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Abstract

This paper studies the empirically relevant problem of estimation and inference in diffusion
index forecasting models with structural instability. Factor model and factor augmented
regression both experience a structural change with different unknown break dates. In
the factor model, we estimate factors and loadings by principal components. We consider
least squares estimation of the factor augmented regression and propose a break test. The
empirical application uncovers instabilities in the linkages between bond risk premia and
macroeconomic factors.

I. Introduction

The diffusion index forecasting model of Stock and Watson (1998, 2002) and Bai and Ng
(2006) is a regression model with observable and latent covariates, where the latter are the
common factors in the variables of a large-scale data set. The model is usually estimated
under the assumption of structural stability in the loadings of the factor model and in the
slope coefficients of the factor augmented regression: Connor and Korajczyk (1986, 1988,
1993), Bai and Ng (2002), Stock and Watson (2002) and Bai (2003) deal with linear static
factor models; Forni et al. (2000, 2004), Forni and Lippi (2001) and Forni et al. (2015) study
the linear generalized dynamic factor model; Stock and Watson (2002) and Bai and Ng
(2006) focus on stable factor augmented regressions. Violation of the stability assumption
may affect empirical results. For example, out-of-sample forecasts may not be accurate due

JEL Classification numbers: C12, C13, C38, C52, G12.
*This paper was started when the author was Franco Modigliani Research Fellow in Economics and Finance at

the Einaudi Institute for Economics and Finance (EIEF). The views are the author’s and do not necessarily reflect
those of the Bank of England or its policy committees. The author is indebted to Marco Lippi for introducing him
to factor models and for several enlightening conversations. This paper benefits from comments from participants
at the International Association for Applied Econometrics (IAAE) 2016 Annual Conference, at the Symposium on
Statistical Penalization Methods and Dimension Reduction Methods for Economic and Financial Analysis at the
University of York, at the Vienna Workshop on High-Dimensional Time Series in Macroeconomics and Finance
2017, and at the seminar series at The University of Nottingham Granger Centre for Time Series Econometrics;
and from conversations with Laura Coroneo, Pasquale Della Corte, Domenico Giannone, Christian Gourieroux,
Refet Gürkaynak, George Kapetanios, Andrew Meldrum and Hashem Pesaran. Errors and omissions are the author’s
responsibility.The financial support from theAssociazione Borsisti Marco Fanno and from UniCredit and Universities
Foundation is gratefully acknowledged.

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fobes.12311&domain=pdf&date_stamp=2019-06-19


Unstable diffusion indexes 1377

to instabilities in the factor augmented regression (Stock and Watson, 2002, 2009) or in
the factor model (Giannone, 2007; Banerjee, Marcellino and Masten, 2008). In the latter,
structural breaks enlarge the factor space (Breitung and Eickmeier, 2011; Chen, Dolado
and Gonzalo, 2014) without conveying more information: including additional factors
in the factor augmented regression increases estimation noise and deteriorates forecast
performance (Han and Inoue, 2015).

A number of contributions analyses large dimensional factor models with structural
instabilities. Bates et al. (2013) study the robustness of the principal components estimator
as applied to factor models under neglected instability. Breitung and Eickmeier (2011),
Chen et al. (2014), Han and Inoue (2015), Yamamoto and Tanaka (2015) and Barigozzi
and Trapani (2017) develop statistical tools to detect breaks. Chen (2015), Cheng, Liao
and Schorfheide (2016), Bai, Han and Shi (2017) and Baltagi, Kao and Wang (2017)
focus on estimation under the single break assumption. Baltagi, Kao and Wang (2016),
Ma and Su (2016) and Barigozzi, Cho and Fryzlewicz (2018) allow for multiple breaks.
Massacci (2017) studies large dimensional threshold factor models with regime shifts in
the loadings driven by a covariate. These contributions do not consider the whole diffusion
index forecasting model. Corradi and Swanson (2014) propose a test for the joint null
hypothesis of stable factor model and factor-augmented regression. Wang, Cui and Li
(2015) estimate unstable factor augmented regressions with factors extracted from a linear
model. To the very best of our knowledge, estimation and inference in the set up with
instabilities in the factor model and in the factor augmented regression has not been studied:
we aim at filling this gap.

We start from the single break factor model. Let N and T denote the cross-sectional
and time series dimensions respectively. We estimate the model by least squares by mini-
mizing the sum of squared residuals (Baltagi et al., 2017; Massacci, 2017): the resulting
principal components estimator for factors and loadings has the same convergence rate
CNT = min{√N ,

√
T } as in the linear case (Bai and Ng, 2002). We then turn to the sin-

gle break factor augmented regression. We estimate the parameters by least squares by
replacing the latent factors with their estimates (Bai, 1997; Bai and Ng, 2006): despite the
structural instability, the least squares estimator for the slope coefficients is

√
T consistent

and asymptotically normal provided that
√

T/N → 0 as N , T → ∞. We then propose a
Lagrange multiplier test for the null hypothesis of stability: we show that the critical values
provided in Andrews (1993) remain valid also in the presence of latent factors estimated
from an unstable large dimensional model.

Finally, we apply our methodology to bond risk premia (Fama and Bliss, 1987; Cochrane
and Piazzesi, 2005; Ludvigson and Ng, 2009). Common factors extracted from a large set
of macroeconomic series help predicting bond excess returns (Ludvigson and Ng, 2009);
however, the loadings are not stable over time (Breitung and Eickmeier, 2011; Chen et al.,
2014; Cheng et al., 2016). Pricing equations for bond risk premia experience structural
breaks (Smith and Taylor, 2009; Bikbov and Chernov, 2010). We thus use our model
to uncover instabilities in the linkages between bond market risk premia and macroeco-
nomic fundamentals. Depending on the maturity of the bond, we show that: predictive
regressions for bond risk premia are stable for most of the Great Moderation (Joslin,
Priebsch and Singleton, 2014); a break occurred in the early 1980s (Smith and Taylor,
2009).
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The paper is organized as follows. Section II describes the unstable diffusion index
forecasting model. Section III gives relevant information on estimation and model selec-
tion in large dimensional factor models subject to structural break. Section IV looks at
estimation and inference in the unstable factor augmented regression. Section V discusses
the Monte Carlo analysis. Section VI provides the application to bond risk premia. Section
VII outlines possible extensions and modifications. Section VIII concludes. In the Online
Appendix, Section A provides details for the Monte Carlo analysis and Section B collects
technical proofs.

Concerning notation, I(·) denotes the indicator function; given a square matrix A,
tr(A) denotes the trace of A; the norm of a generic matrix A is ‖A‖= [tr (A′A)]1/ 2; for a
given scalar A, |A|, IA and 0A are the absolute value of A, the A×A identity matrix and the
A × A zero matrix, respectively;

p→ denotes convergence in probability;
p→ denotes con-

vergence in distribution; ⇒ denotes weak convergence. Without round brackets inside, [·]
is the integer part of the argument.

II. The unstable diffusion index forecasting model

We consider

xt = I(t/T ��x)�1ft + I(t/T >�x)�2ft + et , t =1,…, T , (1)

yt+h = I(t/T ��y)(�′
1ft +�′

1wt)+ I(t/T >�y)(�′
2ft +�′

2wt)+ "t+h, t =1,…, T , h�0, (2)

where T is the time series dimension of the sample. Starting from equation (1), xt =
(x1t ,…, xNt)′ ∈RN is the N ×1 vector of observable dependent variables; ft = (f1t ,…, fRt)′ ∈
RR is the R × 1 vector of latent factors; et = (e1t ,…, eNt)′ ∈ RN is the N × 1 vector of
idiosyncratic errors; �x is the break fraction; �j = (�j1,…,�jN )′ is the N × R matrix of
factor loadings, with i − th row defined as �′

ji = (�ji1,…,�jiR), for j = 1, 2 and i = 1,…, N .
Moving to equation (2), yt+h ∈R is the scalar-dependent variable; ft is the same vector of
latent factors as in equation (2); wt ∈RK is a K ×1 vector of observable variables; "t+h ∈R

is the error term; �y is the break fraction; �j and �j are R × 1 and K × 1 vectors of slope
coefficients, respectively, for j =1, 2.

The model in equation (1) is a large dimensional factor model with a break in the
loadings. Given Assumption C3 in section ‘Consistency’, we follow Chamberlain and
Rothschild (1983) and allow for some degree of correlation in the idiosyncratic components
on each side of the breakpoint: (i) then is an approximate breakpoint factor model; it is
more general than an exact breakpoint factor model, which would extend the arbitrage
pricing theory of Ross (1976) and would not allow for any correlation in the idiosyncratic
components on any side of the breakpoint. Equation (2) is a factor augmented regression
with a break in the slope coefficients of ft or wt (or both). Together with equation (1),
equation (2) forms an unstable diffusion index forecasting model: it extends the linear set
up of Stock and Watson (1998, 2002) and Bai and Ng (2006) by introducing structural
instability in the factor model and in the factor augmented regression. Notice that the
break fractions �x and �y in equations (1) and (2), respectively, are not constrained to be
equal.

© 2019 Bank of England. Oxford Bulletin of Economics and Statistics © 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd.
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III. The breakpoint factor model

The paper studies diffusion index forecasting models with instability in the factor model
and in the factor augmented regression: estimation and model selection in equation (1) is
functional to section IV. We adapt the methodology of Massacci (2017) for threshold factor
models in sections ‘Assumptions’ and ‘Estimation and model selection’.

Assumptions

Let I1t(�x) = I(t/T ��x) and I2t(�x) = I(t/T > �x). Denote R0, �0
j = (�0

j1,…,�0
jN )′, �0

x and f 0
t

the true values of R, �j, �x and ft , respectively, for j = 1, 2. Define f 0
jt (�x) = Ijt(�x)f 0

t , for
j = 1, 2 and t = 1,…, T , and let �0

xi =�0
2i −�0

1i, for i = 1,…, N . We collect the assumptions
into three sets: Section ‘Identification’ states the assumption needed to identify (1) from a
linear factor model; Section ‘Consistency’ lists the assumptions that are sufficient to ensure
consistency of the estimator for factors, loadings and break fraction; Section ‘Convergence
rates’ states the additional assumption required to obtain the convergence rates of the
estimators.

Identification
Assumption I – Breakpoint Factor Model. For 0.5<�0 �1, �0

xi 	=0 for i=1,…,
[
N �0]

,
and

∑N
i=[N �0 ]+1 ‖�0

xi‖=O(1).

According to Assumption I, at least a fraction O
(
N �0)

of the N series experiences a
break, for 0.5 < �0 � 1. Bates et al. (2013) show that if at most O

(
N 0.5

)
series undergo a

break, the principal components estimator applied to the misspecified linear model achieves

the Bai and Ng (2002) convergence rate CNT =min
{√

N ,
√

T
}

: Assumption I ensures that

enough series experience a break so that equation (1) is identified from a linear factor model
when factors and loadings are estimated by principal components. Assumption I relates
to Assumption 1 in Chen et al. (2014): at least O

(
N �0)

breaks are big, as defined in
Assumption 1(a); the remaining breaks are small, according to Assumption 1(b) with N
and T of the same order.

Consistency
Assumption C1 – Factors. E‖f 0

t ‖4 <∞; for j =1, 2, T −1
∑T

t=1 f 0
jt (�x)f 0

jt (�
0
x)′ p→�0

jf (�x,�0
x)

as T →∞ for all �x and some positive definite matrix �0
jf

(
�x,�0

x

)
.

Assumption C2 – Factor Loadings. For j = 1, 2 and i = 1,…, N , ‖�0
ji‖� �̄ < ∞, and

‖�0′
j �0

j /N −D0
�j

‖→0 as N →∞ for some R0 ×R0 positive definite matrix D0
�j

.
Assumption C3 – Time and Cross-Sectional Dependence and Heteroskedasticity.
There exists a positive constant Mx < ∞ such that for j = 1, 2, for all �x and for all
(N , T ),

(a) E(eit)=0 and E |eit|8 �Mx;
(b) E[Ijt

(
�x

)
Ijv(�x)eiteiv]=�jitv

(
�x

)
with |�jitv(�x)|� |�jtv| for some �jtv and for all i, and

T −1
∑T

t=1

∑T
v=1 |�jtv|�Mx;
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(c) E
[
T −1

∑T
t=1 Ijt(�x)eitelt

]
=�jil(�x), |�jll(�x)|�Mx for all l, and N −1

∑N
i=1

∑N
l=1 |�jil

(�x)|�Mx;

(d) E
∣∣∣T −1/ 2

∑T
t=1 Ijt(�x)eitelt −E[Ijt(�x)eitelt]

∣∣∣4

�Mx for every (i, l).

Assumption C4 – Weak Dependence between f 0
t and eit . There exists some positive

constant Mx <∞ such that for all �x and for all
(
N , T

)
,

E

{
N −1

N∑
i=1

∥∥∥∥T −1/ 2

[
T∑

t=1

Ijt

(
�x

)
f 0

t eit

]∥∥∥∥
2
}

�Mx, j =1, 2.

Assumptions C1–C4 are the natural extensions of Assumptions A–D imposed on linear
factor models in Bai and Ng (2002), and accommodate the presence of the breakpoint.
Assumption C1 restricts the sequence

{
f 0

t

}T

t=1
so that appropriate second moments exist; it

also imposes full rank conditions that exclude multicollinearity in the factors. According
to Assumption C2, factor loadings are non-stochastic and factors have a non-negligible
effect on the variance of xt on each side of the breakpoint. Under Assumption C3, limited
degrees of time-series and cross-sectional dependence in the idiosyncratic components
as well as heteroskedasticity are allowed: this makes (1) an approximate breakpoint fac-
tor model; in particular, Assumption C3(b) is aligned to Assumption C2 in Bai and Ng
(2002). Assumption C4 provides an upper bound to the degree of dependence between the
factors and the idiosyncratic components: if f 0

t and eit are independent, as in Assumption
5(i) in Barigozzi et al. (2018), then Assumption C4 is implied by Assumptions C1 and
C3(a). Assumptions C1–C4 (including E |eit|8 � Mx in C3(a)) ensure that �0

x can be con-
sistently estimated, so that consistency of the estimators for factors and loadings can also
be achieved.

Convergence rates
Assumption CR – Mixing Condition and Moment Bounds: For i = 1,…, N and
t =1 ,…, T ,

(a)
{

f 0
t , et

}T

t=1
is �−mixing, with �−mixing coefficients satisfying

∑∞
m=1 �1/ 2

m <∞;
(b) E

(‖f 0
t eit‖4

)
�Cx for some Cx <∞.

Assumption CR is analogous to Assumption 1 in Hansen (2000). Assumption CR(a)
allows for non-stationarity and suitably restricts the memory of the process

{
f 0

t , et

}T

t=1
, and

thus of {xt}T
t=1, so that Lemma 3.4 in Peligrad (1982) can be used: structural breaks are

allowed, whereas unit roots are ruled out. Assumption CR(b) imposes an unconditional
moment bound.

Estimation and model selection

We study estimation and model selection in sections ‘Principal components estimation’
and ‘Selecting the Number of Factors’ respectively.

© 2019 Bank of England. Oxford Bulletin of Economics and Statistics © 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd.
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Principal components estimation
We estimate factors and loadings by principal components, and �0

x by concentrated least
squares: the latter requires minimizing an objective function that depends only on �x.
Define the N × 2R matrix of loadings �R = (

�R
1 ,�R

2

)
and the R × T matrix of factors

FR = (
f R

1 ,…, f R
T

)
, where the superscript R denotes dependence on the number of factors.

Let the N × 2R0 matrix �0 = (
�0

1,�0
2

)
and the R0 × T matrix F0 = (

f 0
1 ,…, f 0

T

)
be the true

value of �R and FR respectively. For given R in equation (1), the objective function in terms
of �R, FR and �x is

S
(
�R, FR,�x

)= (
NT

)−1
T∑

t=1

{[
xt − I1t

(
�x

)
�R

1 f R
t − I2t

(
�x

)
�R

2 f R
t

]′

× [
xt − I1t

(
�x

)
�R

1 f R
t − I2t

(
�x

)
�R

2 f R
t

]}
. (3)

For given �x, define

�̂jx

(
�x

)=
[(

NT
)−1

T∑
t=1

Ijt

(
�x

)
xtx′

t

]
, j =1, 2. (4)

Given the constraints N −1
(
�R′

1 �R
1

)= N −1
(
�R′

2 �R
2

)= IR, from equation (3) the estimator
�̂R

x for �0
x is

�̂R
x = arg min

�x

(NT )−1
T∑

t=1

x′
t

{
IN −N −1

[
I1t(�x)�̂

R

1 (�x)�̂
R

1 (�x)′

+I2t(�x)�̂
R

2 (�x)�̂
R

2

(
�x

)′

]}
xt , (5)

where �̂
R

j

(
�x

)=
[
�̂R

j1

(
�x

)
,…, �̂R

jN

(
�x

)]′
is the estimator for �0

j given �x, for j =1, 2: �̂R
j (�x)

is
√

N times the N × R matrix of eigenvectors of �̂jx(�x) corresponding to its R largest

eigenvalues. The estimator F̂
R (

�x

)=
[
f̂

R

1 (�x),…, f̂
R

T (�x)
]

for F0 for given �x is

f̂
R

t (�x)=N −1
[
I1t(�x)�̂

R

1 (�x)+ I2t

(
�x

)
�̂

R

2 (�x)
]′

xt , t =1,…, T .

Given �̂R
x , the estimators for �0 and F0 are �̂

R (
�̂R

x

) =
[
�̂

R

1

(
�̂R

x

)
, �̂

R

2

(
�̂R

x

)]
and F̂

R (
�̂R

x

)
respectively: if R0 is known, the estimators for �0, F0 and �0

x are �̂ = �̂
R0 (

�̂R0

x

)
, F̂ =

F̂
R0 (

�̂R0

x

)
and �̂x = �̂R0

x , respectively. If R0 is unknown we proceed as in section ‘Selecting

the Number of Factors’ below.

Selecting the number of factors
There exist several procedures to determine the unknown number of factors R0. Bai and Ng
(2002),Alessi, Barigozzi and Capasso (2010), Kapetanios (2010), Onatski (2010),Ahn and
Horenstein (2013) and Caner and Han (2014) consider the static factor model. Amengual
and Watson (2007) look at the restricted dynamic case. Hallin and Liška (2007) and Onatski
(2009) focus upon the generalized dynamic factor model. Breitung and Eickmeier (2011)
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show that neglecting structural breaks in the loadings leads to overestimation of the number
of factors. We robustify Bai and Ng (2002) selection criteria to account for the unknown
break fraction.

Let R̄ be any a priori number of factors R = R̄ such that R̄ � R0. From equation (5),
the estimator for �0

x is �̂R̄
x . Given equation (3), the breakpoint robust Bai and Ng (2002)

information criteria are

ICp1

(
R, R

)= ln S
[
�̂

R
(
�̂R̄

x

)
, F̂

R
(
�̂R̄

x

)
, �̂R̄

x

]
+ (

R+R
)(

N +T

NT

)
ln

(
NT

N +T

)
,

ICp2(R, R)= ln S
[
�̂

R
(
�̂R̄

x

)
, F̂

R
(
�̂R̄

x

)
, �̂R̄

x

]
+ (R+R)

(
N +T

NT

)
ln

(
C2

NT

)
,

ICp3(R, R)= ln S
[
�̂

R
(
�̂R̄

x

)
, F̂

R
(
�̂R̄

x

)
, �̂R̄

x

]
+ (

R+R
)[

ln
(
C2

NT

)
C2

NT

]
. (6)

The following theorem states the validity of the proposed information criteria.

Theorem 1 Under Assumptions I, C1–C4 and CR, the criteria ICp1(R, R), ICp2(R, R)
and ICp3(R, R) defined in equation (6) consistently estimate the number of factors R0.

The estimator R̂ for R0 is obtained by minimizing the information criteria in equation
(6). Theorem 1 implies that R̂ involves a two-step estimation strategy: in the first step, for
any a priori specified number of factors R = R̄ such that R̄ � R0, the estimator �̂R̄

x may be
obtained from equation (5); in the second step, the criteria in equation (6) may be computed

by plugging �̂
R
(
�̂R̄

x

)
, F̂

R
(
�̂R̄

x

)
and �̂R̄

x in equation (3). In practice, given a bounded integer

Rmax �R0, one may set R̄=Rmax in equation (5).

IV. The unstable factor augmented regression

We study estimation and inference in equation (2) under the assumption that the true
number of factors R0 is known: if not, the selection criteria in equation (6) may be used
to estimate R0. Define �l =

(
�′

l ,�
′
l

)′
, and let �0

l = (
�0′

l ,�0′
l

)′
and �0

y be the true values of �l

and �y, respectively, for l =1, 2; given �= (
�′

1,�′
2

)′
, let �0 = (

�0′
1 ,�0′

2

)′
be the true value of

�. In section ‘Testing for structural change’, we consider least squares estimation of the
[(2R0 +2K)+1]×1 vector of coefficients

(
�0′,�0

y

)′
: this goes beyond Wang et al. (2015),

who estimate unstable factor augmented regressions when factors are extracted from linear
models. In section ‘Testing for structural change’, we propose a test for the null hypothesis
of structural stability H0 :

(
�0

1 =�0
2

)
in equation (2): this complements Corradi and Swanson

(2014) Hausman-type test, which does not identify the source of instability between factor
model and factor augmented regression, but it allows for the multiple break scenario under
the alternative.

Estimation and inference

Define I1t(�y)= I(t/T ��y) and I2t(�y)= I(t/T >�y); let WR0+K (·) be a (R0 +K)×1 vector
of standard Brownian motions defined on [0, 1].
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Assumption FR. Let z0
t = (f 0′

t , w′
t)

′. Then:

(a) T −1
∑T

t=1 I1t(�y)z0
t z0′

t

p→�y�
0
z for all �y, where �0

z = E(z0
t z0′

t ) is a positive definite
matrix;
(b) For l =1, 2,T −1

∑T
t=1 Ilt(�y)z0

t "t+h
p→0 for all �y and for any h�0;

(c)
{

z0
t , "t+h

}T

t=1
is �-mixing, with �-mixing coefficients satisfying

∑∞
m=1 �1/ 2

m <∞, for
any h�0;
(d) E

(‖z0
t "t+h‖4

)
�Cy and E

(‖z0
t ‖4

)
�Cy for some Cy <∞, for t =1,…, T ;

(e) T −1/ 2
∑T

t=1I1t(�y)I1t(�0
x)z0

t "t+h ⇒ (
�0

x�
0
z"

)1/ 2 WR0+K (�y) for all �y and any h � 0,
where �0

z" is a positive definite matrix defined as �0
z" = limT→∞ T −1

∑T
t=1

∑T
v=1E("t+h

"v+hz0
t z0′

v ).

Assumption FR extends Assumption Y1 in Stock and Watson (2002), and Assumption
E in Bai and Ng (2006). Assumption FR(a) is a full rank condition. Assumption FR(b)
is required to obtain consistent estimators for �0

1 and �0
2. Assumptions FR(c) and FR(d)

are equivalent to Assumptions CR(a) and CR(b), respectively, as discussed in section
‘Convergence rates’. Assumption FR(e) is needed to derive the asymptotic distribution of
the estimators for �0

1 and �0
2 and of the test statistic for the null hypothesis of stability: it

allows for serial correlation and heteroskedasticity in the sequence of error terms {"t+h}T
t=1.

The feasible objective function is the sum of squared residuals (divided by T )

L
(

F̂,�,�y

)
=T −1

T∑
t=1

[
yt+h − I1t(�y)

(
�′

1f̂ t +�′
1wt

)
− I2t(�y)

(
�′

2f̂ t +�′
2wt

)]2

.

Let ẑt =
(

f̂
′
t , w′

t

)′
. For given�y, the least squares estimator for�0 is �̂(�y)=

[
�̂1(�y)′, �̂2(�y)′

]′
,

where

�̂l(�y)=
[
�̂l(�y)′, �̂l(�y)′

]′
=

[
T∑

t=1

Ilt(�y)ẑt ẑ
′
t

]−1 [
T∑

t=1

Ilt(�y)ẑtyt+h

]
, l =1, 2,

is the estimator for �0
l , and �̂l(�y) and �̂l(�y) are the estimators for �0

l and �0
l respectively:

the concentrated loss function is

L�

(
F̂,�y

)
=T −1

T∑
t=1

[
yt+h − I1t(�y)�̂1(�y)′ẑt − I2t(�y)�̂2(�y)′ẑt

]2

.

The estimator �̂y and �̂ for �0
y and �0, respectively, then are

�̂y = arg min
�y

L�

(
F̂,�y

)
, �̂= �̂(�̂y)=

[
�̂1(�̂y)′, �̂2(�̂y)′

]′
.

it follows that �̂l = �̂l(�̂y) =
[
�̂l(�̂y)′, �̂l(�̂y)′

]′
is the estimator for �0

l , and �̂l = �̂l

(
�̂y

)
and

�̂l = �̂l(�̂y) are the estimators for �0
l and �0

l , respectively, for l =1, 2.
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Consistency
Define the R0 ×T matrices of state-specific factors F0

j (�x)=[
f 0

j1(�x),…, f 0
jT (�x)

]
, for j =1, 2,

such that F0
1(�x) + F0

2(�x) = (
f 0

1 ,…, f 0
T

) = F0 and F0
1(�x)F0

2(�x)′ = 0R0 . Let Ĥjj(�x) be the
rotation matrix

Ĥjj(�x)= F0
j

(
�0

x

)
F0

j (�x)′

T

�0′
j �̂j(�x)

N
V̂j(�x)−1, j =1, 2, (7)

where V̂j(�x) is the R0 ×R0 diagonal matrix of the first R0 largest eigenvalues of �̂jx(�x) in

equation (4) in decreasing order. Let �̂jj(�0
x)=diag

[
Ĥjj

(
�0

x

)
, IK

]
be a (R0 +K)× (R0 +K)

block diagonal matrix, for j =1, 2. Define the (R0 +K)× (R0 +K) block diagonal matrices
�̂12

(
�0

x,�0
y

)
and �̂21

(
�0

x,�0
y

)
as

�̂12

(
�0

x,�0
y

)= min
{
�0

x,�0
y

}
�0

y

�̂11

(
�0

x

)+ I
(
�0

x <�0
y

) �0
y −�0

x

�0
y

�̂22

(
�0

x

)
and

�̂21

(
�0

x,�0
y

)= 1−max
{
�0

x,�0
y

}
1−�0

y

�̂22

(
�0

x

)+ I
(
�0

x >�0
y

) �0
x −�0

y

1−�0
y

�̂11

(
�0

x

)
,

respectively. The following theorem states the consistency of �̂y, �̂1 and �̂2 as estimators
for �0

y , �0
1 and �0

2 respectively.

Theorem 2 Under Assumptions I, C1–C4, FR(a) and FR(b), �̂y
p→�0

y , �̂1 −�̂12

(
�0

x,�0
y

)′

�0
1

p→0 and �̂2 − �̂21

(
�0

x,�0
y

)′
�0

2

p→0, as N , T →∞.

Theorem 2 extends theorem 2 in Stock and Watson (2002). The factor augmented
regression in equation (2) is identified up to a rotation because the latent factors satisfy

I1t

(
�0

y

)
�0′

1 f 0
t + I2t

(
�0

y

)
�0′

2 f 0
t = I1t

(
�0

x

)
I1t

(
�0

y

)
�0′

1 L11L−1
11 f 0

t + I2t

(
�0

x

)
I1t

(
�0

y

)
�0′

1 L21L−1
21 f 0

t

+ I1t

(
�0

x

)
I2t

(
�0

y

)
�0′

2 L12L−1
12 f 0

t + I2t

(
�0

x

)
I2t

(
�0

y

)
�0′

2 L22L−1
22 f 0

t ,

for some positive definite matrices L11, L21, L12 and L22.Theorem 2 relates to the difference
between �̂l and the space spanned by �0

l , for l = 1, 2. The rotation induced around �0
l is a

convex linear combination of the rotations induced by �̂11(�0
x) and �̂22(�0

x), which depend
on the matrices Ĥ11(�x) and Ĥ22(�x), respectively, as defined in equation (7); these arise
from the rotational indeterminacy stemming from the underlying breakpoint factor model
in (1). The rotation around �0

l depends on the relative position of the break fractions �0
x and

�0
y , for l =1, 2. Let us consider �̂1 (analogous arguments apply to �̂2). If �0

x <�0
y , the break in

the factor loadings occurs before the break in the factor augmented regression: the rotation
induced around �0

1 is affected by the rotations around �0
1 and �0

2, with weights equal to
�0

x/�0
y and

(
�0

y −�0
x

)
/�0

y respectively. If �0
x ��0

y , the rotation around �0
1 only depends on the

rotation around �0
1.
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Rates of convergence
The following theorem states the convergence rate of the concentrated least squares esti-
mator �̂y for the break fraction �0

y .

Theorem 3 Under Assumptions I, C1–C4 and FR(a)–FR(d),

T
(
�̂y −�0

y

)=Op(1).

The T convergence rate relates to the estimator for the break fraction �̂y: Theorem 3 im-
plies that with high probability the difference between the estimator T̂ y = [T �̂y] for the break

date and its true value T 0
y = [T�0

y] is bounded, namely
(

T̂ y −T 0
y

)
=Op(1) (Bai and Perron,

1998). Let k̂lt(�y)= Ilt(�y)"̂t+h(�y)ẑt , for l =1, 2, where "̂t+h(�y)= yt+h − I1t(�y)�̂1(�y)′ẑt −
I2t(�y)�̂2(�y)′ẑt . From Newey and West (1987), define: K̂ld(�y) = T −1

∑T
t=d+1 k̂lt(�y)k̂l,t−d

(�y)′, for d =0,…, DT , with DT =o(T 1/ 4); �̂l(�y)=K̂l0(�y)+
∑DT

d=1 w(d, DT )
[
K̂ld(�y)+ K̂ld

(�y)′], where w(d, DT )= [1−d/ (DT +1)] is the Bartlett kernel. Theorem 3 feeds into the
following theorem, which states the asymptotic distribution of the estimators for �0

1 and
�0

2.

Theorem 4 Under Assumptions I, C1–C4, CR and FR, if
√

T/N →0 then

√
T

[
�̂1 − �̂12

(
�0

x,�0
y

)′
�0

1

]
p→N

(
0,�0

�̂1

)
and

√
T

[
�̂2 − �̂21

(
�0

x,�0
y

)′
�0

2

]
p→N

(
0,�0

�̂2

)
,

with

�0
�̂1

= 1

�0
y

[ min{�0
x , �0

y}
�0

y
�0

11

(
�0

x

)′ (
�0

z

)−1
�0

z"

(
�0

z

)−1
�0

11

(
�0

x

)
+I

(
�0

x <�0
y

) �0
y−�0

x

�0
y

�0
22

(
�0

x

)′ (
�0

z

)−1
�0

z"

(
�0

z

)−1
�0

22

(
�0

x

)
]

and

�0
�̂2

= 1

1−�0
y

[ 1−max{�0
x , �0

y}
1−�0

y
�0

22

(
�0

x

)′ (
�0

z

)−1
�0

z"

(
�0

z

)−1
�0

22

(
�0

x

)
+I

(
�0

x >�0
y

) �0
x−�0

y

1−�0
y
�0

11

(
�0

x

)′ (
�0

z

)−1
�0

z"

(
�0

z

)−1
�0

11

(
�0

x

)
]
,

where�0
jj

(
�0

x

)=diag
[
�0

jf

(
�0

x,�0
x

)
Q0

�j

(
�0

x

)
V0

j

(
�0

x

)−1
, IK

]
, Q0

�j

(
�0

x

)=p lim
[
�0′

j �̂j

(
�0

x

)]
/N

and V0
j

(
�0

x

)=p lim V̂j

(
�0

x

)
. Consistent estimators for �0

�̂1
and �0

�̂2
, denoted by

̂

Avar
(
�̂1

)
and

̂

Avar
(
�̂2

)
, respectively, are

̂

Avar
(
�̂l

)
=

[
T −1

T∑
t=1

Ilt(�̂y)ẑt ẑ
′
t

]−1

�̂l(�̂y)

[
T −1

T∑
t=1

Ilt(�̂y)ẑt ẑ
′
t

]−1

, l =1, 2. (8)
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Theorem 4 extends theorem 1 in Bai and Ng (2006). It establishes convergence rate
and limiting distribution of the least squares estimator �̂l for �0

l , for l = 1, 2. The esti-
mated covariance matrix in (8) is robust to heteroskedasticity and autocorrelation. Let
�̂2

" =T −1
∑T

t=1 "̂
2
t+h, with "̂t+h = "̂t+h(�̂y). With homoskedastic and uncorrelated disturbances

the estimator in (8) simplifies to

̂

Avar
(
�̂l

)
= �̂2

"

[
T −1

T∑
t=1

Ilt(�̂y)ẑt ẑ
′
t

]−1

, l =1, 2.

Testing for structural change

Testing strategy
We now propose a test for the null hypothesis H0 :

(
�0

1 =�0
2

)
in equation (2): this extends the

literature on testing for a single break to allow for estimated factors (Andrews, 1993; Perron,
2006). We build a Lagrange multiplier statistic. Under the null hypothesis of linearity, the
true factor augmented model becomes yt+h =�0′

1 z0
t +"t+h: the least squares estimator for �0

1

is �̂
H0

1 =
(∑T

t=1 ẑt ẑ
′
t

)−1 (∑T
t=1 ẑtyt+h

)
. Let k̂

H0

t = "̂
H0

t+hẑt , where "̂
H0

t+h = yt+h − �̂
H0′
1 ẑt . From

Newey and West (1987), define: K̂
H0

d = T −1
∑T

t=d+1 k̂
H0

t k̂
H0′
t−d , for d = 0,…, DT , with DT

as in section ‘Rates of convergence’; �̂
H0 = K̂

H0

0 +∑DT

d=1 w
(
d, DT

)(
K̂

H0

d + K̂
H0′
d

)
, where

w
(
d, DT

)
is the Bartlett kernel as in section ‘Rates of convergence’. Following Andrews

(1993), the heteroskedasticity and autocorrelation robust Lagrange multiplier test statistic
is defined as

LM (�y)= 1

�y

(
1−�y

)
[

1√
T

T∑
t=1

I1t(�y)ẑt "̂
H0

t+h

]′ (
�̂

H0
)−1

[
1√
T

T∑
t=1

I1t(�y)ẑt "̂
H0

t+h

]
.

For known �y =�0
y and under the null hypothesis, LM

(
�0

y

)
has a �2 limiting distribution

with (R0 + K) degrees of freedom as N , T →∞. However, �0
y is generally unknown and

not identified under the null hypothesis. As in Andrews (1993), we propose the statistic

supLM = sup
�y∈[�y ,1−�y]

LM (�y),

with �y ∈ (0.00, 0.50]: such a definition of �y ensures the supremum is not evaluated over
an empty space. The theorem below states the asymptotic distribution of supLM .

Theorem 5 Let Assumptions I, C1–C4, CR, FR(a), FR(b) and FR(e) hold. Further
assume that

√
T/N → 0 as N , T →∞. Then for any �y ∈ (0.00, 0.50], and under the null

hypothesis H0 :
(
�0

1 =�0
2

)
,

supLM
p→ sup

�y∈[�y ,1−�y]

[WR0+K (�y)−�yWR0+K (1)
]′ [WR0+K (�y)−�yWR0+K (1)

]
�y

(
1−�y

)
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as N , T →∞, provided that �̂
H0 p→�0,H0 under H0, where

�0,H0 =
{(

�0
x

)1/ 2 [
�0

11

(
�0

x

)]−1 + (
1−�0

x

)1/ 2 [
�0

22

(
�0

x

)]−1
}

�0
z"

×
{(

�0
x

)1/ 2 [
�0

11

(
�0

x

)]−1 + (
1−�0

x

)1/ 2 [
�0

22(�0
x)

]−1
}′

.

Theorem 5 extends theorem 3 (b) in Andrews (1993) and implies that the critical
values in Andrews (1993) apply to the supLM statistic; these values are used also in
Breitung and Eickmeier (2011) and Chen et al. (2014). The convergence in probabil-

ity of �̂
H0

to �0,H0 is not stringent: factors are consistently estimated; �̂
H0

is a het-
eroskedasticity and autocorrelation robust estimator for �0,H0 . With homoskedastic and

serially uncorrelated disturbances, �̂
H0

simplifies to �̂
H0 = (

�̂H0

"

)2[
T −1

∑T
t=1 Ilt(�̂y)ẑt ẑ

′
t

]
,

with
(
�̂H0

"

)2 =T −1
∑T

t=1

(
"̂

H0

t+h

)2
.

By Theorem 2, under H0 :
(
�0

1 =�0
2

)
it follows that �̂1 − �̂12

(
�0

x,�0
y

)′
�0

1

p→0 and �̂2 −
�̂21

(
�0

x,�0
y

)′
�0

1

p→0: under the null hypothesis, �̂1 and �̂2 have different probability limits
due to the different rotations around �0

1 induced by the structural break in the underlying
factor model. However, this feature does not cause any size distortions, as it is fully captured
by the asymptotic covariance matrix �0,H0 defined in Theorem 5: the supLM statistic
thus has the same asymptotic distribution as the one stated in theorem 3(b) in Andrews
(1993).

Robustness to factor model representation
The test in section ‘Testing strategy’ requires estimating the factors from the breakpoint
model in (1). A factor model with structural instability has an equivalent linear repre-
sentation (Breitung and Eickmeier, 2011), which one could use to test for stability in
the factor augmented regression. Formally, let f *

t = f *
t

(
�x, ft

) = [
I1t(�x)f ′

t , I2t(�x)f ′
t

]′
: the

equivalent representation for the model in (1) is xt = �f *
t + et . Let f 0*

t = f *
t

(
�0

x, f 0
t

) =[
I1t

(
�0

x

)
f 0′

t , I2t

(
�0

x

)
f 0′

t

]′
be the true value of f *

t : by Proposition 1 in Chen et al. (2014),

the principal components estimator f̂
*

t for the
(
R0 +R0

)×1 vector f 0*
t is consistent up to a(

R0 +R0
)×(

R0 +R0
)

rotation matrix and has convergence rate CNT =min
{√

N ,
√

T
}

. A

test for structural change in the factor augmented regression based on the equivalent linear
factor representation imposes (R0 +R0 +K)×1 restrictions as N , T →∞. The test in sec-
tion ‘Testing strategy’ has (R0 +K)×1 restrictions. Estimating factors from the equivalent
linear representation requires imposing a higher number of restrictions and results in a test
with lower power.

V. Monte Carlo analysis

In section A of the Online Appendix, we conduct a comprehensive Monte Carlo analysis
to assess the finite sample properties of our methodology: we consider model selection
in the breakpoint factor model; we study estimation, inference and stability testing in the
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factor augmented regression. The results show the good finite sample properties of our
methodology and its potential usefulness for applied work.

VI. Application to bond risk premia

Section ‘Literature and contribution’ links the paper to the literature. Section ‘Data and
implementation’ describes the data. Section ‘Breakpoint factor model: Macro factors’ de-
tails the factor model. Section ‘Unstable factor augmented regression: Bond risk premia’
presents the results from the factor augmented regression.

Literature and contribution

We apply our methodology to uncover potential structural instabilities in the empirical
linkages between bond market risk premia and macroeconomic fundamentals. Fama and
Bliss (1987) show that the one-year excess return on the n-year bond is predicted by the
spread between the n-year forward rate and the one-year yield. Campbell and Shiller (1991)
find similar results using yield spreads as predictors for yield changes. Fama and Bliss
(1987), and Campbell and Shiller (1991), uncover maturity-specific predictors. Cochrane
and Piazzesi (2005) show that a single common factor obtained as a linear combination of
forward spreads predicts the one-year excess return on the n-year bond: they thus document
that a common factor predicts the excess returns of all bonds. Ludvigson and Ng (2009) find
that common factors extracted from a large set of macroeconomic series have predictive
power for the one-year excess return on the n-year bond beyond the Cochrane and Piazzesi
(2005) single factor.

We take Ludvigson and Ng (2009) as a starting point and depart from them in two
ways: we extract the latent factors from a large number of macroeconomic variables under
the maintained assumption of structural instability in the loadings; we allow for a struc-
tural break in the factor augmented pricing equation for bond excess returns. Existing
empirical evidence suggests that the degree of cross-sectional dependence among macroe-
conomic series is not stable over time (Breitung and Eickmeier, 2011; Chen et al., 2014;
Cheng et al., 2016): this motivates the inclusion of a structural break in the factor model.
Allowing for a potentially unstable factor augmented regression is also desirable: bond
risk premia are highly persistent and require long time series of data; the longer the data
span, the higher the likelihood of model instability. Bikbov and Chernov (2010) con-
duct their analysis over 1970–2002: they raise concerns about structural stability due
to the 1979–82 monetary policy experiment. In studying 1960–2006, Smith and Tay-
lor (2009) acknowledge the presence of a break in the early 1980s and a priori split
their sample around that period. Joslin et al. (2014) focus on 1985–2007: they esti-
mate a two-state Markov-switching affine term structure model over 1971:11–2007:12
to show that the period 1985–2007 is well approximated by a single regime. We com-
plement Joslin et al. (2014) by applying to bond risk premia the unstable diffusion in-
dex forecasting model proposed in this paper: Markov-switching models assumes that
‘history repeats’ (Timmermann, 2008); our unstable model does not. Gürkaynak and
Wright (2012) discuss the consequences of structural instability on the learning process of
investors.
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Data and implementation

We study the period 1965:01–2007:12, which extends the samples studied in Fama and
Bliss (1987), Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009): the endpoint
of the sample coincides with the end of the Great Moderation and it is the same as in
Joslin et al. (2014). Our chosen period allows us to avoid the zero lower bound regime
started in December 2008, during which the Federal Reserve has relied on unconventional
monetary policy tools: an assessment of the impact of these tools on the yield curve has
been a challenging task (Wu and Xia, 2016 and references therein). Monthly bond return
data are from the Fama–Bliss data set available from the Center for Research in Securities
Prices (CRSP): the data set has prices for zero-coupon US Treasury bonds for maturities
between one to five years; yields, forward rates and returns are constructed as detailed in
Cochrane and Piazzesi (2005).

We estimate the factors from the FRED-MD balanced panel of monthly macroeconomic
series described in McCracken and Ng (2016).1 The data belong to eight groups: (i) output
and income; (ii) labour market; (iii) consumption and housing; (iv) orders and inventories;
(v) money and credit; (vi) interest rate and exchange rates; (vii) prices; (viii) stock market.
We use the 2016:06 vintage. We apply to the original data set described in McCracken
and Ng (2016) the changes outlined in the document ‘Changes to FRED-MD’.2 We make
the resulting 123 series stationary by applying the transformations provided in McCracken
and Ng (2016).3

We formally implement the factor augmented pricing equation

rx(n)
t+12 = I

(
t/T ��(n)

y

)
�

(n)′
1 ft + I

(
t/T >�(n)

y

)
�

(n)′
2 ft +	(n)

1 +	(n)
2 CPt + "

(n)
t+12, (9)

for t =1964 : 01,…, 2006 : 12 and n=2, 3, 4, 5: the superscript (n) denotes dependence on
the maturity of the bond. The variable rx(n)

t+12 is the excess log return for the n-year discount
bond defined as in Cochrane and Piazzesi (2005). The vector ft contains R latent factors:
based on the Monte Carlo results, we obtain the estimate R̂ for R0 using the criterion
ICp2(R, R) in equation (6). The observable covariate CPt is the single forward Cochrane
and Piazzesi (2005) factor (i.e. a linear combination of forward rates), estimated over the
period 1964:01–2006:12. We estimate the true break fraction �(n),0

y , R0 ×1 vectors �
(n),0
1 and

�
(n),0
2 , intercept 	(n),0

1 and slope coefficient 	(n),0
2 as detailed in section ‘The unstable factor

augmented regression’: confidence intervals and stability testing are performed using the
Newey and West (1987) correction with 18 lags to account for the MA(12) structure due
to the overlapping data (Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009).

We assume that 	(n),0
1 and 	(n),0

2 are not subject to structural instability: the information
content of forward rates is stable over time (Cochrane and Piazzesi, 2005). The CPt factor
is a linear combination of forward rates, and it is obtained by assuming that returns at all
maturities are linear functions of forward rates: this implies that 	(n),0

2 is stable over time.
If we were to allow for a break in 	(n),0

2 , we would have to extend the procedure to estimate

1
The data set is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.

2
The document is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.

3
A file containing all macroeconomic series used to estimate the factors is available upon request.
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TABLE 1

Empirical results, bond excess returns, summary
statistics, 1965:01–2007:12

n=2 n=3 n=4 n=5

Panel A: Levels
Mean (rxn

t ) 0.004 0.007 0.009 0.009
Std. Dev. (rxn

t ) 0.019 0.034 0.047 0.058
Corr (rxn

t , rxn
t−1) 0.931 0.933 0.932 0.922

Corr (rxn
t , rxn

t−12) 0.215 0.147 0.109 0.071
Panel B: Absolute values
Mean (|rxn

t |) 0.015 0.027 0.037 0.045
Std. Dev. (|rxn

t |) 0.012 0.022 0.031 0.037
Corr (|rxn

t |, |rxn
t−1|) 0.857 0.862 0.856 0.836

Corr (|rxn
t |, |rxn

t−12|) 0.070 0.129 0.150 0.157

Notes: This table presents summary statistics for yearly bond
excess returns expressed in levels (Panel A) and absolute
values (Panel B) computed over the maturities n=2, 3, 4, 5.
The data sample ranges from January 1965 to December
2007, for a sample size of 516 monthly observations. Mean
and standard deviation are displayed in decimals per annum
(i.e. 0.01 equals 1 percentage point).

the Cochrane and Piazzesi (2005) factor accordingly: this goes beyond the purpose of
the paper. The stability of 	(n),0

2 across all maturities is supported by the results in section
‘Unstable factor augmented regression: Bond risk premia’ below. The null hypothesis of

stability then is H0 :
(
�

(n),0
1 = �

(n),0
2

)
. Under the alternative hypothesis H1 :

(
�

(n),0
1 	= �

(n),0
2

)
,

instabilities arise in the linkages between bond risk premia and macroeconomic factors.
Summary statistics for excess log returns are shown in Table 1 for levels and absolute

values (Panels A and B, respectively). Both mean and standard deviation of bond excess re-
turns increase with maturity: the former ranges between 0.4% and 0.9%, the latter between
1.9% and 5.8%. Bond risk premia are highly persistent: the first order autocorrelation
is above 0.9 over all maturities, which is consistent with the MA (12) structure due to
the overlapping data previously discussed; the autocorrelation of order 12 is positive and
monotonically declines with maturity, ranging between 0.215 for n=2 and 0.071 for n=5.
Absolute values of bond excess returns proxy bond risk premia volatilities: they are highly
persistent, with mean and standard deviation increasing with maturity.

Breakpoint factor model: Macro factors

We set Rmax = 8; following the Monte Carlo results, we apply the ICp2(R, R) criterion in
equation (6) and estimate R̂ = 2 factors. The estimated break fraction �̂x = 0.455 corre-
sponds to the estimated break date T̂ x = 1983 : 06: this is just before the beginning of
the Great Moderation in early 1985. Our estimated number of factors is in line with what
suggested in studies using data sets similar to ours: Stock and Watson (2012) a priori se-
lect five factors without accounting for structural breaks, which augment the factor space
(Breitung and Eickmeier, 2011; Chen et al., 2014); Cheng et al. (2016) select one factor
during the period ranging from 1985 to 2007, which coincides with our post-break sample.
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TABLE 2

Empirical results, estimated factors, average marginal R2, 1964:01–2006:12

Group 1: Output and income Group 2: Labour market
f̂ 1t 0.298 0.166
f̂ 2t 0.107 0.078

Group 3: Consumption and orders Group 4: Orders and inventories
f̂ 1t 0.211 0.100
f̂ 2t 0.046 0.086

Group 5: Money and credit Group 6: Interest rate and exchange rates
f̂ 1t 0.032 0.084
f̂ 2t 0.025 0.263

Group 7: Prices Group 8: Stock market
f̂ 1t 0.249 0.002
f̂ 2t 0.004 0.185

Notes: For each of the eight groups listed in section ‘Data and implementation’, this table
displays the average of the R2 obtained from the breakpoint regression with �̂x =0.455 of
each variable within the group on a given factor. The data sample ranges from January 1964
to December 2006, for a sample size of 516 monthly observations.

We interpret the estimated factors by studying their predictive power (Ludvigson and
Ng, 2009). For each of the eight groups listed in section ‘Data and implementation’, we
set �̂x = 0.455 (i.e. the estimate for �0

x) and compute the average of the R2 obtained from
the breakpoint regression of each variable within the group on a given factor. The results
in Table 2 show that the first estimated factor f̂ 1t captures the real side of the economy and
inflation: the average R2 from regressions of macroeconomic variables in Groups 1, 2, 3
and 7 are equal to 0.298, 0.166, 0.211 and 0.249 respectively. The second estimated factor
f̂ 2t loads on variables in Groups 6 and 8: it describes the financial side of the economy; it
is also correlated with the CPt factor, with correlation coefficient equal to −0.248. The
two factors exhibit time series dependence: the first order autocorrelation for f̂ 1t and f̂ 2t

are equal to 0.485 and 0.630 respectively.

Unstable factor augmented regression: Bond risk premia

Table 3 displays results from four specifications nested in equation (9): (a) the Cochrane
and Piazzesi (2005) single factor model, with �

(n),0
1 = �

(n),0
2 = 0; (b) a linear model with

macroeconomic factors only, with �
(n),0
1 = �

(n),0
2 and 	(n),0

2 =0; (c) a factor model under the

null hypothesis of linearity H0 :
(
�

(n),0
1 = �

(n),0
2

)
; (d) the unstable factor augmented regression

in equation (9).
The estimates for 	(n),0

2 from model (a) are 0.455, 0.857, 1.235 and 1.453 for n=2, 3, 4, 5
respectively: these resemble the estimates in Cochrane and Piazzesi (2005) and do not
contradict the assumption of stability imposed in equation (9) on 	(n),0

2 . Based on the
adjusted R2, the CPt factor explains between 34% and 38% of the variation in bond excess
returns: these values are in line with those in Cochrane and Piazzesi (2005). Model (b)
shows that macroeconomic factors have less explanatory power than the CPt factor across
all maturities. Judging from the values of the adjusted R2 from the linear model (c),
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macroeconomic factors seem to have limited predictive power in excess of the CPt factor
during the period of interest.

We estimate model (d) over the interval
[
�y, 1−�y

]
, with �y = 0.15. The adjusted R2

shows that allowing for structural instability provides a great deal of additional explanatory
power with respect to the linear factor augmented regression (c). The supLM test rejects
the null hypothesis of linearity at 10% level for n=2, 4, 5: this provides statistical evidence
in favour of breaks in the factor loadings in the pricing equation for bond excess returns.
The estimated break fraction for n = 2, 4 is �̂(n),

y = 0.510, with corresponding estimated

break date T̂
(n),

y =
[
T �̂(n),

y

]
=1986 : 11; for n=5, we have �̂(n),

y =0.355 and T̂
(n),

y =1980 : 03.

When structural breaks are allowed for, macroeconomic factors become statistically sig-
nificant at least on one side of the breakpoint: their predictive ability thus varies over
time.

According to our results, the location of the break depends on the maturity of the bond.
Our findings relate to Joslin et al. (2014), who show that, with the exception of the first
year and three isolated months, the Great Moderation period between 1985 and 2007 is
well approximated by a single regime; they are also in line with Smith and Taylor (2009),
who acknowledge the presence of a break in the early 1980s due to a shift in the monetary
policy rule. More generally, we contribute to the literature by shedding further light on
the issue of structural instability in bond risk premia dynamics. Our findings run parallel
to existing evidence of instabilities in stock returns prediction models (Rapach and Zhou,
2013).

In conclusion, the proposed unstable diffusion index forecasting model has both sta-
tistical and economic advantages with respect to existing competing models for bond risk
premia: it generates higher adjusted R2; it captures the effects of events such as the Great
Moderation and shifts in monetary policy rules on bond excess returns.

Alternative estimation strategy

The vector
(

x′
t , rx(n)

t+12

)′
admits a common factor representation, for n=1, 2, 3, 4, where xt

collects the macroeconomic variables. The common components could be estimated by

projecting
(

x′
t , rx(n)

t+12

)′
on the estimated factors: see section 3.3 in Forni et al. (2005). Only

�0
x and not �0

y would be identified though, as the contribution of rx(n)
t+12 to the estimator of

the common components would be negligible as N →∞. The formulation for the factor
augmented regression

rx(n)
t+12 = I

(
t/T ��x

)
�

(n)′
1 ft + I

(
t/T >�x

)
�

(n)′
2 ft +	(n)

1 +	(n)
2 CPt + "

(n)
t+12

could be implemented, where �0
x and f 0

t would be estimated from the factor model.
Table 4 collects results from this estimation strategy. For maturities n=2, 3, 4, the results

are aligned with the homologous findings in Table 3, whereas for n=5 the differences are
more pronounced. Each adjusted R2 in Table 4 is lower than the homologous value in Table
3. We can conclude that the estimator proposed in this paper is likely to provide more
accurate information about the pricing equation for bond risk premia.
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TABLE 4

Alternative estimation strategy, bond excess returns,
1965:01–2007:12

n=2 n=3 n=4 n=5


(n),0
11 0.007 0.009 0.017 0.009

(0.006) (0.010) (0.010) (0.015)

(n),0

12 0.010*** 0.013* 0.017* 0.016
(0.004) (0.007) (0.010) (0.012)


(n),0
21 −0.002 −0.004 −0.006 −0.007

(0.002) (0.003) (0.004) (0.005)

(n),0

22 −0.016*** −0.028*** −0.035*** −0.035***
(0.006) (0.009) (0.012) (0.014)

	(n),0
1 0.0001 0.000 −0.001 −0.003

(0.002) (0.004) (0.005) (0.006)
	(n),0

2 0.482*** 0.895*** 1.290*** 1.506***
(0.060) (0.119) (0.168) (0.213)

R̄
2

0.398 0.396 0.409 0.364

Notes: This table reports results from least squares estimation of the
following model for n-year bond excess returns rx(n)

t+12, for t =1964 :
01,…, 2006 : 12:

rx(n)
t+12 = I

(
t/T � �̂x

)(

(n)

11 f̂ 1t + 
(n)
12 f̂ 2t

)
+ I

(
t/T > �̂x

)(

(n)

21 f̂ 1t + 
(n)
22 f̂ 2t

)

+	(n)
1 +	(n)

2 CPt + "
(n)
t+12.

The vector of factors f̂ t =
(

f̂ 1t , f̂ 2t

)′
and the break fraction �̂x are

estimated as detailed in section ‘Principal components estimation’;
the number of factors R̂=2 (i.e. the dimension of f̂ t) is determined
using the ICp2

(
R, R

)
criterion in equation (6). The factors are ex-

tracted from the 123 macroeconomic series described in section
‘Data and implementation’ over the period 1964:01–2006:12. CPt
is the Cochrane and Piazzesi (2005) factor, namely a linear combi-
nation of five forward spreads estimated over the period 1964:01–
2006:12. Newey and West (1987) standard errors with 18 months lag
order are reported in parentheses. R̄

2
is the adjusted R2. * and ***

denote significance at 10% and 1% level respectively.

VII. Extensions and modifications

We now consider possible extensions and modifications to the model in (1) and (2): Section
‘Diffusion index threshold forecasting model’introduces the diffusion index threshold fore-
casting model; Section ‘Diffusion index forecasting model with multiple breaks’ discusses
the model with multiple breaks; Section ‘Alternative specification of parameter instability’
proposes an alternative strategy to allow for parameter instability in the diffusion index
forecasting model.

Diffusion index threshold forecasting model

The specification in (1) and (2) allows for structural instability in the factor model and
in the forecasting equation respectively. Most results in this paper hold for the following
diffusion index threshold forecasting model
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xt = I
(
gt ��x

)
�1ft + I

(
gt >�x

)
�2ft + et , t =1,…, T ,

yt+h = I
(
gt ��y

) (
�′

1ft +�′
1wt

)+ I
(
gt >�y

) (
�′

2ft +�′
2wt

)+ "t+h, t =1,…, T , h�0,

where gt ∈ R is the common observable threshold random variable, and �x and �y are
the unknown threshold values. The model lets yt+h depend upon ft , the vector of latent
factors driving the comovement in xt according to the threshold factor model of Massacci
(2017). Let �̂x and �̂y be the least squares estimators for �0

x and �0
y , respectively, namely

for the true values of �x and �y respectively. The break fractions �0
x and �0

y in (1) and (2),
respectively, are threshold values as applied to t

/
T . Under suitable assumptions, it can be

shown that the results in Theorems 2–4 hold for the diffusion index threshold forecasting
model with respect to �̂x and �̂y. However, Theorem 5 no longer is valid: gt generally is a
random variable; a test for threshold effect in the forecasting equation can be implemented
by suitably generalizing the results in Hansen (1996).

Diffusion index forecasting model with multiple breaks

The theoretical results in this paper accommodate one break in the factor model and one
break in the factor augmented regression. A more empirically plausible scenario would
be

xt =
J 0

x +1∑
jx=1

I
(
�x,jx−1 < t/T ��x,jx

)
�jx ft + et , t =1,…, T ,

yt+h =
J 0

y +1∑
jy=1

I
(
�y,jy−1 < t/T ��y,jy

)(
�′

jy
ft +�′

jy
wt

)
+ "t+h, t =1,…, T , h�0,

where �x,0 =�y,0 = 0 and �x,Jx+1 =�y,Jy+1 = 1: this allows for J 0
x � 1 breaks in the factor

model and J 0
y �1 breaks in the factor augmented regression, where for ease of exposition

we assume that J 0
x and J 0

y are both known. To aid to the understanding of dealing with
this more general model, consider first J 0

x = 1 and J 0
y = 2, in which case (2) generalizes

to

yt+h = I
(
t/T ��y,1

) (
�′

1ft +�′
1wt

)
+ I

(
�y,1 < t/T ��y,2

) (
�′

2ft +�′
2wt

)
+ I

(
t/T >�y,2

) (
�′

3ft +�′
3wt

)+ "t+h, t =1,…, T , h�0.

Let �0
jy
=

(
�0′

jy
,�0′

jy

)′
be the true value of �jy =

(
�′

jy
,�′

jy

)′
, for jy =1, 2, 3. Define the estimator

�̂jy =
(
�̂

′
jy
, �̂

′
jy

)′
for �0

jy
=

(
�0′

jy
,�0′

jy

)′
, for jy =1, 2, 3. Let �0

y,1, �0
y,2 and �0

y,3 be the true values

of �y,1, �y,2 and �y,3 respectively. The results in Theorem 2 generalize as
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�̂1 −
[

min
{
�0

x,1,�0
y,1

}
�0

y,1

�̂11

(
�0

x,1

)+ I
(
�0

x,1 <�0
y,1

) �0
y,1 −�0

x,1

�0
y,1

�̂22

(
�0

x,1

)]′

�0
1 =op(1),

�̂2 −
⎡
⎣ I

(
�0

y,1 <�0
x,1

) min{�0
x, 1, �0

y, 2}−�0
y, 1

�0
y, 2−�0

y, 1
�̂11

(
�0

x,1

)
+I

(
�0

x,1 ��0
y,2

) �0
y, 2−max{�0

x, 1, �0
y, 1}

�0
y, 2−�0

y, 1
�̂22

(
�0

x,1

)
⎤
⎦

′

�0
2 =op(1),

�̂3 −
[

1−max
{
�0

x,1,�0
y,2

}
1−�0

y,2

�̂22

(
�0

x,1

)+ I
(
�0

x,1 >�0
y,2

) �0
x,1 −�0

y,2

1−�0
y,2

�̂11

(
�0

x,1

)]′

�0
3 =op(1).

If we then allowed for J 0
x =2 breaks, the factor model in (1) would become

xt = I
(
t/T ��x,1

)
�1ft + I

(
�x,1 < t/T ��x,2

)
�2ft + I

(
t/T >�x,2

)
�3ft + et , t =1,…, T :

in this case, the results regarding �̂1, �̂2 and �̂3 stated above would have to be extended to
account for the additional degree of rotational indeterminacy in the factor model due to the
presence of the additional break.This strategy would allow us to generalizeTheorems 2 and
4 regarding �̂jy , for jy =1,…, J 0

y , for any J 0
x �1 and J 0

y �1. In addition, in the case where the
number of breaks J 0

y no longer is known, Theorem 5 is not valid: the seminal contribution
by Bai and Perron (1998) would be a natural starting point to conduct inference on the
number of factors in the forecasting equation.

Alternative specification of parameter instability

The model in (1) and (2) allows for different break fractions �x and �y in the factor model
and in the factor augmented regression, respectively, where �y is the same for latent factors
ft and observable covariates wt . Alternatively, one could assume a common break fraction
�f for ft in the factor model and in the factor augmented regression, and a break fraction
�w for wt: formally, the model would be

xt = I
(
t/T ��f

)
�1ft + I

(
t/T >�f

)
�2ft + et , t =1,…, T ,

yt+h = I
(
t/T ��f

)
�′

1ft + I
(
t/T >�f

)
�′

2ft

+ I
(
t/T ��w

)
�′

1wt + I
(
t/T >�w

)
�′

2wt + "t+h, t =1,…, T , h�0.

Let �f ,0 and �w,0 denote the true values of �f and �w respectively. Under the maintained
assumption of structural instability in the factor model, �f ,0 can be estimated from the
factor model only, as the contribution to the underlying loss function coming from the
factor augmented regression would be infinitesimal as N → ∞. This has implications
for estimation and inference in the factor augmented regression: only �w,0 needs to be
estimated; the critical values of the test statistic for the null hypothesis �0

1 =�0
2 are obtained

from the �2
(

R̂
)

distribution; the null hypothesis �0
1 =�0

2 still needs to be tested using the

procedure detailed in Andrews (1993).
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More generally, one could also allow for different break fractions for ft in the factor
model and in the factor augmented regression: formally, the model would be

xt = I
(
t/T ��f

x

)
�1ft + I

(
t/T >�f

x

)
�2ft + et , t =1,…, T ,

yt+h = I
(
t/T ��f

y

)
�′

1ft + I
(
t/T >�f

y

)
�′

2ft

+ I
(
t/T ��w

y

)
�′

1wt + I
(
t/T >�w

y

)
�′

2wt + "t+h, t =1,…, T , h�0.

The null hypotheses �0
1 = �0

2 and �0
1 =�0

2 could be tested separately by using a procedure
analogous to that described in section ‘Diffusion index forecasting model with multiple
breaks’: the former and the latter would require testing R̂ and K restrictions, respectively.
A test for the null hypothesis �0

1 = �0
2 would involve the two nuisance parameters �f

y and
�w

y : we leave this interesting problem to future research.

VIII. Conclusion

We study estimation and inference in unstable diffusion index forecasting models: the
application uncovers breaks in the linkages between bond risk premia and macroeconomic
factors. The novelty of the problem and the related technical difficulties make us analyse
the single break case: the multiple break scenario is on our list of priorities (Bai and Perron,
1998).

The paper focuses on in-sample analysis. Diffusion indexes are widely used for out-of-
sample forecasting. They may perform poorly in practice due to instabilities in the factor
model (Giannone, 2007; Banerjee et al., 2008) or in the factor augmented regression (Stock
and Watson, 2002, 2009). Forecasting techniques robust to breaks would be desirable,
especially if a break is located close to the end of the sample: one possible solution is to
extend the Pesaran and Timmermann (2007) procedure to select the estimation windows
to include estimated factors.

Final Manuscript Received: April 2019
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