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Abstract 
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Abstract   
T-acute lymphoblastic leukaemia (T-ALL) is a common childhood cancer. Multiple 

genetic mutations have been identified in T-ALL patients. The most common is the 

mutation of the NOTCH1 oncogene occurring in more than 50% of patients. Poor 

prognosis has often been shown to correlate with the migration and accumulation of 

T-ALL cells in the tissues. Rap and Rho family GTPases play key roles in T cell 

adhesion and migration and are often involved in cancer progression. Most of these 

proteins are post-translationally isoprenylated to facilitate their anchorage to 

membranes, where they function to stimulate signal transduction processes.  

In the first part of these studies, statins were used to reduce prenylation of GTPases, 

and to investigate whether the resulting alteration of GTPase membrane targeting 

affects T-ALL cell migration. Statins inhibited adhesion, chemotaxis and 

transendothelial migration of T-ALL cell lines. A similar effect was observed with 

geranylgeranyl transferase inhibitors and siRNA depletion of Rap1b but not Rap1a, 

RhoA, Rac1, Rac2 and Cdc42. These results suggest that statins and Rap1b depletion 

could be used to reduce tissue invasion in T-ALL. 

In contrast to other Rho family proteins, the atypical Rho GTPases RhoU and RhoV 

are not prenylated but undergo palmitoylation for membrane targeting. They are 

expressed at higher levels in primary T-ALL samples compared to primary T cells, 

and RhoU expression was shown to be unregulated by Notch1.  In the second part of 

these studies downregulation of RhoU and Notch1 by siRNA reduced adhesion and 

migration of T-ALL cell lines. Interestingly, similar functional effects were observed 

upon siRNA depletion of RhoV. RhoU and RhoV partially co-localized and moved 

dynamically between endosomes and the plasma membrane, suggesting they act 

together to regulate membrane trafficking. These results indicate that RhoU and 

RhoV could contribute to T-ALL invasion by regulating T-ALL cell adhesion and 

migration.
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Introduction 

 

1.1 The immune system 

The main function of the immune system is to protect against microorganisms. It 

uses a highly organized array of mechanisms and cell types to distinguish between 

foreign agents and the own body cells and molecules.  

The primary defence of the human body from foreign agents is the anatomic barrier 

provided by epithelial surfaces. If a pathogen is able to pass this barrier, the second 

line of defence is provided by the innate immune system. This includes molecules 

that are either present in biological fluids, such as the complement system, or 

secreted as cells are activated. The cells of the innate immune system include 

monocytes, macrophages, natural killer cells, granulocytes (subdivided into 

neutrophils, eosinophils and basophils) and mast cells (Chaplin, 2006). Other 

important players of the innate immune system are the Toll-like receptors (TLRs). 

Mammals have a repertoire of TLRs through which they recognize a wide range of 

pathogen-associated molecular patterns (PAMPs). PAMPs include peptidoglycan, 

lipopolysaccharide, CpG DNA, and double or single-stranded RNA derived from 

bacterial or viral microorganisms. Interaction of TLRs with PAMPs triggers 

downstream signalling pathways leading to activation of other innate or adaptive 

processes (Kulkarni et al., 2011). A third line of defence against infection is the 

adaptive immune system. This is a specific response that also provides long-term 

protection against re-exposure to the same pathogen.  The main cells of the adaptive 

immune system are B and T lymphocytes.  

In humans, all cells of the immune system originate in the bone marrow or in the 

fetal liver from haematopoietic stem cells in a process known as haemotopoiesis. 

This process occurs in several stages and is mediated by cytokines, including 

interleukins, colony-stimulating factors, interferons, erythropoietin and 

thrombopoietin (Robb, 2007).  
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1.1.1 T lymphocytes 

T lymphocytes originate from pluripotent precursors in the bone marrow or fetal 

liver and migrate to the thymus where they undergo differentiation. T cells can 

mature into γδ T cells and αβ T cells which subsequently differentiate into CD4+ T 

cells, CD8+ T cells, natural killer T cells (NKT) and regulatory T cells. Once they 

leave the thymus these subpopulations play different functions (Rothenberg et al., 

2008). 

 

 

1.1.1.1 Major histocompatibility complex and antigen recognition 

In the thymus, specific patterns of gene expression lead to T cell proliferation and 

rearrangement of the T cell receptor (TCR). In order for T cells to recognize a 

foreign protein it must be degraded into small antigenic peptides that form physical 

complexes with the major histocompatibility complex receptors (MHC-I or MHC-

II). The TCR can then recognize the antigens presented by MHC molecules on the 

cell surface. MHC molecules play a central role in enabling the immune system to 

distinguish self from non-self. The encounter of a naive T cell with cognate antigen 

on a MHC molecule initiates T cell proliferation and differentiation into memory T 

cells and various T cell effectors (Bjorkman, 1997). The class MHC-I molecules are 

glycoproteins express on the membrane of almost all nucleated cells and they are 

associated with β2- microglobulin. The class MHC-II molecules are heterodimeric 

glycoproteins mainly expressed by antigen presenting cells (APCs). The APCs 

include dendritic cells, macrophages, B cells, and thymic epithelial cells. APCs can 

internalize antigens by either phagocytosis or endocytosis and re-express a part of 

the antigen on the membrane surface with MHC-II molecule (Ryan and Cobb, 2012). 

APCs are able to induce a signal that is necessary for T helper cell activation. CD8+ 

T cells bind to antigens associated with MHC-I and are pre-programmed for 

cytotoxic functions. CD4+ T cells bind to antigens associated with MHC-II and are 

pre-programmed for helper functions (Xiong and Bosselut, 2012).  
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1.1.1.2 T lymphocyte subpopulations 

CD4+ helper T cells (Th) provide regulatory functions of the adaptive immune 

system to respond appropriately to a particular antigen. In particular they promote 

and direct the differentiation and activation of B cells and cytotoxic T cells (Konig 

and Zhou, 2004) 

Th cells include Th1, Th2 and Th17. Although other T-cell subsets, such as Th3 cells 

and Th22 cells, have been described, their lineage-specific transcription factors have 

not been identified (Maddur et al., 2012). After binding peptide on the MHC-II 

complex, Th cells are activated and become effectors secreting growth factors and 

cytokines. For example, Th1 cells secrete interleukin 2 and interferon-γ, and Th2 

cells produce interleukin 4 and 5. Generally, the Th1 subpopulation induces the 

activation of macrophages and synthesis of IgG2b antibody by B cells. The Th2 

subpopulation induces the synthesis of other antibodies including IgE  (see section 

1.1.2).  

Recently the Th17 population has been characterized as a distinct lineage of CD4+ T 

cells. These cells secrete IL-17 and express surface IL-23 receptor and the lineage-

specific transcription factor RORγC. In addition, human Th17 cells specifically 

express the lectin receptor CD161. Th17 cells are important for the clearance of 

extracellular pathogens, however they have been associated with the pathogenesis of 

several autoimmune and inflammatory diseases (Maddur et al., 2012; Park et al., 

2005). 

Treg cells play an important role in the maintenance of immunological self-tolerance 

and immune homeostasis by suppressing pathological immune responses against 

self-antigens. These cells are CD4+ CD25+ and express glucocorticoid-induced 

tumour necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen (CTLA)-4 

and the transcription factor forkhead box P3 (FoxP3). Treg cells can either develop 

in the thymus or be converted in the periphery by TGF-β (Ruffell et al., 2010). Treg 

can be classified in natural Treg (nTreg) and induced Treg (iTreg). iTreg are induced 

in response to antigenic stimulation under tolerogenic conditions and thus contribute 

to the development of an antigen-specific immunosuppressive response. These cells 

can secrete TGF-β and interleukin (IL)-10 that participate in their 

immunosuppressive effect against conventional T cells (Menetrier-Caux et al., 

2012). 
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As mentioned above, CD8+T lymphocytes bind MHC-I and are known as cytotoxic 

T cells (Xiong and Bosselut, 2012). Cytokines secreted by Th cells, induce cytotoxic 

T cells to proliferate and differentiate into effectors. These cells do not secrete a lot 

of cytokines but instead scan cells of the body that express their cognate antigen, 

such as virus-infected cells, tumour cells and foreign tissue graft (Chaplin, 2006).  

 

 

1.1.1.3 T cell receptor 

In 95% of T cells the TCR is a heterodimer consisting of an α and β chain linked by 

disulphide bonds. In 5% of T cells the TCR is instead formed of a γ and δ chain.  The 

TCR forms a multisubunit complex with the CD3 complex, which is formed by 

CD3γ, CD3δ, CD3ε and TCRζ subunits. The CD3 subunits contain immunoreceptor 

tyrosine-based activation motifs (ITAMs) (van der Merwe and Dushek, 2011).  

ITAMs in the CD3 complex can be phosphorylated by the Src family tyrosine 

kinases Lck and Fyn. Phosphorylation of ITAMs allows the binding of the ZAP70 

tyrosine kinase, which subsequently phosphorylates LAT and SLP-76 triggering 

activation of signal transduction pathways such as protein kinase C, Ras, Rac and 

phospholipase C (Lin and Weiss, 2001). This is important to initiate T cell responses, 

including proliferation and cytokine synthesis (Sommers et al., 2000).   

T cells can protect from vast number of microbial pathogens as they possess specific 

antigen receptors, encoded a huge array of different TCR. TCR are somatically 

assembled from variable (V), diverse (D) and joining (J) gene elements to generate 

mature VαJα chains and VβDβJβ chains. The assembly of these gene elements is 

mediated by the lymphoid-specific RAG1 and RAG2 proteins that cleave the DNA 

near the V, D and J segments. These elements are then joined by non-lymphoid-

specific DNA repair enzymes, resulting in the V, D, and J gene elements assembling 

in a random process and producing the huge diversity of TCR sequences (Chaplin, 

2010).  

As mentioned above, the TCR receptor complex expressed on the lymphocyte 

surface can recognize an antigen if it is presented in the context of a MHC class I or 

class II molecule. However, to fully activate T cells an interaction also occurs 

between the CD28 receptor and the CD80 or CD86 of the APC. Co-activation of a T 
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cell in a quiescent state via CD3 and CD28 leads to functional activation and entry 

into the cell cycle, leading to cell proliferation and increase in cell size. CD28 co-

activation occurs in part by activation of the transcription factors nuclear factor κB 

(NF-κB) and nuclear factor of activated T cells (NFAT). Apoptosis is suppressed by 

the induction of anti-apoptotic proteins such as BCL-XL and BCL2. The 

phosphatidylinositol 3-kinases (PI3K) pathway is also responsible for activating the 

mammalian target of rapamycin (mTOR) that is required for growth (Acuto and 

Michel, 2003).  

 

1.1.1.4 T lymphocyte development 

In order to develop, early T cell precursors (ETP) from the bone marrow enter 

through the blood vessels into the cortico-medullary junction of the thymus (Figure 

1.1). These precursors migrate and differentiate into double negative (DN) cells 

which do not express CD4 or CD8. DN cells progress through DN1 to DN4 stages 

(Deftos and Bevan, 2000). Development from the ETP to DN3 is coordinated with 

migration through distinct thymic microenvironments. ETPs and DN2 cells have a 

high proliferation rate, and they start to aquire their first T-cell characteristics. At 

DN2 stage cells initiate the rearrangement of the genes encoding the TCRβ, TCRγ 

and TCRδ chains. When they reach the DN3 stage they stop proliferating, and they 

generate the first complete rearranged TCR loci (Rothenberg et al., 2008). DN3 T 

cells with an in-frame TCR gene rearrangement become activated by TCR-

dependent selection. Cells expressing the TCRβ undergo β-selection with the pre-T-

α chain as a pre-TCR. Once a signal is transmitted through the pre-TCR, it 

terminates further β chain rearrengment and cells become double positive (DP), 

expressing CD4 and CD8. DP thymocytes begin to proliferate and form 75-88% of 

thymocytes. The proliferation phase contributes to T-cell diversity by generating a 

clone of cells with a single TCRβ-chain rearrangement. These clones can then 

rearrange the α-chain genes enhancing diversity (Lin and Weiss, 2001). The TCR α-

chain gene rearrangement does not occur until the thymocytes stop proliferating. 

Completing of the TCR gene rearrangement leads to the surface expression of the 

TCRαβ heterodimers, which provides the substrate for the selection into single 

positive cells (SP) expressing CD4 or CD8, which can therefore proliferate and 
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migrate to the thymus periphery and function as mature αβ T cells. T cells that 

rearrange TCR γ and δ-chains are instead selected as γδ T cells (Hayday and 

Pennington, 2007) (Figure1.2). 

About 99% of all thymocyte progeny die during their development in the thymus as 

eliminated by either positive or negative selection. The positive selection selects 

immature thymocytes able to interact with MHC and involves the interaction with 

epithelial cells in the thymic cortex. This process begins in DP thymocytes and takes 

several days to finalize. In the cortex the productive rearrangement of TCR in DP 

thymocytes results in the replacement of the pre-TCR with the clonotypic TCRαβ 

complex. Cells whose receptors can interact with low avidity with self-peptide-MHC 

expressed by cortical stromal cells receive a survival signal. DP thymocytes that fail 

to receive activating signals are 'non-selected' and undergo cell death in the cortex 

without maturing further. Positively selected DP thymocytes that gain the capability 

to survive differentiate into SP expressing CD4 or CD8. These cells are induced to 

express CC-chemokine receptor 7 (CCR7). CCR7-expressing thymocytes are 

attracted to the CCR7 ligands, CC-chemokine ligand 19 (CCL19) and CCL21, which 

are mainly localized and produced in the medulla. In the medulla, newly generated 

SP thymocytes are further selected by the medullary stromal cells, including 

autoimmune regulator (AIRE)-expressing cells, so that the cells that are reactive to 

tissue-specific antigens can be deleted (Ma et al., 2013; Takahama, 2006). This 

negative selection is crucial to eliminate thymocytes that may cause autoimmune 

disease. Positive and negative selections are therefore important to generate mature T 

cells that can interact with MHC and that are self-tolerant.  

 

 

 

 

 

 
 
 
 
 
Figure 1.1 Photomicrograph of the thymus. Image shows the cortex and the 
medulla. (Nishino M et al., 2006) 
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Figure 1.2 Schematic representation of T cell development in the thymus. 
Precursors leave the blood vessels in the cortico-medullary junction. The early T cell 
precursors (ETP) migrate to the cortex and differentiate to double negative (DN1). 
DN2 cells migrate more deeply into the cortex. In the subcapsular zone cells undergo 
rearrangements of the TCR β chain. For the later state of development thymocytes 
cross back across the cortex towards the medulla where they change from double 
positive (DP) to single positive (CD4+ or CD8+). Alternatively DN3 thymocytes 
that rearrange γδ chains of the TCR are selected as γδ T cells. 
 

The maturation of SP thymocytes in the medulla includes the production of 

regulatory T cells and the expression of sphingosine-1-phosphate receptor 1 through 

which the cells are attracted back to the circulation that contains a high concentration 

of sphingosine-1-phosphate. During these stages development is coordinated by 

different microenvironments of the thymus epithelium, which provides receptor 

ligands and growth factors. Notch signalling is critical for T cell development and its 

pathway is stimulated by delta-like ligand 1 (DLL1) and DLL4 (Rothenberg et al., 

2008).  
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1.1.1.5 Notch1 

Notch signalling is highly conserved during evolution. Notch signalling serves as a 

mechanism that can regulate gene expression, and depending on the cell type, it can 

regulate proliferation or differentiation (Deftos and Bevan, 2000). The Notch family 

in humans consists of four paralogues (Notch1, Notch2, Notch3 and Notch4). They 

are expressed in a wide variety of tissues and they can interact with at least five 

Notch ligands (Jagged1, Jagged2, Delta-like 1, Delta-like 3 and Delta-like 4) 

(D'Souza et al., 2008).  

Notch proteins are single-pass transmembrane receptors. The extracellular domain is 

composed of a large EGF-like repeat domain and a cysteine-rich region Notch/Lin12 

domain (LN). The extracellular domain is linked to the intracellular domain by the 

heterodimerization domain (HD). Upon proteolytic cleavage, the intracellular 

domain functions as a transcription factor. It includes a RBP-Jκ–associated module 

(RAM), nuclear localization signals (NLS) six tandem copies of ankyrin-like repeats 

(ANK) and a transactivation domain (TAD). The C-terminal proline, glutamic acid, 

serine, threonine-rich (PEST) domain, mediates Notch protein turnover (Deftos and 

Bevan, 2000; Radtke et al., 2004) (Figure 1.3). 
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Figure 1.3 Domain structure of Notch receptors. The extracellular domain of 
Notch receptors contains EGF-like repeats and a cysteine-rich Notch/Lin12 domain 
(LN). The extracellular domain is linked to the intracellular domain by the 
transmembrane domain (HD). The intracellular domain is formed by the RAM 
domain and 6 ankyrin repeats (ANK), 2 nuclear-localization signals (NLS), followed 
by the transactivation domain (TAD) and a C-terminal proline, glutamic acid, serine, 
threonine-rich (PEST) domain.  
 

 

 

Notch1 signalling is activated by the binding of the extracellular domain by ligands 

of the Delta and Serrate/Jagged families. Ligand binding induces the cleavage by the 

ADAM metalloproteinases of a large portion of the ectodomain exposing a site that 

is recognized by the intramembrane γ-secretase (GS) proteolytic complex. Cleavage 

by GS releases the Notch1 intracellular domain (NICD), which enters the nucleus 

and heterodimerizes with the DNA binding transcription factor CSL/RBP-Jκ to 

regulate gene expression. Once bound to CSL, NICD recruits other coactivators, 

including mastermind proteins (MAML1-3), which in turn recruits transcription 

activation complexes to induce expression of downstream target genes (Nwabo 

Kamdje and Krampera, 2011). These genes can either inhibit or promote maturation 

along particular developmental pathways. These genes include DELTEX-1. 

DELTEX-1 function is still not fully understood. It was recently proposed to 
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partecipate in T cell anergy as DELTEX-1-deficient mice have attenuated T cell 

activation (Hsiao et al., 2009).  

Another well-known target gene of Notch1 is HES-1. HES-1 is a basic Helix-Loop-

Helix (bHLH) protein that forms homodimers to repress transcription by recruiting 

the transcriptional co-repressor Groucho. HES-1 is required for normal T cell 

development, particularly in the expansion of ETP (Dudley et al., 2009) (Figure 1.4). 

Notch1 was first identified as a gene involved in chromosomal translocations with 

the TRCβ gene in a subset of cases of T cell acute lymphoblastic leukaemia (T-

ALL). The translocations result in the expression of Notch1 receptor which lacks the 

extracellular domain leading to constitutive activation of Notch signalling. The 

identification of Notch1 as a T cell oncogene and the observation that is highly 

expressed in the thymus suggested that it coul be involved in normal T cell 

development. In a mouse model, bone marrow progenitors, in which Notch1 was 

inactivated, enter the thymus and develop into B cells, suggesting that Notch1 can 

regulate a T versus B cell fate (Wilson et al., 2001). Similarly, inactivation of CSL in 

bone marrow progenitors inhibited T cell development which developed instead into 

B cells (Radtke et al., 2004).  These results suggested a specific role of Notch1 in T 

cell commitment and development. In fact T cell commitment occurs following the 

interaction of T-cell precursors with Notch ligands presented by the thymus 

epithelium. The subsequent development of T lineage cells in the thymus requires 

different thresholds of Notch1 signalling. A low threshold is sufficient to suppress B 

cell development by thymus-seeding progenitors, whereas a high threshold is 

required to promote proliferation of early T lineage progenitors and their 

development into CD4+CD8+ thymocytes.  

Notch3 was also described to play a critical role in T cell development (Bellavia et 

al., 2003). More specifically, in the thymus, Notch1 espression is high in the early 

DN thymocytes, low in DP cells and intermediate in CD4+ and CD8+ cells. Instead, 

Notch3 levels are significantly higher compared to Notch1 in DN thymocytes and 

they are down-regulated during the DN to DP transition and are really low levels in 

mature T lymphocytes. The different expression profile of Notch1 and Notch3 

receptors indicates they might play different roles in T cell development. Notch1 has 

been suggested to play a role in the initial T cell lineage commitment of bone 

marrow progenitors and in intrathymic differentiation of T lymphoid cell lineages by 

favouring the CD8 versus CD4 and αβ versus γδ T cell lineage fate. Since Notch3 
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was shown to be mainly up-regulated in DN immature thymocytes, it has been 

suggested to play a role at the pre-TCR checkpoint (Bellavia et al., 2003; Campese et 

al., 2003). In aggrement with this, in vivo models of active transgenes have shown 

differences between Notch1 and Notch3. In the absence of a functional pre-TCR, 

Notch1 is not able to induce DP thymocyte differentiation. Notch3, instead, is able to 

block the pre-TCR check points forcing DN thymocyte differentiation (Allman et al., 

2001; Bellavia et al., 2003; Campese et al., 2003).   

 

 

 

 

 

 

 
Figure 1.4 Notch1 signalling. In the thymus Notch1 is recognized by the ligands of 
the Delta and Serrate/Jagged families. Ligand binding induces two sequential 
proteolytic cleavages. ADAM-type metalloproteases cleave a large portion of the 
ectodomain, exposing a site recognised by the intramembrane γ-secretase proteolytic 
complex (GS). Subsequently, cleavage by GS releases the Notch1 intracellular 
domain (NICD), which enters the nucleus and binds to the transcription factor CSL. 
These interactions convert CSL from a transcriptional repressor to an activator by 
displacing co-repressors (CoR) and recruiting coactivators (Co-A). This leads to 
regulation of transcription of many genes.  
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1.1.2 B lymphocytes 

B lymphocytes form 10-20% of circulating lymphocytes and are characterized by 

their production of the immunoglobulin antigen-binding proteins (Ig). Ig molecules 

are formed by two identical heavy chains and two identical k or λ light chains. The 

N-terminal region of the heavy and light chains varies from one antibody molecule 

to another and is known as VH and Vκ or Vλ respectively. The juxtaposition of one VH 

and one Vκ or Vλ domain creates the antigen-binding portion of the Ig molecule. The 

C-terminal portions of the heavy and light chains are constant in each subclass of 

antibody. The heavy chain of the C-terminal portion forms the Fc domain that is 

responsible for the effector functions of the Ig molecule (Chaplin, 2010).  

B lymphocytes originate from haematopoietic stem cells and differentiate in the bone 

marrow to become mature surface IgM- and IgD- expressing cells. During 

differentiation their antigen receptors (surface Ig) are assembled by a RAG1/RAC2-

mediated process similarly to TCRs (Jankovic et al., 2004). In peripheral lymphoid 

tissue, B cells carry on their maturation under the influence of cytokines secreted by 

Th cells to undergo isotype switching and affinity maturation by somatic mutation. 

The isotype switching ensures the production of antibodies of different isotypes with 

distinct biological effector functions but the same antigenic specificity (Chaplin, 

2006). The cytokine IL-10 secreted by Th triggers a switching to IgG1 and IgG3 that 

bind phagocytic cells with high affinity. The cytokines IL-4 and IL-3 cause the 

switching to IgE. IgE binds to Fc receptors on the membranes of basophils and tissue 

mast cells. Localized mast-cell degranulation induced by IgE releases mediators that 

facilitate the recruitment of cells necessary for antiparasitic defence. IgE molecules 

also mediate the hypersensitivity reactions responsible of asthma or hay fever. TGF-

β triggers the switching to IgA which are the main Ig of external secretions such as 

saliva and gut (Baumgarth, 2000). A main difference between the antigen 

recognition by the Ig and by TCRs is that Ig can recognize complex 3 dimensional 

structures, whereas the TCR can only recognize short linear peptide presented by 

MHC-I or II (Chaplin, 2006). 

After antigen stimulation, B cells differentiate into plasma cells that secrete 

immunoglobulins. Each B cell receptor (BCR) expressed on the B cell surface, 

recognizes a specific antigen. The mature BCR form a complex which includes 

invariant transmembrane proteins known as CD79a (Igα) and CD79b (Igβ). The 
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complex also includes CD19, CD81 and CD21. The binding of an antigen induces 

the phosphorylation of the cytoplasmic ITAM portion of Igα and Igβ by the Src 

family kinase Lyn. ITAM phosphorylation induces the recruitment of different 

kinases and adaptor proteins depending on the state of cell maturation and antigen 

ligated. These signals include the mitogen-activated protein kinase (MAPK) pathway 

which induces cell proliferation and the Akt pathway which induces cell survival 

(Khan, 2009).  

B cells express CD40, a member of the TNF receptor family that plays a role in the 

interaction of T helper cells and B cells. Activated T-helper cells express a ligand for 

CD40 mediating the interaction between B cells and T-helper cells (Simeoni et al., 

2004)  
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1.2 T-acute lymphoblastic leukaemia 

T-ALL is a neoplastic disorder that mainly occurs in children with a peak at 2-5 

years of age. It represents 15% of paediatric and 25% of adult acute lymphoblastic 

leukaemia (Mathisen et al., 2013). T-ALL is characterized by clonal proliferation of 

malignant blast cells with an immature T lymphocyte phenotype. T-ALL cells are 

heterogeneous and arrested in a particular stage of maturation that can be correlated 

to their normal counterpart, differentiating T cells. For example the T-ALL cell line 

CCRF-CEM correlates with the pre-T lymphocytes. SUPT1 and Jurkat correlate with 

cortical T-lymphocytes (Burger et al., 1999) (Figure 1.5) 

Commonly T-ALL patients present with fatigue and pallor, spontaneous bleeding 

and lymphadenopathy. Bone and joint pain can be observed, more frequently in 

children causing difficulty to walk. The pathogenesis is also characterized by a high 

white blood count, and infiltration of T-ALL cells into various tissues, particularly 

lymph nodes, spleen and central nervous system (CNS). The migration and 

infiltration of leukaemic cells into tissues often correlates with a poor prognosis for 

patients with T-ALL (Kebriaei et al., 2002). The five years survival rates are 75-80% 

and 35-40% for children and adult respectively. Recently, mortality has decreased 

due to strong chemotherapy and radiotherapy. Because the CNS is the main site of 

relapse, T-ALL patients usually receive cranial irradiation and intrathecal 

chemotherapy. This therapy unfortunately often leads to several side effects 

including growth impairment, neurocognitive deficit and secondary cancers.  It is 

therefore important to develop new targeted therapies with less side effects 

(Demarest et al., 2008). At the stage of diagnosis T-ALL is often associated with 

extramedullary infiltration of leukaemic cells. This is present in 30% to 50% of 

children which have enlargement of the liver or spleen.  

A potential mechanism in the trafficking of leukaemia cells is the interaction of the 

chemokine receptor CXCR4, expressed on T-ALL cells, and its ligand stromal cell-

derived factor-1 (SDF-1/CXCL12) (see section 1.4.3), produced by stromal cells in 

bone marrow and extramedullary organs (Crazzolara et al., 2001). In a study on 11 

paediatric T-ALL patients the overexpression of the chemokine receptor CCR9 and 

the integrin CD103 was identified in one patient. This marker was associated with 

relapse to the gut suggesting that CCR9 or CD103 could contribute to T-ALL 

location to the gut (Annels et al., 2004) (see section 1.4.3).  
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Figure 1.5 Correlation of T-ALL cell lines with the normal differentiation 
pattern of human T-lymphocytes. Adapted from (Burger et al., 1999) 
 

 

 

T-ALL develops as a consequence of oncogenic mutations, in particular 

chromosomal translocations. The chromosomal translocations can occur during T 

cell development as a result of defective TCR recombination leading to aberrant 

proliferation and differentiation. These translocations often involve the juxtaposition 

of a strong promoter from TCR genes on chromosome 7 and 14 with transcriptional 

factor genes, such as TAL1, LMO, LYL1 and HOXA (Graux et al., 2006). Some 

chromosomal translocation can lead to genes encoding to chimeric proteins whit 

oncogenic properties as mixed-lineage leukaemia (MLL)-partner-gene fusions 

(Aifantis et al., 2008). Other common mutations include cryptic deletions that lead to 

the loss of tumour suppressor genes such as INK4 at 9p31 that leads to loss of G1 

control of cell cycle (Graux et al., 2006). 

Nevertheless expression microarrays, quantitative RT-PCR and whole-genome 

sequencing studies have identified different T-cell oncogenes that are dysregulated in 

T-ALL in the absence of chromosomal abnormalities (Ferrando et al., 2004; Sanz-

Moreno et al., 2008; Zhang et al., 2012). Large-scale expression profiling of T-ALL 
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hs identified different gene expression signatures of leukaemic cells arrested at a 

specific stage of development. LYL1 shares 90% sequence identity with TAL1. 

They are expressed in the developing haematopoietic system but not in the thymus 

(Giroux et al., 2007). For example LYL1 is higly espressed in immature thymocytes 

whereas TAL1 is expressed in late cortical thymocytes (Graux et al., 2006). 

Interestingly, 30% of LYL1 transgenic mice develop T-cell and B-cell leukaemia 

with infiltration in multiple organs. LYL1 is also higly expressed in acute 

myeloblastic leukaemia (AML) and myelodysplastic syndrome (MDS) suggesting 

that it could be involved in the development of these cancers (Meng et al., 2005). 

TAL1 is normally expressed in a subset of haemapoietic cells, endothelial cells and 

cells of the central nervous system. TAL1 gene is located on chromosome 1p32. 

Rearrangements of this locus are present in 25% of T-ALL patients resulting in 

TAL1 activation. TAL1 activation is mainly due to a deletion that replaces the 

regulatory promoter sequence of TAL1 with that of the upstream gene SIL (Brown et 

al., 1990; Janssen et al., 1993).  

Aberrant expression of LMO1 and LMO2 has been found in 45% of T-ALL cases. 

LMO1 was identified in T-ALL patients with chromosomal translocation 

t(11;14)(p15;q11), whereas LMO2 was found in chromosomal translocation 

t(11;14)(p13;q11). Transgenic mice expressing LMO1 or LMO2 develop leukaemia 

with an accumulation of immature DN T cells but the cancer has a long latency. This 

suggests that these genes are necessary but not sufficient to develop leukaemia 

(Aplan et al., 1997). Interestingly, some T-ALL patients have abnormalities of 

LMO2 and TAL1 suggesting they could act synergistically to promote 

tumorigenesis. Moreover, transgenic mice co-expressing LMO2 and TAL1 genes in 

T cells develop T-ALL 3 months earlier than mice with just the LMO2 transgene 

(Larson et al., 1996).  

The homeobox genes normally regulate stages of embryonic development, important 

for morphogenesis and cellular differentiation. These genes encode highly conserved 

master regulators of transcription involved in the early development and regulation 

of haematopoiesis (Aifantis et al., 2008). Among these genes, HOXA (HOXA10 and 

HOXA11) is involved in a translocation associated with T-ALL. The chromosomal 

translocation involves the juxtaposition of TCR regulatory elements near HOXA 

genes or separates the HOXA gene from its regulatory elements.  
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Recently, Notch1 activating mutations have been identified in more than 50% of T-

ALL patients (Weng et al., 2004). Most of the Notch mutations observed in T-ALL 

cell lines and primary T-ALL cells are located in the HD and PEST domains (Figure 

1.3). Mutation of the HD domain leads to ligand-independent Notch1 cleavage and 

constitutive activation of Notch signalling.  The mutations in the PEST domain 

increase the half-life of the intracellular domain (Demarest et al., 2008; Giambra et 

al., 2012). One of the pathways triggered by Notch signalling is PI3K/target of 

rapamycin mTOR pathway.  

mTOR is a serine/threonine kinase that is part of two complexes, mTORC1 and 

mTORC2, with different biochemical structures and substrate specificity (Willems et 

al., 2012). mTORC2 is implicated in proliferation and differentiation of pre-T cells 

mediated by NF-kB and in the expression of the chemokine receptor CCR7 in 

leukaemic cells. CCR7 was shown to mediate leukaemic T-cells infiltration into the 

CNS (Buonamici et al., 2009; Lee et al., 2012). 
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1.3 Ras and Rho GTPases as regulators of cell adhesion and 
migration 

Leukocyte migration is tightly regulated and requires adhesion, polarization and 

cytoskeleton reorganization. Key regulators of migration are Rho and Ras GTPases. 

Ras was the first small G-protein to be identified and is mutated in 33% of all human 

cancers (Baines et al., 2011). Mutations in the Ras pathway are common in myeloid 

malignancies. They occur in approximately 20% of adult acute myelogenous 

leukaemia, 40% of chronic myelomonocytic leukaemia, and 30% of juvenile 

myelomonocytic leukaemia cases (Mullally and Ebert, 2010).  

The human Ras superfamily comprises of 154 members divided into five 

families: Ras, Rho, Rab, Arf and Ran families (Wennerberg et al., 2005) (Figure1.6). 

 

 

Figure 1.6  Phylogenetic tree of the mammalian Ras GTPase superfamily. There 
are 20 Rho GTPases classified in 8 subgroups based on sequence similarities (Vega 
and Ridley, 2008).  
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Most GTPases cycle between a GDP-bound inactive form and a GTP-bound active 

form that interacts with downstream effector proteins. The GTP-GDP switch is 

regulated by specific classes of proteins: the guanine nucleotide exchange factors 

(GEFs) that promote exchange of bound GDP for GTP, and GTPase activating 

proteins (GAPs) which promote GTP hydrolysis to GDP (Figure 1.7).  . 

  

 

 
 

 
 
 
Figure 1.7 Regulation of Rho GTPase activity. Rho GTPases switch between a 
GDP-bound inactive form to a GTP-bound active form. This process is regulated by 
guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). 
Several Rho GTPases are also regulated by the GDP dissociation inhibitors (GDIs) 
which sequester them in the cytoplasm (See 1.3.1).  
 

 

 

1.3.1 Ras and Rho GTPases lipid modification 

Most Ras superfamily GTPases are post-translationally modified by farnesyl or 

geranylgeranyl isoprenoid groups. These modifications facilitate the anchorage of 

these proteins to membranes where they signal to downstream effectors. Isoprenoids 

are lipids that can be added to the cysteine of the GTPase C-terminal CAAX 



Introduction 
____________________________________________________________________ 

36 
 

consensus tetrapeptide motif (cysteine-aliphatic-aliphatic-any). Depending on the X 

of the CAAX motif, GTPases can be either farnesylated or geranylated. If the X of 

the CAAX consensus is a leucine, the GTPase is geranylated, whereas if the X is 

serine or methionine, it is farnesylated (Roberts et al., 2008) (Figure 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.8 GTPase isoprenylation. Depending on the last amino acid, GTPases can 
be either farnesylated or geranygeranylated on the cysteine residue of the CAAX 
motif. Farnesyl transferase prefers a Ser or Met, geranylgeranyl transferases prefer a 
Leu.  
 

 

 

Farnesyltransferase or geranylgeranyltransferase catalyse the transfer of the carbon 

isoprenoid chain from farnesylpyrophosphate or geranygeranylpyrophosphate to the 

cysteine residue. Subsequently, an endopeptidase removes the last three amino acids 

from the carboxyl terminus of the protein. The cysteine is then methylated by a 

methyltransferase (Figure 1.9) 
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Figure.1.9 Skeletal formula of farnesylpyrophosphate (A) and 
geranygeranylpyrophosphate (B).  
 
 
 
Several GTPases have a C-terminal polybasic region (PBR) with multiple lysines or 

arginines. This region mediates localization to membranes and interaction with some 

proteins. The PBR can promote the interaction with a nucleocytoplasmic shuttling 

protein SmgGDS. For example the PBR domain of Rac1 was found to enhance the 

nuclear accumulation of a protein complex containing SmgGDS and Rac1 that is too 

large to diffuse through the nuclear pores (Williams, 2003).  

In addition to the polybasic region, some GTPases are C-terminally palmitoylated. 

Palmitoylation is the post-translational covalent addition of the 16-carbon fatty acid 

palmitate (Figure 1.10)  

 

Figure 1.10 Skeletal formula of 16-carbon fatty acid palmitate. 
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The main difference from isoprenylation is that palmitoylation is a reversible 

process. This allows proteins to associate transiently with membranes, regulating 

their localization or endocytic trafficking (Navarro-Lerida et al., 2012). H-Ras has 

two palmitoylated cysteine residues, Cys181 and Cys184. These sites show distinct 

biological functions. Monopalmitoylation of Cys181 is required for H-Ras targeting 

to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit 

trafficking beyond the Golgi (Roy et al., 2005). Rac1 was also recently demonstrated 

to be palmitoylated at Cys178. Its palmitoylation requires prior prenylation and an 

intact PBR. Lack of Rac1 palmitoylation induces a decrease in cell spreading and 

migration, suggesting palmitoylation is required for Rac1 function in actin 

cytoskeleton remodelling (Navarro-Lerida et al., 2012) (Figure 1.11) 

 

Figure 1.11 GTPase lipid modification. Farnesyl or geranylgeranyl transferase 
catalyse the transfer of isoprenoid groups to a cysteine residue close to the carboxyl 
terminus. Following isoprenylation, an endopeptidase removes the end three amino 
acids from the carboxyl terminus of the GTPases. The new carboxyl terminus is then 
methylated by a methyltransferase. In some GTPases, following transport to the 
plasma membrane palmitoyltransferase catalyses the addition of two palmitoyl long-
chain fatty acid groups to a cysteine residue that is upstream of the isoprenylated 
carboxyterminal cysteine. FPP= farnesyl pyrophosphate. GGPP= geranylgeranyl 
pyrophosphate. F=farnesyl group. G=geranylgeranyl group. Adapted from Donward, 
Nat Rev Cancer 2003. 
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The Rho GTPases RhoU and RhoV are targeted to membranes by palmitoylation and 

are not prenylated (See 1.3.5.1 and 1.3.5.2). 

Some Rho GTPases are regulated by GDP dissociation inhibitors (Rho GDI). The 

Rho GDIs in humans are GDI α, β, γ. These molecules sequester Rho proteins in the 

cytoplasm by binding the prenyl group at the C-terminus. This prevents the 

dissociation from GDP blocking the Rho protein in an inactive state (Greenwood et 

al., 2006) (Figure 1.7) 

 

 

1.3.2 Statins, geranylgeranyl and farnesyl inhibitors 

Statins are small molecules used to treat hypercholesterolemia and cardiovascular 

disease. They decrease cholesterol synthesis by inhibiting the 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase that converts the 3-hydroxy-3-

methyglutaryl-CoA into mevalonic acid, a substrate of the cholesterol pathway 

(Figure 1.12). The synthesis of mevalonate is necessary for the biosynthesis of 

cholesterol but also for other molecules of the mevalonic cascade, such as 

isoprenoids (Greenwood et al., 2006). As described above, Ras/Rho proteins are 

modified by isoprenoids.  Suppression of isoprenoid synthesis has been considered 

responsible for some of the pleiotropic effects of statins.  

Statins are already used to treat hypercholesterolemia, atherosclerosis and 

cerebrovascular disease and have shown beneficial effects in other common diseases 

such as neurodegeneration, osteoporosis and cancer (Fuchs et al., 2008). 

Randomized controlled trials for preventing cardiovascular disease indicated that 

statins had unexpected benefits for reducing colorectal cancer and melanoma. The 

reduction in isoprenylation of the Ras/Rho GTPases, preventing membrane 

localization, might be an important aspect in the cancer prevention properties of 

statins (Demierre et al., 2005). 
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(c) 
 
 
 
Figure 1.12 Statin inhibition of prenylation. Chemical structures of simvastatin 
(A) and lovastatin (B). From Barrett, J Pharm Biomed Anal. 3-Hydroxy-3-
methylglutaryl-CoA reductase catalyzes the synthesis of mevalonic acid, which is 
required for the geranylgeranylpyrophosphate and farnesylpyrophosphate synthesis. 
These groups are covalently added to the Ras/Rho GTPases allowing their anchorage 
to membranes (C). Adapted from Grenwood, Nat Rev Immunol. 
 

 

 

The transforming activity of oncogenic Ras requires its prenylation. For this reason 

farnesylation transferase inhibitors (FTIs) were developed to inhibit Ras 
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farnesylation. FTIs inhibit growth and induce tumour regression in Ras-dependent 

tumours in mice and these compounds have been tested in clinical trials in solid and 

haematological malignancies (Karp and Lancet, 2005). Based on initial results, these 

compounds were suggested to be used in combination with chemotherapy, 

radiotherapy or other targeted agents (Mazieres et al., 2004). However, a trial in 

multiple myeloma patients of the FTI inhibitor tipifarnib discouraged the use of this 

drug as only 23 of 36 patients showed disease stabilization (Ocio et al., 2008). The 

lack of success of FTI in inhibiting K and N-Ras is probably due to alternative 

geranygeranylation (Roberts et al., 2008; Whyte et al., 1997). 

Inhibitors of geranylgeranlylation are known as geranylgeranyl transferase inhibitors 

(GGTIs). These compounds have also been developed as potential cancer therapies. 

One reason is that K-Ras, the most commonly mutated Ras isoform becomes 

geranylgeranylated in the presence of FTIs. Moreover, RhoC, Cdc42 and Rac1 are 

all geranylgeranylated and have been shown to have a role in metastasis, in same 

cases downstream of K-Ras. Similar to FTIs, GGTIs inhibit tumour growth in vitro 

and animal models and one GGTI has entered in a clinical trial in patients with 

advanced solid malignancy (Berndt et al., 2011).  

 

 

1.3.3 Rap GTPases  

Rap proteins belong to the Ras superfamily of small G-proteins. Mammals have two 

Rap1 (Rap1a and Rap1b) and three Rap2 (Rap2a, Rap2b and Rap2c) proteins. Rap1 

and Rap2 proteins share 60% sequence homology.  

Rap proteins are involved in several aspects of cell migration, controlling integrin-

mediated adhesion, cell-cell adhesion, cytoskeleton organization, cell polarity and 

intracellular trafficking (Frische and Zwartkruis, 2010). Their effectors contain a Ras 

binding domain (RA)(van Dam et al., 2009). Like other GTPases, Rap proteins cycle 

between a GTP-bound active form and a GDP-inactive form. So far, five distinct 

classes of GEFs have been identified for Rap1: C3G, PDZ-GEF1 and 2, Epac1,2 and 

Repac, CalDAG-GEF1. Rap GAPs include Rap1GAPI and II, Spa1 and 

SIPA1L1/E67P1. Many of these GEFs and GAPs are not specific for Rap1 but can 

also act on Rap2 isoforms.  
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Rap1 has been implicated in β1, β2 and β3 integrin activation, a process partialy 

mediated by the effector molecule Rap1-GTP-interacting adaptor molecule (RIAM).  

RIAM belongs to the Mig-10/RIAM/Lamellipodin (MRL) family of adaptor 

proteins. RIAM has an RA domain that mediates the interaction with Rap1. The N-

terminus of RIAM harbours a proline-rich region bracketed by two potential coiled-

coil regions, whereas the C-terminus has a PH domain and a second proline-rich 

region (Boettner and Van Aelst, 2009). Overexpression of RIAM induces cell 

spreading and lamellipodium formation, and also induces activation of β1 and β2 

integrin. RIAM co-immunoprecipitates with talin and expression of RIAM activates 

integrin through talin.  siRNA depletion of RIAM in Jurkat T-cells inhibits adhesion 

to fibronectin. The downregulation of RIAM was also shown to decrease Rap1 

membrane localization (Lafuente et al., 2004).  

Although this process is not fully understood it is likely that RIAM act as scaffolding 

protein binding Rap, which induces talin tethering and integrin activation. Besides 

RIAM, the Rap1 effector RapL is also implicated in integrin activation by regulating 

LFA-1/αLβ2 spatial distribution (Boettner and Van Aelst, 2009). In mouse lymphoid 

tissues stimulated with CXCL12, RapL was found to associate with Rap1. This 

association induced a redistribution with LFA-1 to the leading edge, increasing 

adhesion to ICAM-1(Katagiri et al., 2003). 

Rap1 was demonstrated to be involved in tumorigenesis. Injection of Swiss 3T3 

expressing Rap1 into nude mice resulted in the formation of tumours (Altschuler and 

Ribeiro-Neto, 1998). Rap1 was also shown to be involved in myeloid leukaemic. 

Overexpression of the Rap1 GEF CalDAG-GEF in FDCP1 myeloid cells induced 

growth and transformation. CalDAG-GEF also increased cell adhesion to fibronectin 

through Rap1 (Dupuy et al., 2001). Another example implicating Rap1 in leukaemia 

comes from experiments on SPA-1 deficient mice. SPA-1 is a GAP of Rap1, and 

mice lacking this protein developed a spectrum of myeloid disorders similar to 

human chronic myelogenous leukaemia (CML) (Ishida et al., 2003) (Figure 1.13). 
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Figure 1.13 Effectors, GEFs and GAPs of Rap. Diagram showing the effectors 
(and their functions), GEF and GAPs of Rap. Proteins specific for Rap1 are 
highlighted in orange.  
 

 

Rap1a and Rap1b share 95% sequence identity (Figure 1.14). They differ at just 8 

amino acids located at the C-terminus (Raaijmakers and Bos, 2009). Both proteins 

are post-translationally modified by geranylgeranyl isopreonoids and are expressed 

in a variety of tissues (Wittchen et al., 2011). The distinct roles of Rap1a and Rap1b 

have not been clarified yet. Most studies have only used one isoform. Recently, 

downregulation of Rap1a but not Rap1b was reported to increase endothelial cell 

permeability by destabilizing cell-cell junctions. These data suggest that some 

cellular processes might differentially use these two isoforms (Wittchen et al., 2011).  
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Figure 1.14 Amino acid sequences of Rap1a and Rap1b. Rap1a and Rap1b share 
95% sequence identity. Differences in amino acid sequence are higlighted in yellow. 
Green indicates Cysteine of the CAAX sequence.  
 

 

 

1.3.3.1 Integrins and their ligands  

Chemokines act through G-protein coupled receptors and are important for T cell 

integrin activation. They were first suspected to be responsible for integrin activation 

after the observation that the G-protein signalling inhibitor blocked leukocyte 

adhesion to the endothelium (Bargatze and Butcher, 1993). Chemokines induce 

clustering of specific integrins on the leukocyte surface and more importantly, 

stimulate a conformational change in integrins which increases their affinity for 

ligands expressed on the endothelium (Neeson et al., 2000). 

Integrins are transmembrane adhesion receptors composed of an α and β subunit. In 

humans there are 18 α and β subunits that can assemble into 24 distinct receptors, 

that preferentially bind specific extracellular matrix (ECM) proteins (Arnaout et al., 

2007). Each integrin consists of a large extracellular domain, a transmembrane 

domain and a short cytoplasmic domain. The N-terminus of the α and β subunits 

forms a globular head contain the ligand-binding domain. Integrins can take 3 

conformational states: an inactive state, with low affinity for their ligand, an active 

state with high affinity and a ligand-occupied state. 
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For leukocyte adhesion to the endothelium, the integrins LFA-1 (αLβ2) and VLA-4 

(α4β1) play a major role. Their main ligands on the endothelium are the intercellular 

adhesion molecule (ICAM-1) for LFA-1 and the vascular cell adhesion molecule 

(VCAM-1) for VLA-4. LFA-1 also binds junctional adhesion molecule-A (JAM-A), 

contributing to T cell and neutrophil transendothelial migration (TEM) and LFA-1-

mediated arrest of T cells (Ostermann et al., 2002). ICAM-1 and VCAM-1 are 

basally expressed in resting endothelial cells, and ICAM-1 and VCAM-1 expression 

is induced by stimulation with proinflammatory cytokines such as IL-1 and TNF-α 

(Barreiro et al., 2002). VCAM-1 and ICAM-1 appear to play different roles during 

adhesion and TEM. Adhesion of T cells to activated endothelial cells was markedly 

inhibited by blocking antibodies to VCAM-1, but not by blocking antibodies to 

ICAM-1. ICAM-1 instead had a predominant role in TEM even when T cell 

adhesion to the endothelium was not mediated by ICAM-1 (Oppenheimer-Marks et 

al., 1991).  

Leukocytes and platelets express various types of integrins and defects in integrin 

expression or activation in immune cells result in immunodeficiency or autoimmune 

diseases. An α4 integrin antagonist has been used for treatment of multiple sclerosis 

as it reduces the adhesion and migration of lymphocytes and monocytes into the 

parenchyma reducing brain lesions (Gottlieb et al., 2004; Miller et al., 2003). 

In resting T lymphocytes, integrins are evenly distributed on the cell surface in an 

inactive state but they can be rapidly activated by diverse cellular agonists. The 

activation of integrins induces a conformational change in the extracellular domains 

leading to an increase in affinity for ligand binding (Stewart and Hogg, 1996). 

Integrin-ligand interactions are dependent of divalent cations, that can enhance or 

suppress the ligand binding activity. The α subunit I domain contains a unique metal 

binding site specific for Mg2+ and Mn2+, and the conserved I-like domain of the β 

subunit contains a similar cation binding motif. Mg2+ and Mn2+ can induce 

conformational changes in many integrins that correlate with an increase in the 

affinity state. The stimulation of integrin with Mg2+ requires chelation of the divalent 

cation Ca2+ (Leitinger et al., 2000).  

Chemokine or TCR stimulate inside-out signalling to activate integrins. As 

mentioned above, in the inactive state the ligand-binding site is bent and close to the 

cell membrane and the cytoplasmic tails are close together. The binding of talin to 
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the tail of the β subunit can generate a conformational change outside with an 

intermediate ligand affinity. Once the cytoplasmic α and β tails are sufficiently 

separated and the extracellular parts stand up the high-affinity conformation is 

reached (Zhang and Wang, 2012). The change in integrin conformation is important 

to arrest rolling leukocytes on blood vessels, as integrins can then bind the 

endothelial ligands, undergoing an additional allosteric rearraengment of the ligand-

binding domain to induce the anchorage of integrins to the actin cytoskeleton. This 

process might be mediated by the actin binding sites of talin (Alon and Shulman, 

2011). There are two talins, talin1 and talin2. Suppression of talin1 by RNAi inhibits 

VLA-4 and LFA-1 mediated arrest of lymphocytes on endothelial ligands (Manevich 

et al., 2007; Shamri et al., 2005). The binding of talin to the β subunit of integrins 

can be enhanced by phosphatidylinositol (4,5)-bisphosphate. The association of talin 

is not always enough to anchor integrins to the actin cytoskeleton. The β subunit 

needs a second co-activating signal by kindlin proteins (Figure1.15). In murine 

leukocytes binding of β1 and β2 integrin requires the presence of both talin1 and the 

hematopoietic-specific kindlin-3 (Malinin et al., 2009; Moser et al., 2009).  

 

 

 
 
 
Figure 1.15 Integrin activation. Talin and kindlin bind the cytoplasmic tail of β 
integrin leading to changes in the conformation from an inactive state to active state. 
Active integrin can then bind VCAM-1 or ICAM-1 expressed on the endothelium.  
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Several Rho GTPases have been reported to be involved in integrin activation, 

including RhoA, Rac1 and Rap1. RhoA activation stimulated β1 and β2 integrin-

mediated adhesion in murine thymocytes. In vivo RhoA depletion was found to 

impair adhesion to VCAM-1, but this process was suggested to be downstream of 

Rap1 and Rac1 (Vielkind et al., 2005). A constitutively active Rac mutant induced 

spreading of Jurkat cells and their adhesion to fibronectin in an integin-dependent 

manner. Cell adhesion mediated by active Rac was not due to changes in the 

expression or affinity state of integrins but to cell spreading (D'Souza-Schorey et al., 

1998). Rap1 has been well characterized as a protein involved in inside-out integrin 

activation, although the different contribution of the two isoforms Rap1a and Rap1b 

is not yet well understood. Rap1 regulates all integrins connected to the actin 

cytoskeleton (β1, β2 and β3) and was shown to control both integrin activation and 

integrin clustering depending on the integrin and the cell type (Bos, 2005). 

 

 

1.3.4 Rho GTPases  

There are 20 Rho GTPases in humans (Figure 1.6). Rho GTPases are implicated in 

the regulation of several cellular process and functions including cytoskeleton 

rearrangements, cell movement, vesicles trafficking and cell cycle progression. Most 

Rho GTPases are 20-28 kDa. Rho GTPase expression varies across tissues and is 

regulated by multiple stimuli. They exert their function by interaction with 

downstream targets such as protein kinases, phospholipases and actin nucleators 

(Heasman and Ridley, 2008).  

To date 83 RhoGEFs have been identified (Sanz-Moreno et al., 2008). Different 

GEFs can activate one or more Rho GTPases coordinating the Rho GTPases with 

different downstream effectors (Garcia-Mata and Burridge, 2007). GEFs are 

classified into two families: the Dbl family and the DOCK family. The Dbl proteins 

contain a Dbl-homology (DH) domain, which is responsible for the catalytic activity, 

and an adjacent PH domain. Some PH domains mediate GEF membrane localization 

as they can bind phospholipids promoting their localization to the plasma membrane 

(Rossman et al., 2005). The DOCK family lacks the DH domain and contains two 

DOCK homology regions (DHR1 and 2) that promote guanine nucleotide exchange 

(Cote and Vuori, 2007). GEFs and GAPs contain protein or lipid interaction domains 
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important for localization or for the formation of protein complexes. Extracellular 

signals regulate GEFs and GAPs by inducing postranslational modifications which 

affect activity and localization allowing protein complex formation. There are more 

than 70 RhoGAPs in humans (Bos et al., 2007).  

The atypical members of the Rho GTPase family do not act as molecular switches 

and do not cycle between a GTP-bound and a GDP-bound form. Rnd, RhoH and 

RhoBTB proteins lack GTPase activity, hence they are constitutively bound to GTP 

(Aspenstrom et al., 2007). The atypical Rho GTPases RhoU and RhoV have a high 

intrinsic GDP/GTP exchange rate and are therefore mainly in an active form (Shutes 

et al., 2004).  

 

 

1.3.4.1 RhoU  

RhoU belongs to the Cdc42 subfamily which also includes RhoV, RhoQ and RhoJ 

(Ellenbroek and Collard, 2007). RhoU shares 57% of the amino acid sequence 

identity with Cdc42. 

RhoU is also known as Wrch1, and its gene is located on the human chromosome 

1q42. RhoU was first isolated and cloned as a Wnt-inducible gene (Tao et al., 2001). 

Wnt-1 signalling is important for the development of organisms from nematodes to 

mammals (Cadigan and Nusse, 1997), but Wnt-1 was also identified as an oncogene 

implicated in tumorigenesis (Peifer and Polakis, 2000). The role of Wnt-1 signalling 

in development and tumorigenesis is mediated by its target genes. Wnt-1 through 

RhoU is able to induce transformation of mouse mammary epithelial cells (Tao et 

al., 2001).  

RhoU possesses a unique N-terminal 46 amino acid sequence extension containing 

several PxxP SH3-binding motifs (Figure 1.16).  

RhoU has a CAAX motif at the C terminus (CCFV). Despite this, RhoU does not 

undergo isoprenylation but is modified by palmitate (see section 1.3.1). Its 

localization is not affected by inhibitors of protein prenylation but by inhibitors of 

protein palmitoylation (Berzat et al., 2005). In fibroblasts, RhoU localizes to plasma 

membrane and endosomes (Tao et al., 2001).  

RhoU has not so far been studied in T cells. RhoU overexpression was shown to 

induce morphological changes, cytoskeletal reorganization and cell proliferation in 
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fibroblasts. Like Cdc42, RhoU induces filopodium formation and stress fibre 

dissolution in NIH3T3 fibroblasts (Tao et al., 2001). In HeLa cells, RhoU strongly 

localized to focal adhesions, and RhoU downregulation incresead focal adhesions 

formation and inhibited cell migration (Chuang et al., 2007).  

RhoU is able to activate p21 serine/threonine kinase (PAK), one of the most studied 

effectors of Rho GTPases (Tao et al., 2001). N-terminal deletion of RhoU enhances 

its ability to bind PAK1 (Shutes et al., 2004). NCK2 was also identified as a binding 

partner of RhoU. The PxxP-rich domain at the N-terminus of RhoU binds the second 

and third SH3 domains of NCK2 (Saras et al., 2004). The N-terminus of RhoU also 

associates with the adaptor protein Grb2, which increases RhoU activity (Shutes et 

al., 2004). Interestingly, after epidermal growth factor (EGF) stimulation, RhoU 

colocalizes with the EGF receptor on endosomes in a Grb2-dependent manner in 

pancreatic cancer cells (Zhang et al., 2011).  

RhoU also binds the nonreceptor tyrosine kinase Pyk2. The interaction requires 

RhoU to be in a GTP-bound form and also required the N-terminal proline-rich 

extension. The interaction requires the presence and activity of Src and has a role in 

filopodium formation in fibroblasts (Ruusala and Aspenstrom, 2008). In H1299 non-

small cell lung cancer cells RhoU relocates to the plasma membrane upon serum 

stimulation. Serum stimulation induces Src-mediated tyrosine phosphorylation of 

RhoU at Tyr254 residue. This phosphorylation decreases GTPase activity and the 

ability of RhoU to interact with downstream effectors (Alan et al., 2010). 

RhoU was also shown to bind to Par6 in epithelial cells. Par6 is a scaffolding protein 

important in establishing epithelial cell polarity and in regulating tight junction (TJ) 

formation. Their interaction was shown to affect epithelial cell TJ assembly and actin 

organization (Brady et al., 2009). 

Recently, ARHGAP30 has been identified to interact with RhoU. ARHGAP30 is 

closely related to the Cdc42-specific RhoGAP CdGAP. RhoU was found to bind 

ARHGAP30 and CdGAP in co-immunoprecipitation assays in fibroblasts. 

Overexpression of ARHGAP30 phenocopied RhoU in inducing filopodium 

formation and stress fibre disassembly, suggesting a role downstream of RhoU (Naji 

et al., 2011) (Figure 1.17).  
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1.3.4.2 RhoV 

The RhoV gene is located on the human chromosome 15q15 which is a fragile site in 

the human genome. RhoV shares 55.4% of total amino acid identity with RhoU and 

43.5% with Cdc42. RhoV is higly expressed in gastric, pancreatic and cervical 

cancer (Katoh, 2002). RhoV is also moderately overxpressed in pro-myelocytic 

leukaemia, Burkitt's lymphoma and colorectal cancer (Katoh, 2002). Like RhoU, 

RhoV is able to activate PAKs and contains a unique N and C-terminal extension 

(Aronheim et al., 1998; Weisz Hubsman et al., 2007) (Figure 1.16). Overexpression 

of RhoV induces the induction of lamellipodia possibly through interaction with 

Pak2 (Aronheim et al., 1998). 

RhoV lacks a CAAX motif, and undergoes palmitoylation for membrane targeting. 

Immunofluorescence analysis of NIH3T3 fibroblasts overexpressing GFP-RhoV 

showed that RhoV localizes to the plasma membrane and endosomes. Moreover 

NIH3T3 cells overexpressing RhoV showed transforming activity which requires an 

intact C-terminus. Deletion of the N-terminal extension enhanced its transforming 

activity, suggesting a negative regulatory role of this domain (Chenette et al., 2006). 

In PC12 cells, RhoV expression induces apoptosis and activation of JNK signalling 

via both death receptor-mediated and mitochondrial apoptotic pathways as 

determined by caspase-8 and caspase-9 activation. This suggests a possible role of 

RhoV in regulating PC12 apoptotic activity in a JNK-dependent manner (Shepelev et 

al., 2011) (Figure 1.17). 
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Figure 1.16 Amino acid sequences of Cdc42, RhoV and RhoU. The amino acid 
sequence of Cdc42 was aligned with those of RhoU and RhoV. The proline residues 
in the N-terminal domain of RhoU are underlined. Amino acids required for RhoU 
and RhoV membrane targeting are denoted by orange boxes. The yellow box 
indicates RhoU phosphorylation site. The red boxes indicates palmitoylation site of 
RhoU and RhoV. Asterisks indicate Cdc42 CAAX box.  
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Figure 1.17 Domain structure of RhoU and RhoV. RhoU and RhoV consist of 
258 and 236 amino acids respectively. The C- terminus of both proteins is 
palmitoylated. The phosphorylation site at the C-terminus of RhoU is indicated. The 
N-terminal domain of RhoU is proline-rich. Downstream partners of RhoU and 
RhoV and their function are indicated. 
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1.4 Rap and Rho GTPases and T lymphocyte migration 

Mature T lymphocytes circulate in the blood stream as non-adherent cells. It has 

been estimated that under normal conditions T lymphocytes spend less then 30 

minutes in the blood circulation, repeatedly visiting secondary lymphoid organs. 

This traffic is fundamental for a good immune surveillance. To reach secondary 

lymphoid organs, T lymphocytes need to cross the vascular endothelium. Once in the 

lymph nodes, T cells scan the area searching for APCs. The immunological synapse 

between the T lymphocytes and APCs triggers a signalling cascade that eventually 

induces the activation and proliferation of the T lymphocytes. After activation T 

lymphocytes enter in the blood stream and transmigrate through the blood vessels to 

reach the inflamed or infected area (Rougerie and Delon, 2012). Rho GTPases 

mediate this process by controlling each step of transendothelial migration: adhesion 

and protrusion of lamellipodia, polarization and chemotaxis (Rougerie and Delon, 

2012).  

 

 

1.4.1 Rap and Rho GTPases in adhesion 

In resting T cells, integrins are in an inactive conformation. This conformation is 

maintained by the atypical Rho GTPase RhoH. Downregulation of RhoH in Jurkat 

and primary human T cells causes an increase of αLβ2/LFA1-dependent adhesion 

onto ICAM-1 (Cherry et al., 2004). Recently Cdc42 was also described as a negative 

regulator of LFA-1 activation (Bolomini-Vittori et al., 2009). Rap1 is a major and 

well established regulator of integrin activation as described above.  

Rac1 also plays a role in integrin activation during chemotaxis. Rac1 was shown to 

increase spreading of Jurkat cells in a β1-dependent manner (D'Souza-Schorey et al., 

1998). In addition stimulation with the chemokine CXCL12 promotes α4β1-

dependent integrin activation through Rac1 in human T cells (Garcia-Bernal et al., 

2005). Interestingly, Rac1 and Rac2 deficient T cells have a defect in adhesion to 

ICAM-1, suggesting that Rac1 and Rac2 participate in β2 as well as β1-mediated 

adhesion. Moreover, only depletion of both Rac1and Rac2 induces this striking 

defect, suggesting a possible redundant function of these two GTPases (Faroudi et 

al., 2010; Rougerie and Delon, 2012; Vielkind et al., 2005). However, in 
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macrophages Rac1 and Rac2 were showed to have distinct roles. Macrophages 

lacking Rac2 had a reduction in podosomes while lack of Rac1 altered cell shape and 

reduced membrane ruffling (Zhang et al., 2012).  

RhoA has important functions in T cell development in the thymus (Corre et al., 

2001). RhoA activation is sufficient to promote β1 and β2 integrin-mediated 

adhesion in murine thymocyte. Loss of RhoA function impaired thymocytes to 

adhere and to migrate on VCAM-1 and prevented integrin activation induced by the 

GTPases Rac-1 and Rap1a in vivo. This suggests a role of RhoA in regulating cell 

adhesion and migration during T cell development (Vielkind et al., 2005).  

 

 

1.4.2 Rho GTPases and cell migration 

Chemokine stimulation is important for T cell polarization and this is a fundamental 

step for T cell migration. During polarization, T cells acquire a motile morphology 

with a broad leading edge at the front called the lamellipodium, where the 

chemokine receptor and activated αLβ2 integrin (LFA-1) are localized, and a uropod 

at the back where ezrin-radixin-moesin proteins (ERM), ICAM-1/3 and CD44 are 

distributed (Gerard et al., 2007).  

T cell polarization and migration require the re-organization of the actin 

cytoskeleton, a process regulated mainly by the classical Rho GTPases Rac, Rho and 

Cdc42. The cytoskeleton undergoes dynamic changes depending on what is required 

in a particular situation. Monomeric G-actin can polymerize into filaments (F-actin). 

G-actin binds ATP in a complex with Mg2+. ATP binding stabilizes the actin 

monomer promoting polymerization (Le Clainche and Carlier, 2008). The new actin 

filaments initiate from an actin nucleus that can accept actin monomers. During actin 

polymerisation, actin monomers are added either free or in complex with the actin 

binding protein profilin to the barbed ends of pre-existing filaments. The 

polymerization is terminated by capping proteins such as Gelsolin or Eps8 (Mathisen 

et al., 2013). The spontaneous assembly of monomers into actin filaments is a slow 

and an unfavourable process. It is enhanced by actin nucleators such as the Arp2/3 

complex or proteins of the formin family. The Arp2/3 complex comprises of Arp2 

and Arp3 proteins and together with 5 actin-related proteins (ARPC). The Arp2/3 

complex binds pre-existing filaments. Its activation is mediated by nucleation 
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promoting factors (NPFs) such as WAVE and WASP (Park et al., 2007). The formin 

family is divided in different subclasses: Diaphanous (mDia), formin-related proteins 

in leukocytes (FRLs), dishevelled-associated activators of morphogenesis (DAAMs), 

formin homology domain proteins (FHODs), formins (FMNs), delphilin and inverted 

formins (INFs). Formins nucleate non-branching actin filaments and remain bound 

inhibiting the apability of capping proteins to block polymerisation.  Formins 

nucleate linear actin filaments and they have been proposed to mediate filopodium 

formation (Campellone and Welch, 2010; Faix and Grosse, 2006). Depolymerisation 

of F-actin is mediated by ADF/Cofilin proteins that bind preferentially to ADP-actin, 

promoting the release of actin monomers. Profilin promotes the exchange of ADP 

for TP on G-actin monomers, to start a new cycle of polymerisation (Kiuchi et al., 

2007).  

The lamellipodium contains a branching network of actin filaments. The main 

regulators of lamellipodium formation are Rac1 and Rac2 (Ridley et al., 1992). Rac 

GTPases regulates actin polymerization through the WAVE complex, consisting of 

WAVE, PIR121/Sra-1, Nap125, HSPC300 and Abl interactor (Abi). Rac binds to 

PIR121/Sra-1. In response to stimuli, WAVE can signal to the Arp2/3 complex 

inducing actin polymerization (Rougerie and Delon, 2012).  

Several GEFs play a role in T cell migration by activating Rac1. Among these, 

DOCK2 is particularly important in T cells. Knockout of DOCK2 blocks Rac 

activation and consequently cell migration (Garcia-Bernal et al., 2006). Rac is not 

the only Rho GTPase to induce actin polymerization. Cdc42 can also activate WASP 

and N-WASP leading to actin nucleation by the Arp2/3 complex (Harris and Tepass, 

2010). Cdc42 is also able to induce filopodium formation via mDia formins, which is 

not important to generate force but is instead important for chemotaxis in T cells 

(Rougerie and Delon, 2012). 

RhoA has recently been shown to play a role at the leading edge of crawling and 

transmigrating T cells. Active RhoA was found at the front of CCRF-CEM cells 

during TEM and its activity correlates with both retraction and protrusion (Heasman 

et al., 2010). 

The accumulation of F-actin at the front of cells is, together with the contraction of 

the uropod, important to generate the force to move forward. The uropod generates a 

contractile force through myosin II interaction with actin bundles (Rougerie and 

Delon, 2012). RhoA is a major player in the T cell uropod, because it is a regulator 
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on myosin II activity. Rho isoforms induce myosin light chain (MLC) 

phosphorylation and inhibit MLC phosphatase via their downstream targets ROCK1 

and ROCK2 (Kaibuchi et al., 1999; Takesono et al., 2010). 

The RhoA/ROCK/myosinII axis was also shown to be important in the maintenance 

of migratory polarity by controlling actomyosin contractility and microtubule 

stability (Heasman et al., 2010). In polarized T cells the microtubule organizing 

centre (MTOC) localizes at the back of the cell, behind the nucleus, along with 

ROCK. Treatment of T cells with nocodazole depolymerizes microtubules, 

increasing RhoA activity and inducing loss of migratory polarity (Takesono et al., 

2010). Moreover, RhoA depletion in CCRF-CEM T-ALL cells leads to loss of 

migratory polarity (Heasman et al., 2010). Active RhoA localizes at the back of T 

cells where it is associated with ROCK-mediated contraction (Heasman et al., 2010) 

(Figure 1.18).  
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Figure 1.18 Signalling in T cell migration. In polarized T cells the microtubule 
organizing centre localizes behind the nucleus.  Rac1 activates the WAVE complex, 
leading to Arp2/3-mediated actin polymerisation at the lamellipodium. Cdc42 
induces filopodia via the formin mDia2. RhoA activation at the rear of the cell 
controls uropod contractility through ROCK inhibtion of MLC phosphatase and 
subsequent MLC phosphorylation. Cdc42 contributes to membrane extension via 
WASP which activate the Arp2/3 complex. RhoA  is also proposed to be active at 
the front of the cell to induce actin polymerization  through  mDia and membrane 
retraction via ROCK. 
 

 

 

 

Polarity proteins mediate migratory polarity in T cells. These proteins are conserved 

during evolution and they induce the polarized distribution of multiprotein 

complexes. The most well characterized polarity complexes are Par, Crumbs and 
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Scribble modules. During migratory polarization these complexes can cooperate to 

induce polarity or antagonize each other to achieve cell asymmetry.   

The Crumbs complex was identified in Drosophila melanoganster and consists of 

Crumbs, Protein associated with Lin seven 1 (Pals1) and Pals1-associated tight 

junction protein (PATJ). The Scribble complex consists of Scibble, Discs large (Dlg) 

and Lethal giant larvae (Lgl) (Ellenbroek et al., 2012). Components of the Par, 

Scribble and Crumbs complexes localize asymmetrically in migrating polarized T 

cells. The scribble protein complex localizes in the uropod and downregulation of 

Scribble impairs T cell polarization (Iden and Collard, 2008). Immunological 

synapses between T-cells and APC involves a polarized and adhesive contact 

between the T cell and APC. Dlg and Scribble proteins are important during 

immunological synapse formation as they redistribute from the uropod to the 

immunological synapse to colocalize with Par3 and the TCR (Ludford-Menting et 

al., 2005). Cdc42 not surprisingly has a role in T cell polarization. It was found to 

prevent the formation of a lamellipodium in the uropod avoiding “two headed” cells, 

hence preserving polarity (Ratner et al., 2003). The Par polarity complex is formed 

by Cdc42, Par3, Par6 and the atypical PKCs (aPKCι and aPKCζ). The activation of 

the complex at the front of the cell leads to the binding of adenomatous polyposis 

coli protein, a tubulin binding protein at the plus-ends of microtubules. The binding 

of adenomatous polyposis coli protein to the plus ends of microtubules together with 

the association of Dlg helps to establish polarity (Jaffe and Hall, 2005). The Par 

complex controls T cell migratory polarity. Active Cdc42 at the leading edge binds 

the Par6/Par3/aPKC complex inducing binding to the T lymphoma invasion and 

metastasis 1 (Tiam1). Tiam1 is a GEF that activates Rac via Par3. Tiam1 is a 

downstream effector of active Rap1a and acts as a scaffolding protein bringing Par3 

complex close to Rap1a and Rac1 by simultaneous binding to Par3 and Rap1a-GTP. 

This suggests that Rap1a recruts Tiam1 and the Par complex to the site of activation. 

Tiam1 can therefore couple Rap1a/Cdc42/Par-complex leading  to the activation of 

Rac1 inducing actin polymerization at the front of the cell (Gerard et al., 2007). 
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1.4.3 Chemotaxis 

The selective recruitment of different leukocyte populations into tissues is 

determined by the presence of chemokines on a tissue and the respective receptors 

on leukocytes. Chemokine and chemokine receptor expression varies on different 

leukocyte subtypes and across the vasculature. For example, CCR7 and CXCR5 are 

differentially expressed on lymphocytes and dendritic cells allowing these cells to 

change their homing capacity and traffic routes (Lipp and Muller, 2003; Mackay, 

2001).  

So far about 40 chemokines are known, and they are classified according to the 

configuration of cysteine residues at the N-terminus into four families: CC, CXC, C 

and CX3C. They are small (8-14 kDa) molecules that regulate trafficking and host 

defence of leukocytes. They signal through the G protein-coupled receptors (GPCR) 

superfamily (Zlotnik and Yoshie, 2000). CXCL12 (also known as SDF-1) is 

produced by the bone marrow stromal and endothelial cells and is the ligand of the 

GPCR CXCR4. CXCLl2 has been shown to activate several signalling pathways in 

T cells, including PI3Ks, mitogen-activated protein kinase and protein kinase C. 

CXCL12 was also shown to induce Rac1 and Cdc42 activation and its effectors 

(Haddad et al., 2001). 

Several studies indicate the important role of CXCR4 in leukaemic cell homing into 

the bone marrow. Treatment of primary human leukaemic cells with CXCR4 

blocking antibodies decreased their homing into the bone marrow of mice which fail 

to develop mature T and B cells and consequently are immunodeficient 

(NOD/SCID). Administration of anti-human CXCR4 monoclonal antibodies to mice 

previously engrafted with primary human AML or ALL cells leads to a decrease in 

the levels of leukaemic cells (Tavor and Petit, 2010). Since the expression of a 

specific chemokine directs the homing of hematopoietic cells, chemokine receptor 

expression can be used to predict the possible metastatic site of a tumour. For 

example, at diagnosis, a 4-year old T-ALL patient had marked overexpression of the 

gut homing molecules chemokine receptor 9 (CCR9) and CD103. The relapse of 

leukaemia was subsequently confined to the gut. This suggests a role of chemokines 

in determining the location of relapse (Annels et al., 2004). 

To reach a site of inflammation, leukocytes have to move significant distances where 

they encounter various chemoattractants. The ability of cells to sense external 
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molecules and to respond by directional migration is known as chemotaxis. Cells are 

also able to detect small changes in chemoattractant concentrations. During 

chemotaxis, T cells acquire a motile morphology as described above with a 

lamellipodium where the chemokine receptor and activated αLβ2 integrin (LFA-1) 

are localized, and a uropod at the back where ERM, ICAM-1/3 and CD44 are 

distributed (Gerard et al., 2007). The movement of leukocytes is controlled by 

internal and external signals, which activate signalling pathways resulting in 

cytoskeleton remodelling and cell movement.  

One of the main signalling proteins activated upon chemotactic stimulus is the PI3K 

pathway (Welch et al., 2003). There are 3 classes of PI3K: type I (which is divided 

in two subclasses IA and IB), type II and type III. The type I PI3KA (PI3Kα, β and 

δ) are activated by tyrosine kinase receptors while PI3KB (PI3Kγ) is activated by G 

protein-coupled receptors. Their activation leads to the accumulation of 

phosphatidylinositol 3,4,5-trisphosphate on the plasma membrane recruiting 

phosphatidylinositol 3,4,5-trisphosphate-binding proteins that drive further signals. 

The type II and III differ from the type I structurally and are involved respectively in 

clathrin and endosomal regulation (Giambra et al., 2012).  

The migration speed is affected by PI3K inhibitors, emphasizing a role of PI3Ks in 

chemotaxis (Stephens et al., 2002). PI3Ks have been shown to stabilize protrusion of 

the leading edge, facilitating accumulation of downstream effectors in this region 

(Stephens et al., 2008). Receptor activation of heterotrimeric G proteins is important 

for chemotaxis. In particular, Gβγ components of G proteins have been shown to be 

essential for chemotaxis signalling (Firtel and Chung, 2000). The dissociation of 

heterotrimeric G proteins activates PI3Kγ (Stephens et al., 2002). 

Phosphatidylinositol (3,4,5)-triphosphate can activate Rac. Rac can also stimulate 

PI3K activation, creating a positive-feedback loop at the front of the cells (Welch et 

al., 2003). PI3K was also shown to activate Cdc42, which is not involved in 

feedback loop but constrains the leading edge where phosphatidylinositol (3,4,5)-

triphosphate accumulates, thereby maintaining a persistent direction during 

chemotaxis (Etienne-Manneville, 2004). 
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1.4.4 Leukocyte transendothelial migration 

TEM and localization of leukocytes is an essential requirement for the immune 

system to clear pathogens. This process is active and tightly regulated and involves 

multiple molecules on the leukocyte and endothelium surface (Figure 1.20).  

 

 

 

 
Figure 1.20 Schematic rappresentation of leukocyte transendothelial migration. 
Rolling is the first step of transendothelial migration. It is mediated by selectins and 
PSGL-1. Subsequently the leukocyte firmly adheres to the endothelium by binding 
of active β1 and β2 integrins to VCAM-1 and ICAM-1 expressed on the endothelium 
surface.  Leukocytes can then transmigrate either through endothelial junctions 
(paracellular route) or through transcellular pores of an endothelial cell (transcellular 
route). 
 
 
 

1.4.4.1 Endothelium: the blood vessel wall  

The endothelium consists of a monolayer of cells that acts as a barrier for the 

passage of cells and macromolecules from the blood to tissues. On the other hand the 

endothelium needs to function as an entry point for the lymphocytes and leukocytes 

to reach the targeted tissue or organ. In the endothelium, cell-cell junctions are 

classified into adherens junctions (AJ) and TJ. AJ are important for the initiation of 

cell-cell contact and maintenance of junctions. They are also important for inhibition 
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of endothelial cell growth and angiogenesis. TJ have a major role in permeability 

controlling the passage of solutes and ions (Bazzoni and Dejana, 2004). Different 

molecules characterize these two types of junctions, forming homophilic 

interactions. Adhesion molecules are anchored to the actin cytoskeleton by adaptor 

molecules. These adaptor molecules also transmit signals to the cell interior to 

modulate gene expression and cell behaviour (Matter and Balda, 2003) 

The main transmembrane protein of endothelial AJ is vascular endothelial cadherin 

(VE-cadherin). Optimal cell-cell adhesion by VE-cadherin requires the binding of 

the C-terminal intracellular domain to catenins. The intracellular portion of VE-

cadherin binds p120, β and γ-catenin (Vestweber, 2008). The nectin-afadin complex 

colocalizes with cadherins at AJ. Nectin is an immunoglobulin-like adhesion 

molecule linked to the actin cytoskeleton via the afadin protein. The nectin-afadin 

complex seems to be important for TJ formation as well as it associates with TJ 

proteins (Takahashi et al., 1999). The major trans-membrane components of TJs are 

claudins and occludins. Among these, claudin-5 was shown to be an endothelial cell-

specific TJ protein (Morita et al., 1999). Occludin also contributes to TJ stabilization 

and optimal barrier function. For example downregulation of occludin induces an 

increase in endothelial permeability (Cummins, 2012). The transmembrane 

junctional adhesion molecule (JAM) proteins are associated with TJs and regulate 

tight junction assembly and endothelial permeability (Ebnet et al., 2004). The 

cytoplasmic TJ components zona occludens-1 and 2 (ZO-1 and ZO-2) act as 

scaffolding proteins between transmembrane and cytoplasmic proteins and ZO-1 has 

been proposed to act as a link between AJs and TJs (Hartsock and Nelson, 2008) 

(Figure 1.19). 
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Figure 1.19 Endothelial cell-cell adhesion. Cell-cell adhesion is regulated by tight 
and adherens junctions. The transmembrane proteins of the adherens junctions are 
linked via catenin proteins to the actin cytoskeleton.  

 
 
 
1.4.4.2 Rolling and adhesion 

It is well established that leukocyte TEM involves sequential events, starting with 

the rolling of the leukocyte on blood vessel walls (Cernuda-Morollon and Ridley, 

2006). This process is mediated by transmembrane glycoproteins known as selectins. 

The selectins are L-selectins, expressed on leukocytes, and E- and P-selectins 

expressed on endothelial cells which interact with P-selectin glycoprotein ligand1 

(PSGL1) and other glycosylated ligands. They regulate the capture and rolling of the 

leukocyte on the endothelium (Laubli and Borsig, 2010).  

One of the key events for the initiation of this process is the activation of the 

endothelium by proinflammatory cytokines such as tumour necrosis factorα (TNFα), 

thrombin, and IL-1. TNFα stimulation induces the expression of E-selectin on the 

endothelium (Puri et al., 2005). P-selectin is stored in granules that fuse with the 

plasma membrane when platelets and endothelial cells are activated (Zarbock et al., 

2011). The extracellular domain of all selectins is a C-type lectin domain followed 

by an epidermal growth factor-like domain. The cytoplasmic tail of L-selectin is 

composed of 17 amino acids in humans and has been reported to bind α-actinin, 

calmodulin and members of the ERM family (Ivetic and Ridley, 2004). Most L-

selectin ligands posses a tetrasaccharide sial Lewis x (sLeX) structure. For a higher 
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affinity binding, L-selectin often contains sulphated sugar moieties or sulphated 

tyrosyl residues that are important for leukocyte homing. Leukocyte activation leads 

to the cleavage of the membrane-proximal region of L-selectin resulting in the 

shedding of the extracellular domain (Wedepohl et al., 2012). 

PSGL-1 is expressed on almost all leukocytes and on certain endothelial cells and it 

is functional only when it is glycosytated. One role of PSGL-1 is to promote 

leukocyte-leukocyte interaction facilitating the recruitment of other leukocytes to the 

site of inflammation including those that do not express ligands for E or P-selectin. 

E-selectin also can bind glycosylated CD44 and the E-selectin ligand 1 (ESL1). 

Leukocyte rolling requires rapid formation and breaking of selectin binding to their 

ligands, and this process occurs under blood flow conditions. It has been 

demonstrated that rolling cells detach from the endothelium when the flow is 

stopped. This is a characteristic of selectins, as L and P-selectin require shear stress 

to act (Ley et al., 2007). 

Leukocyte rolling can also be mediated by integrins. T cell lines, T cells and 

neutrophils, have been shown to roll on vascular cell-adhesion molecule 1 (VCAM1) 

by engaging of VLA4/α4β1 on their surface. VLA4 was also shown to mediate 

lymphocyte rolling in venules of the central nervous system (Alon et al., 1995). β2 

integrins were suggested to mediate rolling of mouse neutrophils on ICAM-1, and 

human lymphocytes were shown to enhance rolling when ICAM-1 was co-expressed 

with L-selectin ligands on endothelial cells (Kadono et al., 2002; Singbartl et al., 

2001).  

The rolling of leukocytes on the blood wall allows the cells to slow down and to 

detect chemokines on the endothelium surface. Chemokines activate leukocyte 

integrins receptor promoting adhesion to ICAM-1 and VCAM-1 expressed on the 

endothelium surface (see sections 1.3.3.1 and 1.4.1) (Huo et al., 2003). 

 

 

1.4.4.4 Transendothelial migration 

The transmigration of leukocytes through the endothelium can occur through a 

paracellular or transcellular route. In the paracellular route the leukocyte migrates 

between endothelial cells, whereas in the transcellular route the leukocyte migrates 
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through an endothelial cell (Cernuda-Morollon et al., 2010; Johnson-Leger et al., 

2000). 

 

1.4.4.4.1 Paracellular TEM 

This mechanism can be very rapid and involves the transient opening of the 

endothelial junctions allowing the leukocyte passage. The binding of leukocytes to 

the endothelium induces cytoskeleton rearrangements in the endothelial cells via 

ROCK and MLC phosphorylation. The clustering of ICAM-1 or VCAM-1 induced 

by leukocyte binding induces an increase in RhoA activity and in stress fibres. This 

leads to an increase in cell contractility and endothelial permeability. RhoA might be 

activated via the ERM family. ERM could bind RhoGDI facilitating RhoA activation 

(Millan and Ridley, 2005). 

Reactive oxygen species (ROS) production upon Rac1 activation in endothelial cells 

has also been reported to be important for TEM, as preteatment with oxygen-radical 

scavengers inhibits TEM (van Wetering et al., 2002). Moreover ICAM-1 mediated 

signalling during neutrophil adhesion activates ROS production in endothelial cells, 

leading to cytoskeletal remodeling important for TEM (Wang and Doerschuk, 2000).  

Several molecules expressed at the endothelium junction facilitate TEM. These 

molecules include PECAM-1, VE-cadherin, CD99 and JAMs and ESAM. PECAM-1 

and JAM proteins are members of the Ig superfamily. VE-cadherin, as previously 

described, is a member of the cadherin family, and CD99 is a unique molecule 

(Muller, 2003). During extravasation VE-cadherin transiently disperses from the 

junctions to allow the passage of the leukocyte (Shaw et al., 2001). PECAM-1 is 

expressed on both leukocytes and on endothelial cells. In endothelial cells, it 

localizes to cell-cell junctions and on structures know as the lateral border recycling 

compartment (LBCR). The homophilic interaction between the N-terminal domain 

of PECAM-1 expressed on endothelium and leukocytes is important for 

transmigration. During transmigration, PECAM recycles from the LBCR and 

concentrates around the migrating leukocyte (Mamdouh et al., 2008; Mamdouh et 

al., 2003). Although PECAM-1 is required for transmigration, blocking antibody 

against PECAM-1 is not able to inhibit leukocyte migration completely, suggesting 

that other players are important for this process. PECAM-1 knockout mice have no 

difference in TEM of monocytes and neutrophils, although neutrophils get trapped 
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between the endothelium and the basement membrane (Bogen et al., 1994; Muller et 

al., 1993). CD99 is expressed on the leukocyte surface and at endothelial cell-cell 

adhesions and like PECAM-1, facilitates leukocyte TEM in a homophilic manner. 

Blocking of CD99 on the leukocyte or endothelium inhibits monocyte TEM, and 

blocking both CD99 and PECAM-1 gives an additive effect abolishing TEM almost 

completely (Schenkel et al., 2002). JAMs have been reported to be involved in 

inflammation and to facilitate TEM of leukocytes. JAM-A was shown to bind the 

leukocyte integrin LFA-1 in a heterophilic manner involving the membrane proximal 

domain of JAM-A. JAM-A also mediates homophilic binding between leukocytes 

and endothelial cells (Ostermann et al., 2002). JAM-B has not been demonstrated to 

be involved in TEM. JAM-C is highly expressed on endothelial venules and 

HUVECs. Antibodies against JAM-C block migration of polymorphonuclear 

leukocytes across HUVECs in response to CXCL12 in vitro (Johnson-Leger et al., 

2002). ESAM is JAM-related protein expressed on endothelial cells and on activated 

platelets (Petri and Bixel, 2006). It was shown to mediate migration of neutrophils 

through the vessel wall by influencing endothelial cell contacts. Extravasation is 

reduced in ESAM knockout mice (Wegmann et al., 2006).  

In summary, several endothelial cell surface and adhesion molecules localize at 

endothelial cell contacts. These molecules have been found to participate in 

leukocyte TEM. 

 

1.4.4.4.2 Transcellular TEM 

The paracellular route is not the only mechanism by which leukocytes can cross the 

endothelial barrier. In the early 1960s, morphological studies of leukocyte TEM 

revealed that some leukocytes could extravasate without disrupting endothelial 

junctions. Leukocytes can in fact pass through a membrane pore of an endothelial 

cell and this was observed in vitro and in vivo (Carman and Springer, 2004; 

Phillipson et al., 2008).  

The mechanism of transcellular migration involves subcellular membranous 

structures such as caveolae, fenestrae and vesiculo-vacuolar organelles that promote 

the passage of liquid and macromolecules through the endothelial cells (Wittchen, 

2009). Fenestrae are specialized plasma membrane microdomains where the apical 

and basal plasma membranes fuse to form a circular pore. These domains are 
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frequent in specialized vascular beds that require high permeability such as 

endocrine organs. Tumours can also have a fenestrated endothelium (Roberts and 

Palade, 1997). Caveolar localization is determined by F-actin and caveolin-1 

distribution. ICAM-1 was shown to translocate to F-actin and caveolin-1-rich 

regions where it was transcytosed to the basal plasma membrane via caveolae. T-

lymphocytes were shown to extend pseudopodia into endothelial cells in caveolin 

and F-actin-rich regions, inducing the translocation of ICAM-1 and caveolin-1 the 

endothelial basal membrane, membrane fusion and transcellular passage of the T-

lymphocyte (Millan et al., 2006). 

Lymphocytes use “invasive podosomes” to explore the endothelial surface and form 

transcellular pores in a process mediated by Src kinase and WASP. Treatment of 

lymphocyes with Src inhibitors reduced podosome formation. The inhibition of 

podosomes selectively blockes transcelluar migration (Carman et al., 2007).  

Interstingly, another group showed that Mac-1 (CD11b/CD18) deficient leukocytes, 

which are not able to crawl on the endothelium surface preferentially, use the 

trascellular route to cross the endothelium (Phillipson et al., 2006; Wittchen, 2009).  
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1.5 Aims of the project 

The migration and infiltration of T-ALL cells into tissues is correlated with a poor 

prognosis (Aifantis et al., 2008). Leukaemic cells need to adhere and transmigrate 

from the blood vessels in order to infiltrate and accumulate into tissues. Rap and Rho 

GTPase are masters of T lymphocyte migration, and they are known to contribute to 

cancer progression by regulating cancer cell proliferation and invasion, but their role 

in T-ALL is far from being elucidated.  

1. The first aim of my project was to investigate whether the lack of GTPase 

prenylation caused by the compund statin could affect T-ALL cell adhesion 

and migration. The main objective was to identify which GTPases are 

involved in the adhesion and migration of T-ALL cells. 

2. Several Rho GTPase genes were found to be dysregulated in T-ALL patient 

samples. These genes include the atypical GTPase RhoU. The dysregulation 

of RhoU was found to be correlated with aberrant Notch1 signalling. RhoU 

was identified as a target gene of Notch1. The second aim of my project was 

to characterize the function of RhoU and Notch1 in T-ALL cell adhesion and 

migration. This was achieved by using different Notch1- mutated T-ALL cell 

lines. 

3. The third aim of my project was to further characterize the function of RhoU 

in T-ALL cell transendothelial migration, in parallel with its close relative 

RhoV. Interestingly, RhoV was also found to be upregulated in T-ALL 

patients. Using an overexpression approach, the localization and distribution 

of RhoU and RhoV was also investigated in T-ALL cells. Furthermore the 

interaction partners of RhoU were investigated. 
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2.1 Abstract 

Statins are known to inhibit signaling of Ras superfamily GTPases and reduce T-cell 

adhesion to ICAM-1. Here we address the hypothesis that statins affect T-cell 

adhesion and migration by modulating the function of specific GTPases. Statins 

inhibit the synthesis of mevalonic acid, which is required for farnesyl and 

geranylgeranyl isoprenoid synthesis. Ras superfamily GTPases are post-

translationally isoprenylated to facilitate their anchorage to membranes, where they 

function to stimulate signal transduction processes. We demonstrate that 1 µM statin 

inhibits the adhesion, migration, and chemotaxis of the T-acute lymphoblastic 

leukemia (T-ALL) cell line CCRF-CEM, and transendothelial migration of CCRF-

CEM and PEER T-ALL cells, but higher statin concentrations are needed to inhibit 

adhesion of primary T cells. Similar effects are observed following treatment with a 

geranylgeranyl transferase inhibitor (GGTI-298) or RNAi-mediated knockdown of 

Rap1b but not Rap1a, Rac1, Rac2, RhoA or Cdc42. Statins also alter Rap1 activity 

and Rap1b localization. Rap1 levels are higher in primary T cells than T-ALL cells, 

which could explain their reduced sensitivity to statins. These results demonstrate for 

the first time that the closely related Rap1a and Rap1b isoforms have different 

functions, and suggest that statins or Rap1b depletion could be used to reduce tissue 

invasion in T-ALL. 
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2.2 Introduction 

Statins are widely used to lower cholesterol levels in patients, thereby reducing risk 

of cardiovascular disease. In particular in patients with heart failure statins are 

beneficial due to their effects on inflammation, oxidative stress and vascular tone 

(Tang and Francis, 2010; Zeiser et al., 2009). These drugs have been reported to 

have anti-inflammatory properties (Dinarello, 2010; Liao and Laufs, 2005) and their 

possible role in cancer prevention has also attracted attention (Gauthaman et al., 

2009; Kuoppala et al., 2008). 

Statins acts by competitive inhibition of 3-hydroxy-3 methylglutaryl coenzyme A 

(HMG-CoA) reductase, resulting in a decrease in mevalonic acid synthesis. 

Mevalonic acid is an upstream substrate in the formation of cholesterol and also of 

the farnesyl and geranylgeranyl isoprenoids. These isoprenoids are post-

translationally added to a carboxy terminal cysteine of CAAX motifs on proteins 

such as small Ras-superfamily GTPases, and facilitate anchorage of these proteins in 

membranes, where they signal to downstream effectors  (Greenwood et al., 2006). 

By inhibiting synthesis of isoprenoids, statins therefore reduce the localization of 

Ras-superfamily proteins to membranes. A beneficial effect of statins has been 

reported in colorectal and melanoma cancer prevention, and the inhibition of 

Ras/Rho GTPase prenylation, leading to their mislocalization, could contribute to the 

cancer prevention property of statins (Demierre et al., 2005).  

Ras and Rho family GTPases are signal transduction proteins involved in cell 

proliferation, cell survival, cytoskeletal reorganization, membrane trafficking and 

motility. These proteins are normally activated by guanine nucleotide exchange 

factors (GEFs) that promote the switching from an inactive GDP to an active GTP 

state, and inactivated by GTPase activating proteins (GAPs) which enhance the 

intrinsic GTPase activity of the proteins. Some Rho GTPases are also regulated by 

GDP dissociation inhibitors (GDIs) that bind to prenyl groups and thereby inhibit 

membrane localization (Schmidt and Hall, 2002). Statins have been shown to 

increase the level of RhoA-GTP yet inhibit its signaling to downstream targets such 

as ROCKs (Cordle et al., 2005; Rattan, 2010; Wang et al., 2008).  

T-ALL is a hemotological cancer of T lymphocytes (Real and Ferrando, 2009), for 

which poor prognosis has often been shown to correlate with the migration and 

accumulation of leukemia cells in the tissues (Uchiyama et al., 1995). In order to 
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transmigrate from the blood to tissues, leukocytes interact with and adhere to the 

endothelial cells lining the blood vessels. This involves the activation of integrins 

such as LFA-1, which is expressed on the leukocyte surface and binds to endothelial 

cell adhesion molecule ICAM-1 (Liu et al., 2004). Chemokines and cytokines can 

activate the Ras GTPase Rap1 which induces integrin activation through inside-out 

signaling (Wittchen et al., 2005).  

Here we demonstrate that low concentrations of statins inhibit LFA-1 activation on 

T-ALL cells and consequently reduce adhesion to ICAM-1 and transendothelial 

migration of T-ALL cells, but do not affect migration of primary T cells. 

Downregulation of Rap1b but not Rap1a induces similar effects on T-ALL cells, 

implying that the response to statins is primarily due to inhibition of Rap1b-mediated 

activation of LFA-1.  
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2.3 Materials and Methods 

2.3.1 Cell culture and drug treatment  

CCRF-CEM (ATCC, LGL Promochem, Middlesex, UK), PEER, Jurkat and SUPT1 

(kind gift of Prof. Asim Khwaja) cells were maintained in RPMI-1640 containing 2 

mM glutamine and supplemented with 10% fetal calf serum, 1 mM sodium pyruvate, 

10 mM Hepes, penicillin (100 U/ml) and streptomycin (100 µg/ml). Cells were used 

between passage 1 and 10. T-lymphoblasts were derived from human peripheral 

blood mononuclear cells. Cells were cultured in RPMI-1640 supplemented with 10% 

human AB serum, penicillin (100 U/ml) and streptomycin (100 µg/ml) and 

stimulated with 8 µg/ml phytohaemagglutinin for 48 h. Cells were subsequently 

maintained in medium containing 10 U/ml of interleukin-2 (Roche, Mannheim, 

Germany), and used between passage 4 and 10. Where indicated, T-ALL cells and T-

lymphoblasts were treated for 16 h with 1 µM simvastatin or lovastatin (Calbiochem, 

Nottingham, UK), 250 µM mevalonolactone (mevalonic acid; Sigma-Aldrich, 

Dorset, UK), 10 µM FFI (Enzo, Exeter, UK) or GGTI-298 (Calbiochem). Cell 

viability was determined with 0.4% Trypan blue solution. Human umbilical vein 

endothelial cells (HUVECs) (Biowhittaker, Wokingham, UK) were cultured in flasks 

coated with 10 µg/ml fibronectin (FN; Sigma-Aldrich) in EBM-2 medium 

supplemented with 2% fetal calf serum and endothelial cell growth supplements 

(Lonza Biologics, Slough, UK). Cells were used between passage 1 and 4. 

2.3.2 Transfection  

CCRF-CEM cells (5 x 105) were transfected by nucleofection (Amaxa Biosystems 

Nucleofection System, Lonza Biologics) with 20 µg plasmid DNA (see 4.2.2.6, 

4.2.2.7 and 4.2.2.8) or 1.2 µM siRNA (Dharmacon, Colorado, USA) in 100 µl of 

Nucleofection reagent (kit C, Lonza Biologics). siRNA sequences were Rap1b-1: 

GAACAACUGUGCAUUCUUA; Rap1b-2: CAAUGAUUCUUGUUGGUAA; 

Rap1a-1: CAAUAAAUGUGACCUGGAA; Rap1a-2: 

GCGAGUAGUUGGCAAAGAG; Rac1-1: AGACGGAGCUGUAGGUAAA; Rac1-

2: UAAGGAGAUUGGUGCUGUA; Rac2-1: CAGCCAAUGUGAUGGUGGA; 

Rac2-2: ACAAGGACACCAUCGGAGAA; Cdc42-1: 

GAUUACGACCGCUGAGUUA; Cdc42-2: GAUGACCCCUCUACUAUUG; 

RhoA-1: AUGGAAAGCAGGUAGAGUU; RhoA-2: 
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CGACAGCCCUGAUAGUUUA. siControl was from Thermo Fisher Scientific (D-

001810-02-20, Lafayette, USA). Cells were used for experiments 48-72 h after 

siRNA transfection or 24 h after DNA plasmid transfection. pMT2-HA-Rap1b was a 

kind gift of Prof Johannes Bos.  

2.3.3 Adhesion assays 

Ninety-six-well plates were coated overnight with 5 µg/ml ICAM-1 (R&D Systems, 

Abingdon, UK) or 10 µg/ml FN, then blocked in 1% BSA in PBS for 30 min. 

Treated cells were centrifuged at 240 g for 4 min and resuspended in PBS at 106 

cells/ml. Cells were then incubated at 37°C for 15 min with 2 µM Cell Tracker 

CMFDA (Invitrogen, Paisley, UK). Samples were resuspended in warm media and 

105 cells/well (each sample in triplicate) were incubated at 37°C for 30 min. After 

washing with PBS, the plate was read on a Fusion-αFP plate reader (PerkinElmer, 

Cambridge, UK) at 485 nm excitation and 525-535 nm emission. Alternatively, 

images of CMFDA-labeled cells were acquired using Metamorph software (MDS 

Analytical Technologies, Wokingham, UK), on a Nikon Eclipse TE2000 microscope 

with a 4x objective. Cell numbers were determined using Volocity software 

(PerkinElmer, Cambridge, UK). 

2.3.4 Chemotaxis assay and transendothelial migration 

Transwell filters (Costar) were coated with 5 µg/ml ICAM-1. 2x105 T cells were 

added in the top chamber and 600 µl of medium containing 30 ng/ml CXCL12 

(R&D Systems) was added to the bottom chamber. Cells in the lower chamber were 

counted after 1 using a Casy Counter (Roche Innovatis, Bielefeld, Germany). 

HUVECs were grown to confluency on FN-coated 5-µm transwell filters and then 

stimulated with 10 ng/ml TNF-α (R&D Systems, Abingdon, UK) for 16 h. After 

washing, 2x105 T cells were added onto the HUVECs in the top chamber and 600 µl 

of medium containing 30 ng/ml CXCL12 was added to the bottom chamber. Cells in 

the lower chamber were counted after 1h or 2 h using a Casy Counter. 

2.3.5 Timelapse microscopy 

HUVECs were grown to confluency on FN-coated coverslips and stimulated with 

TNF-α for 16 h. Cells were incubated for 8 min with 30 ng/ml CXCL12 then washed 

and incubated for 1 h at 37°C. CCRF-CEM cells (0.75x105) in 500 µl of CEM media 
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were added to the HUVECs and time lapse images were acquired every minute for 1 

h using Metamorph software on a Nikon Eclipse TE2000 microscope with a 20x 

objective. Cells were tracked and migration speed (µm/min) determined using 

ImageJ analysis software. 

2.3.6 Flow cytometry 

To measure total surface LFA-1, CCRF-CEM cells (2x105) were incubated for 30 

min at 4°C with 1:100 CD11a antibody (BD Bioscience, Oxford, UK) or 1:50 IgG2a 

as an isotype control (Serotec, Kidlington, UK). To measure surface levels of active 

LFA-1, cells were incubated for 15 min at 37°C with 200 µM MnCl2 (Hogg et al., 

2002), then for 30 min at 37°C with 1:100 mAb24 (kind gift of Prof Nancy Hogg). 

Cells were incubated with Alexa Fluor 488-labelled anti-mouse antibody 

(Invitrogen) then analysed on a Becton Dickinson FACS Calibur machine using the 

FlowJo program. 

2.3.7 Immunofluorescence 

CCRF-CEM cells (5x105) were transfected with 20 µg pMT2-HA-Rap1b (see 

4.2.2.6, 4.2.2.7 and 4.2.2.8). After 24 h, cells were treated with 1 µM simvastatin for 

16 h and cytospun onto coverslips by centrifugation at 300g for 5 min. HUVECs 

(1.5x105) were seeded onto FN-coated coverslips and treated for 16 h with 1 µM 

simvastatin. Samples were fixed with 4% paraformaldehyde, permeabilized with 

0.1% Triton-X100, then incubated for 1 h with 1:200 mouse anti-HA antibody (Santa 

Cruz, California, USA) or 1:200 anti-mouse VE-cadherin  antibody (BD 

Biosciences, Oxford, UK) followed by 1:500 Alexa Fluor 488 anti-mouse antibody  

(Invitrogen). Coverslips were mounted onto slides using anti-fade mounting medium 

(Dako, Ely, UK).  

2.3.8 GTPase activity assays 

GST-RalGDS-RBD, GST-PAK-PBD and GST-Rhotekin-RBD were transformed in 

BL21 E.coli and plated on a LB agar plate containing 100 µg/ml ampicillin. A 

colony was inoculated in 100 ml of LB/ampicillin and grown overnight at 37°C. The 

following day the cultures were diluted 1:20 into fresh medium and grown to an 

optical density of 0.7 (600 nm). 0.3 mM IPTG was then added to induce protein 
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expression and the bacteria were incubated for 2 h at 30°C. Bacterial pellets were 

collected by centrifugation for 15 min at 1500 g and the pellets stored at -40°C. 

Bacterial pellets were resuspended in STE buffer (10 mM Tris pH 8.0, 150 mM 

NaCl, 1 mM EDTA) and lysed by the addition of 100 µg/ml lysozyme for 20 min on 

ice. After, 5 mM DTT, 1% Tween-20 and 0.03% SDS were added, the lysates were 

mixed and then centrifuged at 14000 g for 20 min and the supernatant collected. The 

supernatants were then incubated with the glutatione sepharose beads (GE 

Healthcare) at 4°C for 2 h, and the bead-bound proteins washed three times and used 

in the pull-down assays. CCRF-CEM cells (106/pulldown) were lysed in 400 µl of 

pull-down buffer (25 mM Hepes pH7.5, 150 mM NaCl, 1% NP-40, 10 mM MgCl2, 1 

mM EDTA, 25 mM NaF, 1 mM Na3VaO4, 10 µg/ml aprotinin, 100 µM PMSF and 

10% glycerol). 40 µl of the lysate was retained to determine total GTPase levels. The 

remaining lysate was incubated with the protein-bound beads on a rotor for 1 h at 

4°C. The beads were washed 3 times in pull-down buffer, boiled in Laemmli sample 

buffer and used for western blotting.  

2.3.9 Western blot analysis 

Cells were lysed in 1% SDS followed by addition of 1% Triton X-100, 25 mM NaF, 

1 mM Na3VO4 and 10 mg/ml aprotinin, then incubated for 10 min on ice and 

clarified by centrifugation. Cleared lysates were boiled for 5 min in 4X sample 

buffer (0.25 M Tris-HCl pH 6.8, 8% SDS (w/v), 40% glycerol (w/v), 10% β–

mercaptoethanol (w/v), 0.2% Bromophenol blue (w/v)). Lysates were separated on 

4-12% Bis-Tris polyacrylamide gels (Invitrogen) or on a 12.5% poly-acrilamide gel 

then transferred to nitrocellulose membrane (Millipore, Watford, UK). Membranes 

were incubated in blocking buffer (5% non-fat dried milk in TBS containing 0.1% 

Tween-20) for 1 h at room temperature and then incubated for 1 h with 1:1000 

dilutions of the following antibodies diluted in blocking buffer: Rap1b (36E1), 

Rap1a/Rap1b (26B4), RhoA (67B9), or Cdc42 (11A11) (Cell Signaling Technology, 

Massachusetts, USA), Rap1a (C-17) (Santa Cruz), Rac1 (23A8) or Rac2 07-604 

(Millipore). Membranes were then incubated with horseradish-peroxidase-

conjugated anti-mouse, anti-rabbit or anti-goat antibodies (GE Healthcare, Chalfont 

St Giles, UK). Antibodies were visualized using the ECL detection system (GE 

Healthcare).   
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2.4 Results 

2.4.1 Statins inhibit adhesion and chemotaxis of T-ALL cell lines but not of 
primary T-lymphoblasts 
To investigate the effect of statin treatment on T-ALL cell adhesion, we first 

performed an adhesion assay on ICAM-1. ICAM-1 is expressed on the endothelial 

cell surface and is fundamental in mediating adhesion between the endothelium and 

leukocytes (Vestweber, 2007). We observed a 50% reduction in the binding of 

CCRF-CEM cells to ICAM-1 following treatment with 1 µM simvastatin or 

lovastatin (Figure 2.1A). Addition of 250 µM mevalonic acid rescued the statin-

induced inhibition of adhesion (Figure 2.1A).  This indicates that statins are acting 

by inhibiting HMG-CoA reductase, rather than binding directly to the β2 integrin 

(LFA-1) L-site and thereby inhibiting adhesion to ICAM-1 (Kallen et al., 1999; 

Weitz-Schmidt et al., 2001). We also observed a significant decrease in Jurkat cell 

adhesion to FN that was rescued by mevalonic acid (Figure 2.1B). As T cells bind 

FN mostly through the β1 integrin (Hauzenberger et al., 1994), this effect cannot be 

attributed to statin binding to β2 integrin. The effect of statins on adhesion was not 

due to changes in T-ALL cell viability (Supplementary Figures 2.1A and B).  

Surprisingly, 1 µM simvastatin or lovastatin did not reduce the adhesion of primary 

T-lymphoblasts, but some inhibition was observed at 10 µM statins (Figure 2.1C).  

This was not due to a difference in adhesion to ICAM-1 between primary T-

lymphoblasts and CCRF-CEM cells (supplementary Figure 2.1C).  

Similarly, 1 µM statin treatment did not affect T-lymphoblast chemotaxis towards 

CXCL12 (SDF-1), whereas it inhibited chemotaxis of CCRF-CEM cells (Figures 

2.1D and E).  The reduction in CCRF-CEM cell chemotaxis was also rescued by 

mevalonic acid (Figure 2.1E), while mevalonic acid by itself had no effect on 

chemotaxis (supplementary Figure 2.1D).  Together, these results indicate that 

statins inhibit adhesion and migration of T cells and that T-lymphoblasts are less 

sensitive to statins than CCRF-CEM or Jurkat T-ALL cell. 

 

 

 

 
 



Chapter 2 
____________________________________________________________________ 

78 
 

 

 

 
 
Figure 2.1. Statins inhibit adhesion and chemotaxis of T-ALL cell lines but not 
of primary T-lymphoblasts. CCRF-CEM (A) and Jurkat (B) cells were treated for 
16 h with 1 µM simvastatin or lovastatin alone or in combination with 250 µM 
mevalonate. The cells were then labeled with Cell Tracker CMFDA, added to wells 
coated with ICAM-1 (A) or FN (B) and adhesion determined after 30 min. Primary 
T-lymphoblasts (C) were treated with 1, 5, or 10 µM simvastatin or lovastatin. Cells 
were labeled with Cell Tracker CMFDA and adhesion to ICAM-1-coated wells 
determined after 30 min. (D,E) T-lymphoblasts (D) or CCRF-CEM cells (E) were 
treated for 16 h with 1 µM simvastatin and 250 µM mevalonic acid where indicated. 
Cells were then added to ICAM-1-coated transwells containing 30 ng/ml SDF-1 in 
the lower chamber. Cells in the lower chamber were counted after 1 h. Data shown 
are the mean of 3 independent experiments ± SEM. * p<0.05, **p<0.01; 2-way-
paired t-test. Experiments performed by Elvira Infante. 
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2.4.2 Statins dysregulate Rap1, Rac1 and RhoA activity in CCRF-CEM cells 

Given the effect of statin treatment on CCRF-CEM and Jurkat cell adhesion and the 

known effect of statins in inhibiting protein prenylation, we investigated whether 

they altered the activity of GTPases. In particular, we focused on Rap1, Rac1 and 

RhoA as these GTPases have been implicated in integrin-mediated adhesion (Hattori 

and Minato, 2003; Takaishi et al., 1997; Vielkind et al., 2005). 

Incubation of CCRF-CEM cells for 16 h with simvastatin increased the level of 

GTP-bound Rap1 (Figure 2.2A and B). This was prevented by co-treatment with 

mevalonic acid (Figure 2.2A). Statin treatment induced a shift in the mobility of 

Rap1 on SDS-PAGE, reflecting the reduced prenylation (Supplementary Figure 

2.2A). Statins have been reported to increase levels of RhoA-GTP and Rac1-GTP in 

THP-1 cells (Cordle et al., 2005), and we also observed an increase in active Rac1 

and RhoA in CCRF-CEM cells (Figure 2.2A, B and C). This increase in GTP-

loading could be due to mislocalization of unprenylated proteins, for example 

leading to reduced interaction with GAPs. This hypothesis is supported by the 

observation that treatment with the geranylgeranyl transferase inhibitor (GGTI) 

GGTI-298, which prevents prenylation of Rap1, Rac1 and RhoA (Roberts et al., 

2008; Wennerberg et al., 2005), also resulted in higher levels of GTP-bound Rap1, 

Rac1 and RhoA (Figure 2.2E-H). Rap1, Rac1 and RhoA are post-translationally 

geranylgeranylated at the C-terminus, whereas some other Rho and Ras family 

proteins are farnesylated (Roberts et al., 2008; Wennerberg et al., 2005). Consistent 

with this, no changes in GTP-loading of Rap1 was observed following incubation 

with 10 µM FFI, which inhibits farnesyltransferases (Figure 2.2I).  
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Figure 2.2. Statins and GGTI increase Rap1, Rac1 and RhoA activity in CCRF-
CEM cells. CCRF-CEM cells were treated for 16 h with 1 µM lovastatin or 
simvastatin alone or in combination with 250 µM mevalonic acid (A-D), or with 10 
µM GGI-298 (E-H) or FFI (I). Cell lysates was incubated with GST-RalGDS 
(Rap1), GST-PAK-PBD (Rac1) or GST-Rhotekin-RBD (RhoA) beads then analysed 
by western blotting with the indicated antibodies. The relative levels of active Rap1 
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(B, F, I), Rac1 (C and G) and RhoA (D and H) were quantified using ImageJ. Data 
shown are the mean of 3 independent experiments ± SEM. *p<0.05, **p<0.01; 2-
way-paired t-test. Experiments performed by Elvira Infante. 
 

 

2.4.3 Low concentrations of statins do not dysregulate Rap1 activity in primary 
T-lymphoblasts 

As we had observed that statins at 1 µM did not affect the adhesion or chemotaxis of 

primary T-lymphoblasts (Figure 2.1C, D), we next investigated the effect of statins 

on Rap1 activity in these cells. Treatment of T-lymphoblasts with 1 µM simvastatin 

did not affect Rap1 activity (Figure 2.3A). However, 10 µM simvastatin did increase 

Rap1 activity significantly in T-lymphoblasts, and induced a further increase in Rap1 

activity in CCRF-CEM cells above that induced by 1 µM simvastatin (Figure 2.3B-

D).   This analysis also showed that the total level of Rap1 was much lower in 

CCRF-CEM cells than in T-lymphoblasts. Similarly, Rap1 levels were lower in a 

panel of T-ALL cell lines compared to primary T-lymphoblasts (Figure 2.3E).  These 

results suggest that the higher expression level of Rap1 protein in T-lymphoblasts 

could be responsible for their reduced sensitivity to statins.   
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Figure 2.3. Primary T-lymphoblasts are less sensitive to statins and have higher 
Rap1 levels than T-ALL cells . Primary T-lymphoblasts (A-C) and CCRF-CEM 
cells (B, C) were treated for 16 h with the indicated concentrations of simvastatin. 
Cell lysates were incubated with GST-RalGDS beads then analysed by western 
blotting with Rap1 antibody. Relative levels of active Rap1 were quantified using 
ImageJ (A, C, D). (E)Total Rap1 expression in primary-T-lymphoblasts and T-ALL 
cell lines CCRF-CEM, Jurkat, SUPT-1 and PEER was analyzed by western blotting 
and relative levels quantified using ImageJ. Data shown are the mean of 3 
independent experiments ± SEM. * p<0.05, **p<0.01; 2-way-paired t-test. 
Experiments performed by Elvira Infante. 
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2.4.4 Rap1b is required for T-ALL cell adhesion and migration  

To investigate the importance of prenylation for adhesion, we treated CCRF-CEM 

cells with 10 µM GGTI-298 or FFI. There was a significant reduction of adhesion to 

ICAM-1 when cells are treated with GGTI-298 compared to untreated or FFI-treated 

samples (Figures 2.4A and B). To determine whether GTPases implicated in 

integrin-mediated adhesion affected T-ALL cell adhesion to ICAM-1, we used 

siRNA to knockdown the expression of the two Rap1 isoforms (Rap1a and Rap1b) 

(Figure 2.4C), RhoA, Rac1, Rac2 and Cdc42 in CCRF-CEM cells (Figure 2.4H). 

Rap1b but not Rap1a depletion strongly reduced adhesion to ICAM-1 (Figures 2.4D 

and E). Interestingly, knockdown of Rap1a led to reduced adhesion to FN suggesting 

that this isoform is involved in β1 but not ß2/LFA-1 activation (Figure 2.4F). 

Knockdown of Rac1, Rac2, Cdc42 and RhoA did not affect adhesion (Figure 2.4G). 

Interestingly, Rap1a and Rap1b levels were higher in T-lymphoblasts than in CCRF-

CEM and Jurkat cells (Supplementary Figure 2.1C), indicating that both Rap1a and 

Rap1b contribute to the increase in total Rap1 observed (Figure 2.3E). 

As statins can affect the localization of GTPases through inhibiting prenylation, we 

examined the effect of simvastatin on Rap1b localization in CCRF-CEM cells. Rap1 

has previously been shown to be activated by the chemokine CXCL12 (Wittchen et 

al., 2005). Simvastatin treatment altered the localization of Rap1b and induced its 

accumulation on multiple punctate structures in the cytoplasm in CXCL12-

stimulated cells (Figure 2.4I). These might be endosomes, similar to the localization 

of Rap1a prior to translocation and activation at the plasma membrane (Bivona et al., 

2004; Mor et al., 2009). 
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Figure 2.4. Rap1b depletion leads to reduced adhesion of CCRF-CEM clls. 
CCRF-CEM cells were treated for 16 h with 10 µM GGI-298 (A) or FFI (B). Cells 
were then labeled with Cell Tracker CMFDA, plated on ICAM-1 and adhesion 
measured after 30 min. CCRF-CEM cells were transfected with siRNAs targeting 
Rap1b, Rap1a (C-F), Rac1, Rac2, Cdc42 or RhoA (G, H). (C, H) Levels of each 
protein were analysed by western blotting. GAPDH was used as a loading control. 
Blots shown are representative of 3 independent experiments. (D-G) Adhesion 
assays were performed on ICAM-1 or fibronectin as indicated. *p<0.05, **p<0.01; 
2-way-paired t-test. (I) CCRF-CEM cells were transfected with a plasmid encoding 
pMT2-HA-Rap1b. After 24 h, cells were treated for 16 h with 1 µM simvastatin then 
incubated with 1 ng/ml CXCL12 for 30 min. Subsequently, samples were cytospun 
for 5 min at 300g onto coverslips. After fixation and permeabilization, samples were 
stained with an anti-HA antibody and with DAPI to stain nuclei and imaged by 
confocal microscopy. Bar, 10 µm. Experiments performed by Elvira Infante. 

 
 
 
 
2.4.5 Statins and Rap1b regulate integrin activity  

We next investigated if statins, GGTI or Rap1b depletion affected adhesion by 

inducing changes in the surface expression and/or activation of integrins. LFA-1 is 

normally expressed on the leukocyte surface in an inactive form but it can be 

activated by addition of Mn2+ (Hogg et al., 2002). No significant changes were 

observed in the cell surface expression of LFA-1 subunit CD11a (αL) following 

statin or GGTI treatment (Figure 2.5A) or knockdown of Rap1a or Rap1b (Figure 

2.5B). To investigate LFA-1 activation, we used the mAb24 antibody which 

recognizes the active form of LFA-1 (Dransfield and Hogg, 1989; Lu et al., 2001). 

Both statins and GGTI-298 but not FFI inhibited LFA-1 activation (Figures 2.5C and 

D). Similarly, knockdown of Rap1b but not Rap1a reduced LFA-1 activation (Figure 

2.5E). These results indicate that the statin-induced inhibition of adhesion to ICAM-

1 is due at least in part to reduced Rap1b prenylation and hence, decreased activation 

of the integrin LFA-1.  
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Figure 2.5. Statins, GGTI and Rap1b regulate LFA-1 integrin activity. CCRF-
CEM cells were treated for 16 h with 1 µM simvastatin (A and C) or 10 µM GGTI-
298 (A and D), or transfected with siRNAs targeting Rap1b or Rap1a (B and E). 
Cells were then stained for αL integrin (CD11a) (A and B), or were incubated for 15 
min with 200 µM MnCl2 (Mn2+) then stained for active LFA-1 with mab24 (C-E). 
Cells were analysed by flow cytometry. Data show the mean of 3 experiments ± 
SEM. *, p<0.05, **p<0.01; 2-way-paired t-test. Experiments performed by Elvira 
Infante. 
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2.4.6 Statin treatment and Rap1b downregulation inhibits transendothelial 
migration of T-ALL cells  

Transendothelial migration (TEM) of leukocytes is a crucial step during 

inflammation and immune responses, and requires LFA-1 adhesion to endothelial 

ICAM-1 (Newton et al., 2009).  We found that statin treatment significantly 

decreased the TEM of CCRF-CEM and PEER T-ALL cells, but not primary T-

lymphoblasts (Figure 2.6A). Consistent with a specific involvement of Rap1b in 

LFA-1 activation, Rap1b but not Rap1a depletion reduced TEM of CCRF-CEM cells 

(Figures 2.6B and C). Treatment of endothelial cells for 16 h with1 µM simvastatin 

did not disrupt endothelial cell-cell junctions or the endothelial monolayer 

(Supplementary Figure 2.2E), indicating that at this concentration statins are unlikely 

to alter endothelial integrity. 

Time-lapse movies were performed in order to visualize the effect of statins on T-

ALL cell morphology and migration on endothelial cells. Most control CCRF-CEM 

cells had a polarized migratory morphology, with a lamellipodium at the front and 

uropod at the back (Sanchez-Madrid and Serrador, 2009), and migrated across the 

endothelial monolayer (Figure 2.6D, top panels). Cells treated with 1 µM simvastatin 

had a more rounded phenotype and were not polarized (Figure 2.6D, middle panels). 

Some statin-treated cells transiently extended protrusions in different directions but 

without forming a stable lamellipodium or uropod (Figures 2.6D and E). These 

effects were reversed by co-incubation with mevalonic acid (Figure 2.6D, lower 

panels). Tracking of statin-treated cells showed that they had a reduced migration 

speed on the endothelial surface compared to controls (Figure 2.6F). These data 

indicate that statins reduce TEM both by reducing adhesion of T-ALL cells to 

ICAM-1 and inhibiting their migration on endothelial cells.  
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Figure 2.6. Statin treatment and Rap1b downregulation reduce transendothelial 
migration of T-ALL cells. Primary T-lymphoblasts, CCRF-CEM cells and PEER 
cells were treated for 16 h with 1 µM simvastatin (A) or transfected with siRNAs 
targeting Rap1a or Rap1b (B and C) then added to confluent HUVECs on transwell 
filters. After 1 h (primary-T-lymphoblasts) or 2 h (CCRF-CEM and PEER), cells that 
had transmigrated through the HUVECs towards SDF-1 in the lower chamber were 
counted. Data shown are mean of 3 independent experiments ± SEM. *p<0.05, 
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**p<0.01; 2-way-paired t-test.  (D) CCRF-CEM cells treated with 1 µM simvastatin 
with or without 250 µM mevalonic acid for 16 h were added to HUVECs and 
imaged by timelapse microscopy. Images show cells at 0, 10, 20 and 30 min; 
asterisks (top panels) indicate examples of CCRF-CEM cells undergoing 
transendothelial migration. Bar, 50 µm. (E) Zoom of a representative cell treated 
with 1 µM simvastatin (boxed region in D), showing extension of protrusions in 
different directions. (F) Relative velocity of CCRF-CEM cells on HUVECs, 
compared to control. Data are from 3 independent experiments ± SEM. *p<0.05; 2-
way-paired t-test. Experiments performed by Elvira Infante. 
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2.5 Discussion 

A critical step in T-ALL progression is the accumulation of leukaemic cells in the 

tissues, which requires adhesion to and transmigration through the endothelium.  

Here we demonstrate that both statins and a geranylgeranyl transferase inhibitor 

reduce of T-ALL cell adhesion, LFA-1 integrin activation, migration and TEM, 

indicating that the effects of statins are due to reduced protein prenylation rather than 

cholesterol depletion.  Our results suggest these responses are predominantly due to 

inhibition of Rap1b, since depletion of Rap1b but not its closely related isoform 

Rap1a has similar effects to statins on T-ALL cell adhesion and migration.  

The relative contributions of the two Rap1 isoforms, Rap1a and Rap1b, to integrin 

activation have not been investigated previously. Studies with Rap1a- and Rap1b-

null mice indicate that each isoform affects integrin-mediated leukocyte adhesion, 

although the two isoforms have not been compared directly. For example, primary 

hematopoietic cells isolated from Rap1a-null mice have reduced adhesion to FN but 

just a slight decrease of adhesion to ICAM-1 (Duchniewicz et al., 2006), while B 

cells from Rap1b-null mice have reduced ICAM-1 adhesion and chemotaxis (Chu et 

al., 2008).  

Rap1 stimulates integrin activation through its target Riam, which in turn regulates 

talin interaction with integrins (Banno and Ginsberg, 2008; Frische and Zwartkruis, 

2010). In addition, in T cells the Rap1 target RAPL interacts with and regulates the 

spatial distribution of LFA-1 (Katagiri et al., 2003; Mor et al., 2007). Rap1a and 

Rap1b differ by only 8 amino acids, most of which are close to the C-terminus (Lee 

et al., 2009; Raaijmakers and Bos, 2009). Our results indicate that Rap1b is 

specifically required for T-ALL cell adhesion to ICAM-1 whereas both isoforms 

contribute to adhesion to FN. This suggests that the interacting partners and/or 

localization of Rap1a and Rap1b could be different.  

It is interesting that Rac1, Rac2 and RhoA were not required for T-ALL adhesion to 

ICAM-1, since there is evidence that they and/or specific RhoGEFs regulate ICAM-

1 adhesion in response to chemokines or B/T cell receptor engagement (Tybulewicz 

and Henderson, 2009). The signal transduction pathways leading from Rac and Rho 

to integrin activation are not clear, in contrast to the well-characterized mechanisms 

linking Rap1 to integrins.  It is thus possible that Rho GTPase involvement in 

adhesion is indirect and due to their effects on cytoskeletal dynamics. However, 
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depletion of Rac and Rho proteins clearly affects T-cell behavior: we have recently 

shown that RhoA and Rac2 are required in CCRF-CEM cells for transendothelial 

migration, and that RhoA depletion dramatically alters T-cell morphology and 

reduces migration on endothelial cells (Heasman et al., 2010). 

The increase in GTP-bound Rap1 and Rho GTPases in statin- and GGTI-treated cells 

is presumably due to altered localization of the unprenylated proteins. Since GTP 

levels are higher than GDP levels in cells, we predict that GTPase proteins are 

initially loaded with GTP when they are synthesized. If GTPases are unable to be 

prenylated and hence are mislocalized then it is unlikely they will encounter GAPs 

and thus they will remain GTP-loaded (Spilker and Kreutz, 2010).  However, they 

also will not interact efficiently with their downstream targets when unprenylated 

and thus their downstream signaling will be inhibited, despite being GTP-loaded 

(Satoh et al., 2001; Wang et al., 2008). 

Simvastatin and lovastatin are often used at 10 µM or higher concentrations in 

experiments in vitro (Schiefelbein et al., 2008; Zhang et al., 2008), although they can 

increase RhoA-GTP levels at 1 µM (Cordle et al., 2005). Plasma levels of lovastatin 

were reported to be between 200-250 nM, 6 h after administration of 160 or 200 mg 

of lovastatin to human acute myeloid leukaemia (AML) patients (Lewis et al., 2005). 

Thus statin levels of 1 µM could be present at earlier timepoints, but 10 µM is likely 

to be much higher than most leukaemia cells in the blood would be exposed to for 

any significant time in vivo. Statins at 10 µM have been reported to reduce AML cell 

viability in vitro (Sassano et al., 2007), but in our experiments 1 µM statin did not 

affect the viability of primary T-lymphoblasts or T-ALL cells. Furthermore, 1 µM 

statin did not affect T-lymphoblast adhesion to ICAM-1 or migration but did inhibit 

T-ALL responses, suggesting that it may be possible to inhibit T-ALL recruitment to 

tissues selectively without affecting primary T cells.  Interestingly, we found that the 

active form of Rap1 and the levels of Rap1a and Rap1b protein are higher in primary 

T-lymphoblasts than CCRF-CEM and Jurkat cells, and that Rap1 was only activated 

by 10 µM statin but not 1 µM statin in T-lymphoblasts. This might explain why 

statins are less effective at inhibiting primary T-lymphoblast adhesion to ICAM-1. 

In conclusion, our data indicate that Rap1b is the main Rap1 isoform required for 

adhesion to ICAM-1, chemotaxis and TEM of T-ALL cell lines. Our results suggest 

that statins, GGTIs or other inhibitors of Rap1b signalling could be potential 

therapies to reduce invasion and metastasis in T-ALL. 
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2.6 Supplementary materials  

 

Supplementary Figure 1.1. CCRF-CEM cells (A) or primary-T-lymphobasts (B) 
were treated for 16 h with the indicated concentrations of simvastatin or lovastatin. 
Cell viability was determined with Trypan blue. (C) CCRF-CEM cells and primary 
T-lymphoblasts were labeled with Cell Tracker CMFDA and added to ICAM-1-
coated wells for 30 min. Adherent cells were counted from images acquired by 
epifluorescence microscopy. Bars, 100 µm. (D) CCRF-CEM cells were treated with 
250 µM mevalonic acid for 16 h. Cells were then added to ICAM-1-coated 
transwells containing 30 ng/ml SDF-1 in the lower chamber. Cells in the lower 
chamber were counted after 1 h.  Experiments performed by Elvira Infante. 



Chapter 2 
____________________________________________________________________ 

93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Supplementary Figure 1.2. (A) CCRF-CEM cells were treated for 16 h with 1 µM 
simvastatin. Cell lysates were separated on a 12.5% polyacrylamide gel and analysed 
by western blotting using Rap1 antibody. (B) CCRF-CEM cells were transfected 
with the indicated siRNAs.  After 72 h, cell lysates were prepared and western 
blotted with antibodies to Rap1a, Rap1b or total Rap1 (lower panel: antibody 
recognizes Rap1a and Rap1b). (C) Rap1a and Rap1b expression in T-lymphoblasts, 
CCRF-CEM and Jurkat cell lysates was analysed by western blotting. GAPDH was 
used as a loading control. Blots shown are representative of 3 independent 
experiments. (D) HUVECs were treated for 16 h with 1 µM simvastatin. Cells were 
stained with anti-VE-cadherin antibody and DAPI to stain nuclei and analysed by 
confocal microscopy. Bar, 20 µm. Experiments performed by Elvira Infante. 
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3.1 Abstract 

NOTCH1 is frequently mutated in T-cell acute lymphoblastic leukaemia (T-ALL), 

and can stimulate T-ALL cell survival and proliferation.  Here we explore the 

hypothesis that Notch1 also alters T-ALL cell migration.  Rho GTPases are well-

known to regulate cell adhesion and migration. We have analysed the expression 

levels of Rho GTPases in primary T-ALL samples compared to normal T cells by 

quantitative PCR. We found that 5 of the 20 human Rho genes are highly and 

consistently upregulated in T-ALL, and 3 further Rho genes are expressed in T-ALL 

but not detectably in normal T cells. Of these, RHOU expression is highly correlated 

with the expression of the Notch1 target DELTEX-1. Inhibition of Notch1 signalling 

with a γ-secretase inhibitor (GSI) or Notch1 RNAi reduces RhoU expression in T-

ALL cells, whereas constitutively active Notch1 increased RhoU expression. In 

addition, Notch1 or RhoU depletion, or GSI treatment, inhibits T-ALL cell adhesion, 

migration and chemotaxis. These results indicate that NOTCH1 mutation stimulates 

T-ALL cell migration through RhoU upregulation which could contribute to the 

leukaemia cell dissemination.  
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3.2 Introduction 

T-cell acute lymphoblastic leukaemia (T-ALL) is a common cancer in children. T-

ALL patients usually present with large numbers of leukaemic blasts with an 

immature T-cell phenotype in the bone marrow and peripheral blood. Although 

current ALL treatment protocols have success rate of around 70 to 80% five-year 

event-free survival in children, T-ALL is associated with a poorer prognosis than B-

ALL (Pieters and Carroll, 2010). Leukaemic blasts can infiltrate numerous tissues, 

with the central nervous system (CNS) being a frequent site of metastasis (Aifantis et 

al., 2008; Crazzolara et al., 2001). CNS relapse in T-ALL requires more aggressive 

treatment regimens that can lead to secondary malignancies or neurocognitive 

disorders(Bhojwani et al., 2009). A better understanding of the genes involved in the 

pathogenesis of T-ALL could allow the development of T-ALL therapies that have 

fewer negative effects on long-term patient health. 

Among the genetic alterations that are associated with the development of T-ALL, 

mutation of the NOTCH1 oncogene is one of the most common, being present in 

over 50% of cases (van Grotel et al., 2008; Weng et al., 2004). Notch1 is required for 

T lineage commitment and regulates T cell maturation in the thymus (Hayday and 

Pennington, 2007; Vicente et al., 2010). Notch1 recognises ligands of the Delta and 

Serrate/Jagged families expressed in the thymic stroma. Ligand binding induces two 

sequential proteolytic cleavage events. The first cleaves a large portion of the 

ectodomain, exposing a site recognised by the intramembrane γ-secretase proteolytic 

complex (GS). Cleavage by GS releases the Notch1 intracellular domain (NICD), 

which enters the nucleus where it associates with the DNA-binding protein CSL 

(CBF1/Su(H)/Lag1) and other proteins to regulate transcription of a wide range of 

genes, including DELTEX-1 and HES1 (Aster et al., 2011). NOTCH1 mutations 

found in T-ALL commonly lead to constitutive Notch1 signalling via ligand-

independent NICD production, or enhanced NICD half-life (Ferrando, 2009). 

Constitutive Notch1 signalling promotes leukaemic cell survival and proliferation. 

Notch1 also regulates expression of the chemokine receptor CCR7, which 

contributes to CNS metastasis in T-ALL (Buonamici et al., 2009), but whether 

Notch1 signalling affects other genes that regulate cell motility has not been 

investigated. 
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Rho family GTPases control haematopoietic cell morphology, migration and 

adhesion as well as cell proliferation and differentiation (Tybulewicz and Henderson, 

2009; Van Hennik and Hordijk, 2005). Most Rho GTPases are active when bound to 

GTP, and inactivated when the bound GTP is hydrolysed to GDP. Signalling through 

Rho GTPases is therefore controlled by regulatory proteins that modulate GTP 

binding and hydrolysis, including guanine nucleotide exchange factors (GEFs) and 

GTPase-activating proteins (GAPs). Twenty Rho family members have been 

identified in humans, several of which have atypical properties (Boureux et al., 

2007). Rnd1, Rnd2, Rnd3 and RhoH have amino acid substitutions that prevent 

GTPase catalytic activity, and therefore only exist in a GTP-bound state. RhoBTB1 

and RhoBTB2 are much larger than other Rho GTPases, and appear not to bind or 

hydrolyse GTP (Aspenstrom et al., 2007; Chang et al., 2006).  RhoU and RhoV are 

also considered atypical because they have high intrinsic GDP/GTP exchange rates 

and therefore are likely to be predominantly in the GTP-bound state (Aspenstrom et 

al., 2007). Rho proteins act through their downstream effectors to regulate 

cytoskeletal and adhesion dynamics, and thereby contribute to cell migration. 

Altered expression of Rho genes or activation of Rho proteins has been reported in a 

variety of cancer types, and the RhoH gene is mutated in some lymphomas 

(Ellenbroek and Collard, 2007; Vega and Ridley, 2008). Rho proteins contribute to 

the enhanced migration and invasion of cancer cells (Parri and Chiarugi, 2010; 

Symons and Segall, 2009; Vega and Ridley, 2008). 

In this study, we have investigated the hypothesis that the pathogenesis of T-ALL 

involves the altered expression of Rho family genes. We have investigated the 

mRNA expression of human Rho genes in primary T-ALL leukaemic blast samples 

and compared it to the expression in normal peripheral blood T cells. We have found 

that several Rho genes have significantly increased expression in T-ALL, and in 

particular shown that RhoU expression is regulated by Notch1 signalling. 
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3.3 Materials & Methods 

3.3.1 T-ALL patient samples and normal T-lymphocyte isolation 

The primary childhood leukaemia samples used in this study were provided by the 

Leukaemia and Lymphoma Research Childhood Leukaemia Cell Bank (UK), in 

accordance with the requirements of the Childhood Cancer and Leukaemia Group 

(CCLG) and the Cell Bank Steering Committee. Frozen samples (mononuclear bone 

marrow cells or peripheral blood) obtained from 30 T-ALL patients at diagnosis 

were used. T-ALL samples are generally accepted to be more than 90% leukaemic 

blasts.  T-lymphocytes were isolated from buffy coats of 5 healthy blood donors. 

Mononuclear cells were separated by density gradient according to the 

manufacturer’s protocol (Lymphoprep, Axis-Shield). Cells were then treated with 

0.5% phytohaemagglutinin (Sigma-Aldrich, Dorset, UK) in RPMI medium 

(Invitrogen, Paisley, UK) containing 10% foetal calf serum for 48 h, followed by 

culture for 10 days in 10 U/ml human IL-2 (Roche Diagnostics, Burgess Hill, UK). 

The T-lymphocyte populations obtained were >90% pure, defined by CD4+ or 

CD8+ single positive populations measured by flow cytometry with anti-CD4 and 

anti-CD8 antibodies (BD Bioscences, Oxford, UK). 

 

 

3.3.2 Cell culture and GSI treatment 

CCRF-CEM cells were purchased from ATCC (LGL Promochem, Middlesex, UK). 

PEER, SUPT1, MOLT16 and LOUCY T-ALL cell lines (see Figure 1.5) were from 

the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 

Germany). Cell lines were cultured in Dulbeco’s RPMI containing 2 mM glutamine 

and supplemented with 10% fetal calf serum, 1 mM sodium pyruvate, 10 mM Hepes, 

penicillin (100 U/ml) and streptomycin (100 µg/ml). COS7 cells were grown in 

DMEM containing 10% fetal calf serum, penicillin (100 U/ml) and streptomycin 

(100 µg/ml). GSI (Compound E, Calbiochem, Nottingham, UK) was solubilised in 

dimethylsulphoxide (DMSO). Cell lines were resuspended in medium containing 

100 nM GSI or an equal volume of DMSO and cultured for the indicated times. For 

7 day treatments, cells were re-treated at a lower cell density in fresh GSI-containing 

medium after 3 or 4 days.  
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3.3.3 Transfection  

CCRF-CEM cells (5 x 105) were transfected by nucleofection (Amaxa Biosystems 

Nucleofection System) with 1.2 µM siRNA (Sigma-Aldrich) in 100 µl of 

Nucleofection reagent (kit C, Lonza Biologics, Slough, UK). siRNA sequences were 

RhoU-1: CAGAGAAGAUGUCAAAGUC; RhoU-2: 

AAGCAGGACUCCAGAUAAAUU; Notch1-1: GAACGGGGCUAACAAAGAU; 

Notch1-2: GCAAGGACCACUUCAGCGA. siControl was from Thermo Fisher 

Scientific (D-001810-02-20, Lafayette, USA). Cells were used for experiments 48 to 

72 h after siRNA transfection. 

pcDNA3 encoding HIS-tagged Notch1 intracellular domain (NICD) or vector alone 

(see 4.2.2.6, 4.2.2.7 and 4.2.2.8) was transfected into COS7 cells by electroporation. 

Cells were detached from the plate and washed twice in electroporation buffer (10 

mM KCl, 10 mM K2PO4/KHPO4 pH 7.6, 25 mM Hepes pH 7.6, 2 mM MgCl2, 0.5% 

Ficoll 400). After resuspending in 250 µl  of electroporation buffer cells were mixed 

with 5 µg DNA in a 0.4 cm electroporation cuvette and left on ice for 10 min. 

Samples were then electroporated at 250 V, 975 µF and left again on ice for 5 min 

and at room temperature for other 5 min. Cells were finally plated in 10 cm dish and 

incubated for 24 h at 37°C.  After 48 h, cells were solubilised in protein sample 

buffer, and protein expression was analysed by immunoblotting.  

 

 

3.3.4 Sample preparation and real-time SYBR-Green PCR 

RNA from T-ALL samples and control T-lymphocytes was extracted by the Trizol 

method (Invitrogen), and treated with DNase (RNase-free, Ambion) to remove 

genomic DNA. RNA concentration was determined, and purity was checked by 

measuring the A260/A280 ratio. cDNA was prepared from identical amounts of 

RNA template with Superscript VILO cDNA synthesis kit (Invitrogen).  

Relative mRNA expression of Rho genes was determined by real-time polymerase 

chain reaction (RT-PCR) assays, using SYBR-Green detection chemistry (PCR 

mastermix from Primer Design, Southampton, UK) and the ABI Prism 7000 

Sequence Detection System (Applied Biosystems). Primers used for each gene are 

shown in Supplementary Table 1. Wherever possible, primers were designed either 
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across different exons or across exon-exon boundaries to avoid detection of genomic 

sequences. Each gene assay was validated for amplification efficiency between 90 

and 110% by serial template dilutions, and for specificity by melting curve analysis 

and agarose gel electrophoresis. The expression analysis for each gene was carried 

out in a 96 well format, comparing all 5 control samples to batches of 6 or 7 T-ALL 

samples, and for each sample assaying a Rho gene in parallel with GAPDH as a 

reference. CT values of controls could therefore be used to correct for plate-to-plate 

variations (see 4.2.2.10, 4.2.2.11 and 4.2.2.12). 

 

 

3.3.5 Statistical analyses 

For T-ALL-associated expression changes, mean CT values for each sample were 

first normalised to GAPDH CT values (expressed as dCT). Differential gene 

expression between control and T-ALL samples was determined by the Mann-

Whitney U test for medians of dCT values. For clustering analyses, the comparative 

CT method (Schmittgen and Livak, 2008) (using the average CT of the controls) was 

used to determine relative fold expression changes for Rho genes in each T-ALL 

sample. Cluster analysis software (Cluster 3.0) (de Hoon et al., 2004) and Java 

Treeview (Saldanha, 2004) were used to generate a heat-map of the fold changes as 

well as carry out unsupervised hierarchical clustering of genes and T-ALL samples. 

Complete linkage clustering algorithm was applied, using Pearson correlation as the 

similarity metric. Characteristics of grouped or clustered T-ALL patients were 

compared by Mann-Whitney U test for medians or the Fisher’s Exact test for 

associations, in two-tailed tests and considered significant if P < 0.05. Statistical tests 

were carried out using Graphpad Prism 5 software.  

 

 

3.3.6 Immunoblotting 

Cells were lysed directly in 4X sample buffer (see 2.3.9) and immediately heated to 

at least 90°C for 10 min. Proteins were resolved by polyacrylamide gel 

electrophoresis, transferred to PVDF membrane, and detected by immunoblotting. 

The following antibodies were used: Cleaved Notch1 intracellular domain (Val1744, 
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Cell Signaling, Hitchin, UK), RhoU (Wrch1 ab80315, Abcam, Cambridge, UK), ß-

tubulin (Sigma-Aldrich), HIS-tag (Cell Signaling), GAPDH and Rac2 (Millipore).  

 

 

3.3.7 Immunofluorescence 

Glass coverslips were coated with 10 µg/ml fibronectin at 4°C overnight and blocked 

in 2.5% BSA in phosphate-buffered saline (PBS) for 1 h. 2x105 cells were added to 

each coverslip and incubated at 37°C with 1ng/ml of CXCL12 (R&D Systems, 

Abingdon, UK) for 30 min. Subsequently, samples were fixed with 4% 

paraformaldehyde and permeabilized in 0.1% Triton-X-100. Following 2 washes in 

PBS cells were incubated with Alexa Fluor 546 phalloidin (A22283, Invitrogen) and 

FITC-labeled anti-α-­‐tubulin antibody (Sigma) for 1 h. Coverslips were mounted onto 

glass slides using Dako (Ely, UK) anti-­‐fade mounting medium. Images were 

acquired using a Zeiss LSM500 confocal microscope (Zeiss). F-actin content was 

measured using ImageJ software. Each experimental condition was done with 

triplicate coverslips, counting 100 cells on each. Data was pooled from three 

independent experiments.  Polarized cells were defined as having F-actin localized to 

one side of the cell, defined as the leading edge, and the microtubule organizing 

center (MTOC) localized at the other side of the nucleus with respect to the leading 

edge.  Elongated tails on cells were defined as a narrow protrusion at the opposite 

side to the leading edge, at least the length of the cell body. 

 

 

3.3.8 Time-lapse microscopy 

The siRNA-transfected or DMSO/GSI-treated CCRF-CEM cells were counted 

(Innovatis CASY cell counter, Roche Applied Bioscience, Burgess Hill, UK), and 

2×105 were added to each well of a fibronectin-coated 8-well culture slides (BD 

Falcon, Oxford, UK). After 30 min, wells were washed three times with complete 

culture medium to remove loosely attached and non-viable cells, and then stimulated 

with 1 ng/ml of CXCL12. Bright field phase-contrast images were collected every 

minute for 1 h on a Nikon Eclipse TE2000 microscope with a charge-coupled 
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device camera (ORCA, Hamamatsu Photonics, Welwyn Garden City, UK) using 

Metamorph software (Cairn Research, Faversham, UK). Cells were tracked, and 

velocities and distance migrated calculated using ImageJ. 

 

 

3.3.9 Adhesion assay 

The 96-well plates were coated overnight at 4°C with 10 µg/ml fibronectin. Cells 

were resuspended in PBS at 106 cells per ml and incubated at 37 °C for 15 min 

with 2 µM CellTracker Green CMFDA (Invitrogen). Cells were then resuspended in 

warm media and 105 cells per well (each sample in triplicate) were incubated at 

37°C for 30 min. After washes with PBS, the plate was read on a Fusion-αFP plate 

reader (PerkinElmer, Cambridge, UK) at 485 nm excitation and 525–535 nm 

emission. 

 

 

3.3.10 Flow cytometry 

T-ALL cells (2 × 105) were centrifuged and washed with PBS. Cells were fixed at 

room temperature for 10 min with 4% paraformaldehyde and permeabilized with 

0.1% Triton X-100. Samples were then incubated with 0.2 µg/ml Alexa 488-

labelled phalloidin and analysed on a Becton Dickinson FACS Calibur machine 

(Oxford, UK) using FlowJo program (Ashland, OR, USA). 

 

 

 

 

 
 
 
 
 
 



Chapter 3 
____________________________________________________________________ 

103 
 

3.4 Results 

3.4.1 Atypical Rho genes are upregulated in T-ALL  

To study Rho GTPase involvement in the pathogenesis of T-ALL we investigated 

Rho gene expression in 30 primary T-ALL blast samples compared to mature T cells 

from 5 healthy blood donors. Expression of each Rho gene mRNA was determined 

by quantitative PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 

a reference gene (Suppl Fig. 3.1). Rho mRNA expression for each T-ALL sample 

was quantified relative to the mean of the control samples (Fig. 3.1A, Table 1). To 

determine which of the genes were differentially expressed to a statistically 

significant degree, a Mann-Whitney test was applied (Table 1), considering the 

median to be the best representation of the data, which in many cases were skewed 

and not normally distributed (Fig. 3.1A). Five Rho genes were significantly 

upregulated in the T-ALL samples: RHOH, RHOBTB1, RHOA, RHOB and RHOU. 

RHOA and RHOH were very consistently increased in nearly all the T-ALL samples 

although the median fold upregulation was quite small. The magnitude of 

RHOBTB1, RHOB and RHOU upregulation was much higher, but with more 

variation across the T-ALL samples (Fig. 3.1A, Table 1). Three genes were not 

detectable in normal T cell samples but were detected in more than 30% of T-ALL 

samples: RHOV, RND2 and RND3. We therefore could not determine the fold 

expression differences relative to normal T cells for these genes, however the 

variation in expression with T-ALL samples was analysed (Fig. 3.1B). RHOD was 

not expressed in normal T-cell or T-ALL samples, and preliminary analysis indicated 

that RHOJ is also not expressed (data not shown), in agreement with our published 

data on normal T cells and the CCRF-CEM T-ALL cell line (Heasman et al., 2010). 

Interestingly, 5 of the 8 differentially expressed Rho genes (RHOBTB1, RHOU, 

RHOV, RND2 and RND3) belonged to the atypical sub-class (Aspenstrom et al., 

2007), which was therefore over-represented among the altered genes.  
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Figure 3.1 Rho mRNA expression in T-ALL. (A) RNA was extracted from 30 T-
ALL blast samples and normal T lymphocytes from 5 peripheral blood samples of 
healthy donors. mRNA expression of each Rho gene was measured by quantitative 
PCR, using GAPDH expression as a reference. Rho gene expression in each T-ALL 
sample was determined relative to the mean expression of the normal control 
samples using the comparative Ct method. Data are expressed as fold expression 
relative to control on a logarithmic scale. (B) mRNA expression of Rho genes not 
detected in normal T lymphocytes. The T-ALL sample with the lowest detected 
mRNA expression was assigned a relative expression level of 2. Other values are 
shown relative to this sample. Values above each column indicate the percentage of 
T-ALL samples that detectably expressed each gene. Experiments performed by Dr 
Parag Bhavsar 
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Table 1. Rho mRNA expression in T-ALL relative to healthy controls. RNA was 
extracted from 30 T-ALL blast samples and normal T lymphoblasts from 5 
peripheral blood samples of healthy donors. mRNA expression of each Rho gene 
was measured by quantitative PCR (qPCR) using glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as a reference gene. GAPDH-normalized Rho expression 
values (dCT) were used to compare expression levels between normal and T-ALL 
populations using a two-tailed Mann–Whitney U-test of medians. *P<0.05, 
**P<0.01 and ***P<0.001. Analysis performed by Dr Parag Bhavsar. 
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3.4.2 Rho gene expression patterns cluster T-ALL patients in two groups  

T-ALL samples were grouped according to similarity of Rho expression (fold 

expression relative to controls) using clustering algorithms. The expression values 

were visualized in a heat-map, with a dendrogram showing the resulting clusters of 

T-ALL samples (Fig. 3.2). This analysis resulted in the resolution of two major 

clusters of T-ALL patients (denoted clusters A and B). The upregulation of RHOH, 

RHOBTB1, RHOA, RHOB and RHOU was similar in both clusters, as expected due 

to the consistency of the changes in these 5 genes across all samples. The distinction 

between the two groups reflected the expression of genes that showed variable 

expression across the T-ALL samples. Cluster A was enriched in samples where the 

expression of several Rho genes was lower than normal controls, including RAC1, 

RHOC, CDC42 and RHOQ, whereas cluster B had a greater incidence of higher-

than-normal expression of these genes. The two Rho expression profile clusters 

might reflect different patient characteristics.  They did not show a significant 

association with available patient information on age at diagnosis, white blood cell 

count (WBC), CNS disease and relapse incidence, but it is likely that a higher 

number of T-ALL samples would be required for this analysis.  

In addition to the cluster analysis, the expression of each Rho gene was 

independently tested for association with patient information. Interestingly, the 

expression of RHOQ, RND1 and RHOB was significantly correlated with WBC 

count (Table 2). As described above, RHOB is highly upregulated in the T-ALL 

samples. Although RHOQ and RND1 expression in T-ALL was not different overall 

from normal controls (Fig. 3.1), this suggests that RHOQ and RND1 expression are 

increased in a subset of patients with higher WBC. The WBC count could correlate 

with differences in the migratory properties of leukaemic cells.  
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Figure 3.2 Association of Rho expression and T-ALL disease characteristics. 
Relative expression data for T-ALL samples were log2 transformed and an 
unsupervised hierarchical clustering algorithm applied (see Materials and methods). 
The legend indicates the magnitude and direction of expression changes relative to 
control T-lymphocyte samples. Analysis performed by Dr Parag Bhavsar. 
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Table 2. Association between relative Rho expression in T-ALL and WBC.  
The fold expression values for each Rho gene were tested for correlation with WBC 
at diagnosis, using Pearson's correlation statistic, r. The r values can range from 1, 
indicating perfect correlation, to −1, indicating perfect inverse correlation. *P<0.05, 
**P<0.01. Analysis performed by Dr Parag Bhavsar. 
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3.4.3 RHOU expression correlates with Notch1 signalling in T-ALL  

The NOTCH1 gene is mutated in over 50% of T-ALL cases, leading to dysregulated 

Notch1 signalling (Aster et al., 2011).  Mutations in other genes such as FBXW7, a 

ubiquitin ligase involved in Notch1 turnover, also contribute to constitutive Notch1 

signalling in T-ALL (O'Neil et al., 2007). We therefore investigated whether the Rho 

gene alterations we observed in the T-ALL samples were linked to aberrant Notch1 

signalling. 

We used the mRNA expression levels of the Notch1 target gene DELTEX1 as a read-

out of constitutive Notch1 signalling and screened the T-ALL samples using 

quantitative PCR (Fig. 3.3A). 
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Figure 3.3 Association of RhoU expression with Notch1 signalling in T-ALL 
patients and cell lines. (A) DELTEX-1 mRNA expression in T-ALL and control 
samples was analysed by quantitative PCR using GAPDH expression as a reference. 
DELTEX-1 mRNA expression in each T-ALL sample was determined relative to the 
mean expression of the normal control samples using the comparative Ct method. 
Data are expressed as fold expression relative to controls on a logarithmic scale. (B) 
Scatter plot of RHOU and DELTEX-1 expression in T-ALL samples. (C) Cells from 
a panel of T-ALL-derived cell lines in growth phase were lysed and then analysed 
for RhoU protein expression and cleaved Notch1 intracellular domain levels by 
immunoblotting. A representative blot from three independent experiments is shown 
Experiments in A and B were performed by Dr Parag Bhavsar. Experiments in C 
were performed by Elvira Infante 
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DELTEX1 transcript levels were at least two-fold higher than control T cells in 68% 

of samples, indicating increased Notch1 signalling. This could be due to NOTCH1 

mutations or other mutations that affect Notch1 signalling. 

We determined whether the relative expression levels of any of the Rho genes 

correlated with the expression of DELTEX1 using a Spearman Rank test (Table 3). 

RHOU (Fig. 3.3B) and RAC2 mRNA levels were found to be significantly associated 

with DELTEX1 in T-ALL samples. Since we had identified RHOU as upregulated in 

T-ALL, we decided to investigate the relationship between RHOU and Notch1 

signalling further.  

A number of T-lymphoblastic cell lines have been derived from T-ALL patients. 

Several have mutations that lead to constitutive Notch1 signalling, whereas others 

have normal ligand-dependent Notch signaling (O'Neil et al., 2007). We used a panel 

of T-ALL cell lines to investigate whether there was an association between Notch1 

signalling status and RhoU protein expression. In accordance with published data, 

we detected cleaved Notch1 in PEER, SUPT1, CCRF-CEM, DND41 and Jurkat lines 

but not in LOUCY and MOLT16 lines, which do not have Notch1 mutations (Fig. 

3.3C) (O'Neil et al., 2007). The different sizes of NICD detected in the cell lines 

reflect different sites of mutation in Notch1 and/or FBW7, a ubiquitin ligase 

involved in Notch1 degradation (O'Neil et al., 2007). RhoU protein was expressed in 

all the cell lines, indicating that RhoU expression is not strictly dependent on 

oncogenic Notch1 activation.  However, it was highest in SUPT1, DND41 and 

JURKAT cells, which have cleaved Notch1. 
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Table 3. Association between relative Rho gene expression and DELTEX-1 
levels in T-ALL. DELTEX-1 mRNA expression was analysed by quantitative PCR, 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-normalized dCT values 
were used to test for correlation between Rho gene and DELTEX-1 expression using 
Spearman's rank correlation test. *P<0.05. Analysis performed by Dr Parag Bhavsar. 
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3.4.4 RhoU expression is regulated by Notch1 signalling 

To determine if RhoU expression is influenced by Notch1 signalling, we first 

utilized the γ-secretase inhibitor (GSI) compound E to block the generation of NICD 

(Palomero et al., 2006; Palomero et al., 2007). T-ALL cell lines with activating 

Notch1 mutations (CCRF-CEM, SUPT1 and PEER) and lines with wild-type Notch1 

(LOUCY and MOLT16) were treated with GSI or DMSO (vehicle control) for three 

and seven days to allow time for gene expression changes to occur. RHOU mRNA 

levels in response to the treatment were determined by qPCR (Fig. 3.4A). DELTEX1 

mRNA levels were quantified to confirm Notch1 signalling inhibition, and CDC42 

mRNA was used as an additional control since its expression was not correlated with 

DELTEX1 (Table 3). As expected, GSI treatment led to a dramatic reduction in the 

levels of DELTEX1 mRNA in all three NOTCH1 mutant lines. GSI treatment 

resulted in a reduction of RHOU mRNA in these T-ALL lines, whereas CDC42 was 

unaffected (Fig. 3.4A). In contrast, in the NOTCH1 wild-type lines, RHOU 

expression was unaffected by GSI treatment. We could not detect DELTEX1 mRNA 

well enough for quantification in LOUCY and MOLT16 lines, consistent with the 

absence of constitutive Notch1 signalling (Fig. 3.4A). 

We next analyzed the dependence of RhoU protein expression on Notch1 signalling. 

GSI treatment resulted in a reduction of NICD levels at three and seven days of 

treatment in the three NOTCH1 mutant lines, showing that the GSI treatment was 

inhibiting Notch1 cleavage. There was a progressive reduction in RhoU protein with 

GSI treatment in these lines (Fig. 3.4B), whereas Rac2 levels were not affected 

(Suppl Fig. 3.2A). In contrast, RhoU protein levels in the lines with wild-type 

NOTCH1 (LOUCY, MOLT16) were unaffected by GSI treatment. As expected, 

NICD was not detected in these lines (Fig. 3.4B). 

γ-secretase cleaves a number of proteins in addition to Notch1 (Wolfe, 2009), and 

thus we tested whether the effects of GSI on RhoU were also observed with direct 

Notch1 inhibition. Two different Notch1 siRNAs strongly reduced RhoU protein 

levels in CCRF-CEM cells (Fig. 3.4C).  To determine whether Notch1 signalling 

alone could induce RhoU expression, the NICD was expressed in COS7 cells. NICD 

expression led to an increase in RhoU protein levels (Fig. 3.4D). Together, these data 

show that Notch1 signalling positively regulates the expression of RhoU. 
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Figure 3.4 Notch1 regulates RhoU expression. (A) T-ALL cell lines were treated 
with GSI or DMSO (vehicle) for 3 days (3d) or 7 days (7d). RNA was extracted and 
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analysed by quantitative PCR to determine relative mRNA expression levels of 
DELTEX-1, RHOU and CD CDC42, with GAPDH as a reference. Fold expression 
changes were determined relative to expression in DMSO-treated cells using the 
comparative Ct method. (B) Cells treated as in (A) were lysed and protein levels of 
the cleaved NICD and RhoU were determined by immunoblotting. Blots were 
probed for GAPDH or β-tubulin as loading controls. Representative data from three 
independent experiments are shown. (C) CCRF-CEM cells were transfected with 
control siRNA or two different siRNAs (1, 2) targeting Notch1. Cells were lysed 
after 72 h and analysed by immunoblotting for levels of NICD, RhoU, and GADPH 
as a loading control. (D) A construct encoding His-tagged NICD was transfected into 
Cos7 cells. After 48 h, cells were solubilized in protein sample buffer and His-tag 
and RhoU were detected by immunoblotting. GADPH was used as a loading control. 
A representative blot from three independent experiments is shown. Experiments in 
A, B were performed by Dr Parag Bhavsar (CCRF-CEM) and Elvira Infante (SUPT-
1, PEER, LOUCY and MOLT16). Experiments in C and D were performed by Elvira 
Infante. 
 

 

 

3.4.5 RhoU regulates T-ALL cell polarization, migration and adhesion 

Since Rho GTPases are well known to regulate cell migration (Heasman and Ridley, 

2008), we investigated whether RhoU affected the migration of T-ALL cells.  We 

chose CCRF-CEM cells since they have mutated NOTCH1, and are well 

characterized for their migration behaviour (Heasman et al., 2010; Infante et al., 

2011; Takesono et al., 2010). RhoU expression was downregulated in CCRF-CEM 

cells by transfection with two different siRNAs (Suppl Fig. 3.2B). RhoU-depleted 

cells had a rounder morphology and migrated more slowly on fibronectin than 

control siRNA-transfected cells (Fig. 3.5A, B).   Similarly, GSI-treated cells and 

Notch1-depleted cells were more rounded and migrated more slowly than control 

cells (Fig. 3.5A, B).  RhoU- and Notch1-depleted cells and GSI-treated cells also 

showed reduced total migration distance over 1 h (Fig. 3.5C) and RhoU and GSI 

affected chemotaxis towards CXCL12 in transwells (Fig. 3.5D). 
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Figure 3.5 RhoU regulates T-ALL cell morphology and migration. CCRF-CEM 
cells were transfected with control siRNA, two different siRNAs (1, 2) targeting 
RhoU or Notch1 or treated for 7 days with 100 nM GSI or DMSO (vehicle). (A) 
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Cells were added onto fibronectin-coated wells and stimulated with 1 ng/ml 
CXCL12 for 30 min. Phase-contrast time-lapse images were collected every 1 min 
for 1 h. Images shown are at 0 min. Scale bar, 50 µm. Representative of three 
independent experiments. Relative velocity (B) and accumulated distance (C) was 
determined by tracking 60 cells in each of three independent experiments. (D) Cells 
were added to fibronectin-coated transwells containing 30 ng/ml CXC12 in the 
lower chamber. Cells that had migrated into the bottom of the well were counted 
after 1 h using a Casy Counter. Data shown are mean of three independent 
experiments±s.e.m. *P<0.05, **P<0.01; two-tailed paired t-test. Experiments 
performed by Elvira Infante. 
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The rounded phenotype of RhoU-depleted and Notch1-inhibited cells suggested they 

might have an adhesion defect. Indeed, depletion of RhoU or Notch1 or treatment 

with GSI reduced adhesion CCRF-CEM cells to fibronectin (Fig. 3.6, Suppl Fig. 

3.2C).  

Similarly, RhoU depletion reduced adhesion of two other T-ALL cell lines, 

JURKAT and PEER (Fig. 3.6A, Suppl Fig. 3.2B), indicating that the effect of RhoU 

is not cell type-specific. 

 

 

 

 

 

 

 

 

Figure 3.6 RhoU and Notch1 regulate T-ALL cell adhesion. CCRF-CEM, 
JURKAT or PEER cells were transfected with control siRNA or two different 
siRNAs (1, 2) targeting RhoU or Notch1, as indicated. After 72 h, cells were 
labelled with CellTracker dye CMFDA and incubated on fibronectin-coated wells. 
Adhesion was determined after 30 min. Data shown are the mean of three 
independent experiments±s.e.m. *P<0.05, **P<0.01; two-tailed paired t-test. 
Experiments performed by Elvira Infante 
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Next we investigated whether RhoU depletion or Notch1 inhibition altered migratory 

polarity by staining for F-actin and microtubules (Takesono et al., 2010).  RhoU or 

Notch1-depleted cells and GSI-treated cells still had a single F-actin-rich 

lamellipodium at the front and the microtubule-organising center was behind the 

nucleus, but there was a strong reduction in the number of cells with tails compared 

to control cells (Fig. 3.7A-D). Interestingly, the total level of F-actin in RhoU-

depleted or GSI-treated cells was increased (Fig. 3.7E), and the level of F-actin in 

lamellipodia also increased (Fig. 3.7F). RhoU depletion therefore affects T-ALL cell 

morphology and migration, and these effects can be reproduced by GSI-mediated 

inhibition of Notch1 signalling.   
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Figure 3.7 RhoU regulates polarity. CCRF-CEM cells were transfected with 
control siRNA, two different siRNAs targeting RhoU or Notch1 (1, 2) or treated for 
7 days with 100 nM GSI or DMSO (vehicle). (A, B) Cells were plated onto 
fibronectin-coated wells and stimulated for 30 min with 1 ng/ml CXCL12. Samples 
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were then fixed and stained for F-actin and α-tubulin and imaged by confocal 
microscopy. Arrow indicates microtubule-organizing centre (MTOC); * indicates 
high F-actin staining in the lamellipodium. Scale bar, 10 µm. (C, D) The percent of 
polarized cells and cells with tails was quantified as described in the Materials and 
methods, by counting 100 cells in each of 3 independent experiments. (E) Cells were 
fixed, permeabilized and incubated with Alexa Fluor 488-labelled phalloidin and 
analysed by flow cytometry. (F) F-actin level at the leading edge was quantified 
using ImageJ software. Data shown are the mean of three independent 
experiments±s.e.m. *P<0.05, **P<0.01; two-tailed paired t-test. Experiments 
performed by Elvira Infante 
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3.5 Discussion 

The pathophysiology of T-ALL suggests a significant deregulation of cell migration 

and tissue infiltration. Large numbers of T-ALL cells accumulate in the peripheral 

blood and tissues, with frequent metastasis to the CNS. We show that 8 of the 20 

human Rho GTPases are upregulated in T-ALL compared to normal T cells. We find 

that expression of the atypical Rho family member RHOU is regulated by Notch1 

and demonstrate that RhoU is required for optimal adhesion, migration and 

transendothelial migration of T-ALL cells.  This indicates that RhoU could 

contribute to T-ALL progression in NOTCH1 mutant T-ALL patients.   

RhoU and RhoV form a subfamily of Rho GTPases that have a high intrinsic 

guanine nucleotide exchange activity and are thus believed to be predominantly 

GTP-bound (Aspenstrom et al., 2007). RhoU (also known as Wrch1) and RhoV (also 

known as Chp) have been implicated in migration in several cell types but have not 

previously been studied in leukocytes. For example, they have been shown to 

stimulate lamellipodial or filopodial extension and/or an increase in integrin-based 

focal adhesions (Aronheim et al., 1998; Aspenstrom et al., 2004; Chuang et al., 

2007). In osteoclasts, RhoU is found in podosomes and influences integrin signaling 

(Brazier et al., 2009), and RhoU is required for neural crest cell migration in vivo 

(Fort et al., 2011). Our data also indicate that RhoU is involved in regulating T-ALL 

cell adhesion.  RhoU-depleted T-ALL cells had a more rounded phenotype and 

lacked uropods/tails. RhoU depletion also resulted in reduced migration and 

CXCL12-stimulated chemotaxis. Loss of the uropod and reduced migration are 

consistent with a decrease in cell adhesion. So far it is not clear how RhoU or RhoV 

affect cell adhesion, although RhoV was shown to bind to and cause the degradation 

of the Rac/Cdc42 effector PAK1, which is implicated in focal adhesion turnover 

(Arias-Romero and Chernoff, 2008; Weisz Hubsman et al., 2007). The increased 

expression of RhoU and RhoV in T-ALL samples compared to normal T cells could 

therefore affect their attachment in the bone marrow and thymus, as well as entry 

into and out of the peripheral circulation and tissues.  

The increased expression of Rho GTPases that we observe in T-ALL samples is 

likely to reflect gene expression changes due to T-ALL genetic alterations (Aifantis 

et al., 2008; Ferrando et al., 2002). Indeed, we show that RHOU expression is 

regulated by Notch1. RHOU was also among the most downregulated genes in two 
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T-ALL cell lines treated with SAHM1, a new type of Notch inhibitor that prevents 

formation of the active NICD/CSL transcription factor complex (Downward, 2003).  

Importantly, similar morphological and migratory phenotypes were induced in T-

ALL cells by RhoU depletion and by inhibiting Notch1 activation with GSI 

treatment, indicating that RHOU is the predominant target of Notch1 involved in 

regulating cell migration. Interestingly, RHOU was initially identified as a Wnt-

regulated gene (Tao et al., 2001), and Wnt signaling plays an important role in T cell 

development (Weerkamp et al., 2006). In the future it will be important to test 

whether other T-ALL-associated transcription factors affect the expression of Rho 

GTPases upregulated in T-ALL. 

In addition to RHOU and RHOV, we found that 4 other atypical Rho GTPases are 

upregulated in T-ALL: RHOH, RHOBTB1, RND2 and RND3.  RHOH is mutated 

through chromosomal translocations or somatic hypermutation in a number of B-

cell-derived leukaemias and lymphomas, but has not previously been implicated in 

T-cell-derived leukemias (Fueller and Kubatzky, 2008). However, it does regulate T-

cell receptor signaling and T-cell migration (Tybulewicz and Henderson, 2009; 

Wang et al., 2010), and could thereby affect T-ALL progression. So far little is 

known about RhoBTB1 in cancer.  It has been proposed as a candidate tumour 

suppressor in head and neck cancer, but the mechanistic basis for this function is 

unknown (Berthold et al., 2008a). There is no evidence as yet that RhoBTB1 is 

involved in cytoskeletal regulation (Aspenstrom et al., 2004); instead, the RhoBTB 

proteins have been implicated in cullin3-based ubiquitination as well as transcription 

regulation via BTB domain-dependent interactions (Aspenstrom et al., 2004; 

Berthold et al., 2008b). It will therefore be important to determine how RhoBTB1 

contributes to T-ALL. In contrast to RhoBTB1, Rnd2 and Rnd3 affect the actin 

cytoskeleton and affect cell migration in a variety of cultured cell lines (Aspenstrom 

et al., 2004; Riou et al., 2010), although their function has not so far been studied in 

lymphocytes.   

RHOB was consistently highly upregulated in T-ALL, whereas the fold-increase in 

RHOA expression was less.  RHOA overexpression has been reported in a variety of 

tumor types, including colon, breast, testicular germ cell and head and neck 

squamous cell carcinomas (Gomez del Pulgar et al., 2005). On the other hand, RhoB, 

which is involved in actin organization and membrane receptor trafficking (Ridley, 

2006), has been primarily reported as a tumor suppressor based on expression 
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analysis in solid tumors, although how it acts is not completely understood (Huang 

and Prendergast, 2006; Vega and Ridley, 2008). RHOB expression is rapidly induced 

in response to a variety of stimuli including growth factor stimulation and genotoxic 

stress (Huang and Prendergast, 2006), and thus it is possible that a specific stimulus 

in T-ALL cells induces high RHOB levels.  

In addition to our results on Rho GTPases, some T-ALL-related gene expression 

analysis studies have identified other potential regulators of cell migration. For 

example, the tetraspanin TALLA-1 (tetraspanin-7) is a target of the transcription 

factor TAL1 (Ono et al., 1997), which is frequently overexpressed in T-ALL (Graux 

et al., 2006). Several tetraspanins affect integrin-mediated processes such as 

adhesion, migration and invasion, but the function of TALLA-1 is not known 

(Yanez-Mo et al., 2009). TAL1 target genes identified by chromatin 

immunoprecipitation included some regulators of the cytoskeleton (Palomero et al., 

2006). Overexpression of NICD altered the expression of chemokines, cell adhesion 

molecules and metalloproteases (Buonamici et al., 2009).  In particular, the 

chemokine receptor CCR7 was upregulated and caused targeting of leukaemic blast 

cells to the brain endothelium. Together with our data, these results indicate that 

genes regulating cell adhesion, migration and invasion are modulated in T-ALL and 

could contribute to disease pathophysiology. 
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3.6 Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3.1. Range of Rho GTPase expression in control T cells 
and T-ALL samples. RNA was extracted from 30 T-ALL blast samples and normal 
T-lymphocytes from 5 peripheral blood samples of healthy donors. mRNA 
expression of each Rho gene was measured by quantitative PCR, using GAPDH 
expression as a reference. The CT value for each Rho gene is shown relative to the 
CT value for GADPH in each sample.Experiments were performed by Dr Parag 
Bhavsar. 
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Supplementary Figure 3.2. RhoU depletion in T-ALL and effects of γ-secretase 
inhibition on protein expression and cell adhesion. (A) CCRF-CEM, SUPT1 and 
PEER cells were treated with 100 nM GSI or DMSO (vehicle) for 7 days. Cleaved 
Notch1 intracellular domain and Rac2 were detected by western blotting.  (B) 
CCRF-CEM, JURKAT and PEER cells were transfected with control siRNA and 
two different siRNAs (1, 2) targeting RhoU. The level of RhoU was determined 3 
days after transfection by immunoblotting. GADPH was used as a loading control. 
(C) CCRF-CEM cells were treated with 100 nM GSI or DMSO for 7 days. Cells 
were then labelled with cell tracker dye CMFDA and incubated on fibronectin-
coated wells. Adhesion was determined after 30 min. Data shown are the mean of 3 
independent experiments ± SEM. *p <0.05, **p <0.01; two-tailed paired t-test. 
Experiments were performed by Elvira Infante. 
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Roles of RhoU and RhoV in T-ALL cell adhesion and 
migration  

 

4.1 Introduction 

RhoU and RhoV belong to the Cdc42 subfamily. They are atypical GTPases with 

high intrinsic guanine nucleotide exchange, and are therefore likely to be 

constitutively GTP-bound in cells (Chenette et al., 2005; Saras et al., 2004). In 

contrast to most Rho GTPases, both RhoU and RhoV have an N-terminal and C-

terminal extension that distinguishes them from the classical Rho GTPases. In 

particular the N-terminal extension is proline-rich and is likely to bind SH3 domain 

containing proteins. RhoU has been demonstrated to bind via its proline-rich domain 

to NCK2 (Saras et al., 2004). They do not have a functional CAAX box and instead 

are targeted to membranes by palmitoylation (Aronheim et al., 1998; Saras et al., 

2004). RhoU and RhoV protein sequences share 55% identity. They have both been 

reported to be involved in the formation of filopodia and migration of several cell 

types (Aronheim et al., 1998; Fort et al., 2011). Like Cdc42, RhoU and RhoV were 

shown to activate PAK (Weisz Hubsman et al., 2007) (Saras et al., 2004; Tao et al., 

2001). Interestingly, RhoV is not expressed in normal T cells but is overexpressed in 

a subset of T-ALL patients samples (Bhavsar et al., 2012).  

In the previous chapter, RhoU was shown to regulate T-ALL cell migration. 

Knockdown of RhoU by siRNA transfection affected the morphology of CCRF-

CEM cells, inducing a round phenotype and a decrease in tail formation. RhoU 

depletion also inhibited the adhesion of several T-ALL cell lines to fibronectin. 

These results suggested RhoU might contribute to tissue infiltration in T-ALL by 

affecting adhesion. The role of RhoV in T-ALL cells has never been investigated 

before. In this chapter the roles of RhoU and RhoV in T-ALL cells were investigated 

in parallel using Jurkat cells, as this cell line was shown to express both RhoU and 

RhoV. The localization, distribution and interaction of these proteins was also 

investigated.   
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4.2 Materials and Methods 

Chemicals were all purchased from Sigma-Aldrich (Dorset, UK) unless otherwise 

stated.  

4.2.1 Cell biology 
4.2.1.1 Cell culture 

T-ALL cell lines (CCRF-CEM, PEER, SUPT-1 and Jurkat) were maintained in 

RPMI-1640 (containing 2 mM glutamine) (Invitrogen, Paisley, UK) supplemented 

with 10% fetal calf serum (FCS) (Biosera, East Sussex UK), 1 mM sodium pyruvate, 

10 mM Hepes, Penicillin (100 U/ml) and Streptomycin (10 µg/ml) (Invitrogen). 

Once cells reached a density of 2 x 106 cells/ml, they were diluted to a concentration 

between 2 and 5 x 105 cells/ml. 

Human umbilical vein endothelial cells (HUVECs) were grown in EBM-2 medium 

with growth factors (EGM-2) containing 2% FCS (Lonza, Slough, UK). Prior to 

seeding the cells, flasks were coated 10 µg/ml fibronectin (FN) (Sigma-Aldrich) for 

1 hour at 37°C. For passaging, cells were washed with PBS (without Ca2+/Mg2+) 

(Invitrogen) and incubated with 1 ml trypsin-EDTA (Invitrogen) at 37°C until all 

cells detached. The cells were then diluted in fresh culture medium. Cells were used 

until passage five.  

COS7 cells were grown in DMEM medium (Invitrogen) containing 10% FCS, 

Penicillin (100 U/ml) and Streptomycin (10 µg/ml). For passaging, cells were 

washed with PBS (without Ca2+/Mg2+) and incubated with 1 ml trypsin-EDTA at 

37°C until all cells detached. Cells were then diluted in fresh culture medium. 

 

4.2.1.2 Transfection of siRNAs 

Jurkat cells were diluted to a density of 5 x 105 cells/ml. After 24 h, cells were mixed 

with 1.2 µM siRNA in 100 µl Nucleofection reagent kit C (Lonza) and transferred to 

an electroporation cuvette. Cells were then nucleofected with an Amaxa 

Nucleofector apparatus, using programme X-001 according to the manufacturer’s 

instructions (Lonza). siRNA sequences were RhoV-1: 

GAGGGACGAUGUCAACGUA; RhoV-2 GAAGAAACUGAAUGCCAAA; 

RhoV-3: GUAUUUGACUCGGCUAUUC; RhoV-4: 
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GCUCAGCCUUGACGCAGAA. siControl was from Thermo Fisher Scientific (D-

001810-02-20, Lafayette, USA). After transfection cells were transferred to 5 ml of 

warm medium and incubated for 48-72 h at 37°C.  

 

4.2.1.3 Transfection of plasmids 

Jurkat cells (107) were mixed with 30 µg plasmid in 250 µl of Opti-MEM (Gibco), 

transferred to a 0.4 cm electroporation cuvette and left at room temperature for 10 

min. Samples were electroporated using a GenepulserII (Bio-Rad, Hertfordshire, 

UK) at 250 V, 975 µF and left again at room temperature for 10 min. Cells were then 

plated in 5 ml warm medium and incubated for 8-16 h at 37°C. 

COS7 cells were detached from the plate and washed twice with electroporation 

buffer (10 mM KCl, 10 mM K2PO4/KHPO4, pH 7.6, 25 mM Hepes, 2 mM MgCl2 

and 0.5% Ficoll 400). After resuspending in 250 µl of electroporation buffer, cells 

were mixed with 5 µg DNA in a 0.4 cm electroporation cuvette, left on ice for 5 min, 

then at room temperature for 5 min. Cells were finally plated in a 10 cm dish and 

incubated for 24 h at 37°C.  

 

4.2.1.4 Adhesion assay on endothelial cells (manual counting) 

Glass coverslips were incubated for 16 h with 10 µg/ml FN at 37°C. HUVECs were 

grown to confluency on coverslips and stimulated for 16 h with 10 ng/ml TNF-α 

(R&D systems, Abingdon, UK). Jurkat cells were then incubated at 37°C for 15 min 

with 2 µM Cell Tracker CMFDA (Invitrogen, Paisley, UK). Samples were 

resuspended in warm media, and 2 x 105 cells/well were seeded onto the HUVEC 

monolayer and incubated at 37°C for 15 min. After two washes to remove un-bound 

cells, samples were fixed with 4% paraformaldehyde for 10 min. Following two 

washes in PBS, cells were incubated with Alexa Fluor 546 phalloidin (Invitrogen) 

for 1 h to visualize F-actin. Coverslips were mounted onto glass slides using Dako 

anti-fade mounting medium (Dako, Ely, UK). Images were acquired using a Zeiss 

LSM510 confocal microscope using a Plan Fluor 20x objective and Zen software 

was used to analyse the data. Five random fields for each condition were acquired 

and the total number of cells per field was counted.  
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4.2.1.5 Adhesion assay on endothelial (plate reader)  

Black 96 well plates (Costar, Corning, NY, USA) were coated for 1 h with 10 µg/ml 

FN at 37°C. HUVECs were grown to confluency in the wells and stimulated for 16 h 

with 10 ng/ml TNF-α. Jurkat cells were then incubated at 37°C for 15 min with 2 

µM Cell Tracker CMFDA. Samples were resuspended in warm medium and 2 x 105 

cells/well (each sample in triplicate) seeded onto the HUVECs monolayer. Cells 

were incubated at 37°C for 15 min. After 3 washes to remove un-bound cells, 

adhered cells were measured by detection of fluorescence using a plate reader 

(PerkinElmer, Cambridge, UK) at 485 nm excitation and 523-535 nm emission.  

 

4.2.1.6 Transwell based transendothelial migration assay  

HUVECs were grown to confluency on FN-coated (10 µg/ml) 5 µm pore transwell 

filters (Costar) and then stimulated with 10 ng/ml TNF-α for 16 h. After washing, 

2.5 x 105 Jurkat cells in 200 µl medium were added onto the HUVECs monolayer in 

the top chamber, and 600 µl medium containing 30 ng/ml of CXCL-12 (R&D 

systems) was added to the bottom of the wells. After 3 h of incubation at 37°C, the 

cells that had transmigrated into the lower chamber were counted using a Casy cell 

counter.  

 

4.2.1.7 Live imaging microscopy 

Glass bottom dishes (MatTek, Ashland, MA, USA) were coated with 10 µg/ml FN at 

4°C overnight and blocked with 2.5% bovine serum albumin in PBS for 1 h. Jurkat 

cells (106) were added to the dishes, and incubated at 37°C for 30 min. After two 

washes cells were stimulated with 1 ng/ml of CXCL12 in 1 ml of phenol red-free 

RPMI and images acquired every 10 sec for 10 min using a LSM510 confocal 

microscope with a Plan-Apochromat 63x/1.40 NAOil DIC M27 objective. Zen 

software was used to analyse the movies.  

Vesicles (13 for each condition) were tracked and velocities calculated using ImageJ.  
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4.2.1.8 Immunofluorescence microscopy 

Glass coverslips were coated with 10 µg/ml FN at 4°C overnight and blocked with 

2.5% bovine serum albumin in PBS for 1 h. Jurkat cells (2.5 x 105) were added to 

each coverslip and incubated at 37°C with 1 ng/ml CXCL12 for 30 min. 

Subsequently, samples were fixed with 4% paraformaldehyde for 10 min and 

permeabilized in 0.1% Triton-X-100 for 4 min. Cells were then incubated with 1:200 

dilution of anti-myc-epitope (sc-40, Santa Cruz Biotechnology, SA, USA) primary 

antibody for 1 h at room temperature, followed by incubation with Alexa Fluor-488, 

546 or 647 anti-mouse IgG secondary antibody (Invitrogen) for 1 h at room 

temperature. Samples were, when indicated, incubated for 1 h at room temperature 

with Alexa Fluor-546 phalloidin to visualize F-actin. Coverslips were mounted onto 

glass slides using Dako anti-fade mounting medium and visualized under a LSM510 

confocal microscope with a Plan-Apochromat 63x/1.40 NAOil DIC M27 objective 

and Zen software was used to analyse the data.  

Protein co-localization was quantified using Zen software, which calculates an 

overlap coefficient. Overlap values range from 0 to 1. An overlap of 1 indicates 

perfect pixel co-localization (Hoebe et al., 2007).  

 

4.2.1.9 Analysis of filopodia and cell spreading 

Jurkat cells transfected with plasmids encoding pRK5-myc-RhoU or RhoV (kind gift 

of Pontus Aspenström (Saras et al., 2004)) were seeded onto FN-coated coverslips. 

Cells were then fixed and stained with anti-myc epitope antibody and Alexa Fluor-

546 phalloidin. Filopodia and spread cells were quantified by scoring myc-RhoU or 

myc-RhoV positive cells compared to cells transfected with pRK5 empty vector.  
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Figure 4.1 Example of filopodia and a spread cell.  Jurkat cells were seeded onto 
FN-coated coverslips for 30 min. Cells were fixed and stained with Alexa Fluor-546 
phalloidin. Left image shows a well spread cell. Star indicates filopodia protrusions. 
Right image shows a round and not spread cell (scale bar 10 µm).  
 

 

4.2.2 Molecular Biology 
4.2.2.1 Generation of GFP-RhoU, GFP-RhoV and Cherry-RhoU vector 

RhoU and RhoV cDNAs were subcloned from a pRK5 to pEGFP-C1 vector 

(Clontech, Saint-Germain-en-Laye France).  pEGFP-C1 was digested using BamHI 

and DraI, while pRK5-myc-RhoU or pRK5-myc-RhoV were digested using BamHI 

and PsiI. After purification on agarose gels, RhoU and RhoV were ligated into 

pEGFP-C1. E. coli were transformed with 5 µl of ligation and clones were verified 

by plasmid digestion using EcoRI (Figure 4.2).  

RhoU from pEGFP-RhoU was subsequently subcloned in pmCherry-C1 (kind gift 

Dr Maddy Parsons). pEGFP-RhoU and pmCherry-C1 were digested with EcoRI. To 

avoid self-ligation, pmCherry-C1 was incubated with calf intestinal alkaline 

phosphate (CIP). Since this enzyme catalyzes the removal of 5’ phosphate groups 

required by ligases, the plasmid DNA cannot self-ligate. After agarose gel 

purification, RhoU was ligated into pmCherry-C1 and E. coli transformed with 5 µl 

of ligaton. Clones were verified by plasmid digestion using EcoRI restriction enzyme 

(Figure 4.3). 
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Figure 4.2 Schematic diagram of RhoU and RhoV subcloning into pEGFP-C1. 
pRK5-RhoU or RhoV were digested with BamHI and PsiI while pEGFP-C1 was 
digested with BamHI and DraI restriction enzymes. RhoU and RhoV cDNAs were 
ligated into pEGFP-C1 using T4 ligase. 
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Figure 4.3 Schematic diagram of RhoU subcloning into a pmCherry-C1. 
pEGFP-RhoU and pmCherry-C1 were digested with EcoRI restriction enzyme. 
RhoU was ligated into pmCherry-C1 using T4 ligase. 
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4.2.2.2 Restriction enzyme digestion of DNA 

Plasmid DNA (1µg) was digested with 10 units of the appropriate restriction enzyme 

(DraI, PsiI, BamHI and EcoRI) in the buffers recommended by the manufacturer 

(New England Biolabs, Hertfordshire, UK) for up to 2 h. To avoid self-ligation, 

destination vectors were incubated with 10 units of CIP (New England Biolabs) for 

30 min at 37°C.  

 

4.2.2.3 Agarose gel elctrophoresis 

1% (w/v) agarose was dissolved in TAE buffer (40 mM Tris acetate, 1 mM EDTA  

and 11.4% (v/v) glacial acetic acid)  using a microwave oven. Ethidium bromide (0.5 

µg/µl) was added to the gel and, after complete polymerization, DNA samples 

separated by electrophoresis at 100 V in TAE buffer. DNA fragments were 

visualized on a UV-transilluminator. 

 

4.2.2.4 Extraction of DNA from agarose gels 

The DNA fragments of interest were excised under a UV-transilluminator using a 

sterile scalpel and weighed. DNA was then isolated using the QIAquick gel 

extraction kit (QIAGEN, West Sussex, UK) according to the manufacturer’s 

instructions. Fragments were mixed with 3 volumes of buffer QG (composition not 

provided) per mg of gel and incubated at 50°C until the gel was completely 

dissolved. After addition of 1 volume of isopropanol, the sample was applied to a 

QIAquick spin column and centrifuged at 14000 g for 1 minute. The column was 

washed twice with PE (composition not provided) at 14000 g for 1 min and DNA 

eluted in 50 µl ddH20 by centrifugation at 14000 g for 2 min. 

 

4.2.2.5 DNA ligation 
DNA fragments were ligated into the appropriate destination vector using 200 units 

T4 DNA ligase (New England Biology) in the supplied ligation buffer at 16°C for 16 

h. A 3-fold excess volume of insert over destination vector was used. 5 µl of ligation 

was subsequently used for bacterial transformation. 
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4.2.2.6 Transformation of competent bacteria  

Plasmid DNA (10 ng) or 5 µl of ligation were mixed with 100 µl of competent DH5α 

cells and incubated on ice for 30 min. The bacterial suspension was heat-pulsed for 

45 sec at 42°C and placed again on ice for 2 min. 900 µl LB (without antibiotics) 

was then added to the bacteria and incubated at 37°C for 1 hour. Finally, 100 µl of 

the cells were plated onto a Luria broth (LB) agar plates containing 100 µg/ml 

ampicillin or 50 µg/ml kanamycin, as appropriate.  

 

4.2.2.7 Purification of plasmid DNA from bacteria 

For small-scale production of plasmid DNA, QIAprep Miniprep Kits were used. LB 

medium (2 ml) containing 100 µg/ml ampicillin or 50 µg/ml kanamycin was 

inoculated with a single colony from an agar plate and incubated overnight at 37°C. 

Bacteria were centrifuged at 3000 g for 15 min and the pellet resuspended in 250 µl 

Buffer A (50 mM glucose, 25 mM Tris-HCl, pH 8.0, 10 mM EDTA, 10 µg/ml 

RNase A). After mixing with 250 µl lysis buffer (200 mM NaOH, 1% SDS), 350 µl 

neutralization buffer (3 M potassium acetate and 2 M acetic acid) were added to the 

sample and cell debris and proteins removed by centrifugation at 14000 g for 10 min. 

The supernatant was then applied to a QIAprep spin column and centrifuged at 

14000 g for 1 min. Columns was washed twice with 750 µl wash buffer (750 mM 

NaCl, 50 mM MOPS pH 7.0, 15% isopropanol (v/v)) and DNA eluted with 50 µl 

ddH20 by centrifugation for 1 min at 14000 g.  

For larger scale plasmid DNA purification, Qiagen EndoFree Maxiprep Kits were 

used. 100 ml of bacterial culture was pelleted at 3000 g for 15 min and resuspended, 

lysed and neutralized in 10 ml of buffers described for the miniprep protocol. 

Lysates were clarified using filter-syringes provided with the kit. Endotoxin removal 

buffer (1.5 ml) was added to the sample and incubated on ice for 30 min.  In the 

meantime a column provided by the kit was equilibrated with the equilibration buffer 

(50 mM NaCl, 50 mM MOPS pH 7.0, 15% isopropanol (v/v), 15% Triton-X-100). 

The sample was then applied to the column and washed twice with wash buffer (1 M 

NaCl, 50 mM MOPS pH 7.0, 15% isopropanol (v/v)). The DNA was eluted with 15 

ml of higher salt buffer (1.25 M NaCl, 50 mM Tris/HCl pH 8.5, 15% isopropanol 

(v/v) and then precipitated by adding 0.7 volumes isopropanol and centrifuged at 
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8000 g for 45 min. Pellets were washed with 5 ml 70% ethanol and resuspended in 

200 µl ddH20.  

 

4.2.2.8 Determination of DNA and RNA concentration 

DNA or RNA concentration was determined using a Nano-Drop spectrophotometer 

system (Thermo scientific, Hampshire, UK) at an optical density (OD) of 260 nm 

and 280 nm. The DNA concentration (ng/µl) was automatically calculated using the 

formula concDNA= OD260 x 50 µg/ml. The RNA concentration (ng/µl) was 

automatically calculated using the formula concRNA= OD260 x 40 µg/ml. 

 

4.2.2.9 DNA sequencing 

Purified plasmid DNA (1 µg) was sent to MWG (www.eurofinsdna.com) for DNA 

sequencing.  

 

4.2.2.10 RNA isolation using Trizol 

Suspension cells (5 x 106) were pelleted in a microcentrifuge tube and incubated for 

5 min with 1 ml Trizol (Invitrogen) at room temperature. Chloroform (0.2 ml) was 

added to the sample and the tube was vigorously inverted 10 times. Samples were 

left at room temperature for 3 min and subsequently centrifugated at 14000 g for 15 

min at 4°C. After centrifugation the upper phase of the samples was transferred into 

a new tube, mixed with 0.25 ml of isopropanol to precipitate the RNA and incubated 

on ice for 10 min. RNA was pelletted by centrifugation at 14000 g for 15 min at 4°C 

and the pellet air-dried for 10 min. Pellets were resuspended in 10 µl of RNase free 

H2O (Ambion, Invitrogen, Paisley, UK).  

In order to remove DNA contamination, the purified RNA was incubated with 

DNase1 buffer and 1 µl DNase enzyme (Ambion) for 30 min at 37°C. The DNase 

was inactivated following the addition of 5 µl DNase inactivation buffer beads for 2 

min at 37°C. Samples were then centrifuged at 10000 g for 2 min and supernatants 

transferred to a new tube.  

 

 



Chapter 4 
____________________________________________________________________ 

138 
 

4.2.2.11 cDNA synthesis 

Reverse transcription was performed using SuperScript-Vilo cDNA Synthesis Kit 

(Invitrogen). RNA (1 µg) was mixed with the VILO reaction mix and SuperScript 

Enzyme Mix according to the manufacturer’s instructions. Samples were first 

incubated for 10 min at room temperature and subsequently incubated for 1 hour at 

42°C. The reaction was terminated by 5 min at 85°C. 

 

4.2.2.12 Real-time SYBR-green PCR  

The relative mRNA level of RhoV was determined by qPCR using SYBR green 

detection chemistry (PCR mastermix from Primer Design, Southampton, UK). 

SYBR green is a fluorescent dye that binds double stranded DNA. Therefore, during 

the qPCR reaction the fluorescence increase proportionally with the amount of 

amplified DNA. The reaction was performed in an ABI Prism 7000 Sequence 

Detection System (Applied Biosystems). Primers for RhoV and GAPDH (for 

normalization) were designed and validated by Dr Parag Bhavsar as described in 

chapter 3. cDNA obtained from 1 µg RNA was diluted 1/65, and of this 3 µl were 

mixed with 3 µl of primers and 6 µl 2X SYBR green mix  in a total reaction volume 

of 12 µl. The reaction was carried out with an initial 10 min denaturation at 95°C 

followed by 40 cycles of 10 sec at 95°C (denaturation) and 30 sec at 60°C (annealing 

and extension). To verify that just one product was amplified a dissociation step was 

added at the end of the reaction (one denaturation cycle at 95°C for 15 sec followed 

by 20 sec of amplification at 60°C). The data were analysed using the ABI7000 

analysis software using the ∆∆CT method (Schmittgen and Livak, 2008).  

 

 

 

2-∆∆CT = [(CT gene of interest – CT internal control) sampleA- (CT gene of 

interest-CT internal control) sampleB)] 
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The CT values indicate the number of cycles after which the SYBR green 

fluorescent signal crosses a threshold level. In this calculation the fold difference of 

the expression of a gene between two samples is calculated.  

 

 

4.2.3 Biochemistry 
4.2.3.1 Immunoprecipitation 

For immunoprecipitation of myc-epitope-tagged proteins, transfected COS7 cells 

were lysed into lysis buffer containing 1% Triton-X-100, 50 mM Tris HCl, 150 mM 

NaCl, 1 mM DTT, 25 mM NaF and complete EDTA-free protease inhibitor (Roche 

Applied Science, Burgess Hill, UK). Samples were centrifuged for 10 min at 14000 

g. 40 µl of clarified samples was kept to determine total protein level, while the 

remaining lysate was incubated with 20 µl of anti-myc-agarose beads (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) at 4°C for 2 h on a rotating wheel. Beads 

were then washed five times in 1 ml lysis buffer and boiled in 4X sample buffer  

 

4.2.3.2 Western blot analysis 

Cells were lysed in 1% SDS, followed by addition of 1% Triton-X-100, 25 mM NaF, 

1 mM Na3VO4 and 10 mg/ml aprotinin, then incubated on ice for 10 min. Lysates 

were clarified by centrifugation at 14000 g for 30 min. Cleared lysates were boiled 

for 5 min in 4X sample buffer and separated on a 4-12% Bis-Tris polyacrylamide gel 

at 150 V in NuPAGE MES running buffer (Invitrogen). Proteins were then 

transferred to a nitrocellulose membrane (GE Healthcare, Chalfont St Giles, UK) for 

immunblotting. Transfer was carried out for 90 min at 100 V in transfer buffer (25 

mM Tris HCl pH 8.3, 192 mM glycine, 20% methanol). Membranes were then 

blocked in blocking buffer (5% nonfat dried milk in TBS (25 mM Tris HCl 7.6, 50 

mM NaCl, 2.5 mM KCl)) for 1 hour at room temperature and incubated with 1:1000  

dilutions of the following antibodies: c-myc (sc-789, Santa Cruz), GFP (FL, Santa 

Cruz), RhoU (Wrch-1 ab80315, Cambridge, UK) and GAPDH (Millipore, Watford, 

UK)) primary antibody either for 1 hour at room temperature or overnight at 4°C. 

Membranes were washed three times in TBS, containing 0.1% Tween-20, and 

incubated with HRP-conjugated anti-mouse, anti –rabbit or anti-goat antibody. After 



Chapter 4 
____________________________________________________________________ 

140 
 

3 washes, immunodetection was performed using an ECL detection kit (GE 

Healthcare) according to manufacture’s instructions and signal detected by exposure 

to X-ray films. 
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4.3 Results 

4.3.1 RhoV expression in T-ALL cell lines and siRNA transfection in Jurkat 
cells 

The function of the atypical Rho GTPase RhoV is far from being fully understood. 

The RhoV gene is not expressed in primary-T-lymphoblasts but expressed in a 

subset of T-ALL patients samples (Figure 3.1). This raises questions concerning  its 

possible role in the pathogenesis of T-ALL.  

First, the expression of RhoV was analysed in different T-ALL cell lines and 

primary-T-lymphoblasts. As already mentioned, primary-T-lymphoblasts do not 

express RhoV and they were included as a negative control. RNA was purified from 

Jurkat, CCRF-CEM, PEER and SUPT1 T-ALL cell lines and primary T-lymphoblast 

cells. The expression of RhoV was then determined by quantitative PCR. Among the 

T-ALL cell lines Jurkat and Supt1 expressed the highest level of RhoV.  

Interestingly these cell lines also expressed the highest level of RhoU, as described 

in chapter 3 (see Figure 3.3.). CCRF-CEM and PEER cell lines had lower levels of 

RhoV and primary T-lymphoblasts had no detectable RhoV (Figure 4.4A). Jurkat 

cells were then selected for further studies of RhoV as this cell line was already well 

characterized and used for previous studies in the laboratory.  

In order to study whether RhoV affected adhesion and migration, Jurkat cells were 

transfected with four different siRNAs targeting RhoV and an siRNA control. Cells 

were also nucleofected with nucleofection reagent only (Mock control). In the 

absence of a reliable antibody to detect endogenous RhoV protein, the efficiency of 

RhoV mRNA depletion was determined by qPCR. Two siRNAs siRhoV-1 and 

siRhoV-3 gave the strongest depletion of RhoV mRNA (Figure 4.4B and C). 
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Figure 4.4 RhoV expression in T-ALL cell lines and RhoV siRNA knockdown. 
Total RNA was isolated from Jurkat, CCRF-CEM, PEER, SUPT1 and primary-T-
lymphoblast cells (A and B) or Jurkat cells transfected with control siRNA or four (C 
and D) or two (E) different oligos for RhoV. mRNA was converted into cDNA and 
the amount of RhoV cDNA was determined by qPCR. Ct value of RhoV (A) is 
shown relative to Ct value for GAPDH (B and C). All values in D and E are 
represented as percentage of siControl. C and D represent data from one single 
experiment. Data shown in A, B and E are the mean of 3 independent experiments ± 
SEM. * p<0.05, **p<0.01; 2-way-paired t-test. 
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4.3.2 RhoU and RhoV depletion reduces adhesion of Jurkat cells to fibronectin 
and endothelial cells 

T-ALL progression is characterized by T-ALL cell accumulation in lymph nodes, 

spleen and CNS (Kebriaei et al., 2002). Molecules involved in migration, adhesion 

and chemotaxis of T-ALL cells are likely to be important in the infiltration process. 

β1 integrin is widely expressed in mammalian cell types and is expressed in T-

lymphocytes (Bauer et al., 2009; Zhang and Wang, 2012). Integrins are important for 

both rolling and adhesion of T cells on endothelial cells. It has been demonstrated 

that β1 integrin-deficient T cells are unable to infiltrate the CNS (Bauer et al., 2009). 

Fibronectin is a ligand for β1 integrin (Hauzenberger et al., 1994).  In chapter 3 (see 

section 3.4.6) RhoU depletion, was shown to reduce adhesion of CCRF-CEM, Jurkat 

and Peer and Jurkat cells to fibronectin. It was therefore further investigated whether 

RhoU and RhoV could affect adhesion of Jurkat cells to fibronectin. A reduction of 

50% in the binding of Jurkat cells to fibronectin was observed after depletion of 

RhoU and RhoV compared to Mock and siRNA control (Figure 4.5). This indicates 

that both proteins are important for adhesion of Jurkat cells to fibronectin. The 

physiological ligand of β1 integrin on endothelial cells is the VCAM-1 on 

endothelial cells. Upregulation of VCAM-1 is observed after stimulation of 

endothelial cells with TNF-α (Cernuda-Morollon and Ridley, 2006). To investigate 

the effect of RhoU and RhoV depletion on T cell adhesion to endothelial cells, 

HUVECs were used. Two different types of adhesion assay were carried out. The 

first assay was performed in order to visualize the effect of RhoU and RhoV 

knockdown on adhesion. In this assay HUVECs were grown on coverslips and 

adherent Jurkat cells were counted manually. Knockdown of both RhoU and RhoV 

with 2 single oligos significantly decreased the adhesion of Jurkat cells to HUVECs 

(Figure 4.6A and B). The second assay, similar to the adhesion assay on fibronectin 

described in chapter 2 and 3, was used to obtain an automated quantification of 

adhered cells. In these experiments, knockdown of RhoU and RhoV also reduced 

adhesion of Jurkat cells to the endothelial monolayer (Figure 4.6 C).  

Taking together these results indicated that RhoU and RhoV regulate Jurkat cell 

adhesion to fibronectin and endothelial cells. 
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Figure 4.5 RhoU and RhoV depletion affect adhesion of Jurkat cells to 
fibronectin. Jurkat cells were transfected with transfection reagent alone (MOCK), 
control siRNA or two different siRNAs targeting RhoU or RhoV. After 72 h cells 
were labelled with Cell Tracker CMFDA and added to wells coated with FN. 
Adhesion was determined after 30 min. Data shown are the mean of 3 independent 
experiments ± SEM. * p<0.05, **p<0.01; 2-way-paired t-test. 
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Figure 4. 6 RhoU and RhoV depletion affect adhesion of Jurkat cells to 
HUVECs. Jurkat cells were transfected with MOCK, control siRNAs or two 
different siRNA targeting RhoU or RhoV. After 72 h cells were labelled with Cell 
Tracker CMFDA and then added to a confluent HUVEC monolayer on coverslips (A 
and B) or to a confluent HUVEC monolayer on a 96 well plate. After 15 min 
samples were washed to remove un-bound Jurkat cells. Cells on coverslips were 
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fixed and stained for F-actin. Images were acquired by confocal microscopy. Five 
random fields for each condition were acquired and the total number of cells per 
field was counted. (A) Images are representative of 3 independent experiments. 
Scale bar, 50 µm. (B) Graph shows adhered cells as percentage of siControl. (C) 
Adhered cells were measured by detection of fluorescence on a plate reader. Data 
shown are the mean of 3 independent experiments ± SEM. * p<0.05, **p<0.01; 2-
way-paired t-test. 
 

 

4.3.3 RhoU and RhoV depletion reduces transendothelial migration 

RhoU or RhoV knockdown decreases the adhesion of Jurkat cells to endothelial 

cells. Adhesion of leukaemia cells to the endothelium is an important step for 

transendothelial migration. T-ALL cells often migrate to and infiltrate lymph nodes 

and bone marrow where they proliferate.  The bone marrow has been suggested as a 

site that allows neoplastic cells to evade chemotherapy and several adhesion 

molecules are involved in this process and affect patient outcome (Feng et al., 2010). 

In order to investigate whether RhoU and RhoV knockdown could affect 

transendothelial migration of Jurkat cells, HUVECs were allowed to grow on 0.5 µm 

transwell filters and stimulated with TNF-α. Jurkat cells were then seeded onto the 

HUVECs and the chemokine CXCL12 was added as a chemoattractant to the bottom 

(Figure 4.7). Both RhoU and RhoV depletion significantly impaired the 

transmigration of Jurkat cells. 
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Figure 4.7 RhoU and RhoV down-regulation reduces TEM. Jurkat cells were 
transfected with siRNAs targeting RhoU, RhoV or siRNA controls and then added to 
confluent HUVECs on transwell filters. CXCL12 (30 ng/ml) was added to the 
bottom well. After 3 h, cells that had transmigrated through the HUVECs into the 
lower chamber were counted with a Casy counter.  
Data shown are the mean of 3 independent experiments ± SEM. * p<0.05, **p<0.01; 
2-way-paired t-test. 
 

 

 

4.3.4 RhoU and RhoV induce morphological changes in Jurkat and SUPT1 
cells. 

To determine the effect of RhoU and RhoV overexpression on T-ALL cell lines, 

pRK5 empty vector (as a control), or vectors encoding Myc-RhoU and Myc-RhoV 

were transfected into Jurkat cells. After 24 h, cells were allowed to adhere to 

fibronectin. Cells were treated with CXCL12 to stimulate migration. RhoU and 

RhoV localized mainly on the plasma membrane and in punctate structures in the 

cytoplasm (Figure 4.8). 

Expression of RhoU and RhoV increased the number of cells with filopodium-like 

protrusions compared to the control samples (Figure 4.8A and B). This has been 

already reported previously in fibroblasts (Aronheim et al., 1998; Saras et al., 2004). 
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Filopodia protrusions were also observed by timelapse confocal microscopy (see 

supplementary movies 12 and 13). 

Expression of RhoU and RhoV induced an increase in cell spreading (Figure 4.8). 

Interestingly, in chapter 3 RhoU-depleted CCRF-CEM cells were shown to have a 

round, less spread phenotype and reduction in tail formation (see section 3.4.6). 

Similarly, RhoU and RhoV overexpression increased filopodium formation in 

SUPT1 cells, although this was not quantified (Figure 4.8C).  
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Figure 4.8 RhoU and RhoV overexpression induce cell spreading and 
filopodium formation. Jurkat (A) or SUPT1 (C) cells were transfected with pRK5 
empty vector, pRK5-myc-RhoU and pRK5-myc-RhoV. After 24 h, cells were plated 
onto fibronectin-coated wells and stimulated with 1 ng/ml CXCL12 for 30 min. 
Samples were then fixed and stained for F-actin and myc-epitope and imaged by 
confocal microscopy. Arrows indicate punctate structures. Images show maximum 
intensity projection of 20 Z-stacks. Scale bar, 20 µm (A) or 10 µm (C). The 
percentage of Jurkat cells with filopodia formation and cell spreading was quantified 
by counting 100 myc-epitope positive cells in each of the pRK5-myc-RhoU and 
pRK5-myc-RhoV samples or 100 random cells in the pRK5 transfected cells in each 
of 3 independent experiments (B).  
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4.3.5 Dynamic analysis of RhoU and RhoV distribution  

The distribution of RhoU and RhoV was followed by timelapse microscopy.                                    

GFP-RhoU or RhoV were expressed in Jurkat cells. RhoU strongly localized in 

vesicle-like structures and at the plasma membrane. These structures accumulated in 

the perinuclear area. Vesicles were often observed to traffic toward the 

lamellipodium and retract from the uropod during cell movement (Figure 49A, B and 

C). Vesicles were highly dynamic and trafficked to and from the plasma membrane 

(Figure 4.9D).  GFP-RhoU showed a similar distribution during cell movement  in 

CCRF-CEM cells (Figure 4.9F). Similar to GFP-RhoU, GFP-RhoV localized in 

vesicles in the perinuclear area (Figure 4.10). GFP was expressed as a control in both 

Jurkat and CCRF-CEM showing a uniform distribution in the entire cell (Figure 4.9E 

and G). To determine the speed of the vesicles 1 sec per frame movies were 

acquired. This acquisition allowed better visualization of the trafficking of the 

vesicles toward and from the plasma membrane (Figure 4.11).  

It was really interesting to observe that RhoU and RhoV showed a similar dynamic 

distribution on vesicles and accumulation on membranes, suggesting they might co-

localize. Indeed mCherryRhoU and GFP-RhoV co-localized strongly on vesicles and 

on the plasma membrane (Figure 4.12). An increase in the speed of the cells was 

observed when RhoU and RhoV were co-expressed although this has not been 

quantified so far (Supplementary Movies 22 and 23). It was not possible to perform 

1 sec per frame movies of cells co-expressing mCherry-RhoU and GFP-RhoV due to 

photobleaching and phototoxicity problems. These are mainly induced by excited 

fluorophores, which produce ROS leading to loss of fluorescence signal and cell 

death (Hoebe et al., 2007).  
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Figure 4.9 RhoU distribution in T-ALL cells. Jurkat or CCRF-CEM cells were 
transfected with pEGFP-C1 or pEGFP-RhoU plasmid. After 24 h cells were seeded 
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on fibronectin-coated glass wells and stimulated for 30 min with 1 ng/ml CXCL12. 
Cells were imaged by confocal microscopy acquiring images every 10 sec for 9 min. 
(A, B, C and D) Images show 3 frames of pEGFP-RhoU expressing Jurkat cells. (A) 
Arrows indicates RhoU accumulation at the uropod and vesicle formation during tail 
retraction. (B) Arrows indicate vesicle trafficking from the perinuclear area toward 
the plasma membrane. (C) Arrows indicate RhoU accumulation at the 
lamellipodium. (D) Image shows merging of 10 time frames. Each frame is 
represented with a different colour. (F) Image shows a frame of pEGFP-RhoU 
expressing CCRF-CEM cell. The red arrow indicates RhoU vesicles migration from 
the uropod. The yellow arrow indicates vesicles migrating toward the lamellipodium. 
The white arrow indicates RhoU accumulation at the lamellipodium. (E and G) 
Images show Jurkat (E) and CCRF-CEM (G) cell transfected with pEGFP-C1. Scale 
bars, 10 µm. Images are representative of three cells of three independent 
experiments. 
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Figure 4.10. RhoV distribution in Jurkat cells. Jurkat cells were transfected with 
pEGFP-RhoV (A, B, C and D) and pEGFP-C1 (E) plasmid. After 24 h cells were 
seeded on fibronectin coated glass wells and stimulated for 30 min with 1 ng/ml 
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CXCL12. Cells were imaged by confocal microscopy acquiring images every 10 sec 
for 9 min. (A) Arrows indicate vesicle trafficking toward the plasma membrane. (B) 
Arrows indicate RhoV accumulation at the plasma membrane. (C) Arrows indicate 
vesicle trafficking from the plasma membrane. (D) Image shows merging of 10 time 
frames. Each frame is represented with a different colour. (E) Image shows Jurkat 
cell expressing GFP. Scale bar, 10 µm. Images are representative of three cells of 
three independent experiments. 
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Figure 4.11 RhoU and RhoV distribution in Jurkat cells. Jurkat cells were 
transfected with pmCherry-RhoU (A, B and D) or pEGFP-RhoV (C and D) plasmid. 
After 24 h cells were seeded on fibronectin coated glass wells and stimulated for 30 
min with 1 ng/ml CXCL12. Cells were imaged by confocal microscopes acquiring 
images every sec for 1 min. Images show Jurkat cell expressing pmCherry-RhoU (A) 
of pEGFP-RhoV (B). Zoom of pmCherry-RhoU (B) or pEGF-RhoV (D) showing 
migration of a vesicle toward (yellow arrows) or from the plasma membrane (orange 
arrows). (D) Mean of RhoU or RhoV vesicles speed. Relatively velocity was 



Chapter 4 
____________________________________________________________________ 

157 
 

determined by tracking 10 vesicles per condition of three independent experiments.  
Scale bar, 10 µm. 
 
 

Figure 4.12 RhoU and RhoV co-localize. Jurkat cells were co-transfected with 
pEGFP-RhoV and pmCherry-RhoU or GFP and mCherry empty vector. After 24 h, 
cells were seeded onto FN-coated glass wells and stimulated for 30 min with 1 ng/ml 
CXCL12. Cells were imaged by confocal microscopy acquiring images every 10 sec 
for 10 min. (A) Images show 12 sequential frames of a Jurkat cell expressing GFP-
RhoV and mCherry-RhoU. The white arrow indicates RhoU-RhoV co-localization in 
vesicles and the orange arrow accumulation in the front of the cell. (B) Images show 
Jurkat cell co-transfected with GFP and mCherry empty vector. Scale bars, 10 µm. 
Images are representative of three independent experiments. (C) Graph represents 
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co-localization of pEGFP-RhoV and pmCherry-RhoU using Zeiss Software. Mean of 
three frames of each cells of three independent experiments.  
 

4.3.6 RhoU and RhoV localize in part on endosomes 

RhoU and RhoV-containing vesicles accumulated in the perinuclear area around the 

MTOC as indicated by α-tubulin staining of myc-RhoU and myc-RhoV transfected 

cells (Figure 4.13). This distribution suggested an endosomal localization (Palfy et 

al., 2012). This was investigated using an antibody to an early-endosomal protein 

(EEA1). EEA1 interacts with early endosomes via binding to the membrane lipid 

phosphatidylinositol 3- phosphate and the active form of the small GTPase Rab5 

(Callaghan et al., 1999). Unfortunately antibodies against RhoU and RhoV suitable 

for immunofluorescence experiments with endogenous RhoU and RhoV are not 

available. Therefore, immunofluorescence analysis was carried out on cells 

expressing exogenous RhoU and RhoV as described below. 

mCherry-RhoU or GFP-RhoV showed a partial co-localization with EEA1 in Jurkat 

cells (Figure 4.14). The co-localization was also observed in cells co-expressing 

RhoU and RhoV (Figure 4.15). Cdc42 was reported to localize to the Golgi (Hehnly 

et al., 2010). It was therefore interesting to investigate if RhoU and RhoV localize to 

the Golgi. Jurkat cells expressing Myc-RhoU or Myc-RhoV were stained with 

GM130 antibody. This antibody is used as Golgi marker as it recognizes GM130 

protein. This is a peripheral cytoplasmic protein part of the cis-Golgi matrix,  and has 

a role in maintaining cis-Golgi structure (Nakamura et al., 1995). Myc-RhoU and 

Myc-RhoV did not co-localize with GM130 (Figure 4.16). 

In summary, these results demonstrate that RhoU and RhoV partially co-localize on 

endosomes and the plasma membrane. 
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Figure 4.13 RhoU and RhoV-containing vesicles localize around the MTOC. 
Jurkat cells were transfected with pRK5, pRK5-myc-RhoU and pRK5-myc-RhoV. 
After 24 h cells were plated onto fibronectin-coated wells and stimulated with 1 
ng/ml CXCL12. Samples were then fixed and stained for α-tubulin and myc-epitope, 
and imaged by confocal microscopy. Arrows indicate the MTOC. Scale bar, 10 µm. 
Images are representative of three independent experiments. 
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Figure 4.14 RhoU and RhoV localize on endosomes. Jurkat cells were transfected 
with pmCherry-C1, pmCherry-RhoU (A and B), pEGFP-C1 and pEGFP-RhoV (C 
and D). After 24 h cells were plated onto FN-coated wells and stimulated with 1 
ng/ml CXCL12. Samples were then fixed and stained for EEA1 and imaged by 
confocal microscopy. Scale bars, 10 µm. Images (B and D) show ortho projections. 
Images are representative of three independent experiments. 
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Figure 4.15 RhoU and RhoV co-localize on endosomes. Jurkat cells were co-
transfected with plasmid encoding pEGFP-C1 and pmCherry-C1 (top panel), and 
vectors encoding pmCherry-RhoU and pEGFP-RhoV (bottom panel). After 24 h 
cells were plated onto fibronectin-coated wells and stimulated with 1 ng/ml 
CXCL12. Samples were then fixed and stained for EEA1 and imaged by confocal 
microscopy. Scale bar, 10 µm. Images (B) show ortho projections. Images are 
representative of three independent experiments. 
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Figure 4.16 RhoU and RhoV do not localize to the Golgi. Jurkat cells were 
transfected with control pRK5, pRK5-myc-RhoU and pRK5-myc-RhoV. After 24 h 
cells were plated onto fibronectin-coated coverslips and stimulated with 1 ng/ml 
CXCL12. Samples were then fixed and stained for GM130 Golgi marker and myc 
and imaged by confocal microscopy. Scale bars, 10 µm. The bottom panels show 
ortho projections of the images. Images are representative of three independent 
experiments. 
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4.3.7 RhoU interacts with RhoV  

Immunofluorescence analysis and live imaging movies of Jurkat cells showed a 

partially colocalization of RhoU and RhoV on endosomes and at the plasma 

membrane. To determine if an interaction occurs between RhoU and RhoV, Cos7 

cells were cotransfected with plasmids encoding GFP-RhoV and Myc-RhoU. (Figure 

4.17). GFP-RhoV was present in immunoprecipitates of myc-RhoU.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 17. Coimmunoprecipitation of RhoU and RhoV. Cos7 cells were 
transfected with pRK5-myc-RhoU and pEGFP-RhoV or empty vectors. After 24 h 
cells were lysed and cell lysates incubated with anti-myc-epitope agarose beads. GFP 
and GFP-RhoV proteins interacting with RhoU were detected by immunoblotting 
with antibody to GFP. GAPDH was used as a loading control. Image is 
representative of three independent experiments. 
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4.3.8 The N-terminus of RhoV is not required for RhoU binding 

Unlike other Rho GTPases, RhoU has a prolin rich domain (Saras et al., 2004) that is 

likely to interact with SH3 domain containing proteins (see section 1.3.4.1 and 

1.3.4.2). As the SH3 domain could act as an adaptor between two proteins, it was 

hypothesized that the interaction between RhoU and RhoV could occurred via the N-

terminus of these proteins. To investigate the requirement of this domain, Cos7 cells 

were cotransfected with plasmid encoding GFP-RhoV lacking the N-terminal 

domain (ΔN-RhoV) or full length RhoV with Myc-RhoU plasmid (Figure 4.18). 

Wild type and ΔN-RhoV were both able to coprecipitate with RhoU suggesting that 

the interaction is not mediated through the N-terminal portion of RhoV.  

 

 
 
 
Figure 4.18 Sequence comparison between RhoV and ΔN-RhoV. 
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Figure 4.19 Coimmunoprecipitation of RhoU and ΔNRhoV. Cos7 cells were 
transfected with pRK5-mycRhoU and full length pEGFP-RhoV, CB6-GFP-ΔNRhoV 
or empty vectors. After 24 h, cells were lysed and incubated with anti-myc-epitope 
agarose beads. GFP and GFP-RhoV proteins interacting with RhoU were detected by 
immunoblotting with antibody to GFP. GAPDH was used as a loading control. 
Image is representative of three independent experiments. 
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4.3.9 FLIM analysis of Jurkat cells expressing cherry-RhoU and GFP-RhoV or 
GFP-ΔNRhoV 

Immunofluorescence analysis and coimmunprecipitation experiments showed that 

RhoU and RhoV interact. This interaction was further analyzed. A widely used 

method to study protein-protein interactions in single cells (live or fixed) is Förster 

resonance energy transfer (FRET). FRET is a dipole-dipole coupling process where 

two proteins of interest are attached to two fluorophores (donor and acceptor) (Peter 

et al., 2005). Fluorophores have characteristic excitation and emission spectra. If 

these two molecules are close in proximity, the excitation of the donor fluorophores 

leads to a transfer of the energy to the acceptor, resulting in higher acceptor emission 

and quenching of the donor (Wouters et al., 2001). The absorption spectrum of the 

acceptor must overlap the spectrum of the fluorescence emission of the donor in 

order for the energy transfer to occur. Different pairs of fluorophores with 

overlapping emission can be used, including CFP/YFP, BFP/EGFP or GFP/mCherry 

(Morton and Parsons, 2011).  The energy transfer can occur between fluorophores 

which are up to 11 nm apart (Sekar and Periasamy, 2003). In FLIM instead of 

fluorescence intensity, the fluorescence lifetime is measured. Fluorophores are not 

just characterized by an excitation and emission spectra but also by their lifetimes. 

The lifetime of a fluorophore refers to the average time it stays in its excitation state 

before emitting a photon. The fluorescence lifetime of a fluorophore is affected by 

FRET and in the presence of a suitable acceptor, the lifetime of the donor will 

decrease. This decrease in lifetime is measured by FLIM (Morton and Parsons, 

2011).  

In the experiments analysed by Dr Maddy Parsons, FLIM was used to measure 

fluorescence lifetime of GFP. The GFP lifetime of cells expressing “GFP-alone” was 

important to compare the difference in the GFP lifetime and the GFP lifetime in the 

presence of the acceptor (Morton and Parsons, 2011). FLIM analysis of Jurkat cells 

co-expressing RhoU and RhoV showed these proteins interact at the plasma 

membrane and partially in the cytoplasm. These results suggest that RhoU and RhoV 

are able to form heterodimers (Figure 4.20A and C).  

To investigate whether RhoU and ΔNRhoV interact in T-ALL cells. Jurkat cells co-

expressing mCherry-RhoU and GFP-ΔNRhoV were used. This was analysed by Dr 

Maddy Parsons in Jurkat cells cotransfected with cherry-RhoU and GFP-ΔNRhoV. 
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FLIM analysis of Jurkat showed that ΔNRhoV was still able to interact at the plasma 

membrane and in the cytoplasm with RhoU (Figure 4.20B and C).  

Taking together these results demonstrate that RhoU interacts with RhoV and that 

this interaction occurs at the plasma membrane and in vesicles. RhoV lacking the N-

terminus of proline-rich domain is still able to bind RhoU suggesting this domain is 

not required for their binding. It will be important to generate new mutants in order 

to determine which domains of RhoV and RhoU are critical for their interaction. 
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Figure 4.20 FLIM analysis of RhoU and RhoV interaction. Jurkat cells were 
transfected with plasmids encoding pEGFP-RhoV or co-transfected with pmCherry-
RhoU and pEGFP-RhoV (A) or CB6-GFP-ΔNRhoV (B). After 8 h, cells were 
seeded on FN-coated glass bottom coverslips and stimulated with 1 ng/ml CXCL12. 
After 30 min cells were fixed and subjected to FRET analysis by FLIM. FRET is 
depicted using a pseudocolour scale (blue, normal lifetime, red FRET). Graph (C) 
represents FRET efficiency of 16 cells for each sample. Error bars indicate ± SEM. 
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4.3.10 RhoU and RhoV form homodimers 

Since RhoU and RhoV heterodimerize, the possibility that they homodimerize was 

investigated. Cos7 cells were co-transfected with plasmids encoding GFP-RhoU and 

myc-RhoU, or cotransfected with GFP-RhoV and myc-RhoV. Immunoprecipitation 

analysis showed that myc-RhoU associates with GFP-RhoU and myc-RhoV with 

GFP-RhoV (Figure 4.21). 

These results suggest that both RhoU and RhoV are able to form homodimers, 

although this could be an indirect interaction mediated by other proteins. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21 RhoU and RhoV homodimerize. Cos7 cells were cotransfected with 
pRK5-myc-RhoU and pEGFP-RhoU or pRK5-myc-RhoV and pEGFP-RhoV or 
empty vectors. After 24 h cells were lysed and incubated with myc-epitope agarose 
beads. GFP proteins interacting with RhoU or RhoV were detected by 
immunoblotting with antibody against GFP. Image is representative of two 
independent experiments. 
 
 

4.3.11 RhoU interacts with Rac1, Rac2 and RhoV but not RhoA or Cdc42. 

In the previous chapter, RhoU depletion was shown to affect the morphology and 

migration of T-ALL cell lines. It is possible that RhoU acts through RhoA, Cdc42, 
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Rac1 or Rac2, which are well-characterized for their roles in migration and 

cytoskeleton rearrangement (Rougerie and Delon, 2012). A possible interaction of 

RhoU with these GTPases has not been investigated before. Interestingly RhoU co-

immunoprecipitated not only with RhoV but also with Rac1 and Rac2. However it 

did not co-immunoprecipitate with RhoA and Cdc42, demonstrating the specificity 

of these interactions (Figure 4. 22) 

 

 
 
 
 

 
 
 
 
 
Figure 4.22 RhoU co-immunoprecipitates with Rac1, Rac2 and RhoV. Cos7 cells 
were transfected with pRK5-mycRhoU and CB6-GFP-RhoA, CB6-GFP-Cdc42, 
CB6-GFP-Rac1, pEGFP-Rac2 or pEGFP-RhoV or empty vectors. After 24 h cells 
were lysed and incubated with myc-epitope agarose beads. GFP proteins interacting 
with RhoU were detected by immunoblotting with antibody against GFP. Image is 
representative of three independent experiments. 
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4.3.12 RhoU but not Rac1 and RhoV interact with NCK1 

NCK1 and NCK2 are adaptor proteins containing three SH3 domains and one SH2 

domain. NCK1 protein has been shown to interact with a proline-rich region of R-

Ras (Wang et al., 2000) and to interact with proteins involved in cytoskeleton 

regulation. It was demonstrated that RhoU binds NCK2 and that the N-terminus of 

RhoU mediates this interaction (Saras et al., 2004). Moreover Rac1 associates with 

the adapter protein Crk via a proline-rich region in its C-terminus (van Hennik et al., 

2003). It was therefore hypothesized that a bridge between RhoU and Rac could be 

mediated by NCK1. This was investigated by coimmunoprecipitation analysis. Cos7 

cells were cotransfected with GFP plasmids encoding for RhoU, RhoV or Rac1, and 

Myc-NCK1 (kind gift of Matthias Krause) and cell lysate incubated with Myc-beads. 

Preliminary western blot results confirmed that RhoU interacted with NCK1, but not 

Rac1 and RhoV (Figure 4.23). As NCK1 appears not to be an adaptor protein for 

Rac1 or RhoV, it is unlikely to link RhoU to these two Rho GTPases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23 NCK1 co-immunoprecipitates with RhoU but not Rac1 or RhoV. 
Cos7 cells were cotransfected with pEBB-myc-NCK1 and pEGFP-RhoU, pEGFP-
RhoV or CB6-GFP-Rac1. After 24 h cells were lysate and incubated with myc-
epitope agarose beads. GFP proteins interacting with RhoU were detected by 
immunoblotting with antibody to GFP. Image of one single experiment. 
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4.3.13 RhoV regulates RhoU levels 

siRNA depletion of RhoV induces a similar functional effect to RhoU depletion 

cells. RhoU and RhoV are both important for adhesion to fibronectin and endothelial 

cells. Moreover a reduction in transendothelial migration has been observed when 

these proteins are knocked down. It was therefore tested whether RhoV was able to 

affect RhoU expression levels. Western blotting analysis of RhoV-depleted cells 

with two single oligos showed a decrease in the protein expression of RhoU 

compared to Mock or siControl (Figure 4.24A and B). It was not possible to 

investigate if RhoU knockdown affects RhoV level due to a lack of a specific 

antibody. To determine whether RhoV was directly able to induce RhoU expression, 

GFP-RhoV was expressed in COS7 cells. RhoV expression leads to an increase in 

RhoU protein level (Figure 4.24C and D). Taking together, these results showed that 

RhoV signaling could regulate the expression of RhoU.  
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Figure 4.24 RhoV regulates RhoU expression. (A and B) Jurkat cells were 
transfected with transfection reagent alone (MOCK), control siRNA or two different 
siRNAs targeting RhoU and RhoV. Cells were lysed after 72 h and analysed by 
immunoblotting using the indicated antibodies. (B) Relative RhoU levels were 
quantified using ImageJ. (C and D) Cos7 cells were transfected with vectors 
encoding for GFP  or GFP-RhoV. After 24 h cells were lysed and analysed by 
immunoblotting using the indicated antibodies. (D) Relative RhoU levels were 
quantified using ImageJ. Data shown are the mean of 3 independent experiments ± 
SEM. * p<0.05, **p<0.01; 2-way-paired t-test. GAPDH was used as a loading 
control. 
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4.4 Discussion 

The aim of the research described in this chapter was to investigate the role of RhoU 

and RhoV in T-ALL cell adhesion and migration. It was demonstrated that both 

RhoU and RhoV depletion reduced Jurkat cell adhesion to fibronectin and 

endothelial cells and decreased transendothelial migration. RhoU and RhoV 

localized on endosomes and the plasma membrane. RhoU and RhoV were found to 

interact and to form hetero- and homodimers. Intriguingly, RhoV was demonstrated 

to modulate RhoU protein expression.  

RhoU and RhoV were in vesicular structures and on the plasma membrane. 

Timelapse movies revealed that these vesicles traffic to and from the plasma 

membrane. RhoU and RhoV could be involved in vesicular trafficking of proteins to 

the plasma membrane, or they might play a role at the plasma membrane and be 

transported there by vesicles. RhoU and RhoV were also found to co-localize on 

these vesicles, suggesting they might cooperate to regulate membrane trafficking. 

The vesicles were found to be endosomes, a well-characterized cell compartment 

that provides a spatio-temporal regulation of cell signalling. Several Rho GTPases 

are involved in membrane trafficking (Segev, 2011). Rac1 and RhoA are involved in 

the uptake of extracellular material through pinocytosis and phagocytosis (Castellano 

et al., 2000; Leung et al., 1999). Cdc42 was demonstrated to control antigen 

internalization in dendritic cells (DC). Immature DCs actively internalize antigen, 

while in mature DCs endocytocis is strongly reduced as these cells mainly present 

the antigen to T cells. The reduction in endocytosis was demonstrated to reflect  

dowregulation of Cdc42 activaty (Garrett et al., 2000).  

Generally, endocytosed molecules, including receptors, are first delivered to early 

endosomes which  therefore provide spatial regulation of signalling (Vignjevic et al., 

2006). Different mechanisms of internalization have been identified. The best 

characterized is clathrin-dependent endocytosis, which involves the assembly of 

different proteins including clathrin to form a clathrin-coated pit (CCP) on the 

cytplasmic face of the plasma membrane. The CCP facilitates the accumulation of 

the molecules that needed to be internalized. CCP then invaginate and form vesicles 

inside the cell (Yamashiro et al., 1998).  The Rho GTPases RhoA and Rac1 were 

reported to inhibit CCP-dependent internalization of the transferrin receptors (Ellis 

and Mellor, 2000). Rho GTPases are also involved in clathrin-independent 
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internalization. These endocytic pathways are driven by actin polymerization and 

include phagocytosis, caveolar-mediated uptake and pinocytosis.  

Ative Rac1 has been observed in early endosomes. These compartments were 

suggested to be important in regulating Rac1 distribution towards specific area of the 

cells in order to promote membrane ruffling (Miaczynska and Bar-Sagi, 2010).  Rac1 

co-localize at the plasma membrane and on endosomes with ADP-ribosylation factor 

6 (ARF6). Rac1 recycling from endosomes to the cell surface appears to be 

facilitated by ARF6 (D'Souza-Schorey and Chavrier, 2006; Radhakrishna et al., 

1999). Inhibition of ARF6-dependent membrane trafficking alters also the trafficking 

of Cdc42-positive vesicles and consequently cell polarity (Osmani et al., 2010).  

Interestingly, RhoJ and RhoQ, which belong to the Cdc42 subfamily, were reported 

to control membrane trafficking. Like RhoU and RhoV, RhoJ was shown to localize 

on the plasma membrane and endosomes. Depletion of RhoJ disrupted 

internalization of transferrin receptor and was shown to be necessary for transport of 

endocytosed receptors to the early endosome (de Toledo et al., 2003). In adipocytes 

RhoQ was reported to regulate the insulin-dependent transfer of the glucose 

transporter GLUT4 from storage compartment to the plasma membrane (Chiang et 

al., 2001). This involved actin cytosketon rearrangements induced by RhoQ 

activation through N-WASP (Jiang et al., 2002). RhoB localizes to endocytic 

vesicles and regulates trafficking of EGF receptor by retarding the progress of the 

receptor to lysosomes for degradation (Ellis and Mellor, 2000; Kress et al., 2007). 

EGF receptor was also demonstrated to colocalize with RhoU on endosomes in a 

Grb2-dependent manner contributing to cell migration (Zhang et al., 2011). This 

supports the hypothesis that RhoU is involved in intracellular and receptor 

trafficking. It would be interesting to test whether RhoV is involved in transferring 

receptor or EGF receptor internalization.  

In the previous chapter (see Figure 3.6) it was shown that downregulation of RhoU 

by siRNA reduced CCRF-CEM, Jurkat and PEER cell adhesion to fibronectin. In 

this chapter, it was demonstrated that both RhoU and RhoV knockdown strongly 

inhibit adhesion of Jurkat cells to fibronectin and endothelial cells. Interestingly, 

RhoU and RhoV reduced adhesion of prostate cancer cells (PC3) to the endothelium 

(Dr Nicolas Reymond, personal communication). In agreement with these results, 

cranial neural crest cells were shown to adhere poorly to fibronectin when depleted 

of RhoU and had a rounded morphology (Fort et al., 2011). This suggests that the 
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role of RhoU in adhesion is not just restricted to T-ALL cells. In the previous chapter 

(see Figure 3.7), RhoU-depleted cells had a rounded morphology and a defect in 

uropod/tail formation. Loss of the tail is consistent with a defect in adhesion. The 

mechanism by which RhoU and RhoV inhibit adhesion still remains to be clarified. 

RhoU has been shown to regulate focal adhesion dynamics in HeLa cells (Chuang et 

al., 2007). It is possible that RhoU and/or RhoV control integrins. Jurkat cells 

preferentially bind to fibronectin, a ligand of β1 integrin. No significant changes 

were observed in total β1 integrin expression levels in RhoU and RhoV-depleted 

cells (data not shown). Since RhoU and RhoV were found to traffic between the 

plasma membrane and cytoplasm it is possible they control the localization and 

clustering of β1 integrin. Integrins are trafficked by the endosomal pathway, and this 

trafficking is important for the polarized distribution of integrins (Caswell et al., 

2009). Endosomes have been found to mediate the redistribution of integrins during 

cytokinesis (Pellinen et al., 2008). Moreover, it has been hypothesized that a 

polarized endocytic cycle is required to return integrins from the rear of a migrating 

cell toward its front (Bretscher, 1996), although there is no yet evidence for this. To 

investigate a possible role of RhoU and RhoV in β1 integrin localization 

immunofluorescence analysis would need to be performed.  

RhoU and RhoV are targeted to the membrane by palmtoylation, and this protein 

modification allows proteins to move to and from membranes (Navarro-Lerida et al., 

2012). It was interesting to observe that RhoU and RhoV vesicles traffic to and from 

the plasma membrane as this suggests a recycling mechanism. It would be therefore 

important to test if they traffic to perinuclear recycling compartments before 

returning to the plasma membrane through a mechanism requiring Rab11 or ARF6. 

Rab11 and ARF6 proteins controll traffic through the recycling endosome (Caswell 

et al., 2009). As RhoU and RhoV vesicles were observed to migrate from the rear of 

the cells during cell migration, one possible scenario could be that RhoU and/or 

RhoV control recycling of integrins from the tail of the cell.  

A decrease in cell spread area upon RhoU siRNA knockdown has also been 

observed in HeLaS3 cells (Chuang et al., 2007). Here, overexpression of RhoU or 

RhoV increased cell spreading and filopodium formation. Filopodia are finger-like 

protrusion of the plasma membrane. They are formed of 10 or more parallel bundles 

of actin filaments. The filaments are crosslinked by fascin1. Fascin1 localizes along 
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the entire length of filopodia and fascin1 depletion leads to a reduction in the number 

of filopodia and migration (Vignjevic et al., 2006; Vignjevic et al., 2007; Yamashiro 

et al., 1998). The main function of filopodia is to sense the extracellular 

environment, and they are linked to enhancement of directed migration as the key 

components of filopodia promote cell motility. They contribute to angiogenesis, 

chemotaxis and adhesion (Eilken and Adams, 2010; Zhang et al., 2004) and an 

increase in filopodia is considered a characteristic of invasive cancer cells (Arjonen 

et al., 2011; Mattila and Lappalainen, 2008; Schafer et al., 2009). During cell 

spreading, integrins accumulate in filopodia in an active state, creating sticky fingers 

at the front of the cell, promoting cell adhesion and migration (Galbraith et al., 

2007). Therefore filopodium formation and cell spreading induced by RhoU and 

RhoV could contribute to their roles in adhesion and migration. It would be 

interesting to investigate the localization of active β1 integrins on RhoU and RhoV 

expressing cells to analyze whether they accumulate in the filopodia induced by 

RhoU and RhoV.  

Given the effect of RhoU and RhoV on adhesion to extracellular matrix and 

endothelial cells, it was important to investigate if these proteins were affecting 

transendothelial migration. Interestingly, RhoU and RhoV depletion inhibited Jurkat 

cells transmigration. siRNA depletion of RhoU was also shown to reduce 

transendothelial migration of CCRF-CEM cells (Heasman et al., 2010). The effect on 

transendothelial migration might be due to the role of RhoU and RhoV adhesion of 

Jurkat cells to the endothelium.  

It is well established in the literature that Rho GTPases cooperate or antagonize each 

other to control many biological processes. One example of cross-talk between Rho 

GTPases is between the Rnd proteins and RhoA where Rnd1 and 3 inhibit RhoA 

activity and consequently cell contractility (Chardin, 2006; Guilluy et al., 2011). 

Hence, Rho GTPase interaction is important for cellular functions, but a direct 

interaction between two Rho GTPases has never been observed before.  

It was surprising to observe that RhoU and RhoV interact, and this interaction occur 

at the plasma membrane and in vesicles. These observations suggest these two Rho 

GTPases can act together to regulate membrane trafficking and their cooperation 

could be therefore fundamental for their functions.  Dimerization is an important 

property of proteins, which is often involved in signalling regulation. Dimerization 
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can enhance protein specificity, can facilitate the orientation and proximity of two 

molecules, or increase their surface of interaction with other proteins or DNA 

(Klemm et al., 1998). In yeast the Rsr1 GTPase has been shown to form homodimers 

and heterodimers with Cdc42 in a spatio-temporal controlled manner important for 

cell polarity. The C-terminal polybasic region of Rsr1 mediates the dimerization 

(Kang et al., 2010). In this chapter, it was demonstrated that both RhoU and RhoV 

are able to form homodimers. It would be interesting to determine which domain of 

these proteins is important for their inteaction with itself. This could be mediated as 

for Rsr1 and Cdc42 by their polybasic region at the C-terminus.  

Homodimerization of some proteins facilitates or promotes their interaction with 

other proteins. For example it has been demonstrated that the homodimerization of 

ROCK-1 is required for Rnd3/RhoE binding (Garg et al., 2008).  

It is possible that part of the phenotypic effects observed upon RhoV knockdown are 

due to its effect on RhoU protein levels. It was already proposed that RhoU could 

have a similar function to RhoV, controlling in a similar manner cell adhesion and 

migration of cranial neural crest cells. Moreover, it was demonstrated that RhoV 

depletion affects the induction of neural crest markers. This phenotype was rescued 

by RhoU expression (Guemar et al., 2007). The mechanism by which RhoV 

regulates RhoU expression still remains to be clarified. It would be critical to test 

whether RhoU depletion is also able to affect RhoV protein level. This was not 

analysed here due to the lack of a suitable antibody to detect endogenous RhoV. 

Moreover, it is interesting to observe that the expression pattern of RhoV in the T-

ALL cells analysed (see Figure 4.4A) is similar to that of RhoU (see Figure 3.3). 

SUPT1 and Jurkat cells, express the highest levels of RhoU and RhoV. This might 

be explained by the modulation of RhoU expression mediated by RhoV.  

Given that RhoV depletion induces a decrease in RhoU protein, it possible that the 

binding of these two proteins protects RhoU from proteosomal degradation. 

Proteosome inhibitors could be used upon RhoV siRNA knockdown to test whether 

they could prevent the reduction in RhoU levels.  

Interestingly, RhoU was found to interact with Rac1 by co-immunoprecipitation. The 

main characterized function of Rac1 is to induce formation of lamellipodia. 

Depletion of RhoU in cranial neural crest cells inhibited lamellipodia formation (Fort 

et al., 2011) and Rac1 and RhoU interaction could mediate this effect. In NIH3T3 

cells, RhoU overexpression induced loss of lamellipodia. Rac was proposed to be 
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downstream of this defect as stimulation with PDGFP-BB an activator of Rac was 

able to rescue the lack in lamellipodia (Saras et al., 2004). A lack of lamellipodia 

upon RhoU overexpression was never observed in T-ALL cells, and thus this effect 

is restricted to fibroblasts. This does not rule out the possibility that the interaction 

between Rac1 and RhoU also occurs in fibroblast. Rac1 endocytosis is important for 

its activation and recycling to the plasma membrane, where Rac1 induces 

lamellipodia (Palamidessi et al., 2008).  

Since RhoU localizes to endosomes, it could control Rac1 traffic to the plasma 

membrane. The control of Rac1 trafficking toward the plasma membrane would be 

therefore important for Rac1 function. Rac1 depletion reduced transendothelial 

migration of T-ALL cells (Heasman et al., 2010). The regulation of Rac1 trafficking 

by RhoU could contribute to a correct localization of Rac1 to the lamellipodium 

where it drives migration and transendothelial migration.  

NCK1 is an SH2/SH3 domain-containing adapter protein and is implicated in actin 

cytoskeleton rearrangement and cell migration (Buday et al., 2002). The proline-rich 

domain at the N-terminus of RhoU interacts with the middle and C-terminal SH3 

domains of NCK2 (Saras et al., 2004). Although Rac1 also has a proline-rich domain 

at the C-terminus (van Hennik et al., 2003), NCK1 did not interact with Rac1 and 

thus is unlikely to link Rac1 to RhoU (or RhoV). 

RhoU and RhoV were shown to interact with PAK1 (Saras et al., 2004; Weisz 

Hubsman et al., 2007).  It is well established that PAKs are activated by Rac and 

Cdc42 and that they are important regulators of cell migration and invasion. PAKs 

are overexpressed and/or hyperactivated in several human tumours and PAK-

targeted therapeutics are being developed (Dummler et al., 2009).  It can be 

speculated that RhoU and RhoV control migration through activation of PAK1 

(Saras et al., 2004; Weisz Hubsman et al., 2007). In this case, it could be possible 

that RhoU and/or RhoV dimerization is required for their binding to PAK1. It was 

demonstrated that the N-terminus of RhoV is not required for the binding with RhoU 

by co-immunoprecipitation experiments and FRET/FLIM. Their interaction could be 

mediated by their polybasic regions at their C-terminus. In that case, 

homodimerization could act as a negative regulator of RhoU and RhoV interaction, 

as they might compete for the same domain. 

As the effects of RhoU and RhoV co-expression on migration have not been 

determined, it is not possible to exclude that these two proteins negatively regulate 
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each other. They could compete for their binding to Rac1. It is also possible that 

RhoU, RhoV and Rac1 form a proteins complex that regulates migration through 

PAK1. RhoV was also demonstrated to interact with Rac1 (data not shown) and to 

interact with RhoU. One possible scenario is that RhoU and RhoV 

hetero/homodimerization mediates the binding of Rac1 to PAK1. It is also possible 

that RhoU and RhoV dimerization controls PAK1 activity. There is no evidence that 

PAK1 localizes on endosomes but it was found on pinocytic vesicles in SWISS-3T3 

cells, similar to Rac1 (Dharmawardhane et al., 1997).  

Here, RhoU was also shown to interact with Rac2. Rac1 and Rac2 share 92% of 

identity and most of their effectors (Heasman and Ridley, 2008) (Figure 4.25). 

 

 

Figure 4.25. Sequence alignment between Rac1 and Rac2. Rac1 and Rac2 share 
92% of identity. Highlighted in green are the residues of Rac2 that differ from Rac1.  

 

 

 

Rac1 and Rac2 are both important for the production of superoxidase in 

phagocytic cells. The high similarity suggests redundancy between these two Racs. It 

has been proposed that the main difference between Rac1 and Rac2 lies in their 

pattern of expression. Rac2 is highly expressed in haematopoietic tissues (Shirsat et 

al., 1990) and in human neutrophils Rac is the main isoform. The redundant function 

might be the reason why they both interact with RhoU. Interesting, in macrophages 

was showed that Rac1 and Rac2 have distinct roles. Macrophages lacking Rac2 had 

reduction in podosomes while lack of Rac1 altered cell shape and reduced membrane 

ruffling (Zhang et al., 2012). It is therefore possible that Rac1 and Rac2 have distinct 

roles in T-ALL cells. 
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A main characteristic of T-ALL is the extent of tumour cell dissemination between 

the bone marrow and peripheral blood. In T-ALL patients, the T lymphoblasts 

comprise more than 25% of the bone marrow cells. Patients have also a high number 

of circulating T-lymphoblasts (Feng et al., 2010) (Goldberg et al., 2003). Poor T-

ALL prognosis is related to the infiltration of different tissues, in particular CNS. In 

order to infiltrate tissues leukaemic cells need to extravasate from the blood stream 

through the endothelium. Here, RhoU and RhoV depletion inhibited Jurkat cells 

adhesion to the endothelium and transendothelial migration. These proteins were 

also found to be up-regulated in T-ALL (Chapter 2). It is therefore possible that the 

increase in RhoU and RhoV expression in the patients could contribute to T-ALL 

progression.  
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Concluding remarks 

In T-ALL, leukaemia cells can migrate and infiltrate multiple tissues, including the 

central nervous system, and this correlates with poor prognosis. Therefore the 

identification of genes involved in the migration of leukaemic cells is fundamental to 

understand this process and ultimately to design therapies for T-ALL patients. Ras 

superfamily proteins are already known to contribute to cancer formation and 

progression. Ras mutations have been found in 30% of all human tumours (Bos, 

1989) while GTPases activity is increased in several tumours (Vega and Ridley, 

2008). Most GTPases are post-translationally prenylated by farnesyl or 

geranylgeranyl isoprenoids which facilitates their anchorage in membranes and is 

important for Rap/Rho GTPase signalling. 

 

In the first results chapter of this thesis, the effect of statin and GGTI on T-ALL cell 

adhesion and migration was described. Statins prevent prenylation of GTPases. 

These cholesterol lowering drugs were previously reported to have anticancer 

properties since they were shown to induce apoptosis in acute myeloid leukaemic 

and neuroblastoma cells (Dimitroulakos et al., 1999). These properties were 

attributed to the suppression of GTPase prenylation leading to a reduction in 

downstream signals essential for cell cycle progression (Gauthaman et al., 2009). 

Randomized controlled trials for preventing cardiovascular disease indicated that 

statins had benefits for reducing colorectal cancer and melanoma (Demierre et al., 

2005). Atorvastatin was shown to decrease the metastatic potential in melanoma 

cells causing disruption of stress fibres a process mediated by Rho inhibition. 

Similarly, as a result of Rho inhibition statins were shown to reduce the invasive 

potential of breast carcinoma cells (Gauthaman et al., 2009).  

Statins exhibit potent antileukaemic properties in vitro. For example, atorvastatin and 

fluvastatin were found to be inducers of cell differentiation and apoptosis of the NB4 

acute promyelocytic leukemia cell line. These effects were correlated with 

engagement of the c-Jun kinase pathway (Sassano et al., 2007).  

Results presented in this thesis demonstrated that treatment of T-ALL cells with 1 

µM statin inhibits adhesion, chemotaxis and TEM. Higher statin concentrations were 
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needed to inhibit adhesion of primary T-lymphoblasts. Moreover siRNA depletion of 

Rap1b phenocopied statin effects. Rap1 levels are higher in primary T cells than T-

ALL cells which could explain their reduced sensitivity to statins (Figure 5.1). This 

suggests that statin, GGTI and inhibitors of Rap1b could be used to prevent T-ALL 

cell invasion.  

 

 

 

 
 
 
Figure 5.1 Schematic mechanism of action of statins in primary-T-lymphoblast 
and in T-ALL cell adhesion. Treatment of primary-T-lymphoblasts with 1 µM 
statin does not affect prenylation of Rap1b. This GTPase can still localize properly 
on the plasma membrane where it promotes β2-integrin activation. Active β2-
integrin can bind to ICAM-1 expressed on the endothelium surface, leading to firm 
adhesion between T cell and the endothelium. Treatment of T-ALL cells with 1 µM 
statin inhibits Rap1b prenylation and consequently its localization on membranes. 
The mislocalization of Rap1b causes a decrease in the activation of β2-integrin 
affecting adhesion of T-ALL cells to the endothelium. 
 

 

Given these promising in vitro results, it would be interesting to study the effect of 

statins, GGTI and Rap1b inhibitors in T-ALL using an in vivo model. The studies of 

statins in animals include a colorectal cancer mouse-model and breast cancer mouse 
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models. In the colorectal cancer mouse model, it was consistently found that statins 

reduced tumour incidence by 30–67% (Demierre et al., 2005). Lovastatin reduced 

tumour formation and metastatic dissemination to the lung from established 

mammary tumours of a mouse model (Alonso et al., 1998).  

The LMO2 T-ALL mice express LMO2 selectively in T cells leading to the 

development of T-ALL. These mice would be a good model to study the effect of 

statins on T-ALL cells in vivo (McCormack et al., 2010). The LMO2 T-ALL mice 

could be also crossed with Rap1b knockout mice to study the role of Rap1b on T-

ALL cells in vivo (Chrzanowska-Wodnicka et al., 2005). 

 

In the LMO2 T-ALL mouse model the Notch1 oncogene is spontaneously mutated in 

approximately 50% of mice with T-ALL. In the second results chapter of this thesis, 

RhoU was described as a target gene of Notch1 in T-ALL. RhoU was demonstrated 

to be important for T-ALL cell adhesion to fibronectin and also for chemotaxis and 

migration possibly through its role in adhesion. It was also shown that Notch1 

siRNA depletion induced a decrease in the adhesion and migration of T-ALL cell 

lines, suggesting that Notch1 could affect migration of T-ALL cells through RhoU. 

The LMO2 T-ALL mouse model could therefore be used to investigate whether the 

expression of RhoU is related to aberrant Notch1 signaling in vivo. The model could 

be also used to perform functional analysis on cell adhesion and migration in order to 

understand whether Notch1 signaling could affect T-ALL cell adhesion and 

migration through RhoU in vivo.  

 

In the last results chapter of this thesis, it was demonstrated that expression of RhoU 

and its closest relative RhoV in T-ALL cell lines induces cell spreading and 

filopodium formation. RhoU and RhoV siRNA depletion were found to inhibit 

Jurkat cell adhesion on fibronectin and endothelial cells and to reduce TEM. It would 

be important to perform adhesion assays on endothelial cells and TEM assays using 

another T-ALL cell line as these experiments were performed only in Jurkat cells. 

Unexpected, RhoU and RhoV were found to form homo- and heterodimers. 

However, in yeast the Rsr1/Bud1GTPase was shown to interact with itself, and 

Cdc42 and Ras molecules were found to exist as oligomers (Kang et al., 2010; 

Santos et al., 1988).  It is therefore possible that other GTPases can form dimers. 
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Intriguingly, RhoV was shown to modulate RhoU protein expression. In the absence 

of a reliable antibody to detect endogenous RhoV, it was not possible to investigate 

whether RhoU is able to modulate RhoV protein expression. Therefore this 

possibility cannot be excluded. 

As mentioned in the results chapter, it would be critical to perform rescue 

experiments to determine whether RhoU could rescue the effect of RhoV depletion 

and vivecersa. RhoU could be overexpressed in a RhoV knockdown background to 

analyse whether adhesion and TEM could be rescued in a T-ALL cell line such as 

Jurkat cells.  

RhoU and RhoV were demonstrated to co-localize on endosomes and on the plasma 

membrane suggesting they could be involved in membrane trafficking. How RhoU 

and RhoV regulate T-ALL cell adhesion still remains to be clarified. It would be 

important to analyse whether RhoU and RhoV could modulate the trafficking or 

activation of integrins.  

It can be also speculated that RhoU and RhoV could modulate adhesion through 

Rap1b. Rap1 proteins are well known regulators of integrins activation, and in the 

second chapter of this thesis, Rap1b was demonstrated to be important for adhesion 

of T-ALL cells to both fibronectin and ICAM-1, whereas Rap1a was shown to 

mainly mediate adhesion to fibronectin. Rap1 proteins localize on endosomes and 

the plasma membrane (Hattori and Minato, 2003). Given the possible role of RhoU 

and RhoV in membrane trafficking it is possible that RhoU and RhoV control the 

trafficking of Rap1b. A possible interaction between Rap1b and RhoU/RhoV could 

be investigated by co-immunoprecipitation analysis. It could be therefore 

informative to analyze the localization of Rap1b in the context of RhoU/RhoV 

depleted cells, to understand whether this could cause a mislocalization of Rap1b 

protein. 

RhoU was shown to interact with Rac1 and Rac2 by co-immunoprecipitation 

experiments. The best characterized function of Rac1 is to promote lamellipodium 

formation (Rougerie and Delon, 2012). Rac1 and Rac2 depletion were shown to 

inhibit TEM of CCRF-CEM cells (Heasman et al., 2010). It would be interesting to 

perform FLIM/FRET experiments to further characterize the interaction of RhoU, 

and possibly RhoV, with Rac1 and Rac2. It is possible that RhoU regulates the 

trafficking of Rac1 and Rac2 to the plasma membrane where they drive migration 

and TEM. RhoV was also shown to interact with Rac1 by co-immunoprecipitation 
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analysis (data not shown). It would therefore be useful to analyze the localization of 

endogenous Rac1 and Rac2 in RhoU/RhoV depleted cells to determine whether they 

regulate the localization or Rac1 and Rac2. RhoU and RhoV share PAK1 as a 

downstream effector with Rac1 (Heasman and Ridley, 2008; Saras et al., 2004; 

Weisz Hubsman et al., 2007). The PAK proteins play important roles in cytoskeletal 

organisation, cellular morphogenesis and survival, and several PAKs have been 

implicated in cancer (Crawford et al., 2012). Expression of RhoU and RhoV 

activates PAK1 (Aronheim et al., 1998; Rougerie and Delon, 2012; Saras et al., 

2004) and PAK1 could mediate the effect of RhoU and RhoV on T-ALL cell 

migration. It would therefore be interesting to perform migration assays in which 

siRNA depletion of RhoU and/or RhoV are used in the context of cells 

overexpressing a constitutively active form of PAK1, to investigate whether this 

could rescue the effect of RhoU and RhoV in migration. PAK inhibitors are still 

quite rare, and few exhibit 'drug-like' properties, however it is expected that other 

PAK inhibitors will be developed in the future (Crawford et al., 2012). These 

inhibitors could be used to analyse their effect on T-ALL cell migration in vitro. 

Finally, the LMO2 T-ALL mouse model described above could be used as a tool to 

develop and test new therapies to target the signalling pathway of RhoU and RhoV 

GTPases. In fact the implication of these proteins in leukaemia raises the question of 

whether inhibitors can be designed to target RhoU and RhoV. For example, 

inhibitors of RhoU/RhoV could be designed to prevent the interaction with 

Rac1/Rac2 and/or PAK1, which could be tested for effects on cell migration.  

 

In conclusion the three chapters of this thesis indicate for the first time that Rap1b, 

RhoU and RhoV are crucial players in the adhesion and migration properties of T-

ALL cells. The understanding of the intricate signalling pathways regulated by 

Rap1b, RhoU and RhoV will be important to design therapeutic drugs.   

The following figure represents a hypothetical model of Rap1b, RhoU and RhoV 

function in T-ALL cell adhesion and migration (Figure 5.2).  
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Figure 5.2 Hypothetical model for the control of adhesion and migration by 
Rap1b, RhoU and RhoV in T-ALL. Aberrant Notch1 signalling in T-ALL induces 
an increase in the transcription of its target gene RhoU. In the cytoplasm RhoU can 
form heterodimers with RhoV. These two proteins interact in vesicles that traffic 
toward the plasma membrane. In vesicles, RhoU and RhoV could form a complex 
with Rap1b promoting its localization on the plasma membrane. The localization on 
the plasma membrane of Rap1b leads to the activation of β1 and/or β2 integrin, 
promoting cell adhesion. Integrins are trafficked by the endosomal pathway a 
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process that could be mediated by the RhoU/RhoV complex. RhoU and RhoV 
heterodimers could also interact on vesicle with Rac1 promoting its localization on 
the plasma membrane, where it induces actin polymerization and lamellipodium 
formation important for cell migration. Dimerization could prevent these proteins 
from proteosomal degradation. RhoU and RhoV dimerization could enhance their 
binding to their downstream effector PAK1. The binding could promote the 
transition of PAK1 to an active conformation that exposes key residues to undergo 
autophosphorylation. Rac1 also binds and activate PAK1. Activation of PAK1 or 
other PAKs induces cytoskeleton rearrangement promoting cell migration.  
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