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Abstract: An adaptive proportional–integral–derivative (PID) controller based on Q-learning algorithm is proposed to
balance the cart–pole system in simulation environment. This controller was trained using Q-learning algorithm and
implemented the learned Q-tables to change the gains of linear PID controllers according to the state of the system
during the control process. The adaptive PID controller based on Q-learning algorithm was trained from a set of fixed
initial positions and was able to balance the system starting from a series of initial positions that are different from the
ones used in the training session, which achieved equivalent or even better performances in comparison with the
conventional PID controller and the controller only uses Q-learning algorithm. This indicates the advantage of
the adaptive PID controller based on Q-learning algorithm both in the generality of balancing the cart–pole system
from a relatively wide range of initial positions and in the stabilisability of achieving smaller steady-state error.
1 Introduction

Various controllers have been developed and widely used in
industrial environments such as proportional–integral–derivative
(PID) controllers, fuzzy logic-based controllers because of the high
robustness and scalability with the simplicity in structure.
Nevertheless, these conventional controllers suffer from the high
dependency on parameters. These controllers usually are not
optimally tuned and able to reach satisfactory performances in
real applications and require frequent adjustments when damages
occur or being in adverse situations [1]. Therefore, the tuning
parameters of conventional controllers to achieve an optimal
performance become an outstanding issue [2]. Additionally, these
controllers have less satisfactory performance in complex
environment, especially in the situations associated with practical
applications considering the high non-linearity and uncertainty of
the environment. These drawbacks address the importance
of developing alternative control techniques. Contrarily,
reinforcement learning (RL) algorithm is a machine-learning
algorithm that generates optimal policy by interacting with
environment and receiving reinforcement signals under the
circumstance where the dynamics and the underlying of the
environment remain unknown. This property proposes a promising
solution to solving the systems with high non-linearity by avoiding
formulating accurate mathematical models [3]. Combining
conventional control methods with RL is proved to be very
powerful and efficient in solving practical problems like robotic
control problems in high-dimensional state and action spaces [4].
There are several successful applications that have been
implemented such as robot navigation [3], autonomous helicopter
control [5] etc., showing a promising prospect of employing RL
algorithms in control systems.

Great amounts of researches have applied the RL algorithm to
achieve innovative control strategies. One of them is to totally
replace the conventional controllers by the RL algorithms. In [6],
five different RL algorithms (two value-iteration algorithms and
three policy-iteration algorithms) were tested to replace a
double-loop PID controller to control a ball screw feed drive, and
all the algorithms indicated the superiority of the RL algorithms to
the conventional PID controller. Ramanathan et al. [7] used
Q-learning algorithm to control the level of a liquid in a non-linear
conical tank and a satisfactory performance was achieved.
Although ideal achievements were observed in the applications
stated above, it is also noticeable that since in RL algorithms the
choosing of state representation, output and reward all have
intensive effects on the performance of the controller, designing
controller by implementing RL algorithms individually becomes
more challenging when the dimensions of the state and action
space increase [2]. Another considerable approach is to combine
the RL algorithm with the conventional controllers, where the RL
algorithms are implemented to address the tuning issue that the
conventional controllers have.

To solve this tuning issue, several systematic methods have been
proposed in [8]. Ziegler–Nichols methods [9] proposed in 1995 is
regarded as a classical tuning rule, which has a broad
implementation in industrial environment. Genetic algorithms were
applied to provide an optimal conventional controller in the
research described in [10]. Besides, a novel approach applied to
optimise the parameters for non-linear PID parameters called ant
colony optimisation algorithm was proposed and implemented in
[11, 12]. Both methods showed better performance compared with
conventional controllers. However, most of these approaches have
high requirements on computational ability, while RL algorithms
significantly reduce the learning time [8].

Regarding the RL-based controllers, several techniques have been
proposed in previous researches. A methodology named Discrete
Action Reinforcement Learning Automata was proposed in [13],
two extension versions of this method were proposed in [14, 15],
aiming to tune the parameters of one PID controller with higher
learning speed. Both controllers were tested on an Automatic
Voltage Regulator system. Similarly, Continuous Action
Reinforcement Learning automata for PID controller [13] was
applied as an on-line tuning method in the research done by
Howell and Best [16] and Mohammadi et al. [17]. In the research
of [17], the approach was also tested via an engine idle-speed
control system and the Ball and Beam System in simulation
environment. Both showed superior performance compared with
the conventional controllers tuned following the Ziegler–Nichols
methods. However, the integral and interpolation operation in the
algorithm brings the extra cost of computation. Another method
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Fig. 1 Structure of PID controller
named actor–critic method used to tune PID parameters was
implemented in [18] as to implement wind turbine control, and a
similar method was implemented in [1] as to achieve tracking
function in a special class of linear systems. In both algorithms,
the actor mapped states to PID controller parameters and the critic
provided the evaluation of the output of actor. Both approaches
indicated better performances contrasted to the conventional PID
controllers. Meanwhile, Q-learning algorithm [19] is also widely
used in tuning parameters for controllers. Researches [8, 20] used
this algorithm to tune fuzzy controllers. Carlucho et al. [2] tuned
the PID controller using an incremental Q-PID algorithm by
dynamically dividing the actions into more specific areas to obtain
higher controlling accuracy. The simplicity in utilisation and
independency to the system parameters make Q-learning algorithm
more reliable in real applications [14]. Nevertheless, less attention
was paid to implementing Q-learning algorithm to tune parameters
for multiple PID controllers. One related research is [21], which
tuned two sets of PID controllers to control the angular and
linear speed of a soccer robot and achieved good performance in
speed response and stability. However, in this research the
learning process of finding optimal parameters for PID controller
required long computation period, and less analyses were
conducted on the learned controller regarding the stability or
robustness.

As to address the open issue of implementing Q-learning
algorithm on multiple PID controllers, an adaptive PID controller
based on Q-learning algorithm is proposed in this research. It
adapts to the similar approach implemented in [21] by varying the
values of gains of linear PID controllers according to different
operating space of system state after training with Q-learning
algorithm, instead of having a set of fixed gains through the whole
controlling progress. Generally, this innovative controller
implements direct control through the PID controllers in the lower
level while achieving adaptive adjustment of controller gains by
learning through Q-learning algorithm in higher level, which
improves the performance of the controllers in non-linear and
complex systems. Additionally, in order to have a more
comprehensive analysis of the approach, the proposed controller
was tested on the classical cart–pole problem in simulation
environment in comparison with conventional PID controllers and
the controller only using Q-learning algorithm. The main
contributions of this paper are summarised as follows:

(i) An innovative structure of controller is proposed. The controller
consists of two linear PID controllers with Q-learning algorithm
applied to adaptively change the values of gains during the
controlling process.
(ii) The performance of the controller is tested on the cart–pole
system in simulation environment. Both the learning efficiency and
the states of the cart–pole system are analysed.
(iii) Two other categories of controllers are provided as comparison,
which are traditional linear PID controller and the controller only
applies Q-learning algorithm. The comparison indicates the
benefits of the adaptive PID controller in generality and stability.

The structure of rest of the paper is organised as follows. In
Section 2, a brief introduction of relevant theories is conducted.
The methodology and technical details are described in Section 3
and the simulation results of three different controllers are
illustrated and compared in Section 4. Finally in Section 5, a
conclusion is drawn and the future work is mentioned.
Fig. 2 Illustration of agent–environment interaction in RL
2 Preliminary

2.1 Linear PID controller

Fig. 1 illustrates the structure of a typical linear PID controller, which
consists of three components, namely proportional, integral and
derivative part. Equation (1) provides the output of the controller
236 This is an open access article publis
Chongqing University
in discrete time form:

u(tk ) = KPe(tk )+ KI

∑k
i=0

e(ti)Dtk + KD
e(tk )− e(tk−1)

Dtk
(1)

where tk is the kth time step; u tk
( )

is the output in kth time step; e tk
( )

is the error in kth time step; Dtk is the interval of sampling time in
simulation; and KP, KI, KD are the proportional, integral and
derivative gains, respectively.
2.2 Reinforcement learning

RL is a goal-directed problem-solving approach which belongs to
one of the approaches in machine learning. This approach was
inspired by the nature of learning, which learns to generate control
policy only by interacting with environment without knowing the
underlying of the system model. The RL problem can be defined
as agent–environment interaction shown in Fig. 2. In this
interaction, the agent observes states St [ S and takes actions
At [ A. The environment receives actions, updates new states
St+1 [ S and outputs a scalar reward Rt+1 [ R , R. The agent
then receives the reward, stays in new states St+1 [ S and choses
new actions At+1 [ A. This interaction continues until reaching
the terminal state ST [ S. The goal of the agent is to derive an
optimal control policy which maximises the discounted
accumulated rewards, named as expected discounted return Gt [as
defined in (2)], in the long term:

Gt =. Rt+1 + gRt+2 + g2Rt+3 + · · · =
∑1
k=0

gkRt+k+1. (2)

where g is the discounting factor, 0 , g , 1.
The RL problem is based on Markov decision processes (MDP)

[22]. An MDP has the property that the current state encodes
enough information for the agent to make decision despite the
previous states it has visited. There are two main categories of RL
algorithms, which are policy-based ones and value-based ones. In
value-based RL, a value function is used to estimate the value of
being in each state. The definition of the state-value function from
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 4, pp. 235–244
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a given state under policy p is

vp(s)=. Ep Gt|St = s
[ ] = Ep

∑1
k=0

gkRt+k+1|St = s

[ ]
, (3)

where Ep denotes the expectation under policy p.
Similarly, the action-value function qp of taking action a in state s

under policy p can be defined as

qp(s, a)=. Ep[Gt|St = s, At = a]

= Ep

∑1
k=0

gkRt+k+1|St = s, At = a

[ ]
.

(4)

Among all the action-value functions, the optimal action-value
function, defined as

q∗(s, a)=. max
p

qp(s, a), (5)

generates the optimal policy p∗.
The Q-learning algorithm [23] is an off-policy value-based

learning algorithm of RL. In this algorithm, the learned
action-value function, Q, directly approximates the optimal
action-value function, q∗, instead of following the current policy.
The updating rule is

Q(St , At) � Q(St , At)+ a[Rt+1 + gmax
a

Q(St+1, a)− Q(St , At)],

(6)

where a denotes the learning rate.
The general procedures of the Q-learning algorithm is presented in

Algorithm 1 (see Fig. 3) [22].

2.3 Cart–pole problem

The standard cart–pole problem is shown in Fig. 4. A rigid pendulum
is connected to a cart with a hinge. The pendulum is able to rotate in
the vertical plane, while the cart is restricted to move in the
Fig. 3 Algorithm 1: Q-learning algorithm

Fig. 4 Illustration of the cart–pole system
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one-dimension track. A horizontal force u(t) is applied to this
system as to balance the pendulum. There are four variables used
to describe the state of the cart–pole system, which are u(t), u̇(t),
x(t) and ẋ(t) denoting the angle of the pendulum, angular velocity,
displacement of the cart and the velocity of the cart, respectively.

The dynamic model [24] is given below:

ẋ1(t) = x2(t) (7)

ẋ2(t) =

−F1(M + m)x2(t)− m2l2x2(t)
2 sin x1(t) cos x1(t)

+F0mlx4(t) cos x1(t)+ (M + m)mgl sin x1(t)
−ml cos x1(t)u(t)

⎛
⎝

⎞
⎠

(M + m)(J + ml2)− m2l2( cos x1(t))
2

(8)

ẋ3(t) = x4(t) (9)

ẋ4(t) =

F1mlx2(t) cos x1(t)+ (J + ml2)mlx2(t)
2 sin x1(t)

−F0((J + ml2)x4(t)− m2gl2 sin x1(t) cos x1(t)
+(J + ml2)u(t)

⎛
⎝

⎞
⎠

(M + m)(J + ml2)− m2l2( cos x1(t))
2 ,

(10)

where x1(t) is the displacement of angle (rad); x2(t) is the angular
velocity (rad/s); x3(t) is the position of the cart (m); x4(t) is the
linear velocity of the cart (m/s); u(t) is the force applied to the cart
(N); M is the mass of the cart (kg); m is the mass of the pendulum
(kg); l is half length of the pendulum (m); J is the moment of
inertia of the pendulum, J = ml2/3 kgm2; F0 is the friction factor
of the cart (N/m/s); F1 is the friction factor of the pendulum
(N/rad/s); and g is the gravity acceleration, g = 9.8m/s2.
3 Methodology

In this section, the details of the methodology are introduced. The
whole architecture of the adaptive PID controller based on
Q-learning algorithm is introduced in Section 3.1. The learning
process using Q-learning algorithm is explained in Section 3.2.

3.1 Design of the controller

The adaptive PID controller based on Q-learning algorithm proposed
was designed to balance the cart–pole system. The architecture of the
controller is shown in Fig. 5. The direct control of the system is
accomplished by two linear PID controllers, while the adaption of
the parameters is based on the learned Q-tables, which are
obtained from the training process using Q-learning algorithm.

As shown in Fig. 5, the control of the pendulum and the cart is
implemented by PID controllers. At time step tk , PID controller 1
takes uref = 0 as reference, inputs the error of the angle ep(tk )
defined as

ep(tk ) = uref − u(tk ) (11)

and outputs the force up(tk ), which is defined as

up(tk ) = KPPep(tk )+ KIP

∑k
i=0

ep(ti)Dtk

+ KDP

ep(tk )− ep(tk−1)

Dtk
,

(12)

where KPP, KIP and KDP are the proportional, integral and derivative
gain of PID controller 1, respectively.

PID controller 2 takes xref = 0 as reference, inputs the error of the
position ec(tk ) defined as

ec(tk ) = xref − x(tk ) (13)
237n for Artificial Intelligence and
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Fig. 5 Architecture of adaptive PID controller based on Q-learning algorithm
and outputs the force uc(tk ), which is defined as

uc(tk ) = KPCec(tk )+ KIC

∑k
i=0

ec(ti)Dtk + KDC
ec(tk )− ec(tk−1)

Dtk
,

(14)

where KPC, KIC and KDC are the proportional, integral and derivative
gain of PID controller 2, respectively.

The force up(tk ) and uc(tk ) are summed up as a total force u(tk )
which applies to balance the cart–pole system. By simulating the
system dynamics, the states of the system (u(tk ), u̇(tk ), x(tk ), ẋ(tk ))
are obtained. These four continuous variables are discretised into
four discrete variables (n1(tk ), n2(tk ), n3(tk ), n4(tk )), which are
taken as the presentation of state Stk [ S in the Q-learning
algorithm.

There are six learned Q-tables in total with each Q-table is
associated with one controller gain. Q Tables 1–3 are associated
with the derivative, integral and proportional gain of the PID
controller 1 which controls the pendulum, respectively. Similarly,
Q Tables 4–6 are associated with the derivative, integral and
proportional gain of the PID controller 2, respectively, which
controls the cart, accordingly. To be noted, Q Tables 1–3 only
take n1(tk ) and n2(tk ) as states, while Q Tables 4–6 take the whole
four variables n1(tk ), n2(tk ), n3(tk ) and n4(tk ) into consideration.
When given the current state, each learned Q-table generates the
optimal value for the corresponding controller gain.

3.2 Training process

One crucial procedure in designing the controller is the training of
the Q-tables, which maps the current states to actions (different
values of gains in this situation). The whole training process is
238 This is an open access article publis
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shown in pseudo code form Algorithm 2 (see Fig. 6). As to speed
up the learning process, an adaptive learning rate method named
Delta–Bar–Delta [25] was implemented.

The following are some details of the training process.
3.2.1 Discretisation: Each continuous variable is divided into
several buckets, the values within the same bucket are regarded as
one same state. The buckets are set using the same rule defined as

n =
1 if xcon , Xmin

10 if xcon . Xmax

⌊ xcon
Xmax − Xmin

× N⌋ + 1 if Xmin ≤ xcon ≤ Xmax,

⎧⎪⎪⎨
⎪⎪⎩ (15)

where ⌊x⌋ = max {n [ Z|n ≤ x}; n denotes the discrete variable;
xcon denotes the continuous variable; Xmin and Xmax are the lower
and upper bounds of xcon, respectively; and N denotes the number
of buckets each variable is divided into, N = 10 in this situation.
The number of the buckets is decided depending on the simulation
performance.

The values set for discretisation are shown in Table 1.
3.2.2 e-greedy method: When given the current state, all six
Q-tables generate the actions according to the e-greedy method.
This method is defined by

A =
random action if j , e

argmax
a

Q(s, a) otherwise ,

⎧⎨
⎩ (16)
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Fig. 6 Algorithm 2: the training process

Table 1 Values set for discretisation

Values Xmin Xmax

u(t) −45× p/180 45× p/180
u̇(t) −15 15
x(t) −3 3
ẋ(t) −15 15

Table 2 Parameters set for adaptive learning rate algorithm
where j is a random number subject to normal distribution,
0 ≤ j ≤ 1.

As to speed up the convergence, the value of e decays with the
increment of training episodes and is set to zero after certain
episodes, while the number of episodes is decided according to the
training performance. The details are defined as

e(eps) =
1

1+ eeps
+ 0.001 eps , 0.6×maxepisode

0
otherwise,

⎧⎨
⎩ (17)

where eps is the current episode and maxepisode is the maximum
number of episodes.
Q tables of PID controller 1 Q tables of PID controller 2

a0 0.015 0.3
k 0.1a0 0.002a0
f 0.5 0.5
w 0.5 0.5
3.2.3 Reward scheme: The reward schemes are different
according to the PID controllers. The Q-tables for pendulum share
the same reward scheme, while the others apply a different one.
The reward scheme for the Q-tables that are associated with the
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 4, pp. 235–244
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gains of PID controller 1 is defined as

Rp =
1 if u(t + 1)

∣∣ ∣∣ , u(t)
∣∣ ∣∣ and u(t + 1)

∣∣ ∣∣ . ulim

2 if u(t + 1)
∣∣ ∣∣ ≤ ulim

0 otherwise,

⎧⎪⎨
⎪⎩ (18)

where ulim is the threshold set for angle, ulim = 0.01 in this situation.
The reward scheme for the Q-tables that are associated with the

gains of PID controller 2 is defined as

Rc =
1 if u(t + 1)

∣∣ ∣∣ , u(t)
∣∣ ∣∣ and x(t + 1)

∣∣ ∣∣ , x(t)
∣∣ ∣∣ and x(t + 1)

∣∣ ∣∣ . xlim

2 if x(t + 1)
∣∣ ∣∣ ≤ xlim

0 otherwise,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(19)

where xlim is the threshold set for position, xlim = 0.1 in this situation.

3.2.4 Adaptive learning rate: As to improve the efficiency of
convergence, the adaptive learning rate algorithm called Delta–
Bar–Delta [25] was implemented. The algorithm is defined as

Dat =
k if d̄t−1dt . 0

−fat if d̄t−1dt , 0

0 if d̄t−1dt = 0

⎧⎪⎨
⎪⎩ (20)

where Dat is the increment of the learning rate in time step t; k is a
positive constant value to increase the learning rate; f is a positive
constant value denoting the discounting factor; dt is the temporal
difference (TD) error [22] in time step t, dt = Rt+1+
gmax

a
Q(St+1, a)− Q(St , At); d̄t = (1− w)dt + wd̄t−1.

The learning rate in time step t + 1 is updated as

at+1 = at + Dat. (21)

By applying this rule, the learning rate will be updated by comparing
the current TD error with the accumulated TD error in previous steps.
When the learning rate becomes too large, the increment of the
learning rate changes sign and reduces the learning rate. On the
other hand, if the learning rate is too small, the learning rate keeps
changing in the previous trend and speeds up the convergence.

All Q-tables use adaptive learning rate algorithm, while the setting
of parameters is different. Q-tables used to change the gains of the
controller of the pendulum share the same set of parameters, while
the other Q-tables share another set of parameters. The values used
in this research are presented in Table 2.

3.2.5 Other settings of parameters: The parameters used in
initialisation are listed in Table 3. The running of each episode
will be interrupted if one of the following situations occur,
u(t)
∣∣ ∣∣ . 0.5p or x(t)

∣∣ ∣∣ . 10.0, which is not ideal in real physical
world as to improve the efficiency of the simulation.
4 Simulation results

In this section, the simulation results of implementing adaptive PID
controller based on Q-learning algorithm (named as QPID controller
239n for Artificial Intelligence and
ribution License



Table 3 Parameters set in initialisation

Variables Values

initial position of u(t ) −0.7854, + 0.7854
initial position of u̇(t ) 0
initial position of x(t) −0.1, + 0.1
initial position of ẋ(t) 0
number of actions for all tables 50
variation range of KPP [–3000, 0]
variation range of KIP [–300, 0]
variation range of KDP [–3000, 0]
variation range of KPC [–2000, 0]
variation range of KIC [–5, 0]
variation range of KDC [0, 2000]
maximum episodes 6000
maximum timesteps 8000
interval sampling time 10 ms
g 0.99

Table 5 Parameters of Q controller

Variables Values

initial position of u(t ) 0.1745
initial position of u̇(t ) 0
initial position of x(t) 0
initial position of ẋ(t) 0
maximum episodes 30,000
maximum time step 2000
interval sampling time 10 ms
discount factor g 0.99
learning rate a 0.01
exploration rate e min (1500/episode)

Table 4 Parameters of cart–pole system

Variables Values

M 1.3282 kg
m 0.22 kg
l 0.304 m
F0 22.915 N/m/s
F1 0.007056 N/rad/s
g 9.8 m/s2

Table 6 Parameters of PID controllers

Gains PID controller 1 PID controller 2

P −270 −80
I −10 −0.5
D −1500 2000

Fig. 7 Learning curve of QPID controller
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in the following content for the simplicity of expression) are
demonstrated. The QPID controller was trained from four fixed
initial positions u(t) = +0.7854 rad, u̇(t) = 0, x(t) = +0.05m,

(
ẋ(t) = 0) with 0–0.04 rad subtracted from each fixed point
randomly on angle as disturbances. The learned Q-tables
were implemented to generate the optimal gains of the PID
controllers. The QPID controller was applied to balance the
cart–pole system from a series of initial positions, which are the
combinations of

u(t) [ +0.7854, +0.5236, +0.2618, 0 rad{ },
u̇(t) = 0, x(t) [ {+0.05, +0.02, 0m}, ẋ(t) = 0

and succeeded in balancing the system from all these initial
positions. Additionally, as for comparison, two other types of
controllers are applied to the system to compare the controlling
performances. The first type of controller employs the tabular
Q-learning algorithm (named as Q controller in the following
content for the simplicity of expression) and the second one is
the conventional PID controller. Position u(t) = 0.1745 rad,
u̇(t) = 0, x(t) = 0, ẋ(t) = 0 was chosen as the initial position to
compare the performance of QPID controller with Q controller,
considering that the Q controller has the limitation and is not able
to balance the system when the angle or the position exceeds the
set value. Position x1 = 45°, x2 = 0, x3 = 0.05m, x4 = 0 was
chosen as the initial position to test the performance of QPID
controller against the PID controller. The structure of the
following content is as follows. Section 4.1 provides the setting of
the parameters in the simulation, which includes parameters set for
the cart–pole system and the controllers used in comparison.
Section 4.2 compares the performance of QPID controller against
Q controller and the performance of the QPID controller against
PID controller, separately.

4.1 Setting of parameters

4.1.1 Cart–pole system: The parameters set for the cart–pole
system are illustrated in Table 4.
4.1.2 Q controller: The Q controller takes the four variables
of the cart–pole system (u(t), u̇(t), x(t), ẋ(t)) as input and generates
the force which directly applies to the cart to balance the
system. u(t) is divided into six buckets (with −21× p/180,
−6× p/180, 0, 6× p/180, 21× p/180 as dividing points); u̇(t)
is divided into three buckets (with +6× p/180 as dividing
points); x(t) is divided into three buckets (with +2.4 as dividing
points); ẋ(t) is divided into three buckets (with +0.5 as
dividing points). The output force is mapped into ten actions
which evenly distribute among [− 100N , + 100N ]. The system
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Fig. 9 Response curves of Q controller and QPID controller

Fig. 8 Learning curve of Q Controller

Table 7 Characteristics of response curves (Q controller and QPID
controller)

Characteristics Q controller QPID controller

overshoot (angle) 0.0479 (rad) 0.3763 (rad)
undershoot (angle) 0.1316 (rad) 0.1574 (rad)
rise time (angle) 6 (time steps) 4 (time step)
settling time (angle) 4 (time steps) 69 (time step)
steady error(angle) 0.026 (rad) 0 (rad)
overshoot (position) 0.0930 (m) 0.2121 (m)
undershoot (position) 0.2443 (m) 0.4264 (m)
rise time (position) 76 (time steps) 86 (time step)
settling time (position) — 772 (time step)
steady error (position) 0.1351 (m) 0 (m)
receives reward as 1 when |u(t)| , 6× p/180 or |x(t)| , 0.1,
otherwise, reward is 0.

The relevant parameters set for Q controller is given in Table 5.

4.1.3 PID controller: The PID scheme applied in this research
consists of two linear PID controllers, which control the angle
position of the pole and the position of the cart separately. The
gains of two linear PID controllers were obtained by manual
tuning according to Ziegler–Nichols method [9] and are shown in
Table 6.

4.2 Controlling performance

4.2.1 Learning curves: The learning performance of Q-learning
algorithm is indicated by the learning curve, which plots the
accumulated reward obtained with the incrementation of the
episode. The aim of comparing learning curves is to indicate
the learning efficiency of Q-learning algorithm applied in different
controllers. The convergence of the learning curve shows the
success in Q-learning algorithm and the time steps used to reach
convergence indicates the learning efficiency. The learning curve
of QPID controller in the training process is presented in Fig. 7
and the learning curve of the Q controller is shown in Fig. 8, both
of which show the convergence. However, it can be observed that
the learning curve of the QPID controller does not show the
convergence trend as the conventional learning curves do. This is
due to the actions chose by the Q-tables are the gains of PID
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 4, pp. 235–244
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controller instead of the forces. There are several combinations of
gains which would be suitable for the PID controller to balance
the system and reduce the difficulty of the Q-learning algorithm in
finding proper set of gains for the PID controllers, which results in
the high frequency of appearance of high accumulated reward in
the learning curve. Nevertheless, after about 5000 time steps, the
exploration rate of the Q-learning algorithm used in QPID
controller was set to zero as to improve the efficiency of converge;
an obvious convergence can be noticed, which indicates the
success of Q-learning algorithm in finding optimal solutions to
adapting the gains.
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Fig. 11 Adaption of the gains of QPID controllers (initial positionu( t) = 0.1745 rad, u̇( t) = 0, x( t) = 0, ẋ( t) = 0)

Fig. 10 Forces generated by Q controller and QPID controller

Fig. 12 Response curves of PID controller and QPID controller
4.2.2 Performances of controllers: The learned Q-tables were
implemented in the designed controllers to balance the system. The
following shows the comparison of different controlling
242 This is an open access article publis
Chongqing University
performances by plotting the response curves of cart–pole system
applied with different controllers. In each comparison, four
response curves are given by plotting the position and velocity of
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both the pole and the cart against time in one figure, which indicates
the characteristics of the controllers.

(i) Comparison of Q controller with QPID controller: Fig. 9 com-
pares the response curve of the system controlled by Q controller
and QPID controller with the initial position u(t) =
0.1745 rad, u̇(t) = 0, x(t) = 0, ẋ(t) = 0. The characteristics of the
response curves are shown in Table 7. The overshooting or under-
shooting of the curves related to the QPID controller are greater
than the ones related to the Q controller both in pole and in cart posi-
tions. Besides, the settling time of the QPID controller (69 time steps
Table 8 Characteristics of response curves (PID controller and QPID
controller)

Characteristics PID QPID

overshoot (angle) 0.3527 (rad) 0.5866 (rad)
undershoot (angle) 0.1316 (rad) 0.4306 (rad)
rise time (angle) 44 (time steps) 4 (time step)
settling time (angle) 320 (time steps) 64 (time step)
steady error (angle) 0 (rad) 0 (rad)
overshoot (position) 2.075 (m) 0.9279 (m)
undershoot (position) 0.2443 (m) 0.1807 (m)
rise time (position) 76 (time steps) 13 (time step)
settling time (position) 426 (time steps) 772 (time step)
Steady error (position) 0 (m) 0 (m)

Fig. 13 Forces generated by PID controller and QPID controller

Fig. 14 Adaption of the gains of QPID controllers (initial positionu( t) = 0.7854
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for pole and 86 time steps for cart) is longer than the Q controller
(4 time steps for pole and 76 time steps for cart). One factor that
leads to these performances is the initial position in this test was
not trained in the learning process, the combination of the gains
might not be the optimal solution to the controllers from this starting
position. However, QPID shows an obvious advantage in steady
state since Q PID controller reaches the desired position both for
the pole and for the cart, while Q controller remains an error of
0.026 rad for pole and 0.1351 m for cart with obvious oscillation.
In conclusion, the Q PID controller has bigger overshooting and
undershooting and longer settling time compared with Q controller,
but it has better performance in reaching steady state and reducing
steady-state error.
The total forces generated by two controllers are shown in Fig. 10.
The adaption of the gains of QPID controller during controlling
process is presented in Fig. 11, where the red crosses denote the
chosen values of the gains of PID controllers in each time step t
and the blue lines indicate the trend of variation.
(ii) Comparison of PID controller with QPID controller: The initial
position set in this comparison is u(t) = 0.7854 rad, u̇(t) = 0,
x(t) = 0.1m, ẋ(t) = 0. Fig. 12 shows the response curves of the
cart–pole system when QPID controller and PID controller were
applied to control. The characteristics of the response curves are
illustrated in Table 8. The QPID controller results in bigger
overshoot in balancing the pole while smaller overshoot and
undershoot in balancing the position of the cart. The settling time
in both QPID controller and PID controller is almost the same.
rad, u̇( t) = 0, x( t) = 0.1m, ẋ( t) = 0)
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The output forces generated by QPID controller and PID
controller are shown in Fig. 13.

Fig. 14 demonstrates the adaption of the gains of QPID controller
during controlling process.
5 Conclusion

In this research, an adaptive PID controller based on Q-learning
algorithm was proposed. The performance of the controller was
tested on the cart–pole problem with comparison of conventional
PID controller and Q controller. According to the simulation
results, QPID controller designed in this research was trained in
four fixed positions and was able to balance the system starting
from various different initial positions, which shows the advantage
in generality of adapting the changes made to systems. Two fixed
initial positions were chosen to compare controlling performance
with the conventional PID controller and the Q controller, where
the QPID controller shows relatively equivalent performance or
even better in stabilisation of achieving smaller steady-state error.
However, there are tiny oscillations observed and obvious
overshooting and undershooting in the controlling performance
using QPID controller, which could lead to unstable behaviour of
the system and need to be improved in the future research.
Besides, the learning efficiency is considered to be improved.
Additionally, future research plans to apply this QPID controller to
various different applications, such as the mass–spring–damper
system, beam and ball system, multiple-link arms, etc., to improve
the generality.
6 Acknowledgments

This work was partly supported by King’s College London, China
Scholarship Council and the Ministry of Science and Technology,
Taiwan (grant MOST-106-2221-E-027-009).
7 References

[1] Miranda, M.F., Vamvoudakis, K.G.: ‘Online optimal auto-tuning of PID
controllers for tracking in a special class of linear systems’. American Control
Conf. (ACC), Boston, MA, 2016, pp. 5443–5448

[2] Carlucho, I., De Paula, M., Villar, S.A., et al.: ‘Incremental Q-learning strategy
for adaptive PID control of mobile robots’, Expert Syst. Appl., 2017, 80,
pp. 183–199

[3] Shadi, M., Sargolzaei, M.: ‘Application of reinforcement learning to improve
control performance of plant’. IEEE Int. Conf. Computational Intelligence for
Measurement Systems and Applications, Istanbul, 2008

[4] Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: ‘Continuous control with deep
reinforcement learning’, arXiv preprint arXiv:1509.02971, 2015
244 This is an open access article publis
Chongqing University
[5] Bagnell, J.A., Schneider, J.G.: ‘Autonomous helicopter control using
reinforcement learning policy search methods’. Proc. IEEE Int. Conf. on
Robotics and Automation, Seoul, South Korea, 2001, vol. 2, pp. 1615–1620

[6] Fernandez-Gauna, B., Ansoategui, I., Etxeberria-Agiriano, I., et al.:
‘Reinforcement learning of ball screw feed drive controllers’, Eng. Appl. Artif.
Intell., 2014, 30, pp. 107–117

[7] Ramanathan, P., Mangla, K.K., Satpathy, S.: ‘Smart controller for conical tank
system using reinforcement learning algorithm’, Measurement, 2018, 116,
pp. 422–428

[8] Boubertakh, H., Tadjine, M., Glorennec, P.-Y., et al.: ‘Tuning fuzzy pd and pi
controllers using reinforcement learning’, ISA Trans., 2010, 49, (4), pp. 543–551

[9] Åström, K.J., Hägglund, T.: ‘PID controllers: theory, design, and tuning’, vol. 2
(Instrument Society of America, Research Triangle Park, NC, 1995)

[10] Wu, C.J., Lee, T.L., Fu, Y.Y., et al.: ‘Auto-tuning fuzzy PID control of a
pendubot system’. 2007 IEEE Int. Conf. on Mechatronics, Changchun, Jilin,
May 2007, pp. 1–6

[11] Duan, H.B., Wang, D.B., Yu, X.F.: ‘Novel approach to nonlinear pid parameter
optimization using ant colony optimization algorithm’, J. Bionic Eng., 2006, 3,
(2), pp. 73–78

[12] Varol, H.A., Bingul, Z.: ‘A new PID tuning technique using ant algorithm’. Proc.
2004 American Control Conf., Boston, MA, USA, June 2004, vol. 3,
pp. 2154–2159

[13] Howell, M.N., Frost, G.P., Gordon, T.J., et al.: ‘Continuous action reinforcement
learning applied to vehicle suspension control’,Mechatronics. (Oxf), 1997, 7, (3),
pp. 263–276

[14] Mohammadi, S.M.A., Gharaveisi, A.A., Mashinchi, M., et al.: ‘New evolutionary
methods for optimal design of PID controllers for AVR system’. 2009 IEEE
Bucharest PowerTech, Bucharest, June 2009, pp. 1–8

[15] Pour, F.M., Gharaveisi, A.A.: ‘Opposition-based discrete action reinforcement
learning automata algorithm case study: optimal design of a PID controller’,
Turk. J. Electr. Eng. Comput. Sci., 2013, 21, (6), pp. 1603–1614

[16] Howell, M.N., Best, M.C.: ‘On-line PID tuning for engine idle-speed control
using continuous action reinforcement learning automata’, Control Eng. Pract.,
2000, 8, (2), pp. 147–154

[17] Mohammadi, S., Gharaveisi, A., Mashinchi, M., et al.: ‘Development of a novel
reinforcement learning automata method for optimum design of proportional
integral derivative controller for nonlinear systems’. Proc. World Congress on
Engineering, London, UK, 2008

[18] Sedighizadeh, M., Rezazadeh, A.: ‘Adaptive PID controller based on
reinforcement learning for wind turbine control’. International Scholarly and
Scientific Research & Innovation, 2008, 2, (1), pp. 124–129

[19] Watkins, C.J., Dayan, P.: ‘Q-learning’, Mach. Learn., 1992, 8, (3–4),
pp. 279–292

[20] Esmaeili, M., Shayeghi, H., Mohammad Nejad, H., et al.: ‘Reinforcement
learning based PID controller design for LFC in a microgrid’,
COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 2017, 36, (4),
pp. 1287–1297

[21] el Hakim, A., Hindersah, H., Rijanto, E.: ‘Application of reinforcement learning
on self-tuning PID controller for soccer robot multi-agent system’. 2013 Joint Int.
Conf. on Rural Information Communication Technology and Electric-Vehicle
Technology (rICT ICeV-T), Bandung, November 2013, pp. 1–6

[22] Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an introduction’, vol. 1 (MIT
Press, Cambridge, 1998)

[23] Watkins, C.J.C.H.: ‘Learning from delayed rewards’. PhD thesis, King’s College,
Cambridge, 1989

[24] Lam, H.K., Leung, H.F.H.: ‘Fuzzy controller with stability and performance rules
for nonlinear systems’, Fuzzy Sets Syst., 2007, 158, (2), pp. 147–163

[25] Jacobs, R.A.: ‘Increased rates of convergence through learning rate adaptation’,
Neural Netw., 1988, 1, (4), pp. 295–307
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 4, pp. 235–244
hed by the IET, Chinese Association for Artificial Intelligence and
of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)


	1 Introduction
	2 Preliminary
	3 Methodology
	4 Simulation results
	5 Conclusion
	6 Acknowledgments
	7 References

