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According to Nokia’s 2017 Threat Intelligence Report, 68.5% of malware targets the Android platform—Windows is second

with 28%, followed by iOS and other platforms with 3.5%. The Android spyware family UaPush was responsible for the most

infections, and several of the top 20 most common Android malware were spyware. Simply put, modern spyware steals the

basic information needed to fuel more deadly attacks such as ransomware and banking fraud. Not surprisingly, some forms of

spyware are also classified as banking trojans (e.g., AceCard). We present a data-driven characterization of the principal

factors that distinguish modern Android spyware (July 2016 - July 2017) both from goodware and other Android malware,

using both traditional and deep ML. First, we propose an Ensemble Late Fusion (ELF) architecture that combines the results of

multiple classifiers’ predicted probabilities to generate a final prediction. We show that ELF outperforms several of the best

known traditional and deep learning classifiers. Second, we automatically identify key features that distinguish spyware both

from goodware and from other malware. Finally, we provide a detailed analysis of the factors distinguishing five important

families of Android spyware: UaPush, Pincer, HeHe, USBCleaver, and AceCard (the last is a hybrid spyware-banking

trojan).

CCS Concepts: • Security and privacy→Mobile platform security; Software and application security; •Computing
methodologies → Supervised learning by classification; • Social and professional topics → Malware / spyware
crime;

Additional Key Words and Phrases: Machine Learning, Malware, Android, Spyware, Characterization
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1 INTRODUCTION
According to a Kaspersky Labs report [6], the percentage of mobile malware that is spyware went up from 8.44%

in the last quarter of 2016 to 10.27% in the first quarter of 2017, which represents an over 20% increase. According

to McAfee’s 2017 Mobile Threat report [5], spyware on mobile devices went up 40% in 2016. Several of the top

20 Android malware listed in Nokia’s 2017 Threat Intelligence Report are spyware [19]. These recent statistics

suggest that spyware is becoming an increasingly important problem. For instance, a McAfee report [5] describes

an app designed to increase follower counts on Instagram that leads unsuspecting users to a phishing website.
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Spyware is software that illegally gathers information and sends it to an attacker’s Command and Control

server. Unlike ransomware (which explicitly locks a user’s screen and prevents access to files through encryption),

SMS fraud (where users may notice charges), or banking trojans (where users may notice money disappearing

from their bank account), spyware is stealthy and can siphon off data from calendars, emails, SMSs, contact lists,

social media accounts, and more, without the user becoming aware of it. Spyware also constitutes an initial

“reconnaissance” phase for more complex attacks. For instance, spyware is often associated with more dangerous

threats such as cyber espionage targeting top executives (e.g., Exaspy [37]), whaling attacks (in which large

amounts of money are siphoned off from companies [4]), and private data theft for blackmail and extortion

purposes (e.g., compromising photos [41]).

The goal of this paper is to characterize the factors that distinguish Android spyware from both goodware and other
Android malware. To achieve this, we use VirusTotal to build a dataset of a recent Android samples (July 1 2016

to July 1 2017 time frame). We collect 5,000 spyware, 5,000 goodware, and 5,000 other malware (non-spyware)

samples, and then rely on the Koodous [3] online service to perform lightweight static and dynamic analysis

of these apps.
1
We extract easy to understand features [15] from the resulting logs. We then test several well

known classifiers, both traditional and deep, on two problems: distinguishing between spyware and goodware,

and between spyware and other malware. We combine these classifiers’ output probabilities in an Ensemble Late

Fusion (ELF) architecture which achieves the best results—for distinguishing between spyware vs. goodware, it

achieves 0.982 F-Score, 0.982 AUC and 0.98% (i.e., <1%) false positive rate. To characterize spyware, we identify the
most significant features in separating spyware from the other two classes by examining the feature importances

of the best classifiers, histograms of feature values, and graphical representation of classifier rules.

We then perform a detailed analysis of the distinguishing factors of 5 major Android malware families with

respect to goodware, other malware, as well as other families of spyware. These 5 families are: UaPush, Pincer,
HeHe, USBCleaver, and AceCard. The behavior of these 5 families varies substantially from each other as well as

from goodware, other malware (i.e. malware that is not spyware), and even other types of spyware. For instance,

AceCard is different from other spyware because it reads and writes many XML, JAR, and APKs, suggesting

many unpacking stages. On the other hand HeHe does not show evidence of unpacking, but requests many

dangerous permissions such as to mount/unmount filesystems, to change configuration files, and to access user

location. UaPush on the other hand differs by performing suspicious encryption operations, possibly linked to

unpacking or for stealthily sending sensitive data to the attacker. USBCleaver compromises Windows machines

which are connected infected phones and requests mainly permissions to write to external storage. Pincer starts
several background processes on the phone, possibly in the hope that detection/removal of one of them by a user

would allow it to keep functioning because of the continued presence of the others. To the best of our knowledge,

our study of the relationships of these 5 Android spyware families to other spyware families, to other malware

families, and to goodware, is the first of its kind, and shows that spyware operates via a multiplicity of diverse

techniques.

The closely related research area of information leakage detection primarily relies on taint data flow [26]

and network traffic analysis [18]. These techniques detect the flow of both legitimate and inappropriate traffic

and require assessment of an app’s privacy policy in order to differentiate between the two. In contrast to the

information leakage literature, our work focuses on Android spyware and our approach directly learns conditions

that predict whether a given sample is spyware or goodware, as well as whether it is spyware or some other

category of malware, and does not require assessment of apps policies or user expectations.

Unlike much work that separates Android malware from goodware, (e.g., [7, 10, 53]), our goal is instead to

characterize the features that distinguish spyware from either goodware or other forms of malware. Wang et

1
Approximately 20% of these samples were discarded because they were either corrupted and/or because they crashed during analysis. This

is common in past work on dynamic analysis, e.g. [15, 20, 59, 62].
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al. [77] present an interesting prior study of spyware using machine learning; however, Want et al. [77] analyze

desktop spyware from over twelve years ago, and only uses SVM. Conversely, our paper uses recent Android

apps from July 2016 to July 2017, uses a host of traditional and deep classifiers combined as an Ensemble Late

Fusion to understand the most accurate classifiers which can support a characterization.

In summary, we make the following contributions:

(1) We consider the task of separating spyware vs. goodware and spyware vs. other malware, and compare the

performance of several traditional and deep learning methods. We show for the first time that ensemble

learning with different classifiers leads to better 10-fold performance for identifying spyware. To the best of

our knowledge, past ML-based malware detection studies have not studied spyware in depth—they mostly

consider the general problem of distinguishing goodware vs. malware, and rely on just one individual

classifier (e.g., SVM in [10], RF and variants in [53, 72]). Instead, we propose an ensemble late fusion (ELF)
architecture which outperforms all individual classifiers.

(2) We identify the features that are key to separating modern Android spyware (between July 2016 and

July 2017) from goodware and from other malware. We also provide an in-depth characterization of 5

major spyware families, and show how each of them exhibits unique behaviors even when compared to

other spyware. Existing work on malware characterization has not focused on spyware — in addition to

malware vs. goodware classification, they look at related problems such as predicting malware spread [40]

or distribution of goodware and malware in different Android markets [49].

The remainder of the paper is structured as follows. Section 2 provides a brief overview of Android apps and

presents five major Android spyware families. Section 3 describes our methodology, including dataset collection,

feature extraction and classifiers. Section 4 presents our results on predicting spyware vs. goodware and spyware

vs. other malware. Section 5 presents our novel characterization of spyware with respect to goodware and other

malware, and an in-depth data-driven characterization of 5 major spyware families. Section 6 discusses related

research. Section 7 concludes with limitations, summary of main findings and future work.

2 BACKGROUND
We now provide a quick overview of Android apps (Section 2.1) and on major spyware families (Section 2.2).

2.1 Android Apps
Android apps consist of compressed files called Android Package Kits (APKs). For an APK to be installed on an

Android device, it has to contain the program code, developer certificates, and a Manifest file. The Manifest is a

metadata file that includes the list of permissions required and the list of components of the app. Android apps

can only access certain resources if they explicitly request the corresponding permissions in the Manifest file.

Users need to explicitly approve these permissions either during the installation phase or the runtime phase.
2
In

addition to the list of permissions, the Manifest also contains information about the following components within
an app’s structure:

• Activities, which correspond to app screens and are used to manage user interface.

• Services, which are components that run as background processes.

• Intents, which are messaging objects used to request actions from other components.

• Content providers, which allow for data exchange across apps.

• Broadcast Receivers, which are used to register broadcast messages from the system and other apps.

2
Unfortunately, requiring users to approve these permissions is rarely effective because users tend to grant permissions without carefully

understanding the consequences.

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.
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It is important to note that malware that gains root privileges on the device does not have to include all the

above information in the Manifest [21]. However, the prevalence of such malware is still relatively low [34].

2.2 Major Spyware Families
This section provides a brief overview of 5 major spyware families (according to Symantec [75]). Their main

behaviors are summarized in Table 1.

(1) AceCard. Discovered first in 2014, AceCard had a resurgence of activity from 2015. According to a 2016

Kaspersky report [42], AceCard overlays its own interfaces on top of Web forms associated with popular

applications such as Facebook, Twitter, Instagram, Viber, Paypal, and over 30 banks. When a user opens

one of these apps on his Android device, AceCard immediately captures confidential information typed

into the forms. According to an Oct 2016 McAfee report [14], AceCard even tricks users into revealing

their mother’s maiden name and other sensitive data, so as to defeat two-factor authentication systems. It

even asks unsuspecting users to take a picture with an identity document such as a passport or driving

license.

(2) HeHe. HeHe seeks to identify a compromised user’s private information including banking credentials.

When the infected phone receives either an SMS or a phone call from a list of phone numbers of interest to

the attacker (e.g., bank’s or credit card company’s phone numbers), HeHe deletes the message or rejects the

call [23], while simultaneously forwarding this information to the attacker’s command and control server.

Thus, the attacker can siphon off money from the victim’s bank account without the victim receiving any

warning messages from the bank.

(3) Pincer. First discovered in 2013, Pincer automatically sends information such as the phone number,

International Mobile Equipment Identity (IMEI), carrier, operating system information, SMS traffic, and

more to a command and control server [28]. It is believed that Pincer likely acts as a front for subsequent

banking trojan activity.

(4) UaPush. One of the most prevalent malware families in recent years, UaPush steals personal information

including IMEI, bookmarks, and call history, amongst others [74]. In addition to these activities, some

variants may send out premium SMS messages.

(5) USBCleaver. Unlike the preceding malware families, USBCleaver hops to a Windows device when the

Android phone is connected via USB to steal information from the connected computer. According to an

F-Secure report [27], it provides the attacker with the capability to collect passwords (e.g., in different

browsers, in WiFi settings).

3 METHODOLOGY

3.1 Overview
The main goal of this paper is to identify the key factors which distinguish between (i) spyware and goodware

and (ii) spyware and other malware. We use VirusTotal to create a recent representative dataset of spyware,

goodware, and other (non-spyware) malware (Section 3.2) from which we extract a set of easy-to-interpret

static and dynamic features (Section 3.3). To perform a data-driven characterization, we first evaluate detection

performance of both traditional and deep ML approaches in distinguishing spyware from goodware and other

malware (Section 4). Since our focus is on characterization, we operate in absence of concept drift. We use

traditional 10-fold cross validation to evaluate classifier performance using F1-Score, Precision, Recall, AUROC,
False Negative Rate (FNR), and False Positive Rate (FPR). To leverage the best of each classification algorithm, we

develop the ELF Ensemble Late Fusion architecture that uses a weighted sum of the probability of being spyware

generated by each classifier. Once the weights are learned from the training data, ELF generates better results than
all the traditional and deep ML classifiers considered. We use the best performing classifiers to identify the most

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.
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Table 1. Behaviors of the main spyware families studied in this paper, according to publicly available AV reports.
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AceCard ✓ ✓ ✓ ✓ ✓ ✓
HeHe ✓ ✓ ✓ ✓ ✓ ✓ ✓

UaPush ✓ ✓ ✓ ✓ ✓
Pincer ✓ ✓ ✓ ✓

USBCleaver ✓ ✓

important factors distinguishing spyware from goodware and other malware. We show the associated histograms

of values of such features for both classes as well as associated decision trees (Section 5 and Appendix).

3.2 Dataset Collection
We download 5000 spyware, 5000 goodware and 5000 other malware samples from VirusTotal [1], a service that
scans suspicious files and URLs submitted by users to be tested against multiple commercial AV systems. All

samples in our dataset were first submitted to VirusTotal between July 1 2016 and July 1 2017. This choice is also

motivated by [55] which empirically determines that VirusTotal’s AV detections become stable one year after

initial submission.

We use Symantec threat descriptions [75] to identify spyware families. In particular, we consider an Android

malware family to be a spyware family if the Symantec indicates that the malware family steals information such

as location, browsing history, credentials, contacts or photos. In total, we obtain 54 spyware family names. In the

Appendix, Table 13 reports the spyware family names with sample count.
3
It is worth noting that some spyware

families may also have some overlapping behaviors typical of other malware categories (e.g., sending premium

SMSs, banking trojans). We use the VirusTotal Intelligence API to download Android APKs belonging to our list

of spyware families that were detected as malicious by at least 10 antivirus engines [55].

We also use the VirusTotal Intelligence API to collect malware samples that are not spyware; we refer to this

category as other-malware.4 Finally, we collect goodware by querying the VirusTotal Intelligence API for samples

first found in the wild between July 2016 and July 2017 which were not labeled as malware by any of the 63

VirusTotal antivirus engines (i.e., detection rate was 0%).

3
We also tried to download the following families in [75] form VirusTotal [1], but no samples were present (for the period July 2016 - July

2017): Spywaller, Sockrat, Bossefiv, Alienspy, Accstealer, Gomal, Fitikser, Ballonpop, Repane, Dupvert, Sberick, Simhosy, ZertSecurity, Teelog,

Yatoot.

4
In the query submitted to VirusTotal, we look for Android APKs that have been detected as malicious by at least 10 antivirus engines, and

that do not belong to our list of spyware families and do not contain “spyware” keywords. As in related work [10], we also decide to exclude

adware from this other-malware category because they usually represent applications that annoy users with an excessive number of ads, as

opposed to compromise user devices.

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.
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Table 2. Static features.

Group Feature Description
Author author Derived from SHA256 hash of certificate used to sign APK

P
e
r
m
i
s
s
i
o
n
s

n_std_sw_perm Number of standard software permissions required to install the app

n_std_sw_
_perm_dangerous

Number of standard software permissions marked as dangerous in Android

documentation

n_hw_perm Number of standard hardware permissions required to install the app

n_custom_perm Number of custom permissions (i.e., non-standard) defined by the app developer

sw_permissioni 1 if sw_permissioni is required by the app, 0 otherwise (i ∈ 1,..,N)

hw_permissionj 1 if hw_permissionj is required by the app, 0 otherwise (j ∈ 1,..,K)

S
t
r
u
c
t
u
r
e

filesize Application size in bytes

n_activities Number of activities

n_intents Number of filtered intents

n_providers Number of content providers

n_services Number of services

n_receivers Number of broadcast receivers

Table 3. Dynamic features.

Group Feature Description

RW

read [[<basepath>] [<filename>]]
N -gram counts about read operations on the Android

filesystem. The basepath is just the name of the first

folder after the root

write [[<basepath>] [<filename>]]
N -gram counts about write operations on the Android

filesystem. The basepath is just the name of the first

folder after the root

System

servicestart [<servicename>]
N -gram counts about started background processes (i.e.,

services)

load [[<classpath>][<classname>]]
N -gram counts about dex Android classes loaded during
execution

crypto [[<algorithm>] [<encryptionkey>]]
N -gram counts about crypto operations performed dur-

ing execution

Network

sendnet [[<protocol>] [<port>]] N -gram counts about outgoing network activity

recvnet [[<protocol>] [<port>]] N -gram counts about incoming network activity

SMS sendsms [[<phonenumber>] [<message>]] N -gram counts about sms sent by the application

Static and dynamic analysis of samples was performed by an online Android analysis service called Koodous [3],
which mainly relies on Androguard for static analysis, and Cuckoo and Droidbox sandboxes for dynamic analysis.

Koodous has successfully performed static and dynamic analysis of 3,698 (out of 5,000) spyware samples, 4,481

(out of 5,000) other malware samples, and 3,669 (out of 5,000) goodware samples. The lower number of actual logs

is due to the fact that some applications were corrupted APKs that did not work and/or crashed during dynamic

analysis. We note that having apps not working for dynamic analysis is common to past work on (Android)

malware—for instance, in DroidScribe [20], Park et al. [62], EC2 [15] and Onwuzurike et al. [59]. The output

JSON logs generated by Koodous are then used to extract a set of static and dynamic features for the input to our

classifiers.

3.3 Feature Extraction
We extracted static and dynamic features from the logs obtained through the Koodous service [3].

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.
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3.3.1 Static features. Table 2 shows the static features we consider which are designed to be easy-to-interpret.

We now describe the main categories of static features in detail.

Author. We use the hash of the certificate used to sign the app in order to identify the author of an app. The

underlying assumption here is that if the same certificate is used to sign multiple apps, then these apps have the

same author. Thus, a developer who uses multiple certificates to sign his apps will appear as multiple authors.

Permissions. We use the number of permissions that the app requests. We distinguish between regular

software permissions and software permissions marked as dangerous in Android documentation.
5
Dangerous

permissions grant access to sensitive data such as call logs and contact lists. We also include the number

of hardware permissions requested and the number of non-standard permissions requested. Non-standard

permissions correspond to custom permissions requested by a developer. In addition to the number of permissions,

we use binary variables that capture whether each standard permission is requested (see Table 2).

Structure. In order to capture the app structure, we have features associated with different types of components

in the Manifest: n_activities, n_intents, n_services, n_providers and n_receivers. We choose to use the

number of components rather than the names of these components because malware developers can easily

change component names in order to evade detection (as component names are Java class names).

3.3.2 Dynamic features. Koodous [3] performs dynamic analysis by running samples in the Droidbox [2, 44]

and Cuckoo [58] sandboxes which log app behavior. Dynamic analysis may reveal information which may be

harder to detect through static analysis (e.g., runtime unpacking of malicious routines [54]). Since Droidbox and

Cuckoo produce very similar logs, without loss of generality we consider the logs generated by Droidbox as it

produces more information: logs of incoming and outgoing network operations, SMS and phone calls, in addition

to file read and write and other system operations (e.g., crypto functions). Moreover, Droidbox provides logs of

cryptographic operations performed using the Android API as well as newly started background services and

dynamically loaded classes at runtime.

To model dynamic features, we leverage an n-gram representation commonly used in malware analysis and

classification (e.g., [12, 24, 31, 67]). Using n-grams, we count the following operations captured by the sandbox:

RW (read and write operations), System (e.g., start of a new background process), Network (Internet requests),
SMS (texts sent by the device). The considered n-grams are reported in Table 3. For each dynamic log operation,

we extract several possible sets of words in order to limit the impact of simple obfuscation strategies adopted by

the attacker (e.g., changing the filename of a written file or folder). We consider a bag of words approach in which

we extract n-gram counts. We experimentally verified that considering n-grams with n > 3 does not yield any

performance improvement (because the level of detail increases too much and the features become overly specific,

as discussed in [20, 24]). We therefore consider unigrams, bigrams and trigrams. Each unigram/bigram/trigram

is a feature whose value is represented by the number of occurrences of that unigram/bigram/trigram in the

logs [67]. The idea is that similar malware execute similar sequences of operations.

3.3.3 Summary of Features. The dataset used in this paper contains 190 static features (author: 1, structure: 6,

and permissions: 183) and 24,465 dynamic features in total. We rely on 10-fold Cross Validation (CV) to consider

different training settings with our classifiers and features. In particular, we use a standard 10-fold CV in which

all algorithms are presented with all 190 static and all 24,465 dynamic features. Our results are presented as is,

despite the fact that certain features may have only one value in all apps in the training data—which means that

those features would not be considered significant during the classification process.

5
https://developer.android.com/guide/topics/permissions/overview#normal-dangerous
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3.4 Supervised Learning Algorithms and Ensemble Late Fusion (ELF)
3.4.1 Traditional Classifiers. We consider six widely used traditional classifiers [32]: Random Forest (RF),

Decision Tree (DT), Supper Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Logistic

Regression (LR). Traditional classification algorithms take as their input a set of (feature vector, class) pairs. For
instance, for each Android app, we extract a feature as described in Section 3.3, and the class is either 1 (“spyware”)

or 0 (“goodware” or “other-malware”, depending on the experiment we are considering). Traditional classification

algorithms try to find different equational forms that separate one class from the others. For instance, linear

Support Vector Machines (SVM) try to draw a hyperplane that splits the feature vector space into two classes.

SVM may use different equational forms: linear SVM uses a straight hyperplane, while kernel SVMs use diverse

shapes. Other traditional classifiers (e.g. Decision Tree) use a set of generalized (to higher dimensions) rectangles

to state that if a feature vector is within one of these generalized rectangles then it is most likely spyware; and in

the other class (either goodware or other malware, depending on the problem we study) when it is not in any

such rectangle. Hence, different classifiers try to split the space into a “spyware” part and a second part (either

goodware or other-malware). As the assumptions made by some classifiers may be inconsistent with the actual

data: some traditional classifiers may perform well, while others may perform poorly. One of the major goals of

machine learning is to identify the right classifier for any given data set. We therefore use multiple traditional

classifiers to see which one is best at distinguishing spyware vs. goodware, and spyware vs. other malware types.

3.4.2 Deep Learning Classifiers. We additionally consider four representative deep learning classifiers which

have achieved outstanding results in many ML tasks: Multi-Layer Perceptrons (MLP), Bernoulli Restricted

Boltzmann Machines (BRBM), Convolutional Neural Networks (CNN), and the Wide & Deep [17] DL architecture

recently proposed by Google. We do not consider sequence-based classifiers as the dynamic analysis logs are

a collection of events without timestamps, and because our goal is to consider static and dynamic features

together (see Section 3.3). We performed extensive hyper-parameter tuning to achieve the best results with deep

learning methods (despite the fact that they are less accurate than shallow learning methods, probably due to the

limited data available). We include the detailed description of DL architectures used and how hyper-parameter

optimization was done in Appendix B.

3.4.3 Ensemble Late Fusion (ELF). Our ELF architecture shown in Figure 1 combines the results of traditional

and deep classifiers into a unified prediction. The first part of ELF follows a traditional cycle and is shown in

the top part of Figure 1. From a set of Android APKs, we extract a set of static and dynamic features, and then

perform a supervised classification step using a set of classifiers. Instead of using the binary prediction generated,

ELF, uses the probability returned by each classifier that a particular Android app belongs to the class 1 (spyware)

vs. the class 0 (either goodware or other malware). ELF then computes a weighted sum of these probabilities by

assigning a weight to each classifier such that the weights add up to one. In order to assign these weights, ELF
performs a grid search to identify near-optimal weights without looking at the test set.

To describe ELF more formally, let us consider a binary classification task where an object x j can have a

predicted label ŷj = 0 (goodware or other malware), and ŷj = 1 (spyware). Each classifier outputs a probability of

belonging to class 1, pj ∈ [0.0, 1.0], where for a given object x j , if pj > 0.5 then the predicted label ŷj = 1, else

ŷj = 0. Since we are considering several supervised classifiers, the i-th classifier outputs a certain probability pij
that an object x j belongs to class 1. The ensemble algorithm computes a Late Fusion Score (LFS) as the weighted

sum of the probabilities of all the classifiers:

LFS j =
∑

i ∈classifiers

wip
i
j (1)

where wi is the weight (relevance) of the i-th classifier in the decision, and

∑
i wi = 1. Then, if LFS j > 0.5 an

object x j is assigned label ŷj = 1, otherwise ŷj = 0.

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.



A Data-Driven Characterization of Modern Android Spyware • 111:9

Classifiers

C2

C3

…

…

CN-1

CN

Probabilistic 
Predictions

Feature 
Extraction

(Static+Dynamic)

C1

Traditional
Binary 

Predictions

Ensemble
Binary 

Predictions

Apps

Ensemble Late 
Fusion (ELF)

Grid Search 
for Weights

Features

Fig. 1. Scheme of the ELF architecture.

3.4.4 Training ELF weights. We now describe how we identify the best weights for ELF to use. We first split

the dataset into two parts: ELF training set and ELF testing set. The identification of the weights relies exclusively

on the training set, on which we perform a 10-fold cross-validation with all possible weights combinations of the

different classifiers; the performance on the validation are determined according to the weighted score described

previously in Equation 1. The optimal ELF weights correspond to the ones that obtain the highest performance on

the validation set, for all the 10-folds. Note that the testing set is never involved in the weight training process.

This weight training procedure is repeated in a 10-fold CV fashion for different train/test splits. The final ELF
results that we report are the 10-fold average performance obtained by using the best weights found with this

procedure.

4 EVALUATION
We evaluate the accuracy of the different classifiers described earlier using 10-fold cross-validation (see Section 3).

Identifying the best performing classifier is a necessary step to determine the features that best distinguish

spyware from goodware and from other malware.

Metrics.We use the following traditional ML performance metrics: F1-Score, Precision, Recall, AUC (AUROC),

FPR (False Positive Rate) and FNR (False Negative Rate) for a complete view of the performance of every approach.

We also report p-values obtained via a Student’s t-test in order to show statistical significance. Readers will recall

that a result is statistically significant when the p-value is less than 0.05 [32]. Moreover, we recall that: the lower

the p-value, the higher the statistical significance.

4.1 Spyware vs. Goodware
Table 4 shows the performance of different traditional classifiers in separating spyware from goodware.
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Table 4. Performance of classifiers in spyware vs goodware (average with 10-fold cross-validation). The best traditional
classifier is RF. The best overall classifier is ELF with weights wRF = 0.711, wW ide&Deep = 0.222, wBRBM = 0.045 , and
wSVM = 0.022. The p-values are computed via a t-test comparing F1-Scores. We also use standard statistical notation ***, **,
* (***<0.01; **<0.05; *<0.1).

Algorithm F1 P R AUC FPR FNR p-val vs. DT p-val vs. RF p-val vs. ELF

RF 0.976 0.990 0.963 0.977 0.98% 3.70% *** (2.962 ·10−38) *** (4.309 ·10−53)

DT 0.971 0.970 0.973 0.971 3.08% 2.70% *** (1.302 ·10−39) *** (1.028 ·10−122)

KNN 0.869 0.868 0.870 0.868 13.36% 13.01% *** (4.041 ·10−277) *** (8.897 ·10−282) *** (1.158 ·10−287)

NB 0.782 0.663 0.954 0.732 48.95% 4.80% *** (0) *** (0) *** (0)

LR 0.704 0.774 0.645 0.727 19.08% 35.45% *** (0) *** (0) *** (0)

SVM 0.423 1.000 0.269 0.635 0.00% 73.09% *** (0) *** (0) *** (0)

MLP 0.674 0.907 0.537 0.741 5.59% 46.30% *** (0) *** (0) *** (0)

BRBM 0.701 0.918 0.568 0.758 5.15% 43.18% *** (0) *** (0) *** (0)

CNN 0.623 0.590 0.783 0.587 62.90% 21.73% *** (4.083 ·10−95) *** (3.157 ·10−169) *** (1.568 ·10−165)

Wide & Deep [17] 0.671 0.883 0.548 0.742 8.21% 45.19% *** (6.337 ·10−271) *** (6.993 ·10−319) *** (3.859 ·10−318)

ELF 0.982 0.988 0.977 0.982 1.23% 2.34% *** (9.234 ·10−142) *** (4.309 ·10−53)

Traditional and Deep Classifiers Performance. Of the individual algorithms. Random Forest and Decision Trees

achieve the best accuracy: both achieve an F-Score and AUC of 0.97, with RF performing slightly better. Linear

SVM is the worst, possibly because the feature space is not linearly separable—in contrast, KNN, DT and RF

can draw non-linear decision boundaries. Despite extensive hyper-parameter tuning (see Appendix), the deep

learning algorithms do not achieve good performance, probably to the limited amount of training data (Section 3.2).

Decision Trees achieve the lowest false negative rate (2.70%), which suggests that is largely avoids mislabeling

spyware as goodware, and a relatively low false positive rate (3.08%). Random Forest achieves the lowest false

positive rate (0.98%) while keeping the false negative rate also relatively low (3.70%). Keeping false positives

low is important in order to prevent warnings from getting ignored. In summary, Decision Tree is the preferred
classifier if low false negatives are the priority and Random Forest is the best classifier if low false positives are the
priority.

ELF Performance. We trained ELF on the training data by trying all possible weightswi in steps of 0.05, so that

the the following constraint is preserved:

∑
i wi = 1. Because we have six shallow traditional classifiers and four

deep learning classifiers in the ensemble, we want to find a vector of weights (w1, . . . ,w10) such that assigning

these weights to each classifier’s predictions maximizes F1-Score and AUC . After performing tuning of ELF
weights with the process described in Section 3, we identify the following optimal positive weights:wRF = 0.711,
wW ide&Deep = 0.222,wBRBM = 0.045 , andwSVM = 0.022 (all other weights are 0). These weights represent the
relative importance of each decision algorithm in the classification, suggesting that ELF identifies Random Forest

as the most important base predictor, Wide & Deep [17] as the second, followed by BRBM and SVM. The last row

of Table 4 shows the performance of ELF. We observe that ELF improves all performance metrics, and minimizes

the trade-off between FPR and FNR. It is also relevant to observe that while the improvement may seem minor

(e.g., F1-Score of 0.982 for ELF vs. 0.976 for RF), it is actually pretty large as the maximal performance can only go

up to 1.

We also used the t-test to compute the p-values in Table 4 comparing the F1 score of ELF against DT and RF

and ELF using 10-fold CV repeated 30 times. As all the p-values are far below 0.01, the finding that ELF is superior
to both RF and DT is statistically significant.
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Table 5. Performance of classifiers in spyware vs other-malware (average with 10-fold cross-validation). The best traditional
classifier is RF, which is outperformed by ELF with positive weights wRF = 0.967 and wBRBM = 0.033. The p-values are
computed through the t-test performed against the F1-Score results and, in addition to the raw p-values, we also use the
statistical confidence notation ***, **, * (***<0.01; **<0.05; *<0.1).

Algorithm F1 P R AUC FPR FNR p-val vs. DT p-val vs. RF p-val vs. ELF

RF 0.955 0.963 0.945 0.959 2.97% 5.35% *** (7.348 ·10−51) *** (4.534 ·10−83)

DT 0.949 0.945 0.953 0.954 4.60% 4.65% *** (2.798 ·10−47) *** (1.041 ·10−122)

KNN 0.784 0.778 0.790 0.802 18.61% 21.04% *** (0) *** (0) *** (0)

LR 0.707 0.771 0.655 0.747 16.07% 34.48% *** (0) *** (0) *** (0)

NB 0.416 0.745 0.290 0.604 8.23% 71.04% *** (0) *** (0) *** (0)

SVM 0.445 0.996 0.287 0.643 0.09% 71.28% *** (0) *** (0) *** (0)

MLP 0.120 0.645 0.067 0.518 3.14% 93.35% *** (3.618 ·10−99) *** (0) *** (0)

BRBM 0.717 0.662 0.783 0.726 33.15% 21.68% *** (0) *** (0) *** (0)

CNN 0.028 0.138 0.015 0.501 0.79% 98.45% *** (0) *** (0) *** (0)

Wide & Deep [17] 0.074 0.653 0.040 0.418 1.92% 95.99% *** (0) *** (0) *** (0)

ELF 0.960 0.966 0.954 0.963 2.74% 4.59% *** (4.468 ·10−128) *** (4.534 ·10−83)

4.2 Spyware vs. Other Malware
Performance of Traditional and Deep Classifiers. Table 5 reports the performance of different traditional classifiers

in separating spyware from other malware using 10-fold cross-validation. RF achieves the best performance:

0.955 F-Score and 0.959 AUC, with 2.97% false positive rate (FPR) and 5.35% false negative rate (FNR). Here false

negatives mean that spyware is mislabeled as other malware which could potentially delay analysts seeking to

develop signatures and patches.

Though our ability to separate spyware from other forms of malware is quite high, the results in distinguishing

spyware from other malware (shown in Table 5) are slightly lower than those for distinguishing spyware vs

goodware (Table 4). This is because spyware is more similar to other malware than to goodware, and hence the

classifier finds it this task more challenging. For instance, some banking trojans (e.g., AceCard) may behave like

spyware in order to more effectively carry out banking fraud.

Performance of ELF.We now consider the performance of ELF. As in the previous subsection, we use 10-fold

cross-validation on the training data to find the weightswi of the ensemble while requiring that

∑
i wi = 1. The

weights that maximize F1-Score and AUC are:wRF = 0.967 andwBRBM = 0.033 (all other classifiers weights are
0). Note that these weights are different from the case in which we tried to separate spyware from goodware.

We report the performance of ELF in the last row of Table 5. We observe that by combining the algorithms,

ELF improves all performance metrics, and minimizes the trade-off between FPR and FNR. Again, while the

improvement may seemminor, performance is already very high. As before, Table 4 shows the result of performing

a t-test comparing ELF’s F1-score and AUC to those of the best performing individual classifiers. As all the p-values

are substantially below 0.01, ELF’s superior performance is not due to chance, and has statistical significance.

5 DISTINGUISHING CHARACTERISTICS OF SPYWARE
The principal goal of this paper is to identify features that best separate spyware from goodware and from other

malware. We do this via the Mean Decreased Impurity (MDI) metric. MDI is a traditional feature selection method

used by Decision Trees in the Random Forest algorithm [32] which progressively splits individual features in

order to separate the data more effectively. Minimal impurity is achieved when all the objects belong to a single
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Table 6. Features distinguishing spyware from goodware and from other malware.

Category Static features Dynamic features

Spyware

-SEND_SMS
-RECEIVE_SMS
-READ_PHONE_STATE
-READ_SMS
-RECEIVE_BOOT_COMPLETED
-WRITE_SMS
-GET_TASKS
-CALL_PHONE
-CHANGE_NETWORK_STATE
-more dangerous perms.

-more std permissions

-specific authors

-PROCESS_OUTGOING_CALL
-ACCESS_WIFI_STATE
-WRITE_CONTACTS
-ACCESS_FINE_LOCATION
-ACCESS_COARSE_LOCATION
-RECORD_AUDIO
-WRITE_CONTACTS

Goodware

-greater filesize

-more components

-more read /dev/
-more crypto operations

Other

Malware

-SYSTEM_ALERT_WINDOW
-MOUNT_UNMOUNT_FILESYSTEMS
-WRITE_EXTERNAL_STORAGE

-write .dex classes

-load .dex classes

-servicestart AdminService

label. For example, the presence or absence of a certain permission (e.g., READ_PHONE_STATE) may be used by

DTs to split feature vectors into two separate groups to decrease impurity. We consider the traditional version

with the Gini definition of impurity [32]. We use MDI scores to build feature-value histograms that show the

distributions of feature values for the two classes (e.g. spyware vs. goodware or spyware vs. other malware). The

Appendix also shows the most relevant feature histograms and decision trees which support our characterization

of spyware.

5.1 Spyware vs. Goodware and Other Malware
Table 6 shows a summary of the features which best separate spyware from goodware and from other malware

(the Appendix reports the full feature histograms). Each group-row in Table 6 corresponds to a different category

(i.e., spyware, goodware, other malware), and the presence of a static (resp. dynamic) features implies a prevalence

of that feature in that category, and its absence (or lower prevalence) from the other ones. We can observe that:

• The feature SEND_SMS is primarily prevalent in spyware and less present in goodware and other malware.

• Spyware apps tend to have a smaller filesize and fewer Android components than goodware. This may

indicate that most spyware are not repackaged versions of goodware apps. They could be developed as

ad-hoc malware to steal user information or may be repackaged versions of small apps.

• Static features (specifically requests for Android permissions) play an important role in separating spyware

from other categories. The relevance of “permission” features is related to the fact that Android applications

need to ask for permission in advance in order to access certain resources (e.g. software or hardware). Some

of the most relevant permissions are related to: accessing sensitive information (e.g., READ_PHONE_STATE,
GET_TASKS) and sending information to attackers (e.g., SEND_SMS, CHANGE_NETWORK_STATE).
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Table 7. AceCard distinguishing features.

Category Static features Dynamic features

AceCard
Family

-READ_SMS
-SEND_SMS
-RECEIVE_SMS
-RECEIVE_BOOT_COMPLETED
-GET_TASKS
-READ_PHONE_STATE
-CALL_PHONE
-WRITE_SMS
-specific authors

-SYSTEM_ALERT_WINDOW
-ACCESS_NETWORK_STATE
-READ_LOGS
-more background services

-write AppPrefs.xml
-write new.apk
-read/write JAR files

-loading .dex classes

Other

Spyware

-ACCESS_WIFI_STATE
-ACCESS_FINE_LOCATION
-ACCESS_COARSE_LOCATION
-PROCESS_OUTGOING_CALLS
-READ_HISTORY_BOOKMARKS
-CAMERA
-more dangerous perms.

Goodware

-more read operations

-more write operations

Other

Malware

-MOUNT_UNMOUNT_FILESYSTEMS
-WRITE_EXTERNAL_STORAGE
-more std perms.

• One of the main permissions that other types of malware request is the SYSTEM_ALERT_WINDOW permission,

which allows displaying windows on top of the screen. For example, this permission can be used by mobile

ransomware in order to block access to devices or to use hidden overlays for privilege escalation [64]. This

permission also has legitimate uses such as showing Facebook chat notifications. Spyware requires this

permission much less frequently, but other malware often use this permission to keep windows hidden

from the user.

• Finally, it is interesting to observe that none of the Android spyware samples starts an Android Service

named AdminService, whereas other types of malware do—likely to start stealthy background processes

with a name that looks legitimate to users.

5.2 Analysis of 5 Android Spyware Families
In this section, we provide an in-depth view of the behavior of 5 major Android malware families: AceCard,
HeHe, Pincer, UaPush, and USBCleaver. A more comprehensive analysis with feature histograms is reported in

the Appendix.

5.2.1 AceCard family. Like many malware samples, AceCard [42] behaves in a benign fashion during an

initial phase and then turns malicious. In this second phase, it masquerades as a system update package. Once

executed, it asks the user to authorize device administrator permissions in order to allow it to run every time the

device restarts. It shows fake login prompts in order to steal information from users. In a third phase, it launches

attacks against a vast number of devices. AceCard’s spyware capabilities enable it to also function as a banking

trojan.
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Table 8. HeHe distinguishing features.

Category Static features Dynamic features

HeHe Family

-MOUNT_UNMOUNT_FILESYSTEMS
-MOUNT_FORMAT_FILESYSTEMS
-SYSTEM_ALERT_WINDOW
-GET_TASKS
-CHANGE_CONFIGURATION
-READ_PHONE_STATE
-more dangerous perms.

-ACCESS_WIFI_STATE
- specific authors

- more std perms.

-CHANGE_NETWORK_STATE
-CALL_PHONE
-WAKE_LOCK
-WRITE_EXTERNAL_STORAGE
-more background services

-ACCESS_COARSE_LOCATION
-ACCESS_LOCATION_EXTRA_COMMANDS

-write .xml file

-read cpuinfo

Other

Spyware

-WRITE_SMS
-RECEIVE_SMS
-SEND_SMS
-READ_SMS
-RECEIVE_BOOT_COMPLETED

Goodware

-larger filesize

-more Activities
Other

Malware

Table 7 presents the most relevant features that separate AceCard from goodware, other spyware and other

(non-spyware) malware. The detailed feature histograms are reported in the Appendix. AceCard requests

permissions to read and receive SMSs—these are factors rarely required by goodware. However, because the

ability to access SMS-related functionalities is required by many malware and spyware, when we compare

AceCard with other malware and other spyware, SMS activities become less important (and are not in the top

15 features anymore), and the ability to read/write various files such as XML, JAR and APKs becomes more

important. For instance, AceCard samples write a configuration file named AppPrefs.xml—with an intentionally

innocuous filename. In addition, AceCard writes some JAR and APK files (e.g., read ybfhjzlav.jar), and then

loads some of them as classes (e.g., dexclass ybfhjzlav.jar). These suspicious signals, automatically identified

by our classifiers, may suggest that the malware is unpacking malicious code [54], i.e., additional code that was

intentionally encrypted or obfuscated to prevent static analysis. Finally, AceCard also uses a large number of

background services (see num_services features), which may be used for resilience of the spyware and to keep

collecting information when the malicious app is out of focus and the user is not using it directly.

5.2.2 HeHe family. The HeHe spyware family [23] consists of apps that hide their icons after installation.

Under the guise of updating Android security, HeHe samples track SMSs and phone calls coming from an

attacker-defined set of numbers of interest (e.g., banks) and suppress them so the user is not aware of the alerts

that might thus be generated; these numbers are also sent back to the attacker’s command and control server.

Table 8 presents a summary of the most distinguishing features that separate HeHe from goodware, other

spyware and other (non-spyware) malware. Detailed features histograms are reported in the Appendix.
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Table 9. UaPush distinguishing features.

Category Static features Dynamic features

UaPush
Family

-READ_PHONE_STATE
-SYSTEM_ALERT_WINDOW
-ACCESS_WIFI_STATE
-GET_TASKS
-more std perms.

-specific authors

-ACCESS_COARSE_LOCATION
-MOUNT_UNMOUNT_FILESYSTEMS
-WRITE_EXTERNAL_STORAGE
-RECEIVE_BOOT_COMPLETED
-VIBRATE
-more background services

-ACCESS_NETWORK_STATE
-READ_LOGS

-read cpuinfo
-read meminfo
-crypto operations with fixed keys

-write specific xml file

-write in /data/ path

Other

Spyware

-RECEIVE_SMS
-READ_SMS
-SEND_SMS
-WRITE_SMS
-num. dangerous perms.

Goodware -greater filesize

Other

Malware

HeHe samples are different from goodware mainly in terms of requested permissions: to get active user tasks,

to control system alert windows (e.g., also prevent their appearance), and to change system configurations. The

number of Android Activities is slightly lower than goodware and most spyware—this suggests that some HeHe
samples may hide in apps without many Activities. This is in line with the fact that HeHe hides its presence from
the phone, so it actually does not need to implement many Activities (i.e., screens) in the code. When compared

to other spyware, HeHe is also distinguished by its request to change configuration files and unmount the file

system; it also requires less permissions that are deemed as dangerous by the Android official documentation,

suggesting it wants to hide its traces.

5.2.3 UaPush family. The UaPush spyware family starts its malicious activity when the device is rebooted

or an active network connection is detected. It steals personal information (call history, bookmarks, contacts)

and tends to send outgoing SMS messages. Moreover, it displays advertisements in notification bars and/or alert

windows. Table 9 presents the most important features that separate UaPush from goodware, other spyware and

other (non-spyware) malware. Detailed histograms are in the Appendix.

UaPush is different from both AceCard and HeHe in the features used to conduct malicious activity. It is

distinguishable from goodware because its filesize is smaller and it requests a higher number of permissions

than most goodware. Moreover, it explicitly requests dangerous permissions such as GET_TASKS and READ_LOGS
explicitly. In contrast to other spyware and other malware, UaPush samples encrypt and/or write specific

files—this is possibly related to unpacking operations [54].

5.2.4 Pincer family. The Pincer spyware family pretends to be a certificate by often having the name

Certificate.apk. Once installed, it intercepts and forwards SMS messages from the phone. In addition, it ships

assorted information about the infected phone to a command and control server. This information includes the

phone number, the international mobile subscriber identifier, the Android version, and more.

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.



111:16 • Pierazzi, et al.

Table 10. Pincer distinguishing features.

Category Static features Dynamic features

Pincer
Family

-RECEIVE_SMS
-CALL_PRIVILEGED
-MODIFY_PHONE_STATE
-fixed num. dangerous perms.

-SEND_SMS
-RECEIVE_BOOT_COMPLETED
-READ_LOGS
-CALL_PHONE
-READ_PHONE_STATE
-higher num. Receivers

-specific authors

-small filesize

-write specific dex/apk files

-read specific dex/apk files

-load specific dex/apk files

-write specific xml files

-start specific services

Other

Spyware

-higher num. perms.

-higher num. dangerous perms.

-ACCESS_NETWORK_STATE
-GET_TASKS
-WRITE_SMS

Goodware

-ACCESS_NETWORK_STATE
-WAKE_LOCK

Other

Malware

-SYSTEM_ALERT_WINDOW

Table 10 presents histograms of the most important features that separate Pincer from goodware, other

spyware and other (non-spyware) malware. Detailed histograms are in the Appendix.

Pincer is different from AceCard,HeHe andUaPush in that it requires privileged access to call, and starts many

background services (e.g., CheckQueueService, CheckCommandsService, ReceiverRegisterService). The abundance
of background services is probably for resilience of the malware. This way, even if the user detects and deletes

one of these background services, the others remain active. The many write and dexclass operations suggest
unpacking of malicious code [54], which is then loaded in memory. We also observe that the average filesize of

Pincer samples is smaller than that of both goodware and other malware samples, suggesting that it does not

contain any repackaged app, but instead starts many background services to achieve its monitoring purposes.

5.2.5 USBCleaver family. The USBCleaver family consists of apps that, once downloaded onto a phone,

import malware from a command and control server that allows it to infect a computer to which the device

is connected via USB. Phones are commonly attached to PCs for legitimate reasons (e.g., saving pictures, or

recharging the battery). The result is that the malware can monitor and intercept various browser passwords,

WiFi passwords, and more.

Table 11 presents the most important features that separate USBCleaver from goodware, other spyware and

other (non-spyware) malware. Detailed histograms are in the Appendix.

USBCleaver is different from goodware because it requests permissions to read and execute dexclass operations

on various APKs, probably for unpacking malicious code [54]. However, a major distinguishing factor is that it

performs almost no read operations on the phone itself, but instead requests permissions to write on external

storage devices, possibly because this is the main mechanism used by it to propagate. To stay off the radar, its

filesize and number of permissions (including dangerous ones) are kept to a minimum, both with respect to

goodware as well as to other spyware and other malware. In addition, the number of components (activities,

services, intents) of the app is very small, suggesting that this spyware family does not repack other benign
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Table 11. USBCleaver distinguishing features.

Category Static features Dynamic features

USBCleaver
Family

-specific authors

-small filesize

-WRITE_EXTERNAL_STORAGE
-few std perms. requested

-few dang. perms. requested

-READ_PHONE_STATE

-read specific apk/dex files

-load specific apk/dex files

-few read operations

Other

Spyware

-RECEIVE_BOOT_COMPLETED
-SEND_SMS
-RECEIVE_SMS
-READ_SMS
-WRITE_SMS
-ACCESS_FINE_LOCATION
-READ_PHONE_STATE

Goodware

-WAKE_LOCK
-num. std perms.

-num. dangerous perms.

-VIBRATE
-READ_EXTERNAL_STORAGE
-GET_ACCOUNTS

-read /dev/ path

Other

Malware

-RECEIVE_BOOT_COMPLETED
-SYSTEM_ALERT_WINDOW
-GET_TASKS
-CHANGE_NETWORK_STATE
-high num. receivers

applications (e.g., games). USBCleaver also requires permission to READ_PHONE_STATE, possibly to infer when

to start acting.

5.2.6 Family Comparison. We now compare and contrast the most important features of the 5 families

evaluated in this section. Table 12 reports static and dynamic feature in rows, where features are also qualitatively

grouped in sub-groups (e.g., Permission (SMS)). The v-tick symbol (✓) indicates that a feature plays an important

role in distinguishing that family from others.

We observe that all spyware families, with the exception of USBCleaver, request a high number of permis-

sions. This likely happens because it is much harder to get root access to the device [21] than to request more

permissions from users, as the latter may go unnoticed upon installation. We observe that all families request the

READ_PHONE_STATE permission, which is required by all spyware to keep track of the phone state (e.g., in-use or

locked), so to keep acting as stealthily as possible. For each family, the variants often re-used the same set of

certificates to sign the application (thus connecting them to the same author). This can be useful in recognizing

variants of the same family.

There are also some important differences in the most relevant permissions requested by these 5 families.

AceCard and Pincer request permission to access, alter and send SMSs, which is associated with both premium

SMS activities and, for AceCard, hybrid banking-trojan characteristics (e.g., to steal bank tokens). HeHe and
UaPush request permissions to access device locations. AceCard, Pincer and USBCleaver are the only ones char-
acterized by dynamic class loading operations, which may correspond to runtime unpacking and de-obfuscation

operations. AceCard, HeHe and UaPush define a high number of background services, which are likely used to

silently siphon sensitive data from the phone of a victim.
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Table 12. Comparison of the most distinguishing features of the 5 evaluated families. The v-ticks (✓) highlight prevalent
features in each family.

A
ce
C
ar
d

H
eH

e

U
aP

us
h

Pi
nc

er

U
SB

C
le
av
er

Static

Permissions (SMS)

READ_SMS ✓
RECEIVE_SMS ✓ ✓
SEND_SMS ✓ ✓
WRITE_SMS ✓

Permissions (Calls)

CALL_PHONE ✓ ✓ ✓
CALL_PRIVILEGED ✓

Permissions (Storage)

WRITE_EXTERNAL_STORAGE ✓ ✓ ✓
MOUNT_UNMOUNT_FILESYSTEMS ✓ ✓
MOUNT_FORMAT_FILESYSTEMS ✓

Permissions (Location)

ACCESS_COARSE_LOCATION ✓ ✓
ACCESS_LOCATION_EXTRA_COMMANDS ✓

Permissions (System)

SYSTEM_ALERT_WINDOW ✓ ✓ ✓
RECEIVE_BOOT_COMPLETED ✓ ✓ ✓
VIBRATE ✓
CHANGE_CONFIGURATION ✓
READ_LOGS ✓ ✓ ✓
ACCESS_WIFI_STATE ✓ ✓
ACCESS_NETWORK_STATE ✓ ✓
CHANGE_NETWORK_STATE ✓
MODIFY_PHONE_STATE ✓
READ_PHONE_STATE ✓ ✓ ✓ ✓ ✓
GET_TASKS ✓ ✓ ✓
WAKE_LOCK ✓

Stats

specific authors ✓ ✓ ✓ ✓ ✓
very small filesize ✓ ✓
high num. std perms. ✓ ✓
high num. dangerous perms. ✓
low num. std/dangerous perms. ✓ ✓
high num. Receivers ✓
high num. background Services ✓ ✓ ✓

Dynamic

Dynamic Class Loading

read specific apk/dex files ✓ ✓
write specific apk/dex files ✓ ✓
load specific apk/dex files ✓ ✓ ✓

Read Operations

low num. read operations ✓
read cpuinfo ✓ ✓
read meminfo ✓

Write Operations

write specific xml files ✓ ✓ ✓ ✓
write in /data/ path ✓

Other

start specific background Services ✓
crypto operations with specific keys ✓
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There are also some relevant characteristics unique to each of the families. AceCard is the only one that

simultaneously requests all SMS permissions, permission to control system alert windows, and permission to

handle phone calls—all probably to carry out its hybrid banking-trojan activities while hiding its tracks. HeHe
requests the highest number of permissions deemed “dangerous” by the Android documentation. UaPush is the

only family out of these 5 that performs some sort of cryptographic operation, which may be used to encrypt

sensitive data before transmission. Pincer is the only family that starts background Android services with specific

names, shared among its spyware variants. USBCleaver has the lowest number of requested permissions, and

performs a very low number of read operations, suggesting limited functionality apart from the installation of

the malware on a victim’s laptop connected via USB.

6 RELATED WORK
We organize the related work into 3 broad categories: information leakage detection, malware characterization,

and malware detection and family identification.

6.1 Information Leakage Detection
Several efforts focus on detecting exfiltration of sensitive information by Android applications through two major

techniques: taint data flow tracking [11, 26, 35, 61, 78], and—more recently—network traffic analysis [18, 38, 46, 50,
51, 65, 71, 82]. Taint data flow tracking systems (e.g. FlowDroid [11], TaintDroid [26] and DroidSafe [35]) use either

static analysis or dynamic analysis to detect whether potentially sensitive information (e.g., location, call logs) is

transmitted to some sink (e.g., the network or SMS) during code execution, indicating a possible information leak.

However, attackers can evade such solutions by breaking the information flow [18] — these solutions also suffer

from high false positives. More recent literature has focused on network traffic analysis to identify possible leaks:

initial work [46, 50, 65, 71] has assumed plaintext communications or slightly obfuscated traffic, whereas the

AGRIGENTO [18] method uses black box differential analysis which is robust to many obfuscation techniques.

Some other papers [25, 43] perform a static and dynamic analysis of browser extensions to detect information

leakage, but their approach is specifically targeted to PC browser extensions leaking sensitive information, and

they are not directly applicable Android or non-browser based approaches.

The main difference between our paper and these works is that most papers on information leakage analysis do

not distinguish between benign and malicious applications, and try to detect exfiltrated information even if the

exfiltration is legitimate (e.g. shipping location information to Google Maps). To distinguish between legitimate

and malicious data transmission, these past efforts would need to compare observed app behavior against user

expectations or (when available) against app privacy policies [70, 85]. On the other hand, our work automatically

detects modern Android spyware without the need to analyze privacy policies or user expectations. Moreover,

one of our main objectives is also to characterize modern Android spyware, and to study how it differs from other

malware and from goodware.

6.2 Malware Characterization
Another body of related work tries is on malware behaviors. Some solutions focus on traditional PC malware

and study how malware spreads over the Internet [40, 80]. Farley et al. [30] study how malware can hijack

microphones on Windows and Mac OS X in order to spy and gather sensitive information. An interesting survey

on data leakage strategies is [69], but it does not consider the Android ecosystem and is not focused on spyware.

A preliminary discussion on spyware is proposed in [68], but no experiments were performed. Other work on

Android malware evaluates infection rates and risk indicators [76], identifies malware presence on third-party

Android markets [49]—but these efforts do not try to characterize the behavior of spyware. [48] characterizes

the difference between malware and benign apps, but does no prediction and does not focus on spyware and
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only considers samples from June 2012 to June 2014. Finally, other works [36, 57] rely on existing taint analysis

solutions to study which information is disclosed by advertisement libraries, while our focus is on data-driven

detection and characterization of modern Android spyware.

6.3 Malware Detection and Family Identification
Traditional work onAndroidmalware analysis has twomain objectives:malware detection and family identification.
The first problem investigates whether a given Android application is benign or malicious, while the second

problem identifies the family to which a given malware sample belongs. Some malware detection methods include

DREBIN [10], CrowDroid [13], DroidAPIMiner [7], DroidScope [79], MARVIN [47], DroidInjector [29], Milosevic

et al. [56], Zhang et al. [81] and MaMaDroid [53]. Our paper differs from these efforts in two ways: (i) We focus on

spyware while they cover all malware. For example, [56, 82] proposes an interesting computationally inexpensive

way to use a machine learning aided approach for static analysis of general malware detection, but they do not

focus on spyware detection and characterization. Another example [82] which proposes a model to analyze

dynamic app behavior to detect stealthy malware activities. The intuition is that malware activities cannot be

mapped to legitimate triggers; while this model is interesting and novel, it does not consider detection and

characterization of Android spyware.

Papers considering family identification of an Android malware sample include DroidLegacy [22], Droid-

SIFT [83], DenDroid [73]. These papers seek to classify a sample into a specific family (e.g., DroidKungFu, Geinimi),
whereas we are interested in extracting the characteristics of modern spyware. Moreover, they often consider

outdated datasets. A more recent effort [15] looks at predicting the families to which malware belongs, but does

not study the characteristics of spyware.

Other papers related to our Android spyware characterization include [8], [9], [16] and [39]. Andronio et

al. [8] propose a method to discriminate between goodware, scareware and ransomware by generalizing three

key common behaviors of mobile ransomware: threatening text, device locking, and encryption. These features

were identified after manual reverse engineering of some samples, whereas our approach is driven by machine

learning over a large number of samples and is hence scalable. Aresu et al. [9] propose an approach that extracts

features from HTTP traffic in order to classify mobile botnets variants (e.g., Zitmo). Unlike these papers, we
focus specifically on Android spyware, and, in addition to detection, we also consider automated data-driven

understanding of modern Android spyware characteristics. Chatterjee et al. [16] design, implement, and evaluate

a measurement pipeline that combines web and app store crawling with machine learning to find and label

spyware used in Intimate partner spying (IPS). Their definition of spyware includes both overtly malicious apps

and dual-use apps i.e. apps that have a legitimate use but can be easily used for spying on a partner. Unlike our

paper, [16] only used features extracted from information available on the Google Play page. Javaheri et al. [39]

propose a method for spyware classification that is based on a dynamic behavioral analysis through deep and

transparent hooking of kernel-level routines. The authors explored the use of linear regression, JRIP, and J48

decision tree algorithms as a classifier and were able to achieve an accuracy of ≈ 93% and an error rate near 7%.

6.4 Summary of Related Work
In summary, we differ from previous literature for the following reasons. To the best of our knowledge, (i) we are

the first to compare the performance of several state-of-the-art shallow and deep learning classifiers for the task

of identifying Android spyware, and we are the first to show that an ensemble late fusion leads to the best 10-fold

performance in distinguishing spyware from goodware and from other categories of malware; (ii) instead of

considering the traditional goodware vs. malware separation problem, we characterize spyware by examining the

differences between spyware vs. goodware and spyware vs. other-malware, and also focus on 5 major spyware

families; (iii) we show how machine learning can be used to explain behavior of a spyware, whereas other efforts
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focused on spreading models or distribution of generic malware in Android marketplaces; (iv) we consider recent

spyware samples found in the wild between July 1st 2016 and July 1st 2017, whereas most papers considered

outdated datasets [10, 84].

7 CONCLUSIONS

7.1 Summary of Main Findings
This section summarizes the main findings of our characterization of modern Android spyware.

First, we find that Android spyware tends to explicitly request the permissions needed to access sensitive

information within the manifest of the app (e.g., phone state, calls, locations, active tasks). Spyware also tends

to ask for permissions for network operations, sending SMSs, and making phone calls. These permissions may

be used to transfer data and communicate with the attacker. The fact that spyware requests these permissions

directly suggests that most Android spyware does not rely on gaining root access to the device, which is perfectly

reasonable because getting root access on updated Android devices is extremely hard and has low chances of

success [21]. In contrast, asking uninformed users for more permissions is more likely to succeed. Moreover,

Android spyware’s filesize tends to be under 2MB, i.e., it is smaller than most goodware. This indicates that

spyware is likely developed as an ad-hoc app or as a repackaged version of small apps.

Our results indicate that we obtain excellent predictive performance using lightweight static and dynamic

features. More specifically, our Ensemble Late Fusion (ELF) method obtains 0.982 F1-Score and 0.982 AUC

for spyware vs. goodware and 0.960 F1-Score and 0.963 AUC for spyware vs. other malware, outperforming

all traditional and deep learning classifiers. This slight difference in accuracy (which is more evident if other

traditional supervised classification algorithms are considered) indicates that the differences between spyware

and goodware are greater than those between spyware and other malware types. This is reasonable since spyware,

like other malware, performs malicious activities.

The most important feature that helps distinguish spyware from goodware is the SEND_SMS permission: 50%

of our spyware samples request that permission, whereas less than 5% of goodware samples ask for it. This

permission can be used to leak information in the absence of network connections [48],to steal money from users

by sending SMSs to premium rate numbers.
6

The permission CALL_PHONE is the second most important feature that distinguishes spyware from other

malware. This may indicate that spyware uses this permission to control/prevent phone calls, or to inform

attackers that a phone has been compromised, or possibly to call premium rate numbers in order to siphon off

funds from users without their consent.

By analyzing 5 spyware families using machine learning and comparing each family against goodware, other

spyware, and other malware, we were able to automatically infer some interesting distinguishing characteristics.

All 5 families have lower filesize than goodware, but some spyware families (e.g. UaPush and Pincer) have
filesizes comparable to other malware. Moreover, all 5 families usually require at least as many permissions

as goodware with the exception of USBCleaver, which requires only few permissions. As its main goal is to

propagate to Windows devices via USB access, USBCleaver mainly requires permissions to access external

storage. AceCard, Pincer and USBCleaver also perform many read/write/dexclass operations on APKs with

randomized names which may indicate unpacking activities [54]. In addition to these activities, UaPush differs

by performing certain cryptographic operations which are not usually performed by other spyware and other

malware that we studied. A distinguishing feature of Pincer is that it starts many background services in order

to (probably) hide its activities and keep monitoring the device. Moreover, unlike goodware and other malware,

6
Although sending premium SMSs is not a primary objective of many spyware, some of them may still perform this activity to increase

income [48]
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all 5 families have a small number of app components, indicative of apps that do not offer strong functionalities

and that hide their presence after installation (e.g., HeHe).
In addition to providing insights into modern Android spyware, the characterization methodology presented

in this paper is general enough to be used by security practitioners to perform data-driven characterization of

other spyware families as they appear in the wild as well as other categories of malware, such as ransomware

and premium-SMS senders.

7.2 Limitations of Static and Dynamic Analyses
The types of program analysis techniques to analyze an application can be roughly divided into static and dynamic
analysis. Static analysis evaluates an app without executing it, and offers an overapproximation of its behavior,

as some paths may never be executed; however, it is very weak against code obfuscation strategies. Dynamic

analysis is more robust against code obfuscation and generally offers an underapproximation of an application

behavior, as it is not feasible to dynamically execute all possible paths, and some behaviors may be triggered only

under some specific attacker-defined conditions (e.g., time- and logic-bombs). This is why a combination of static

and dynamic analysis is usually preferred in order to maximize coverage and increase costs for the attacker.

The dynamic analysis we perform in this work through the Koodous [3] online service does not cover all

possible execution traces. In particular, Koodous relies on the Droidbox sandbox [2], executes samples for 60

seconds, and collects any system and network activity detected during execution. Since the malware may detect

that it is running in a sandbox and/or because its behavior may be triggered only by certain events (e.g., initiated

by the attacker’s command and control server [52]), some dynamic behavior may be missed in this paper. Very

recent work (e.g., [29, 33, 60]) study how to trigger malicious behaviors of malware by simulating user interactions,

but [66] shows that they are imperfect and do not overcome random input generation, which is suboptimal as it

cannot simulate complex user interactions. Hence, the problem remains an open issue and future work could

look at integrating these approaches into dynamic analysis.

Nevertheless, we note that since we rely on both static and dynamic analyses we are able to identify static

indicators of maliciousness even if the app does not trigger the malicious behavior when executed. This is

confirmed in our characterization of the 5 spyware families, where for some families static features are more

relevant in describing and capturing them. While our feature space with ELF remains able to detect the majority

of the spyware applications, more advanced dynamic analysis techniques that are robust to anti-detection

mechanisms may improve the quality of the characterization but do not compromise the validity of our results.

It is worth observing that about 20% of our samples crashed during dynamic analysis on Koodous and therefore

are not included in the analysis in this paper. While this could indicate that our study is not complete, this

limitation is common in prior work that uses dynamic analysis [15, 20, 59, 62]. Some strategies to prevent crashing

of samples may be worth investigating in future work.

7.3 Future Work
In this paper, we characterize spyware with respect to goodware and to other malware. We rely on machine

learning features derived from lightweight static and dynamic analysis of Android samples. In future work,

it would be interesting to consider additional techniques to gain more insights about spyware. Examples of

such techniques include (i) designing new features to represent sequence and timing of dynamic operations; (ii)

integrating dynamic analysis techniques for detecting which specific information is likely leaked the channels (e.g.

network, SMS, files on disk) through which such leaks occur; (iii) performing in-depth inspections of application

source code and control-flow to link spyware behavior to the code; (iv) considering an adversarial model in which

the adversaries tampers with our training data (poisoning) or performs test-time evasion attacks.
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Since the main focus of this work is on characterization, we operated in a setting without concept drift; future

work may use collective classification to leverage dependencies between samples [45] and to evaluate the impact

of non-stationarity on detection of spyware [63]. Our study has also shown that some spyware families perform

additional malicious activities, such as sending premium SMS or stealing banking credentials. Another interesting

research direction is to explore multi-label classification—for instance, AceCard is both spyware and a banking

trojan, and a system that can automatically predict a set of labels for each app would be useful for capturing

multiple malicious behaviors at once.
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APPENDIX

A DOWNLOADED SPYWARE
Table 13 reports a list of all the spyware families we have downloaded from VirusTotal. For the sake of complete-

ness, we also report the detail on which samples we have been able to statically and dynamically execute on the

Koodous service without any exception or crash.

B DEEP LEARNING CLASSIFIERS AND HYPER-PARAMETER TUNING
We report some additional details and clarifications for the deep learning algorithms used in the detection section,

with detailed deep learning architectures and a thorough description of how we performed hyperparameter

optimization.

• CNN: Convolutional Neural Networks can abstract from low-level features of data to higher-level features,

where the higher-level features are a combination of the low-level ones. When the high-level features

become more and more abstract, they can express more and more general characteristics of the data. The

higher the level of abstraction, the less uncertainty there is, and the easier is for the model to classify

samples. We have used the following CNN configuration.

Input layer: 1D convolution layer; Number of units: the dimension of the sample’s feature vector;

Activation function: ReLU

Max pooling layer: the size of max-pooling windows: 3

Second 1D convolution layer; Number of units: 512; Activation function: ReLU

First Dropout layer: rate = 0.5

Third 1D convolution layer; Number of units: 256; Activation function: ReLU

Global Average Pooling layer

Second Dropout layer: rate = 0.5

Dense connected NN layer: Number of units: 1; Activation function: Sigmoid

Number of examples per minibatch: 16

Optimizer: Adam

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.

https://doi.org/10.1109/SP.2015.60
https://doi.org/10.1145/2996758.2996760
https://doi.org/10.14722/ndss.2017.23034
https://doi.org/10.14722/ndss.2017.23034


A Data-Driven Characterization of Modern Android Spyware • 111:27

The learning rate for weight updates: 0.0001

Number of iterations over the training dataset to perform during training: 20

• Wide & Deep [17]: Designed to enable trained models to simultaneously acquire memorization and

generalization capabilities: Memorization finds the correlation between samples from historical data.

Generalization is the transfer of correlations, discovering new combinations of features that rarely or not

appear in historical data. The Deep model is a feed-forward neural network. Deep neural network models

usually require continuous dense features. For sparse, high-dimensional class features, they are usually

converted to low-dimensional vectors and then trained. Memorization reflects the accuracy of the model,

while generalization reflects the novelty of the model. Description of the used parameters of Deep & Wide

in the experiments:

Wide: Input layer with the number of units: the dimension of the sample’s feature vector

Deep: Input layer: Number of units: the dimension of the sample’s feature vector

First hidden layer: Number of examples: 256; Activation function: ReLU

Second hidden layer: Number of examples: 1024; Activation function: ReLU

First Dropout layer: rate = 0.5

Third hidden layer: Number of examples: 512; Activation function: ReLU

Fourth hidden layer: Number of examples: 256; Activation function: ReLU

Fifth hidden layer: Number of examples: 128; Activation function: ReLU

Second Dropout layer: rate = 0.5

Number of examples per minibatch: 16

Optimizer: Adam

The learning rate for weight updates: 0.0001

Number of iterations over the training dataset to perform during training: 20

• MLP: Multi-Layer Perceptron is a version of feed-forward neural networks. We refer to the architecture

suggested in Python’s sklearn library, with 100 hidden layers, ReLU activation functions, and Adam solver.

• BRBM: Bernoulli Restricted Boltzmann Machine is an unsupervised non-linear feature learner based on

probability models. Features extracted by RBM often give good results when inputting linear classifiers

such as linear SVMs or perceptrons. In the experiments, we use Bernoulli RBM model in scikit-learn, which

assumes that the input is a binary value or a value between 0 and 1. Description of the used parameters of

BRBM in the experiments:

Number of binary hidden units: 256

Number of examples per minibatch: 10

The learning rate for weight updates: 0.1

Number of iterations over the training dataset to perform during training: 10

We performed extensive hyper-parameter optimization, with particular attention to the deep learning algorithms,

since they overall achieve a lower performance than other shallow learning algorithms (e.g., RF). In particular,

we have tried the following methods:

(1) Drawingfigures of the accuracy on the training set and validation set. If themodel does not converge

for a while, we can stop the current training and using other hyper-parameters. If the accuracy on both the

training set and validation set are low, which means that the model is under-fitting. Thus, we increase the

fitting ability of the model like increasing the layers of the neural network, increase the number of nodes,

decrease the dropout value, and reduce the l2 regularizer value and so on. If the accuracy on the training
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set is high while low on the validation set, it means the model is over-fitting. Then we would adjust the

hyper-parameters in the direction of improving the generalization ability of the model.

(2) Tuning the hyper-parameters from coarse to fine. Generally, a preliminary range search is performed

first, and then a narrower search is performed according to where the good results appear. We start with

the parameters that are more important while fixing other parameters, then adjust other parameters based

on the current result. For example, the learning rate is generally more important than the regular value

and the dropout value.

(3) Automatic hyper-parameters tuning. We tried both Gird Search and Random Search in our experiments.

The disadvantage of grid search is that it’s time-consuming, especially when applied to neural networks,

and generally can’t traverse too many parameter combinations, while Random Search is more effective in

practice. So we use Gird Search’s method to get all the candidate parameters at first, and then randomly

select training from each time.

(4) A smaller model for hyper-parameters tuning. In the experiment, we first try to tune the parameters

on a randomly chose smaller data set, and we assume the smaller dataset share the same distribution

as the whole dataset. Therefore, we increase the speed in the training process and try more parameters

combination.

(5) Logarithmic search. We performed a hyper-parametric search on a logarithmic scale. In the experiment,

we can try the learning rate from 0.001 0.01 0.1 1 10 in 10 steps.

(6) Empirical parameter search. The Learning rate generally starts from 1, and the learning rate generally

decays with the process of training, and we use adaptive gradient methods like Adam and default values

during the training process. The number of nodes per layer is always like 16, 32, 64, 128, the multiples of

16 are usually adopted. Batch size: starts from 128. The increase in the batch size value does increase the

training speed. However, there is a possibility that the convergence result is deteriorated. If the memory

size allows, we should start with a larger value. If the batch size is large, it generally does not have much

effect on the result, otherwise, the result may be poor.

C FEATURE HISTOGRAMS

C.1 Spyware vs. Goodware
Figure 2(a) shows the distribution of the values of the top-25 features used by RF to classify each Android sample

as either spyware or goodware. Each histogram reports feature values on the X -axis (note that many features are

binary—and assume only values 0 or 1), and the percentage of samples of each class that have that feature value on

the Y -axis. To better understand how these histograms should be interpreted, consider the WRITE_SMS permission

in the third row of Figure 2(a). We observe that about 50% of spyware samples request permission to write SMS,

while almost no goodware require this permission. From this histogram, we may infer that a decision rule that

checks whether an Android sample asks for this permission would have high precision in detecting spyware (as it

is requested by very few goodware), but uncertain recall (because if the permission is not requested, we cannot

determine whether it is spyware or goodware). Figure 2(b) provides a visualization of a decision tree (limited

to the first three decision levels for readability). We report the histograms corresponding to Mean Decreased

Impurity (MDI) as described in Section 5.

C.2 Spyware vs. Other-malware
Figure 3(a) shows the histograms of feature values of the top-25 features used by RF to perform classification

(average over 10-fold cross-validation) and Figure 3(b) shows a visualization of first three levels a decision tree.

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.



A Data-Driven Characterization of Modern Android Spyware • 111:29

0.00 0.25 0.50 0.75 1.00 1.25
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

filesize
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:SEND_SMS
spyware
goodware

0 1000 2000 3000
Feature value

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n 

(%
)

author
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:READ_PHONE_STATE
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:GET_TASKS
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:SYSTEM_ALERT_WINDOW
spyware
goodware

0 10 20 30 40 50
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_providers
spyware
goodware

0 200 400 600
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_activities
spyware
goodware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:RECEIVE_SMS
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:WRITE_SMS
spyware
goodware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_intents
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:MOUNT_UNMOUNT_FILESYSTEMS
spyware
goodware

0 5 10 15 20
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions_dangerous
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:READ_SMS
spyware
goodware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_non_std_permissions
spyware
goodware

0 50 100 150 200
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

read
spyware
goodware

0 20 40 60 80
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

read b'/data/'
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:CHANGE_NETWORK_STATE
spyware
goodware

0 25 50 75 100 125 150
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_receivers
spyware
goodware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_services
spyware
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:RECEIVE_BOOT_COMPLETED
spyware
goodware

0.0 0.5 1.0 1.5 2.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'new.apk'
spyware
goodware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write
spyware
goodware

0 10 20 30
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

dexclass
spyware
goodware

(a) Histogram of feature values (top-25 RF features).

filesize <= 1444188.0
samples = 6630

value = [3302, 3328]
class = SPYWARE

num_activities <= 0.5
samples = 2918

value = [268, 2650]
class = SPYWARE

True

permission:SYSTEM_ALERT_WINDOW <= 0.5
samples = 3712

value = [3034, 678]
class = GOODWARE

False

permission:MOUNT_UNMOUNT_FILESYSTEMS <= 0.5
samples = 91

value = [72, 19]
class = GOODWARE

permission:READ_PHONE_STATE <= 0.5
samples = 2827

value = [196, 2631]
class = SPYWARE

permission:RECORD_AUDIO <= 0.5
samples = 78
value = [72, 6]

class = GOODWARE

samples = 13
value = [0, 13]

class = SPYWARE
(...) (...)

author_INT <= 12.0
samples = 701

value = [157, 544]
class = SPYWARE

permission:INTERNET <= 0.5
samples = 2126

value = [39, 2087]
class = SPYWARE

(...) (...) (...) (...)

permission:SEND_SMS <= 0.5
samples = 2877

value = [2701, 176]
class = GOODWARE

num_providers <= 0.5
samples = 835

value = [333, 502]
class = SPYWARE

write b'new.apk' <= 1.0
samples = 2714

value = [2621, 93]
class = GOODWARE

num_providers <= 0.5
samples = 163
value = [80, 83]

class = SPYWARE

(...) (...) (...) (...)

permission:READ_PHONE_STATE <= 0.5
samples = 536

value = [112, 424]
class = SPYWARE

permission:MOUNT_UNMOUNT_FILESYSTEMS <= 0.5
samples = 299

value = [221, 78]
class = GOODWARE

(...) (...) (...) (...)

(b) Decision tree (first three levels).

Fig. 2. Spyware vs. goodware.

C.3 Spyware Families
We include the feature-value histograms of the top features found by the classifier for specific spyware families

(in particular, the top-15 features of each family vs. each other category)..
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Fig. 3. Spyware vs. other-malware.
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Table 13. Spyware families in [75] downloaded from VirusTotal. Families are reported in alphabetical order. Each family
reports two values: the number of successfully analyzed samples, and the total number of downloaded samples from
VirusTotal. The five families in bold are the ones analyzed in-depth in our paper.

Family # Samples

acecard 127/150

backflash 008/011

bankosy 016/021

basedao 018/018

beita 009/012

biigespy 006/012

claco 061/125

cosha 314/400

crisis 158/173

dendoroid 005/005

exprespam 022/041

fakebank 394/423

fakedaum 009/009

fakegame 046/047

fakelogin 117/132

fakeplay 073/149

faketaobao 025/035

farmbaby 037/041

flexispy 067/068

godwon 021/033

gugespy 107/139

hehe 140/150

jollyserv 002/002

lastacloud 007/007

machinleak 002/002

milipnot 001/001

obad 008/150

phospy 018/024

pincer 176/269

qitmo 004/004

roidsec 019/028

rootnik 157/172

rusms 130/150

sandorat 150/150

scipiex 008/008

smsstealer 117/143

spyagent 233/384

spyoo 315/400

spytrack 183/225

stealthgenie 007/009

stels 009/009

tetus 107/211

uapush 154/249

uracto 006/006

usbcleaver 020/043

uupay 076/150

windseeker 009/009

Total: 3,698/5,000

ACM Transactions on Management Information Systems, Vol. 1, No. 1, Article 111. Publication date: 0.



111:32 • Pierazzi, et al.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Feature value

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
(%

)
write b'new.apk'

acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

filesize
acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'AppPrefs.xml'
acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:READ_SMS
acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:RECEIVE_SMS
acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:SEND_SMS
acecard
goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

permission:WRITE_SMS
acecard
goodware

0 10 20 30 40 50 60 70 80
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_non_std_permissions
acecard
goodware

0 10 20 30 40 50 60
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_receivers
acecard
goodware

0 20 40 60 80
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

read
acecard
goodware

0 5 10 15 20
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

dexclass
acecard
goodware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions
acecard
goodware

0 20 40 60 80 100 120 140
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'/data/'
acecard
goodware

0 10 20 30 40 50 60 70
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

read b'/data/'
acecard
goodware

0 100 200 300 400 500 600 700
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_activities
acecard
goodware

(a) AceCard vs goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'AppPrefs.xml'
acecard
spyware

0 1 2 3 4 5
Feature value 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

filesize
acecard
spyware

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'new.apk'
acecard
spyware

0 5 10 15 20 25 30 35
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_services
acecard
spyware

0 20 40 60 80 100 120 140
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_receivers
acecard
spyware

0 20 40 60 80
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions
acecard
spyware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

dexclass
b'ybfhjzlav.jar'

acecard
spyware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'/data/'
acecard
spyware

0 500 1000 1500 2000 2500 3000 3500
Feature value

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
(%

)
author

acecard
spyware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_activities
acecard
spyware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_intents
acecard
spyware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

dexclass b'com.navxly.gd
ntifp-1.apk'

acecard
spyware

0 50 100 150 200 250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write
acecard
spyware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'ybfhjzlav.jar'
acecard
spyware

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions_dang
erous

acecard
spyware

(b) AceCard vs spyware

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'AppPrefs.xml'
acecard
malware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

filesize
acecard
malware

0 500 1000 1500 2000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

author
acecard
malware

0 50 100 150 200 250 300 350
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_activities
acecard
malware

0 10 20 30 40 50
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_services
acecard
malware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

read b'ybfhjzlav.jar'
acecard
malware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions
acecard
malware

0 5 10 15 20 25 30 35 40
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_receivers
acecard
malware

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'new.apk'
acecard
malware

0 20 40 60 80 100 120
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_intents
acecard
malware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

dexclass b'com.navxly.gd
ntifp-1.apk'

acecard
malware

0 20 40 60 80 100 120 140
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write
acecard
malware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

write b'ybfhjzlav.jar'
acecard
malware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_non_std_permissions
acecard
malware

0 5 10 15 20
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

(%
)

num_std_permissions_dang
erous

acecard
malware

(c) AceCard vs other-malware

Fig. 4. [MDI] Feature value histograms for AceCard spyware family.
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Fig. 5. [MDI] Feature value histograms for HeHe spyware family.
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Fig. 6. [MDI] Feature value histograms for UaPush spyware family.
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Fig. 7. [MDI] Feature value histograms for Pincer spyware family.
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Fig. 8. [MDI] Feature value histograms for USBCleaver spyware family.
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