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Abstract of Thesis 

 

Environmental experience is not free of genetic influence. Through genetically-

influenced behaviours, genes can influence exposure to certain environments: gene-

environment correlation. Particular genotypes may also be more or less sensitive to the 

effects of the environment: gene-environment interaction. Embedding measured 

environmental experiences and the childhood outcomes they correlate with into 

genetically sensitive designs is a powerful approach to unravelling the mechanisms at the 

interface between nature and nurture.  

 This thesis explored children's environmental experience using data spanning 14 

years of the population-based Twins Early Development Study (TEDS). Bivariate twin 

model fitting showed a significant genetic component linking children's heritable 

experience of the chaotic home and their academic achievement. Genes confound a 

previously assumed environmental effect. The continuous moderation model revealed 

greater variation in the IQ of children from low socioeconomic status (SES) families. 

This greater variation was the result of SES moderation of the environmental, not 

genetic, effect on IQ. Longitudinal twin model fitting showed a bi-directional cross-

lagged effect between disruptive behaviour and children's experience of the chaotic 

home. The effect of household chaos on disruptive behaviour was environmentally 

mediated, and in the reverse process, disruptive behaviour did not account for the 

heritable component of home chaos. Multivariate twin modelling revealed a substantial 

common genetic liability between behaviour (internalizing, externalizing, and cognitive 

ability) and the psychosocial experience of peer victimization. Statistical genetic 

techniques using whole-genome data confirmed that victimization is a typical complex 

trait with a common genetic liability. 

 The approach taken here was to explore gene-environment mechanisms at the 

interface between nature and nurture using a variety of childhood experiences rather 

than focusing on one particular environment. The examples of home chaos, SES, and 

peer victimization highlight the ubiquity of gene-environment interplay in a range of 

childhood experiences. Child-driven effects on the environment result in a genetic 

component to experience.
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1 Measuring the Nature of Nurture 

 

1.1 Genetic effects on "environmental risk": The long reach of the gene 

Environmental influences are potential risk factors for cognitive and behavioural 

development (Pike, Iervolino, Eley, Price, & Plomin, 2006). But, are these 

"environmental risks" environmental? Four decades ago, Dawkins (1976) described 

genetic effects on the environment as the normal expectation under evolution by natural 

selection: 

 
"The phenotypic effects of a gene are normally seen as all the effects that it 

has on the body in which it sits. This is the conventional definition. But we 

shall now see that the phenotypic effects of a gene need to be thought of as 

all the effects that it has on the world." 

 
Behavioural genetics, which aims to explain why individuals in a population differ from 

one another, has shown this expectation to be true in humans: genes affect exposure and 

sensitivity to environmental experience (Kendler, Jaffee, & Romer, 2011; Plomin, 

DeFries, McClearn, & McGuffin, 2008). For example, in a female sample, genes found 

to affect anxiety also increased exposure to depressogenic environmental influences and 

sensitivity to adverse life events (Eaves, Silberg, & Erkanli, 2003). Genetic influence on 

the environment requires that previously assumed "environmental" influences on 

behaviour be revisited – e.g., parenting on children's choice of peers (Pike & Eley, 

2009). 

 Study designs that are sensitive to genetically influenced exposure and sensitivity 

to experience lead to a radically different view of the individual in their environment, 

and of how genes and experiences affect complex behaviour (Davis, Haworth, Lewis, & 

Plomin, 2012). In a recent study of environmental risk, Pike et al. (2006) noted that the 

phenotypic "examination of environmental risk–outcome associations can be taken a 

step further by exploring the genetic and environmental mediation of these links." 

Quantitative genetics is the toolkit used to provide an overview of genetic and 

environmental influences on behaviour. 

 

1.2 The intersection between genes and environment: Quantitative genetic methods 

Quantitative genetics provides a theory and set of methods to partition the population 

variation for a particular trait into fractions attributable to genetic and environmental 

factors. It aims to unravel the nature and nurture of individual differences, or what 
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makes one person different from another. In the classical twin design, comparison of 

the resemblance between identical (monozygotic, MZ) twins and non-identical 

(dizygotic, DZ) twins provides an estimation of the genetic and environmental 

contributions to variance within a trait and covariance between traits (Plomin et al., 

2008). Most of the human genome is identical from person to person, but a small 

proportion of it varies. If we just concentrate on the DNA that varies between humans, 

MZ twins are 100% identical. DZ twins, on the other hand, are only 50% identical on 

average. So it follows that the extent to which MZ twins are more alike than DZ twins 

on any particular trait is a function of their greater genetic relatedness. 

 Derived from quantitative genetic theory, the twin model partitions the variance 

of a trait, or the covariance between traits, into an additive genetic component (A), a 

shared (common) environmental component (C), and a non-shared environmental 

component (E). The effect of the C component is to make reared together children 

similar on the trait of interest; C accounts for DZ twin correlations greater than half the 

MZ twin correlations. Both C and A contribute to sibling similarity, or between-family 

variation. E represents elements of the environment that uniquely affect reared-together 

siblings and therefore contributes to differences between twins, or within-family 

variation. The relative contribution of additive genetic variation to the total variation is 

called the heritability – A / (A+C+E). Any measurement error is included in the E term 

(Rijsdijk & Sham, 2002). A more detailed description of the twin method, path analysis, 

and the use of structural equation modelling (SEM) to model twin data and estimate 

variance components are presented in Chapter 2. The assumptions of the twin model 

are described at the end of this section. 

 The partitioning of trait variation may not be as simple as described above, 

however. The boundary between genetic and environmental effects is often blurred – 

there is potentially crosstalk between A, C, and E. We describe here two important 

gene-environment (GE) phenomena and the twin model fitting approaches used to 

measure them: GE correlation and GE interaction. If GE effects are present and not 

explicitly modelled, they will complicate interpretation of the latent variance 

components, or worse still, lead to complete misinterpretation of the data (Evans, 

Gillespie, & Martin, 2002; Purcell, 2002). 

 

1.2.1 Gene-environment correlation 

It is often thought that the environment a person experiences simply happens to them, 

that the direction of effect is environment Æ person. This is not the case. People have 

an effect on and are affected by their environment (Bell, 1968). The direction of effects 
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is a two-way interaction between a person and their physical and psychosocial 

experience: environment ÅÆ person. Research in epidemiology recognizes the 

continuum between physical and social aspects of the environment (Yen & Syme, 1999); 

environmental psychology – which typically sees the person and their environment as 

independent – acknowledges the personal selection of environments as "the 

confounding problem" (p.323, Winkel, Saegert, & Evans, 2009). Consider the example 

of number of books in the home. Books are bought and placed on shelves by people, 

and so the number of books in the home must correlate with personal characteristics 

(Plomin & Bergeman, 1991). People are exposed to particular environments, select 

experiences, engage with artefacts, and communicate with other people in their 

environment, in part based on their genetic propensities. In this way genes become 

correlated with the environment – a phenomenon called gene-environment (GE) 

correlation (Plomin, DeFries, & Loehlin, 1977; Scarr & McCartney, 1983). 

 GE correlation is conceptualized as one of three types: passive, evocative, or 

active. Passive GE correlation happens because a child inherits both their genotype and 

environment from their parents. Evocative GE correlation happens when other people 

react to a person's genetically influenced characteristics. Active GE correlation is the 

result of a person engaging other people or interacting with artefacts because of their 

heritable predispositions (Plomin et al., 2008). Consider the example of a child from a 

quiet neighbourhood whose parents provide a structured home environment (passive). 

The child attends a good school (passive/evocative) and often asks questions in class 

(active). Later, the student joins the school electronics club (active) and is invited to do 

an internship at a tech start-up (evocative). 

 

Measured environments in a genetically sensitive design 

Treating a measured environment as the dependent variable in a genetically sensitive 

design, such as the twin design, blurs the boundary between genes and the environment. 

Comparing the correlation in measured environment between identical twin pairs and 

non-identical twin pairs reveals that environmental experience is just like any other 

complex trait (Figure 1.1) – even the "environment" shows genetic influence (Kendler 

& Eaves, 1986; Plomin & Bergeman, 1991; Plomin et al., 1977). 
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Figure 1.1  Classical twin design with measured environment as dependent variable 
A, C, E = genetic, shared environmental, non-shared environmental variance components. 
Significant A suggests the environment is heritable. 
 

A significant genetic component in Figure 1.1 indicates GE correlation. However, the 

twin model does not distinguish between passive, evocative, and active GE correlation 

but rather captures all three modes of correlation. Far from rare, genetic influence on 

the environment is pervasive, e.g., television watching, stressful life events, experience 

of parenting  – heritable environments are ubiquitous (Jaffee & Price, 2007; Kendler & 

Baker, 2007). What does this mean for so-called "environmental" risk factors? 

 

Genetic mediation: A potential confound 

If the environment itself is heritable, then there is a potential confound in observed 

environmental effects on childhood outcomes. The link between a heritable 

environment and a heritable outcome may in fact be genetic. In other words, genes may 

mediate the association between measured environment and childhood outcome. For 

example, given the confounding of genetic and environmental effects within biological 

families, any study of the effects of family and socioeconomic background on children's 

developmental outcomes needs to consider the possibility that child and parental 

genotypes influence both background and outcome (Rowe & Rodgers, 1997). It is 

possible to quantify this mediation with the genetic correlation, rg (Neale & Cardon, 

1992): the correlation between latent genetic variance components in a bivariate twin 

model (Figure 1.2). 
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Figure 1.2  Genetic mediation of "environmental" effects 
rg = genetic correlation; A, C, E = genetic, shared environmental, non-shared environmental 
variance components 
 

Child-specific measures of the environment are needed in order to partition the 

covariation between environment and outcome. Studies that have included a measured 

family-wide environment as mediator of within-family similarity implicitly assume that 

there are no genetic effects on the family-wide environment – i.e. no GE correlation 

(Turkheimer, D'Onofrio, Maes, & Eaves, 2005). Where individual-specific measures of 

the environment are not available, it is generally not possible to draw conclusions about 

the nature of the effect of family-wide environment on the outcome (Purcell & Koenen, 

2005), although there have been recent statistical advances (Price & Jaffee, 2008). A 

family-wide measure is obligatorily-shared because a single account is given for all 

children in the family. It is not shared environmental in effect, and it is potentially not 

free of genetic influence. The unknown presence of GE correlation in family-wide 

measures also has consequences for their use in studies of environmental moderation of 

genetic influence. 

 

1.2.2 Gene'environment.interaction.

Gene-environment (GE) interaction is observed when genetic effects on a phenotype 

depend on the environment in which they are expressed. In other words, sensitivity to 

the environment is under genetic influence (Eaves, Last, Martin, & Jinks, 1977). Figure 

1.3 (reproduced from Purcell, 2002) shows the effect on a phenotype of three genotypes 

(at a single locus), at different levels of an environmental moderator. With each 

additional A allele, a unit increase in the level of the environment corresponds to an 

increase of β in the phenotype. At low levels of the environment, the three genotypes 

are indistinguishable on the phenotype; at high levels, the three genotypes are quite 
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distinct: homozygote AA is highest, homozygote aa is lowest, and the heterozygote is 

intermediate on the phenotype. 

 

 
Figure 1.3  Genetic effects as a linear function of a moderator environment 
AA, Aa, aa = three genotypes at a single locus; β = change in the phenotype for a unit change in 
the environmental moderator 
  

Figure 1.3 shows the simplest case of environmental moderation of genetic effect: a 

single locus gives rise to different phenotypes dependent on the level of the 

environment. When considered in aggregate, what effect do all such quantitative trait 

loci – sensitive to the level of the environment – have on population variance 

components? GE interaction at the level of the population would look like differences 

in the heritability of the phenotype as a function of the moderating environment 

(Rutter, Moffitt, & Caspi, 2006). How do we model GE interaction in the twin design? 

 

Different effects in different groups: Heterogeneity 

An early approach to testing for GE interaction regresses identical twin pair phenotype 

differences (which estimate non-shared environmental effect) onto phenotype sums 

(which estimate genetic and shared environmental effect) – any correlation suggests 

potential GE interaction (Jinks & Fulker, 1970). However, this approach has a number 

of limitations including sensitivity to non-normality. A more recent approach using 

structural equation modelling proceeds by splitting the sample into groups based on the 

putative moderator – e.g., high versus low, or exposed versus not exposed – and 

applying the classical univariate twin model to the phenotype of interest within each 

group (Neale & Cardon, 1992). Figure 1.4 illustrates the logic: variance components are 

estimated for variable X, within groups high and low on the measured environment. 
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Figure 1.4  Variance components by level of moderating environment – high or low 
A, C, E = genetic, shared environmental, non-shared environmental variance components; 
Environment = putative moderating environment; GE interaction is indicated if AL ≠ AH 
 

Comparing the difference in fit between this model and one in which variance 

components are estimated for the groups combined – i.e., equating the A, C, and E 

variance components across groups – is a test of whether there is a significant difference 

in the variance components by group, i.e., heterogeneity. In particular, GE interaction is 

indicated when equating A across groups significantly worsens model fit (e.g., in Figure 

1.4, AL ≠ AH). Sex-limitation analyses, which estimate variance components separately 

for males and females, are a specific type of heterogeneity analysis widely used in studies 

of twin data (Neale, Røysamb, & Jacobson, 2006). 

 However, the heterogeneity model potentially has several problems, especially 

for testing GE interaction (Purcell, 2002). Notably, there is a reduction in power both 

because of the assignment of a single value of the moderator to each group – most 

apparent when falsely dichotomizing the moderator – and because selecting extremes 

necessarily reduces sample size. Secondly, heterogeneity modelling cannot disentangle 

GE interaction and GE correlation: greater heritability in a particular group could be 

due to the environment moderating the effect of genes (interaction), or the environment 

controlling gene frequency (correlation). Using the full quantitative distribution of the 

environmental moderator, and modelling variance components under continuous 

moderation, overcomes these problems. 
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All levels of the measured environment: Continuous moderation 

Purcell (2002) proposed a model that can be used to measure GE interaction with a 

quantitative moderator and phenotype of interest. When the putative moderator is a 

measure of the environment, the continuous moderator model allows the measure of 

potential main effects of the environment on the phenotype of interest, as well as 

simultaneously estimating moderating effects – effects on the variance components of 

the phenotype. Figure 1.5 shows the inclusion of the environmental moderator. The 

genetic path coefficient (environmental paths not shown) becomes a linear combination 

of an un-moderated component, and a moderated component that captures the effect 

of the environment on the additive genetic variance and accounts for potential GE 

interaction. The model in effect slightly adjusts the path estimates for each individual 

(each twin pair in the case of a family-wide moderator).  

 

 
Figure 1.5  Continuous moderation of the additive genetic variance component 
A = additive genetic variance component; a = un-moderated component of the genetic path 
coefficient. βA = moderated component of the genetic path coefficient; µ = mean level of 
Variable X; M = putative moderating environment; GE interaction is indicated if βA ≠ 0 
 

The continuous moderator model is described in detail in Chapter 4, but it is worth 

noting here that this model handles GE correlation by simply partialling out any genetic 

effect on the environment that is correlated with genetic effect on the phenotype. The 

model has several extensions including a bivariate variation that explicitly measures both 

GE interaction and GE correlation – an extension that requires twin-specific measures 

on the both the moderator and the phenotype (Purcell, 2002). For example, the 

continuous moderator model has been used to show that genetic effects on depressive 

symptoms in adolescence are moderated by maternal punitive discipline and negative 

life events (GE interaction), as well as being correlated with the genetic effects on these 

environments (GE correlation) (Lau & Eley, 2008). While the basic continuous 

moderator model (shown in Figure 1.5 and used in Chapter 4) does not attempt to 
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quantify any potential GE correlation, any observed GE interaction is unequivocally 

moderation of the genetic variance component, independent of any genetic effect that 

may be correlated with the moderator. However, it has been shown that several 

alternative models explain equally well, apparent GE interaction as determined by the 

bivariate continuous moderator model, without the inclusion of moderation of the 

genetic variance component – i.e., suggesting no GE interaction is present (Rathouz, 

Van Hulle, Rodgers, Waldman, & Lahey, 2008). Chapter 4 highlights further 

considerations when modelling GE interaction. 

 

1.2.3 Assumptions of the twin method 

The twin method and model fitting procedures make several necessary assumptions 

concerning the nature of the genetic and environmental causes of behaviour, the shared 

environments experienced by twins, the minimal impact of GE effects, non-assortative 

(random) mating in the population, and the generalizability of the results of twin studies 

to the singleton population (Martin, Boomsma, & Machin, 1997; Plomin et al., 2008). 

The assumption that resemblance due to shared environmental influences is equal for 

MZ and DZ twin pairs, is explicit in the twin model fitting – latent C components 

correlate 1.0. The assumptions if violated will have a variety of effects on the variance 

components of the phenotype under study; how justified each of the assumptions of the 

classical twin model are depend on the phenotype. Where tested the assumptions are 

generally upheld, and if not, it is often possible to account for violations in the 

modelling – notably the modelling of GE effects (Martin et al., 1997; Rijsdijk & Sham, 

2002; Visscher, Hill, & Wray, 2008). It is worth noting that other quantitative genetic 

methods with different assumptions, for example the adoption method, arrive at similar 

conclusions about the relative importance of the A, C and E variance components 

(Plomin et al., 2008). 

 Other assumptions relate directly to the specification of the twin model and 

distributional properties of the twin data. At the level of the family it is assumed that the 

phenotype is multivariate normal, and that means and variances are homogeneous 

across twin birth order and zygosity. Perhaps most critical in the context of the present 

thesis is the assumption that, where GE effects are not modelled, GE interaction and 

GE correlation have minimal effect on the phenotype (Rijsdijk & Sham, 2002). 

 

Biased estimates with un-modelled GE effects 

Purcell (2002) demonstrated, with covariance algebra proof, the outcome of un-

modelled GE interplay on population variance components. The biased estimates are 
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summarized in Table 1.1. For example, if genetic effects depend on shared experiences 

(GE interaction) this will increase the resemblance of MZ twins (100% similar 

genetically) compared to DZ twins (50% similar genetically) and will inflate the A 

estimate. In contrast, when particular genotypes are more common in certain 

environments (GE correlation), this looks like greater similarity between siblings due to 

shared environment. C will be inflated in the presence of GE correlation because the 

actual genetic similarity between DZ twins will be more than the assumed 50%. 

 

Table 1.1  Biased variance component estimates with un-modelled gene-environment 
(GE) interaction and correlation 
 

Interplay  Biased estimate 
  GE Interaction  GE Correlation 

A-C  A  C 
A-E  E  A 

The Interplay column indicates the presence of un-modelled GE effects between genes and 
shared environment (A-C), and between genes and non-shared environment (A-E). Under the 
Biased estimate label is the variance component that is inflated for either un-modelled GE 
interaction, or un-modelled GE correlation. A, C, E = genetic, shared, and non-shared 
environmental variance components; GE = gene-environment 
 

With un-modelled GE effects, genetic and environmental variance components are not 

simply averaged over the population – instead they are systematically biased. Given the 

expected pervasiveness of GE effects (Rutter et al., 2006), failure to account for GE 

phenomena is problematic for understanding the nature of genetic and environmental 

effects (Evans et al., 2002). One of the aims of this thesis is add to the body of literature 

on the pervasiveness of these effects in childhood environments and to highlight the 

biases in their assumed absence. 

 

1.3 Measured genotypes and the environment: Molecular genetic methods 

If measured environments are themselves complex traits, we should be able to apply 

standard molecular genetic methods to map genes to the environment, just as we 

associate genes with any other complex trait (Hirschhorn & Daly, 2005). This 

proposition is not as odd as it at first seems: Quantitative genetic studies suggest that it 

is the genetic effects on heritable behaviours that explain the heritability of 

environmental measures (Saudino & Plomin, 1997). Thus, genetic variation associated 

with heritable environmental measures represents shared genetic liability underlying 

both problem behaviour and the environment it predisposes to. Although a few 

associations with candidate genes have been reported (e.g., GABRA2 and marital status; 
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Dick et al., 2006), so far there have been no replicated associations for experiences 

reported by the most powerful and up to date molecular genetic method, genome-wide 

association. If environments are like typical complex traits, we expect many variants of 

small effect size to account for their genetic variation (Park et al., 2010; Visscher, 

Brown, McCarthy, & Yang, 2012). 

 

Using measured genetic variation to explain phenotypic variation 

The current state of genome-wide association studies (GWASs) is the recognition that 

beyond simply surveying hundreds of thousands of SNPs for associations with a 

particular phenotype – essentially one SNP at a time – whole-genome data can be used 

to reveal the genetic architecture of complex traits. A new technique uses the measured 

genotypes on a genome-wide genotyping array to estimate the relatedness among every 

pair of individuals in an unrelated population. The extent to which this genetic 

relationship matrix predicts phenotypic variation is the estimate of genetic variation in 

the trait due to common genetic variation in the genome: genome-wide complex trait 

analysis (GCTA; Yang, Lee, Goddard, & Visscher, 2011). GCTA has been used to 

establish the importance of genetic factors in both height and intelligence (Davies et al., 

2011; Yang et al., 2010). Using measured genetic variation to explain environmental 

variaiton would confirm the quantitative genetic finding that common genetic variation 

explains individual variation in experience of the environment – GE correlation (Jaffee 

& Price, 2007; Kendler & Baker, 2007). 

 

1.4 Aims of this thesis 

This thesis aims to contribute to the study of GE effects in childhood with a series of 

studies on environmental experience and childhood outcomes embedded in genetically 

sensitive designs. "Models, of course, are never true, but fortunately it is only necessary 

that they be useful. For this it is usually needful only that they not be grossly wrong" 

(p.2, Box, 1979). Each chapter provides a small extension to the literature on GE 

effects, highlighting the utility of modelling the environment as a multifactorial trait in 

order to understand the nature of "environmental risk" for complex behaviour. 

 Chapter 2 describes the large population-based twin sample, the Twins Early 

Development Study (TEDS), and the particular environments and childhood outcomes 

studied in this thesis. Chapter 3 illustrates the hidden assumption in the link between 

environment and childhood outcome: that "environments" have environmentally-

mediated effects on the cognitive, academic and behavioural outcomes with which they 

are associated. With the example of environmental confusion in the home, so called 
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family chaos, this chapter describes the phenomenon of genetically-influenced exposure 

to the environment, and genetically mediated links between experience of the 

environment and outcome: GE correlation. This chapter draws attention to the fact that 

the absence of child-driven genetic effects is implicitly assumed in studies that use 

family-wide measures, for example parent or teacher reports.  

 Chapter 4 describes an investigation of the possibility that the genetic and 

environmental effects on children's intelligence (IQ), from infancy through adolescence, 

depend on the level of their parents' socioeconomic status (SES). This chapter uses two 

quantitative genetic designs to test whether genetic effects depend on the environment. 

The results in our large UK-representative sample do not replicate the widely reported 

moderation of the genetic effect on IQ by SES – a GE interaction. We show with exact 

simulation the sample sizes that are needed for a range of interaction effect sizes, and 

the performance of the continuous moderator model. We compare and contrast our 

result with past studies investigating SES moderation of IQ and suggest potential causes 

for the differences – differences that apply to the investigation of GE interaction for 

any trait. 

 Longitudinal designs address direction of causation in child development; twin 

models augment this information with the ability to look at genetic and environmental 

aspects of stability and change. In Chapter 5 we include measured experiences to 

simultaneously explore the behavioural origin of the genetic effect on a heritable 

environment, and to test the environmental mediation of the chaotic home environment 

and disruptive behaviour. Chapter 6 extends this by incorporating multiple behaviours 

to try to account for the total genetic effect on a heritable environment. This study is a 

snapshot of the genetic and environmental links between behaviour and environment in 

early adolescence. Finally, Chapter 7 describes the use of whole-genome data to take 

GE correlation to its logical conclusion: to test the environment for association with 

specific genetic variants. 
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2 Sample, Measures, and Statistical Procedures 

 

2.1 Sample 

The Twins Early Development Study (TEDS) 

All analyses described in this PhD thesis were performed on data from the Twins Early 

Development Study (TEDS: Oliver & Plomin, 2007; Trouton, Spinath, & Plomin, 

2002). TEDS is a population-based longitudinal study of over 10,000 pairs of twins. The 

Office for National Statistics (ONS) provided the sampling frame: mothers of all live-

born twins in England and Wales, 1994 - 1996. Subsamples of the TEDS twins have 

been tested on a variety of measures – including cognitive and academic abilities, home, 

school and peer environment, and problematic behaviour – at ages 2, 3, 4, 7, 9, 10, 12, 

14, and currently at age 16. Comparison to census data from the ONS indicates that the 

sample has remained representative of the United Kingdom (UK) population (Kovas, 

Haworth, Dale, & Plomin, 2007). The subsamples that participate at each age also 

remain representative of the larger TEDS sample. 

 Zygosity was assigned to the twins using a parent-rated instrument that yielded 

95% accuracy when compared to zygosity established from DNA markers (Price et al., 

2000); uncertainties were followed up with DNA marker testing. A subsample of over 

3000 twins have been genotyped on the Affymetrix Genome-Wide Human SNP Array 

6.0 and are part of the Wellcome Trust Case Control Consortium 2 (WTCCC2) 

investigating genome-wide associations in quantitative traits. 

 Ethical approval for the Twins Early Development Study has been provided by 

the King’s College London ethics committee (reference: 05/Q0706/228). The parents 

of the twins provide informed written consent at each wave of assessment. Sample sizes 

are reported for each study. 

 

2.2 Measures 

Assessment 

The TEDS twins have been assessed with a variety of methods at each wave of 

assessment including parent-administered tests, in-home observations, telephone 

interviews, postal questionnaires, and Internet-based assessments. The assessment 

procedures (and their validation in the TEDS sample where appropriate) are fully 

described elsewhere (Haworth et al., 2007; Oliver & Plomin, 2007; Trouton et al., 2002). 
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Environmental measures 

2.2.1 Socioeconomic status, SES 

As indices of SES, we used parental education, occupation, and family income. We 

assessed parental education and occupation (mother's and father's highest educational 

qualification and job status) at first contact with the families, when the twins were 18 

months old, and again when the twins were 7 years old; we assessed family income at 

age 9. From these measures we created three indices: SES index 1, parental education 

and occupation acquired at contact (age 18 months); SES index 2, parental education 

and occupation acquired at age 7; and SES index 3, parental income assessed at age 9. 

All composites were created as a unit-weighted sum of the contributing scales, i.e., first 

mapped to a standard normal distribution with the rank-based van der Waerden 

transformation (Lehmann, 1975), then summed, and finally standardized again. The 

correlations between these three SES estimates are 0.77 for SES index 1 and 2, 0.55 for 

SES index 1 and 3, and 0.57 for SES index 2 and 3. 

 

2.2.2 Confusion, Hubbub and Order Scale, CHAOS 

At age 9 and 12, the twin's perceptions of noise, order, and routine in their family home 

were assessed using a short version of the Confusion, Hubbub, and Order Scale 

(CHAOS; Matheny, Wachs, Ludwig, & Phillips, 1995).  The CHAOS scale has been 

widely used and has good psychometric properties; the original full-length inventory had 

high internal consistency (Cronbach's alpha, D = 0.79) and stability across a 12-month 

period (r=0.74: Dumas et al., 2005). CHAOS was administered as part of a larger 

battery of measures in a booklet mailed to each of the twins at ages 9 and 12.  The short 

form of CHAOS assesses the level of routine, noise, and general environmental 

confusion with six items: 'I have a regular bedtime routine' (scoring reversed),  'You 

can't hear yourself think in our home',  'It's a real zoo in our home',  'We are usually able 

to stay on top of things' (scoring reversed), 'There is usually a television turned on 

somewhere in our home', and 'The atmosphere in our house is calm' (scoring reversed). 

The children rated the extent to which they agree: 'Not True', 'Quite True', or 'Very 

True'. At both age 9 (D = 0.58) and age 12 (D = 0.57), a mean of the individual items 

was used as an overall score, with higher scores indicating greater chaos. Our internal-

consistency reliability is moderate and acceptable, although slightly lower than others 

have found for parent ratings of the same short version in younger samples (e.g., 0.68, 

Hart, Petrill, Deater-Deckard, & Thompson, 2007;  0.63, Petrill, Pike, Price, & Plomin, 

2004). Child-reported CHAOS correlated 0.43 between ages 9 and 12. Parent-reported 

CHAOS when the children were age 9 and 12 correlated 0.53 and 0.55 respectively with 
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the corresponding child reports, supporting the validity of the child reports. Child-rated 

CHAOS at both ages was normally distributed. 

 

2.2.3 Peer victimization 

We measured children's self-reports of peer victimization at age 12 using the 

Multidimensional Peer Victimization Scale (Mynard & Joseph, 2000). The scale assesses 

physical victimization, verbal victimization, social manipulation, and property damage, 

with 16 items. A factor analysis with varimax rotation on the 16 items confirmed the 

presence of these four subscales in the TEDS sample. The subscales, calculated as a 

mean of the four contributing items, had high internal-consistency reliability (D = 0.79 – 

0.81) and were highly correlated (r = 0.50 – 0.62). As is often found with behavioural 

scales (which record endorsements), the four subscales and the victimization total score 

were all positively skewed. We transformed the data to a standard normal distribution 

(Lehmann, 1975), based on the assumption that the underlying risk for exposure to 

victimization was normally distributed. 

 

Cognitive and academic measures 

2.2.4 General cognitive ability, g 

At all ages described below, a unit-weighted composite of verbal and nonverbal 

cognitive tests was used as an index of g.  We mapped all verbal and nonverbal 

cognitive tests to a standard normal distribution (Lehmann, 1975), summed the 

contributing scales, and standardized the final g composite. This score was identical to a 

first principal component extracted from the balanced test battery. 

 

Ages 2, 3, and 4 

In early childhood, parent-administered tests and parent-reported observations were 

used to assess verbal and nonverbal cognitive abilities at age 2, 3, and 4. These measures 

have been validated against standard tests administered by a trained tester (Oliver et al., 

2002; Saudino et al., 1998). 

 Nonverbal cognitive performance was assessed using age-appropriate versions 

of the Parent Report of Children’s Abilities (PARCA; Oliver et al., 2002; Saudino et al., 

1998). The PARCA is an hour-long test comprising three types of parent-administered 

tasks: a “find the pair” task, a drawing task, and a matching task. Some items are novel; 

others are adapted from previously well-validated tests such as the McCarthy Scales of 

Children’s Abilities (McCarthy, 1972) or the Bayley Scales of Infant Development 

(BSID-II; Bayley, 1993). Together, the administered items are designed to assess 
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number, shape, size, conceptual grouping and orientation skills. This parent-

administered component is supplemented by a small number of parent report items 

anchored on concrete behaviours and requiring simple yes or no answers. Some of these 

items are novel; others are adapted from previously well-validated assessments such as 

the Minnesota Child Development Inventory (MCDI; Ireton & Thwing, 1974) and the 

Ages and Stages Questionnaires (Bricker, Squires, & Mounts, 1995).  The complete 

PARCA, including novel and previously well-validated items, has been validated in an 

independent sample (Saudino et al., 1998) and in the TEDS sample (Oliver et al., 2002). 

 The verbal component of the early childhood battery included vocabulary and 

grammar as assessed by parent reports for the CDI-III, an extension of the short form 

of the MacArthur Communicative Development Inventories: Words and Sentences 

(Fenson et al., 2000). The MCDI has been shown to have excellent internal consistency 

and test–retest reliability, as well as concurrent validity with tester-administered 

measures (Fenson et al., 2000). 

 

Age 7 

At age 7, verbal and nonverbal abilities were tested by telephone (Petrill, Rempell, 

Oliver, & Plomin, 2002). Prior to the telephone call, parents were sent a booklet of test 

items along with instructions indicating, for example, that the test booklet should not be 

opened prior to the telephone interview and that the twins should not be in the same 

room for the duration of the call. The booklet contained two tests of verbal cognitive 

abilities and two nonverbal tests. The verbal tests consisted of the Similarities subtest 

and the Vocabulary subtest from the Wechsler Intelligence Scale for Children (WISC-

III-UK; Wechsler, 1992). The nonverbal tests were the Picture Completion subtest from 

the WISC-III-UK and Conceptual Grouping from the McCarthy Scales of Children’s 

Abilities (McCarthy, 1972). 

 

Age 9 

Nine-year-old participants received a test booklet containing two verbal and two 

nonverbal tests that, like the tests in early childhood, were administered under the 

supervision of the parent (guided by an instruction booklet rather than a telephone 

interview). The verbal tests comprised vocabulary and general knowledge tests adapted 

from the multiple-choice version of the WISC-III-UK (Wechsler, 1992). The nonverbal 

tests included a Puzzle test adapted from the Figure Classification subtest of the 

Cognitive Abilities Test 3 (CAT3; Smith, Fernandes, & Strand, 2001). The second 

nonverbal test was a Shapes test also adapted from the CAT3 Figure Analogies subtest 
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that assesses inductive and deductive reasoning. Details are reported by Davis et al. 

(2008).  

 

Age 10 

Children at age 10 participated in web-based testing. Widespread access to inexpensive 

and fast internet connections in the UK has made online testing an attractive possibility 

for collecting data on the large samples necessary for genetic research. The advantages 

and potential pitfalls of data collection over the Internet have been reviewed (Birnbaum, 

2004). For older children, most of whom are competent computer users, it is an 

interactive and enjoyable medium. Through adaptive branching, it allows the use of 

hundreds of items to test the full range of ability, while requiring individual children to 

complete only a relatively small number of items to ascertain their level of performance. 

In tests where it is appropriate, streaming voiceovers can minimize the necessary 

reading. In addition, the tests can be completed over a period of several weeks, allowing 

children to pace the activities themselves, although they are not allowed to return to 

items previously administered. Finally, it is possible to intersperse the activities with 

games. All of these factors help to maintain children’s engagement with the tests. 

Participants at age 10 were tested on two verbal tests: WISC-III-PI Multiple Choice 

Information (General Knowledge) and WISC-III-PI Vocabulary Multiple Choice 

(Wechsler, 1992). Two nonverbal reasoning tests were also administered: WISC-III-UK 

Picture Completion (Wechsler, 1992) and Raven’s Standard Progressive Matrices 

(Raven, Court, & Raven, 1996). Details are reported in Haworth et al. (2007). 

 

Age 12 

At age 12 we again used Web-based assessment of general cognitive ability. The tests 

administered were updated versions of the same tests used at age 10, with the addition 

of more difficult age-appropriate items. We administered two verbal ability tests: WISC-

III-PI Information Multiple Choice (General Knowledge) and WISC-III-PI Vocabulary 

Multiple Choice (Kaplan, Fein, Kramer, Delis, & Morris, 1999). We also administered 

two nonverbal tests: Raven's Progressive Matrices (Raven et al., 1996) and WISC-III-

UK Picture Completion (Wechsler, 1992). 

 

Age 14 

At age 14 we measured general cognitive ability with one verbal and one non-verbal 

web-based test. The verbal test used was WISC-III-PI Vocabulary Multiple Choice 

(Kaplan et al., 1999); the nonverbal test used was Raven's Progressive Matrices (Raven 



Chapter 2.  Sample, Measures, and Statistical Procedures 

 30 

et al., 1996). Both measures were the age-appropriate versions of those tests used at 

earlier ages. 

 

2.2.5 School Achievement 

The assessment of school performance at age 12 was based on teacher ratings using UK 

National Curriculum (NC) criteria (Qualifications and Curriculum Authority (QCA); 

http://curriculum.qca.org.uk/). These criteria provide curriculum and assessment 

guidelines followed by all teachers in the UK state school system. The validity of teacher 

ratings has been demonstrated (Hoge & Coladarci, 1989); for example, in the current 

sample teacher assessments are highly correlated with standardized tests of reading and 

mathematics (Kovas et al., 2007). Teachers rated the children on each component of 

English, mathematics and science on a scale from 1 to 8, with an additional level 9 for 

exceptional performance. This is a behaviourally-anchored rating scale based on 

concrete targets; the QCA provides teachers with vignettes in order to standardize their 

assessments. As the children get older, different levels of the scale will come to 

represent the average expected performance. Children at age 12 have just begun Key 

Stage 3 of the UK NC, covering the ages 11-14. At age 11 most pupils are expected to 

achieve level 4 in the teacher assessments; at age 14, most pupils are expected to achieve 

level 5. Children's performance is based on class work and homework, and takes 

account of written, practical and oral work. 

  We calculated a mean score for each of the three subjects from teacher-rated 

NC levels of English (Speaking and listening; Reading; Writing), mathematics (Using 

and applying numbers; Number and algebra; Shape, space and measures; Handling data) 

and science (Scientific enquiry; Life processes and living things; Materials and their 

properties; Physical processes) performance. 

 

Behavioural measures 

2.2.6 Strengths and Difficulties Questionnaire, SDQ 

The Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997, 2001) is a brief 

screening measure of children's problem behaviours. Parents reported whether each of 

five items on five subscales – prosocial behaviour, hyperactivity, conduct problems, peer 

problems, anxiety (or emotional problems) – were 'Not True', 'Somewhat True', or 

'Definitely True' of their child. Chapter 5 uses the conduct problems and hyperactivity 

subscales at age 9 (conduct D = 0.57; hyperactivity D = 0.76) and age 12 (conduct D = 

0.55; hyperactivity D = 0.76). Chapter 6 uses the age 12 subscales hyperactivity, 

conduct problems, peer problems (D = 0.62), and anxiety (D = 0.67); internal-
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consistency reliability of the four subscales combined was D = 0.80. We did not include 

the prosocial subscale as absence of prosocial behaviour is not necessarily "problem" 

behaviour. The moderate internal-consistency reliability for conduct problems does not 

seem to be specific to our sample: A paper exploring the validity and reliability of the 

SDQ scale in a Dutch sample (N=562, mean age 12.3 years) found the same internal 

consistency (D = 0.55) for the conduct problems subscale (Muris, Meesters, & van den 

Berg, 2003). 

 

2.2.7 Moods and Feelings Questionnaire, MFQ 

At age 12, the twins completed self reports of the 11-item short form of the Moods and 

Feelings Questionnaire (MFQ) designed to study depression in children and adolescents 

(Angold et al., 1995). Two items were removed from the standard 13-item short form 

MFQ because these were repeated in the SDQ scale. The twins responded 'Not True', 

'Quite True', or 'Very True' to 11 statements about their feelings and action over the 

previous 2 weeks. The MFQ scale showed high internal consistency reliability in the 

TEDS sample at age 12 (D = 0.85). 

 

2.2.8 Antisocial Process Screening Device, APSD 

We measured parent-rated antisocial behaviour at age 12 with the Antisocial Process 

Screening Device (APSD; Frick & Hare, 2001). Parents responded 'Not True', 

'Somewhat True', or 'Very True', to a series of statements on each child's behaviour over 

the previous 3 months. The APSD is a 20-item questionnaire with three subscales: 

impulsivity (D = 0.64), callous-unemotional traits (D = 0.49), and narcissism (D = 0.66). 

Overall internal-consistency reliability was high (D = 0.76).  

 

2.2.9 Childhood Asperger Syndrome Test, CAST 

At age 12 we measured autistic-like traits with parent ratings of the Childhood Asperger 

Syndrome Test (CAST (Scott, Baron-Cohen, Bolton, & Brayne, 2002; Williams et al., 

2005). Parents respond 'Yes' or 'No' to items describing their children's behaviour over 

the previous 3 months.  The CAST is a 30-item questionnaire assessing three aspects of 

autistic-like behaviour: social (D = 0.49), non-social (D =0.47), and communication (D = 

0.60). Overall internal consistency reliability was moderate (D = 0.69). 
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2.3 Statistical procedures 

2.3.1 Twin model fitting 

The twin design compares the phenotypic resemblance of identical (monozygotic, MZ) 

twins to the phenotypic resemblance of non-identical (dizygotic, DZ) twins in order to 

partition the variance on a trait into sources of genetic and environmental variation. The 

coefficient of genetic relatedness is 1.0 between MZ twins, and on average 0.5 between 

dizygotic twins, who share 50% of their segregating alleles. The twin model attributes 

the similarity of reared-together twins to additive genetic (A) and shared environmental 

(C) factors, and the differences between them to non-shared environmental (E) factors 

(Plomin et al., 2008). By definition, co-twins in both MZ and DZ pairs are correlated 1.0 

for C factors – this is known as the equal environment assumption. The assumptions of 

the twin design are described in Chapter 1; detailed descriptions and attempts to 

validate them are described in detail elsewhere (Boomsma, Busjahn, & Peltonen, 2002). 

 The proportion of total phenotypic variation accounted for by genetic factors is 

indexed by the heritability statistic, h2 = A/(A+C+E). An estimate of heritability – as 

well as the relative proportion of variance accounted for by shared and non-shared 

environmental factors – can be derived using Falconer's formulae applied to intra-class 

twin correlations (coefficients of twin similarity; Shrout & Fleiss, 1979): 

݄ଶ = ெݎ)2 െ  (ݎ 

ܿଶ = ெݎ  െ  ݄ଶ 

݁ଶ = 1 െ  ݄ଶ +  ܿଶ 

However, these formulae provide no confidence intervals around the estimates, and can 

only consider twin pairs for whom both twins in the pair have data. Structural equation 

modelling, using full information maximum likelihood, addresses these shortcomings 

and provides the basis for a variety of more sophisticated models. Path analysis provides 

a set of tracing rules for calculating expected variances and covariances, and an intuitive 

visualization of the variance-covariance structure among observed and latent variables. 

 

Path analysis 

Sewell Wright proposed the method of path analysis to decompose the covariation 

among traits given a specific model of causation (Wright, 1918). The path diagram in 

Figure 2.1 summarizes the classic twin ACE model for a single trait, Variable X. 
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Figure 2.1  Path diagram of the univariate ACE model. 
The measured Variable X is regressed on the latent additive genetic (A), shared environmental 
(C), and non-shared environmental (E) variance components; a, c, and e are partial regression 
coefficients. The variance in Variable X is given by a2 + c2 + e2. The covariance between twins 
is given by a2 +c2 for MZ twins, and 0.5a2 + c2 for DZ twins. Single-head arrows represent 
regression and double-headed arrows correlation; rectangles are measured variables; circles are 
latent variables. 
 

Path tracing rules can be used to derive the variance within an observed variable and the 

covariance between variables (Wright, 1934): 

1. No loops allowed – do not pass through the same variable twice. 

2. No tracing backward, then forward. 

3. One double-headed arrow per route. 

The covariation between measured traits is the sum of all legitimate routes (or path 

chains); a path chain is the product of the coefficients traced from one variable to 

another. In Figure 2.1, the covariance for MZ twins = (a*rMZ*a) + (c*rMZ*c) = a2 + c2. 

By definition, the E component does not contribute to covariation within twin pairs. 

The variation of a given variable is the covariation of that variable with itself. By design 

the variance of the latent variables is 1 – the double-headed arrow showing the 

covariance of 1 is typically omitted. Using the sum of all legitimate routes formula for 

covariation, in Figure 2.1, the total variation of Variable X = (a*1*a) + (c*1*c) + (e*1*e) 

= a2 + c2 + e2. 

 

Structural equation model fitting 

Structural equation modelling (SEM) provides a method to decompose the covariance 

between measured (or observed) variables and latent (or unobserved) variables. We used 

the matrix optimization and SEM package OpenMx (Boker et al., 2011) in the open-

source programming language R (www.R-project.org; R Development Core Team, 

2011) to fit structural equation models to the phenotypic covariance structure between 
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twins. The fit of a particular model to the data is summarized by a fit statistic, negative 

two times the log likelihood (-2lnL); the difference in fit between two nested models has 

a chi-square (F2) distribution. Using this difference in fit as the critical value in a F2 test, 

with degrees of freedom (df) equal to the difference in number of parameters estimated, 

provides a likelihood ratio or goodness-of-fit test. With large samples, such as TEDS, 

the F2 goodness-of-fit test penalizes simpler models (that estimate less parameters). For 

this reason, several alternate indices of fit that favour parsimony are preferred. Two 

indices often used in twin analyses (and throughout this thesis) are Akaike’s information 

criterion (AIC = (-2lnL) - 2df; Akaike, 1987), and the Bayesian information criterion 

(BIC = (-2lnL) - ln(n)*df; Raftery, 1995). The BIC in particular favours simpler models 

in large samples. In comparing two models, lower AIC and BIC values indicate a better 

fit of the model to the data. 

 

2.3.2 Extensions to the basic twin model 

The univariate twin model outlined above and summarized in Figure 2.1 can be 

extended in several ways. Each of the multivariate models described below is an a priori 

account of the common and specific variance among multiple phenotypes; all include an 

expansion of the covariance matrix to accommodate combinations of within and across 

twin and trait covariances. It is also possible to model separate parameter estimates for 

subgroups and test their equality within the model – a so-called heterogeneity model. 

Examples of heterogeneity modelling include sex-differences analyses, the modelling of 

separate parameters on a given trait for males and females, and interaction analyses, the 

modelling of separate parameters on the trait of interest for groups high and low on a 

putative moderator. 

 

Multivariate models 

Multivariate data provides an expanded variance-covariance matrix; the additional 

across-twin across-trait covariances allow the partitioning of the covariance between 

traits (as well as the variance within traits) into genetic and environmental sources. 

Multivariate twin modelling aims to explain sources of common and specific variance 

among multiple phenotypes according to some a priori model of causation. Each of the 

models introduced below is described in more detail within each chapter. 

 

Cholesky decomposition 

In a Cholesky decomposition, variable order matters. The first trait has an effect on all 

traits after it. The residual (genetic and environmental) variance components of the 
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second trait are uncorrelated with the first trait, and have effects only on the traits that 

come after the second. The residual variance components in the third trait are 

uncorrelated with the first and second trait, and have effects only on the traits after the 

third variable, and so on. Figure 2.2 shows the path diagram for the bivariate case. A 

common misinterpretation of the variance components A1, C1, and E1 is that they 

represent the common variation between Variables X and Y. A1, C1, and E1 are in fact 

the total (genetic and environmental sources of) variation in X; onto these Y is 

regressed. A2, C2, and E2 are then the residual genetic and environmental variance in Y, 

uncorrelated with Variable X (Loehlin, 1996).  

 

 
Figure 2.2  Cholesky decomposition of two variables 
The greyed-out co-twin variables are included here for completeness – these are 
typically left off the path diagram for simplicity. 
 

Common pathway model 

The common pathway model (Figure 2.3) decomposes the common variance among 

multiple phenotypes at one or more latent factors (as well as the residual variance within 

each trait) into sources of genetic and environmental variance. The latent factor 

represents a phenotypic common factor, e.g., a psychometric factor such as general 

cognitive ability (g) underlying a diverse set of cognitive abilities. 
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Figure 2.3  Common pathway model with a single latent factor 
Each measured variable loads onto the common factor whose variance is decomposed into 
sources of common genetic and environmental influence. The residual variance, variation 
specific to each variable, is also partitioned into genetic and environmental influences. The 
greyed-out co-twin variables are included here for completeness – these are typically left off the 
path diagram for simplicity. 
 

Heterogeneity models 

Sex-limitation modelling, described below, is one application of the heterogeneity 

model. Chapter 4 illustrates the model's application to gene-environment interaction – 

the estimation of genetic and environmental variance components in a trait of interest at 

different levels of a potential environmental moderator. Figure 2.4 shows the full sex-

limitation model which is used to explicitly test the presence of qualitative and/ or 

quantitative sex differences: differences in type and/ or magnitude of genetic and 

environmental effects in males and females. These are genetic and environmental 

factors affecting the variance in the trait, measured in males and females, after 

correction for mean differences in the trait. The presence of qualitative sex differences 

is indicated if the coefficient of genetic relatedness in DZ opposite-sex pairs is 

significantly less than 0.5, or if the coefficient of environmental relatedness is 

significantly less than 1.0. The number of observed statistics (means, variances, and 

covariances) allows the estimation of only one of these parameters. The presence of 

quantitative effects is indicated if the genetic and environmental path coefficient for 

males (am, cm, em) cannot be equated to those for females (af, cf, ef). Variance differences 

between males and females can be accounted for with the inclusion of a scalar 
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multiplier, which allows for the estimation of a single set of genetic and environmental 

coefficients (a, c, e) by scaling the variance up or down in one sex. 

 

 
Figure 2.4  Full univariate sex-limitation model 
This model includes both same-sex and opposite-sex pairs. rg is the coefficient of genetic 
relatedness in DZ opposite-sex pairs; rc is the coefficient of environmental relatedness in the 
DZ opposite-sex pairs; am, cm, and em are the genetic and environmental coefficients in males; af, 
cf, and ef are the genetic and environmental coefficients in females. 
 

 

2.3.4 Molecular and statistical genetics 

Genome-Wide Association Study (GWAS) 

A genome-wide association study (GWAS) tests hundreds of thousands of single 

nucleotide polymorphisms (SNPs) for association with a given trait. In a case-control 

study, this is simply testing if a particular allele (at a given locus) appears more often 

among cases than controls. In Chapter 7 we have performed a GWAS on a quantitative 

trait using SNPTEST (Wellcome Trust Case Control, 2007). As part of the Wellcome 

Trust Case Control Consortium 2 (WTCCC2) we genotyped 3,747 individuals from 

TEDS (no co-twins were included) on the Affymetrix Genome-Wide Human SNP 

Array 6.0, which assays about 1 million SNPs. After SNP quality control (QC) – 

exclusion of SNPs with call rate < 0.98, minor allele frequency (MAF) < 0.01, and 

Hardy Weinberg Equilibrium (HWE) p-value < 1 x 10-20 – we had 688,025 genotyped 

SNPs. We also excluded outlying individuals based on call rate, heterozygosity, 

relatedness and ancestry, which left a sample size of 3,154. We used EIGENSTRAT to 

derive principal components from the genomic data, and included these population axes 

as covariates in our test of association to account for population structure (Price et al., 
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2006). We also included age and sex as covariates in the analyses. We imputed missing 

genotypes, bringing the total number of SNPs to 1,721,433 (1,033,408 imputed, 688,025 

genotyped), and fitted an additive model for each SNP (Balding, 2006). 

 Testing for association at many thousands of loci introduces a multiple testing 

burden and the need for multiple test correction. The accepted genome-wide 

significance threshold is a p-value = 5 x 10-8, i.e., 0.05 / 1 x 106 (a million independent 

tests). This is a conservative correction – given the non-independence of the loci due to 

linkage disequilibrium – but necessary: at a p-value = 0.05, a million independent tests 

would produce up to 50,000 false positives. 

 

Genome-wide Complex Trait Analysis (GCTA) 

Genome-wide complex trait analysis (GCTA; Yang et al., 2011) is a tool that estimates 

the genetic variance explained by all SNPs on a given genotyping platform, and the 

common variation in the genome tagged by the genotyped SNPs. The aggregate additive 

genetic effect of all SNPs is fitted as a random effect in a mixed linear model explaining 

phenotypic variation. Using unrelated individuals avoids inflation of the phenotypic 

correlation due to shared environment. We estimated the pairwise genetic relationships 

among these individuals using 688,025 SNPs, and excluded one member of any pair 

which had a relatedness > 0.025.  Our final sample size for the GCTA analysis was 

about 2700 (individuals with phenotype data). 
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3 Chaotic Homes and School Achievement: A Gene-Environment 

Correlation Study1 

 

3.1 Abstract 

Chaotic homes predict poor school performance. However, we know that genes affect 

both children's experience of household chaos and their school achievement. To what 

extent is the relationship between high levels of noise and environmental confusion in 

the home, and children's school performance, mediated by heritable child effects? This 

is the first study to explore the genetic and environmental pathways between household 

chaos and academic performance. We assessed children's perceptions of family chaos at 

ages 9 and 12 and their school performance at age 12 in more than 2300 twin pairs. 

Using child-specific measures in a multivariate genetic analysis made it possible to 

investigate the genetic and environmental origins of the covariation between children's 

experience of chaos in the home and their school achievement. Children's experience of 

family chaos and their school achievement are significantly correlated in the expected 

negative direction (r = -0.26). As expected, shared environmental factors explained a 

large proportion (63%) of the association.  However, genetic factors accounted for a 

significant proportion (37%) of the association between children's experience of 

household chaos and their school performance. The association between chaotic homes 

and poor performance in school, previously assumed to be entirely environmental in 

origin, is in fact partly genetic. How children's home environment affects their academic 

achievement is not simply in the direction environment Æ child Æ outcome. Instead, 

genetic factors that influence children's experience of the disordered home environment 

also affect how well they do at school. The relationship between the child, their 

environment, and their performance at school is complex: both genetic and 

environmental factors play a role.  

 

                                                 
1 Chapter adapted from: 
 
Hanscombe, K.B., Haworth, C.M.A., Davis, O.S.P., Jaffee, S.R., & Plomin R. (2010). The nature (and 
nurture) of children's perceptions of family chaos. Learning and Individual Differences, 20(5), 549-553. 
doi: 10.1016/j.lindif.2010.06.005 
 
Hanscombe, K.B., Haworth, C.M.A., Davis, O.S.P., Jaffee, S.R., & Plomin R. (2011). Chaotic homes 
and school achievement: A twin study. Journal of Child Psychology and Psychiatry, 52(11), 1212-1220. 
doi: 10.1111/j.1469-7610.2011.02421.x 
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3.2 Introduction 

Children who do better at school tend to come from homes that are quieter, more 

organized, and have a predictable routine, regardless of socio-economic status (Evans, 

2006). Children living in the environmental confusion and unpredictability of high levels 

of family chaos (i.e. noise, disorder, and human traffic) have lower expectations, lack of 

persistence and a tendency to withdraw from academic challenge (Brown & Low, 2008). 

The level of family chaos affects early reading skill, even after considering other home 

environmental factors relevant to children's mastery of reading (Johnson, Martin, 

Brooks-Gunn, & Petrill, 2008). It would be reasonable to conclude that home chaos has 

an environmental effect on school outcomes, but there is a potential confound – genes.  

 We know that school achievement is heritable; genes explain about half of the 

variation in academic ability (Kovas et al., 2007; Petrill & Wilkerson, 2000). What about 

the home environment? With a genetically-sensitive design such as the twin design, we 

can explore the genetic and environmental contributions to a particular "environment". 

When twins are asked to rate the level of chaos in their home, identical twins who share 

all their genes are more similar in their experience than are non-identical twins, 

suggesting that genes influence chaos (Hanscombe, Haworth, Davis, Jaffee, & Plomin, 

2010). Genetic influence on an environmental measure, known as gene-environment 

correlation (Jaffee & Price, 2007; Kendler & Eaves, 1986; Plomin et al., 1977), means 

that the environment is not a passive event that just happens to us - we elicit reactions 

and construct the environment around us in part due to our genetic propensities.  

 Nevertheless, it seems reasonable to assume that the effect of home chaos on 

school performance is mediated environmentally, for example, by way of its effect on 

children's ability to complete their homework due to interruptions and distractions.  

However, it has been difficult to assess the origins of the association between home 

chaos and school performance because child-specific measures of chaos are needed to 

investigate this question. Given that children's perception of chaos in their home shows 

genetic influence, it is possible that the association is, in part, mediated genetically in the 

sense that common genes affect both chaos and achievement.  Using a genetically-

sensitive design, it is possible to estimate the relative roles of genes and environments 

on the relationship between chaos and achievement. Knowing how nature and nurture 

work together in educationally relevant environments will inform the design of targeted 

interventions that could improve both child welfare and academic performance. In this 

study we used the twin design to investigate the genetic and environmental 

contributions to the link between child reports of family chaos and their teacher-

reported school achievement. 
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Chaos is typically measured by parent reports 

Parents' reports of chaos in the home predict children's behaviour problems (Coldwell, 

Pike, & Dunn, 2006), lower cognitive test scores (Hart et al., 2007; Petrill et al., 2004), 

and poor school performance (Brody & Flor, 1997). However, family-wide descriptions 

of the home environment provided by a parent cannot inform us about factors 

important for individual differences in the experiences of each child. That is, parent 

reports are not child-specific because they give just one account of the home for all the 

children living in it. This view of the home environment – that it is the same for all 

children living in it – is limited because it doesn’t take into account the influence that 

each child exerts on their environment, including the genetic contribution to their 

experience through their behaviour. A child's environment has an impact on the child, 

but the child can also have an impact on their environment: there is a two-way 

relationship. Using measures of the experience of each individual within a genetically-

sensitive design has revealed that people's genes affect their experience (Kendler & 

Baker, 2007; Plomin & Bergeman, 1991). For example, aspects of the home 

environment (e.g. parental involvement and responsivity) measured on each child in the 

home were used to show that genetic factors explain about a quarter of the relationship 

between these characteristics of the home and standardized test-assessed achievement 

(Cleveland, Jacobson, Lipinski, & Rowe, 2000). For this reason, it is important to assess 

child-specific experiences of environmental noise and disorganisation in the home, to 

supplement the family-wide measures. This approach allows the investigation of genetic 

and environmental influences on environmental confusion and routine at home, and its 

association with outcomes such as school achievement. 

 Using child-specific measures we have shown that genetic factors do explain a 

significant proportion of individual differences in children's perceptions of chaos in the 

home between the ages of 9 and 12 in the present sample (Hanscombe et al., 2010). 

Around 20% of the variation in experience of chaos is driven by heritable factors. What 

does it mean to say that an environment is heritable? Genetic influence on behaviours 

that affect exposure to, or experience of, the environment is called gene-environment 

(GE) correlation (Jaffee & Price, 2007; Kendler & Eaves, 1986; Plomin et al., 1977). 

There are three possible mechanisms: passive GE correlation happens because the 

environment children experience reflects their parents' genetically influenced behaviour 

– children inherit both their parents' genes and environment; evocative GE correlation 

is the result of people in the children's environment reacting to the children's genetically 

influenced behaviour or characteristics; active GE correlation arises when children 
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directly seek out, select and modify their environment to suit their genetic propensities. 

The "environment" is not something that simply happens to us. Instead, we seek 

environmental niches, modify our surroundings, select social interactions and engage 

other people in ways that are consistent with our genetic predispositions (Scarr & 

McCartney, 1983). 

 Given that both school achievement and home chaos show genetic influence, 

and that there is a correlation between them, we hypothesized that genetic factors would 

contribute to the association between chaotic homes and school achievement. We have 

measured school achievement at age 12; this age marks the transition to secondary 

school, the stage at which children are making choices about the subjects they will go on 

to study, as well as the age at which some children begin to drop out of school. Our aim 

was to assess the relative contribution of genetic and environmental factors to the 

association between chaos in the home and school achievement, using child-specific 

measures in a multivariate genetically sensitive twin design. We compared the 

resemblance of identical and non-identical twins to find the genetic and environmental 

sources of covariation between chaos in the home and school achievement. Because 

children rated chaos in their homes and teachers rated school achievement, we could 

rule out the confounding effects of having the same rater describe both environment 

and outcome.  

 

3.3 Methods 

3.3.1 Sample 

The Twins Early Development Study (TEDS) sample is described in Chapter 2. Only 

the 1994 and 1995 birth cohorts were tested at age 9; all three birth cohorts were 

included in the 12-year wave of testing. The analyses in this chapter are based on a 

subsample of 7,394 twin pairs in which we had data for at least one twin in a pair. Of 

these, 2,337 complete pairs had data on chaos in the home at both 9 and 12 years; 3,040 

complete pairs had data on school performance. In the analyses described below, we 

were able to make use of all available data using full-information maximum likelihood 

procedures. 

 

3.3.2 Measures 

The analyses in this chapter used child-rated environmental confusion in the home at 

age 9 and 12, the Confusion Hubbub and Order Scale (CHAOS; Matheny et al., 1995), 

and teacher-rated National Curriculum (NC) English, mathematics, and science at age 
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12. The child-rated home CHAOS and teacher-rated school achievement measures are 

described in Chapter 2. 

 

3.3.3 Twin model fitting 

We used the structural equation modelling package OpenMx (Boker et al., 2011) in R (R 

Development Core Team, 2011; www.R-project.org) to partition the covariation 

between child-reported CHAOS and teacher-reported school achievement into sources 

of genetic and environmental covariation. Chapter 2 describes the univariate model and 

the extension to multivariate data. The specific multivariate model we fitted in this study 

derived one latent factor for home chaos, and one latent factor for school achievement. 

Given that our aim was to assess the origin of the association between middle childhood 

chaos and school achievement, combining measures in a factor analysis provided a neat 

way to summarize the data to address this aim. 

 

Common pathway model 

We fitted a common pathway model to the data. The common pathway model reduces 

the data in several measured variables to a specified number of latent phenotypic factors 

derived by maximum likelihood factor analysis. Both the common variation at the latent 

phenotypic factors, and the residual variation in each measured variable, is then 

partitioned into genetic (A), shared environmental (C) and non-shared environmental 

(E) sources of variation. We fitted a model with two factors: the first factor, "Chaos 9-

12 yr", represented children's ratings of chaos in the home between age 9 and 12; the 

second factor, "School Ach. 12 yr", indexed school achievement at age 12 from teacher 

ratings of English, mathematics and science (Figure 3.1 summarizes the fitted model). 

 

3.4 Results 

3.4.1 Phenotypic analysis 

The phenotypic correlation between child-reported CHAOS and teacher-reported 

school achievement was significant and negative (rP = -0.26, 95% CI=-0.30 – -0.22), 

indicating that greater home chaos, as perceived by the child, is associated with worse 

performance in school. Table 3.1 shows the phenotypic correlations among chaos at age 

9 and 12, and English, mathematics and science at age 12. English, mathematics and 

science were highly correlated at age 12 in the TEDS sample. 
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Table 3.1  Phenotypic correlations between family chaos and school achievement 
 
  9-year   12-year   
  CHAOS CHAOS English Mathematics Science 

ye
a

r 
CHAOS 1     

 N=3123     
12

-y
ea

r 
CHAOS 0.43 1    

 N=2484 N=5503    
English -0.16 -0.18 1   

 N=1249 N=3205 N=3843   
Mathematics -0.17 -0.16 0.80 1  

 N=1208 N=3153 N=3738 N=3785  
Science -0.18 -0.15 0.82 0.82 1 

 N=1201 N=3143 N=3718 N=3721 N=3775 
 
Note: N based on one randomly selected member from each twin pair. 
 

 

Descriptive statistics and an analysis of variance by sex and zygosity for each of the five 

measures are presented in Table 3.2. The combined effect of zygosity and sex accounted 

for 1% or less of the variance for all five measures (R2=0.00–0.01). For all subsequent 

analyses, the scores for males and females were combined. 

 Because similarity due to age and sex can contribute to phenotypic twin 

similarity and inflate estimates of C, the measures were corrected for the effects of age 

and sex, as is standard practice in the analysis of twin data (McGue & Bouchard, 1984). 

Age- and sex-corrected twin correlations by zygosity are shown in Table 3.3. 

 Along the diagonal in Table 3.3 are the within-trait twin correlations; below the 

diagonal are the cross-trait twin correlations. Doubling the difference between the MZ 

and DZ correlations within any trait gives an indication of the heritability. Within-trait 

across-twin correlations suggest modest heritability for family chaos (average h2=0.22) 

and moderate heritability for teacher-rated NC achievement (average h2=0.53). Genetic 

model-fitting analyses described below provided a more comprehensive use of the data, 

and the possibility to fit a multivariate model with quantifying fit statistics. 
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Table 3.2  Means, standard deviations, and analysis of variance by sex and zygosity 
 

Assessment Measure Male Female MZ DZ ANOVA   
  M SD M SD M SD M SD Sex Zyg. Sex*Zyg. R2 N 

9-year CHAOS 0.77 0.39 0.71 0.38 0.74 0.39 0.75 0.38 <0.01 0.62 0.48 0.01 3123 
 

12-year 
CHAOS 0.69 0.34 0.64 0.34 0.67 0.34 0.67 0.34 <0.01 0.33 0.42 <0.01 5503 
English 4.28 0.96 4.43 0.88 4.32 0.91 4.34 0.95 <0.01 0.04 0.25 0.01 3843 

Mathematics 4.42 1.05 4.35 0.98 4.34 1.00 4.42 1.03 0.15 0.10 0.20 <0.01 3785 
Science 4.48 0.96 4.43 0.91 4.41 0.92 4.49 0.95 0.45 0.04 0.36 <0.01 3775 

 
Assessment=age of assessment; M=mean; SD=standard deviation; MZ=monozygotic twins; DZ= dizygotic twins; Sex=p-value associated with sex effect on means; 
Zyg.=p-value associated with effect of zygosity on means; R2=proportion of the total variance explained by sex and zygosity; ANOVA=Analysis of variance performed 
using one randomly selected member of each twin pair; N=number of randomly selected individuals (1 member of each twin pair) included in ANOVA analysis. Grey 
highlight indicates assessment at age 9. 
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Table 3.3  Twin correlations and cross-twin correlations by zygosity, and ACE parameter estimates for chaos and achievement at ages 9 and 12 
 
   Twin 2     
   9-year 12-year  Twin model estimates 
   1. 2. 3. 4. 5.  A C E 

T
w

in
 1 

9-
ye

ar
 1. CHAOS 0.66/0.51      0.26 

(0.18–0.34) 
0.39 

(0.32–0.45) 
0.35 

(0.32–0.38) 

12
-y

ea
r 

2. CHAOS 0.46/0.41 0.63/0.56     0.15 
(0.09–0.21) 

0.48 
(0.43–0.53) 

0.37 
(0.34–0.39) 

3. English -0.20/-0.14 -0.21/-0.13 0.80/0.53    0.56 
(0.50–0.62) 

0.25 
(0.19–0.31) 

0.19 
(0.17–0.21) 

4. Mathematics -0.20/-0.11 -0.17/-0.10 0.68/0.49 0.76/0.53   0.49 
(0.43–0.56) 

0.28 
(0.21–0.34) 

0.23 
(0.21–0.25) 

5. Science -0.23/-0.14 -0.19/-0.14 0.71/0.49 0.69/0.51 0.76/0.57  0.44 
(0.38–0.50) 

0.34 
(0.28–0.40) 

0.22 
(0.20–0.24) 

 
Along the diagonal in bold are the within-trait cross-twin correlations (MZ/DZ); below the diagonal are the cross-trait cross-twin correlations (MZ/DZ). A, C, and E= 
proportion of phenotypic variance attributable to genetic, shared environmental, and non-shared environmental factors respectively (95% confidence intervals shown in 
parentheses) 
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3.4.2 Genetic+analyses+

Variance components derived from univariate ACE models shown in Table 3.3, suggest 

that the difference between child-ratings of CHAOS at 9 and 12 years are not 

significant, as indicated by overlapping confidence intervals (CI). For example the A 

component at age 9 = 0.26 (95% CI = 0.18–0.34), and at age 12 = 0.15 (95% CI = 

0.09–0.21)). As a measure of long-term chaos, we combined the two measures into a 

single latent factor in our model. Figure 3.1 summarizes the common-pathway ACE 

model fitted to CHAOS at age 9 and 12, and English, mathematics and science at age 

12. The A, C, and E variance components for the family chaos and school achievement 

factors are consistent with the univariate estimates in Table 3.3. 

 

 
Figure 3.1  Chaotic homes and school achievement 
The genetic (A), shared (C) and non-shared (E) environmental relationship between latent 
factors representing child-reported CHAOS in the home between ages 9 and 12 (Chaos 9-12 yr) 
and teacher-reported school achievement at age 12 (School Ach. 12yr) 
 

Chaos&
9(12&yr&

A1#

School&
Ach.&
12&yr&

A2#

√.15& √.54&

.67& .67& .89& .90& .91&

C1# C2#

√.83& √.34&

E1# E2#

√.02& √.13&

CHAOS#
9#yr#

CHAOS#
12#yr#

English#
12#yr#

Math#
12#yr#

Science#
12#yr#

(.33&

(.31&

(.04&

A# C# E# A# C# E# A# C# E#A# C# E# A# C# E#

√.19& √.08& √.11& √.07& √.00&
√.02& √.12& √.00& √.00& √.05&

√.34& √.36& √.10& √.12& √.11&
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Compared to the saturated model (-2lnL=88604.36, df=39938), and a saturated model 

with means and variances constrained to be equal across twin and zygosity ('-

2lnL=55.26, 'df=30, BIC=-133696.10), the common pathway model did not provide a 

significantly worse account of the data ('-2lnL=177.28, 'df=99, BIC=-133942.50). 

Considering model fit, the common pathway model provided a parsimonious account 

of the relationship between chaos and school achievement (more detail in footnote to 

Table 3.4). 

 Table 3.4 shows the genetic and environmental correlations between the latent 

A, C and E components of variance. Both the shared environmental and the genetic 

correlation are significant and in the expected negative direction (rC = -0.31, 95% CI = -

0.43 – -0.19; rA = -0.33, 95% CI = -1.00 – -0.10). These correlations indicated that both 

shared environmental and genetic factors associated with household chaos were also 

associated with school achievement. 

 The proportion of the phenotypic correlation explained by genetic and 

environmental factors – bivariate heritability and environmentality, respectively – is also 

shown in Table 3.4. The covariation between family chaos and school achievement is 

largely shared environmental in origin (63%), however genetic factors also explain a 

significant proportion (37%) of the phenotypic correlation. Non-shared environmental 

factors are unique to each trait and do not contribute to the association between 

experience of chaos and school achievement. 
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Table 3.4  Genetic and environmental correlations and bivariate estimates from the common pathway model 
 
Measure   Correlations   
 rA rC rE rP 
CHAOS and Achievement -0.33 (-1.00 – -0.10) -0.31 (-0.43 – -0.19) -0.04 (-1.00 – 1.00) -0.26 (-0.30 – -0.22) 
     
 Variance components of common factors  
 A C E    
CHAOS 0.15 (0.02 – 0.28) 0.83 (0.72 – 0.93) 0.02 (0.00 – 0.07)  
Achievement 0.54 (0.48 – 0.60) 0.34 (0.28 – 0.39) 0.13 (0.11 – 0.14)  
    
 Mediation of rP  
 axayrA/rP cxcyrC/rP exeyrE/rP  
CHAOS and Achievement 0.37 (0.12 – 0.62) 0.63 (0.41 – 0.84) 0.01 (-0.07 – 0.08)  
          
 
rA= genetic correlation; rC= shared environment correlation; rE= non-shared environment correlation; rP= phenotypic correlation; axayrA/rP= proportion of phenotypic 
correlation mediated by genetic factors; cxcyrC/rP= proportion of the phenotypic correlation mediated by shared environmental factors; exeyrE/rP= proportion of the 
phenotypic correlation mediated by non-shared environmental factors; 95% confidence intervals in parentheses. 
 
Model fit |  1. Saturated: -2LL=88604.36 (df=39938);  2. Means/variances equal across twin and zygosity: '-2LL=55.26 ('df=30), p-value<0.01, Akaike’s 
information criterion (AIC)=-8723.61, Bayesian information criterion (BIC)=-133696.10;  3. Common pathway: '-2LL=177.28 ('df=99), p-value<0.01, AIC=8707.64, 
BIC=-133942.50
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3.5 Discussion 

Consistent with previous studies using parental reports, we confirmed that children's 

experience of household chaos was associated with how well they performed in school. 

The more disorganized, noisy and confusing children perceived their homes to be, the 

poorer their performance in school. Environmental factors that make siblings more 

alike – shared environments – explained the largest part of the chaos-school 

achievement relationship. This might be expected considering chaos is after all a 

measure of the home environment, but noteworthy nonetheless given the recent 

rethinking about the effects of the shared environment (Burt, 2009). Remarkably, 

however, over a third of the association between children's perceptions of family chaos 

and their teacher-rated achievement was accounted for by common genetic factors. 

 

Environmental confusion at home predicts poor performance in school 

Using a genetically-sensitive design made it possible to characterize the influence of 

home environment on school achievement. By controlling for genetic effects, we have 

shown that about two thirds of the association between the experience of home chaos 

and school achievement is due to shared environmental factors. What could these 

shared experiences be? Obvious candidates are the elements of the scale itself, such as 

the items "I have a regular bedtime routine", and "There is usually a television turned on 

somewhere in our home". A previous study has found that the elements of the 

household chaos scale that tap order and routine (as opposed to noise) predict early 

reading skill (Johnson et al., 2008). This is supported by evidence that children living in 

unstable chaotic homes withdraw from academic challenge – an effect partially mediated 

by disrupted and inconsistent sleep patterns (Brown & Low, 2008).  Poor sleep hygiene 

– irregular sleeping patterns including difficulty getting to sleep, staying asleep and 

excessive tiredness – is predictive of poor school performance (Bruni et al., 2006). 

Another characteristic of the chaotic home, immoderate television watching, both 

directly predicts poor school performance and is significantly associated with disrupted 

sleep patterns (Li et al., 2007; Sharif, Wills, & Sargent, 2010; Van den Bulck, 2004). Of 

course, all of these "environments" are components of the heritable CHAOS scale, and 

are therefore likely themselves to be partly genetic in origin. 

 

Genetically driven experience: GÆ E correlation 

The surprising finding here, however, is that the association between chaos and school 

achievement is not entirely environmental in origin. A common set of genetic factors 

explains a third of the association between the children's heritable experience of 
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household chaos and their school achievement. But whose genes explain this 

relationship: the parents' or the child's? If parents who create chaotic home 

environments also do not encourage schoolwork or take an interest in homework 

because of their genetic predisposition, the GE correlation between home and school is 

passive; parental genes bridge the children's experience of environmental confusion at 

home and their school performance. That is to say, children get their genes as well as 

their genetically influenced environment from their parents. 

 However, passive GE correlation on its own is only one step removed from a 

scenario in which the child, a blank slate, is entirely at the mercy of their nurture. Given 

that by the age of 12 we might expect that children are having some input into their 

routine at home and commitment to school, it seems likely that the genetic link between 

home and school is at least in part due to the child's genes: an active (or reactive) child-

driven process. For example, if children are particularly uncooperative about going to 

bed, turning off the television, or sitting down to meals, their parents may abandon 

attempts to impose structure on their environment. Similarly, the children's teachers 

may have to spend more time managing the children's behaviour than teaching them. 

Modifying the child's behaviour might allow parents to successfully implement regular 

routines and allow teachers to more effectively educate the child.  

  Another possibility is that some children become socially withdrawn as a way of 

filtering out the excess noise and confusion in chaotic homes (Evans, Rhee, Forbes, 

Mata Allen, & Lepore, 2000). Moreover, children in chaotic homes may be 

inappropriately extending this filtering to potentially beneficial social interactions and 

carrying it over to the classroom. If under the influence of genetic factors, a "tuning 

out" strategy could explain the common genetic link between household chaos and 

school achievement. Notably however, children's accounts of environmental confusion 

and disorder in the home predict school achievement even after accounting for problem 

behaviour and inattention in the present sample. The many potential behavioural 

mediators of the genetic link between chaotic homes and poor school performance are a 

rich area for exploration. 

 Finally, given that the present study measured perceptions of the environment 

by questionnaire, children's perceptions of the chaos in their homes could have been 

influenced by additional cognitive, affective and personality factors for genetic reasons. 

However, environments that are not measured by questionnaire are still found to be 

heritable (Plomin & Bergeman, 1991).  
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Implications and future directions 

This study highlights the importance of supplementing family-wide measures with 

individual-specific measures for the study of factors relevant to school achievement, and 

developmental outcomes in general. Child-specific measures within the genetically 

informative twin design provide a means to quantify the contribution of the child's (and 

their parents') genes to their environment and its link to academic outcomes. To the 

extent that the link between chaotic homes and academic achievement is the result of 

shared experiences like unstructured television watching and irregular sleeping patterns, 

imposing structure will be beneficial. However, a common genetic contribution to the 

link between family chaos and low school performance suggests that additional targets 

for intervention may be found in as yet unidentified genetically driven behaviours of the 

child or their parents. 

 The present study focused on latent genetic and environmental factors linking 

family chaos and school achievement. However, underlying the genetic effect on 

experience of the chaotic home and its link to school achievement will be specific 

genetic variants. Isolating these variants and tracing out their effects, may tell us 

something about what behaviours or propensities underlie the heritable effect in 

children's experience of high levels of chaos in the home, and their poor performance in 

the classroom. If the common environmental component of the association between 

chaotic homes and school achievement represents a causative effect of home chaos on 

achievement - a possibility still to be tested - then imposing structure and order are 

obvious interventions. Future work to understand the shared environmental link 

between the experience of organization and routine at home and academic achievement 

will be informative about which routines and patterns are amenable to intervention. 

However, targeting behaviours like different children's perceptions and coping response 

when immersed in particular environments, may be a complementary strategy. Although 

the sample is representative of the UK population, the generalizability of the findings to 

populations in other countries, with different demographics, may be limited. 

 There are many potential background variables that could influence noise and 

routine at home and school achievement. These background variables are typically not 

twin-specific, but rather family-wide measures (e.g. socioeconomic status, SES) that 

could have an effect on the mean level of family chaos and achievement, as well as a 

moderating effect on both measures and the link between them. Because "correction" 

for obligatorily-shared measures would have the same effect on both twins in a family, 

and our goal was to understand individual differences, we focused on the link between 
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CHAOS as measured and school achievement in a genetically-sensitive design; that is, 

on the origins of the covariation within pairs in context.  

 The environments we find ourselves in give opportunities to act out our genetic 

predispositions, to re-shape our surroundings, and to select new environments and 

social interactions informed by our experience. We infuse the psychosocial environment 

of home with our particular blend of genetic preferences, and, as it turns out, some of 

the very same ingredients are evident in our school performance. 
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4 Socioeconomic Status and Children’s Intelligence: A Gene-

Environment Interaction Study† 

 

4.1 Abstract 

The environment can moderate the effect of genes – a phenomenon called gene-

environment (GxE) interaction. Several studies have found that socioeconomic status 

(SES) modifies the heritability of children's intelligence. Among low-SES families, 

genetic factors have been reported to explain less of the variance in intelligence; the 

reverse is found for high-SES families. The evidence however is inconsistent. Other 

studies have reported an effect in the opposite direction (higher heritability in lower 

SES), or no moderation of the genetic effect on intelligence. Using 8716 twin pairs from 

the Twins Early Development Study (TEDS), we attempted to replicate the reported 

moderating effect of SES on children’s intelligence at ages 2, 3, 4, 7, 9, 10, 12 and 14: 

i.e., lower heritability in lower-SES families. We used a twin model that allowed for a 

main effect of SES on intelligence, as well as a moderating effect of SES on the genetic 

and environmental components of intelligence. We found greater variance in 

intelligence in low-SES families, but minimal evidence of GxE interaction across the 

eight ages. A power calculation indicated that a sample size of about 5000 twin pairs is 

required to detect moderation of the genetic component of intelligence as small as 0.25, 

with about 80% power – a difference of 11% to 53% in heritability, in low- (-2 standard 

deviations, SD) and high-SES (+2 SD) families. With samples at each age of about this 

size, the present study found no moderation of the genetic effect on intelligence. 

However, we found the greater variance in low-SES families is due to moderation of the 

environmental effect – an environment-environment interaction. In a UK-

representative sample, the genetic effect on intelligence is similar in low- and high-SES 

families. Children's shared experiences appear to explain the greater variation in 

intelligence in lower SES. 

 

4.2 Introduction 

A key construct for understanding the interplay between nature and nurture is genotype-

environment (GxE) interaction: Genes can have different effects on a phenotype 

depending on the environment, and environments can have different effects depending 

                                                 
† Chapter adapted from Hanscombe, K.B., Trzaskowski, M., Haworth, C.M.A., Davis, O.S.P., Dale, P. 
S., & Plomin, R. (2012). Socioeconomic status (SES) and children’s intelligence (IQ): In a UK-
representative sample SES moderates the environmental, not genetic, effect on IQ. PLoS ONE 7(2), 
e30320. doi: 10.1371/journal.pone.0030320 
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on genes (Kendler, 2011; Kendler & Eaves, 1986; Kendler & Gardner, 2010; Plomin et 

al., 1977; Rutter, 2007a; Rutter et al., 2006). Twin and adoption studies divide the 

population variation in a trait, e.g. height, into fractions attributable to genetic and 

environmental factors. The net genetic contribution to population variation, i.e., what 

makes one person different from another, can be expressed as a heritability statistic (h2). 

However, if the effects of genes and environments do not simply "add up", i.e., if there 

exists a GxE interaction, heritability will depend on the level of the moderating 

environment. 

 The education, occupation and income of parents – indices of the families' 

socioeconomic status (SES) – have been found to moderate the heritability of their 

children's intelligence (Fischbein, 1980; Rowe, Jacobson, & van den Oord, 1999; 

Tucker-Drob, Rhemtulla, Harden, Turkheimer, & Fask, 2010; Turkheimer, Haley, 

Waldron, D'Onofrio, & Gottesman, 2003). The most recent twin study in this area 

reported significant moderation of the genetic component of children's intelligence (IQ, 

or general cognitive ability, g) by their parents' SES (Tucker-Drob et al., 2010): a GxE 

interaction in which heritability of intelligence increased with SES. Focusing on early 

cognitive development, the study found an increasing heritability of the change in IQ 

between the ages of 10 months and 2 years as a function of SES. Although SES was 

measured as a continuous variable, the magnitude of genetic moderation found 

suggested an increase in the heritability of IQ from 5% in low-SES families (-2 standard 

deviations, SD), to 50% in high-SES families (+2 SD). 

 It is reasonable to consider the possibility that heritability of intelligence is 

higher in higher SES families because such families seem likely to provide more 

opportunities to realize differences in children’s genetic potentials.  Conversely, in lower 

SES families, genetic differences might be restrained by poverty. Two theories, the 

bioecological model (Bronfenbrenner & Ceci, 1994) and the environmental disadvantage 

hypothesis (Scarr, 1992; Scarr-Salapatek, 1971), predict this direction of GxE interaction 

effect – greater genetic contribution to IQ in high-SES families. It is important to note 

that these theories make predictions about how children will react to the environment 

they experience in the "real" world, but the interactions reported are statistical and 

model-dependent (Kendler & Gardner, 2010). However appealing these reports may be, 

the moderating effect of SES is not consistently found. Several studies are either less 

conclusive (Scarr, 1981), find no moderation of the heritability of IQ by level of SES 

(Grant et al., 2010; van der Sluis, Willemsen, de Geus, Boomsma, & Posthuma, 2008), 

or find a trend in the opposite direction – greater heritability of children's IQ in lower-
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SES families (Asbury, Wachs, & Plomin, 2005). Table 4.1 summarises the previous 

studies. 

 At least three design differences could play a role in the inconsistent findings: 

first, statistical GxE interaction has been investigated with a variety of methods with 

different power to detect an interaction; second, the age range investigated has covered 

infancy (10 months; Tucker-Drob et al., 2010) to adulthood (49 years; van der Sluis et 

al., 2008) – age groups which may not be directly comparable; third, the samples have 

been drawn from different demographics (representing different points on the SES 

distribution), or different countries in which socioeconomic status may be more or less 

a factor for children's intelligence. Given the large range of ages studied and the variety 

of SES indices used, the present study set out to replicate the reported increasing 

heritability with increasing SES at each of eight ages from early childhood to 

adolescence in a large UK-representative sample by systematically applying the 

continuous moderator model (Purcell, 2002). The continuous moderator model can be 

used to measure potential SES moderation of the genetic and environmental influences 

typically found by the classic twin design (effects on the variance components of IQ), 

after accounting for main effects of the measured environment (effects on the mean 

level of IQ). The twin model typically divides the trait variance into additive genetic (A) 

and shared environmental (C) influences that explain twin similarity, and non-shared 

environmental (E) influences that explain twin differences. Figure 4.1 and the method 

section describe how the continuous moderator model incorporates moderation of each 

of these terms. 

 For several power-related reasons, the moderation of environmental factors (in 

particular experiences shared by children reared together - shared environment, C) may be 

particularly important in explaining the inconsistent reports of GxE interaction. The 

continuous moderator model, used by several of the studies investigating GxE 

interaction, has demonstrated low power to distinguish between moderation of the 

genetic (A) and shared environmental (C) variance components. Purcell (2002) notes 

that specificity of the model is an issue – an observation made by the first study to 

report SES moderation of the heritability of IQ using this model (Turkheimer et al., 

2003, p. 627): "Although the models indicate that the (EA, EC, and EE) interactions 

jointly contributed significant variance to differences in (IQ), the models were less able 

to distinguish which of the individual interactions with A, C, and E was most 

important." (EA, EC, and EE represent SES moderation of the genetic, shared, and non-

shared environmental influences on IQ.) Nonetheless, the full model, which 

simultaneously takes into account all influences on a trait (moderated and un-
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moderated, genetic and environmental), tends to recover the true parameter values in 

simulated data (Purcell, 2002). Regardless of which terms have been found to be 

significant and what decisions have been made about the presence or absence of 

particular moderating effects, because of the difficulty distinguishing between genetic 

and environmental moderation, estimates from the full model are preferable to those 

derived from a model in which individual terms have been fixed to zero. 

 A more general power consideration is that twin studies use the same 

information to estimate the genetic and shared environmental influence on a trait with 

the result that large samples are required to detect moderate shared environment (Burt, 

2009). Moreover, the relative contribution of the shared environment to population 

variation in a variety of traits including IQ has been shown to decrease with age 

(Bergen, Gardner, & Kendler, 2007; Davis, Haworth, & Plomin, 2009; Haworth et al., 

2009). 

 Using a large population-based United Kingdom (UK) twin sample, with 

longitudinal data on IQ from infancy to adolescence, we aimed to address these age, 

population, and power concerns. We set out to replicate the finding that SES modifies 

the genetic effect on children's intelligence with three indices of SES: parental education 

and occupation measured when the twins were 18 months old; the same composite of 

education and occupation measured when the twins were 7 years old; and family income 

measured when the twins were 9 years old. The possibility that the environmental 

disadvantage hypothesis applies to academic achievement and reading measures has also 

been studied. However, because achievement and reading are quite different from IQ, 

and studies of them are no more conclusive about the presence or absence of GxE 

interaction, in the present study we choose to focus on IQ only. Given the 

inconsistency in the literature, we hypothesized that we would not find consistent GxE 

interaction from childhood to adolescence. 
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Table 4.1  Gene-environment (GxE) Interaction Twin Studies of SES and Cognitive Measures 
 
Country Number of pairs Age Analytical model SES measure Cognitive 

measure 
GxE  Heritability 

      Higher h2 in 
higher SES 

Low SES - High SES 

UK 
(Asbury et al., 
2005) 

~1000 MZ, ~1000 
DZ 

4 years Extended DF 
analysis 

Parental education & 
occupation, and age of 
mother at birth of first 
child 

Verbal factor 
 

No 
 

81% - 49% a 

 

�     Non-verbal factor No 21% - 42% a 
[Sweden 
(Fischbein, 
1980) 
 

94 MZ, 229 DZ 12 years Stratification and 
inspection of twin 
correlations 

Parental education & 
occupation 

Verbal test 
(opposites) 

Yes 48% - 76% 

     Non-verbal test 
(logic) 

Yes 21% - 96% 

US 
(Grant et al., 
2010) 

1774 MZ, 1429 DZ 16-30 
years 

Continuous 
moderator 

Parental education Armed Forces 
Qualification Test 

No 56% - 45% 

US 
(Rowe et al., 
1999) 

1909 (176 MZ, 347 
DZ, 795 full-sib, 269 
half-sib, 118 cousins, 
204 unrelated) 

16 years Extended DF 
analysis 
 

Parental education Peabody Picture 
Vocabulary (verbal 
IQ) 

Yes 26% - 74% 

[US 
(Scarr, 1981) 
 

96 MZ, 69 DZ 10-15 
years 

Stratification and 
inspection of twin 
correlations 

Parental education and 
occupation (census 
tract data) 

Composite of 5 
tests 

Noe 52% - 50% 

[US 503 Black pairs, 275 6-18 years Stratification and Parental education and Composite of 5 Yes ~0% - 27% 
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(Scarr-
Salapatek, 1971) 

White pairs d inspection of twin 
correlations 

occupation 
(census tract data) 

tests 

      Yes ~0% - 40% 
US 
(Tucker-Drob 
et al., 2010) 

188 MZ, 562 DZ 10 months 
& 2 years 

Continuous 
moderator 

Parental education, 
occupation & income 

Bayley Mental 
Development Index 

Yesc 5% - 50% 

US 
(Turkheimer et 
al., 2003) 

114 MZ, 205 DZ 7 years Continuous 
moderator 

Parental education & 
occupation 

WISC IQ Yes 10% - 72% 
 
 

       (based on twin correlations 
from a median split - not 
the continuous moderator 
parameters) 

Netherlands 
(van der Sluis et 
al., 2008) 

130 MZ, 144 DZ 26 & 49 
years 

Continuous 
moderator 

Parental education WAIS IQ No - b 

�

[ indicates studies considered to have unreliable estimates based on small samples and/or non-standard zygosity assignment. 
a 15% cut-offs for low and high SES (non-significant estimates for 25%, 33% and 50% cut-offs also reported in original paper) 
b Not reported 
c GxE significant for change in mental ability from 1 to 2 years  
d No zygosity information; MZ and DZ twin correlations estimated from data (number of same- and opposite-sex twins pairs) 
e Results averaged over 5 tests and 2 ethnic groups 
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4.3 Methods 

4.3.1 Sample 

The TEDS sample is described in Chapter 2. The present study investigated the 

moderating role of parental SES on children's intelligence or IQ (measured as general 

cognitive ability, g) at ages 2, 3, 4, 7, 9, 10, 12, and 14. Analyses were performed on a 

subsample of 8716 twin pairs (2996 monozygotic (MZ); 5720 dizygotic (DZ)) for whom 

we had IQ data for at least one twin at any age, and with at least one index of SES. 

Subsets of these data were assessed at each age. In the analyses described below, we 

used all the available data with full-information maximum likelihood procedures. 

 

4.3.2  Measures 

The analyses in this chapter used the general cognitive ability and socioeconomic status 

measures described in Chapter 2. The correlations between the eight IQ scores are 

shown in Table 4.2. 
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Table 4.2  Phenotypic correlations between IQ measures 
 
Age 2 3 4 7 9 10 12 14 

2         

3 0.64        

 (0.62 – 0.66)        

4 0.54 0.69       

 (0.52 – 0.56) (0.67 – 0.71)       

7 0.25 0.26 0.30      

 (0.22 – 0.28) (0.23 – 0.29) (0.27 – 0.33)      

9 0.19 0.23 0.26 0.43     

 (0.15 – 0.23) (0.19 – 0.27) (0.22 – 0.30) (0.40 – 0.46)     

10 0.20 0.21 0.23 0.42 0.56    

 (0.16 – 0.24) (0.17 – 0.25) (0.19 – 0.27) (0.38 – 0.45) (0.53 – 0.59)    

12 0.16 0.20 0.24 0.45 0.52 0.59   

 (0.12 – 0.20) (0.16 – 0.24) (0.21 – 0.27) (0.42 – 0.48) (0.49 – 0.55) (0.56 – 0.62)   

14 0.17 0.19 0.19 0.44 0.47 0.51 0.61  

 (0.12 – 0.22) (0.14 – 0.24) (0.15 – 0.23) (0.40 – 0.48) (0.43 – 0.51) (0.47 – 0.55) (0.58 – 0.64)  

         

 
Correlations are based on one randomly selected member of each twin pair. 
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4.3.3 Statistical+analysis+

This chapter used structural equation modelling with twin data on IQ and SES. Twin 

model fitting is described in Chapter 2. Below is a description of an extension to the 

classic univariate ACE model to include moderation of the genetic and environmental 

variance components of the measured trait. 

 

Univariate GxE model 

We used the basic continuous GxE model (Purcell, 2002) to estimate the moderating 

effect of SES on IQ. This model allows the putative moderator to have a main effect on 

the trait, as well as a moderating effect on any or all of the residual A, C, and E 

components of the trait. Figure 4.1 summarizes the structural equation model for a 

single twin. 

 
Figure 4.1  Continuous moderator model 
The measured moderator (M) has a mediating or main effect (βM) on the trait (T), as well as a 
potential moderating effect on the variance components of the residual (after the main effect 
has been partialled out). A, C, E = additive genetic, shared environmental, and non-shared 
environmental variance components (of residual T); a, c, e = un-moderated elements of genetic, 
shared, and non-shared path coefficients; βA, βC, βE = moderated elements of the genetic, 
shared, and non-shared path coefficients; Mi = measured moderator level for the ith twin pair 
(both twins in a pair have the same value for obligatorily-shared moderators like SES); µ = the 
mean of the trait (T); 1 = the constant by which µ is multiplied, values of the trait are given by 
1µ + βM 
 

The mean of trait (T) is given by µ +βMM, where βM represents the phenotypic 

regression coefficient. The main effect of the measured environment (M) on the trait is 

assessed by estimating the value of βM. In the present study the trait is IQ and the 

T"

e"+"βEMi"
c"+"βCMi"

1"

E"C"A"

a"+"βAMi"

μ""

βM"

M"
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moderator is SES.  The residual variance in the trait is then partitioned into latent A, C 

and E components; the effect of each of these components on the trait is also expressed 

as a linear function of the moderator. For example, the additive genetic path coefficient 

is made up of both an un-moderated element (a) and a moderated element (EAMi), 

where Mi represents the family-wide moderator value for the ith twin pair. The 

significance of the moderating effect of SES is tested by asking whether EA is 

significantly different from zero. Likewise, the C and E path coefficients (EC and EE 

respectively) indicate the moderating effect of SES on the shared and non-shared 

environmental components of the residual variance in IQ and their significance is tested 

against zero.   

 One limitation of the basic GxE model is that it cannot detect potential 

moderation of any genetic variation in common between the measured environment 

and the trait, and SES is phenotypically correlated with IQ. It is well established that 

"environmental" measures are to some extent heritable – a phenomenon known as 

genotype-environment correlation (Jaffee & Price, 2007; Kendler & Baker, 2007; 

Plomin & Bergeman, 1991; Plomin et al., 1977). In the present study however, SES is 

the same for both members of a twin pair (they are children in the same household), so 

that the extent of genetic influence on SES cannot be assessed in our twin design. 

Nonetheless, any unmeasured genetic variation in SES that also explains variation in IQ 

is partialled out as part of the basic GxE model (and included in the EM term in the 

means model).   

 

4.3.4 Power estimation 

We used exact data simulation with the continuous moderator model to estimate power 

to detect GxE moderation, and in particular, moderation of the latent genetic (A) 

component. For all power calculations we used the MASS (Venables & Ripley, 2002) 

and OpenMx (Boker et al., 2011) packages, in the statistical computing environment R 

(www.R-project.org; R Core Development Team, 2011). For a range of sample sizes, 

effect sizes, a given genetic and environmental effect, a normally distributed moderator, 

and a specified moderation, we simulated data to which we fitted the basic continuous 

moderator model (Purcell, 2002) and obtained a fit statistic, -2lnL. We then fitted a 

(constrained) model with the moderator term dropped, and calculated the difference in 

fit, '-2lnL which distributes as chi-square. We repeated this procedure 1000 times for 

each set of initial values, and plotted the distribution of chi-square statistics. Given that 

we simulated a significant non-zero moderation then dropped this term in the 
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constrained model, the power to detect a particular effect size was the percentage of 

these replicates whose chi-square value was greater than 3.84 (the critical value for a 1df 

chi-square test, with significance value of p=0.05). 

 In order to generate outcome data under continuous moderation, we first 

sampled N random values for MZ pairs and N for DZ pairs from a standard normal 

distribution. This was our obligatorily-shared moderator (SES in the present study). 

Then, for each level of the moderator we drew a single pair from a multivariate standard 

normal distribution. The variance-covariance matrix for each randomly sampled pair 

was specified by (the covariance structure of the basic continuous moderator model), 

 

MZ twin pairs 

 
 

DZ twin pairs 

 
 

where Mi was the value of the moderator for the ith twin pair; a, c, and e are the un-

moderated path coefficients; and βA, βC, βE, and are the moderated path coefficients. 

 

4.4 Results)

The means, standard deviations, and analysis of variance by sex and zygosity for IQ at 

every age are presented in Table 4.3. There was no indication of any differences by 

zygosity or sex. In general, we find no significant effect of sex for intelligence (Davis et 

al., 2008). For all subsequent analyses, we considered the IQ scores for males and 

females together. 

 Because similarity due to age and sex can contribute to phenotypic similarity and 

inflate estimates of C, as is standard practice in twin analyses (McGue & Bouchard, 

1984), all verbal and nonverbal scales were corrected for the effects of age and sex 

before conducting twin analyses.  Correlations between IQ measured at each age are 

presented in Table 4.2. Correlations are high between ages 2, 3, and 4 (0.54-0.69), and 

between ages 7, 9, 10, 12, and 14 (0.42-0.61); across these two age ranges, IQ 

correlations are more moderate (0.19-0.30).  
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 Below, results are presented for continuous moderation analyses of IQ 

moderated by three indices of SES: SES index 1, Parental education and occupation 

acquired at first contact (age 18 months); SES index 2, Parental education and 

occupation at age 7; and SES index 3, Parental income at age 9. At the end of this 

section, we present results for a discontinuous analysis, i.e., IQ as a function of stratified 

SES. 
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Table 4.3 Means, standard deviations, and analysis of variance by sex and zygosity for IQ 
 
 All MZ DZ Female Male ANOVA 

Age M SD M SD M SD M SD M SD zyg sex zyg*sex R2 

2 16.77 6.84 16.24 6.93 17.04 6.77 17.87 6.76 15.63 6.73 <0.01 <0.01 0.01 0.03 
3 20.05 6.75 19.62 7.05 20.30 6.57 20.88 6.49 19.18 6.91 <0.01 <0.01 0.56 0.02 
4 11.20 2.51 10.98 2.58 11.32 2.47 11.34 2.43 11.05 2.60 <0.01 <0.01 0.56 0.01 
7 9.63 2.23 9.49 2.20 9.71 2.25 9.66 2.21 9.60 2.26 <0.01 0.32 0.63 <0.01 
9 18.31 3.50 18.14 3.50 18.42 3.49 18.26 3.50 18.37 3.49 0.03 0.46 0.22 <0.01 
10 28.30 5.56 27.98 5.63 28.49 5.51 28.00 5.53 28.68 5.58 0.02 <0.01 0.67 0.01 
12 22.84 4.16 22.56 4.15 23.00 4.16 22.65 4.17 23.08 4.14 <0.01 <0.01 0.15 0.01 
14 27.26 4.05 27.10 4.01 27.36 4.08 27.30 4.02 27.21 4.10 0.11 0.53 0.16 <0.01 
                
 
MZ = monozygotic; DZ = dizygotic; M = mean; SD = standard deviation; ANOVA = analysis of variance; zyg/ sex/ zyg*sex = p-value associated variance attributable to 
zygosity/ sex/ the zygosity*sex interaction; R2 = variance explained by the ANOVA model
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Table 4.4 Phenotypic correlations between SES and IQ 
 
Age Phenotypic correlation N 
SES index 1: parent education and occupation at 18 months 
2 0.08 (0.05 – 0.11) 5110 
3 0.17 (0.14 – 0.20) 4657 
4 0.18 (0.16 – 0.20) 6726 
7 0.32 (0.30 – 0.35) 4703 
9 0.31 (0.27 – 0.34) 2966 
10 0.26 (0.22 – 0.30) 2419 
12 0.33 (0.30 – 0.35) 3972 
14 0.37 (0.34 – 0.40) 2592 
SES index 2: Parent education and occupation at age 7 
7 0.29 (0.26 – 0.32) 4512 
9 0.25 (0.22 – 0.29) 2610 
10 0.22 (0.18 – 0.26) 2069 
12 0.31 (0.28 – 0.34) 3588 
14 0.33 (0.29 – 0.36) 2294 
SES index 3: Family income at age 9 
9 0.23 (0.20 – 0.26) 2959 
10 0.17 (0.13 – 0.21) 2097 
12 0.23 (0.19 – 0.27) 1822 
14 0.26 (0.21 – 0.31) 1339 
   
 
N = number of pair-wise observations (based on one randomly selected member from each 
twin pair); 95% confidence intervals shown in parentheses. All correlations significant at p < 
.001 
 

Table 4.5 Intra-class correlations (coefficients of twin similarity) for IQ by zygosity for 
twins with SES 
 
Age ICC (95% CI)  N 
 MZ DZ  MZ DZ 
SES index 1 
2 0.91 (0.90-0.92) 0.76 (0.75-0.77)  1677 3315 
3 0.95 (0.95-0.96) 0.84 (0.82-0.85)  1200 2374 
4 0.89 (0.88-0.90) 0.71 (0.69-0.73)  1238 2460 
7 0.68 (0.65-0.71) 0.49 (0.46-0.52)  1264 2284 
9 0.75 (0.72-0.78) 0.58 (0.54-0.61)  863 1495 
10 0.73 (0.69-0.76) 0.50 (0.45-0.54)  685 1197 
12 0.66 (0.62-0.70) 0.42 (0.37-0.47)  777 1242 
14 0.60 (0.54-0.65) 0.37 (0.31-0.43)  563 894 
SES index 2 
7 0.66 (0.64-0.69) 0.49 (0.46-0.52)  1614 2851 
9 0.75 (0.72-0.77) 0.57 (0.53-0.60)  964 1595 
10 0.74 (0.70-0.77) 0.50 (0.45-0.54)  744 1281 
12 0.66 (0.62-0.69) 0.43 (0.39-0.46)  1310 2133 
14 0.60 (0.55-0.64) 0.35 (0.30-0.40)  812 1201 
SES index 3 
9 0.76 (0.73-0.78) 0.58 (0.55-0.61)  1084 1816 
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10 0.73 (0.69-0.76) 0.49 (0.44-0.53)  773 1285 
12 0.65 (0.60-0.69) 0.42 (0.37-0.46)  685 1072 
14 0.61 (0.55-0.66) 0.33 (0.27-0.40)  510 712 
      
 
ICC (95% CI) = intra-class correlation coefficient (95% confidence interval); MZ = 
monozygotic; DZ = dizygotic; N = number of complete cases, i.e. number of pairs in which 
both twins have IQ data. NB. The formal estimation of variance components, using full 
information maximum likelihood structural equation modelling, included data from incomplete 
cases. 
 

Table 4.6 Genetic and environmental parameter estimates for IQ moderated by SES - 
full continuous moderator model 
 
 Parameters Age 
  2 3 4 7 9 10 12 14 
SES index 1 a 0.52 0.45 0.54 0.60 0.60 0.67 0.69 0.67 
 c 0.78 0.84 0.74 0.46 0.57 0.47 0.30 0.01 
 e 0.31 0.23 0.35 0.57 0.48 0.51 0.56 0.61 
SES index 1 moderation 
of the 

EA 0.01 0.00 -
0.03 

0.03 0.01 -
0.10 

0.02 -
0.01 

genetic and 
environmental 

EC -
0.04 

0.01 -
0.03 

-
0.04 

-
0.06 

0.05 -
0.05 

0.19 

components of IQ EE -
0.01 

0.00 0.01 -
0.01 

0.00 0.02 -
0.01 

0.00 

 EM 0.09 0.17 0.17 0.31 0.29 0.24 0.32 0.37 
SES index 2 a    0.59 0.56 0.66 0.71 0.66 
 c    0.47 0.60 0.49 0.24 0.17 
 e    0.57 0.49 0.50 0.56 0.62 
SES index 2 moderation 
of the 

EA    0.04 0.01 -
0.01 

0.01 -
0.07 

genetic and 
environmental 

EC    -
0.06 

-
0.06 

-
0.05 

-
0.09 

0.13 

components of IQ EE    0.00 0.00 0.00 -
0.01 

0.02 

 EM    0.28 0.24 0.21 0.31 0.32 
SES index 3 a     0.59 0.66 0.76 0.70 
 c     0.60 0.50 0.16 0.20 
 e     0.48 0.51 0.55 0.61 
SES index 3 moderation 
of the 

EA     -
0.01 

-
0.04 

-
0.02 

0.05 

genetic and 
environmental 

EC     -
0.05 

-
0.04 

-
0.16 

-
0.16 

components of IQ EE     0.00 0.01 0.00 -
0.03 

 EM     0.23 0.17 0.25 0.29 
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4.4.1 SES index 1: Parental education and occupation at contact (age 18 months) 

Phenotypic correlations between SES (a unit-weighted composite of parental education 

and occupation acquired at contact) and IQ are presented in Table 4.4. From infancy to 

adolescence we found an increasing correlation between SES and IQ, from .08 to .37, as 

expected from the literature. A graphical summary of the continuous moderation 

analyses is presented in Figure 4.2. This visual summary of the SES moderation of IQ 

across the eight ages suggests three conclusions. First, the total variation in IQ changed 

with SES level: at ages 2, 4, 9, and 10 we found greater variance in low-SES families; at 

ages 3, 7 and 12 only small differences; and at age 14, greater variance at both ends of 

the SES distribution than around the mean. 

 Second, except for a large drop in the A contribution with increasing SES at age 

10, we found no substantial change in A across the eight ages: little or no change at ages 

2, 3, 9, and 14, and small increases with increasing SES at ages 7 and 12. This suggests 

no consistent GxE interaction. Moreover, it should be noted that the only substantial 

GxE interaction at age 10 is in the opposite direction from that suggested in the 

literature: heritability is greater in low-SES families. 

 Third, differences in C were somewhat more consistent: at ages 2, 4, 7, 9, and 

12, there was a drop in C with increasing SES.  This suggests the presence of greater C 

in low-SES families. 

 Intra-class correlations (coefficients of twin similarity; Shrout & Fleiss, 1979) are 

presented in Table 4.5. Doubling the differences between the MZ and DZ correlations 

provides a rough estimate of the heritability of IQ. These estimates show the expected 

pattern of increasing heritability with age, from 30% at age 2 to 46% at age 14.  The 

extent to which MZ correlations are not explained by heritability provides an estimate 

of shared environment. These estimates show the expected pattern of decreasing shared 

environmental influence with age, from 61% at age 2 to 14% at age 14 

 Table 4.6 shows the parameter estimates at each age derived from the full GxE 

interaction model with full information maximum likelihood estimation. Squaring the 

path estimate and dividing by the sum of the squared paths gives the standardized 

variance component: e.g., heritability or h2 = (a + EAM)2 / ((a + EAM)2 + (c + ECM)2 + 

(e + EEM)2). (A formal test of the significance of each moderated term in the interaction 

model, at each age, is shown in Supplementary Table C.1, Appendix C.) 

 At ages 3, 7, and 12 the best-fitting model, as indicated by AIC, was one with no 

moderation of either genetic or environmental components. At age 2, the best fitting 

model, as indicated by AIC, was one with no genetic moderation. The p-value showing 

model fit for individually dropped parameters suggests only moderation of the C term is 
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significant (EC = -.04). At age 4, the best-fitting model was one with moderation of both 

A and C terms (EA = -.03, EC = -.03). At age 9, moderation of only the C term was 

significant (EC = -.06). Age 10 showed a significant decrease in A with increasing SES 

(EA = -.10). At age 14, the best fitting model, as indicated by AIC, suggested significant 

moderation of the C term (EC = -.19) 

 All significant genetic and environmental moderation was in the direction of 

greater variance in IQ explained at lower levels of SES. 
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.

 
Figure 4.2  Unstandardized IQ variance components by SES index 1 
Unstandardized genetic and environmental variance components for IQ as a function of first 
contact parental education and occupation (SES index 1). To the top right of each graph is a 
stacked plot showing the total variance in IQ as a function of SES. 
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4.4.2 SES index 2: Parental education and occupation at age 7 

Phenotypic correlations between SES (a unit-weighted composite of parental education 

and occupation assessed at age 7) and IQ show a similar pattern of increasing 

correlation with age, and are in the range 0.22 - 0.33 (Table 4.4). Intra-class correlations 

for twins with data on 7-year parental education and occupation are presented in Table 

4.5. Rough estimates of variance components calculated by doubling the differences 

between the MZ and DZ correlations are similar to estimates for twins with SES index 

1 data. 

 A graphical summary of the continuous moderation analyses is presented in 

Figure 4.3. Inspection of the visual summary of the interaction analyses reveals a 

consistent increase in the effect of the shared environment on IQ with decreasing SES, 

coupled with an increase in the variance in IQ in low-SES families - most notably at 

ages 9, 10 and 12. 

 Table 4.6 shows the parameter estimates at each age derived from the full GxE 

interaction model with full information maximum likelihood estimation. (A formal test 

of the significance of each moderated term in the interaction model, at each age, is 

shown in Supplementary Table C.2, Appendix C.) 

 At ages 7 and 14, the best fitting model as indicated by AIC was one with no 

moderation of genetic or environmental components of intelligence. At all other ages (9, 

10, and 12) the best fitting model included only moderation of the C component (EC = -

.06, EC = -.05, and EC = -.09 respectively). 
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Figure 4.3  Unstandardized IQ variance components by SES index 2 
Unstandardized genetic and environmental variance components for IQ as a function of 
7-year parental education and occupation (SES index 2). To the top right of each graph 
is a stacked plot showing the total variance in IQ as a function of SES. 
 

4.4.3 SES index 3: Parental income at age 9 

Phenotypic correlations between SES (family income at age 9) and IQ are presented in 

Table 4.4. As for SES indices 1 and 2, we find a pattern of increasing correlation 

between IQ and SES index 3 with age, with correlations in the range 0.17 - 0.26. Intra-

class correlations by zygosity for twins with 9-year family income data are presented in 

Table 4.5. Again, rough estimates of variance components found by doubling the 

differences between the MZ and DZ correlations are similar to estimates for twins with 

SES index 1 and 2 data. 

 A graphical summary of the continuous moderation analyses at ages 9, 10, 12 

and 14 is presented in Figure 4.4. As for the other indices of SES, the visual summary of 

the interaction analyses reveals an increase in the variance in IQ in low-SES families, an 

increase in the effect of the shared environment on IQ with decreasing SES, and 

inconsistent differences in genetic effect. 
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 Table 4.6 shows the parameter estimates at each age derived from the full GxE 

interaction model with full information maximum likelihood estimation. (A formal test 

of the significance of each moderated term in the interaction model, at each age, is 

shown in Supplementary Table C.3, Appendix C.)  

 At all ages (9, 10, 12, and 14), the best fitting model as indicated by AIC includes 

(in addition to the main effect of SES) only moderation of the shared environmental 

component (EC = -.05, EC = -.04, EC = -.16, and EC = -.16 respectively). 

 
Figure 4.4  Unstandardized IQ variance components by SES index 3 
Unstandardized genetic and environmental variance components for IQ as a function of 
9-year family income (SES index 3). To the top right of each graph is a stacked plot 
showing the total variance in IQ as a function of SES. 
 

4.4.4 What is the most parsimonious account of the moderating effect of SES? 

Summarized in Table 4.7 are the best-fitting models at each age, for each of the three 

indices of SES. The best-fitting model as indicated by AIC is marked. It should be 

noted that at each age, in testing the significance of each parameter in the model, AIC 

suggests very little difference between each of the accounts of the data (see last column 

in Supplementary Table C.1, Supplementary Table C.2, and Supplementary Table C.3, 
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Appendix C). Accepting this small difference, three results are worth highlighting. First, 

the only significant GxE interaction with SES index 1 found for IQ at age 10 (higher 

heritability in low-SES families) disappears with the more proximal measures of SES at 

ages 7 and 9. Second, the best fitting model indicates no interaction of any kind at three 

ages for SES index 1 (ages 3, 7, and 12), and for two ages for SES index 2 (ages 7 and 

14). Third, moderation of the shared environmental component of IQ is indicated at 

four of eight ages for SES index 1, three of five ages for SES index 2, and four of four 

ages for SES index 3. Thus, the most consistent result across ages and across the three 

indices of SES is moderation of the influence of shared environment on children's 

intelligence - an environment-environment interaction. 
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Table 4.7  Summary of best fitting model (as indicated by AIC) for three indices of SES 
 
§Best fitting model SES index 1 SES index 2 SES index 3 
 2 3 4 7 9 10 12 14 7 9 10 12 14 9 10 12 14 
ace EA EC EE   EM                  
EA  = 0 |                 
EC  = 0                  
EE  = 0   |               
EA  = EC  = 0                  
EA  = EE  = 0     ~   ~  ~ ~ ~  ~ ~ ~ ~ 
EC  = EE  = 0      *            
EA  = EC = EE  = 0  _  _   _  _    _     
  �  �   �  �    �     
 

§Best fitting model as indicated by Akaike's information criterion (AIC). For example, EA = 0 means significant moderation of C and E; EA = EC = 0 means significant 
moderation of EE only; EA = EC = EE = 0 means no moderation of A, C, or E variance components. SES index 1 = a composite of parental education and occupation 
acquired when the TEDS twins were 18 months old; SES index 2 = a composite of parental education and occupation acquired when the TEDS twins were 7 years old; 
SES index 3 = family income measured when the TEDS twins were 9 years old; a, c, e = un-moderated genetic, shared, and non-shared environmental path coefficients;  
EA, EC, EE = moderated genetic, shared, and non-shared environmental path coefficients; EM = main effect of moderator on mean of IQ; | = includes C moderation; ~ 
= C moderation only; * = A moderation only; _ = no moderation. 
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4.4.5 Performance-of-the-continuous-moderator-model-with-simulated-data-

In order to estimate power of the continuous model to detect genetic moderation under 

conditions of genetic moderation only, we set parameters as follows; a = c = e = 1; βC = 

βE = 0. We simulated a range of genetic moderation (βA) between 0.05 and 0.50. We 

generated 1000 replicates for a range of sample sizes, with equal numbers of MZ and 

DZ twin pairs. Figure 4.5 shows that a sample size of about 2500 pairs of MZ and DZ 

twins each is needed to detect an effect size (genetic moderation) of between 0.25 and 

0.30 with 80% power. A genetic moderation of 0.25 translates to a difference in 

heritability of about 11% at -2SD of the moderator to about 53% at +2SD of the 

moderator (at the simulated parameter values). 

 
Figure 4.5 Power to detect GxE when only genetic moderation is simulated 
Power to detect the presence of a genetic moderation with the continuous moderator model 
(genetic moderation only simulated). Equal number of MZ and DZ twin pairs simulated (N  = 
500, means 500 MZ and 500 DZ pairs). N = sample size; MZ = monozygotic; DZ = dizygotic; 
βA = moderated element of genetic path coefficient 
 

Second, to explore how the model performed when moderation of all three terms is 

present, we simulated data with parameters set as follows: a = c = e = 1; and, βC = βE = 

βA = a range of values between 0.05 and 0.50. Again, we generated 1000 replicates for 

each sample and effect size, and estimated the model's ability to detect the presence of 

the genetic moderation only, i.e. a 1df test. Figure 4.6 is more informative about model 

performance than power per se. With equal moderation of the genetic, shared, and non-
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shared environmental components, above a moderation of 0.30 (moderated coefficient 

30% of the un-moderated coefficient, i.e., βA = 0.30*a) the model does not perform 

well when assessing the significance of just the genetic moderation (a 1df test). Purcell's 

(2002) simulations suggest that this would also be the case when testing only 

moderation of the shared environment. 

 
Figure 4.6 Power to detect GxE when genetic and environmental moderation are 
simulated 
Power to detect the presence of a genetic moderation with the continuous moderator model 
(equal genetic, shared and non-shared environmental moderation simulated). Equal number of 
MZ and DZ twin pairs simulated (N  = 500, means 500 MZ and 500 DZ pairs). N = sample 
size; MZ = monozygotic; DZ = dizygotic; βA, βC, βE = moderated elements of genetic, shared 
environmental, and non-shared environmental path coefficients 
 

The simulations summarized in Figure 4.5 and Figure 4.6 perhaps illustrate the best and 

worst case scenario for the continuous moderator model. In the case of genetic 

moderation only, the model performs well, and increasing sample size increases power 

to detect genetic moderation. However, as noted by Purcell (2002), the model does not 

do well at distinguishing between genetic and shared environmental moderation when 

both are present, and one proceeds by testing one term at a time. 

 

4.4.6 Discontinuous-analysis-of-low9SES-versus-high9SES-groups-

Because several studies explored GxE interaction by comparing ACE estimates, or twin 

correlations, in low-and high-SES groups (see Table 4.1), we compared results of our 

continuous moderator analysis with the results for a discontinuous analysis. We 

estimated variance components in low- and high-SES groups, and tested whether these 
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could be equated – a heterogeneity analysis. Although these discontinuous analyses have 

usually ignored variance differences between groups by using twin correlations (which 

standardize variances between groups), heterogeneity analysis provided components of 

raw variance which we present along with the standardized estimates to highlight the 

difference between components of raw and standardized variance. 

 We present results for age 9 IQ, which showed the most consistent C 

interaction across the three SES indices.  We split the sample into quartiles and 

compared the variance components derived for the top and bottom 25% of the SES 

distribution.  In Figure 4.7, rows 1, 2, and 3 show age 9 IQ components as a function of 

SES indices 1, 2, and 3 respectively; in the left column are the components of raw 

variance, in the right hand column are the standardized estimates. The unstandardized 

estimates show greater total variance for the low-SES groups and this excess variance 

can be attributed to greater shared environment for the low-SES group.  Shared 

environment is significantly greater in the low-SES group for SES indices 1 (low-SES 

C=.40 [95% confidence interval (CI)=.27-.53]; high-SES C=.19 [95% CI=.08-.31]) and 

2 (low-SES C=.48 [.34-.62]; high-SES C=.25 [.13-.37]). Equating C in low- and high-

SES groups significantly reduced model fit (SES index 1: ǻ-2lnL=5.45, ǻdf=1, 

ǻAIC=3.45, p=.02; SES index 2: ǻ-2lnL=3.572, ǻdf=1, ǻAIC=5.57, p=.02).  In 

contrast, heritability estimates are identical for the low- and high-SES groups. The 

standardized estimates also show greater C in the low-SES group for SES indices 1 and 

2; however, standardizing the variance components in the two groups artificially 

increases estimates of A in the high-SES group.   

 In summary, this discontinuous analysis of low-SES versus high-SES groups 

generally confirms the results of our continuous moderator analysis for the largest 

interaction effect, despite a great loss in power for the discontinuous analysis (Purcell, 

2002). 
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Figure 4.7  Age 9 IQ in low- and high-SES groups – heterogeneity analysis 
Variance components of 9-year IQ in low- and high-SES families (bottom and top 25% of SES 
distribution). Top, middle, and bottom rows show IQ as a function of 18-month, 7-year, and 9-
year SES respectively (SES indices 1, 2, and 3). In the left column are the unstandardized 
estimates; in the right column are the standardized estimates. 
 

 



Chapter 4. Gene-Environment Interaction 

 81 

4.5 Discussion 

We attempted to replicate the finding that parental SES moderates the heritability of 

children's intelligence, with a greater genetic contribution to IQ in high-SES families 

compared to low-SES families. In a large UK-representative sample, we did not find 

evidence for the presence of such a gene-environment interaction across childhood and 

adolescence. At only one of the eight ages, age 10, did we find a significant moderation 

of the genetic contribution to IQ. However, the GxE interaction was in the opposite 

direction from that predicted by the environmental disadvantage hypothesis, and 

moreover, was not significant with a more proximal measure of parental education and 

occupation. Instead, using three different indices of SES, at eight ages from infancy 

through adolescence the emerging pattern appears to be one of environment-environment 

interaction rather than gene-environment interaction: shared experiences explain more of 

the variance in children's performance on IQ tests in more disadvantaged backgrounds. 

 

Environmental moderation of shared experiences 

How can the present finding of SES moderation of the shared environmental effect on 

IQ, be reconciled to the reports of SES moderation of the genetic component of IQ? 

An increase in the contribution of C in lower-SES families would seem to require a 

reduction in the relative contribution of A because environmental and genetic variance 

components are complementary, and explain 100% of the variance. However, this is 

only the case for standardized components that are forced to sum to 100% regardless of 

total variance differences. Our most consistent finding is that total IQ variance is greater 

in lower-SES families, which must be caused by greater A, C, or E components of 

variance in lower-SES families.  Although the power demands are daunting to 

disentangle A and C sources of this increased variance in lower-SES families, data from 

our large sample suggests that the source is C rather than A. The genetic effect does not 

differ for low- and high-SES groups using unstandardized estimates (A, C, and E) that 

take into account the greater total variance in the low-SES group, but the relative 

contribution of genes – heritability or h2 = A/(A+C+E) – is lower in low-SES families 

because the shared environmental effect increases. 

 Children from low-SES families face many physical and psychosocial 

environmental handicaps for their cognitive development (Evans, 2004). For example, 

low-SES children are read to less, have fewer books, less access to computers, and tend 

to watch more television. Parents tend to be less responsive to children in low-SES 

families, participate less in their children's school activities, and are more authoritarian. 

Children from more disadvantaged backgrounds tend to experience more instability, 
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come from noisier, more crowded homes, and live in disadvantaged neighbourhoods 

with poorer facilities and inferior schools (for a recent review of the correlates of low-

SES see Evans, 2004). To the extent that children growing up together experience these 

environments similarly, their cumulative effects are captured by the C component in a 

twin model; experiences such as these seem likely to contribute to the observed greater 

variation in the cognitive ability performance of children from low-SES families. 

 

Sampling, age differences, and power to detect C 

What factors contribute to the inconsistency in the literature (Table 4.1)? We suggest 

three possibilities: sampling, age range, and power to distinguish moderation by A and 

C. First, a general concern is that sampling from different ranges of a putative 

moderator distribution (low, medium, or high levels), can lead to different conclusions 

about the presence or absence of a GxE interaction (Eaves, 2006). Factors that are 

additive across the entire range of a moderator may appear to be interacting within small 

windows at the extremes of a dose-response curve (Kendler, 2011). However, it is also 

possible a different gene-environment dynamic exists at the extremes of SES (Scarr, 

1992). Children from average- and high-SES families receive adequate educational 

resources, parent-child interaction, and orderly homes within safe neighbourhoods. 

However, below a certain threshold of environmental quality, children's experience 

could begin to have a negative impact on their cognitive ability. For example, the 

National Collaborative Perinatal Project oversampled families from an extremely 

impoverished background, with a quarter of the families on incomes below the poverty 

line (Turkheimer et al., 2003). Extreme levels of the environment, however, cannot be 

the sole reason for the inconsistent reports; the same team replicated the GxE 

interaction found in the National Collaborative Perinatal Project (Turkheimer et al., 

2003), in a sample representative of the US population (Tucker-Drob et al., 2010). 

 Differences between countries is another possible sampling issue for two 

overlapping reasons: the relationship of the SES measures to each other, and their 

relationship to IQ. First, the traditional measures of SES – family income, parental 

education, and occupational status (Bradley & Corwyn, 2002) – may differ in relation to 

each other by population group (Braveman et al., 2005) and may also depend on 

country-specific political and historical background (Uher, Dragomirecka, Papezova, & 

Pavlova, 2006). The extent to which income, education, and occupation successfully 

capture financial, human, and social capital and their effect on child development are 

discussed thoroughly elsewhere (Bradley & Corwyn, 2002). In the present study, we 

combined education and occupation to better capture a broader construct of SES, and 
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benefitted from being able to compare the measure at two ages; we treated income 

separately as we only had this measure from age 9 on. 

  Second, the magnitude and nature of the effect of SES on children's IQ could 

differ in different countries (Uher et al., 2006), such as the UK versus the US. Although 

this possibility has not been systematically tested, inspection of the studies in Table 4.1 

is consistent with the hypothesis of differences between European and US samples. 

Within the European studies, only one reported an increasing heritability of IQ with 

SES (Fischbein, 1980); this finding was based on estimates of twin correlations from a 

small sample. Among the US samples, with the exception of inconclusive results in a 

study with very small sample size (Scarr, 1981), the only non-replication of the greater 

heritability with increasing SES finding was in an older sample, with an age range of 16 

to 30 years (Grant et al., 2010).  

 We believe that sample age is a particularly important factor in the inconsistent 

findings. Because heritability increases and shared environmental influence decreases 

from childhood to adulthood (Davis et al., 2009; Haworth et al., 2009), developmental 

differences in moderation could be expected. Two of the four studies in Table 4.1 that 

do not find greater heritability of IQ in higher SES are in older samples, ranging in age 

from 16 to 49 years (Grant et al., 2010; van der Sluis et al., 2008). The third non-

replication was based on a small sample and unreliable estimates (Scarr, 1981). The last 

of the four non-replications involved an earlier analysis in the TEDS sample. This 

earlier analysis found no significant moderation of the heritability of age 4 IQ by SES, 

but did find moderation of the genetic effect by family chaos and parent-child 

communication (Asbury et al., 2005). Using the continuous moderator model, the 

present study suggests that SES does in fact moderate the relative contributions of A 

and C to variance in age 4 IQ – we suggest this is driven by a moderation of C. 

 Detecting modest shared environmental effects in the presence of larger genetic 

and non-shared environmental effects requires large twin samples (Martin, Eaves, 

Kearsey, & Davies, 1978). This difficulty is compounded by the fact that the shared 

environmental contribution to general cognitive ability diminishes with age. We suggest 

moderation of the shared environmental effect on IQ could go undetected in smaller 

samples and that it could be misinterpreted as genetic moderation given the low power 

of the continuous moderator model to distinguish between moderation of the genetic 

and shared environmental variance components. Even with a relatively large sample, as 

in the present study, comparing the fit of nested models yields little difference in their 

ability to explain the data, as indicated by the small AIC differences at every age and for 
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every SES index (Supplementary Table C.1, Supplementary Table C.2, and 

Supplementary Table C.3, Appendix C). 

 Several quantitative genetic approaches have been used to investigate 

moderation of the genetic effect on IQ. These include the heterogeneity model (e.g., 

splitting the sample into groups "low" versus "high" on the moderator), regression 

models with an interaction term (e.g. extended DF regression), and the continuous 

moderator model. The continuous moderator model is the most powerful approach, 

allowing the use of full information maximum likelihood to estimate potential 

moderation of latent variance components while simultaneously controlling for the 

confounding effects of gene-environment correlation. Because the interactions tested by 

the various approaches are statistical in nature, they are necessarily dependent on 

measurement scale, analytical model, and the assumptions underlying the model. 

Establishing a mechanism for moderation of the effect of genes, such as a change in 

gene expression, is several steps removed from finding moderation as a latent genetic 

population variance component (Kendler, 2011). Likewise, statistical moderation of a 

shared environmental component needs to be experimentally investigated to understand 

the real-world mechanisms behind the moderation. 

 

Conclusion 

The notion that heritability may be lower in lower-SES families is appealing, in part 

because of its environmental implications: If heritability is lower in lower-SES families, 

it suggests that environmental interventions might be more effective in boosting 

cognitive development for children in lower-SES families. The present study, which is 

based on a large UK-representative sample of children followed longitudinally, leads to 

a similar implication. Although the genetic influence on IQ is the same in lower-SES 

families, shared environmental influence appears to be greater in lower-SES families, 

suggesting that family-based environmental interventions might be more effective in 

these families. However, two further aspects of the results temper the policy 

implications of this finding. First, shared environmental influence is found in both 

lower- and higher-SES families and the difference in shared environmental influence 

between them is modest.  Second, shared environmental influences on IQ decline from 

childhood to adulthood so that these influences might not have an impact in the long 

run.
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5 Chaotic Homes and Disruptive Behaviour: Investigating Genetic 

Mediation and Direction of Causation‡ 

 

5.1 Abstract 

Chaotic home lives are correlated with behaviour problems in children. In the study 

reported here, we tested whether there was a cross-lagged relation between children's 

experience of chaos and their disruptive behaviours (conduct problems and 

hyperactivity-inattention). Using genetically informative models, we then tested for the 

first time whether the influence of household chaos on disruptive behaviour was 

environmentally mediated and whether genetic influences on children's disruptive 

behaviours accounted for the heritability of household chaos. We measured children's 

perceptions of household chaos and parent ratings of children's disruptive behaviour at 

ages 9 and 12 in a sample of 6,286 twin pairs from the Twins Early Development Study 

(TEDS). There was a phenotypic cross-lagged relation between children's experiences of 

household chaos and their disruptive behaviour. In genetically informative models, we 

found that the effect of household chaos on subsequent disruptive behaviour was 

environmentally mediated. However, genetic influences on disruptive behaviour did not 

explain why household chaos was heritable. 

 

5.2 Introduction 

Although the child's social environment – comprising day-to-day interactions between 

children and caregivers – has long been a focus of research on children's development, 

researchers have only more recently begun to study the child's physical environment 

(Evans, 2006; Evans, Gonnella, Marcynyszyn, Gentile, & Salpekar, 2005). This research 

has shown that children raised in chaotic homes – characterized by noise, over-

crowding, and a lack of order – tend to score lower on tests of cognitive ability and self-

regulatory capabilities, have poorer language abilities, and score higher on measures of 

problem behaviours and learned helplessness than children who are raised in less 

chaotic environments (Evans et al., 2005; Hanscombe, Haworth, Davis, Jaffee, & 

Plomin, 2011). These associations have been demonstrated prospectively and 

controlling for family-wide characteristics (e.g., income, maternal depression) that could 

potentially confound the association (Deater-Deckard et al., 2009; Dumas et al., 2005). 
                                                 
‡ Chapter adapted from §Jaffee, S.R., §Hanscombe, K.B., Haworth, C.M.A., Davis, O.S.P., & Plomin R. 
(2012). Chaotic homes and children's disruptive behaviour: A longitudinal cross-lagged twin study. 
Psychological Science. doi:10.1177/0956797611436349 
 
§Joint first authorship 
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 Researchers have identified a number of mechanisms by which being raised in 

chaotic homes could lead to relatively poor cognitive and behavioural outcomes in 

children. Parents in more crowded homes are less verbally responsive with their children 

than parents in less crowded homes, and this accounts for the relatively low complexity 

of their own speech and, plausibly, their children's speech (Evans, Maxwell, & Hart, 

1999). Children – like adults – may respond to household chaos by learning to filter out 

unwanted stimuli and may then generalize this strategy to other settings (e.g., the 

classroom) in which it is less adaptive.  

 Although household chaos may be a cause of children's poor developmental 

outcomes, it may also result from children's behaviour. On the face of things, this seems 

counterintuitive. Household chaos was originally conceptualized as a measure of the 

physical environment, comprising background noise, crowding, and foot traffic in the 

home (Wohlwill & Heft, 1987). However, features of the physical and social 

environment fall along a continuum, with one extreme reflecting inanimate, non-

responsive, background sources of stimulation (which are unlikely to be influenced by 

the child, e.g., traffic noise) and the other reflecting responsive, animate, and focal 

sources of stimulation (which is more likely to be influenced by the child, e.g., parental 

speech) (Wachs, 1989). Some features of the environment will therefore combine 

characteristically physical and social elements. For example, the television could be 

turned on at high volume because a child has ignored repeated requests to turn it down. 

The decibel level in a home could be high because children have not heeded requests to 

take noisy play outdoors.  

 The Confusion, Hubbub, and Order Scale (CHAOS; Matheny et al., 1995) is a 

widely-used measure of household chaos that combines physical and social elements.  

Items include, 'It's a real zoo in our home' and 'You can't hear yourself think in our 

home' – conditions that could be generated by a child's behaviour. Indeed, the CHAOS 

measure captures a broad construct of chaotic living conditions, characterized not only 

by factors such as noise and crowding, but also by qualities such as a lack of structure 

and routine (Evans et al., 2005). The fact that the CHAOS measure potentially captures 

effects of children on their environment raises questions about whether household 

chaos is a cause of children's disruptive behaviour or whether disruptive children create 

or perceive chaotic environments. 

 Recent quantitative genetics research has shown that although environmental 

factors largely explain why some children are more likely than others to perceive their 

homes as chaotic, genetic factors account for a significant 22% of the variation in these 

perceptions (Hanscombe et al., 2010). But can these factors be identified? This would 
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entail demonstrating that (a) some characteristic of the child predicts household chaos, 

(b) that characteristic is genetically influenced, and (c) genetic influences on that 

characteristic also account for genetic variation in household chaos. 

 We hypothesized that children's disruptive behaviour problems (e.g., conduct 

problems and hyperactivity-inattention), which are genetically influenced traits, would 

partially account for the heritability of household chaos. Given moderately strong 

correlations between social disadvantage and disruptive behaviour problems (Duncan & 

Brooks-Gunn, 1997), disruptive children may experience their environments as being 

noisy, crowded, and lacking in structure. Additionally, it is possible that children's 

disruptive behaviour partly creates an environment that is noisy, in which it is difficult 

to concentrate, and in which children refuse to adhere to rules or routines related to 

television viewing, bedtimes, or mealtimes.  

 Results from other studies have identified parent- and child-driven effects in the 

relationship between children's disruptive behaviours and aspects of the family 

environment, such as parent-child conflict (Burt, McGue, Krueger, & Iacono, 2005) and 

parental negativity (Larsson, Viding, Rijsdijk, & Plomin, 2008). Thus, we also 

hypothesize that household chaos would have an environmentally mediated effect on 

children's disruptive behaviour. 

 

5.3 Method 

5.3.1 Sample 

The TEDS sample is described in Chapter 2. The present study includes data from the 

9- and 12-year TEDS assessments. The 1994 and 1995 birth cohorts were tested at age 

9; all three birth cohorts were tested at age 12. In this study, the sample comprises 6286 

pairs (2255 monozygotic (MZ) pairs; 2051 dizygotic (DZ) same-sex pairs; 1980 DZ 

opposite-sex pairs) for whom data were available from at least one twin in a pair, on at 

least one measure. All available data were used in the genetic analyses described below 

using full information maximum likelihood estimation. 

 

5.3.2 Measures 

Children's reports of their experience of noise, disorder and routine at home 

(Confusion, Hubbub, and Order Scale (CHAOS);  Matheny et al., 1995), and parent 

reports or their conduct problems and hyperactivity-inattention (Strengths and 

Difficulties Questionnaire (SDQ); Goodman, 1997) were collected when the twins were 

9 and 12 years. The CHAOS and SDQ scales, and their psychometric properties at age 9 

and 12, are described in Chapter 2.  
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5.3.3 Analyses 

Phenotypic analyses 

To test the cross-lagged effect of CHAOS at age 9 on disruptive behaviour (conduct 

problems or hyperactivity-inattention) at age 12, we performed an ordinary least squares 

regression of the form, 

 

ୟܻୣ ଵଶ = ܾ + ܾଵ ୟܻୣ ଽ + ܾଶܺୟୣ ଽ +  ߝ
 

where Y represents disruptive behaviour and X represents CHAOS. To test for the 

reverse process, we reversed the variable order: CHAOS scores at age 12 were regressed 

on CHAOS scores at age 9 and disruptive behaviour at age 9. The coefficient b2 

measures the cross-lagged relation between disruptive behaviour and CHAOS; b1 

measures the effect within trait across time; b0 is the intercept. (This procedure was 

followed separately for conduct problems and hyperactivity-inattention.) 

 

Genetic analyses 

We used Cholesky decomposition models implemented in the OpenMx library (Boker 

et al., 2011), in the statistical computing environment R (R Development Core Team, 

2011), to decompose the covariance structure of the relationship between disruptive 

behaviours and CHAOS at ages 9 and 12. All available data were included in the models 

using full information maximum likelihood. Figure 5.1 shows a path diagram of the 

Cholesky decomposition used to model the cross-lagged effects of a pair of traits.  

 In a Cholesky decomposition, each subsequent observed variable is regressed on 

the latent A, C, and E variance components of all the previous observed variables. In 

Figure 5.1, V1 explains the total variance in Trait 1 (i.e., A1 + C1 + E1). Traits 2, 3, and 

4 are regressed on the latent variable V1; in other words, the variance component V1 

takes precedence in explaining variance in these three measured traits. V2 then explains 

the residual variance in Trait 2 (A2 + C2 + E2), that is, variance not correlated with V1. 

V2 also has next priority in explaining variance in Trait 3 and Trait 4. V3 and V4 explain 

residual variance in Traits 3 and 4, respectively, and are uncorrelated with each other or 

with V2 and V1. The total genetic variation in Trait 4 is estimated by squaring and 

summing the genetic paths (a41-a44) from the A components of V (A1 through A4) to 

Trait 4.  Similarly, shared and unique environmental variation in Trait 4 is estimated by 

squaring and summing the paths from all C and E components, respectively. 
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Figure 5.1  Four variable Cholesky decomposition 
Measured traits (Traits 1–4) are regressed on corresponding latent variables (V1–V4). V1 is the 
total variation in Trait 1 and takes precedence in explaining variance in Traits 2, 3, and 4. V2 is 
the residual variance in Trait 2 and has next priority in explaining variance in Traits 3 and 4. V3 
is the residual variance in Trait 3 and has next priority to explain variance in Trait 4. V4 explains 
residual variance in Trait 4. Each measured trait is regressed on all preceding latent variables, 
and all latent variables are uncorrelated. The total variation in Trait 4 is estimated by squaring 
and summing the paths from V1 through V4 to Trait 4 (v41 through v44, respectively). V1 
through V4 can be decomposed into additive genetic (A), shared environmental (C), and non-
shared environmental (E) components. For example, the total additive genetic variance in Trait 
4 would be explained by the squared and summed paths a41 through a44 from latent variables 
A1 through A4. 
 

To determine whether genetic influences on disruptive behaviours at age 9 account for 

genetic influences on CHAOS at age 12 (controlling for CHAOS at age 9), we ordered 

the traits in the Cholesky decomposition so that Trait 1 was CHAOS at age 9, Trait 2 

was disruptive behaviour at age 9, Trait 3 was disruptive behaviour at age 12, and Trait 4 

was CHAOS at age 12 (Figure 5.2). The degree to which the path between Trait 2 and 

Trait 4 accounted for the total genetic variation in CHAOS at age 12 – a422/(a412 + 

a422 + a432 + a442) – addresses the substantive research question. 

 

 
Figure 5.2  Origin of the genetic effect on CHAOS at age 12 
A1 through A4 = latent genetic variance components; a41 through a44 = partial (genetic) 
regression coefficients. Proportion of genetic variation in CHAOS at age 12 explained by 
(residual) genetic variation in disruptive behaviour at age 9 = a422/(a412 + a422 + a432 + a442). 
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Similarly, to determine whether environmental influences on CHAOS at age 9 

accounted for environmental influences on disruptive behaviours at age 12 (controlling 

for disruptive behaviour at age 9), we ordered the traits so that Trait 1 was disruptive 

behaviour at age 9, Trait 2 was CHAOS at age 9, Trait 3 was CHAOS at age 12, and 

Trait 4 was disruptive behaviour at age 12 (Figure 5.3). 

 

 
Figure 5.3  Origin of the environmental effect on disruptive behaviour at age 12 
C1 through C4 = latent shared environmental variance components; c41 through c44 = partial 
(shared environmental) regression coefficients; E1 through E4 = latent non-shared 
environmental variance components; e41 through e44 = partial (non-shared environmental) 
regression coefficients;  Disrupt. Behav. = disruptive behaviour. The proportion of shared 
environmental variation in disruptive behaviour at age 12 explained by (residual) shared 
environmental variation in CHAOS at age 9 = c422/(c412 + c422 + c432 + c442). The same 
calculation can be applied to the non-shared environment. 
 

The full bivariate cross-lagged model was achieved by running the Cholesky 

decompositions with these alternative trait orderings (Luo, Haworth, & Plomin, 2010).  

 

5.4 Results+

5.4.1 Descriptive-Statistics-

Descriptive statistics and analyses of variance are presented in Table 5.1. Across all 

measures, at both ages, there was no indication of substantial sex or zygosity 

differences: main and interactive effects of sex and zygosity accounted for 6% or less of 

the variance in CHAOS, conduct problems, or hyperactivity-inattention. Because 

similarity due to age and sex can contribute to phenotypic twin similarity and inflate 
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estimates of C, the measures were corrected for the effects of age and sex, as is standard 

practice in the analysis of twin data (McGue & Bouchard, 1984). 

 Phenotypic correlations among CHAOS and disruptive behaviour are shown in 

Table 5.2. Correlations within trait across time were moderate for CHAOS (0.45) and 

high for disruptive behaviours (conduct = 0.56; hyperactivity-inattention = 0.66); 

correlations between CHAOS and disruptive behaviour across trait and time were 

modest (0.20 - 0.24). 
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Table 5.1 Means for the Key Variables and Results of Sex u Zygosity Analyses of Variance (ANOVA) 
 

 n Overall Female Male MZ DZ 
ANOVA 

Sex (p) Zygosity (p) Sex u Zygosity (p) R2 

CHAOS age 9 3,136 4.46 (2.32) 4.31 (2.26) 4.63 (2.37) 4.44 (2.33) 4.48 (2.31) < .01 .79 .47 < .01 
Conduct age 9 3,264 1.26 (1.42) 1.10 (1.30) 1.44 (1.53) 1.27 (1.46) 1.25 (1.40) < .01 .49 .05 .02 
Hyper. age 9 3,261 3.18 (2.34) 2.74 (2.08) 3.68 (2.51) 3.27 (2.29) 3.13 (2.37) < .01 .03 .75 .04 
CHAOS age 12 5,501 4.01 (2.05) 3.91 (2.06) 4.12 (2.03) 4.01 (2.04) 4.01 (2.05) < .01 .79 .07 < .01 
Conduct age 12 5,592 1.32 (1.45) 1.21 (1.38) 1.44 (1.51) 1.30 (1.42) 1.33 (1.46) < .01 .50 .28 .01 
Hyper. age 12 5,591 2.81 (2.25) 2.30 (2.01) 3.38 (2.37) 2.82 (2.20) 2.80 (2.28) < .01 .38 .70 .06 
 
Standard deviations are given in parentheses. The statistics in this table were calculated using data from one randomly selected member of each twin pair. CHAOS = 
Confusion, Hubbub, and Order Scale; ANOVA = analysis of variance. 
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Table 5.2 Phenotypic (Pearson's) Correlations and Intra-class Twin Correlations 
 
 CHAOS age 9 Conduct age 9 Hyper. age 9 CHAOS age 12 Conduct age 12 Hyper. age 12 

Phenotypic correlationsa 
 Conduct age 9 .27 (3,109)      
 Hyper. age 9 .25 (3,106) .49 (3,261)     
 CHAOS age 12 .45 (2,489) .23 (2,587) .20 (2,584)    
 Conduct age 12 .21 (2,522) .56 (2,625) .35 (2,622) .26 (5,448)   
 Hyper. age 12 .24 (2,521) .42 (2,624) .66 (2,621) .24 (5,447) .47 (5,591)  

Intra-class correlations by sex and zygosity 
 MZ (all) .66 (.63–.69) .80 (.78–.82) .73 (.70–.76) .65 (.62–.67) .77 (.75–.79) .75 (.73–.77) 
 DZ (all) .52 (.49–.56) .49 (.46–.53) .15 (.11–.19) .56 (.54–.58) .49 (.46–.51) .27 (.23–.30) 
 MZ male .64 (.58–.69) .81 (.78–.83) .75 (.71–.78) .61 (.56–.65) .75 (.72–.78) .75 (.72–.78) 
 DZ male .55 (.48–.61) .52 (.45–.58) .16 (.08–.25) .57 (.52–.62) .50 (.44–.55) .24 (.18–.30) 
 MZ female .68 (.64–.72) .79 (.76–.81) .71 (.67–.75) .68 (.64–.71) .79 (.77–.81) .76 (.73–.78) 
 DZ female .56 (.50–.62) .57 (.52–.63) .15 (.07–.23) .61 (.57–.65) .55 (.50–.59) .30 (.25–.36) 
 DZ same sex .56 (.51–.60) .55 (.51–.59) .16 (.10–.22) .60 (.56–.62) .53 (.49–.56) .28 (.24–.32) 
 DZ opposite sex .49 (.44–.54) .44 (.39–.49) .14 (.08–.20) .52 (.49–.56) .44 (.40–.48) .25 (.21–.30) 
 
For phenotypic correlations, the number of observations is given in parentheses; for intra-class correlations, 95% confidence intervals are given in parentheses. Pearson's 
correlations were calculated using one randomly selected member of each twin pair. CHAOS = Confusion, Hubbub, and Order Scale.  
aAll phenotypic correlations were significant (p < .001) 
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5.4.2 Phenotypic Evidence for Cross-Lagged Effects 

Standardized parameter estimates from a series of ordinary least squares regression 

analyses showed evidence of cross-lagged effects. As described in the methods above, 

both age 9 measures were entered simultaneously. Both conduct problems (E = 0.07, p 

< 0.001) and hyperactivity-inattention (E = 0.08, p < 0.001) at age 12 were significantly 

predicted by CHAOS at age 9, even after controlling for the effects of conduct 

problems and hyperactivity-inattention at age 9. The reverse was also true: CHAOS at 

12 was predicted by conduct problems (E = 0.12, p < 0.001) and hyperactivity-

inattention (E = 0.09, p < 0.001) at age 9, even after controlling for the effects of 

CHAOS at age 9. These were analyses run separately for conduct problems and 

hyperactivity-inattention. 

 

5.4.3 Genetically Sensitive Analyses 

We performed full sex-limitation univariate analyses on disruptive behaviour and 

CHAOS at ages 9 and 12 to estimate the genetic and environmental variance 

components separately for males and females. Overall, the models estimating genetic 

and environmental parameters separately for males and females did not provide a 

significantly better fit to the data than the more parsimonious scalar model, which 

estimates one value of A, C and E for both males and females by accounting for sex 

differences in the phenotypic variance. Although sex-limitation modelling suggested a 

lower genetic (or shared environmental) correlation in opposite-sex pairs compared to 

same-sex pairs for hyperactivity-inattention at age 9, the ACE estimates for males and 

females were similar and had over-lapping confidence intervals. We explored this 

potential difference in the multivariate analyses described in the following section. ACE 

estimates derived from the univariate scalar models showed genetic and unique 

environmental factors accounted for significant variance in all three measures at 9 and 

12 years. Shared environmental factors accounted for significant variance in CHAOS 

and conduct problems at 9 and 12 years, but not hyperactivity-inattention.  

 

5.4.4 Multivariate Analyses of the Links between CHAOS and Disruptive Behaviour 

Because of the limited evidence of sex differences in univariate estimates, all 

multivariate analyses were conducted for males and females combined (with the 

inclusion of a scalar to account for phenotypic variance differences in boys and girls). 

However, we also applied the same multivariate analyses to males and females 

separately. Conclusions drawn from the separated-by-sex analyses are limited because 



Chapter 5. Genetic Mediation and Direction of Causation 

 95 

comparisons are made between groups (sexes) with different phenotypic variances. 

Nonetheless, we have noted below if the multivariate results changed when analysed 

separately by sex. Details of these sex-specific analyses are included in Supplementary 

Table D.1 and Supplementary Table D.2 in Appendix D. 

 The salient results from our multivariate modelling of the cross-lagged 

relationship between CHAOS and disruptive behaviour are presented below. 

Standardized (un-squared) partial regression coefficients show the effect of latent 

genetic components of disruptive behaviour on CHAOS (Figure 5.2) and latent 

environmental effects of CHAOS on disruptive behaviour (Figure 5.3). Supplementary 

Table D.3 and Supplementary Table D.4 in Appendix D include point estimates and 

95% confidence intervals for all path estimates.  

 

5.4.5 What Explains Genetic Influences on CHAOS at 12 Years? 

The total genetic variation in CHAOS at age 12 can be derived by squaring and 

summing the paths that lead from the genetic factors (A1 through A4) to CHAOS at 

age 12 (Figure 5.2). In the relationship between conduct problems and CHAOS, the 

total genetic variation on CHAOS at age 12 is given by the formula = 0.132 + 0.002 + 

0.032 + 0.342 = 0.1334, or 13%. Of this total genetic variation, about 13% was carried 

over from genetic influences on CHAOS at age 9 (0.132/0.1334), and 87% was specific 

to CHAOS at age 12 (0.342/0.1334). Less than 1% was explained by genetic influences 

on conduct problems at ages 9 and 12; these paths (from A2 and A3) were not 

statistically significant (i.e., 95% confidence intervals included 0). Similar to the results 

for conduct problems, genetic influences on hyperactivity-inattention at ages 9 and 12 

explained a non-significant 2% of the genetic variation in CHAOS at 12 years. When 

separated by sex, results were similar for both males and females and comparable to the 

combined analyses. 
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Figure 5.4  Genetic effects of disruptive behaviour on home chaos 
Separate models are shown for the effects of (a) conduct and (b) hyperactivity-inattention, with 
both analyses controlling for the genetic effects of CHAOS scores at age 9. A1 captures the total 
genetic variation in CHAOS scores at age 9; A2, A3, and A4 are the residual genetic variances in 
disruptive behaviour at age 9, disruptive behaviour at age 12, and CHAOS scores at age 12, 
respectively. Standardized (unsquared) path coefficients and 95% confidence intervals are 
shown. 
 

5.4.6 What)Explains)Environmental)Influences)on)Disruptive)Behaviour)Problems?)

Figure 5.5 shows the shared (C) and non-shared (E) environmental influences of 

CHAOS on disruptive behaviour at age 12, after accounting for the effects of disruptive 

behaviour at age 9. Shared environmental factors accounted for 28% of the variation in 

conduct problems at age 12. Shared environmental influences on CHAOS at ages 9 and 

12 explained 13% and 10% of this total variation, respectively. Results of the univariate 

scalar model showed that shared environmental influences on hyperactivity-inattention 

at 12 years were statistically non-significant. However, multivariate analyses – which 

benefit from the additional information of covariances between traits – suggested a 

small shared environmental component in hyperactivity-inattention at 12 (about 5%) 

whose only significant contribution was from shared environmental influences on 

hyperactivity-inattention at 9. 

 Although unique environmental factors accounted for 22% of the variation in 

conduct problems at age 12 and 25% of the variation in hyperactivity-inattention, 

virtually none of this variation was explained by unique environmental influences on 

CHAOS at ages 9 or 12. 
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Figure 5.5 Shared (C) and non-shared (E) environmental effects of home chaos on 
disruptive behaviour 
Separate models are shown for the effects on conduct at age 12 (a, c) and hyperactivity-
inattention at age 12 (b, d). All analyses controlled for the corresponding disruptive behaviour at 
age 9. C1 and E1 refer to the total environmental variance in disruptive behaviour at age 9; C2, 
C3, and C4 and E2, E3, and E4 refer to the residual environmental variance in CHAOS scores at 
age 9, CHAOS scores at age 12, and disruptive behaviour at age 12, respectively. Standardized 
(unsquared) path coefficients and 95% confidence intervals are shown. 
 

Sex-specific multivariate analyses suggested a non-significant difference between boys 

and girls in the shared environmental link between CHAOS at 9 and conduct problems 

at 12. However, given neither of these variables show univariate sex differences, 

separating the sample by sex may simply reduce power to detect environmental effects. 

 

5.5 Discussion*

Consistent with previous reports from TEDS, our analyses identified genetic and 

environmental influences on measures of household chaos, conduct problems, and 

hyperactivity-inattention at ages 9 and 12. The goal of our analyses was to identify the 

developmental origins of those genetic and environmental influences. Specifically, we 

tested whether genetic influences on disruptive behaviours at age 9 explained genetic 

variation in CHAOS at age 12 and whether environmental influences on CHAOS at age 

9 explained environmental variation in disruptive behaviours at age 12. 

 We found that shared environmental influences on CHAOS at age 9 uniquely 

accounted for 13% of the shared environmental variation in conduct problems at age 
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12, suggesting that some of the cross-lagged effect of CHAOS on subsequent conduct 

problems was environmentally mediated. This finding suggests that encouraging parents 

to adopt stable routines and to minimize extraneous noise in the house could 

complement other techniques used in parent-training programs to prevent children's 

disruptive behaviours, such as reinforcing children's prosocial behaviours and reducing 

the use of harsh, coercive discipline.  

 Although genetic influences on disruptive behaviours were substantial, they 

accounted for little of the genetic variation in CHAOS at age 12. Although other 

researchers have identified similarly small contributions of disruptive behaviours to the 

heritability of the family environment (Burt et al., 2005; Larsson et al., 2008), our 

findings could be due to how CHAOS was measured. The fact that CHAOS was 

reported by each twin in a pair generates two possibilities for what it means for CHAOS 

to be heritable. One possibility is that genetic influences on CHAOS reflect genetically-

based individual differences among children (e.g., disruptive behaviour problems) that 

elicit a chaotic environment. A second possibility is that genetic influences on CHAOS 

reflect genetically-based differences in children's perceptions of the environment. If the 

latter, then the degree to which children differ in their reports of household chaos may 

have more to do with how attentive or sensitive they are to their surroundings – 

characteristics that are not necessarily captured by children's disruptive behaviours as 

well as they might be by a measure of stress reactivity, for example. In reality, genetic 

influences on CHAOS are likely to reflect both genetically-based differences in 

children's behaviours as well as their perceptions. 

 Although the genetic cross-lagged analysis provides a direct estimate of the 

genetic and environmental influences on the cross-lagged paths – which was our goal – 

it does not allow for the simultaneous estimation of both cross-lagged paths in the same 

model (Luo et al., 2010). In contrast, the model developed by Burt et al. (2005) 

estimates a fully cross-lagged model of the relationship among the phenotypes. 

Although the cross-lagged model reported by Burt et al. (2005) has the advantage of 

being economical (in that it models the bi-directional relationship in a single run), it 

does not directly decompose the stability (across time, within trait) and cross-lagged 

(across time, across trait) effects into ACE components. Estimates of the ACE effects 

transmitted along stable and cross-lagged paths are simply scalar multiples of the ACE 

effects at the earlier time point, constrained to be in the ACE proportions at the earlier 

time point (Luo et al., 2010). Because we required direct estimates of genetic and 

environmental influences on the cross-lagged paths to answer our focal research 

questions, we opted to use the Cholesky approach. A second limitation was that the 
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internal consistency reliability of the CHAOS measures was only moderate. However, 

parent and child reports of CHAOS were highly correlated, providing additional validity 

for the measure. 

 In conclusion, although individual differences in reports of environmental 

confusion were partly genetic in origin, this genetic variance was not accounted for by 

the heritable component of children's disruptive behaviour. In addition, the effects of 

environmental confusion on children's disruptive behaviours were environmentally 

mediated. Noisy, crowded homes characterized by a lack of routine may undermine 

children's ability to regulate emotions and behaviour and may provide children with 

opportunities to act out. 
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6 Peer Victimization and Problem Behaviour: Origin of the Genetic 

Effect on a Heritable Environment 

 

6.1 Abstract 

Peer victimization is a heritable experience: genes influence children's likelihood of 

being bullied. Heritable psychosocial experience is thought to reflect genetically-

influenced behaviours that drive exposure to particular environments. We asked: if we 

examine a broad cross-section of heritable behaviours in adolescence – internalizing 

problems, externalizing problems, and general cognitive ability – just how much of the 

genetic effect on concurrent victimization could we account for? We assessed 5625 12-

year old twins from the UK population-representative Twins Early Development Study 

(TEDS) on a range of problem behaviours, general cognitive ability, and their self-

reported experiences of peer victimization. The victimization scale we used was a 16-

item continuous measure with four subscales: physical victimization, verbal 

victimization, social manipulation, and property damage. We found that, when 

considered separately, internalizing problems (e.g., depression, anxiety), externalizing 

problems (e.g., conduct problems, hyperactivity-inattention), and general cognitive 

ability, all accounted for part of the genetic variation in victimization. However, when 

considered together, these behaviours account for about half of the genetic variance in 

victimization. A substantial proportion of the genetic risk for victimization is shared 

with the genetic risk for internalizing and externalizing behaviours, and low cognitive 

ability. The present study cannot conclude that this particular set of behaviours causes 

bullying. Instead, given that the genetic effect on the experience of victimization is 

largely shared with this set of behaviours, the result is consistent with the idea that it is 

through heritable behaviours that psychosocial environmental experiences come to be 

heritable. The residual variation in victimization is partly due to genetic variance unique 

to victimization, and partly due to experiences that children growing up together do not 

share – non-shared environment. 

 

6.2 Introduction 

At school, being the victim of bullying by peers is a common experience. About 17% of 

school-aged children in a large US-representative sample reported being bullied in a 

recent World Health Organization survey (Nansel et al., 2001). The experience of being 

victimized is more than mild peer conflict: it involves regular attempts to cause injury or 

distress in an individual in a less powerful social role than the perpetrator(s) (Boulton & 

Underwood, 1992). Bullying can be direct (e.g., hitting, name calling) or indirect (e.g., 
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social exclusion, telling lies about an individual); it takes place in different contexts 

around the school which may not be visible to teachers (e.g., playgrounds, corridors); 

and it has different direct/ indirect patterns in primary and secondary school (Rivers & 

Smith, 1994). The most remarkable fact however, is that the experience of peer 

victimization is heritable: whether or not a child is victimized by their peers is influenced 

by their genes (Ball et al., 2008; Beaver, Boutwell, Barnes, & Cooper, 2009). 

 In a UK-based study of 10-year-old same-sex twins (N = 1,116 pairs), mothers 

reported whether each of their children were bullied within the last two years, and if as a 

result, they suffered physical or psychological harm. From these reports a categorical 

severity of victimization was attributed to each twin in a pair: never, moderately or 

severely victimized. Comparing the similarity of the identical twins on their severity of 

victimization to the similarity of the non-identical twins, suggested that the underlying 

risk to victimization was highly heritable – about 70% (Ball et al., 2008). This finding 

has been replicated in a smaller US sample (N = 536 pairs), across a wider age range 

(grade 7–12, age 12–18), albeit with a more moderate heritability – about 45% (Beaver 

et al., 2009). 

 Peoples' characteristics and behaviours in the social world, whether they are 

conscious or not, direct them towards particular experiences (Scarr & McCartney, 1983). 

When we measure environmental experiences, they invariably show genetic influence 

(Kendler & Baker, 2007). This phenomenon – gene-environment (GE) correlation – 

was the focus of Chapter 3. In this chapter we direct our attention to the origin of the 

heritable effect on the environment – the heritable behaviours that underlie the 

exposure to particular experiences. If heritable behaviour drives experience, can we map 

the behavioural context within which children are victimized? To what extent will a 

concurrent measure of the known behavioural correlates of victimization, and the 

experience of victimization, be accounted for by a common set of genes? 

 Peer victimization has been associated with a variety of maladaptive behaviours. 

A recent review of the literature on peer victimization and mental health problems in 

childhood found that bullied children show increased levels of both internalizing (e.g. 

anxiety, depression) and externalizing (e.g. conduct problems) behaviours (Arseneault, 

Bowes, & Shakoor, 2010). In a large non-clinical sample of children (N=6437), the risk 

for non-clinical psychotic symptoms reported at age 12 showed a 2-fold increase among 

children bullied between the ages of 8 and 10 (Schreier et al., 2009). Bullied children's 

academic adjustment is also affected. Victimized children perceive their classrooms as 

unsupportive environments and generally like their school less than children who are 

not bullied (Wang, Iannotti, & Luk, 2011). Although the relationship between peer 
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victimization and problem behaviour is typically studied in the direction victimization 

Æ problem behaviour, there are studies that have looked at early behaviour problems 

predicting later victimization. For example, teacher ratings of internalizing, externalizing, 

and hyperactive-inattentive behaviour of children age 5-6 predicted victimization three 

years later, even after controlling for concurrent behaviour problems (Schwartz, 

McFadyen-Ketchum, Dodge, Pettit, & Bates, 1999). 

 In the present study, we shifted perspective to answer a different question: 

Instead of asking whether a particular behaviour is the cause or consequence of peer 

victimization, we investigated to what extent a single set of pleiotropic genes 

contributed to risk for victimization and a cross-section of correlated behaviours – 

internalizing, externalizing, and general cognitive ability. Using child reports of a 

continuous measure of peer victimization, we aimed to establish first the correlational 

structure between internalizing behaviours, externalizing behaviours, general cognitive 

ability and peer victimization in a UK-representative sample of adolescents. Second, 

with the use of multivariate twin modelling, we assessed the extent to which these 

heritable behaviours share a common genetic liability with peer victimization. We 

hypothesized that this cross-section of heritable behaviour would account for a 

significant proportion of the heritability of victimization. 

 

6.3 Method 

6.3.1 Sample 

The TEDS sample is described in Chapter 2. All three cohorts, 1994-1996, were 

included in the 12-year assessment. The analyses in this chapter are based on a 

subsample of 5625 twin pairs (2035 MZ, 3590 DZ) for whom we had victimization data 

for at least one twin in a pair, on at least one of the victimization subtypes. In the 

analyses described below, we made use of all available data using full information 

maximum likelihood procedures. 

 

6.3.2 Measures 

The analyses described in this chapter used child-reported peer victimization measured 

with the Multi-Dimensional Peer Victimization Scale (Mynard & Joseph, 2000).  

General cognitive ability at age 12 was calculated as the unit-weighted sum of two verbal 

and two nonverbal tests: WISC-III-PI Information Multiple Choice (General 

Knowledge) and WISC-III-PI Vocabulary Multiple Choice (Kaplan et al., 1999), and 

Raven's Progressive Matrices (Raven et al., 1996) and WISC-III-UK Picture Completion 

(Wechsler, 1992) respectively. Internalizing and externalizing behaviours were measured 
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with child-rated depressive symptoms on the Moods and Feelings Questionnaire (MFQ; 

Angold et al., 1995); parent-rated conduct and peer problems, anxiety and inattention 

assessed with the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997); 

parent-reported autistic-like traits assessed with the Childhood Asperger Syndrome Test 

(CAST; Scott et al., 2002);  and parent-reported antisocial behaviour measured with the 

Antisocial Process Screening Device (APSD; Frick & Hare, 2001). The content, scale 

construction, and psychometric properties of these questionnaires are described in detail 

in Chapter 2. All model-fitting analyses were performed on the age- and sex- corrected 

measures transformed to a standard normal distribution (Lehmann, 1975). 

 

6.3.3 Analyses 

We examined the twin correlations for victimization and the behavioural measures, and 

the correlational structure between them, in the open-source statistical computing 

language R (R Core Team, 2011). Using the classical twin design, we fitted a series of 

multivariate models to each combination of behavioural scale and victimization 

outcome, and to all the behavioural correlates and victimization simultaneously. Twin 

model-fitting analysis uses matrix algebra to specify the correlational structure (between 

twins and between traits) in terms of genetic and environmental parameters (the model). 

Chapter 2 describes the univariate ACE model and the multivariate extension used in 

this chapter, the Cholesky decomposition. We used the R package OpenMx (Boker et 

al., 2011) to derive the maximum likelihood estimates of the genetic and environmental 

variance components. 

 

6.4 Results 

Results presented below are from analyses performed on all traits transformed to a 

standard normal distribution, using a rank-based transformation (Lehmann, 1975). 

Structural equation twin modelling on continuous data assumes that the data are 

(multivariate) normally distributed; transformation to a normal distribution is consistent 

with the idea that underlying the observed trait is a normally distributed liability. 

 

6.4.1 Descriptive Statistics 

The means and standard deviations by sex and zygosity of victimization and the set of 

measured behaviours are shown in Table 6.1. As expected with a very large sample, even 

relatively small differences are found to be significant. For example, among the 

victimization subscales, physical, social and property damage show significant mean 

differences by sex (p < 0.01). Cohen's d (a measure of effect size; Cohen, 1988) suggests 
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only physical victimization and property damage show small to medium size differences 

in mean between males and females. Mean differences by sex and zygosity are small for 

all other measures. 

 Behavioural genetic analyses are concerned with individual differences, or 

variation. As such, twin model fitting is performed on the residual of each trait after 

correcting for any mean effect of sex.  Potential sex differences in the genetic and 

environmental factors affecting the variation in each trait were explicitly tested for and 

are reported in the univariate twin model fitting described below.
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Table 6.1 Means, standard deviations, and test of mean differences by sex and zygosity 
 

 
All  Sex    Zygosity   

    
 F M    MZ DZ   

 
n m sd  m sd m sd *p d  m sd m sd p d 

Physical 5600 0.00 1.00  0.17 0.68 -0.19 1.24 <0.01 0.37  0.04 0.97 -0.02 1.01 0.03 0.06 
Verbal 5601 0.00 1.00  0.07 0.92 -0.08 1.07 0.51 0.14  0.00 0.98 -0.01 1.00 0.72 0.01 
Social 5600 0.01 1.00  -0.05 1.09 0.08 0.88 <0.01 -0.14  0.04 1.01 0.00 1.00 0.12 0.04 
Property 5600 0.00 1.01  0.21 0.72 -0.24 1.21 <0.01 0.46  0.06 1.00 -0.04 1.01 0.00 0.09 
Vocabulary 4364 0.01 0.99  0.02 1.01 -0.02 0.96 0.34 0.04  -0.03 0.99 0.03 0.98 0.04 -0.06 
Gen. Knowledge 4667 0.00 1.01  0.03 1.03 -0.04 0.98 0.22 0.07  -0.09 0.99 0.05 1.02 <0.01 -0.14 
Pic. Completion 4243 0.00 1.00  0.01 0.98 -0.01 1.02 0.46 0.02  -0.05 1.02 0.03 0.99 0.01 -0.08 
Raven's Matrices 4528 0.00 1.01  -0.01 0.99 0.00 1.03 0.96 0.00  -0.04 0.99 0.02 1.02 0.10 -0.05 
Hyperactivity 5581 0.00 0.99  -0.04 0.92 0.06 1.06 <0.01 -0.10  -0.02 1.00 0.02 0.99 0.19 -0.04 
Conduct 5581 0.00 0.99  0.05 0.87 -0.05 1.11 0.03 0.11  -0.01 1.01 0.01 0.98 0.41 -0.02 
Peer Problems 5581 0.00 0.99  0.13 0.84 -0.14 1.12 <0.01 0.28  0.00 1.01 0.01 0.99 0.70 -0.01 
Anxiety 5581 0.01 0.99  -0.06 1.10 0.08 0.86 <0.01 -0.14  0.00 1.02 0.02 0.98 *0.65 -0.02 
Depression 5549 0.01 1.01  0.03 0.95 -0.02 1.06 0.33 0.05  0.02 1.02 0.00 1.00 0.55 0.02 
Aut. Non-social 5574 0.00 1.01  0.14 0.87 -0.16 1.12 <0.01 0.30  -0.07 1.00 0.04 1.01 0.00 -0.11 
Aut. Social 5580 0.00 0.99  0.01 0.88 -0.01 1.10 0.35 0.02  -0.08 0.99 0.05 0.99 0.00 -0.12 
Callous 5584 0.00 1.00  0.03 0.95 -0.03 1.05 0.25 0.07  0.02 1.00 -0.01 1.00 0.36 0.03 
Narcissism 5582 0.01 1.00  0.13 0.82 -0.13 1.15 <0.01 0.26  0.00 0.98 0.01 1.01 0.63 -0.01 
Impulsivity 5569 0.00 1.00  -0.02 0.91 0.03 1.10 <0.01 -0.06  0.00 1.01 0.00 1.00 0.98 0.00 
                  
 
Descriptives based on a random selection of one member of each twin pair. Grey highlight indicates victimization subscales. F = female; M = male; MZ = monozygotic; 
DZ = dizygotic; n = sample size; m = mean; sd = standard deviation; p = p-value associated with a mean difference test (* = non-parametric test); d = effect size 
(Cohen's d): 0.20-0.30 small, about 0.50 medium, > 0.80 large. - indicates males > females.  
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6.4.2 Phenotypic structure 

The phenotypic correlations between victimization and the behavioural subscales are 

shown in Table 6.2. All behaviour-victimization correlations are significant except for 

the victimization and the non-verbal cognitive ability subscale picture completion and 

the CAST social subscale. The correlations between the victimization and cognitive 

ability subscales are negative and small (-0.05 – -0.12); correlations with all other 

behaviours are positive and small to moderate (SDQ: 0.18 – 0.35, MFQ: 0.33 – 0.38, 

CAST: 0.10 – 0.14, APSD: 0.06 – 0.19). Correlations among the victimization subscales 

are positive and moderate to high (0.45 – 0.61). 

 

Table 6.2 Pearson's phenotypic correlations between victimization and behavioural 
measures 
 

 PHYSICAL VERBAL SOCIAL PROPERTY 
Physical 1.00 0.61 0.47 0.53 
Verbal 0.61 1.00 0.57 0.50 
Social 0.47 0.57 1.00 0.45 
Property 0.53 0.50 0.45 1.00 
Vocabulary -0.06 -0.06 -0.10 -0.05 
Gen. Knowledge -0.06 -0.05 -0.12 -0.07 
Pic. Completion -0.02 (0.16) -0.02 (0.34) -0.06 -0.02 (0.26) 
Raven's Matrices -0.06 -0.07 -0.10 -0.05 
Hyperactivity 0.20 0.23 0.24 0.18 
Conduct 0.26 0.29 0.27 0.23 
Peer Problems 0.33 0.35 0.28 0.30 
Anxiety 0.21 0.29 0.29 0.20 
Depression 0.34 0.38 0.38 0.33 
Aut. Non-social 0.14 0.13 0.10 0.13 
Aut. Social 0.03 (0.02) 0.02 (0.22) 0.01 (0.35) 0.02 (0.24) 
Callous 0.11 0.09 0.10 0.06 
Narcissism 0.16 0.17 0.14 0.14 
Impulsivity 0.15 0.18 0.19 0.14 
 
All correlations are significant at p < 0.01 except where shown in parentheses. Grey highlight 
indicates correlations among victimization subscales. 
 

A correlation matrix provides accurate point estimates of pairwise correlations but gives 

little sense of the overall relationship among the variables. Visual analysis of quantitative 

information provides a complementary tool to standard summary statistics (Davis & 

Plomin, 2010). To get an impression of the overall relationship among the measured 

variables, we used a dendrogram to represent the phenotypic similarity (or more 

precisely dissimilarity) and a scatterplot of the result of a multi-dimensional scaling 

(MDS) to two dimensions (Figure 6.1). We calculated dissimilarities among the variables 
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by subtracting every element in the correlation matrix from 1. MDS maps these 

dissimilarities to a set of points such that the distance between the points is 

approximately equal to the trait dissimilarities – in this case, reducing the 18 traits to 

positions in two 2-dimensional space. In a dendrogram, more dissimilar traits branch off 

from each other earlier (or share a more distant root). In Figure 6.1, the general 

cognitive ability subtypes are most dissimilar from victimization and the other 

behaviours: in the scatterplot, the first axis separates victimization, peer problems, 

internalizing and externalizing behaviours, from general cognitive ability; this is also the 

earliest branch in the dendrogram. The four victimization subtypes are most closely 

related to peer problems, and the internalizing traits of depression and anxiety. The 

second MDS axis separates victimization, peer problems and internalizing behaviours, 

from the externalizing, autistic-like and hyperactive behaviours. The dendrogram also 

shows peer problems and internalizing behaviours share the most recent branch with 

the victimization subtypes. 
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Figure 6.1  Phenotypic similarity of victimization and measured behavioural correlates 
The figures provide a complementary account of the correlational structure among the variables. On the left is a scatterplot of the result of a multidimensional scaling; 
distance between points corresponds to dissimilarity between the variables. On the right a dendrogram; more distant relationships branch off earlier. Note. Distances are 
derived from a correlation matrix: a correlation of +1 is most "similar", and –1 most ''dissimilar". 
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6.4.3 Univariate twin modelling 

Twin intra-class correlations (coefficients of twin similarity; Shrout & Fleiss, 1979) for 

the subscales of victimization and each behavioural measure are presented in Table 6.3. 

Heritability is estimated by doubling the difference between the MZ and DZ 

correlations – victimization and all the other behavioural traits show substantial genetic 

influence. 

 

Table 6.3  Intra-class twin correlations 
 
 ICC (95 % CI) 
 MZ  DZ 
Physical 0.48 (0.42-0.52)  0.28 (0.25-0.31) 
Verbal 0.55 (0.52-0.58)  0.32 (0.29-0.35) 
Social 0.53 (0.50-0.56)  0.28 (0.25-0.31) 
Property 0.44 (0.41-0.48)  0.22 (0.19-0.25) 
Vocabulary 0.43 (0.39-0.47)  0.30 (0.26-0.33) 
Gen. Knowledge 0.57 (0.54-0.60)  0.43 (0.40-0.46) 
Pic. Completion 0.48 (0.44-0.52)  0.33 (0.30-0.37) 
Raven's Matrices 0.49 (0.45-0.52)  0.30 (0.27-0.34) 
Hyperactivity 0.47 (0.44-0.51)  0.18 (0.15-0.21) 
Conduct 0.46 (0.43-0.50)  0.24 (0.21-0.27) 
Peer Problems 0.43 (0.39-0.47)  0.25 (0.22-028) 
Anxiety 0.42 (0.38-0.46)  0.19 (0.16-0.22) 
Depression 0.49 (0.46-0.53)  0.34 (0.31-0.37) 
Aut. Nonsocial 0.71 (0.68-0.73)  0.31 (0.28-0.34) 
Aut. Social 0.72 (0.70-0.74)  0.34 (0.31-0.36) 
Callous 0.86 (0.85-0.87)  0.69 (0.67-0.71) 
Narcissism 0.78 (0.76-0.80)  0.49 (0.47-0.52) 
Impulsivity 0.81 (0.79-0.82)  0.46 (0.44-0.49) 
 
ICC = intra-class twin correlation; 95% CI = 95% confidence interval 
 

We also performed univariate sex-limitation modelling which provides a maximum 

likelihood test of the presence of quantitative and qualitative sex differences. Sex 

limitation modelling is described in Chapter 2, under heterogeneity models. For all age 

12 variables a scalar model fitted the data best (or no worse than the full sex-limited 

model). In other words, once the phenotypic variance difference between sexes was 

taken into account, we found that the same genetic and environmental factors affected 

both males and females, and to the same degree (full univariate sex-limitation result for 

the victimization subscales are included in Supplementary Table E.1, Appendix E). 

Table 6.4 shows the univariate genetic and environmental variance components for each 

of the victimization subcales. 
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Table 6.4  ACE variance components for victimization from the univariate model 
 

 Physical Verbal Social Property 
A 0.27 (0.18-0.36) 0.37 (0.28-0.45) 0.42 (0.34-0.51) 0.31 (0.22-0.41) 
C 0.22 (0.15-0.29) 0.18 (0.11-0.25) 0.09 (0.02-0.16) 0.11 (0.04-0.19) 
E 0.51 (0.48-0.54) 0.45 (0.43-0.48) 0.48 (0.46-0.52) 0.57 (0.54-0.61) 

     
 
A, C, E = standardized genetic, shared, and non-shared variance components 
 

 

6.4.4 How much genetic variation in victimization is shared with problem behaviour? 

In the multivariate analyses described below we also included a scalar multiplier to 

account for phenotypic variance differences between sexes. This allowed the estimate of 

a single A, C and E covariance matrix for males and females. When we modelled the 

covariation between each behavioural scale and peer victimization separately, each 

accounted for a small fraction of the genetic component of peer victimization (Table 

6.5). A Cholesky decomposition of a unit-weighted composite of each scale (IQ, SDQ, 

MFQ, CAST, APSD) simultaneously predicting a unit-weighted composite of 

victimization, showed that victimization shares a large common genetic liability with the 

behavioural predictors. Expressing the residual genetic variation in the victimization 

composite (0.22, 95% CI = 0.14-0.29) as a fraction of the total genetic variation in 

victimization (0.38, 95% CI = 0.31-0.46) shows that a little under half of the genetic 

variation is accounted for by the measured behavioural scales (1.00 – 0.22/0.38 = 0.42). 

This does not imply causation – the variables in the multivariate model could have been 

arranged in any order, to provide a mathematically equivalent solution. Choosing to 

place victimization last simply draws attention to the genetic variation unique to 

victimization, if any, after accounting for genetic risk in common with concurrent 

heritable behaviour. 
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Table 6.5  Residual genetic variation in victimization from a Cholesky decomposition 
 
 Residual genetic variation 
Behaviour Physical 

Victimization 
Verbal 
Victimization 

Social 
Manipulation 

Property 
Damage 

IQ 0.22 (0.00-0.32) 0.12 (0.00-0.19) 0.19 (0.00-0.22) 0.10 (0.00-0.17) 
SDQ 0.15 (0.04-0.23) 0.11 (0.04-0.17) 0.19 (0.11-0.22) 0.10 (0.00-0.17) 
MFQ 0.17 (0.08-0.25) 0.14 (0.07-0.19) 0.20 (0.15-0.22) 0.11 (0.00-0.17) 
CAST 0.25 (0.17-0.33) 0.12 (0.04-0.19) 0.18 (0.10-0.22) 0.12 (0.00-0.18) 
APSD 0.23 (0.15-0.31) 0.15 (0.07-0.20) 0.20 (0.15-0.22) 0.11 (0.00-0.17) 
 
In each row is the result of a Cholesky decomposition with the subscales of the behaviour scale 
listed in the first column predicting variation in each of the four victimization subscales – only 
residual genetic variation in the victimization subscales is shown. IQ = general cognitive ability; 
SDQ = Strengths and Difficulties Questionnaire; MFQ = Moods and Feelings Questionnaire; 
CAST = Childhood Asperger Syndrome Test; APSD = Antisocial Process Screening Device 
 

 

The Cholesky decomposition can also be converted to the equivalent correlated factor 

solution. The correlated factor solution gives a correlation between corresponding latent 

genetic (and environmental) variance components, for every pair of traits. A genetic 

correlation can be interpreted as the probability that genes found to be associated with 

one trait will be associated with the other. Table 6.6 shows the genetic correlations 

between each of the behavioural measures and the peer victimization subscales. In 

general, the genetic correlations in Table 6.6 track the phenotypic correlations (Table 

6.2). For example, they are negative and small (or not significant) except notably with 

the social manipulation and vocabulary (-0.23) and general knowledge (-0.30), and 

property damage and general knowledge (-0.25). The IQ subscales have a negative 

correlation with victimization (-0.09 – -0.30). The behavioural problems phenotypes are 

positively correlated with victimization, the largest correlation – besides the peer 

problems subscale – is with the internalizing behaviour depression (0.40 – 0.60). It was 

expected that peer problems would have a high correlation with victimization (0.64 with 

verbal victimization). Nonetheless, the range of genetic correlations between peer 

problems and the other victimization subtypes (0.48 – 0.55) was no more than the 

relationship between those victimization subtypes and conduct problems (0.40 – 0.55) 

or depression (0.40 – 0.60), suggesting the peer problems scale did not capture the full 

victimization experience. The genetic correlations in Table 6.6 do not show the genetic 

variation in victimization independent of the behavioural traits – this is shown by the 

residual variation in the victimization in the Cholesky decomposition. The genetic 

correlations do however give a sense of the genetic landscape (similar to the phenotypic 

landscape in Figure 6.1) between victimization and the measured behavioural scales 
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simultaneously. A Cholesky decomposition answers the key question of how much of 

the genetic variation in victimization is independent of the behavioural measures, but, 

because of the built in order of the model, it does not at a glance give a picture of the 

genetic back background.   
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Table 6.6 Genetic correlations among measures of general cognitive ability, internalizing and externalizing behaviour, and peer victimization at age 12 
 
  PHYSICAL VERBAL SOCIAL PROPERTY 
Physical 

 
0.78 (0.67-0.90) 0.68 (0.56-0.80) 0.77 (0.60-0.94) 

Verbal 0.78 (0.67-0.90) 
 

0.65 (0.56-0.75) 0.60 (0.58-0.72) 
Social 0.68 (0.56-0.80) 0.65 (0.56-0.75) 

 
0.65 (0.63-0.77) 

Property 0.77 (0.60-0.94) 0.60 (0.58-0.72) 0.65 (0.63-0.77) 
 

Vocabulary -0.09 (-0.38-0.17)* -0.12 (-0.35-0.11)* -0.23 (-0.45--0.02) -0.22 (-0.26-0.04)* 

Gen. Knowledge -0.23 (-0.37-0.01)* -0.21 (-0.41--0.01) -0.30 (-0.50--0.11) -0.25 (-0.48--0.02) 

Pic. Completion 0.09 (-0.20-0.38)* 0.15 (-0.09-0.40)* -0.04 (-0.25-0.19)* 0.08 (-0.18-0.37)* 
Raven's matrices -0.03 (-0.25-0.20)* -0.11 (-0.31-0.08)* -0.15 (-0.33-0.01)* 0.01 (-0.22-0.21)* 
Hyperactivity 0.55 (0.39-0.74) 0.51 (0.39-0.65) 0.46 (0.35-0.57) 0.40 (0.27-0.55) 
Conduct 0.37 (0.19-0.56) 0.41 (0.26-0.56) 0.39 (0.26-0.55) 0.26 (0.08-0.43) 
Peer Problems 0.50 (0.31-0.71) 0.64 (0.62-0.82) 0.48 (0.32-0.66) 0.55 (0.36-0.71) 
Anxiety 0.39 (0.19-0.59) 0.49 (0.34-0.65) 0.37 (0.22-0.50) 0.35 (0.17-0.53) 
Depression 0.60 (0.41-0.80) 0.55 (0.39-0.72) 0.47 (0.32-0.61) 0.40 (0.22-0.58) 
Aut. Non-social 0.09 (-0.02-0.20)* 0.11 (0.03-0.21) 0.16 (0.08-0.24) 0.15 (0.12-0.24) 
Aut. Social 0.03 (-0.08-0.16)* -0.04 (-0.13-0.06)* -0.01 (-0.10-0.08)* -0.03 (-0.14-0.07)* 
Callous 0.01 (-0.13-0.15)* 0.04 (-0.08-0.15)* 0.02 (-0.09-0.13)* 0.08 (0.03-0.22) 
Narcissism 0.13 (0.01-0.26) 0.11 (0.01-0.21) 0.12 (0.03-0.22) 0.02 (-0.10-0.14)* 
Impulsivity 0.25 (0.14-0.38) 0.23 (0.14-0.33) 0.25 (0.17-0.34) 0.17 (0.07-0.29) 
* = Confidence intervals include zero, indicating non-significant genetic correlations  
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6.5 Discussion 

In the present study we found that peer victimization at age 12 had a small to moderate 

positive correlation with a range of problem behaviours including internalizing and 

externalizing traits: more behaviour problems correlated with greater peer victimization. 

General cognitive ability showed a small negative correlation with victimization – lower 

general cognitive ability was associated with greater peer victimization. Phenotypically, 

in the present sample at age 12, victimization appears to be more closely related to 

internalizing behaviours. Our central aim was to account for the genetic component of 

the psychosocial experience of peer victimization. We found that each of the 

behavioural scales considered separately explained a small fraction of the genetic 

variation in victimization. When considered simultaneously, the heritable behaviours 

accounted for about half of the genetic effect on victimization. 

 Using a set of behavioural correlates we have shown that in adolescence, the 

heritable psychosocial experience of victimization has substantial common genetic risk 

with a subset of concurrent behaviour problems. While this study cannot conclude that 

the set of measured behaviours cause victimization, the observation of overlapping 

genetic factors is consistent with the idea that it is through heritable behaviours that 

particular genotypes come to be associated with particular environments (Scarr & 

McCartney, 1983).  Genetic mediation between an environmental experience and a 

behavioural outcome, suggests genetically-driven exposure to experience (Kendler & 

Eaves, 1986; Plomin et al., 1977). 

 The present study suggests that when considering the effects of peer 

victimization in childhood on mental health (Arseneault et al., 2010), as well as the 

effects of problem behaviours on the likelihood of victimization (Schwartz et al., 1999), 

we have to take into account the genetic confound. The behavioural context of 

victimization – internalizing, externalizing behaviours, hyperactivity-inattention, and 

poor academic adjustment – is at least in part the result of an underlying genetic liability. 

Do genetic factors predispose some children to actively behave in a way that makes 

them more vulnerable to bullies, do their heritable behaviours evoke bullying behaviour 

in their peers, or are they more inclined to feel powerless and perceive particular 

experiences as acts of bullying? These remain open questions to be tested. However, 

recognizing that both the genetic and environmental components of behaviour are 

mutable, genetic mediation may suggest new avenues to victimization intervention – 

addressing problem behaviours may be a complementary strategy to current bullying 

interventions. One possibility might be friendship networks. Although choice of friends 

is almost certainly also under genetic influence (Fowler, Settle, & Christakis, 2011), 
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fostering larger friendships groups or buddy systems might support children at risk for 

victimization. Friendship has been shown to moderate the effects of problem behaviour 

on likelihood of peer victimization (Schwartz et al., 1999). 

 The analyses we performed were not intended to conclude that the particular set 

of cognitive, internalizing, and externalizing behaviours measured here cause bullying. 

Instead, establishing that there is a large common genetic liability for victimization and 

the set of measured behaviours at a particular age is a starting point for addressing the 

key question of whether it is through heritable behaviour that exposure to 

environmental experience comes under genetic influence (GE correlation). An 

alternative explanation of the result is that the pleiotropic genes underlying victimization 

and behaviour are simply a confounding factor and the observed phenotypic covariation 

of behaviour and victimization is spurious. This explanation seems unlikely given the 

body of research on reciprocal effects between victimization and behaviour across 

development (Arseneault et al., 2010). Given that the genetic effect on the experience of 

victimization is largely shared with the cross-section of behaviour measured in this 

study, the result is consistent with the idea that it is partly through these heritable 

behaviours that psychosocial environmental experiences come to be heritable. In other 

words, because children's environmental experience reflects the ways in which they tend 

to behave, and their behaviour is influenced by their genetic predispositions, particular 

genes will be more common in certain environments. In this way children come to 

select and shape their environment, in part, for genetic reasons (Scarr & McCartney, 

1983). After accounting for the overlap between the behaviours we measured and peer 

victimization, we found that the remainder was due to a unique genetic component 

(genes specific to victimization experience) and a unique environmental component 

(experiences that children growing up together do not share). 

 A possible limitation in the present study is the use of child reports of 

victimization. However, a study of school children suggests that about half of children 

victimized in primary school, and about two thirds of those bullied in secondary school, 

did not report these instances of bullying to someone at home (Rivers & Smith, 1994). 

It seems possible that child-self reports actually capture occurrences of victimization 

that are not known to parents or teachers. Another consideration may be that 

something about being a twin, in particular an identical twin, actually elicits peer 

victimization. Assuming that non-identical twins are no different to any other pair of 

siblings, we find no mean difference in the level of victimization experienced by 

identical and non-identical twins in the present sample. 
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 In conclusion, the results of the present study highlight the GE correlation 

phenomenon in peer victimization. The common genetic risk between victimization and 

problem behaviours is the result of a mediating set of pleiotropic genes. Victimization, 

like other heritable psychosocial experiences, can be viewed as an extended phenotype 

(Dawkins, 1982) – an example of genetic effects beyond the skin. 
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7 Whole-Genome Data Explains Environmental Experience: 

Molecular Genetics of Peer Victimization 

 

7.1 Abstract 

Twin studies typically show genetic influence on environmental experiences – a 

phenomenon called gene-environment correlation. Obvious personal characteristics 

such as height and weight are heritable, but so too are the psychosocial experiences we 

select and shape. The quantitative genetic evidence indicating substantial genetic 

influence suggests that molecular genetic techniques applied to a measure of the 

environment should confirm the quantitative genetic findings, and it should be possible 

to identify the genes responsible for this heritability. We measured the psychosocial 

experience of peer victimization in a sample of more than 2700 12-year-olds from the 

Twins Early Development Study (TEDS) for whom we had whole-genome data. After 

quality control and we had genetic information for 688,025 genotyped single nucleotide 

polymorphisms (SNPs). We performed a discovery stage genome-wide association study 

(GWAS) and, using Genome-wide Complex Trait Analysis (GCTA), estimated the 

genetic variance of victimization explained by common variation in the genome. The 

discovery stage GWAS yielded a suggestive locus for future replication on chromosome 

20. Considering all the SNPs on the array simultaneously explained a significant 

proportion of the variation in victimization. For two of the victimization subtypes SNP 

effects in aggregate gave an estimate equal to the twin estimate for heritability. Finally, 

we used identity-by-state (IBS), a measure of allele sharing between individuals, to 

explore the genetic architecture of peer victimization. Heritable childhood experiences 

are simply 'extended phenotypes' with the properties of other complex traits: common 

variants explain their genetic variation. 

 

7.2 Introduction 

Quantitative genetic studies show that environmental experiences are heritable – a 

phenomenon called gene-environment (GE) correlation (Jaffee & Price, 2007; Kendler 

& Baker, 2007; Plomin & Bergeman, 1991). From a statistical genetics perspective, if 

genes drive exposure to the environment, then genotypes will not be randomly 

distributed across the environment. If people select particular environments because of 

their genetic propensities (GE correlation), the result will be greater numbers of 

particular genotypes in certain environments. Equivalently, it could be said that 

environments control gene frequency (Purcell, 2002). If genotype is correlated with 

environment, we should be able to apply standard molecular genetic methods to map 
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genes to the environment, just as we associate genes with any other complex trait 

(Hirschhorn & Daly, 2005). 

 A few candidate gene associations for environmental measures have already 

been reported, but are yet to be replicated (e.g., Dick et al., 2006). These are typically 

measured in the context of gene-environment (GE) interaction, genetically-influenced 

sensitivity to the environment – interactions that have been proposed as a source of 

missing heritability (Thomas, 2010). However, as well as the perennial problem of 

failure to replicate candidate gene associations (Duncan & Keller, 2011; Hewitt, 2012; 

Ioannidis, 2003), it is arguably more difficult to select plausible biological candidates for 

environments than well-characterized physiological phenotypes. 

 In this study we focus on the phenomenon of GE correlation, analysing the 

environment itself as the phenotype of interest in a genome-wide association study 

(GWAS). GWASs provide an unbiased survey of the genome for risk variants and 

incorporate rigorous multiple test correction (McCarthy et al., 2008). We chose the 

psychosocial experience of adolescent peer victimization as the target heritable 

environment. In Chapter 6 we used the twin method to replicate two previous studies 

that have shown bullying to be a heritable environmental experience (Ball et al., 2008; 

Beaver et al., 2009). Given the association between peer victimization and parenting and 

home environment (Zimmerman, Glew, Christakis, & Katon, 2005), behaviour 

problems (Brendgen et al., 2011), and psychopathology (Arseneault et al., 2010), it is 

critical to understand the genetic and environmental aetiology of peer victimization in 

order to unravel these associations, and potentially find new inroads to intervention. 

 Our aim in the present study was to leverage the power of whole-genome data 

to support the quantitative genetic finding of GE correlation in victimization. In this 

chapter we report molecular genetic analyses using measured genotypes in more than 

2700 children with self-reports of the experience of peer victimization. First, we 

surveyed the genome for any large single variant effects on victimization, and second, 

we used measured genotypes to estimate the heritability of the psychosocial experience 

of peer victimization. Finally, we compared the genetic architecture of victimization to 

other typical complex traits. 

 

7.3 Methods 

7.3.1 Sample 

The Twins Early Development Study (TEDS) is described in Chapter 2. This chapter 

describes analyses performed on a subset of 3154 individuals who were genotyped as 

part of the Wellcome Trust Case Control Consortium 2 (WTCCC2), on the Affymetrix 
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Human Array 6.0 Gene chip. This subsample contained no known relatives (i.e. no co-

twins). 

 

7.3.2 Measures 

The measures used in the present study are described in Chapter 2. This chapter 

describes analyses performed on child self-reports of the psychosocial experience of 

peer victimization (Mynard & Joseph, 2000) assessed at age 12. 

 

7.3.3 Genome-wide association 

One approach to genetic association is to compare the frequency of polymorphic 

markers in individuals with different disease states, e.g., cases versus controls, or in the 

present study, bullied versus not-bullied children (Balding, 2006). Recognizing however 

that peer victimization is a quantitative trait encompassing a range of experience – and 

that, in general, common dichotomous disorders are quantitative traits (Plomin, 

Haworth, & Davis, 2009) – we looked for genetic association across the full range of 

peer victimization scores. We had child self-reported victimization ratings at age 12 for 

2,706 of the 3,154 children that passed genotyping quality control (QC). Genome-wide 

association analyses were performed using a frequentist test of association, SNPTEST 's 

Score Test which reduces to a Armitage Trend Test under an additive model. Sex and 

the first 10 principal components from a population stratification analysis were included 

as covariates in the association test. Population stratification analysis was performed 

using EIGENSTRAT (Price et al., 2006). Association results were filtered by SNP 

quality using the following thresholds: genomic location (autosomal and non-

mitochondrial), minor allele frequency (MAF) < 0.01, call rate < 0.98, Hardy Weinberg 

Equilibrium (HWE) p-value < 1 x 10-20. After SNP QC and imputation using HapMap, 

we had a total of 1,721,433 SNPs (1,033,408 imputed, 688,025 genotyped). 

  

7.3.4 Genome-wide Complex Trait Analysis (GCTA) 

The current state of GWAS is the recognition that beyond simply surveying hundreds 

of thousands of SNPs for associations with a particular phenotype – essentially, one 

SNP at a time – whole-genome data can be used in aggregate to explain the genetic 

component of complex traits. Genome-wide Complex Trait Analysis (GCTA; Yang et 

al., 2011) was used to estimate the genetic variance in adolescent experience of peer 

victimization. First, a genetic relationship matrix (GRM) is derived which summarizes 

the degree of relatedness for all possible pairs among the 2,706 individuals with 

victimization and genetic data at age 12. Using only genotyped SNPs to calculate the 



Chapter 7. Molecular Genetics of Environmental Experience 

 120 

GRM provides a baseline estimated of the phenotypic variation explained by common 

genetic variation; including imputed SNPs would increase the genetic variance explained 

by including many more common variants. In subsequent calculation using the GRM, a 

cut-off of genome-wide relatedness < 0.025 ensures that no relatives above eighth 

cousins are included. 

 GCTA and other statistical genetic approaches (So, Li, & Sham, 2011) have 

begun to confirm the importance of genetic influence for human behaviour as revealed 

by quantitative genetic methods. Height (Yang et al., 2010) and intelligence (Davies et 

al., 2011) are both highly heritable. Typical GTCA estimates are about half the 

quantitative genetic heritability estimate. 

 

7.3.5 Collaboration with a physicist – Professor Stephen Hsu 

Genome-wide genotypes can provide an estimate of the genetic variation explained by 

common variation, but they also reveal more about typical complex traits. Professor 

Stephen Hsu has proposed a method that uses whole-genome data to answer a related 

set of questions about complex trait architecture, in particular, "How different 

genetically are two individuals at different points in a phenotype distribution?" 

(McMahon, Hanscombe, Vattikuti, Lee, Chang, Chow, Plomin, Davey Smith, & Hsu, 

paper in preparation). To illustrate the major result of the approach in relation to the 

heritable psychosocial experience of peer victimization, we selected the extremes from 

the victimization distribution and used identity-by-state (IBS, see Figure 7.1). 

 

Figure 7.1  Identity-by-state (IBS) between two 
individuals at a single locus 
At each bi-allelic locus, pairs of individuals are IBS = 0, 1, or 
2. Between two individuals i and j there are three genotype 
combinations that correspond to two alleles shared IBS, four 
that correspond to one allele shared IBS, and two 
possibilities of no allele sharing. 
 

This method differs from GCTA in that it starts by ranking all individuals on their trait 

scores, then for every pair of individuals, walks along their genomes summing up the 

number of SNP differences at polymorphic loci. (Note: IBS – used in the present 

chapter to summarize allele sharing between individuals – is similar to, but not exactly 

the same as, the allele sharing method proposed by Stephen Hsu. The result given 

below is a preliminary exploration of the data using the IBS calculation.) 

 

  j 
  AA AB BB 

 AA 2 1 0 

i AB 1 2 1 

 BB 0 1 2 
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7.4 Results 

7.4.1 A discovery stage GWAS 

Figure 7.2 shows Manhattan plots of genome-wide evidence for association for the four 

victimization subscales. On the right of each scatter plot is a complementary quantile-

quantile (QQ) plot showing evidence of enrichment for low p-values, reflecting the 

pattern seen in each of the genome-wide signal plots. The genome-wide signal plots and 

QQ plots for each of the victimization subscales suggest possible true risk variants for 

victimization that would require replication in an independent sample. Because the 

linkage peak on chromosome 20 stood out across all four victimization subtypes – and 

was significant for the property damage subscale - we performed a GWAS on a unit-

weighted sum of all the subscales. Figure 7.3 shows the genome-wide signal plot for the 

victimization composite. 
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Figure 7.2  Manhattan and quantile-quantile (QQ) plots for peer victimization subscales 
The dotted lines in each Manhattan plot (left) indicate genome-wide significance (p-value = 5 x 
10-7). In each QQ plot (right), p-values from the association test are plotted against quantiles 
from expected distribution under the null hypothesis of no association. Deviation above the line 
y = x for low p-values – or large -log10(p) – suggest true susceptibility loci. Grey bands indicate 
95% confidence intervals. 
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Figure 7.3  Manhattan plot and QQ plot for peer victimization composite 
The dotted lines (left) indicates genome-wide significance (p-value = 5 x 10-7). The QQ plot 
(right) shows p-values from the association test (observed) plotted against the expected 
distribution under the null hypothesis of no association. Deviation above the line y = x for low 
p-values – or large -log10(p) – suggests true susceptibility loci. Grey band indicates 95% 
confidence intervals. 
 

The linkage peak on chromosome 20 is associated with the Zinc fingers and 

homeoboxes 3 (ZHX3) gene. The top ranked genotyped SNP (rs4812488, chromosome 

20, p-value=4.02 x 10-7) from the GWAS on the victimization composite is located in an 

intron of ZHX3. A regional plot showing linkage disequilibrium around this top SNP is 

included in Appendix F (Supplementary Figure F.1). The discovery stage is only the 

first stage in a GWAS and a replication stage is necessary to name associated genes with 

any confidence. A table of the top 10 "hits" from each subscale is included in the 

Appendix F. 

 

7.4.2 SNP+effects+in+aggregate+

Table 7.1 shows the GCTA estimates of genetic variation explained by common 

variants in the four victimization subtypes. Very large samples are needed to calculate 

genetic variation and, as expected, this was reflected in the relatively large standard 

errors. 

 

Table 7.1 Genetic variation explained by measured SNPs 
 
 V(G)/V(P) SE N QG h2 

Physical victimization 0.24 0.12 2706 0.27 (0.18-0.36) 
Verbal victimization 0.35 0.13 2707 0.37 (0.28-0.45) 
Social manipulation 0.15 0.12 2705 0.42 (0.34-0.51) 
Property damage 0.04 0.12 2705 0.31 (0.22-0.41) 
 
V(G)/V(P) = proportion of phenotypic variation accounted for by common genetic variation; 
SE = standard error; N = sample size; QG h2 = quantitative genetic estimate of heritability 
derived from a univariate twin model 
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The GCTA estimate of phenotypic variation explained by common genetic variation 

was essentially the same as the quantitative genetic estimate for physical and verbal 

victimization. The estimate for social manipulation was closer to half the quantitative 

genetic estimate – similar to GCTA estimates for height and weight. However, for 

property damage the estimated proportion of genetic variation was non-significant. 

 

IBS differences as a function of phenotype 

Figure 7.4 is a visual summary of the basic approach we took to estimate genetic 

difference as a function of phenotypic difference, and the major result. 

 

Figure 7.4  Genetic differences as a function 
of phenotype 
a. Selection of the extremes of a normal 
phenotypic distribution, top and bottom ~10% – 
300 high and 300 low. b. Forming pairs from the 
extremes of the distribution is informative. The 
dotted circles represent the greater genetic 
variation among the average pair in which 
individual i and j are selected one from the 
phenotypic extremes: low-low, low-high, and 
high-high. c. The triangle represents genetic 
variation across the entire quantitative 
distribution of the trait. We observed decreasing 
genetic variation towards the high (or optimal) 
end of the trait (i.e. less victimization, or greater 
intelligence). 
 

 

For peer victimization – as we have found 

for the genetic architectures of height and 

intelligence (McMahon, Hanscombe, 

Vattikuti, Lee, Chang, Chow, Plomin, Davey Smith, & Hsu, paper in preparation) – 

there are a greater number of SNP differences associated with the phenotype for two 

individuals further apart on the phenotypic distribution. Second, there are more 

genotypes that correspond to below average on the phenotype. On the composite peer 

victimization score (a unit-weighted sum of all four subscales), the average number of 

SNPs between a pair of individuals from the extremes is 316,668 low-low, 316,613 high-

low, 316,559 high-high (For comparison to height and intelligence, high corresponds to 

the trait optimal, i.e., less victimization). 

 

a Phenotypic extremes 

b Genetic variation in extreme pairs 

c Genetic variation in a quantitative trait 

Low High 

high-low high-high low-low 
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7.5 Discussion 

Our discovery stage genome-wide association study showed some promising evidence 

for SNP association with peer victimization. Of course, these results need to be 

followed up with a replication study. Inflated p-values suggest that true susceptibility 

loci for victimization are among the common variants tagged by the Affymetrix Human 

6.0 Array. Remarkably, when considered in aggregate, we found that we were able to 

explain a substantial amount of the quantitative genetic estimate for the heritability of 

three of the four victimization subtypes. As expected for a typical complex trait, we 

found that the more dissimilar two children are in their experience of victimization the 

more different they are genetically – a similar pattern to that seen for other typical 

complex traits. 

 Considering whole-genome data one SNP at a time and in aggregate confirmed 

the quantitative genetic finding that peer victimization is heritable (Chapter 6; Ball et al., 

2008; Beaver et al., 2009), and appears to be a typical complex trait. This confirmation 

of genetic contribution to the experience of peer victimization highlights the non-

independence of the individual and their environment (Scarr & McCartney, 1983). 

Viewing the child as an active participant in their environment could open up new 

possibilities for intervention. One previous study found that the teacher-child 

relationship moderated the effects of victimization on children's aggressive behaviour 

(Brendgen et al., 2011). Of course the teacher-child relationship is influenced by the 

(genetic) predispositions of both parties – only certain children actively form a positive 

relationship with the teacher – but knowing the positive effect it could have is a reason 

to foster these relationships with at-risk children. The friendship choices children make 

may be positive and protective, but may also be detrimental. Knowing that genotypes 

are correlated among friends (Fowler et al., 2011), a possible intervention could be to 

rearrange children during school or class activities which may give them the opportunity 

to form new relationships with peers they may not ordinarily seek out. The quality of 

parent-child interactions and the family environment are associated with victimization 

(Zimmerman et al., 2005), but parent-child and family environment dynamics exist 

before the child begins school and are both affected by children's heritable 

predispositions (Bell, 1968; Hanscombe et al., 2011; Pike & Eley, 2009). The link 

between parental discipline and children's extra-familial friendship quality has already 

been shown in a twin study to be largely genetic in origin (Pike & Eley, 2009). On the 

other hand, genetically-sensitive studies also provide the best evidence for the 

importance of the environment. For example, parent-child attachment style in infancy – 

an important early parent-child dynamic – is found to have negligible genetic influence 
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and is environmentally linked to maternal sensitivity (Bokhorst et al., 2003; Fearon et al., 

2006). There is likely a complex pattern of feedback between psychosocial experiences 

like victimization and co-occurring behaviour problems. Both quantitative and 

molecular genetic designs can add to our understanding of the role of the child.  

 The present study described only the discovery stage of a GWAS. In order to 

select and follow up particular SNPs that may further illuminate the genetic pathways to 

victimization a replication study is needed. The ZHX3 gene implicated in the present 

study has no obvious biological relevance for peer victimization, but with further 

molecular genetic analysis of victimization (and environmental experience in general) 

genetic mappings to environmental experience could change the way we understand the 

individual in their environment. There is no obvious explanation why GCTA explains 

none of the variance in the property damage subscale, especially considering the GWAS 

results for this subscale. Sample size and number of SNPs are considerations, but these 

were adequate for the other measures. It may be that the program simply failed to 

generate an interpretable estimate for this subscale. The estimate for the social 

manipulation subscale is a little under half the twin estimate. This is as found for height 

and intelligence (Davies et al., 2011; Yang et al., 2010), and is expected with decreasing 

allele frequency of causal variants of small effect. The estimates of genetic variance in 

physical and verbal victimization show no missing heritability. This suggests they are 

completely explained by the common variation on the chip and a powerful enough 

association study should link measured genetic variation to phenotypic variation. In 

combination, the tools of molecular genetics in the present study suggest that genes 

influence exposure to psychosocial environmental experience, confirming the 

quantitative genetic finding of GE correlation. 
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8 Discussion 

 

This thesis used the approaches of quantitative and molecular genetics to explore the 

nature of environmental experience in childhood and the origin of its links to 

developmental outcomes. Chapter 3 and Chapter 4 described investigations of the two 

main gene-environment (GE) phenomena explored using the classical twin design – GE 

correlation and GE interaction, respectively. Chapter 3 revealed that the link between 

noise and routine in the home and school performance – previously assumed to be 

environmentally mediated – is in fact partially genetically mediated. By using individual-

specific accounts of experience, we highlighted that family-wide accounts alone cannot 

give a complete picture of the effect of children's environmental experience on 

developmental outcomes. Across middle childhood the nature of the genetic effect on 

exposure to particular experiences may be a combination of passive, evocative and 

active GE correlation suggesting that there are opportunities to address both children's 

and their parents heritable behaviours. Moreover, because genetic effects on 

environmental experiences are ubiquitous (Kendler & Baker, 2007), the entire range of 

apparently physical environmental risks for children (Evans, 2006), potentially capture 

child and parent effects. 

 The findings of Chapter 3 imply that studies not including child-specific 

accounts of experience are limited in the conclusions they can draw about the effects of 

children's experience on developmental outcomes (Evans et al., 2002). This study also 

has implications for education. Identifying the behavioural manifestations of academic 

achievements shared genetic risk with children's exposure to chaos in the home could 

indicate new approaches to the process of educating children in the classroom. At least 

it should be recognized that children bring something to the experience of education: 

the same teaching approach may have different effects on two different children.  

 More generally, genetic risk for environmental exposure, GE correlation, is 

critical where environments have been shown to pose particular risk. For example, 

because environments play a principal role in the cause of sporadic cancer (Lichtenstein 

et al., 2000), understanding why particular genotypes occur at a greater frequency in 

certain environments (GE correlation) will have far-reaching implications for 

epidemiology. This has led to a call for a more comprehensive view of environmental 

exposure – measurement of the entire "exposome", just as GWAS covers the genome – 

if epidemiologists are to unravel the genetic and environmental paths to disease 

(Rappaport & Smith, 2010). 
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 Chapter 4 showed the absence of evidence that socioeconomic status (SES) 

moderates the genetic effect on children's intelligence (IQ) in a UK-representative 

sample. What we did find was that phenotypic variation in children's IQ – i.e., the 

spread of children's scores on general cognitive ability – is greater in lower-SES families. 

Using three indices of SES, the pattern we saw from infancy through adolescence was a 

larger shared environmental component to IQ in lower-SES families. One possibility, 

suggested by a survey of the studies that have failed to replicate GE interaction in IQ as 

a function of SES, is that SES has a different effect on the genetic and environmental 

components of IQ in the UK and Europe compared the US. Another possibility, given 

the known low specificity of the continuous moderator model (Purcell, 2002), is that 

previous reports have misinterpreted an environment-environment interaction as gene-

environment interaction. The most highly-cited report of SES moderation of the genetic 

effect on IQ noted this possibility (Turkheimer et al., 2003). Moreover, Purcell (2002) 

showed using simulated data that standardization of the variance components is 

problematic for interpretation. We demonstrated with a heterogeneity analysis of real 

population data that standardization can lead to an artifactual change in the genetic 

variance component – a spurious gene-environment interaction. Finally, considering the 

lack of consensus among studies attempting to replicate the SES moderation of the 

genetic effect on IQ, we also demonstrated (with exact data simulation) the large sample 

sizes that are needed to generate power to detect moderating effects. 

 Given our lack of replication, SES moderation of the genetic effect on IQ (or 

GE interaction in IQ as a function of SES) does not appear to be a source of heritability 

in IQ. GE interaction as a function of other potential environmental moderators 

remains a possible source of (missing) heritability in IQ (Thomas, 2010). Power to 

detect these interactions will be prohibitive; main effects themselves have so far eluded 

detection – no replicated genome-wide significant variants have been found for IQ. It is 

worth noting that GE interaction may not contribute to heritability at all. Making certain 

assumptions regarding the frequency of causal variants (as predicted by population 

genetic theory), and incomplete linkage disequilibrium between typed markers on 

commercial arrays and the causal variants themselves, Yang et al. (2010) show that the 

explained variation for height can be scaled up to the quantitative genetic estimate for 

heritability of height. 

 The predictions of the bioecolological theory (Bronfenbrenner & Ceci, 1994) and the 

environmental disadvantage hypothesis (Scarr, 1992; Scarr-Salapatek, 1971) do not appear to 

apply to the genetic effect on IQ as a function of SES in a UK-representative sample. 

Data from the TEDS sample from infancy through adolescence shows no constraint or 
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restriction of children's genetic potentials in the adverse environment of low SES. 

Instead it appears that the shared experiences of low SES increase the variation in 

children's IQ performance. Said differently, the resources available to children (and their 

parents) in higher-SES families buffer them against the negative environmental effects 

of low-SES – effects that are evidently experienced similarly by children growing up 

together. The non-replication of the previously reported SES moderation of the genetic 

component of IQ, along with the power calculation indicating the very large sample 

sizes that are needed to detect GE interaction with the twin model, and the known low 

specificity of the continuous moderation model, imply that caution is required in 

interpretation of GE interaction. 

 Chapter 5 explored genetic and environmental mediation of the link between 

environmental risk and behaviour across time. This chapter explored the genetic and 

environmental mediation between disruptive behaviour and the chaotic home 

environment with a longitudinal twin design that captured cross-lagged effects. 

Complementary Cholesky factorization allowed decomposition of bi-directional 

phenotypic effects across time (Luo et al., 2010). We found that neither conduct 

problems nor hyperactivity-inattention explained any of the heritable effect in children's 

experience of the chaotic home at age 12, after taking into account the effect of their 

earlier experience of the chaotic home. Although the expectation is that environments 

come to be heritable through heritable behaviours (Jaffee & Price, 2007), and disruptive 

behaviours seem like plausible candidates for genetic effects on environmental 

confusion in the home, they did not account for any of the genetic effect on the chaotic 

home. Asking somewhat the reverse question, to what extent is the effect of the chaotic 

home on disruptive behaviour actually environmental, we found that the chaotic home 

did in fact have a shared environmental link to conduct problems at age 12, explaining 

about a quarter of the shared environmental component after accounting for the effects 

of earlier conduct problems. Hyperactivity-inattention had no significant shared 

environmental component. The non-shared environmental component of both 

behaviours and the chaotic home were unique to each trait and each age. One caveat 

worth noting here is that the Cholesky approach to this problem is conservative in that 

we are only looking at residuals (on all the measures) after taking into account the effect 

of the earliest trait. While the alternative approach used by Burt et al. (2005) does not 

give precedence to any one trait, it does not allow the decomposition of the cross-lagged 

paths – our aim in Chapter 5.  

 Chapter 5 highlighted the possibility that children's perceptions of the 

environment – an aspect of children's environmental experience that is not measured by 
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parent or teacher reports – are also a potential source of genetic influence. Child self-

reports meant that genetic influence on exposure to environmental confusion in the 

home included children's subjective experience or interpretation. The ability to control 

for the genetic effect on children's experience of home chaos using child-specific 

accounts, meant that unlike using obligatorily-shared (parent or teacher) reports we 

could with certainty say that the effect of early home chaos on disruptive behaviour was 

environmentally mediated. The implication for research – similar to the implication of 

Chapter 3 for chaotic home and school achievement – is that all previous measures of 

family-wide experience are worth re-assessing from the child's perspective. 

 Chapter 6 took explanation of the heritable component of a genetically 

influenced environment (one of the questions asked in Chapter 5) a step further. It 

took a broader palette of behaviours and asked to what extent they explain the genetic 

component of a heritable environment. Underlying the psychosocial environmental 

experience of victimization and a cross-section of behavioural correlates at age 12 – 

cognitive ability, externalizing behaviour, and internalizing behaviour – we found a large 

common genetic liability. This chapter was a cogent demonstration of the generalist 

effect of genes, beyond cognitive abilities (Plomin & Kovas, 2005), to include behaviour 

and all the effects genes have on the psychosocial world. 

 As this study was in effect a snapshot of children's behaviour and their 

experience of victimization at a particular age, we cannot conclude that this cross-

section of heritable behaviour is the source of the common genetic component. It is 

however consistent with the expectation that the environmental experience comes to be 

heritable as a result of genetic influences on behaviour that drive the exposure to the 

experience. Of course correlation does not mean causation (Rutter, 2007b). In Chapter 

6 we showed the genetic influence on victimization was partially correlated with the 

genetic influence on a variety of behaviours including internalizing and externalizing 

behaviours, and general cognitive ability. One possibility is that the genetic association 

seen here is the genetic influence on the correlated heritable behaviours that increase the 

likelihood of exposure to victimization, i.e., genetic influence Æ behaviour Æ 

victimization. Of course the reverse may also be true, i.e., genetic influence Æ 

victimization Æ behaviour, but this is obviously not likely for example for the autistic-

like traits. Another possibility is that the same set of pleiotropic genes affect problem 

behaviour and increase risk of exposure to risky environments, i.e., behaviour  Å 

genetic influence Æ victimization. Mapping of the actual causal variants may be one 

way to unravel the developmental paths between behaviour and experience. 
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 Chapter 7 confirmed the quantitative genetic finding that genes influence 

environmental experiences. A discovery stage GWAS indicated enrichment for low p-

values for SNP associations with victimization, evidence that genetic variation measured 

on the array tagged true causal variants. For complex traits in general, the SNP 

associations that have been found so far only account for a small fraction of the 

heritability as determined by quantitative genetic studies (Maher, 2008). A variety of 

possibilities have been suggested to explain the problem of "missing heritability". One 

explanation is that the quantitative genetic estimates are in fact wrong. New approaches 

using whole-genome data in aggregate however have begun to produce the expected 

result – after accounting for SNP frequency and low linkage disequilibrium between 

marker and causal SNPs – explaining about half of the quantitative genetic estimate 

(Davies et al., 2011; Yang et al., 2010). With measured whole-genome data, we were able 

to estimate the genetic variance in the experience of peer victimization explained by 

common variation. One surprising finding was that the genetic variance estimates for 

physical and verbal victimization matched our quantitative genetic estimates (in the 

same sample), suggesting that with sufficient power we should be able to completely 

map the genetic risk for peer victimization. It is worth noting that this is the estimate of 

genetic variance in the victimization subscales using only genotyped SNPs to construct 

the genetic relationship matrix used in the GCTA calculation. This in effect sets a lower 

bound for the genetic variance in the trait that might be explained by common variation 

in the genome; using imputed SNPs is expected to increase the explanatory capacity of 

the method. 

 The implication of the results of the molecular and statistical genetic analyses in 

Chapter 7 is that the many potential uses of whole-genome data to gain insight into the 

genetic architecture of complex traits can be applied equally well to measures of 

environmental experience. As is expected for a typical complex trait, we found that 

genetic differences are greater among individuals further apart on the peer victimization 

distribution again confirming the genetic influence on experience of peer victimization. 

Follow-up of specific risk-associated variants will ultimately reveal whether the genetic 

risk for exposure to victimization is direct or indirect (mediated through heritable 

behaviour) – just as the fat mass and obesity associated (FTO) gene was found to be 

only indirectly associated with type 2 diabetes through its effect on body mass index 

(BMI) (Frayling et al., 2007). 

 Accepting that environmental experiences are themselves extended phenotypes 

opens up a whole new raft of possibilities for "the environment". Every childhood 

experience assumed to be environmental becomes a target for a GWAS. Another 
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exciting possibility with the use of molecular genetic techniques to investigate GE 

correlation, is their application to psychosocial experiences for which heritability 

estimates are not known because individual specific reports have not been possible, e.g., 

SES in childhood. GWAS, and other techniques that measure SNP effects in aggregate, 

do not require individual-specific measures. Genetic effects on family-wide measures of 

the environment will require new statistical developments to incorporate these 

obligatorily-shared experiences into the twin design (Price & Jaffee, 2008).  

 This thesis applied complementary quantitative and molecular genetic and 

techniques to the analysis of environmental experience. Viewing environmental 

exposure and sensitivity as the extended effect of genes beyond the individual 

recognizes that children are agents in their experience (Plomin & Bergeman, 1991; Scarr 

& McCartney, 1983). The twin design used in the large UK-representative TEDS twin 

sample demonstrates that genetically sensitive designs are a vital tool for understanding 

the nature of "environmental risk" and its effect on developmental outcomes. The 

assumed absence of GE effects leads to misinterpretation of risk. A comprehensive 

grasp of environmental exposure and the non-random distribution of genotypes across 

the environment (GE correlation) will inform epidemiology (Rappaport & Smith, 2010); 

pharmacogenetics already recognizes differential genetic sensitivity (GE interaction) to 

pharmacological intervention (Hunter, 2005). This thesis showed the pervasiveness of 

genetic effects on experience. Taking these effects into account can reveal where 

environment truly mediates association between experience and outcome, or where 

genetic effects confound this relationship. We also revealed a potential environment-

environment interaction, a phenomenon we expect may account for inconsistency in 

low powered studies of environmental moderation of genetic effects. Understanding 

how people come to select and shape their experiences, and that they may be 

differentially sensitive to them, is a step in the direction of personalized education and 

medicine. 
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Appendix A  Visual representation of thesis 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure A.1  The most frequently used words in the present thesis 
This figure was generated using a word cloud tool at www.wordle.net 
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Appendix B  Questionnaires for Chapter 2 

 

Supplementary Table B.1  Confusion, Hubbub, and Order Scale (CHAOS) 
Instruction:  Please answer these questions about your home. Think about how things have 
been in the last 3 months. [Child-rated] 
Rating:  Not true/ Quite true/ Very true 
 
1r I have a regular bedtime routine 
2 You can’t hear yourself think in our home 
3 It’s a real zoo in our home 
4r We are usually able to stay on top of things 
5 There is usually a television turned on somewhere in our home 
6r The atmosphere in our house is calm 
r = item reversed 
 

Supplementary Table B.2  Multi-dimensional Peer Victimization 
Instruction:  Below is a list of things that some children do to other children. How often during 
this school year has another pupil done these things to you? [Child-rated] 
Rating:  Not at all/ Once/ More than once 
 
* Physical victimization 
1 Punched me 
5 Kicked me 
9 Hurt me physically in some way 
13 Beat me up 
 Verbal victimization 
2 Called me names 
6 Made fun of me because of my appearance 
10 Made fun of me for some reason 
14 Swore at me 
 Social manipulation 
3 Tried to get me into trouble with my friends 
7 Tried to make my friends turn against me 
11 Refused to talk to me 
15 Made other people not talk to me 
 Property damage 
4 Took something of mine without permission 
8 Tried to break something of mine 
12 Stole something from me 
16 Deliberately damaged some property of mine 
* Questionnaire order 

 

Supplementary Table B.3  Antisocial Process Screening Device (ASPD) 
Instructions:  Please give your answers on the basis of each child’s behaviour over 
the last 3 months. [Parent-rated] 
Rating:  Not true/ Somewhat true/ Very true 
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* Impulsivity 
1 Blames others for his/her mistakes 
4 Acts without thinking of the consequences 
9 Gets bored easily 
13 Engages in risky or dangerous activities 
17 Does not plan ahead or leaves things until the “last minute” 
 Callous-unemotional 
3r Is concerned about how well he/she does at school 
7r Is good at keeping promises 
12r Feels bad or guilty when he/she does something wrong 
18r Is concerned about feelings of others 
19 Does not show feelings or emotions 
20r Keeps the same friends 
 Narcissism 
5 His/her emotions seem shallow and not genuine 
8 Brags excessively about his/her abilities, accomplishments, or possessions 
10 Uses or cons other people to get what he/she wants 
11 Teases, makes fun of other people 
14 Can be charming at times but in ways that seem insincere or superficial 
15 Becomes angry when corrected or punished 
16 Seems to think he/she is better than other people 
  
2 Engages in illegal activities 
6 Lies easily and skilfully 
* Questionnaire order; r = item reverse 

 

Supplementary Table B.4  Childhood Asperger Syndrome Test (CAST) 
Instruction:  Please give your answers on the basis of each child’s behaviour over the last 3 
months. [Parent-rated] 
Rating:  Yes/ No 
 
* Social  
1r Does s/he join in playing games with other children easily? 
2r Does s/he come up to you spontaneously for a chat? 
3r Is it important to him/ her to fit in with the peer group? 
11r Does s/he have friends, rather than just acquaintances? 
12r Does s/he often bring you things s/he is interested in to show you? 
17r Are people important to him/ her? 
19r Does s/he play imaginatively with other children, and engage in role-play? 
21r Does s/he make normal eye contact? 
23 Is his/ her social behaviour very one-sided and always on his/ her own terms? 
25r Does s/he prefer imaginative activities such as play- acting or story-telling, rather than 

numbers or lists of facts? 
28r Does s/he care how s/he is perceived by the rest of the group? 
 Non-social 
4 Does s/he appear to notice unusual details that others miss? 
6 Does s/he like to do things over and over again, in the same way all the time? 
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9r Does s/he mostly have the same interests as his/ her peers? 
10 Does s/he have an interest which takes up so much time that s/he does little else? 
15 Does s/he appear to have an unusual memory for details? 
22 Does s/he have any unusual or repetitive movements? 
27 Does s/he try to impose routines on him/ herself, or on others, in such a way that it 

causes problems? 
 Communication 
5 Does s/he tend to take things literally? 
7r Does s/he find it easy to interact with other children? 
8r Can s/he keep a two-way conversation going? 
13r Does s/he enjoy joking around? 
14 Does s/he have difficulty understanding the rules for polite behaviour? 
16 Is his/her voice unusual (e.g. overly adult, flat, or very monotonous)? 
18r Is s/he good at turn-taking in conversation? 
20 Does s/he often do or say things that are tactless or socially inappropriate? 
24 Does she/ he sometimes say ‘you’ or ‘s/he’ when s/he means ‘I’? 
26 Does s/he sometimes lose the listener because of not explaining what s/he is talking 

about? 
29 Does s/he often turn conversations to his/ her favourite subject rather than following 

what the other person wants to talk about? 
30 Does s/he have odd or unusual phrases? 
* Questionnaire order; r = item reversed 

 

Supplementary Table B.5  Moods and Feeling Questionnaire (MFQ) 
Instruction:  These questions are about how you might have been feeling or acting recently. For 
each question, please tick the box you think shows how much you have felt or acted in this way 
in the past two weeks. [Child-rated] 
Rating:  Not True/ Quite True/ Very True 
 
1 I didn’t enjoy anything at all 
2 I felt so tired I just sat around and did nothing 
3 I felt I was no good anymore 
4 I cried a lot 
5 I found it hard to think properly or concentrate 
6 I hated myself 
7 I was a bad person 
8 I felt lonely 
9 I thought nobody really loved me 
10 I thought I could never be as good as other kids 
11 I did everything wrong 
 

 

Supplementary Table B.6  Strengths and Difficulties Questionnaire (SDQ) 
Instruction:  Please give your answers on the basis of each child's behaviour over the last 3 
months. [Parent-rated] 
Rating:  Not true/ Quite True/ Very True 
 



Appendix B 

 151 

* Prosocial 
1 Considerate of other people's feelings 
4 Shares readily with other children (food, games, pens etc.) 
9 Helpful if someone is hurt, upset or feeling ill 
17 Kind to younger children 
20 Often volunteers to help others (parents, teachers, children) 
 Hyperactivity 
2 Restless, overactive, cannot stay still for long 
10 Constantly fidgeting or squirming 
15 Easily distracted, concentration wanders 
21r Thinks thing out before acting 
25r Sees tasks through to the end, good attention span 
 Anxiety 
3 Often complains of headaches, stomach aches or sickness 
8 Many worries, often seems worried 
13 Often unhappy, downhearted or tearful 
16 Nervous or clingy new situations, easily loses confidence 
24 Many fears, easily scared 
 Conduct 
5 Often has temper tantrums or hot tempers 
7r Generally obedient, does what adults request 
12 Often fights with other children and bullies them 
18 Often lies or cheats 
22 Steals from home, school or elsewhere 
 Peer problems 
6 Rather solitary, tends to play alone 
11r Has at least one good friend 
14r Generally liked by other children 
19 Picked on or bullied by other children 
23 Get on better with adults than with other children 
* Questionnaire order; r = item reversed 
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Appendix C  Supplementary tables for Chapter 4 

 
Supplementary Table C.1  Continuous moderator model fit for IQ by SES index 1 – 
parental education and occupation at 18 months. 
 

Age Model '-2lnL 'df p-value AIC 
2 ace EA EC EE   EM -- -- -- 2667.258 
 EA  = 0 1.298 1 0.254 2666.556 
 EC  = 0 10.493 1 *0.001 2675.752 
 EE  = 0 3.330 1 0.068 2668.588 
 EA  = EC  = 0 10.768 2 *0.005 2674.027 
 EA  = EE  = 0 3.378 2 0.184 2666.637 
 EC  = EE  = 0 11.992 2 *0.002 2675.250 
 EA  = EC = EE  = 0 13.743 3 *0.003 2675.001 
      
3 ace EA EC EE   EM -- -- -- 795.956 
 EA  = 0 0.010 1 0.921 793.966 
 EC  = 0 0.216 1 0.641 794.172 
 EE  = 0 0.210 1 0.646 794.167 
 EA  = EC  = 0 0.225 2 0.894 792.181 
 EA  = EE  = 0 0.223 2 0.894 792.180 
 EC  = EE  = 0 0.381 2 0.827 792.337 
 EA  = EC = EE  = 0 0.466 3 0.926 790.422 
      
4 ace EA EC EE   EM -- -- -- 4490.210 
 EA  = 0 5.018 1 *0.025 4493.228 
 EC  = 0 4.946 1 *0.026 4493.156 
 EE  = 0 1.312 1 0.252 4489.522 
 EA  = EC  = 0 23.583 2 *0.000 4509.793 
 EA  = EE  = 0 5.068 2 0.079 4491.278 
 EC  = EE  = 0 8.138 2 *0.017 4494.347 
 EA  = EC = EE  = 0 24.109 3 *0.000 4508.319 
      
7 ace EA EC EE   EM -- -- -- 5340.294 
 EA  = 0 1.283 1 0.257 5339.577 
 EC  = 0 1.432 1 0.231 5339.727 
 EE  = 0 0.547 1 0.459 5338.841 
 EA  = EC  = 0 1.459 2 0.482 5337.753 
 EA  = EE  = 0 1.292 2 0.524 5337.586 
 EC  = EE  = 0 1.448 2 0.484 5337.743 
 EA  = EC = EE  = 0 1.460 3 0.692 5335.754 
      
9 ace EA EC EE   EM -- -- -- 2834.482 
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 EA  = 0 0.049 1 0.826 2832.530 
 EC  = 0 5.255 1 *0.022 2837.737 
 EE  = 0 0.169 1 0.681 2832.651 
 EA  = EC  = 0 11.526 2 *0.003 2842.001 
 EA  = EE  = 0 0.536 2 0.765 2831.018 
 EC  = EE  = 0 7.199 2 *0.027 2837.682 
 EA  = EC = EE  = 0 11.529 3 *0.009 2840.011 
      

10 ace EA EC EE   EM -- -- -- 2638.801 
 EA  = 0 3.912 1 *0.047 2640.713 
 EC  = 0 1.086 1 0.297 2637.888 
 EE  = 0 1.726 1 0.189 2638.528 
 EA  = EC  = 0 10.489 2 *0.005 2645.291 
 EA  = EE  = 0 3.924 2 0.141 2638.725 
 EC  = EE  = 0 1.884 2 0.389 2636.686 
 EA  = EC = EE  = 0 11.329 3 *0.010 2644.131 
      

12 ace EA EC EE   EM -- -- -- 4597.302 
 EA  = 0 0.304 1 0.581 4595.607 
 EC  = 0 0.316 1 0.574 4595.618 
 EE  = 0 0.959 1 0.327 4596.261 
 EA  = EC  = 0 0.317 2 0.853 4593.619 
 EA  = EE  = 0 1.199 2 0.549 4594.501 
 EC  = EE  = 0 1.054 2 0.590 4594.357 
 EA  = EC = EE  = 0 1.435 3 0.697 4592.738 
      

14 ace EA EC EE   EM -- -- -- 3105.441 
 EA  = 0 0.000 1 0.976 3103.442 
 EC  = 0 6.471 1 *0.011 3109.912 
 EE  = 0 0.020 1 0.886 3103.462 
 EA  = EC  = 0 6.539 2 *0.038 3107.981 
 EA  = EE  = 0 0.035 2 0.983 3101.476 
 EC  = EE  = 0 6.473 2 *0.039 3107.914 
 EA  = EC = EE  = 0 6.744 3 0.084 3106.086 

Model fit for twins with 18-month parental education and occupation. Grey highlight rows show 
best fitting model as indicated by AIC; * = significantly worse model fit as indicated by p-value 
 

 

Supplementary Table C.2  Continuous moderator model fit for IQ by SES index 2 - 
parental education and occupation at age 7 
 

Age Model '-2lnL 'df p-value AIC 
7 ace EA EC EE   EM -- -- -- 5154.816 
 EA  = 0 1.545 1 0.214 5154.361 
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 EC  = 0 2.512 1 0.113 5155.328 
 EE  = 0 0.094 1 0.760 5152.910 
 EA  = EC  = 0 2.762 2 0.251 5153.579 
 EA  = EE  = 0 2.409 2 0.299 5153.226 
 EC  = EE  = 0 3.126 2 0.209 5153.942 
 EA  = EC = EE  = 0 3.126 3 0.373 5151.942 
      
9 ace EA EC EE   EM -- -- -- 2530.328 
 EA  = 0 0.185 1 0.667 2528.513 
 EC  = 0 4.656 1 *0.031 2532.984 
 EE  = 0 0.023 1 0.879 2528.351 
 EA  = EC  = 0 9.504 2 *0.009 2535.832 
 EA  = EE  = 0 0.210 2 0.900 2526.538 
 EC  = EE  = 0 5.267 2 0.072 2531.595 
 EA  = EC = EE  = 0 9.834 3 *0.020 2534.162 
      

10 ace EA EC EE   EM -- -- -- 2221.107 
 EA  = 0 0.128 1 0.720 2219.235 

 EC  = 0 1.279 1 0.258 2220.386 
 EE  = 0 0.122 1 0.727 2219.229 
 EA  = EC  = 0 6.166 2 *0.046 2223.273 
 EA  = EE  = 0 0.476 2 0.788 2217.583 
 EC  = EE  = 0 1.281 2 0.527 2218.388 
 EA  = EC = EE  = 0 7.650 3 *0.054 2222.757 
      

12 ace EA EC EE   EM -- -- -- 4174.114 
 EA  = 0 4.280 1 *0.039 4176.394 
 EC  = 0 0.826 1 0.364 4172.940 
 EE  = 0 0.891 1 0.345 4173.005 
 EA  = EC  = 0 2.681 2 0.262 4172.795 
 EA  = EE  = 0 0.896 2 0.639 4171.010 
 EC  = EE  = 0 1.042 2 0.594 4171.156 
 EA  = EC = EE  = 0 5.021 3 0.170 4173.135 
      

14 ace EA EC EE   EM -- -- -- 2769.711 
 EA  = 0 3.975 1 *0.046 2771.686 
 EC  = 0 3.653 1 *0.056 2771.364 
 EE  = 0 1.718 1 0.190 2769.429 
 EA  = EC  = 0 5.748 2 0.056 2771.460 
 EA  = EE  = 0 4.012 2 0.135 2769.723 
 EC  = EE  = 0 4.500 2 0.105 2770.211 
 EA  = EC = EE  = 0 5.751 3 0.124 2769.462 

Model fit for twins with 7-year parental education and occupation. Grey highlighted rows show 
best fitting model as indicated by AIC; * = significantly worse model fit as indicated by p-value 
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Supplementary Table C.3  Continuous moderator model fit for IQ by SES index 3 - 
family income at age 9 
 
Age Model '-2lnL 'df p-value AIC 

9 ace EA EC EE  EM -- -- -- 2971.476 
 EA = 0 0.088 1 0.767 2969.563 
 EC = 0 3.950 1 *0.047 2973.425 
 EE = 0 0.124 1 0.724 2969.600 
 EA = EC = 0 11.933 2 *0.003 2979.409 
 EA = EE = 0 0.138 2 0.933 2967.614 
 EC = EE = 0 5.061 2 *0.080 2972.537 
 EA = EC = EE = 0 12.181 3 *0.007 2977.656 
      

10 ace EA EC EE  EM -- -- -- 2309.272 
 EA = 0 0.902 1 0.342 2308.174 
 EC = 0 0.808 1 0.369 2308.080 
 EE = 0 0.579 1 0.447 2307.851 
 EA = EC = 0 12.190 2 *0.002 2317.462 
 EA = EE = 0 0.940 2 0.625 2306.212 
 EC = EE = 0 2.517 2 0.284 2307.790 
 EA = EC = EE = 0 12.680 3 *0.005 2315.952 
      

12   ace EA EC EE  EM -- -- -- 2196.403 
 EA = 0 0.262 1 0.609 2194.665 
 EC = 0 0.802 1 0.371 2195.205 
 EE = 0 0.005 1 0.943 2194.408 
 EA = EC = 0 7.627 2 *0.022 2200.029 
 EA = EE = 0 0.515 2 0.773 2192.918 
 EC = EE = 0 0.988 2 0.610 2193.391 
 EA = EC = EE = 0 9.540 3 *0.023 2199.943 
      

14   ace EA EC EE  EM -- -- -- 1734.714 
 EA = 0 1.565 1 0.211 1734.279 
 EC = 0 3.091 1 *0.079 1735.805 
 EE = 0 2.634 1 0.105 1735.348 
 EA = EC = 0 3.095 2 0.213 1733.808 
 EA = EE = 0 2.779 2 0.249 1733.493 
 EC = EE = 0 4.618 2 *0.099 1735.332 
 EA = EC = EE = 0 5.814 3 0.121 1734.527 

Model fit for twins with 9-year family income. Grey highlighted rows show best fitting model as 
indicated by AIC; * = significantly worse model fit as indicated by p-value 
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Appendix D  Supplementary material for Chapter 5 

 

Potential sex differences in the effect of CHAOS on disruptive behaviour 

In addition to the main analyses, we applied the same multivariate modelling approach to 

boys and girls separately. These separated-by-sex analyses were less powerful because of 

the reduction in sample size. However, there are two of results worth highlighting. First, 

the pattern of effects is largely the same for males and females. Second, although the 

variance components for disruptive behaviour at age 12 are similar for males and 

females, there is a difference in the aetiology of the effect of CHAOS on disruptive 

behaviour. 

 Of the total genetic variation in conduct at 12 (females A = 52%, males = 49%), 

none was due to A effects on CHAOS at 9 and 12 years in females, and about 30% was 

due to A effects on CHAOS at 9 and 12 years in males. The reverse pattern was true for 

the shared environment. Of the total shared environmental variation in conduct at 12 

(females C = 28%, males = 26%), about 30% was due to C effects on CHAOS at 9 and 

12 years in females, and about 12% was due to C effects on CHAOS at 9 and 12 years in 

males. None of the non-shared environmental effect (females E = 20%, males = 25%) 

was due to E effects on CHAOS at 9 and 12 years in either females or males. 

 Of the total genetic variation in hyperactivity at 12 (females A = 70%, males = 

72%), none was due to A effects on CHAOS at 9 and 12 years in females, and about 

11% was due to A effects on CHAOS at 9 and 12 years in males. Estimates of total 

shared environmental effects on hyperactivity at 12 years were very small, about 4% for 

females and about 6% in males. Non-shared environmental effects on hyperactivity at 12 

years were equal in boys and girls (24%), and were not due to E effects on CHAOS at 9 

and 12 years. 
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Supplementary Table D.1  Separated-by-sex CHAOS-conduct analyses 
 

 MALES  FEMALES 
Latent genetic effects on CHAOS at 12: 
Standardized a paths 
 CHAOS 9 Conduct 9 Conduct 12 CHAOS 12  CHAOS 9 Conduct 9 Conduct 12 CHAOS 12 
CHAOS 9 .44 (.24-.58)     .45 (.29-.57)    
Conduct 9 .12 (.00-.33) .74 (.65-.82)    .12 (.00-.29) .64 (.55-.70)   
Conduct 12 .12 (.00-.35) .50 (.38-.60) .48 (.35-.58)   .04 (.00-.21) .58 (.48-.67) .42 (.26-.52)  
CHAOS 12 .16 (.00-.35) .00 (.00-.09) .06 (.00-.20) .10 (.00-.35)  .14 (.00-.34) .00 (.00-.08) .00 (.00-.11) .36 (.13-.47) 
          
Latent environmental effects on Conduct at 12: 
Standardized c paths 
 Conduct 9 CHAOS 9 CHAOS 12 Conduct 12  Conduct 9 CHAOS 9 CHAOS 12 Conduct 12 
Conduct 9 .50 (.35-.60)     .60 (.51-.68)    
CHAOS 9 .41 (.24-.64) .53 (.18-.66)    .42 (.30-.56) .55 (.38-.65)   
CHAOS 12 .48 (.30-.69) .30 (.00-.52) .49 (.28-.58)   .40 (.29-.51) .42 (.24-.60) .44 (.15-.56)  
Conduct 12 .26 (.07-.41) .13 (.00-.46) .12 (.00-.42) .40 (.00-.49)  .19 (.05-.30) .24 (.12-.48) .16 (.00-.35) .40 (.00-.49) 
          
Standardized e paths 
 Conduct 9 CHAOS 9 CHAOS 12 Conduct 12  Conduct 9 CHAOS 9 CHAOS 12 Conduct 12 
Conduct 9 .43 (.40-.46)     .46 (.43-.49)    
CHAOS 9 .00 (.00.05) .60 (.56-.64)    .01 (.00-.05) .57 (.53-.57)   
CHAOS 12 .00 (.00-.03) .02 (.00-.08) .63 (.60-.66)   .00 (.00-.03) .02 (.00-.07) .57 (.54-.59)  
Conduct 12 .19 (.14-.24) .00 (.00-.04) .00 (.00-.02) .46 (.43-.49)  .15 (.11-.15) .00 (.00-.02) .02 (.00-.04) .42 (.40-.45) 
Standardized (un-squared) path estimates shown 
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Supplementary Table D.2  Separated-by-sex CHAOS-hyperactivity/inattention analyses 
 

 MALES  FEMALES 
Latent genetic effects on CHAOS at 12: 
Standardized a paths 
 CHAOS 9 Hyperactivity 9 Hyperactivity 12 CHAOS 12  CHAOS 9 Hyperactivity 9 Hyperactivity 12 CHAOS 12 
CHAOS 9 .40 (.20-.55)     .45 (.30-.58)    
Hyperactivity 9 .26 (.11-.54) .80 (.65-.84)    .27 (.14-.44) .77 (.69-.80)   
Hyperactivity 12 .46 (.26-.84) .51 (.11-.60) .50 (.00-.59)   .18 (.02-.35) .51 (.43-.57) .65 (.60-.68)  
CHAOS 12 .19 (.00-.32) .01 (.00-.11) .00 (.00-.28) .10 (.00-.35)  .12 (.00-.32) .06 (.00-.16) .02 (.00-.11) .35 (.15-.46) 
          
Latent environmental effects on Hyperactivity at 12: 
Standardized c paths 
 Hyperactivity 9 CHAOS 9 CHAOS 12 Hyperactivity 12  Hyperactivity 9 CHAOS 9 CHAOS 12 Hyperactivity 12 
Hyperactivity 9 .21 (.13-.29)     .21 (.13-.29)    
CHAOS 9 .69 (.48-.76) .00 (.00-.49)    .68 (.44-.75) .00 (.00-.52)   
CHAOS 12 .52 (.33-.70) .00 (.00-.67) .53 (.00-.60)   .61 (.42-.72) .19 (.00-.60) .36 (.00-.55)  
Hyperactivity 12 .11 (.01-.20) .00 (.00-.24) .16 (.00-.24) .00 (.00-.13)  .22 (.10-.29) .04 (.00-.23) .09 (.00-.22) .00 (.00-.16) 
          
Standardized e paths 
 Hyperactivity 9 CHAOS 9 CHAOS 12 Hyperactivity 12  Hyperactivity 9 CHAOS 9 CHAOS 12 Hyperactivity 12 
Hyperactivity 9 .50 (.46-.54)     .55 (.51-.59)    
CHAOS 9 .00 (.00-.03) .60 (.56-.64)    .00 (.00-.03) .57 (.53-.60)   
CHAOS 12 .00 (.00-.02) .03 (.00-.08) .63 (.60-.66)   .00 (.00-.02) .02 (.00-.07) .57 (.54-.59)  
Hyperactivity 12 .24 (.20-.28) .00 (.00-.05) .03 (.00-.06) .43 (.40-.46)  .26 (.22-.30) .03 (.00-.06) .02 (.00-.04) .41 (.38-.43) 
Standardized (un-squared) path estimates shown 
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Supplementary Table D.3  Cholesky decomposition of the cross-lagged relationship 
between parent-rated conduct and child-rated CHAOS (standardized un-squared path 
estimates) 
 
Component 9-year  12-year 
 CHAOS Conduct  Conduct CHAOS 
A1 .49 (.39-.56) .14 (.03-.25)  .07 (.00-.18) .13 (.00-.25) 
C1 .65 (.59-.70) .31 (.24-.39)  .30 (.22-.38) .59 (.51-.67) 
E1 .58 (.56-.61) .00 (.00-.03)  .00 (.00-.02) .02 (.00-.06) 
A2  .71 (.66-.76)  .54 (.47-.59) .00 (.00-.06) 
C2  .41 (.32-.49)  .05 (.00-.17) .10 (.00-.20) 
E2  .45 (.43-.47)  .17 (.14-.20) .00 (.00-.02) 
A3    .46 (.38-.52) .03 (.00-.11) 
C3    .43 (.34-.48) .13 (.00-.24) 
E3    .44 (.42-.46) .01 (.00-.03) 
A4     .34 (.22-.43) 
C4     .37 (.19-.47) 
E4     .60 (.58-.62) 
      
 Conduct CHAOS  CHAOS Conduct 
A1 .73 (.68-.78) .09 (.03-.16)  .02 (.00-.08) .54 (.47-.60) 
C1 .52 (.45-.58) .39 (.30-.50)  .45 (.35-.55) .22 (.13-.31) 
E1 .45 (.43-.47) .00 (.00-.04)  .00 (.00-.02) .17 (.14-.20) 
A2  .48 (.38-.56)  .13 (.00-.27) .00 (.00-.07) 
C2  .52 (.40-.60)  .39 (.24-.52) .19 (.11-.31) 
E2  .58 (.56-.61)  .02 (.00-.06) .00 (.00-.01) 
A3    .34 (.21-.43) .04 (.00-.17) 
C3    .39 (.22-.49) .17 (.04-.32) 
E3    .60 (.58-.62) .01 (.00-.02) 
A4     .46 (.38-.52) 
C4     .41 (.31-.46) 
E4     .44 (.42-.46) 
      
 
In each row are the standardized (un-squared) path coefficients (and 95% confidence interval) 
leading from the latent variance component in column 1 to the measured trait labelled at the top 
of each column. Variance components with subscript 1 explain variance in measured trait 1 
(column 2); subscripts 2, 3, and 4 denote variance components explaining residual variation in 
measured traits 2, 3, and 4 (columns 3, 4, and 5). A, C, and E = genetic, shared, and non-shared 
environmental variance components; CHAOS = CHAOS; conduct = conduct problems.  
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Supplementary Table D.4  Cholesky decomposition of the cross-lagged relationship 
between parent-rated hyperactivity and child-rated CHAOS (standardized un-squared 
estimates) 
 
Component 9-year  12-year 
 CHAOS Hyperactivity  Hyperactivity CHAOS 
A1 .47 (.38-.56) .20 (.12-.29)  .23 (.14-.34) .12 (.00-.25) 
C1 .66 (.60-.71) .21 (.16-.26)  .19 (.13-.24) .58 (.50-.67) 
E1 .59 (.56-.61) .00 (.00-.01)  .01 (.00-.04) .02 (.00-.06) 
A2  .79 (.76-.81)  .53 (.49-.57) .05 (.00-.10) 
C2  .02 (.00-.11)  .13 (.00-.20) .41 (.00-.51) 
E2  .54 (.51-.57)  .27 (.24-.30) .00 (.00-.01) 
A3    .60 (.56-.63) .02 (.00-.09) 
C3    .00 (.00-.19) .00 (.00-.50) 
E3    .41 (.40-.43) .03 (.00-.06) 
A4     .33 (.21-.42) 
C4     .00 (.00-.26) 
E4     .60 (.58-.62) 
    
 Hyperactivity CHAOS  CHAOS Hyperactivity 
A1 .82 (.79-.84) .12 (.07-.16)  .09 (.04-.13) .58 (.54-.61) 
C1 .22 (.17-.26) .65 (.57-.70)  .59 (.46-.68) .19 (.13-.24) 
E1 .54 (.51-.57) .00 (.00-.01)  .00 (.00-.01) .27 (.24-.30) 
A2  .46 (.37-.54)  .10 (.00-.21) .09 (.00-.19) 
C2  .00 (.00-.32)  .05 (.00-.55) .02 (.00-.20) 
E2  .59 (.56-.61)  .02 (.00-.06) .01 (.00-.04) 
A3    .34 (.22-.42) .04 (.00-.15) 
C3    .40 (.21-.50) .13 (.00-.19) 
E3    .60 (.58-.62) .02 (.00-.04) 
A4     .60 (.56-.63) 
C4     .00 (.00-.09) 
E4     .42 (.40-.43) 
       
See note to Table D.3. hyperactivity = hyperactivity/inattention. 
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Appendix E  Supplementary tables for Chapter 6 

 

Supplementary Table E.1  Peer victimization univariate sex-limitation model fitting 
 
Model 

 
-2lnL df '-2lnL 'df p-value AIC BIC 

Physical Victimization 
Full sex-limitation 

 
23953.95 9469 -- -- -- 5015.95 -58347.29 

Sub-model 1 
 

23958.82 9470 4.87 1 0.03 5018.82 -58351.11 
Sub-model 2 

 
25699.81 9473 1745.87 4 0.00 6753.81 -56636.19 

Sub-model 3 
 

23960.66 9472 6.71 3 0.08 5016.66 -58366.66 
Verbal Victimization 
Full sex-limitation 

 
25478.42 9470 -- -- -- 6538.42 -56831.51 

Sub-model 1 
 

25478.42 9471 0.00 1 1.00 6536.42 -56840.20 
Sub-model 2 

 
25680.03 9474 201.61 4 0.00 6732.03 -56664.67 

Sub-model 3 
 

25482.59 9473 4.17 3 0.24 6536.60 -56853.41 
Social Manipulation 
Full sex-limitation 

 
25792.84 9468 -- -- -- 6856.84 -56499.71 

Sub-model 1 
 

25792.84 9469 0.00 1 0.99 6854.84 -56508.40 
Sub-model 2 

 
25975.59 9472 182.75 4 0.00 7031.59 -56351.73 

Sub-model 3 
 

25810.52 9471 17.69 3 0.00 6868.52 -56508.10 
Property Damage 
Full sex-limitation 

 
24469.38 9468 -- -- -- 5533.38 -57823.17 

Sub-model 1 
 

24469.38 9469 0.00 1 0.98 5531.38 -57831.86 
Sub-model 2 

 
25856.66 9472 1387.27 4 0.00 6912.66 -56470.66 

Sub-model 3 
 

24471.15 9471 1.76 3 0.62 5529.15 -57847.48 
 
All sub-models are compared to the full sex-limitation model. Full sex-limitation = 
coefficient of genetic relatedness estimated (i.e. allowed to deviate from 0.5) and ACE 
parameters estimated separately for males and females; Sub-model 1 = Test of qualitative 
sex differences. Coefficient of genetic relatedness fixed to 0.5 in opposite-sex pairs; Sub-
model 2 = Test of both qualitative and quantitative sex differences. Coefficient of genetic 
relatedness fixed to 0.5 in opposite-sex pairs and ACE parameters equated across males 
and females; Sub-model 3 = Test of phenotypic variance differences. Single set of ACE 
parameters estimated for males and females with a scalar multiplier applied to one sex to 
account for phenotypic variance differences; -2lnL = minus twice the log likelihood; df 
= degrees of freedom; '-2lnL = difference in minus twice the log likelihood; 'df = difference 
in degrees of freedom; p-value = significance of chi square test; AIC = Akaike's information 
criterion; BIC = Bayesian information criterion 
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Appendix F  Top hits and regional plot for Chapter 7 

 
Supplementary Table F.1  Physical Victimization "top hits" from a GWAS 
 
dbSNP rsID Chr Position B A Frequency B Beta SE P-value 
rs3762399 1 198268749 C A 0.9208894 0.2362 0.047421 6.33E-07 
rs7098843 10 7692685 G C 0.9398663 0.26139 0.052751 7.22E-07 
rs6513714 20 39349815 T A 0.3789276 0.12633 0.025853 1.03E-06 
rs6129801 20 39349851 T C 0.6211101 -0.12629 0.02585 1.03E-06 
rs6072328 20 39347410 T C 0.6211002 -0.1263 0.025851 1.03E-06 
rs4812488 20 39349574 T C 0.6217937 -0.12506 0.025861 1.33E-06 
rs6072329 20 39348929 G A 0.621988 -0.12435 0.025835 1.49E-06 
rs12480916 20 39365770 T G 0.6210289 -0.1242 0.025819 1.51E-06 
rs11648191 16 78154576 T C 0.1227212 -0.17656 0.038155 3.70E-06 
rs8053967 16 78159191 T A 0.1222988 -0.17778 0.038541 3.97E-06 
 
Grey rows indicate imputed SNPs. dbSNP rsID = single nucleotide polymorphism database reference; Chr = chromosome; Position = base pair position; B and A = 
alleles at the SNP; Beta = SNPTEST codes allele A as 0 and allele B as 1 and this defines the meaning of the beta's and there se's. For example, when using the additive 
model the beta estimates the increase in log-odds that can be attributed to each copy of allele B; SE = standard error associated with Beta; P-value = probability value 
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Supplementary Table F.2  Verbal Victimization "top hits" from a GWAS 
 
dbSNP rsID Chr Position B A Frequency B Beta SE P-value 
rs3762399 1 198268749 C A 0.9208894 0.24123 0.047434 3.67E-07 
rs6513714 20 39349815 T A 0.3789276 0.12829 0.025868 7.08E-07 
rs6072328 20 39347410 T C 0.6211002 -0.12825 0.025866 7.12E-07 
rs6129801 20 39349851 T C 0.6211101 -0.12823 0.025865 7.13E-07 
rs4812488 20 39349574 T C 0.6217937 -0.12718 0.025877 8.88E-07 
rs12480916 20 39365770 T G 0.6210289 -0.12638 0.025836 1.00E-06 
rs6072329 20 39348929 G A 0.621988 -0.12565 0.025847 1.17E-06 
rs2371211 7 82209720 T A 0.1611041 0.16318 0.03415 1.77E-06 
rs7098843 10 7692685 G C 0.9398663 0.25157 0.052782 1.88E-06 
rs6029632 20 39393756 G A 0.6160431 -0.12124 0.02575 2.50E-06 
Grey rows indicate imputed SNPs. See footnote to Supplementary Table F.1 
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Supplementary Table F.3  Social Manipulation "top hits" from a GWAS 
 
dbSNP rsID Chr Position B A Frequency B Beta SE P-value 
rs7098843 10 7692685 G C 0.9398663 0.27405 0.052744 2.04E-07 
rs2371211 7 82209720 T A 0.1611041 0.16779 0.034133 8.85E-07 
rs6513714 20 39349815 T A 0.3789276 0.1263 0.02585 1.03E-06 
rs6072328 20 39347410 T C 0.6211002 -0.12627 0.025849 1.03E-06 
rs6129801 20 39349851 T C 0.6211101 -0.12625 0.025847 1.04E-06 
rs4812488 20 39349574 T C 0.6217937 -0.12542 0.025857 1.23E-06 
rs12480916 20 39365770 T G 0.6210289 -0.12445 0.025817 1.43E-06 
rs6072329 20 39348929 G A 0.621988 -0.12418 0.02583 1.53E-06 
rs6956744 7 82209312 T G 0.1569329 0.162 0.034306 2.34E-06 
rs3762399 1 198268749 C A 0.9208894 0.22275 0.0474 2.61E-06 
Grey rows indicate imputed SNPs. See footnote to Supplementary Table F.1 
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Supplementary Table F.4  Property Damage "top hits" from a GWAS 
 
dbSNP rsID Chr Position B A Frequency B Beta SE P-value 
rs6513714 20 39349815 T A 0.3789276 0.13048 0.025834 4.40E-07 
rs6072328 20 39347410 T C 0.6211002 -0.13045 0.025833 4.42E-07 
rs6129801 20 39349851 T C 0.6211101 -0.13043 0.025831 4.43E-07 
rs4812488 20 39349574 T C 0.6217937 -0.12944 0.02584 5.47E-07 
rs6072329 20 39348929 G A 0.621988 -0.12866 0.025813 6.22E-07 
rs12480916 20 39365770 T G 0.6210289 -0.12857 0.0258 6.25E-07 
rs6029632 20 39393756 G A 0.6160431 -0.12274 0.025716 1.82E-06 
rs7098843 10 7692685 G C 0.9398663 0.24816 0.052714 2.51E-06 
rs2371211 7 82209720 T A 0.1611041 0.15768 0.034106 3.78E-06 
rs6029526 20 39106032 T A 0.5353215 -0.11389 0.025031 5.37E-06 
Grey rows indicate imputed SNPs. See footnote to Supplementary Table F.1 
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Supplementary Table F.5  Victimization Composite "top hits" from a GWAS 
 
dbSNP rsID Chr Position B A Frequency B Beta SE P-value 
rs6513714 20 39349815 T A 0.3789276 0.13221 0.025859 3.17E-07 
rs6072328 20 39347410 T C 0.6211002 -0.13218 0.025857 3.19E-07 
rs6129801 20 39349851 T C 0.6211101 -0.13215 0.025855 3.20E-07 
rs4812488 20 39349574 T C 0.6217937 -0.13109 0.025866 4.02E-07 
rs12480916 20 39365770 T G 0.6210289 -0.13026 0.025825 4.56E-07 
rs6072329 20 39348929 G A 0.621988 -0.12979 0.025839 5.08E-07 
rs3762399 1 198268749 C A 0.9208894 0.2302 0.047423 1.21E-06 
rs6029632 20 39393756 G A 0.6160431 -0.12461 0.02574 1.29E-06 
rs7098843 10 7692685 G C 0.9398663 0.25486 0.052762 1.36E-06 
rs6029526 20 39106032 T A 0.5353215 -0.1185 0.025053 2.24E-06 
Grey rows indicate imputed SNPs. See footnote to Supplementary Table F.1 
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Supplementary Figure F.1  Regional plot showing the top genotyped SNP in peer victimization 
rs4812488 is in an intron of the Zinc Finger and homeoboxes 3 (ZHX3) gene on chromosome 20. Lipin-3 (LPIN3) is within 50kb. It appears in the top 10 SNPs of all 
four victimization subtypes, and is genome-wide significant in property damage subscale and the victimization composite 
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