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ABSTRACT 

Background: The receptor for advanced glycation endproducts (RAGE) is a viable target for 

early AD diagnosis using positron emission tomography (PET) as RAGE overexpression 

preceeds Aβ plaque formation. The development of a carbon-11 analogue of FPS-ZM1 

([11C]FPS-ZM1), possessing nanomolar affinity for RAGE, may enable the imaging of RAGE 

for early AD detection. Methodology/Results: Herein we report an optimized [11C]CO2-to-

[11C]CO chemical conversion for the synthesis of [11C]FPS-ZM1 and in vitro brain 

autoradiography. The [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives 

was achieved with a 57% yield within 30 seconds from EOD. [11C]FPS-ZM1, was obtained 

with a decay-corrected isolated RCY of 9.5%. Conclusions: [11C]FPS-ZM1 distribution in 

brain tissues of wild-type versus transgenic AD-model mice showed no statistically-significant 

difference and high non-displaceable binding. 

 

INTRODUCTION 

Alzheimer’s disease (AD) is the most common subtype of dementia, however is misdiagnosed 

in 30-60% of all cases.[1, 2] Positron emission tomography (PET) enables real-time imaging 

of brain function[3] and AD clinical diagnosis.[4] The use of PET may enable the early 

detection of AD, possibly even 25 years before the onset of the first symptoms.[5]  

The current diagnosis of AD with PET focuses on imaging insoluble beta amyloid (Aβ) plaques 

using radiotracers such as fluorine-18 (18F)-labelled flutemetamol ([18F]flutemetamol, 2-[3-

[18F]fluoro-4-(methyl-amino)-phenyl]-6-benzothiazolol)[6] and carbon-11 (11C)-labelled 

Pittsburgh compound B ([11C]PiB, 2-(4'-[11C]methylaminophenyl)-6-

hydroxybenzothiazole).[7] The deposition of insoluble Aβ plaques, however, almost certainly 

occurs too late in the AD disease process for successful therapeutic intervention and also does 

not always correlate with AD diagnosis or loss of cognition[8, 9] thus limiting the diagnostic 



utility of Aβ-targeting radiotracers.[10, 11] An alternative strategy aims at detecting 

hyperphosphorylated tau protein, the main component of the neurofibrillary tangles 

(NFTs),[12] via the use of specific radiotracers such as [18F]T808.[13] Nevertheless, the 

accumulation of tau NFTs is also observed in frontotemporal dementia,[14] and, additionally, 

may not be present in sufficient amounts to be accurately detected by PET until late stage 

disease.[15] Therefore, to provide an accurate early diagnosis of AD as well as progress in drug 

development, new radiotracers targeting early pathophysiological pathways are crucial.[16, 17] 

The overexpression of the receptor for advanced glycated endproducts (RAGE) is linked with 

AD progression[16, 18] and could represent an alternative strategy for AD imaging. The 

extracellular region of RAGE binds several endogenous ligands, such as S100 calcium-binding 

proteins, advanced glycation endproducts (AGEs) and Aβ peptides and oligomers.[16] The 

binding of neurotoxic Aβ oligomers to RAGE mediates the pre-pathological neurodegenerative 

inflammatory process[19] and triggers AD-related effects, including enhanced activity of Aβ-

producing β-secretase enzyme 1 (BACE1),[20, 21] tau hyperphosphorylation,[22] and 

increased influx of Aβ across the blood brain barrier (BBB).[18, 21] Moreover, RAGE 

activation induces an overexpression of the receptor itself as shown in the brain of patients with 

advanced AD compared to mild AD or healthy controls.[17, 23] In a transgenic mouse model 

of AD (Tg2576) expression of RAGE was highest at the age of 15 months.[21, 24, 25] 

The pathological role of RAGE inspired the development of numerous inhibitors able to block 

the binding of Aβ to its V domain,[16] limiting the detrimental downstream effects. Among 

these inhibitors, a potent small molecule able to selectively bind the V domain of RAGE is the 

tertiary amide-based FPS-ZM1 (N-benzyl-4-chloro-N-cyclohexylbenzamide, Figure 1). FPS-

ZM1 possesses nanomolar affinity for RAGE (inhibitory constant Ki = 25 ± 5 nM)[21] and a 

good in vivo safety profile.[21] In vitro, FPS-ZM1 is able to reduce RAGE-mediated cellular 

oxidative stress, BACE1 mRNA and activity, and nuclear NF-κB levels.[21] In 15-to-18 



month-old Tg2576 mice, FPS-ZM1 (intraperitoneally administered, 1 mg/kg daily for 2 

months) showed a high brain uptake, a decreased influx of Aβ at the BBB to the brain with 

restored cognitive function and cerebral blood flow.[21]  

Based on the good in vitro and in vivo selectivity towards RAGE,[21] FPS-ZM1 was selected 

as a starting structure for the development of RAGE-targeting PET radiotracers. An 18F 

radiolabelled tracer ([18F]fluoro-FPS-ZM1, Figure 1) has been developed by substituting the 

chlorine atom of FPS-ZM1 with fluorine-18 (clogP = 4.9).[26][27] Regional time-activity 

curves in non-human primates and wild type (WT) rodents showed a rapid brain uptake and a 

slow elimination from hippocampal regions[26] – consistent with known RAGE 

expression.[17] Although these in vivo results showed a good uptake in healthy animals, an 

assessment in a Tg2576 mouse model might more accurately predict the biodistribution profile 

of the RAGE radiotracer in a pathological state. Moreover, the use of 11C allows the authentic 

labelling of the unmodified compound, retaining its pharmacodynamic and pharmacokinetic 

profile. A 11C-labelled analogue of FPS-ZM1 ([11C]FPS-ZM1) was therefore developed for 

testing with AD animal models. 

Here we report the incorporation of carbon-11 into the tertiary amide moiety of FPS-ZM1 via 

a 11C-amidation reaction using [11C]carbon monoxide ([11C]CO) as synthon. [11C]CO is a 

versatile synthon that is easily incorporated into a vast array of 11C-carbonyl-containing 

molecules, such as 11C-amides.[27-29] Cyclotron-produced 11C is usually obtained in the form 

of [11C]carbon dioxide ([11C]CO2) and converted to [11C]CO by: i) gas-phase reduction,[30] ii) 

electrochemical conversion,[31] or iii) chemical conversion via 11C-silanecarboxylate 

derivatives. The latter methodology was recently translated to 11C-chemistry to produce 

[11C]CO via a one-step chemical reaction between [11C]methyldiphenylsilanecarboxylate 

([11C]1) and tetrabutylammonium fluoride (TBAF) (Figure 2) by heating (60 °C) resulting in 

in a modest [11C]CO2-to-[11C]CO conversion (38 ± 8%).[32] 



The aims of this work were to: i) optimise the [11C]CO2-to-[11C]CO conversion via [11C]1 by 

studying the variables involved in the [11C]CO production such as temperature, reaction time, 

reagent stability and sample preparation; ii) employ the produced [11C]CO to radiolabel 

[carbonyl-11C]FPS-ZM1 ([11C]FPS-ZM1, Figure 1); and iii) assess [11C]FPS-ZM1 in vitro in 

the brains of wild type (WT) versus Tg2576 mice.  

 

 

Figure 1. Chemical structures of the RAGE inhibitor FPS-ZM1, [18F]fluoro-FPS-ZM1 and [11C]FPS-ZM1. 

 

 

EXPERIMENTAL SESSION 

General Method and Materials 

All chemicals and dry solvents were purchased from Sigma-Aldrich and Alfa Aesar and used 

as received. Crimp caps (centre hole with 3.0 mm PTFE, seal in aluminium silver 20 mm, 

Fisherbrand, 10132712) and oven-dried reaction v-vial (KX Microwave Vials) were used. All 

the lines used to allow the passage of gases were PTFE tubing (length: 10–20 cm, O.D.: 0.79 

x 0.4 in., I.D.: 1/32 x 0.16 in.). RCYs are based on initial radioactivity of [11C]CO2 and decay 

corrected from EOD. 

 

General Procedure for the Preparation of 3 



2 was added into an oven-dried argon-flushed vial (Vial P) containing lithium and dry THF 

(1.8 mL). The reaction vial was sealed and stirred for 3-24 h at 20 °C under argon. Vial P was 

centrifuged (Jouan, CR 412) at 15 °C and 7000 rpm for 10 min. Subsequently, two aliquots 

(0.45 mL) were transferred under an argon atmosphere (glovebox) to oven-dried argon-flushed 

V-vials (Vial A). 

 

Animals  

All procedures involving animals were conducted in accordance with European Commission’s 

Directive 2010/63/EU. The animals were used in accordance with ethical principles of 

Replacement, Reduction and Refinement.[33] All experiments were performed in tissues of 

17-month-old Tg2576 (n=2) and 8-month-old WT CD-1 (n = 4) mice.  

 

Preparation of Tissues  

Animals underwent anaesthesia with isoflurane (2%) and were sacrificed by decapitation 5 

minutes later. Organs were harvested in isopentane, wrapped in foil and frozen to -80 °C. 

Sagittal 20 µm brain sections were prepared using MNT cryostat (SLEE Medical, Germany) 

as previously described.[7, 26] Two to four sections were mounted onto each SuperFrost® Plus 

blue 90° ground microscopy slide (catalog no. 631-0446, VWR International, UK) and stored 

at -80 °C.  

 

Autoradiography  

After the synthesis, [11C]FPS-ZM1 was reformulated using a Sep-Pack Light C18 cartridge and 

redissolved in a 9:1 water:ethanol mixture. Slides for TB and NDB were defrosted to room 

temperature (2 h prior the incubation), rehydrated in tris-buffered saline (10 min; TBS, pH 7.6) 

and then incubated at room temperature in separate Coplin jars (20 min; catalog no. 12858735, 



Fisher Scientific, UK) containing TBS, the same concentration of [11C]FPS-ZM1 (1-20 nM) 

and either dimethyl-sulfoxide for TB or FPS-ZM1 (10-75 µM) for NDB. Following incubation, 

they were washed in TBS (2 min) and rinsed in deionised water. Slides were then fan-dried and 

exposed to a phosphor imaging plate (30 min; BAS-IP TR 2040, GE Healthcare, UK). The 

plate was scanned using a Typhoon 8600 phosphorimager (GE Healthcare, UK).  

Images were analysed using OptiQuant 5.0 software (PerkinElmer, UK). Cerebellum and 

whole brain region of interests (ROIs) were drawn manually. Qualitative analysis was 

conducted to determine any visual differences between ROIs and animal strains. Quantitative 

binding was expressed as mean normalised digital line units (DLU)/mm2 ± standard deviation. 

Data was analysed using Microsoft Excel 2016 and GraphPad Prism (7.0d). SB was estimated 

as a difference between TB and NDB. All SB data was expressed as % of WT whole brain 

region. WT cerebellum was normalized to whole brain WT to compare the uptake of the tracer 

in the cerebellum relatively to the whole brain. Independent t-tests (statistical significance 

p<0.05) were carried out to compare the variables across ROIs and animal strains.  

 

RESULTS AND DISCUSSION 

 



 

Figure 2. a. Vial P: Li (1.73 mmol), 2 (0.64 mmol), THF (1.8 mL), 3h, r.t. After 3h, an aliquot of Vial P (0.22 – 0.9 mL) is 

transferred in Vial A, which is used for the [11C]CO2 trapping. b. Vial A: [11C]CO2, r.t., 2 min. c. TBAF (0.8 mmol) added in Vial A, 

then transfer of [11C]CO from Vial A to Vial B with a helium gas stream (60 mL/min). d. Vial B: 12-14 (0.24 mmol), 15-17 (0.01 

mmol), [(cinnamyl)PdCl]2 (0.007 mmol), xantphos (0.007 mmol), solvent (450 μL), 40-120 °C, 2-5 min.  

  

 

Optimization of the [11C]CO2-to-[11C]CO conversion via [11C]1  

In our previous report, the [11C]CO2-to-[11C]CO conversion was performed in a single vial set-

up (Vial A) yielding 38% of [11C]CO based on total cyclotron produced [11C]CO2 (entry 1, 

Table 1).[32] Briefly, 2 (0.32 mmol, 1.0 equiv., 0.35 mM) reacted with lithium (2.7 equiv.) in 

dry THF (900 μL) at room temperature for 3 h at 20 °C under inert gas atmosphere to give 3.  

[11C]CO2 was subsequently bubbled into Vial A triggering the formation of [11C]1 (step b, 

Figure 2), which released [11C]CO by heating (60 °C) upon TBAF addition (step c, Figure 2).  

We hypothesized that the excess of unreacted lithium (black particles) contained in Vial A and 

the heating of Vial A were hampering the quantitative conversion of [11C]CO2 to [11C]CO. To 

reduce the content of unreacted lithium, we opted for the synthesis of 3 in a preparation vial 

(Vial P). Vial P contained 2 (0.64 mmol, 1 equiv., 0.35 mM) and lithium (4 equiv.) in anhydrous 

THF (1.8 mL) and was stirred at room temperature for 3 hours to yield 3 (step a, Figure 2). 

Upon reaction completion, 0.45 mL of the supernatant of Vial P were transferred to an empty 



oven-dried vial (Vial A) under inert gas atmosphere to be used for the [11C]CO2-to-[11C]CO 

conversion to Vial A. 

 

 

Figure 3. Set up of the two-vial system. A. [11C]CO2 is trapped by Vial A; B. TBAF addition in Vial A promotes the conversion of 

[11C]1 to [11C]CO, which is transferred to Vial B with an helium flush. The transferred [11C]CO will be consumed in Vial B for 

producing [11C]4-10 and [11C]FPS-ZM1. 

 

 

The cyclotron-produced [11C]CO2 was subsequently bubbled into Vial A with high trapping 

efficiency (> 99%, n = 100), leading to the formation of [11C]1 (step b, Figure 2). TBAF was 

added to Vial A at room temperature giving a 47% release of [11C]CO from [11C]1 (entry 2, 

Table 1) within 10 seconds. Thus, excluding the unreacted lithium particles from the mixture 

and performing the TBAF addition at room temperature had a positive effect on [11C]CO 

release, with an increase of [11C]CO production of ~10% (38% in entry 1 versus 47% in entry 

2, Table 1). With the aim of further increasing the production of [11C]CO, we turned our 

attention to the preparation time of 3 by varying the reaction time between 2 and lithium. By 

decreasing the reaction time from 3 hours to 2, 1 and 0.5 hours, no variation on [11C]CO release 

was observed (~50%, entries 3‒5, Table 1). However, when the reaction between 2 and lithium 

was stirred for 0.2 h or 24 h (entries 6-7, Table 1), a detrimental decrease on [11C]CO release 

(3% and 4%, respectively) was observed. A reaction time of 0.2 h might not be enough to 

obtain 3 in good yield, whilst a 24 h reaction formed high amounts of insoluble precipitate 

which might have a negative impact on [11C]CO release. To eliminate the insoluble precipitate, 



centrifugation of Vial P was performed before transferring part of the supernatant solution into 

Vial A. The centrifugation step increased the release of [11C]CO from 4% (entry 7, Table 1) to 

38% (entry 8, Table 1). Similarly, the centrifugation step increased the [11C]CO release when 

2 and lithium were stirred for 3 h (no centrifugation step: 47 ± 4 %, entry 2 versus centrifugation 

included: 57 ± 4%, entry 9, Table 1). Complete trapping of the cyclotron-produced [11C]CO2 

was obtained in each case (> 98%). The centrifugation of Vial P before transferring part of the 

volume into Vial A had a positive effect on [11C]CO production, thus being routinely 

implemented in the method, thereafter. 

As a next step, we examined the effect of the amount of 2 (0.32-1.24 mmol) after either 3 hours 

(entries 10-11, Table 1) or 24 hours (entries 12-13, Table 1) of synthesis time. When the 

amount of 2 was lowered from 0.64 mmol to 0.32 mmol while keeping constant lithium 

equivalents, [11C]CO production dropped from 57% to 8% after 3 hours (entries 9 and 10, 

Table 1) and from 38% to 14% after 24 hours (entries 8 and 12, Table 1). When the amount 

of 2 was increased from 0.64 mmol to 1.24 mmol, [11C]CO production slightly decreased from 

57% to 31% after 3 hours (entries 9 and 11, Table 1) but was unaffected when the reaction was 

stirred for 24 hours (entries 8 and 13, Table 1).  

Further investigations focused on varying the volume of solution transferred form Vial P into 

Vial A whilst keeping constant the concentration of the reagents (0.36 mM of 2). When a 

volume of 0.9 mL (entry 14, Table 1) or 0.225 mL (entry 15) rather than 0.45 mL (entry 9) 

was transferred, the production of [11C]CO decreased from 57% to 38% and 42%, respectively. 

 

Table 1. The effect of reagents amount, reaction time and preparation of Vail A on [11C]CO release via [11C]1. 

Entry a Amount of 2 

(mmol) 

Volume transferred 

(mL) 

Hours Centrifugation  % [11C]CO 

released b 

1[34] 0.64 - 3 No 38 ± 8% 

2 0.64 0.45 3 No 47 ± 4 (5) 

3 0.64 0.45 1 No 56 

4 0.64 0.45 2 No 51 



5 0.64 0.45 0.5 No 54 

6 0.64 0.45 0.2 No 3 

7 0.64 0.45 24 No 4 

8 0.64 0.45 24 Yes 38 ± 3 (3) 

9 0.64 0.45 3 Yes 57 ± 4 (15) 

10 0.32 0.45 3 Yes 8 

11 1.28 0.45 3 Yes 31 

12 0.32 0.45 24 Yes 14 

13 1.28 0.45 24 Yes 35 

14 0.64 0.90 3 Yes 38 

15 0.64 0.22 3 Yes 42 

a Vial P: 2 (1 equiv., 0.64 -1.28 mmol), lithium (4 equiv.), THF (1.8 mL). After 0.1-24 h, 0.22-0.9 mL of solution is 

transferred to Vial A. [11C]CO2 was delivered at 20 °C for 105 seconds into Vial A. Addition of TBAF 1 M in THF 

(0.8 mmol) after 30 sec of EOD. Vial B: [11C]CO, 12 (0.46 mmol), 15 (0.01 mmol), [(cinnamyl)PdCl]2 (0.007 mmol), 

xantphos (0.007 mmol), THF (0.5 mL), 25 °C.  

b  The % [11C]CO released was calculated dividing the amount of radioactivity in Vial B over the total radioactivity (Vial 

A + Vial B + ascarite trap) measured at the end of [11C]CO production.  

 

 

 

 

To further optimise the reaction, we focused on the effect on [11C]CO release of varying the 

amount of TBAF added to [11C]1 and the interval times between TBAF addition and [11C]CO2 

delivery. A range of TBAF concentrations (0.4-1.6 mmol, entries 1-3, Table SI1) were added 

to [11C]1 after 30 seconds from end of [11C]CO2 delivery (EOD). The use of 0.8 mmol of TBAF 

granted a [11C]CO release of 57% (entry 1, Table SI1).  Reducing or increasing the TBAF 

content to 0.4 or 1.6 mmol lowered the [11C]CO release (24% and 19%, respectively, entries 

2-3, Table SI1). Subsequently, a study on the interval (30 seconds, 5 and 30 minutes) between 

EOD and TBAF addition was performed. High [11C]CO release was achieved when TBAF 

solution was added within 5 min from EOD (55%, entry 4, Table SI1). On the contrary, the 

addition of TBAF after 30 min from EOD gave low [11C]CO yields (28%, entry 5, Table SI1) 

probably due to potential degradation of [11C]1 in the reaction mixture. 

In summary, the highest [11C]CO release from [11C]1 (57% (n = 15), entry 9, Table 1) was 

achieved when: 1) 0.64 mmol (1 equiv.) of 2 reacted with lithium (4 equiv.) in 1.8 mL of THF 

for 3 hours at room temperature; 2) 0.45 mL of the supernatant solution were transferred in 



Vial A after centrifuging the reaction mixture contained in Vial P; 3) the [11C]CO2 delivery 

into Vial A was performed at room temperature; and 4) 0.8 mmol of TBAF were added 30 

seconds post EOD.  

 

Radiosynthesis of [11C]4-10 and [11C]FPS-ZM1  

The optimized conditions for [11C]CO production (entry 9, Table 1) were applied to the 

radiolabeling of [11C]4-10 and [11C]FPS-ZM1. A second oven-dried v-shaped reaction vial 

(Vial B) was preloaded with Pd(π-cinnamyl)chloride ([(cinnamyl)PdCl]2), xantphos, 

benzylamine (12-14) and iodobenzene (15-17) derivatives in anhydrous THF under nitrogen. 

(step d, Figure 2). Once [11C]CO was transferred into Vial B, it was consumed in a Pd-

mediated 11C-carbonylation reaction forming 11C-benzylbenzamide derivatives ([11C]4-10 and 

[11C]FPS-ZM1).[32] A sodium hydroxide-coated silica (ascarite) trap was placed between the 

two vials to capture any untrapped [11C]CO2 (Figure 2).  

The strategy to synthesize [11C]FPS-ZM1 was developed starting from previous studies on an 

analogue compound ([11C]benzylbenzamide, [11C]4) obtained in high radiochemical yield 

(RCY > 99%) by coupling benzylamine (12) with iodobenzene (15).[32, 34] Compared to 

[11C]4 (Table 2), [11C]FPS-ZM1 bears a tertiary amide, a bulky cyclohexyl group and a 

chlorine atom in para-position to the amide group. The influence of these chemical features 

was explored by combining primary and secondary amines (12-14, Figure 3, Table 2) with 

different para-iodo aryl halides (15-17). 

 

 

Table 2. Effects of substituents R1 and R2 on RCY and chemical structures of the 11C-labelled products 



   

Product Amine Iodobenzene 

derivative 

R1 R2 RCY (%) a 

[11C]4 12 15 H H >99% b 

[11C]5 13 15 CH3 H 80% b 

[11C]6 14 15 cyclohexyl H 37% b 

[11C]7 12 16 H F >99%  b 

[11C]8 14 16 cyclohexyl F 36% b 

[11C]9 12 17 H Cl 74% b 

[11C]10 13 17 CH3 Cl 52% b 

[11C]FPS-ZM1 14 17 cyclohexyl Cl 30.2 ± 5.3% c 

a 9-11 (0.24 mmol), 12-14 (0.01 mmol), [(cinnamyl)PdCl]2 (0.007 mmol), xantphos (0.007 mmol), THF (450 μL), 5 min, 100 °C.  
RCY is the percentage of of product radioactivity divided by total radioactivity observed in an analytical HPLC chromatogram. 
b n = 1;  
c n = 12. 

  

. 

 

The substitution of a hydrogen atom of the benzylamine (12) with a methyl group (N-

benzylmethylamine, 13) aimed to elucidate the reactivity of a secondary amine substituted with 

a low sterically-hindered group. This modification lowered the RCY to 80% ([11C]5, Table 2). 

The lowered reactivity is more pronounced when a bulkier cyclohexyl group (N-

benzylcyclohexanamine, 14) is introduced ([11C]6, RCY = 37%).  

The same trend was observed using p-iodo fluorobenzene (16) and p-iodo chlorobenzene (17). 

Indeed, when 16 reacted with 14, the RCY was lower compared to the reaction with the least 

sterically-hindered 12 ([11C]8, RCY = 36% versus [11C]7, RCY > 99%, Table 2). 17 showed 

the same RCY decrease when coupled with 12 ([11C]9, RCY = 74%), 13 ([11C]10, RCY = 52%) 

and 14 ([11C]11, RCY = 30.2%, Table 2). Thus, switching from a primary to a secondary amine 

and increasing the steric hindrance on the amine partly impedes the reaction irrespective of the 

p-iodoaryl halide derived used. 

Varying the para substituent (R2) of iodobenzene also affected the RCY of the reaction (Table 

2). The presence of a hydrogen (15) or a fluorine (16) showed the same RCY when either 



amines 12 ([11C]7, RCY > 99% versus [11C]4, RCY > 99%) or 14 ([11C]8, RCY = 36% versus 

[11C]6, RCY = 37%) were used.  

The insertion of a chlorine atom (17) in para position of the iodobenzene instead significantly 

diminished the RCY of the reaction compared to 15 ([11C]9, RCY = 74% versus [11C]4, RCY 

> 99%; [11C]10, RCY = 52% versus [11C]5, RCY = 80%; [11C]FPS-ZM1, RCY = 30% of 

versus [11C]6, RCY = 37%, Table 2).  

To increase the RCY of [11C]FPS-ZM1 (RCY = 30.2 ± 5.3%), different variables were also 

investigated: temperature, addition of a base, concentration of 14 and solvent (Table SI2). 

Decreasing the temperature from 100 °C to 40 °C (entry 1, Table SI2) did not yield the product 

whereas increasing the temperature to 120 °C lowered the RCY from 30% to 14% (entry 2, 

Table SI2). The addition of a base, such as NEt3, to increase the nucleophilicity of 14 was 

detrimental for the reaction (entry 3, Table SI2). Doubling the concentration of 14 from 0.24 

mmol to 0.48 mmol did not improve the RCY (RCY = 14%, entry 4, Table SI2). Furthermore, 

solvents other than THF were tested: dioxane (RCY = 15%, entry 5, Table SI2) and acetonitrile 

(ACN, RCY = 9%, entry 6, Table SI2) were associated with a lower RCY of [11C]FPS-ZM1.  

In conclusion, the optimal conditions for [11C]FPS-ZM1 production are obtained when 0.24 

mmol of 14 are reacted with 0.01 mmol of 17 at 100 °C in anhydrous THF for 5 minutes (Table 

2). With these conditions, [11C]FPS-ZM1 was produced with a decay-corrected isolated RCY 

of 9.5 ± 1.5% and radiochemical purity (RCP) > 99% within 24 minutes from end of cyclotron 

target bombardment (EOD), resulting in an activity yield of 3.3 ± 1.4% based on an initial 

[11C]CO production of ~100 MBq. The molar activity of the final product was 0.77 ± 0.13 

GBq/μmol decay-corrected at EOD starting with an initial [11C]CO2 delivery of 300 MBq. This 

method was adopted for the synthesis of [11C]FPS-ZM1 to be tested in in vitro experiments. 

 

Autoradiography 



One of the key requirements for a central nervous system PET radiotracer is high binding 

affinity towards its molecular target and low non-specific binding.[35, 36] The binding profile 

of [11C]FPS-ZM1 against RAGE was evaluated in brain sections of WT and 17-month Tg2576 

mice. 

The binding was assessed in the whole brain (minus cerebellum) and the cerebellum. Total 

binding (TB) was confirmed at varying concentrations of [11C]FPS-ZM1 (5-10 nM) whereas 

non displaceable binding (NDB) was determined in the presence of differing concentration of 

non-radioactive FPS-ZM1 (25-75 µM). Specific binding (SB) was obtained by subtracting the 

signal of NDB from TB.  

Qualitative and quantitative analysis was conducted at three sets of concentrations (A-C):  

A: TB: 10 nM of [11C]FPS-ZM1 and NDB: 10 nM of [11C]FPS-ZM1 with 25 µM of FPS-

ZM1; B: TB: 10 nM of [11C]FPS-ZM1 and NDB: 10 nM of [11C]FPS-ZM1 with 75 µM of 

FPS-ZM1; C: TB: 5 nM of [11C]FPS-ZM1 and NDB: 5 nM of [11C]FPS-ZM1 with 75 µM of 

FPS-ZM1.  

Qualitative image analysis using 10 nM of [11C]FPS-ZM1 showed high NDB of [11C]FPS-

ZM1 (sets A and B) in WT and Tg2576 mice. By lowering the concentration of [11C]FPS-

ZM1 from 10 nM  to 5 nM (set C), a lower degree of NDB was observed in WT and Tg2576 

mice (Figure 3A). Thus, set C was chosen for quantitative autoradiography analysis to enable 

a comparison with qualitative images.  

Although qualitative images showed an increase in SB of [11C]FPS-ZM1 in the whole brain 

of Tg2576 versus WT mice (49%, Figure 3A-B), this difference was not statistically significant 

when a quantitative autoradiography analysis was performed (Figure 3B).  

 

Figure 4. A. Qualitative autoradiography comparison of TB and NDB signals in WT and Tg2576 at concentration set C. B. SB of 

[11C]FPS-ZM1 in WT and Tg2576 mouse brain normalised to WT whole brain at concentration set C. Set C: TB: 5 nM of [11C]FPS-

ZM1 and NDB: 5 nM of [11C]FPS-ZM1 with 75 µM of FPS-ZM1. 



       

All values are expressed as % WT whole brain SB ± standard deviation and were derived from 3 independent quantitative 

autoradiography experiments. WT cerebellum value was normalized to the whole brain SB. The black-circled area indicates 

the cerebellum, whereas the red-circled area is the whole brain (minus cerebellum). Autoradiographic images are displayed 

according to the NIH intensity scale for tracer activity, from red (highest), through green (intermediate) to blue (lowest). 

 

 

 

CONCLUSION  

In summary, a rapid and reliable method for the chemical conversion of [11C]CO2 to [11C]CO 

via [11C]1 at room temperature was achieved with a [11C]CO release of up to 57% within 30 

seconds from EOD based on total radioactivity delivered. The produced [11C]CO was 

employed for the synthesis of a novel 11C-PET-based RAGE radiotracer via Pd-catalyzed 

[11C]CO amidation, [11C]FPS-ZM1, which was obtained with a decay-corrected isolated RCY 

of 9.5%. The in vitro evaluation of [11C]FPS-ZM1 showed a 49% greater SB signal in the 

whole brain of Tg2576 versus WT mice, however this was non-statistically significant. 

Moreover, a high degree of NDB was observed. Poor radiotracer displacement may be 

explained by its high lipophilicity (calculated LogP for FPS-ZM1 = 5.25)[37] leading to 

increased NDB to lipids (e.g. cell membrane).[38] This barrier may be overcome by modifying 

the lipophilicity of future radiotracers derived from this pharmacophore for imaging RAGE.  

 

FUTURE PERSPECTIVES 



Although at present AD progression cannot be halted or reversed, the availability of a RAGE 

radiotracer for PET imaging would enable the monitoring of brain RAGE levels from 

presymptomatic to late stage AD and establish a temporal relationship between 

neuroinflammation, RAGE expression, amyloid-β plaque and neurofibrillary tangle formation 

as well as a providing a tool for determining target occupancy of RAGE inhibitors. The findings 

outlined in this study and others[26] pave the way for the development of a second generation 

of RAGE PET radiopharmaceuticals with optimal lipophilicity profiles commensurate with 

improved in vivo imaging signal-to-noise ratios. Longitudinal studies determining the in vivo 

brain uptake in AD animal models using both RAGE and ß-amyloid PET radiotracers would 

enable the evaluation of RAGE as and early AD biomarker. assisting the discovery of new 

therapies. In the longer term, RAGE PET radiotracers may allow the development and 

evaluation of new disease-modifying treatments as well as an early diagnostic tool for AD. 

 

SUMMARY POINTS 

• The Receptor for Advanced Glycated Endproducts (RAGE) is involved in the 

neuroinflammatory pathway in Alzheimer’s Disease (AD) and found to be 

overexpressed in early pre-AD pathology. 

• FPS-ZM1, reported by Deane at al., is a RAGE inhibitor which is able to restore 

cognitive function in AD mouse models (Tg2576). The radiolabelling of FPS-ZM1 

would allow the imaging of in vivo RAGE expression and its early involvement with 

disease progression. 

• [11C]CO chemistry allows rapid radiolabelling of the amide moiety of FPS-ZM1. A 

novel [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives was 

optimized and then applied to the radiolabeling of [11C]FPS-ZM1. 



• In vitro autoradiography studies with [11C]FPS-ZM1 showed a non-statistically 

significant difference in specific binding in AD-mouse model (Tg2576) brains 

compared to wild-type mouse brains. A high non-displaceable binding was observed, 

probably due to the high lipophilicity of [11C]FPS-ZM1.  

• Follow-up studies using more hydrophilic probes to lower the non-displaceable binding 

are needed to correlate RAGE expression and early AD stages in vivo.  

 

ABBREVIATIONS USED 

[11C] – carbon-11-labelled radiotracer; [11C]CO – carbon-11 labelled carbon monoxide; 

[11C]CO2 – carbon-11 labelled carbon dioxide; [18F] – fluorine-18-labelled radiotracer; Aβ – 

beta amyloid; AD – Alzheimer’s disease; AGEs – advanced glycation endproducts; BACE1 - 

β-secretase enzyme 1; BBB – blood brain barrier; 11C – carbon-11; EOB – end of 

bombardment; EOD – end of [11C]CO2 delivery; 18F – fluorine-18; NDB – non-displaceable 

binding; NFT – neurofibrillary tangle; PET – positron emission tomography; RAGE – receptor 

for advanced glycation endproducts; RCP – radiochemical purity;  RCY – radiochemical yield; 

ROI – region of interest; SB – specific binding; TB – total binding; TBAF  –  tetrabutyl 

ammonium fluoride; TG – transgenic; WT – wild-type;  

 

 

CONFLICT OF INTEREST DISCLOSURE 

The authors declare no competing financial interest. 

ACKNOWLEDGMENTS 

This work was supported by Medical Research Council [MRC, MR/K022733/1], European 

Commission, FP7-PEOPLE-2012-ITN [316882, RADIOMI] and the Wellcome/EPSRC 

Centre for Medical Engineering [WT 203148/Z/16/Z]. The research was supported by the 



National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and 

St Thomas' NHS Foundation Trust and King's College London. The views expressed are those 

of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. 

The authors also acknowledge Dr. Richard Killick for providing the Tg2576 mouse brains. 

REFERENCES 

1. Beach TG, Phillips LE, Monsell SE, Kukull W. Accuracy of the Clinical Diagnosis of 
Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005–
2010. J Neuropathol Exp Neurol. 71(4), 266-273 (2012). 

2. Shaik SS, Varma AR. Differentiating the dementias: a neurological approach. Prog. 
Neurol. Psychiatry 16(1), 11-18 (2012). 

3. Ziegler SI. Positron Emission Tomography: Principles, Technology, and Recent 
Developments. Nuclear Physics A 752 679-687 (2005). 

4. Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat. 
Rev. Neurol. 6 78 (2010). 

5. Bateman RJ, Xiong C, Benzinger TL et al. Clinical and biomarker changes in dominantly 
inherited Alzheimer's disease. N Engl J Med 367(9), 795-804 (2012). 

6. Vandenberghe R, Van Laere K, Ivanoiu A et al. 18F-flutemetamol amyloid imaging in 
Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68(3), 
319-329 (2010). 

7. Manook A, Yousefi BH, Willuweit A et al. Small-animal PET imaging of amyloid-beta 
plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of 
Alzheimer's disease. PLoS One 7(3), e31310 (2012). 

8. Rowe CC, Ellis KA, Rimajova M et al. Amyloid imaging results from the Australian 
Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31(8), 1275-
1283 (2010). 

9. Annus T, Wilson LR, Hong YT et al. The pattern of amyloid accumulation in the brains 
of adults with Down syndrome. Alzheimers Dement 12(5), 538-545 (2016). 

10. Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S. Diagnostic accuracy 
of (18)F amyloid PET tracers for the diagnosis of Alzheimer's disease: a systematic 
review and meta-analysis. Eur J Nucl Med Mol Imaging 43(2), 374-385 (2016). 

11. Cohen JP, Dong J, Lu CY, Chakravarthy R. Restricting access to florbetapir: Medicare 
coverage criteria for diagnostics and drugs are inconsistent. BMJ 351 h3333 (2015). 

12. James OG, Doraiswamy PM, Borges-Neto S. PET Imaging of Tau Pathology in 
Alzheimer's Disease and Tauopathies. Front Neurol 6 38 (2015). 

13. Chien DT, Szardenings AK, Bahri S et al. Early clinical PET imaging results with the novel 
PHF-tau radioligand [F18]-T808. J Alzheimers Dis 38(1), 171-184 (2014). 

14. Heutink P. Untangling tau-related dementia. Hum Mol Genet 9(6), 979-986 (2000). 
15. Schwarz AJ, Yu P, Miller BB et al. Regional profiles of the candidate tau PET ligand 18F-

AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5), 
1539-1550 (2016). 



16. Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced 
Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem 
60(17), 7213-7232 (2017). 

** A review describing the main biological and pharmacological aspects of RAGE. 
17. Sasaki N, Toki S, Chowei H et al. Immunohistochemical distribution of the receptor for 

advanced glycation end products in neurons and astrocytes in Alzheimer's disease. 
Brain Res 888(2), 256-262 (2001). 

18. Deane R, Du Yan S, Submamaryan RK et al. RAGE mediates amyloid-beta peptide 
transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7), 907-
913 (2003). 

19. Yan SD, Chen X, Fu J et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's 
disease. Nature 382(6593), 685-691 (1996). 

20. Guglielmotto M, Aragno M, Tamagno E et al. AGEs/RAGE complex upregulates BACE1 
via NF-κB pathway activation. Neurobiol Aging 33(1), 196.e113-196.e127 (2012). 

21. Deane R, Singh I, Sagare AP et al. A multimodal RAGE-specific inhibitor reduces 
amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin 
Invest 122(4), 1377-1392 (2012). 

** In vitro and in vivo study of FPS-ZM1 pharmacological activity. 
22. Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ. AGEs induce Alzheimer-like tau pathology 

and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7), 1400-
1410 (2012). 

23. Miller MC, Tavares R, Johanson CE et al. Hippocampal RAGE immunoreactivity in early 
and advanced Alzheimer's disease. Brain Res 1230 273-280 (2008). 

24. Cui S, Xiong F, Hong Y et al. APPswe/Abeta regulation of osteoclast activation and 
RAGE expression in an age-dependent manner. J. Bone Miner. Re.s 26(5), 1084-1098 
(2011). 

25. Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, Abeta elevation, and 
amyloid plaques in transgenic mice. Science 274(5284), 99-102 (1996). 

26. Cary BP, Brooks AF, Fawaz MV et al. Synthesis and Evaluation of [(18)F]RAGER: A 
First Generation Small-Molecule PET Radioligand Targeting the Receptor for 
Advanced Glycation Endproducts. ACS Chem. Neurosci. 7(3), 391-398 (2016). 

** Development and in vivo testing of a fluorine-18, RAGE-targeting radiopharmaceutical. 
27. Kealey S, Gee A, Miller PW. Transition metal mediated [(11) C]carbonylation reactions: 

recent advances and applications. J. Labelled Comp. Radiopharm. 57(4), 195-201 
(2014). 

28. Rahman O. [11C]Carbon monoxide in labeling chemistry and positron emission 
tomography tracer development: scope and limitations. J. Labelled Comp. 
Radiopharm. 58(3), 86-98 (2015). 

29. Långström B, Itsenko O, Rahman O. [11C]Carbon monoxide, a versatile and useful 
precursor in labelling chemistry for PET-ligand development. J. Labelled Comp. 
Radiopharm. 50(9‐10), 794-810 (2007). 

30. Zeisler SK, Nader M, Theobald A, Oberdorfer F. Conversion of No-carrier-added 
[11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-
labelled aromatic ketones. Appl. Radiat. lsot. 48(8), 1091-1095 (1997). 

31. Anders DA, Bongarzone S, Fortt R, Gee AD, Long NJ. Electrochemical [11C]CO2 to 
[11C]CO conversion for PET imaging. Chem. Commun. 53(20), 2982-2985 (2017). 



32. Taddei C, Bongarzone S, Haji Dheere AK, Gee AD. [11C]CO2 to [11C]CO conversion 
mediated by [11C]silanes: a novel route for [11C]carbonylation reactions. Chem. 
Commun. 51(59), 11795-11797 (2015). 

** The method for [11C]CO production which was optimized in this manuscript. 
33. Flecknell P. Replacement, reduction and refinement. ALTEX 19(2), 73-78 (2002). 
34. Dahl K, Schou M, Amini N, Halldin C. Palladium-Mediated [11C]Carbonylation at 

Atmospheric Pressure: A General Method Using Xantphos as Supporting Ligand. 
European Journal of Organic Chemistry 2013(7), 1228-1231 (2013). 

35. Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and 
image quality in molecular imaging of the brain with positron emission tomography. 
Mol. Imaging Biol. 5(6), 363-375 (2003). 

36. Gee AD, Bongarzone S, Wilson AA. Small Molecules as Radiopharmaceutical Vectors. 
In: Radiopharmaceutical Chemistry, Lewis JS, Windhorst AD, Zeglis BM (Ed.^(Eds). 
Springer International Publishing Cham  119-136 (2019). 

37. Calculator Plugins were used for structure property prediction and calculation, Marvin 
Sketch 18.10, 2018, ChemAxon (http://www.chemaxon.com) 

38. Pike VW. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. 
Trends Pharmacol Sci 30(8), 431-440 (2009). 

 


