003). In the SVZ, adhesion 
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molecules such as integrins have a crucial role in regulating the proliferation of 

adult NS cells (Kazanis et al. 2010), whilst both integrins and PSA-NCAM are 

required for the efficient migration of neuroblasts in the RMS (Rutishauser et al. 

1985; Hu et al. 1996; Belvindrah et al. 2007; Mobley and McCarty 2011). We have 

also shown that N-Cadherin is expressed by neuroblasts throughout the RMS. Given 

that the expression of β1 integrins is up-regulated by adult NS cells when they are 

stimulated to proliferate (Kazanis et al. 2010), and the fact that neurogenesis can be 

induced by eCB signalling in the aged brain (Goncalves et al. 2008), whether 

adhesion molecule signalling drives eCB tone to regulate proliferation and 

migration in adult neurogenesis is an interesting point to address. 

 

Adult neurogenesis in the SVZ consists of three distinct stages: proliferation of adult 

NS cells in the SVZ, migration of neuroblasts along the RMS, and differentiation in 

the OB. Research conducted in our lab has uncovered a role for the eCB system in 

regulating both proliferation and migration in the postnatal brain. In the developing 

CNS, eCB signalling also orchestrates the formation of synapses (Berghuis et al. 

2007). Whether a similar mechanism exists in the integration of adult-born 

neurones in the OB is not known. Thus, whether eCB signalling can participate in all 

three stages of adult neurogenesis would be an important aspect to investigate.  
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Figure 7.1: The multiple roles of the eCB system in the CNS. A schematic 

representation of the roles of the eCB 2-AG in the CNS. The distribution of the 

synthetic enzyme (DAG-L), CB receptors (CB1/CB2), and degradative enzyme (MAG-

L) in axonal growth (A), retrograde signalling (B), NS cell proliferation (C) and 

neuroblast migration (D) are shown for each signalling system. Adapted from Oudin 

et al. (2011). 
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7.3 A cannabinoid-RalA signalling pathway regulates RMS neuroblast 

migration 

The migration of neuroblasts in the RMS is not reliant on a single factor, but 

appears to be finely orchestrated by a number of growth factors, chemorepellents, 

chemoattractants, migration inhibitors, motogens, and adhesion molecules acting 

at different points along this route (Cayre et al. 2009). Despite the wealth of 

information regarding the extracellular signals that influence this process, exactly 

how multiple signals arising from the RMS are synchronised and translated to the 

molecular machinery of the cell remains largely unknown. 

 

We propose that RalA may represent a potential point of convergence for migratory 

cues in RMS neuroblast migration, since in primary postnatal neuroblasts this 

GTPase is activated not only by CB agonists, but also by other known guidance 

factors such as HGF and GDNF (Paratcha et al. 2006; Garzotto et al. 2008). 

Moreover, RalA appears to be necessary for CB-promoted migration of RMS 

neuroblasts both in vitro and ex vivo (Chapter 4, Figure 4.12 and 4.14 respectively). 

Inhibiting RalA function or antagonising the CB receptor results in shortening of the 

leading process in vivo, and causes a nucleokinesis defect where there is a 

significant reduction in the number of productive saltatory nuclear movements. 

Interestingly however, CB antagonists also cause an increase in secondary 

branching, whereas deletion of RalA leads to only shortening, and sometimes loss 

of the leading process, but not secondary branching. These findings could imply 

that some, but not all of the effects of the CB receptors are mediated via RalA. Our 

in vitro data from explant cultures in Matrigel also suggest that the eCBs may 

regulate more than one aspect of neuroblast migration. For example, CB agonists 

not only enhance the distance migrated by neuroblasts, but they also increased the 

number of cells migrating out of the explants. These two properties can occur 

independently. For example, BDNF enhances the number of migrating cells but not 

the distance migrated (Chiaramello et al. 2007). Hence the CB system appears to 

regulate distinct aspects of neuroblast migration, and at least some of these effects 

may be mediated by RalA. In the developing CNS, CB1 receptor signalling regulates 
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polarisation of the growth cone cytoskeleton through the activation of another 

small GTPase, RhoA (Berghuis et al. 2007).  Whether this ability is conserved in 

migratory neuroblasts remains to be investigated. 

 

7.4 The redundant and exclusive functions of RalA and RalB in adult 

neurogenesis 

The two isoforms belonging to the Ral GTPase family, RalA and RalB, are highly 

similar, sharing approximately 85% sequence identity and only differing in the C-

terminal region. Yet despite this similarity, the function of these two proteins can 

be complimentary or antagonistic, redundant or exclusive to a particular isoform 

(Zhao and Rivkees 2000; Chien and White 2003; Shipitsin and Feig 2004; Lalli and 

Hall 2005; Oxford et al. 2005; Cascone et al. 2008; Ljubicic et al. 2009). In the 

context of RMS neuroblast migration, we have shown that RalA is the predominant 

isoform expressed by these cells and is activated downstream of CB-receptor 

signalling as well as by other molecules shown to regulate neuroblast migration. 

The expression of RalA is not only important for CB-promoted migration of 

neuroblasts, but is also required for efficient nucleokinesis, as well as correct 

morphology and orientation in the RMS. It is worth noting that similar to controls, 

neuroblasts lacking RalA can be found at the entrance to the OB 5 days post 

electroporation. However, this does not necessarily rule out the existence of a 

migratory defect. Given the compact nature of the stream, and the close 

association between migratory neuroblasts, it is possible that RalA-deficient 

neuroblasts get carried along by the “current” in the RMS. In support of this 

hypothesis, Hu et al. (1996) demonstrated that PSA-NCAM deficient neuroblasts 

were able to migrate normally when transplanted in a wild type RMS, but not vice 

versa, and suggested that abnormal neuroblasts may be towed along the RMS by 

other neuroblasts. Time-lapse imaging of Cre-GFP labelled neuroblasts in RalA
lox/lox 

mice may help clarify this issue. 

 

Although we were not able to detect RalB expression in RMS neuroblasts by 

Western analysis, we cannot exclude the presence of this Ral isoform in these cells, 
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even though this is likely to be less abundant than RalA. Preliminary observations of 

pCX-EGFP labelled neuroblasts in RalA
lox/lox

/RalB
-/-

 mice indicate that neuroblast 

morphology and migration do not appear to be significantly affected by the 

absence of RalB, thereby suggesting that RalB may be dispensable for proper 

neuroblast migration and polarisation. Consistent with this idea, the disrupted 

orientation defect caused by RalA deletion could not be compensated by the 

presence of RalB in Cre-expressing RalA
lox/lox 

neuroblasts, and is not worsened by 

the absence of RalB in Cre-expressing RalA
lox/lox

/RalB
-/-

 cells (Figure 5.20, middle 

panel). Hence the regulatory role of Ral GTPases in the polarised migration of RMS 

neuroblasts appears to be one that is exclusive to RalA.  

 

Interestingly, whilst the loss of RalA affected morphology and orientation of 

neuroblasts, it did not affect the total number of Cre-GFP-labelled cells entering the 

stream. In contrast, deletion of both RalA and RalB led to a drastic reduction in the 

number of Cre-GFP labelled neuroblasts in the RMS. There could be several possible 

reasons for this. Firstly, the loss of both GTPases could result in a severe migration 

defect resulting in neuroblasts failing to leave the SVZ. Another interesting 

possibility is that RalA and RalB may have a role in regulating NS cell or transient 

amplifying cell proliferation in the SVZ. The electroporation procedure we used to 

introduce plasmids into migratory neuroblasts labels mostly radial glia-like adult NS 

cells, which then proliferate to produce transient amplifying progenitors that 

ultimately give rise to migratory neuroblasts (Boutin et al. 2008). Thus, the drastic 

reduction in Cre-GFP labelled neuroblasts entering the RMS may also result from a 

proliferation defect resulting from the loss of RalA and RalB. This hypothesis is also 

partly based on the fact that both Ral GTPases have been previously shown to 

regulate proliferation in several types of cancers (Urano et al. 1996; Lu et al. 2000; 

Hamad et al. 2002; Yu and Feig 2002). Moreover, our collaborators found that the 

expression of either RalA or RalB was sufficient to drive K-Ras mediated carcinomas, 

whilst deletion of both RalA and RalB in RalA
lox/lox

/RalB
-/-

 mice led to mitotic 

catastrophe arising from a failure of chromosomal segregation during cell division 

(Peschard et al, in press). Interestingly, both RalA and RalB have been shown to 

participate in cytokinesis in non-neuronal cells by regulating the formation of the 
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cleavage furrow and mediating abscission, respectively (Cascone et al. 2008). 

Furthermore, this function of Ral GTPases was reliant on an association with the 

exocyst complex (Cascone et al. 2008). Recently, Carmena et al. (2011) reported 

that organisation of the mitotic spindle in asymmetric division of NS cells in 

Drosophila involved an association between Rap-Ral signalling and members of the 

Par complex, namely aPKC and Par6. Whether RalA and RalB have a similar role in 

the control of cell division of adult NS cells is currently an unexplored field of 

research, but given our recent observations this may be a function worth 

investigating.  

 

Alternatively, deleting both Ral proteins may lead to reduced survival, thus leading 

to fewer labelled cells present in the stream. A role for RalB in promoting cell 

survival has been described in tumourigeneis (Chien and White 2003). RalB was 

found not to be necessary for the survival of normal cells, but was required to 

promote the survival of tumourogenic cells by offsetting the increased tendency for 

apoptosis arising from enhanced cell proliferation brought about by RalA (Chien 

and White 2003; Bodemann and White 2008). Interestingly, deletion of both RalA 

and RalB was shown to have no effect on tumour cell survival since the balance 

between proliferation and survival is restored. So, if RalA and RalB have a similar 

role in the SVZ, we would expect deletion of RalB alone to have a drastic effect on 

survival whilst deletion of both isoforms to have no effect, which is contrary to our 

observations, where only deletion of both isoforms causes a severe reduction in the 

number of labelled neuroblasts. Hence, to uncover which of these three scenarios is 

true, we are currently investigating changes to proliferation and survival following 

the loss of RalA and RalB, as well as using time-lapse analysis to assess the 

migratory capacity of these neuroblasts. In summary, RalA appears to have an 

exclusive role in regulating RMS neuroblast polarised morphology, whilst RalA and 

RalB may potentially have redundant roles in the regulation of neural precursor 

proliferation/survival.   
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In conclusion, we have shown that an eCB tone regulates the migration of RMS 

neuroblasts in the postnatal brain. CB receptor-promoted migration is reliant on the 

activation of the small GTPase RalA, which appears to be required for efficient 

nucleokinesis in vitro and for polarised neuroblast morphology in vivo. 

Furthermore, other growth factors known to regulate neuroblast migration also 

activate RalA, implying that this GTPase may be a point of convergence for 

migratory signals in the RMS. Future work will be centred on examining 

downstream targets of RalA, as well as clarifying the phenotype caused by the loss 

of RalA and RalB in the postnatal SVZ neurogenic niche. 
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