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Abstract 
Objectives: to investigate the protective properties of the acquired enamel pellicle (AEP) 

formed from whole mouth saliva (WMS) or parotid saliva (PS) against Erosive tooth wear 

(ETW) in an  in-vitro model.  

Methods: 60 enamel specimens were prepared from extracted human teeth and were 

randomly assigned to 4 experimental groups: WMS (n=20), PS (n=20), artificial saliva (AS, 

n=10) and deionised water (DW, n=10). AEP samples were eluted from WMS (n=5) and PS 

(n=5) groups after five cycles (acid, wash and saliva) using filter papers soaked in sodium 

dodecyl sulfate by mechanically rubbing before mean step height was evaluated using a non-

contacting profilometer for all groups (n=10 each). Total protein in AEP was quantified using 

BCA assay, individual protein components of AEP were separated and analysed using SDS-

PAGE and western blot for [mucin5b, albumin, carbonic anhydrase VI (CA VI), statherin]. 
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Specific antibody binding was quantified using purified protein standards of known 

concentration.  Samples of AEP were also analysed by LC/MS/MS sequencing.  

Results: WMS group had significantly (p<0.0001) less acid-induced erosion (step height [4.16 

(0.9) μm]) than PS group [6.41 (0.3) μm]. The amount of total protein, mucin5b and albumin 

were more dominant in WMS pellicles than PS (p<0.0001) whereas CA VI and statherin were 

dominant in PS pellicles (p<0.0001).   

Conclusion: The composition of the AEP influences the degree of protection from acid attack, 

possibly by altering the mechanism of protection. AEP from WMS was more protective against 

ETW than that of PS and this protection may be attributed to mucin5b and albumin rather than 

to statherin and CA VI. This protection appears to be through preventing the protons diffusion 

to the crystal surface rather than neutralising acid or calcium homeostasis. 

Significance: The salivary composition has an important effect on  protection against in-vitro 

ETW and that in-vitro salivary proteins models of ETW differ from in-vivo studies. Therefore, 

it can be recommended that in-vitro laboratory models of ETW need to be assessed carefully 

to represent the clinical environment more closely. 

Key words: Saliva, human enamel, pellicle, erosion, profilometer, step height, proteins, ions, 

SDS-PAGE  

 

 

1. Introduction 
Erosive tooth wear (ETW) is a term used recently to describe the wear of teeth primarily as a 

result of erosion but in combination with attrition and abrasion (Lussi and Carvalho, 2014). 

The structures of dental enamel can be insulted by ETW which is a dynamic process and is 

affected by a number of chemical, biological and behavioural factors (Lussi and Jaeggi, 2008, 

Bartlett, 2005). It is well documented that saliva and acquired enamel pellicle (AEP) are 

important biological factors that influence ETW (Amaechi et al., 1999, Zero and Lussi, 2005, 

Lussi and Jaeggi, 2008, Wetton et al., 2006, Wetton et al., 2007, Hellwig et al., 2013, 
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Vukosavljevic et al., 2014). AEP starts forming moments after brushing and some studies have 

shown an improvement of AEP protection at longer pre-treatment period between 24 h to 

several days (Hannig and Balz, 1999, Hannig et al., 2004, Amerongen et al., 1987). AEP 

serves many functions against ETW such as acting as a diffusion barrier that reduces direct 

contact between acids and the tooth surface (Carlen et al., 1998, Vukosavljevic et al., 2014), 

a neutraliser of protons (Lussi and Jaeggi, 2008, Sreebny, 2000, Buzalaf et al., 2012) and as 

a reservoir zone that is rich in minerals that help remineralise the demineralised tooth tissues 

(Proctor et al., 2005). Certain protein components of AEP such as statherin and proline-rich 

proteins adhere quickly and strongly with the enamel crystals (Hay, 1973, Zimmerman et al., 

2013) due to their phosphate groups, which attract calcium and phosphate ions to the enamel 

surface (Kosoric et al., 2007). Other proteins such as mucins, amylase, albumin and CA VI 

build up later by the constant flow of saliva over tooth surfaces (Amerongen et al., 1987, 

Hannig et al., 2008) and serve many functions such as lubrication (mucins (Amerongen et al., 

1987), diffusion barrier (albumin (Hemingway et al., 2008) and acid neutralisation (CA VI) 

(Proctor et al., 2005, Leinonen et al., 1999). 

When studying AEP using in-vitro models, whole mouth saliva is collected by spitting or 

drooling whereas saliva from a single salivary gland such as parotid gland is collected using 

a Lashley suction cup.  Mucin 7 and mucin 5b are salivary mucins secreted by submandibular 

and sublingual glands but are absent from parotid glands. PS is a serous fluid which consists 

predominantly of proteins such as proline-rich proteins (PRPs), histatins and statherin 

(Humphrey and Williamson, 2001).  

Owing to the structural and compositional complexity of WMS as well as the instantaneous 

interaction between salivary proteins and minerals, it is difficult to determine the exact 

components of AEP that have a role in the protection of the enamel surface against in-vitro 

ETW. Artificial saliva (AS) can also be used in in-vitro ETW studies to mimic the role of 

inorganic components of natural saliva and currently found in a number of formulations 

(Gibson and Beeley, 1994, Amaechi et al., 1999).  
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Previous in-vivo studies have shown that statherin (Mutahar et al., 2017c) alongside serum 

albumin (Taira et al., 2018) are possibly responsible for most of the protection conferred by 

the AEP. There is not yet an accurate in-vitro ETW model that closely represents the clinical   

studies due to many differences between in-vitro and in-vivo AEP. These include the unique 

features of the oral environment such as the dynamics of salivary flow, enzymatic activities, 

thickness of the AEP, mineral surface properties and health and age of patients (Yao et al., 

2001, Hannig and Hannig, 2009). In addition, in-vitro studies use ground and polished 

enamel surfaces which differ in susceptibility to acid challenge and enamel mineral content 

compared to the outer natural enamel layer (Ganss et al., 2000, Carvalho and Lussi, 2015). 

However, a reliable, accurate, clinically relevant in-vitro ETW model to study the role of AEP 

against ETW would be of great benefit; reducing the reliance for expensive, time consuming 

in-situ models. 

This study aimed to investigate how the composition of AEP affected in-vitro ETW model by 

measuring the total protein and a targeted approach to measure four key salivary proteins: 

mucin5b, albumin, CA VI and statherin. Our hypothesis was that the amount of total protein 

and targeted salivary proteins in AEP formed from WMS would differ, thus its protection 

against ETW than that formed from PS only. 

2. Material and methods 
2.1 Sample and solutions preparations 
Sixty enamel specimens were prepared from thirty previously extracted, caries free, 

permanent human molar teeth and stored in sodium hypochlorite (0.05%) at 4 °C. Teeth were 

collected from patients attending clinics at King’s College London Dental Institute, Guy’s 

hospital London who were informed about the possibility of using their teeth and written 

consent was obtained. The experiment was carried out in accordance with the approved 

guidelines and regulations of the National Research Ethics Committee, London (REC ref 

12/LO/1836). The power calculation for comparing the mean step height (the erosive loss of 

tissue) was carried out using Gpower version 3.1.5. based on ANOVA and paired t-test as 
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well as on previous studies (Martins et al., 2013, O’Toole et al., 2015) For protein analysis, a 

power calculation for comparing the mean protein levels between WMS group and PS group 

was carried out based on paired t test as well as on previous studies (Martin et al., 2013; 

Carpenter et al., 2014; Mutahar et al., 2017). The buccal and lingual surfaces of extracted 

teeth were cut with a 4-inch diamond blade (Isomet 1000 with an Extex diamond waffering 

blade; Buehler, Coventry, UK) at 300 rpm and a load of 200 N using a cutting machine (Buehler 

GmbH, Düsseldorf, Germany). The cut specimens were then placed into a custom-made 

silicone mould (specimen size 8 × 21.5 × 24 mm) and embedded in cold cure acrylic resin 

(Oracryl; Bracon, East Sussex, UK) and the natural surface polished (Metaserv 3000 variable 

speed grinder-polisher; Buehler, Coventry, UK) using the Federation of European Producers 

of Abrasives (FEPA) standard silicon carbide sandpaper, starting at 80 grit, followed by the 

180, 600, 1200, 2400 and 4000 grit. This resulted in a smooth, polished surface and large 

enough for analysis, approximately 2 X 3 mm wide with a reference area 1 mm wide on either 

side to create two intact reference areas (Figure 1). Specimens were randomised and 

immersed in 80 ml of DW and ultrasonicated (Nusonics GP-70, T310) at 60 Hz for 15 min, 

after which they were rinsed and allowed to dry. Specimens were then taped with PVC 

adhesive tape to create a window of exposed enamel approximately 2 mm by 3 mm wide with 

a reference area on either side.  

Four solutions were used in this study: WMS, PS, AS and DW. Paraffin-stimulated WMS 

samples were collected from healthy volunteers. Twenty participants (5 female and 15 male 

ranging in age from 24 to 60 years) from students and staff at King’s College London Dental 

Institute, Guy’s hospital London took part in the WMS and PS collection for this study. For 

WMS, participants were asked to expectorate saliva immediately after starting to chew the 

paraffin wax and continue for 5 minutes. 2% solution citric-acid stimulated PS samples were 

also collected from the same participants using a Lashley cup which was placed on the 

opening of Stenson’s duct. A 10-minute collection period was applied where 2 drops of the 

stimulant were applied every 30 seconds to the posterior lateral surface of the tongue. The 
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protocol for collecting PS was adapted from Sreebny and Vissink (2010) (Sreebny and Vissink, 

2010). The mean flow rate (4.2 ml/min), mean pH (6.7) and buffering capacity of the collected 

saliva were immediately measured to ensure that they fell within the normal range. The 

protocol for WMS and PS collection from healthy volunteers was approved by the ethical 

review committee (Northampton REC, 14/EM/0183) and written informed consent was 

obtained from each participant taking part in the study. The collected WMS and PS were ice-

chilled and pooled immediately after collection at - 80 °C for long-term storage. Prior to use, 

the frozen saliva samples were defrosted for the same length of time (3 h) at 22 ± 1°C. Thawed 

saliva was mixed vigorously with a vortex mixer to re-suspend precipitation of proteins on 

thawing to avoid the loss of a specific proteins of less than 14 kDa such as statherin and/or 

histatins (Francis et al., 2000). The AS was prepared according to the protocol used by 

Eisenburger et al. (2001) (Eisenburger et al., 2001). It contained the following ingredients in 

DW: CaCl2.2H2O 0.7 mmol/L; MgCl2 0.2 mmol/L; KH2PO4 4.0 mmol/L; HEPES buffer (acid 

form) 20.0 mmol/L; KCl 30.0 mmol/L. The pH of the prepared solution was adjusted to 7.0 by 

adding sodium hydroxide (NaOH) and using a pH meter (Oakton pH 510 bench top meter, 

Eutech Instruments Pte Ltd, Singapore) and was always used within 24 hours of its 

preparation. 

2.2 Immersion in solutions and Cycling procedure  

The prepared 60 specimens were randomly allocated by an independent investigator using 

SPSS random sample generator to 4 experimental groups according to the solutions used: 

WMS (n=20), PS (n=20), AS (n=10) and DW (n=10). Enamel specimens were immersed and 

stored un-agitated overnight at 22 ° C ± 1 in the corresponding solution for 24 h. There were 

two cycling procedures: at control and after five cycles of erosion as can be seen in Figure 2. 

Control Cycle: 

After enamel specimens were immersed in the corresponding solution for 24 h, 10 specimens 

were taken out from WMS (n=5) and PS (n=5) groups then were rinsed in DW for 2 minutes 
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before AEP was eluted as will be described below ready for protein analysis (Total protein, 

Electrophoresis, proteomics) . This group of specimens served as the control group where 

AEP was eluted prior to acid erosion. 

Five cycles of erosion: 

The remaining enamel specimens [WMS (n=15), PS (n=15), AS (n=10) and DW (n=10)] were 

then exposed to five cycles of erosion (Figure 2). Each cycle consisted of a further 30 min 

immersion in the corresponding solution (either WMS, PS, AS or DW) prior to exposure to a 

10-minute citric acid followed by 2-minute water rinse. The 10-min acid erosion consisted of 

80 ml 0.3% citric acid (Sigma Aldrich), 0.02 M, pH=3.2, at 22°C±1, agitated with an orbital 

shaker (Bibby Scientific, Staffordshire, UK) at 60 rpm. After the completion of the five cycle 

erosion, AEP samples were then eluted from 10 specimens [WMS (n=5) and PS (n=5)] ready 

for protein analysis (Total protein, Electrophoresis, proteomics). The remaining specimens 

[WMS (n=10), PS (n=10), AS (n=10) and DW (n=10)] were then air-dried for 24 h after which 

the tape was carefully removed ready for profilometric measurement. 

2.3 AEP collection and recovery 
The AEP was eluted using previously published protocols (Svendsen et al., 2008, Carpenter 

et al., 2014). AEP samples were collected by mechanically rubbing the soaked filter paper 

against the enamel surface for 15 seconds using sterile tweezers to hold a filter paper soaked 

in sodium dodecyl sulfate (SDS) (0.5 % w/v). Filter papers carrying the AEP were 

microcentrifuged and the adsorbed proteins were recovered by adding 15 µl SDS (Sigma-

Aldrich, Steinheim, Germany) (0.5 %) and 5 µl LDS buffer (1:4) (Novex, Thermo Fisher 

Scientific Inc, UK). The AEP eluents were microcentrifuged for 8 min at 8000 rpm and 

dithiothreitol (DTT) (1.8 µl, 0.5 mM) reducing agent (1:10) (Sigma-Aldrich, Poole, Dorset, UK) 

was added to the eluent. Samples were vortexed for 1 min with a vortex mixer and then heat 

denatured at 100 º C for 5 min. 
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2.4 Testing 

Step height 
The erosive loss of tissue (Step height) was measured after five cycles of erosion for the four 

groups: WMS, PS, AS, and DW (n=10 specimens each) using a surface non-contacting 

profilometer (SNCP) (Taicaan XYRIS 2000, Taicaan™ Technologies Ltd., Southampton, UK). 

SNCP assessment used a white laser light with a 7 µm spot size scanned the enamel 

specimens, over a 6 mm X 3 mm, in a raster pattern 10 µm apart. Ten randomly selected step 

height measurements were selected from each specimen and mean step height in μm 

recorded (Boddies 2D v1.4 TaiCaan Technologies Ltd., Southampton, UK) (Rodriguez and 

Bartlett, 2010) Mutahar et al, 2017). 

Total protein testing  
The AEP samples (control and after five cycles of erosion) were prepared into microtiter plates 

(96-wells, Fisher Scientific, Leicestershire) and the total protein was measured using the 

bicinchoninic acid assay (BCA) with bovine serum albumin (BSA) protein as a standard protein 

(2mg/mL) (Pierce Chemical, Rockford, Ill., USA). A spectrophotometer (BioRad laboratories 

Ltd, Hemel Hempstead, UK) at wavelength of 562 nm was used to measure the absorbance 

of all AEP samples.  

Electrophoresis 

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) was used for 

separation of protein fractions in their denatured state from the recovered AEP samples. Each 

AEP prepared sample (15 µL) was loaded onto each lane on two 4–12% Bis-Tris gels (control 

and after erosion AEP samples). Electrophoresis was carried out in MES-SDS running buffer 

according to manufacturer’s instructions. In each gel, 10 lanes were occupied by the AEP 

samples (WMS: n=5 and PS: n=5) and the other 4 lanes were occupied by a mixture of four 

purified proteins of standards of known concentration (Figure 3). The purified standards used 

in the mixture were mucin5b (156 µg/ml) (kind gift of Faculty of Odontology, Malmö University, 

Malmö, Sweden), albumin (1 µg/ml) (Alpha Diagnostic Intl. Inc, San Antonio, Texas 78244 

USA), CA VI (140 µg /ml) (Jena Bioscience, D-07749 Jena Germany) and statherin (382 
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µg/ml). Statherin was prepared by the author as described previously by Proctor et al., 2005 

and Harvey et al., (2011) (Proctor et al., 2005, Harvey et al., 2011). Briefly, fresh PS from a 

single donor at King’s College London was collected and aliquoted into 10 petri-dishes, 1 ml 

each and exposed to air to form a statherin-rich film at the air/saliva interface after 1 h. The 

residual saliva underneath the film was carefully pipetted out and washed three times with 100 

µl of DW. A 100 µL wash of 10 mM EDTA was then added to solubilise the statherin layer 

which was then separated and tested for identity and purity using SDS-PAGE gel stained with 

Coomassie Brilliant Blue and antibody detection (Harvey et al., 2011, Proctor et al., 2005). 

The statherin content in the purified film protein was 382 µg/ml.  

The volume of purified proteins used in the mixture were mucin5b (10 µL), albumin (10 µL), 

CA VI (5 µL) and statherin (5 µL) to make a 30 µL mixture of purified standards optimised to 

give a linear standard curve with the antibodies used. This volume was tripled to produce a 

90 µl mixture to generate sufficient amounts for the two SDS-PAGE gels. In each SDS-PAGE 

gel, four different volumes of the purified standard mixtures were loaded into the gels 

alongside the AEP samples. These volumes were 15 µL/lane 1, 7.5 µL/lane 2, 3.8 µL/lane 3 

and 1.5 µL/lane 4 as shown in Figure 3. The loaded protein samples in the precast gels were 

then transferred onto a nitrocellulose membrane using western blot technique. 

Immunoblotting  
Western blotting was completed according to the manufacturer’s instructions and used to 

transfer proteins onto a nitrocellulose membrane. Using a sterile razor, each nitrocellulose 

membrane was cut transversely into four sections corresponding to the four specific proteins 

of interest. At room temperature, the nitrocellulose membranes were then blocked in Tris 

Tween buffer solution with 1% Tween (TTBS) pH 7.6 for 1 h before membranes were probed 

with primary antibodies: mucin5b (1:1000) (GENTAUR Ltd. 1910 Kampenhout, Belgium), 

albumin (1:1000) (Sigma-Aldrich, Saint Louis, MO 63103, USA), carbonic anhydrase VI (CA 

VI) (1:5000) (R&D Systems UK Abingdon, OX14 3NB, UK) and statherin (1:1000) (Abcam, 

Cambridge, UK). The nitrocellulose membranes were then washed in TTBS for 15 min (5 min 
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X 3 times) and then followed by incubation with the required secondary antibody. A final 15-

min wash in TTBS was completed before the membranes were imaged. 

Imaging analysis of the blotted membrane 
ChemiDoc MP imaging analysis (Bio-Rad) was used to quantify the light intensity of the 

chemiluminescent reaction and exposure times optimised to prevent pixel saturation. The 

amounts of proteins on the blotted nitrocellulose membranes were quantified using tools of 

ImageLab software version 4.1 (Bio-Rad Laboratories Ltd., Hertfordshire, UK) to select and 

determine the background-subtracted density of the bands in all the gels (n=2) using purified 

protein standards of known concentration. The standard curves of purified proteins were 

generated from the mean volume intensities (n=2) against the absolute quantities of the 

corresponding purified standard. This was used to generate a calibration curve (Appendix 1) 

using a linear formula. This formula was used to calculate the amount of each protein in the 

AEP samples. The bands of standard proteins on different SDS-PAGE gels (n=2) were used 

to assess quantity and reproducibility. 

Proteomic analysis 

Two equal AEP samples from WMS and PS (control groups) were prepared into two tubes. 

40 µL sample buffer was added to each tube and heated at 96 ºC for 10 minutes prior to 

centrifugation at 14,000 rpm. Boiled protein samples were loaded onto an SDS 4-20% stacking 

gel. Protein bands were prepared and excised before they were digested with trypsin and 

analysed using LC-MS/MS which was carried out at the Centre of Excellence for Mass 

Spectrometry, King's College London, Institute of Psychiatry, Psychology and Neuroscience. 

2.5 Statistical analysis: 
Descriptive statistics were used to summarise the step height and the protein data using IBM 

SPSS Statistics version 23.0 (IBM Corporation, Armonk, New York). Linear regression models 

were used to test the significant difference between the solutions with respect to step height. 

If any differences between solutions was significant, then further post hoc analyses were 

carried out to find out which one was statistically significant. The total and four specific protein 
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data did not follow normal distribution and hence they were transformed to achieve normality. 

Therefore, data were described using mean and standard deviation as well as median and 

interquartile range. Total protein, mucin5b, albumin were log transformed to attain normality 

and log transformed values were used for the analysis. CA VI and statherin were square root 

transformed and the transformed values were used for the analysis. Linear regression models 

were used to find out the effect of saliva type (WMS and PS) as well as the erosion condition 

(before erosion and after five cycles). If the interaction was statistically significant, the post 

hoc Boneferroni analysis testing the linear combinations of groups and saliva was used to find 

out which group and saliva were statistically significant. All such p values were to be adjusted 

for multiple testing. If the interaction effect was not statistically significant, then the final model 

included only the main effects of groups and saliva. 

3. Results 
3.1 Step height 
Figure 4 shows the mean (standard deviation, SD) step height after five erosion cycles;. 

WMS group [4.14 (0.9) µm] and PS group [6.42 (0.3) µm] had significantly less step height 

change than AS group [7.47 (1.0) µm] and DW group [10.89 (1.3) µm]. WMS group showed 

significantly less step height than PS group (p < 0.0001).  

3.2 Total protein 
Table 1 shows the total protein concentration in the in-vitro AEP samples derived from WMS 

and PS before erosion [after 24 h in the corresponding saliva (control)] and after five cycles of 

erosion. The mean (+/- SD) concentration of total proteins in AEP from WMS before erosion 

was [1.65 (0.16) µg/µL] and after five erosion cycles was [0.38 (0.10) µg/µL]. The mean (SD) 

concentration of total protein in AEP from PS at control was [0.67 (0.12) µg/µL] and after five 

erosion cycles was [0.15 (0.05) µg/µL]. AEP from PS had significantly lower concentration of 

total protein than AEP from WMS in all groups [before and after erosion (p<001)]. For AEP 

from WMS, the concentration of total protein after five erosion cycles [0.38 (0.10) µg/µL] was 

significantly lower than that before erosion [1.65 (0.16) µg/µL] (p<0.000). For AEP from PS, 
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the total protein concentration in AEP after five erosion cycles [0.15 (0.05) µg/µL] showed 

significantly lower concentration than that before erosion [0.67 (0.12) µg/µL] (p<0.001). 

3.3 Specific proteins 
Table 2 shows the mean (SD) and median (interquartile range, IQR) amount of the four 

specific proteins in in-vitro AEP from WMS and PS after 24 h immersion in the corresponding 

solution [before erosion (control)] and after five erosion cycles (EV).  

In all groups and conditions, the amount of muc 5b and albumin were significantly more 

dominant in AEP from WMS than that of PS (p<0.0001), whereas the amount of CA VI and 

statherin were significantly dominant in PS (p < 0.0001).  

The amount of mucin5b in AEP from WMS before erosion [57.5 (33.3) ng] significantly 

increased [121.5 (19.9) ng P< 0.0001] after five erosion cycles. The amount of albumin in AEP 

from WMS before erosion [1.4 (0.74) ng] increased after five cycles erosion [1.9 (0.8) ng] but 

this was not significantly different (p>0.05).  

The amount of CA VI in AEP from WMS before erosion [6.3 (2.3) ng] significantly decreased 

after five erosion cycles [(0.14 (0.09) ng p<0.0001]. The amount of CA VI in AEP from PS 

before erosion [60.7 (22.6) ng] increased significantly after five cycles erosion [92.3 (19.15) 

ng p<0.0001].  

The amount of statherin in AEP from WMS before erosion [19.4 (6.3) ng] significantly 

decreased after five erosion cycles [0.2 (0.04) ng P<0.0001].  

3.4 Proteomics 
LC/MS/MS sequencing successfully identified many proteins within each of the two AEP 

samples (WMS and PS) after 24 h immersion in the corresponding saliva. A much larger 

number of unique proteins were detected in the AEP from WMS (53 proteins) when compared 

to the AEP from PS. In total, 133 proteins were detected in the AEP from WMS. 88 proteins 

were detected in the AEP from PS with only 8 unique proteins to this sample when compared 

to the AEP from WMS. 
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Figure 5 shows the fold change of a wide range of proteins derived from WMS and PS 

including mucin5b, albumin and CA VI. They were identified from the two gel bands of the 

AEP from WMS versus the AEP from PS following database searching against the human 

portion of the uniprot database. As can be seen from Figure 5, mucin5b, albumin, amylase, 

lactotransferrin, lysozyme, serotransferrin, IgM, cystatin SN, D, C and SA were dominant in 

AEP from WMS whereas CA VI and PRPs were dominant in the AEP from PS. 

 

4. Discussion 

Our previous paper demonstrated that proteins within the AEP increased protection from 

acidic attack compared to the ions alone (Mutahar et al., 2017a). In the present study we 

demonstrate that the composition of the proteins can also affect the degree of protection 

using an in vitro model.  Forming pellicles from WMS or parotid saliva created different 

composition of absorbed proteins.  The mass spec analysis revealed a greater variety of 

proteins adhering from WMS compared to parotid saliva and total protein concentration was 

nearly double that from parotid saliva despite the starting concentration being similar for the 

two types of saliva.  Further analysis of specific proteins suggested mucin5b and albumin 

within the WMS AEP but statherin/ carbonic anhydrase-rich, mucin/ albumin deficient parotid 

AEP.  Based on recent in-vivo studies (Carpenter et al., 2014, Mutahar et al., 2017c, Taira et 

al., 2018) the statherin-rich pellicle might have been expected to be more protective.  

However the opposite was apparent, based on surface loss measurements.  We therefore 

discuss possible reasons why this might be.  

 One possible factor could be the degree of acid attack.  Current in-vitro ETW models use 

erosive conditions sufficient to cause measureable differences in surface height which may 

not always be the case in the in-vivo situation where shorter exposure to acid causes 

softening rather than surface loss (Jager et al., 2011). It is well-documented that the salivary 

protein layer formed on hard substrates is of globular nature and its response to acidic 
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challenge depends on the severity of acidic challenge (Hannig et al., 2004, Hara et al., 2006, 

Ash et al., 2014). A recent in-vivo study has identified serum albumin alongside statherin as 

key resistant proteins in AEP to removal by HCl acid in both short and long-term formed AEP 

(Taira et al., 2018). Albumin was also found to be abundant in AEP and amongst the first 

proteins to adsorb to enamel (Siqueira et al., 2012). Both studies (Siqueira et al., 2012, Taira 

et al., 2018) agree with the results in this in-vitro study that albumin has high affinity to 

enamel surfaces and that neither the severity of acid nor the maturity of AEP altered its 

adsorption.  

Two in-vitro studies have compared the protection level of WMS and PS against ETW 

(Amerongen et al., 1987, Martins et al., 2013). These studies used different measurement 

techniques than used in the present study. Martins et al., (2013) measured the amount of 

calcium and phosphate released from enamel specimens after the demineralisation period 

and found that WMS and PS, and in particular small molecular proteins, provided an 

effective protection against 12 days enamel demineralisation (Martins et al., 2013). The 

combination of ions and proteins in saliva, independently of the type of saliva sample (WMS 

or PS) was found to further improve the reduction of enamel demineralisation as compared 

to proteins without ions (dialyzed samples) (Martins et al., 2013). However, a recent study 

disagreed with the results of Martins et al., (2013) by demonstrating that proteins alone 

(WMS depleted from all ions) can provide better protection against ETW than WMS (proteins 

and ions) or AS (ions only) (Baumann et al., 2016). 

The greater resistance of AEP from WMS to ETW compared to AEP from PS in this in-vitro 

study may be related to the mucin5b-rich AEP. A more viscous and diffuse AEP from WMS 

was observed as opposed to the more elastic and compact AEP from PS (Ash et al., 2014). 

Vissink et al., (1985) added mucin of high concentrations (30 g/L) to saliva substitutes, 

demonstrating that mucin had a rehardening role against demineralised enamel as 

compared to saliva substitutes without mucin (Vissink et al., 1985). In the same way, the 

addition of gastric human mucin (2.7 g/L) to a remineralising solution led to mineral gains as 
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compared to mucin-free mineralising solutions due to perhaps calcium deposition into the 

lesion area (Meyer-Lueckel et al., 2004). Another observation in our results was that CA VI 

and statherin were not abundant in the AEP from WMS. This can be explained by the high 

proteolytic effect of WMS enzymes as opposed to the PS which has a weak proteolytic 

activity that makes its salivary proteins less susceptible to proteolysis as opposed to WMS 

(Martins et al., 2013, Zimmerman et al., 2013). The results of the present study support the 

dominance of lactotransferrin, amylase, lysozyme and serotransferrin in the AEP from WMS 

compared to AEP from PS. Previous studies have also demonstrated that proteolytic salivary 

enzymes such as the ones we found (lysozyme, serotransferrin, lactotransferrin) were 

dominant in WMS which can degrade some salivary proteins in WMS such as histatins, 

statherin and PRPs undermining their functionality (Helmerhorst et al., 2006, Siqueira et al., 

2010). Other proteins are known to be abundant in saliva such as PRPs which accounts for 

up to 70 % of PS (Beeley et al., 1991) while others have recently shown to have a great 

potential to protect the teeth against ETW such as cystatin (Santiago et al., 2017).  

A five cycle ETW model was adopted in this in-vitro study to measure four targeted proteins 

in AEP for several reasons. First, the four proteins in this study were selected based on their 

different protection mechanisms against ETW as in the case of our published in-vivo work 

(Mutahar et al., 2017c) for useful comparison. Second, multiple erosion cycles would generate 

measurable erosive loss of tissue (in line with the specification of the white light used in the 

SNCP) to confirm the occurrence of in-vitro ETW before measuring the amount of adhered 

proteins on the eroded enamel surfaces. This model has also been used previously to assess 

in-vitro ETW (O’Toole et al., 2015, Mutahar et al., 2017b) and has added information about 

the role of in-vitro AEP and its role in protection against ETW, but also casts some doubt about 

the application of in-vitro data in the literature to application to in-vivo and clinical application. 

Future in-vitro ETW studies may be recommended to make the current in-vitro ETW model 

more clinically relevant by using fresh saliva, mimic the action of the tongue and cheek more 

accurately or even studying the fluid dynamics that might occur in the oral cavity and applying 
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them to an in-vitro model by developing specialised stirrers. Further tests are also required to 

understand the relevant acidic concentration that best mimics in-vivo ETW. 

5. Conclusions 
The data presented in this study help to further define the mechanisms leading to the 

protection against in-vitro ETW model and demonstrate that salivary composition has an 

important effect on such protection. Mucin5b-rich AEP from WMS gave better protection 

against in-vitro ETW than statherin-rich AEP from PS. Therefore, the likely mechanisms 

contributing to protection against ETW in laboratory models seem to be as a physical barrier 

rather than stabilising the crystal structure 
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Figures 

 

 

 

 

Figure 1: A photograph of polished and taped enamel specimen embedded in cold cure acrylic 
resin using the custom-made silicone mould. 
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figure 2: A flowchart representation of specimens immersed in solutions: (WMS:n=20, PS:n=20, AS:n=10, DW:n=10) showing in-vitro AEP 
formation after 24 hours before erosion cycle [(control group) WMS(n=5), PS (n=5)] and after five cycle erosion cycles [WMS(n=5), PS (n=5)] 
including SNCP measurements [WMS (n=10), PS (n=10), AS (n=10) and DW (n=10)]. 
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Figure 3: A randomly selected example of SDS-PAGE and western blotting of AEP samples 
(WMS: n=5 and PS: n=5) and purified protein standards (n=4) probed with albumin antibody. 
AEP samples from PS (Lanes 1-5), AEP from WMS (Lanes 6-10) and standard purified 
albumin of different volumes (Lanes 11-14).  

 

 

Figure 4: Mean (SD) step height (µm) for enamel surfaces for four groups ( 10 
specimens each) after the five cycles of erosion using white optical light 
profilometer. Significant differences between all groups (p<0.0001).  
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Figure 5: Proteomic profile of individual proteins identified in the in-vitro formed 

AEP. AEP was eluted from enamel surfaces after 24 h immersion in either WMS 

(n=1) or PS (n=1) and was analysed by LC-MS/MS searched using the uniprot 

database selecting Human Taxonomy (HT).  
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Tables: 

 

 

 
Saliva type and erosion 

condition 

 
Concentration of total protein (µg/µL) 

 

 
 

Whole mouth saliva at control 
(WMSC) 

Mean (SD) 
 

Median (IQR) 

 
1.65 (0.16)µπ 

 

 
1.66 (0.19) 

Whole mouth saliva after five 
cycle erosion 

(WMSEV) 

 
0.38 (0.10)µ∆ 

 

 
0.37 (0.18) 

 
Parotid saliva control 

(PSC) 

 
0.67 (0.12)#π 

   
0.65 (0.07) 

 

 
Parotid saliva after five cycle 

erosion 
(PSEV) 

 
0.15 (0.05)#∆ 

 
0.12 (0.11) 

 

Table 1: Mean (SD) and median (interquartile range) concentration of total 

protein (µg/µL) in-vitro salivary AEP formed on enamel samples immersed in 

either WMS (n=10) or PS (n=10) for 24 h. AEP were then eluted before  [WMS: 
n=5 and PS: n=5 (control)] or after five cycles erosion [WMS: n=5 and PS: 
n=5] using 0.5% SDS and quantified using BCA assay. Same symbols in the table 
indicate significant differences (p<0.0001). (WMSC:  whole mouth saliva at 
control; WMSEV: whole mouth saliva after 5 erosion cycles; PSC: parotid saliva 
at control; PSEV: parotid saliva after 5 erosion cycles)   
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Table 2: Mean (SD) and median (interquartile range) amount of proteins (nanogram) in-vitro AEP formed on enamel 

specimens immersed in WMS (n=10) or PS (n=10) for 24 h. The AEP was then eluted before  (control) or after five cycles 

erosion using 0.5% SDS and quantified using ImageLab software. Same symbols in the table  indicate significant differences 

(p<0.0001). (WMSC= whole mouth saliva at control; WMSEV: whole mouth saliva after 5 erosion cycles; PSC: parotid saliva 

at control; PSEV: parotid saliva after 5 erosion cycles).  

 

 

 

 

 
Saliva type and 

erosion condition 

Mucin5b 
Amount of protein 

(ng) 
 

Albumin 
Amount of 

protein (ng) 

CA VI 
Amount of 

protein (ng) 

Statherin 
Amount of 
protein(ng) 

 
Whole mouth saliva 

Control (no acid 
exposure) 
(WMSC) 

Mean 
(SD) 

Median 
(IQR) 

Mean 
(SD 

Median 
(IQR) 

Mean 
(SD 

Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

 
57.5 

(33.3)ᵝ 

 
38.0 

(46.0) 

 
1.4 

(0.8) α 

 
1.2 

(0.1) 

 
6.3 

(2.3)€ 

 
6.6 

(3.7) 

 
19.4 

(6.3)¥ 

 
21.0 
(9.0) 

Whole mouth saliva 
Five cycle erosion 

(WMSEV) 

121.5 
(19.9)ᵝ 

119.0 
(21.0) 

1.9 
(0.8)∆ 

1.3 
(1.5) 

0.14 
(0.1)€ 

0.10 
(0.01) 

0.20 
(0.04)¥∑ 

0.10 
(0.01) 

Parotid saliva 
Control (no acid 

exposure) 
(PSC) 

  0.3 
(0.2) α 

0.3 (0.3) 60.7 
(22.5)€ 

61.2 
(27.0) 

210.4 
(25.8)¥ 

205.2 
(7.6) 

Parotid saliva 
Five cycle erosion 

(PSEV) 

  0.3 
(0.1)∆ 

0.3 
(0.1) 

92.3 
(17.1)€ 

94.9 
(5.2) 

180.6 
(23.4)∑ 

170.0 
(23.1) 


