

King’s Research Portal

DOI:
10.1007/978-3-030-39881-1_7

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Crochemore, M., Iliopoulos, C. S., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., & Zuba, W. (2020).
Shortest covers of all cyclic shifts of a string. In M. S. Rahman, K. Sadakane, & W.-K. Sung (Eds.), WALCOM:
Algorithms and Computation - 14th International Conference, WALCOM 2020, Proceedings (pp. 69-80). Article
69 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Vol. 12049 LNCS). SPRINGER. https://doi.org/10.1007/978-3-030-39881-1_7

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1007/978-3-030-39881-1_7
https://kclpure.kcl.ac.uk/portal/en/publications/17a7934e-9f89-46dc-849a-736c1e9b26c0
https://doi.org/10.1007/978-3-030-39881-1_7

Shortest Covers of All Cyclic Shifts of a String

Maxime Crochemore1[0000−0003−1087−1419],
Costas S. Iliopoulos1[0000−0003−3909−0077],
Jakub Radoszewski2?[0000−0002−0067−6401],

Wojciech Rytter2[0000−0002−9162−6724], Juliusz
Straszyński2,?[0000−0003−2207−0053], Tomasz Waleń2[0000−0002−7369−3309],?, and

Wiktor Zuba2[0000−0002−1988−3507],?

1 Department of Informatics, King’s College London, London, UK,
{maxime.crochemore,c.iliopoulos}@kcl.ac.uk

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl

Abstract. A factor W of a string X is called a cover of X, if X can
be constructed by concatenations and superpositions of W . Breslauer
(IPL, 1992) proposed a well-known O(n)-time algorithm that computes
the shortest cover of every prefix of a string of length n. We show an
O(n logn)-time algorithm that computes the shortest cover of every cyclic
shift of a string and an O(n)-time algorithm that computes the shortest
among these covers. A related problem is the number of different lengths
of shortest covers of cyclic shifts of the same string of length n. We show
that this number is Ω(logn).

1 Introduction

We consider strings as finite sequences of letters from an integer alphabet Σ. The
notion of periodicity in strings and its many variants have been well-studied in
many fields like combinatorics on words, pattern matching, data compression,
automata theory, formal language theory, and molecular biology. A typical
regularity, the period U of a given string X, grasps the repetitiveness of X since
X is a prefix of a string constructed by concatenations of U . If X = AWB,
for some, possibly empty, strings A,W,B, then W is called a factor of X and,
respectively, X is a superstring of W . A factor W of X is called a cover of X, if
X can be constructed by concatenations and superpositions of W . A factor W
of X is called a seed of X, if there exists a superstring of X which is constructed
by concatenations and superpositions of W . For example, abc is a period of
abcabcabca, abca is a cover of abcabcaabca, and abca is a seed of bcabcaabc. The
notions “cover” and “seed” are generalizations of periods in the sense that
superpositions as well as concatenations are considered to define them, whereas
only concatenations are considered for periods.

In computation of covers, two problems have been considered in the literature.
The shortest-cover problem (also known as the superprimitivity test) is that of

? Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

computing the shortest cover of a given string of length n, and the all-covers
problem is that of computing all the covers of a given string. Apostolico et al. [1]
introduced the notion of covers and gave a linear-time algorithm for the shortest-
cover problem. Breslauer [4] proposed an on-line algorithm for computing the
shortest cover that works in linear time. In particular, his algorithm computes the
shortest cover of every prefix of a string. The other direction was taken by Moore
and Smyth [20,21] and by Li and Smyth [19] who computed all the covers of a
string and a representation of all the covers of all prefixes of a string, respectively.

Covers of circular strings were also considered. It is implicit in [13] that covers
of a circular string S are exactly seeds of S2 (see also [15]).

a

ab

b

circular string

a b a b

a b a b
b a b a

b a b a

cyclic shifts

Fig. 1. The string aba is a cover of the string S = abab treated as a single circular
string, but is not a cover of any of cyclic shifts of S.

All the seeds of a string of length n can be represented in O(n) space as a
collection of a linear number of disjoint paths in the suffix trees of the string and
of its reversal. This representation can be computed in O(n log n) time [13] and
even in O(n)-time [16]. Recently it was also shown in [17] that all the seeds can
also be represented as a linear number of disjoint paths in just the suffix tree of
the string. This implies the following fact:

Lemma 1. The problem of computing the shortest cover of a circular string can
be solved in linear time.

We say that a string Y is a cyclic shift of a string X if X = AB and Y = BA
for some strings A and B; in this case we also write Y = rot |A|(X). It seems that
the problem of computing shortest covers of all cyclic shifts of a string is harder
than that of computing the shortest cover of a circular string. A straightforward
application of any of the aforementioned algorithms for computing covers of a
string yields an O(n2)-time solution to the problem. One should note that covers
of circular strings are a different notion than that of covers of cyclic shifts of a
string; see Fig. 1.

The shortest covers of cyclic shifts of a string can behave rather irregularly.
For example, the length of the shortest cover of S = abaabababababababa equals
3, whereas the shortest cover of rot1(S) has length 18.

We consider the following problem.

2

Shortest Covers of All Cyclic Shifts of a String

Input: A string S of length n.

Output: The lengths of the shortest covers of all cyclic shifts of S.

Let S be a string of length n and ShCov(S) denote the shortest cover of S. We
introduce an array CyCoS of length n such that CyCoS [i] = |ShCov(rot i(S))|.
Our main result is computing this array. We also denote

CyCoSet(S) = {CyCoS [i] : i = 0, . . . , n− 1}.

Example 2. For the Fibonacci strings S1 = abaab, S2 = abaababaabaab we
have:

CyCoS1
= [5, 5, 5, 3, 5], CyCoS2

= [5, 5, 13, 3, ...]

CyCoSet(S1) = {3, 5}, CyCoSet(S2) = {3, 5, 8, 13}.

Our results. We show that the whole array CyCoS and mini CyCoS [i] for
a string S of length n can be computed in O(n log n) time and O(n) time,
respectively. For this we use a characterization of covers of cyclic shifts of a
string by seeds and squares, i.e., strings of the form W 2, and the suffix tree data
structure. We also show that there exists a (known) infinite family of strings for
which |CyCoSet(S)| = Θ(log |S|).

Structure of the paper. In Section 2 we recall the definition and basic proper-
ties of a suffix tree of a string. Then in Section 3 we present characterizations of
shortest covers of cyclic shifts of a string, which lead us to the main algorithmic
results in Section 4. The lower bound on the size of the CyCoSet set is shown us-
ing Fibonacci strings in Section 5. We conclude and mention some open problems
in Section 6.

2 Applications of the Suffix Tree

Recall that a suffix tree of a string S is a compact trie of all the suffixes of S#,
where # is a special end marker. The root, branching nodes, and leaves of the
tree are explicit. All the remaining nodes are implicit in the tree. Each leaf is
labeled with the starting position of the corresponding suffix. Every factor of S
is represented as an explicit or implicit node of the tree. A suffix tree of a string
of length n over an integer alphabet can be constructed in O(n) time [10].

Observation 1 Let S be a string of length n. After O(n)-time preprocessing,
all the occurrences of a factor of S, represented as a node in the suffix tree of S,
can be reported in linear time w.r.t. the number of these occurrences.

3

Proof. It suffices to store a list L of leaves of the suffix tree in a left-to-right
order. Then for every explicit node v of the tree, we precompute the endpoints
of the sublist of L that corresponds to the occurrences of the string v. This
precomputation is done bottom-up in O(n) time. ut

We also use the following lemma.

Lemma 3 ([17]).
Given a collection of factors U1, . . . , Uk of a string S of length n, each represented
by an occurrence in S, in O(n+ k) time we can compute the implicit or explicit
node in the suffix tree of S that corresponds to each factor Ui. Moreover, all these
nodes can be made explicit in O(n+ k) time.

The set (possibly of a quadratic size) of all seeds of a string can be represented
as a collection of linearly many disjoint paths in the suffix tree [17]. It can be
assumed that each path belongs to a single edge of the suffix tree. The endpoints
of the paths can be implicit nodes. For an example, see Fig. 2.

a b

#

a
b

#

a
a

#

b

a
b

a
a

b
a

#
a

b

a
#

#

a

a
b

#
a

a
#

b
a

a
b

a
a

#a

a

Fig. 2. The string S = ababaabaa has the following seeds: aba, abaab, baaba, abaaba,
ababaaba, babaabaa, ababaabaa. They can be represented on the (uncompressed) suffix
tree of S as shown in the figure. Each seed is a path from root to marked node. In some
cases, e.g. abaab, abaaba, multiple seeds are represented on a single path.

3 Covers of Cyclic Shifts

A string X is called primitive if X = Y k for positive integer k implies that k = 1.
A string of the form Z2 is called a square; it is called primitively rooted if Z

4

is primitive. We denote by Squares(S) the set of factors Z of S such that the
square Z2 is also a factor of S and by PSquares(S) the subset of Squares(S)
that consists only of primitive strings. We further denote by Seeds(S) the set
of factors which are seeds of S. We use these sets of S3 in order to characterize
covers of all cyclic shifts of S.

Lemma 4. Let S be a string of length n and C be a string of length up to n.
Then C is a cover of rot i(S) if and only if C ∈ Seeds(S3) ∩ Squares(S3) and C2

occurs with its center at position j ≡ i (mod n) in S3.
Moreover, if C is the shortest cover of rot i(S), then C ∈ Seeds(S3) ∩

PSquares(S3).

Proof.

(⇒) String C is a cover of (rot i(S))4, and thus a seed of its factor S3. Moreover,
S3[j − |C|, j + |C| − 1], that is, the factor of S3 of length 2|C| with center at
position j, is equal to C2 for j = i+ n.

(⇐) The square C2 occurs in S3 with its center at position j ≡ i (mod n). Thus
C is a prefix and a suffix of rotj(S) = rot i(S) as |C| < n. C is also a seed of
rot i(S) which is a factor of S3, hence it is a cover of rot i(S).

As for the “moreover” part, it suffices to note that the shortest cover of a
string is obviously primitive. ut

Example 5. In the above lemma, one could not take S2 instead of S3. Indeed,
for S = abaaaaba we have that rot4(S) = aabaabaa has the shortest cover aabaa,
but S2 = abaaaabaabaaaaba does not contain the square (aabaa)2.

a b a a a a b a a b a a a a b a

Fig. 3. Illustration of Example 5.

Let T (S3) be the suffix tree of S3 in which we distinguish the nodes v
corresponding to strings Z2 for Z ∈ Seeds(S3) ∩ PSquares(S3). These nodes are
called candidate nodes. Some of these nodes could be implicit nodes in the suffix
tree. Then they are made explicit. Denote by CandAnc(v) the set of ancestor
nodes of v in T (S3) which are candidate nodes. Let |v| be the length of the string
corresponding to the node v.

We can reformulate Lemma 4 as follows:

Lemma 6. CyCoS [i], i.e., the length of the shortest cover of rot i(S), equals

min
j,v
{ k : k = |v|/2, i = (j + k) mod n, j ∈ Leaves(T (S3)), v ∈ CandAnc(j)}.

5

root

seed Z

candidate v=Z
2

k

k

leaf j

Fig. 4. Illustration of Lemma 6. The situation when CyCoS [i] = k. We have that
i = (j + k) mod n and Z2 is a primitively rooted square of length 2k; it corresponds to
the node v which is possibly inside an edge of the suffix tree.

Clearly if C is a cover of rot i(S), then C is a cover of S treated as a circular
string. As we have already noted in Fig. 1, the converse is not necessarily true.
However, we show that every shortest cover of the circular string S is a cover of
the corresponding cyclic shift of S.

Lemma 7. A shortest cover of a circular string is always a (shortest) cover of
some cyclic shift.

Proof. We need the following claim.

Claim (See [13]). String C is a cover of S considered as a circular string iff it is
a seed of S2, hence also iff it is a seed of S3.

Consider a cover C of a circular string S, such that C2 does not occur in it.
Consider the last position covered by any occurrence of C in the string.

The position must be also covered by another occurrence of C (the next
position must be covered and cannot be the first position of some C). Thus by
erasing the last position of C we obtain a shorter cover. Hence if C is a shortest
cover then C2 must appear in the circular string S.

By Lemma 4 it is a cover of some cyclic shift of the string. ut

By computing the shortest cover of the circular string S using Lemma 1 we
obtain the following preliminary result.

Corollary 8. For a string S of length n, min CyCoS can be computed in O(n)
time.

6

4 Main Algorithm

First we have to show how to compute efficiently the tree T (S3). We denote by
OccPSquares(S) the set of all occurrences of primitively rooted squares in S. Each
occurrence is represented in O(1) space as a factor of S. A direct consequence of
the Three-square-prefix Lemma, see [8], is that a string of length n has no more
than log n prefixes that are primitively rooted squares.

Lemma 9 ([8]). For a string S of length n, |OccPSquares(S)| = O(n log n).

a b c d a b c d a b c d a b

runa b c d a b c d
a b c d a b c d a
a b c d a b c d a b
a b c d a b c d a b c
a b c d a b c d a b c d
a b c d a b c d a b c d a
a b c d a b c d a b c d a b

squares

Fig. 5. Primitive squares can be derived from runs (maximal repetitions), knowing the
shortest periods of runs.

Lemma 10. For a string S of length n, |PSquares(S)| = O(n) and this set can
be computed in O(n) time.

Proof. Let us start with efficient computation of squares.

Claim ([7,9,11,12]).
For a string S of length n, |Squares(S)| = O(n) and this set can be computed in
O(n) time.

By the claim, |PSquares(S)| = O(n) since PSquares(S) ⊆ Squares(S).

The set PSquares(S) can be computed by filtering out the factors from
Squares(S) that are not primitive. This can be done in O(1) time per factor after
O(n)-space and time preprocessing using so-called Two-Period queries [3,18]. A
more direct approach would be to (effortlessly) adapt the algorithm for computing
different square factors from [7] using relations between primitive squares and
runs (maximal repetitions); see Figure 5. ut

Lemma 11. The tree T (S3) can be computed in O(n) time.

Proof. We use a version of a minimal augmented suffix tree (MAST, in short), a
data structure that was initially introduced in [2].

Let us recall that Lemma 3 can be used to augment the suffix tree with
nodes that correspond to a set of factors of S3. We first apply the lemma to the
collection of factors PSquares(S3), which can be efficiently computed due to the
previous lemma.

7

Then we compute a representation of all the seeds of S3 in the suffix tree using
the algorithm from [17]. The representation consists of a collection of disjoint
paths, each located on a single edge in the suffix tree; see Figure 2. The endpoints
of the paths that are implicit nodes can also be made explicit using the lemma.

For every node v corresponding to an element in PSquares(S3), we check if it
is located on some path that belongs to the representation of Seeds(S3). Finally,
we again use Lemma 3 for the original suffix tree of S3 and set of factors Z2 that
correspond to all such elements Z ∈ PSquares(S3) ∩ Seeds(S3) to obtain the set
of candidate nodes. This completes the proof. ut

The number of integers (j + k) equal modulo n is constant, hence we can
forget about computing modulo n and for each 0 ≤ i < 3n we are to compute:

min
j,v
{ k : k = |v|/2, i = j + k, j ∈ Leaves(T (S3)), v ∈ CandAnc(j)}. (1)

Algorithm ComputeCyCo

1. Initialize each entry of CyCo to +∞
2. Compute T (S3)
3. for each candidate node v in T (S3) do

for each occurrence S3[j, j + |v| − 1] of v in S3 do
i := (j + |v|) mod n
CyCo[i] := min (CyCo[i], |v|)

4. return CyCo

Theorem 12. The algorithm ComputeCyCo computes the lengths of shortest
covers for all cyclic shifts of a string in O(n log n) time.

Proof. In the third paragraph we simply implement (1). This proves correctness.
The occurrences of a node are computed using Observation 1. The required
complexity follows from Lemma 9 and Lemma 11. ut

5 Strings with Arbitrarily Large Size of CyCoSet(S)

We show that the size of CyCoSet(S), for a binary alphabet, is not bounded by
a constant. It grows at least logarithmically.

Recall that the Fibonacci strings are defined as Fib0 = b, Fib1 = a, Fibk =
Fibk−1Fibk−2 for k ≥ 2. In other words, Fibk = φk(Fib0), where φ is a morphism

φ(a) = ab, φ(b) = a.

Hence

Fib2 = ab, Fib3 = aba, Fib4 = abaab, Fib5 = abaababa,

8

We denote Fk = |Fibk|, the k-th Fibonacci number.
We use the following well known properties of Fibonacci strings.

Observation 2 Fibk does not contain the factors aaa and bb.

Fact 1 (see [22,14]) For every non-empty factor U2 of Fibk, U is a cyclic shift
of Fibm for some m.

Fib2

cyclic shift shortest cover length

ab ab 2

ba ba 2

Fib3

aba aba 3

baa baa 3

aab aab 3

Fib4

abaab abaab 5

baaba baaba 5

aabab aabab 5

ababa aba 3

babaa babaa 5

Fib5

abaababa aba 3

baababaa baababaa 8

aababaab aababaab 8

ababaaba aba 3

babaabaa babaabaa 8

abaabaab abaab 5

baabaaba baaba 5

aabaabab aabaabab 8

Fib6

cyclic shift shortest cover length

abaababaabaab abaab 5

baababaabaaba baaba 5

aababaabaabab aababaabaabab 13

ababaabaababa aba 3

babaabaababaa babaabaababaa 13

abaabaababaab abaab 5

baabaababaaba baaba 5

aabaababaabab aabaababaabab 13

abaababaababa aba 3

baababaababaa baababaa 8

aababaababaab aababaab 8

ababaababaaba aba 3

babaababaabaa babaababaabaa 13

Fig. 6. Shortest covers of cyclic shifts of Fibonacci strings.

An example for the theorem below can be found in Fig. 6.

Theorem 13. For k ≥ 3, CyCoSet(Fibk) = {F3, . . . , Fk}.

Proof. We show two inclusions.

Proof of the inclusion {F3, . . . , Fk} ⊇ CyCoSet(Fibk).

By Lemma 4, every element of the set CyCoSet(Fibk) is a square half of
length at most Fk in Fib3

k. By Fact 1, the lengths of square halves in a Fibonacci
string are Fibonacci numbers. It suffices to note that, for k ≥ 3, Fib3

k is a factor
of Fibk+5 since

Fib8 = abaababaabaababaababaabaababaabaab

9

contains a cube Fib3
3 (underlined). It can be readily verified that no string of

length F1 = 1 and F2 = 2 covers Fibk for k ≥ 3.

Proof of the inclusion {F3, . . . , Fk} ⊆ CyCoSet(Fibk).

We will prove that for every i = 3, . . . , k, there exists a cyclic shift S of Fibk

such that |ShCov(S)| = Fi and S 6= aaXbab for a binary string X. The proof
goes by induction over k. For k = 3 the conclusion is straightforward. Assume
now that the conclusion holds for k − 1.

Let us consider i ∈ {3, . . . , k − 1} and let S be a cyclic shift of Fibk−1 such
that |ShCov(S)| = Fi and S is not of the form aaXbab. We use the following
observation.

Observation 3 Let S1,1 = abXb, S1,2 = bXba, S2,1 = baaXaa, and S2,2 =
aaXaab be cyclic shifts of a Fibonacci string, where X is a binary string. For
every i = 1, 2 and string C, C is a cover of Si,1 if and only if rot1(C) is a cover
of Si,2.

Proof. Any cover C of S1,1 starts with the letter a and ends with the letter b.
By Observation 2, each of its occurrences except for the occurrence as a suffix
is followed by the letter a. Hence, rot1(C) is a cover of S1,2. Similarly, a cover
C ′ of S1,2 starts with the letter b and ends with the letter a, so each of its
occurrences except for the occurrence as a prefix is preceded by the letter a.
Hence, rot |C′|−1(C ′) is a cover of S1,1.

The proof for S2,1 and S2,2 is analogous. ut

If S ends with the letter b, we either move its first letter to its end to obtain
a string that matches S1,2 or the last letter to the start to obtain a string that
matches S2,1. We use the additional property that S is not of the form aaXbab, in
which case none of the shifts would be possible. After the potential transformation,
|ShCov(S)| did not change and S starts with the letter b.

Now S′ = φ(S) is a cyclic shift of Fibk that ends with φ(a) = ab.

Observation 4 Assume that S′ = φ(S) and S′ ends with the letter b. Let C ′ be
a cover of S′. Then there exists a unique cover C of S such that φ(C) = C ′.

By the observation, if C = ShCov(S), then C ′ = φ(C) is the shortest cover of
S′. By Lemma 4, C2 occurs in Fib3

k−1. Hence, Fact 1 implies that C is a cyclic
shift of Fibi, so C ′ is a cyclic shift of Fibi+1 and |C ′| = Fi+1.

Thus we have obtained that {F4, . . . , Fk} ⊆ CyCoSet(Fibk). To conclude,
we notice that rot3(Fibk) starts and ends with Fib2 = aba, so aba is its cover
by Observation 2 (and the shortest cover by the first inclusion). Thus F3 ∈
CyCoSet(Fibk).

Consequently, {F3, F4, . . . , Fk} ⊆ CyCoSet(Fibk). ut

10

6 Conclusions and Open Problems

Breslauer [4] proposed a linear-time algorithm for computing the shortest cover
of every prefix of a string. We have proposed an O(n log n)-time algorithm for
computing the shortest cover of every cyclic shift of a string. It remains an open
problem if these values can be computed in O(n) time.
O(n), O(n log n) and O(n2)-time algorithms for computing the shortest left

seed, right seed, and seed, respectively, of all the prefixes of a string are known;
see [5,6]. Here left and right seed are notions that are intermediate between cover
and seed. It remains an open problem if the shortest left seed, right seed, and
seed can be computed efficiently for all the cyclic shifts of a string.

Based on computer experiments we make the following conjecture.

Conjecture 14. For a string S of length n, |CyCoSet(S)| = O(log n).

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing
for strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

2. Apostolico, A., Preparata, F.P.: Data structures and algorithms for
the string statistics problem. Algorithmica 15(5), 481–494 (1996).
https://doi.org/10.1007/BF01955046

3. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta,
K.: The ”runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017).
https://doi.org/10.1137/15M1011032

4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

5. Christou, M., Crochemore, M., Guth, O., Iliopoulos, C.S., Pissis, S.P.: On
left and right seeds of a string. J. Discrete Algorithms 17, 31–44 (2012).
https://doi.org/10.1016/j.jda.2012.10.004

6. Christou, M., Crochemore, M., Iliopoulos, C.S., Kubica, M., Pissis,
S.P., Radoszewski, J., Rytter, W., Szreder, B., Waleń, T.: Efficient
seed computation revisited. Theor. Comput. Sci. 483, 171–181 (2013).
https://doi.org/10.1016/j.tcs.2011.12.078

7. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a word from its runs structure. Theor. Comput.
Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

8. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5), 405–425 (1995). https://doi.org/10.1007/BF01190846

9. Deza, A., Franek, F., Thierry, A.: How many double squares can
a string contain? Discrete Applied Mathematics 180, 52–69 (2015).
https://doi.org/10.1016/j.dam.2014.08.016

10. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th An-
nual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997. pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

11. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory, Ser. A 82(1), 112–120 (1998). https://doi.org/10.1006/jcta.1997.2843

11

https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1007/BF01955046
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1016/j.jda.2012.10.004
https://doi.org/10.1016/j.tcs.2011.12.078
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1007/BF01190846
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1006/jcta.1997.2843

12. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all
the tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004).
https://doi.org/10.1016/j.jcss.2004.03.004

13. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996). https://doi.org/10.1007/BF01955677

14. Iliopoulos, C.S., Moore, D.W.G., Smyth, W.F.: A characterization of the
squares in a Fibonacci string. Theor. Comput. Sci. 172(1-2), 281–291 (1997).
https://doi.org/10.1016/S0304-3975(96)00141-7

15. Iliopoulos, C.S., Moore, D.W.G., Smyth, W.F.: The covers of a circular Fibonacci
string. Journal of Combinatorial Mathematics and Combinatorial Computing 26,
227–236 (1998)

16. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A lin-
ear time algorithm for seeds computation. In: Rabani, Y. (ed.) Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012. pp. 1095–1112. SIAM (2012).
https://doi.org/10.1137/1.9781611973099.86

17. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear
time algorithm for seeds computation. CoRR abs/1107.2422v2 (2019), http:

//arxiv.org/abs/1107.2422v2

18. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern match-
ing queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015. pp. 532–551. SIAM (2015).
https://doi.org/10.1137/1.9781611973730.36

19. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

20. Moore, D.W.G., Smyth, W.F.: An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-
0190(94)00045-X

21. Moore, D.W.G., Smyth, W.F.: A correction to ”An optimal algorithm to com-
pute all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995).
https://doi.org/10.1016/0020-0190(94)00235-Q

22. Séébold, P.: Propriétés combinatoires des mots infinis engendrés par certains
morphismes. Report no. 85-16, LITP, Paris (1985)

12

https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1007/BF01955677
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1137/1.9781611973099.86
http://arxiv.org/abs/1107.2422v2
http://arxiv.org/abs/1107.2422v2
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q

	Shortest Covers of All Cyclic Shifts of a String

