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Abstract

The purpose of this thesis is to study the following problem. Suppose that X, Y are
bounded self-adjoint operators in a Hilbert space H with their commutator [X, Y]
being small. Such operators are called almost commuting. How close is the pair X,Y
to a pair of commuting operators X', Y’? In terms of one operator A = X +iY,
suppose that the self-commutator [A, A*] is small. How close is A to the set of
normal operators?

Our main result is a quantitative analogue of Huaxin Lin’s theorem on almost
commuting matrices. We prove that for every (n x n)-matrix A with || Al < 1 there
exists a normal matrix A’ such that ||[A — A’|| < C||[4, A*]||*/3. We also establish
a general version of this result for arbitrary C*-algebras of real rank zero assuming
that A satisfies a certain index-type condition. For operators in Hilbert spaces, we
obtain two-sided estimates of the distance to the set of normal operators in terms
of ||[A, A*]|| and the distance from A to the set of invertible operators.

The technique is based on Davidson’s results on extensions of almost normal
operators, Alexandrov and Peller’s results on operator and commutator Lipschitz
functions, and a refined version of Filonov and Safarov’s results on approximate
spectral projections in C*-algebras of real rank zero.

In Chapter 4 we prove an analogue of Lin’s theorem for finite matrices with
respect to the normalized Hilbert—Schmidt norm. It is a refinement of a previously
known result by Glebsky, and is rather elementary.

In Chapter 5 we construct a calculus of polynomials for almost commuting ele-
ments of C*-algebras and study its spectral mapping properties. Chapters 4 and 5

are based on author’s joint results with Nikolay Filonov.
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Introduction

BDF theory

The study of almost normal operators probably started from the following problem.
Assume that A is a bounded operator in a separable Hilbert space H such that
its self-commutator [A, A*] is compact. Operators with this property are called
essentially normal. Obviously, all compact perturbations of normal operators are
essentially normal. Is it true that any essentially normal operator is a sum of a
normal operator and a compact operator? The answer was given by Brown, Douglas
and Fillmore in [5]. An essentially normal operator A is a compact perturbation
of a normal operator if and only if the Fredholm index of A — AI is zero for all
A ¢ 0ess(A). This condition can be reformulated in terms of the Calkin algebra
C(H) = B(H)/K(H): the equivalence class of A — AI must belong to GL(C(H)).
Here IC(H) is the ideal of all compact operators in H, and GLj denotes the connected
component containing the unit in the group of invertible elements of C(H).

The theory in fact goes much further. Two operators A and B are called com-
palent if there exists a unitary operator U such that UAU! — B is compact. The
results of [5] classify all essentially normal operators up to this equivalence. It turns
out that there are two invariants: the essential spectrum, i.e. an arbitrary compact
subset X C C, and an element of an Abelian group Ext(X) = Hom(m (X),Z).
Two operators A and B with the same essential spectra gess(A) = 0ess(B) = X are
compalent if and only if they have the same index functions, i.e. for each A € C\ X
the operators A — Al and B — AI have the same Fredholm index. The elements of
Ext(X) are in one-to-one correspondence with all possible index functions which are

locally constant integer-valued functions on C\ X vanishing at infinity.



Lin’s theorem

The problem of approximating almost commuting matrices by commuting ones with
respect to the operator norm dates back to Halmos [22]. The original formulation
is as follows. By M,,(C) we denote the set of all complex (n x n)-matrices. Given
X,Y € M,,(C) such that X = X*, Y =Y* || X],||Y| <1, and ||[X,Y]]]| < 9, can

we find two commuting self-adjoint matrices X', Y’ satisfying
| X = X'||+ Y =Y'|| <C(5), where C(§) -0 as §—07

In terms of a single matrix, given ||[A, A*]|| = ¢, can we find a normal matrix A’
such that ||[A — A'|| < C(5)?

An obvious positive answer can be given if we allow C'(0) to depend on n. Indeed,
assume the contrary, i.e. that there exists a sequence T,, € M, (C) such that
|Anl < 1, ||[[Am, A%L]ll — 0, and ||A,, — N|| > € for all m € N and all normal N.
Since the unit ball in M,,(C) is compact, this sequence has at least one limit point
which must be normal and at the same time be separated from the set of normal
matrices. This contradiction proves that for every single n there exists C(§) — 0
as 0 — 0. However, the question becomes significantly more challenging if we want
C(d) — 0 uniformly in n.

An additional evidence of difficulty of this question is that it fails in infinite
dimensions. The following example is due to Choi [8]. Let {ej }r>1 be an orthonormal

basis in a separable Hilbert space H, and consider the operator family
Sper = min{k/n, 1} e, 1. (1)

It can be easily checked that ||[S,, S}]|| — 0 as n — +oo. However, the results of [§]
show that this operator family is uniformly separated from the set of normal oper-
ators. Therefore, the dimension-uniform properties of almost commuting matrices
may be different from those of general almost commuting operators, and possible
proofs should take this into account. In fact, in the infinite-dimensional case there
is an additional index-type obstruction which will be described later.

There were several dimension-dependent results in this context (a review of them
can be found in [11]). However, the question of finding or establishing the existence

of a uniform C(J) remained open until 1995 when a positive answer was given by



Lin [25]. The proof relied on the technique of C*-algebras. A significantly simpler
version of the proof was given in [17]. Let us sketch the main steps here. Assume
the contrary, i.e. that there exists a sequence A, € M, (C) such that ||Ax| < 1,
I[Ak, Az]ll — 0, and ||Ax — A’|| > ¢ for any normal A’. We consider this sequence

as an element A of a C*-algebra M = @&;M,,, (C). In this algebra, consider an ideal
ZT={{A} e M: ||Ak]| = 0 as k — oo}.

By m: M — M/Z we denote the canonical projection onto the quotient algebra.
Since [A, A*] € Z, the element w(A) € M/T is normal. We will come to a contra-
diction if we prove that there exists a normal element B close to m(A) that has a
normal pre-image in M. Thus, the original question reduces to a lifting problem;
in other words, to the problem of finding a certain “approximate inverse” of .

Note that any self-adjoint element has a self-adjoint pre-image (we can take the
real part of any pre-image). The same holds for unitary elements. If we have a
normal element with finite spectrum, then we can map its spectrum onto a (finite)
subset of R, then lift it, and then map it back. Therefore, any normal element of
M /T with finite spectrum also has a normal pre-image. We see that the original
question can be reduced to approximating normal elements of the C*-algebra M /Z
by elements with finite spectra.

This approximation is done in two steps. On the first step, it is shown that any
element of M and, as a consequence, any element of M /Z, can be approximated by
elements not containing any fixed finite set in their spectra. This follows from the
polar decomposition of finite matrices and may fail in infinite dimensions (this is
the mentioned index-type obstruction to solving the problem in B(H)). After that,
by using continuous functional calculus, it is easy to show that any element can be

approximated by elements whose spectra are contained in the following “c-grid”,
I.={z+iyeC:x€cZoryccl}.

To approximate such elements by elements with finite spectra, it would suffice to
remove a small line segment from each segment of I'.. To cut the line segments,
we need analogues of spectral projections corresponding to each removed segment.
In general, there are no spectral projections in the algebra M/Z. However, we

can map [ onto a unit circle such that this map is a local homeomorphism in a



neighbourhood of the needed interval. The corresponding unitary element can then
be lifted into M, where it has a spectral projection P onto the image of the line
segment. And then 7(P) can be considered as the desired projection for the original
element of M /Z. Applying this procedure to all line segments, we split the spectrum
into small disjoint components and, after that, can shrink them into points using a

continuous function.

Generalizations of Lin’s theorem

Bearing in mind possible generalizations of the result to an arbitrary C*-algebra
A, let us note that it relies on two properties. First, we must be able to remove

finite sets from the spectrum of the element. For that, it is sufficient to assume

that for any A € C the element A — A lies in the closure GLy(A). Here GL((.A)
is the connected component of GL(.A) containing the unit, and GL(.A) is the group
of invertible elements of A. Secondly, to be able to cut one-dimensional spectra,
we need to assume that A is an algebra of real rank zero (which means that any
self-adjoint element of A can be approximated by elements with finite spectra). The

following is Theorem 3.2 from [18].

Theorem 1. Let A be a unital C*-algebra and let A be a normal element of A. The
following conditions are equivalent.

(i) A — A lies in GLo(A) for every A € C,
(ii) for every e > 0 there exists a normal element B € A such that

o(B)cTl., |[A=B|<e and B— X € GLy(A) forall A € C\ o(B).

If the real rank of A is zero, then (i) and (ii) are equivalent to

(iii) For every € > 0 there ezists a normal element B € A with finite spectrum and

with | B — A|| < e.

Using the same arguments with a sequence of algebras, a generalization of Lin’s
theorem can be proved for C*-algebras of real rank zero provided that A satisfies

the condition (i) from Theorem 1.



A more general result is established in [16]. Let M4 4+ be the convex hull of the
set {S1[A, A*]Sy: ||S1]l, 1521l < 1}, B(e) = {A € A: ||4|| < ¢}, and N(A) = {A €
A: [A, A*] = 0}.

Theorem 2. There exists a nonincreasing function h(e) — 0 as € — 0 such that
A € B(||Al) NN (A) + h(e)Ma,a+) + Ble)

for all ¢ € (0;+00), all C*-algebras A of real rank zero, and all A € A satisfying

the condition (i) from Theorem 1.

This result implies an analogue of Lin’s theorem not only for the operator norm,

but also for any continuous seminorm || - ||, satisfying
[TAV], < (Al < Gl Al

for all unitary U,V and some C), > 0. In particular, Theorem 2 implies the BDF
theorem and an analogue of Lin’s theorem for the normalized Hilbert-Schmidt norm

on M, (C):

1 n
1415, = ~ > 1Ayl (2)

ij=1

The proof of Theorem 2 is based on the following extension of Theorem 1.

Theorem 3. Let A be a C*-algebra of real rank zero. Suppose that A € A satisfies
the condition (i) from Theorem 1. Let {€;}7, be a finite open cover of o(A). Then

there exists a family of mutually orthogonal projections P; € A such that

> Pj=1 and P;HCILH forall j=1,...,m,

j=1
where A C B(H) is the Gelfand-Naimark-Segal embedding, and I1; = E4(€2;) €
B(H) are spectral projections of A.

This result tells us that the approximation by elements with finite spectra can
be made “subordinate” to any finite open cover of the spectrum of A. Theorem 2
follows from Theorem 3 using arguments similar to [17]. Therefore, it still does not
give any information on the rate of decay of the function h.

Note also that Lin’s theorem fails for triples of self-adjoint operators and for

pairs of unitary operators, see [8].
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Quantitative results

Due to the abstract character of known proofs of Lin’s theorem and its generaliza-
tions, they do not give any quantitative information on the behaviour of C(¢§) (other
that it tends to zero as 0 = [|[T,T*]|| — 0). Simple homogeneity arguments show
that C(d) cannot decay faster that §'/2 (for any norm).

In [24] it was proved that in finite dimensions C'(d) can be chosen in the form
CrG(1/8)6'/°, where G(1/8) can be explicitly written down and grows slower than
any power of 1/0 (as 6 — 0). The proof relied on the fact that X and Y are
matrices, and used the fact that C'(0) can be made sufficiently small. This follows
from the original Lin’s theorem but, as a consequence, the estimates of the constant
Cy rely on non-quantitative arguments. Note that [24] is an up-to-date version of
the original paper [23].

Non-quantitative results in the case of the Hilbert-Schmidt norm (2) were first
obtained in the abstract context of C*-algebras with trace, see [20, 21]. However,
it turned out that for M, (C) simple and relatively elementary quantitative results

hold. The following result is proved in [19].

Theorem 4. Suppose that X, Y € M,(C), || X|,||Y|| <1, X = X", YV = Y™
Let |[X,Y]llan = 0. Then there exist X', Y" € M, (C) such that || X'|,||Y']] < 1,
X' = X" Y' =Y", and

(XY =0, ||IX = X|lom < 128Y5 |V = Y| < 126YC.
In addition, [ X, X'] = 0.

Unlike the case of the operator norm, this result can be extended to m-tuples of
normal matrices.

Finally, we would like to mention the result of [9] which states that if we allow
the normal approximant to act in H @& H instead of H, then the corresponding
analogue of Lin’s theorem simplifies significantly, and we even have C'(§) < C6%/2,
which is the optimal power. This result is discussed in detail in Sections 1.2 and 2.2

and will be actively used in our work.

11



Chapter 1

Formulations of the results

1.1 Some notational conventions

e By (', we shall always denote various constants whose numerical values can
be computed, but are not important. All inequalities containing C' should be

understood as “there exists a universal constant C' such that...”.

e In Chapters 2 and 3, the complex plane C will sometimes be identified with
R2. For example, we may use the notation of the form Z x £Z C C without
additional comments, meaning cZ + 1Z.

e — B(H) is the algebra of bounded operators in a Hilbert space H.

— K(H) C B(H) is the ideal of compact operators.

— The quotient algebra C(H) = B(H)/KC(H) is called the Calkin algebra.

e By A we usually denote a unital C*-algebra. We often assume that it is a

sub-algebra of B(H) for some (not necessarily separable) Hilbert space H.

e My(A) is the set of (2 x 2)-matrices whose entries belong to A. It is naturally
embedded into B(H & H) as a unital C*-subalgebra.

e The unit elements of C*-algebras appearing in our considerations are usually
denoted by I. We use the same symbol for the units of A and Ms(A), and

hope that the meaning is clear from the context.

12



e — GL(A) is the group of invertible elements of A.

— GLy(A) is the connected component of GL(.A) containing the unit ele-
ment. If A € A and A belongs to the unbounded connected component

of C\ o(A), then A — X € GLg(A) (because A\ A — T — I as A\ — 00).

1.2 Extensions of almost normal elements

Let H be a Hilbert space. The following result is due to Davidson. In the original
paper [9] it was formulated for finite matrices, but it in fact holds for general Hilbert

spaces.

Theorem 1.2.1. Let A € B(H), ||A|| < 1, ||[A* A]|| < . There exists a normal
element N € B(H) and a normal element T' € B(H & H) such that |A®& N —T|| <
C§t2.

We reformulate Theorem 1.2.1 for the case of a general C*-algebra.

Theorem 1.2.2. Let A be a unital C*-algebra. Let A € A, || Al <1, ||[A, A*]]] < 0.
Suppose that X = Re A = (A + A*)/2 can be approzimated by elements with finite

spectra. Then there exists a normal element N € A and a normal element T €

Ma(A) such that
INI <1, ITI<1, [AeN-T|<Co'
In addition, N can be chosen in such a way that C\ o(N) is connected.

The proof remains essentially the same. For the convenience of the reader, we

give a simplified version of it in Chapter 2.

1.3 Quantitative Lin’s theorem

Chapter 3 is the central chapter of the thesis. The main results are Theorems 1.3.3
and 1.3.4.

Definition 1.3.1. A unital C*-algebra is called a C*-algebra of real rank zero if any

its self-adjoint element can be approximated by elements with finite spectra.

13



Proposition 1.3.2. Let A be a C*-algebra. A self-adjoint element X € A can be
approzimated by self-adjoint elements with finite spectra if and only if X — X\ can

be approrimated by invertible self-adjoint elements for all A € R.

For the proof, see [16, Remark 5.3]. Hence, Definition 1.3.1 is equivalent to saying
that any self-adjoint element can be approximated by invertible self-adjoint elements.

Any von Neumann algebra (for example M, (C) or B(H)) has real rank zero,
since we can use spectral projections for approximations. If A is a C*-algebra of
real rank zero and Z C A is a closed two-sided #-ideal, then the quotient algebra
A/T is also of real rank zero. Hence, the Calkin algebra C(H) has this property.
If X is a topological space of positive dimension, then the algebra of continuous
functions C'(X) is not of real rank zero, see [10, Section V.7].

In this chapter we assume that A is embedded into B(H), and Ms(.A) is a subset
of B(H® H). Let P: H® H — H be the projection onto the first component so

that the following isomorphisms hold:
A= PMy(A)P = (I — P)My(A)(I — P).
If T € My(A), then [P, T] is the “off-diagonal” part of T' (up to a sign). Let

A0
GLo(A® A) & ' N Ar, As € GLo(A) b € GLo(Ms(A)).
0 A

Note that it is not necessarily the same as the set of all block diagonal elements of
GLy(Ms(A)), since there may be no path from the element to the unit within the
class of block diagonal elements. A simple example of such behaviour can be found
in the Calkin algebra C(H) for a separable Hilbert space H. An invertible element
of C(H) belongs to GLo(C(H)) if and only the Fredholm index of its pre-image in
B(H) is zero. For any invertible A € C(H) we have

A
0 Ar

€ GLo(My(C(H)))

(since the Fredholm index is additive, and My(C(H)) = C(H & H)), but, if the index
function of A is not trivial, we do not have A € GLo(C(H)).
For Ae Aand T € My(A), let

di(A) 9% sup dist(A — M\, GLg(A)),
AeC

14



do(T) 2L sup dist(T — A, GLo(A & A)).
xeC

Note that for any A € C
I[P, T]|| = dist(T' — A\, A® A) < do(T).
For 0 < ¢ < 2, consider the following function.
G(0) = In(2 +1n(2071)).

It is a slowly growing function of 1/§ which will appear in some statements. The

main technical result of this thesis is as follows.

Theorem 1.3.3. Let A be a unital real rank zero C*-algebra. There exist universal
constants C,Cy > 0 such that for all ,0p satisfying 0 < 0pG(dp) < Coe and any
normal element T' € Ms(A) satisfying ||T|| < 1, do(T) < dp, there exists a normal
element T" € My (A) with

o(T') Cel xeZ, |T-T|<Ce |[PT|<Cop.

The proof is given in Section 3.1. Roughly speaking, it can be thought of as
an extension of [16, Theorem 2.1] with the additional control of the off-diagonal
elements with respect to P.

The main application of Theorem 1.3.3 is the following quantitative version of

Huaxin Lin’s theorem.

Theorem 1.3.4. Let A be a unital C*-algebra of real rank zero. There exists a
universal constant C' > 0 such that for any element A € A satisfying || Al < 1,
I[A, A]|| < 9, and di(A) < 62, there exists a normal element A’ € A such that
|A— 4]l < C8 and | 4]| < |A].

The proof consists of three steps. First, with the assistance of Theorem 1.2.2,
we construct an approximate normal extension 7' € My(A) with dy(T) < C6%/? and,
as a consequence, ||[P,T]|| < C6Y2. In the second step, we apply Theorem 1.3.3
to the element T with §p = /2 to approximate it by a normal element 7" with
finite spectrum and ||[P,T"]|| < Cdp. Finally, we remove off-diagonal elements in
such a way that the element remains normal, see Lemma 3.3.2. This is where we get

an additional loss and ¢'/2 transforms into ¢'/3. Since the new element is normal

15



and commutes with P, we can use its first block with respect to P as the required
normal approximation.

Some applications of the results are discussed in Section 3.4.

1.4 The case of the normalized Hilbert-Schmidt
norm

The results of Chapter 4 are based on the paper [14] and are independent from
Chapter 2 and 3. Recall that for A € M,(C), A = {A}}';_;, we have defined

n

1
||AH§n = Z |Aij|2~ (1.4.1)

ij=1
We improve the scheme from [19] to obtain the following result.
Theorem 1.4.1. Suppose that X,Y € M, (C), | X],||Y] <1, X = X*, Y =Y".

Let [|[X, Y]l = 0 < 15. Then there exist X', Y" € M, (C) such that || X'||,[|[Y'|| < 1,
X' =X"Y' =YY" and

(X, Y1=0, |[|X —X|lon <264 |V = Y| < 264
In addition, [ X, X'] = 0.

Theorem 1.4.1 is a particular case of the following theorem regarding m-tuples

of self-adjoint operators (which is also a refinement of a result from [19]).

Theorem 1.4.2. Let m > 3, X; = X; € M,(C), [|[Xj|| < 1 forj =1,...,m.
Suppose that ||[X;, X;]|lon < 0 fori,j=1,...,m, and let also

1

oS fga

(1.4.2)
Then there exist X! € M,,(C), i = 1,...,m, such that
X <1, Xj=X7, X = Xl <50V j=1,....m,

and

X, X})=0, ij=1,...,m.

In addition, [ X1, X]] = 0.

16



Remark 1.4.3. The result of Theorem 1.4.1 is worse than the result for the operator
norm. It is likely that Theorem 1.3.4 can be extended to the case of the norm (1.4.1)
in the same way as in [16], this may be a subject for future research. Unlike Theorem

1.3.4, the proof of Theorem 1.4.1 is rather elementary.

1.5 Polynomials of almost normal elements in C*-
algebras

The results of Chapter 5 are based on the paper [15] and are independent from the
previous chapters. Let A be an arbitrary unital C*-algebra, and suppose that A € A

is normal. It is well known that there exists a unique C*-algebra homomorphism
Clo(A)) = A, [ f(A)

from the algebra of continuous functions on the spectrum o(A) into A such that
f(z) = z is mapped into A, o(f(A)) = f(c(A)), and
IF(A] = max|f(2)] (1.5.1)
(see, for example, [13]). It is called the continuous functional calculus for normal
elements.
The aim of Chapter 5 is to introduce an analogue of functional calculus for

“almost normal” elements. More precisely, we shall always be assuming that
JAl <1, A, A7) <6 (15.2)

with a small §. We restrict the considered class of functions to polynomials in z and
Z and show that some important properties of the functional calculus hold up to an
error of order 4.

If AA* # A*A then the polynomials of A and A* are, in general, not uniquely
defined. We fix the following definition. For a polynomial

p(z,2) = Zpklzkél (1.5.3)
kel

let
p(A,A") =) puAF(AT) (1.5.4)
k,l
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It is clear that the map p — p(A, A*) is linear and involutive, that is p(A, A*) =
p(A, A*)* where p(z, 2) = > pez¥z!. Using the inequality

1A, BT < m|| BI™ (A, B]|

and (4.1.3), one can easily show that the map p — p(A, A*) is “almost multiplica-
tive”,

Ip(A, A%)q(A, A™) — (pq)(A, A")| < C(p,q) d (1.5.5)

where

Cp,q) = Z Is |l |gstl -

k,l,s,t

It takes much more effort to obtain an estimate of the norm ||p(A, A*)||. Let

Pmax = max Ip(z, 2)|. (1.5.6)

|z|<1

In the case of an analytic polynomial p(z) = >, pr2*, according to von Neumann’s

inequality, we have

IP(A] < Prmax

where it is only assumed that ||A]| < 1 (see, for example, [36, 1.9]).

Our main results are as follows.

Theorem 1.5.1. Let p be a polynomial (1.5.3). There exists a constant C(p) such
that the estimate
1P(A, A < Pmax + C(p)d (1.5.7)

holds for all A satisfying (1.5.2).

If A is normal and f is a continuous function then the functional calculus gives

the following more precise estimate,

£ = max 7)) (15:8)

IfAec Aand \; € 0(A), j=1,...,m — 1, then there exists R; > 0 such that
[(A=NDTY <SR j=1,....m—1. (1.5.9)

J

The following theorem gives an analogue of (1.5.8) for almost normal elements A.
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Theorem 1.5.2. Let A € A satisfy (1.5.2) and (1.5.9), and suppose that the set
S={z€C:|2| <1, |z=N|>2Rj, j=1,...,m—1} (1.5.10)

is not empty. For each ¢ > 0 and each polynomial p defined by (1.5.3) there ezists
a constant C(p, ) independent of A such that

lp(A, A < max|p(z, 2)| + & + Cp,€)0. (1.5.11)

Under the assumptions of Theorem 1.5.2, the set S is a unit disk with m — 1
“holes” such that o(A) C S. Note that if S = &, then we can decrease R; to make
it non-empty.

Finally, assume again that A is normal and u ¢ f(0(A)). Then the functional
calculus implies that the element f(A) — pf is invertible and

1
dist (1, f(0(A)))

The equality (1.5.12) also admits the following approximate analogue with o(A)

|(F(A) = pD)~ M| = (1.5.12)

replace an g whnere 1s the image o undaer p consiaere
placed by S and f(o(A)) by p(S), where p(S) is the image of S under p considered

as a map from C to C.

Theorem 1.5.3. Let S be defined by (1.5.10), and let p be a polynomial (1.5.3).
Then for each € > 0 and s > 0 there exist constants C(p, »,¢), do(p, 5, ¢€) such that

for all § < 6o(p, 72, €) and for all u € C satisfying dist(u, p(S)) = 3¢ the estimate
I(p(A, A%) = uI) U] < 57+ 4+ Clp, 3,25 (15.13)
holds for all A € A satisfying (1.5.2) and (1.5.9).

Remark 1.5.4. The estimates (1.5.11), (1.5.13) only make sense as 6 — 0. The
rate of decay of the terms e +C(p, ) and e+ C(p, 5, )d after choosing an optimal e
depends on the rate of growth of the constants C(p, ), C(p, »,¢) as € = 0, s — 0,
and as the coefficients and the degree of p increase. This rate is rather fast, but the
constants are obtained using a certain constructive procedure and can, in principle,
be determined.

The situation with Theorem 1.5.1 is different. There is no ¢ in the right hand
side, hence the behaviour in § is linear. However, for C(p) we are only aware of

existence-type results.
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The interest to the subject was drawn by its relation with Lin’s theorem. An
optimal estimate in this theorem (see Introduction) would lead to analogues of
Theorems 1.5.1, 1.5.2, 1.5.3 with 6'/2 in the right hand side. The result of Theorem
1.5.1 is better; note that, as mentioned before, the presence of C(p,¢) in the other
theorems destroys the power behaviour in §. More importantly, these theorems do
not require any additional assumptions on A or A. Initially, this was considered as
a possible different approach to the proof of Lin’s theorem.

The proofs are based on certain representation theorems for positive polynomials.
If a real polynomial of x;, x5 is non-negative on the unit disk {z : 22 + 2% < 1} then,

by a result of [34], it admits a representation

er(x)2 + (1 — 2] —23) Z sj(z)? (1.5.14)

J J
with real polynomials r; and s; (see Proposition 5.4.2 below). Representations
similar to (1.5.14) are usually referred to as Positivstellensatz. We also make use of
Positivstellensatz for polynomials positive on the sets (1.5.10). The corresponding
results for sets bounded by arbitrary algebraic curves were obtained in [7, 32, 33, 34].
In order to prove Theorem 1.5.3, we need uniform with respect to u estimates for
polynomials appearing in Positivstellensatz-type representations. In order to obtain

the estimates, we use the scheme introduced in [35, 28].
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Chapter 2

Extensions of almost commuting

elements

2.1 Operator Lipschitz functions

We will need to introduce two important classes of functions (see [1, 2, 29]). Let H
be an infinite-dimensional Hilbert space, not necessarily separable. By OL(R) we
denote the space of all continuous complex-valued functions such that the following

quantity is finite:

1f(Ar) — f(A2)]|
A1 — Aqf|

where the supremum is taken over all self-adjoint operators Ay, Ay € B(H), A; #

[flloL@m) = sup
A1,A2
A,. Note that the elements of OL(R) are automatically Lipschitz. The converse,
however, does not always hold.
For continuous functions g: C — C, consider also the space OL(C) with

lg(V2) = g(V)]
= su ,
Ilgllore = sup =N

where the supremum is now taken over all normal operators Ny, Ny € B(H), Ny #
Ns. Both spaces OL(R), OL(C) are linear complex quasi-Banach spaces. Only

constant functions have zero quasi-norms.

Proposition 2.1.1. Suppose that the Hilbert space H is infinite-dimensional. Then,

for continuous f and g, the norms | f|loLm), ||9lloLc) do not depend on H.

Proof. Let us consider the case of OL(R); the case of OL(C) is similar. Let H' C H
be a separable infinite-dimensional subspace of H, and Ay, Ay € B(H), A; = A7,
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Ay = A%, Suppose that f is a continuous function on R. Consider the C*-algebra
generated by Ay, As, and the identity operator. This algebra is separable. Hence,
it is isomorphic to a subalgebra of B(H) for some separable Hilbert space Hy, and,
as a consequence, to a subalgebra of B(H’) (see [10, Theorem 1.9.12]). Therefore,
there exist operators A’, A, € B(H') such that

[AL = Ao = [| A} = AYfl,  [If (A1) = f(A2)| = || F(A}) = f(AY]).

Thus, in the definition of || f|lowm) it suffices to take the supremum over operators

acting in the separable subspace H'. i

The following important proposition is proved by Alexandrov and Peller in [3,

Theorem 3.1].

Proposition 2.1.2. Let P € B(H) be an orthogonal projection. If f € OL(R), then
for any A= A* € B(H)

1P, f A< [ f llow I TP, ATl
If g € OL(C), then for any normal N € B(H)

1P, g(NIIF < Nlgllow) I[P NI

The following two simple properties will be important in later considerations.

Lemma 2.1.3. 1. Let f € OL(R"), n = 1,2. Then fi(x) = f(Ax + u), where
A >0, p e R, also belong to OL(R™), and

I filloL@ry = Al flloL@n)-
2. Let f,g € OL(R") N Lo(R™), n=1,2. Then

| fgllor®m) < || flle@mllgllon@ny + 19l Lo @)l f llon@n)

Proof. Part 1 follows from the definition if we replace A;, N; by AA; + ul, AN; + ul.

Part 2 follows from the estimate

[1£(A1)g(A1) — f(A2)g(A2)]| =
= [|f(A1)g(Ar) — f(A1)g(A2) + f(A1)g(A2) — f(A2)g(As)]
< | f(ADNlg(Ar) — g(A2) || + [lg(A)[I[[f (A1) — f(A2)]|. m
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It is clear that linear functions belong to OL. A wider class of operator Lipschitz

functions can be described as follows.

Definition 2.1.4. A complex-valued function f = f(x) belongs to the Besov space
Bl (R") if the following norm is finite:

11,50 = Wl ecie 2 2RI B TN gy o

R

(2.1.1)
The following proposition was proved in [2, 29, 1].
Proposition 2.1.5. Forn = 1,2 we have Bl ;(R") C OL(R"), and
I fllor@ny < Cllflls @, Vf € By (RY).
Lemma 2.1.6. The space BéoJ has the following properties.

1. Assume that
sup |f(x)| < Ch, sup (V) (@) = (V)]

TER™ z,yER™, x#y ’.Z’ - y’

Then f € B ,(R") and 1flB ,&ny < C(n)(C1+ Ca). As a corollary, f €

< Co.

OL(R™) with the same quasi-norm estimate (for n =1,2).

2. Suppose that f € CP(R™). Let fi(x) = f(x —N), i € C, i =1,...,N.
Assume also that dist(supp f;,supp f;) = € for i # j. Then

Zfi

Proof. Property 1 is proved by splitting the integral in the norm into two parts. In

< C)e™ | fllrwmn) + 1fll L, @n)-
BL (&)

the integral over |h| > 1, f is estimated by C}, and the estimate for the integral

over |h| < 1 is a direct corollary of
|f(x+2h) — 2f(x + h) + f(z)| < 2Co|h|%.

To prove Property 2, let us split the integral (2.1.1) into integrals over |h| < &/3
and over |h| > €/3. The first integral is bounded by || f[| g1 (&) since it only contains
expressions of the form f;(x + 2h) — 2f;(z + h) + fi(x) for some i. The remaining

integral is bounded by
SV P— .
[ T < e

|h|n+l
|h|>€/3
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The function |z| is an example of a Lipschitz, but not operator Lipschitz function.
Still, it is “almost” operator Lipschitz with an additional logarithmic factor. The

following is Theorem 6.7 from [2].

Proposition 2.1.7. Let S, T be bounded operators in a Hilbert space. Then

151+ 171)
S| —|T gCS-Tln<2+ln )
11 = 1Tl < CllS - | e

We will also need some statements regarding “diagonal truncations”. Let P &€
B(H) be an orthogonal projection. We will often use the following truncation oper-

ation.
def

diagp A <= PAP + (I — P)A(I — P) = A — [P, [P, A]l. (2.1.2)
Note that [|[P, [P, Al]|| < [I[P, ]|l hence ||4 — diagp A|| < [I[, A]].

Proposition 2.1.8. Let f € OL(R), and assume that A = A* € B(H). Let P be

an orthogonal projection. Then

| diagp f(A) — f(diagp A)|| < 2|/ fllorm I[P, A]ll-
Proof. The estimate follows from two inequalities,
1F(A) = f(diagp A)|| < [[flloLm|A — diagp All < |[flloLe I[P All;
I diagp f(A) — fF(A) < I[P, fA] < [[fllorw 112, Al
The following auxiliary lemma gives the precise value of ||e||or,m).
Lemma 2.1.9. Let A, B € B(H) be self-adjoint. Then ||[A, eP]| < t||[A, B]||.

Proof. Let
G(t) = e "B AP — A.

We have ||G(t)|| = ||[A, ¢"*P]||. Hence,

t t
nmw</Wﬂww:/wwwwmmﬁ%@:mmmw-
0 0

The next lemma is an “improved” version of Proposition 2.1.8 for f(z) = e'**.

Lemma 2.1.10. Suppose A = A* € B(H), and let P be an orthogonal projection.
Then
| diagp ™ — e er 4| < [P, A]|*¢ /2. (2.1.3)
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Proof. Since the statement is symmetric under interchanging P and [ — P, it would
suffice to prove

[P P — P PAPIPI| < [P, A% /2.
Similarly to the previous lemma, let
G(t) — peitApefitPAP _pP= (PeitAP o peitPAPP)efitPAP'

itPAP

Then, since e is unitary,

t
[P P — PetPARP| = |G(1)] < / IG" ()] ds
0
t
— / ‘|iP6iSAAP€_iSPAP . Z-PeisAPAPe—isPAPH ds
0
t
= / [iPe™ (AP — PAP)e™"*""|| ds
0

t
- / |[P.*41(AP — PA)P||ds < ||[P, A)|# /2
0

by Lemma 2.1.9.

Remark 2.1.11. It is likely that Lemma 2.1.10 can be generalized to arbitrary
functions from qul(]R) using triple operator integrals, see [30]. The conjecture is

that the following estimate holds,

| diag, £(4) — f(diagy A)|| < Cl 52, I[P AP

This extension lies beyond the scope of the thesis.

2.2 Proof of Theorem 1.2.2

By Gelfand-Naimark-Segal theorem, we may assume that A is a sub-algebra of B(H)
for some (not necessarily separable) Hilbert space H. Since X can be approximated
by elements with finite spectra with any precision, we can assume that X has finite
spectrum and all its spectral projections of X belong to A, and then apply ap-
proximation arguments. Since the original construction of [9] relies only on spectral

projections of X, it can be extended to our case with minimal changes. Still, we
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give a complete proof for the convenience of the reader. Instead of estimating the
commutators directly (as in [9]), we apply the results of Section 2.1. This simplifies
the corresponding steps in the proof.

We fix the following notation for the Fourier transform
for = [r@e = fa=ea [ f@eTa @2
R” R™

Lemma 2.2.1. For any ¢ > 0 there ezists a function f. € Li(R) such that f. is
continuous everywhere except at 0, f-(x) = 2~ for |z| > ¢, I felln )y < Ce™t, and

the values of f are pure tmaginary.

Proof. Let g € C*°(R) be a non-negative even function such that g(¢) = 1 for |{] > 1

and g(§) = 0 for [¢] < 5. Let f. be the inverse Fourier transform of g(¢/¢)/¢ (in the

sense of distributions). Note that the inverse Fourier transform of g(£/¢) is the sum
of §(z) and of a smooth real-valued function. Therefore, f. is smooth everywhere

except zero and its values are pure imaginary. It is also easy to see that f; € Li(R).

To complete the proof, we observe that f.(x) = fi(ex). B

By Ex(A) we denote the spectral projection of a self-adjoint operator X corre-

sponding to a Borel set A C R.

Lemma 2.2.2. Let A be a unital C*-algebra. Suppose that X, Y € A are self-adjoint
elements such that ||[X,Y]|| < d and that X has finite spectrum. Let ¢ > 0,

ap=—||X||<a1 <...<a,=|X||, @pn—a=¢c fori=1,... n.
Let also I; = |a;; a;41). Then there exists a self-adjoint element Y € A such that
I[X, Y]] <36, ||Y =Y||<C !, and
Ex(L)YEx(I;)=0 for |i—j >2 (2.2.2)
Proof. Assume, as always, that A C B(H) for a Hilbert space H. Let

Y'= Y EYE;, where E; <= Ex(I)),

li—jl<1
be the “block tri-diagonal truncation” of Y. Note that E; € A because of our

assumption on the spectrum of X. We have

26



Hence, ||[X,Y’]|| < 30 and
IX,Y = Y[ < [I[X Y+ 11X YY) < 40

Let
Q= /eiSX[X, Y — Y| f.(s) ds,

R
where f. is the function from Lemma 2.2.1. It is clear that ||Q] < Cde~!. Since

f=(s) is pure imaginary for all s, we have @ = Q*.
We claim that [X,Y — Y’ — Q] = 0. Indeed, let u,v be two eigenvectors of X,
Xu = Mu, Xv = pv. Then

([X, Qlu,v) =
:/ﬂmJAY%M@X#%%%WJAYﬂyﬂm#%ﬁﬁ@%

:/fwww_M@&Y—VWMﬁ@%

= (=N (g = N([XY = Yu,0). (2.2.3)
If |\ — | < e, then
(XY = Yu,v) = (n = (Y =Y')u,v) =0

since Y is block tri-diagonal. From (2.2.3), this implies ([X, QJu,v) = 0. If |]A—p| >
e, then (1 — A)f-(n — A\) =1, and (2.2.3) gives

([X, Qlu,v) = ([X,Y — Y'|u,v).

Therefore, the last equality holds for all pairs of eigenvectors of X, and thus [X,Y —
Y'—Q]=0.

LetY =Y — (). Suppose, as before, Xu = \u, Xv = pv, and |A\ — u| > €. Then,
similarly to (2.2.3),

((Y - Q)’LL,U) = (YU,U) - ]Ea(,u o )‘)([Xv Y — Y/]U,U)
= (Vu,0) = (= Nl = N (Y = Y')u,0) = (Y, 0) = 0,

We have established (2.2.2), and thus Y satisfies the statement of the lemma, since
1BV = [ Y] < 36. m
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Proof of Theorem 1.2.2. Let A = X + Y, and suppose that || X|| <1, [|[Y] < 1,
X =X"Y =Y"||[X,Y]]| <9, and that X has finite spectrum. Hence, we have
f(X) € A for any Borel function f. Without loss of generality, we can assume that
o< 1.

By [z], let us denote the integer part of a real number z. Let
d=2¢ mn=[2/], aj=-1+2j/n, 0<j<n

Then ¢ < aj41 —a; = 2/n < 26. Let [; = [aj5a541) for 0 < j < n— 2, and

I,1=lan_1;a,). Fori=0,...,n —1 consider the following functions
4
07 t < Qg
fi(t) = q sin? (”T”(t — ai)) ,oa; <t < agn;
1, t> Ajg1-
\
Let also

g1(s) = cos*(ms/2),
ga(5) = sin®*(7s/2),
g3(s) = sin(mws/2) cos(ms/2).

The element

P - 91(fi(X))  g3(fi( X)) € My(A)
95(fi(X))  g2(fi( X))
is an orthogonal projection. Let E; = Ex(/;) and
Li=P+Y (0&E)-Y (0&FE), i=0,..n-1 (2.2.4)

1< 7>t

Let also L, 9 I @1 be the identity operator. The elements L; are orthogonal

projections satisfying
Y (E®E)SLi<Y (B oE). (2.2.5)
j<i j<i
Let us informally describe the structure of L;. We can consider F; as a matrix-valued
function of X. On the spectral intervals [a;_1;a;) for j < 7 it equals to £;_1 $0. On
the interval [a;; a;11) it is a certain average between E; & 0 and 0 & E;, continuously

depending on X. And on [a;;aj11) for j > i it equals to 0 & E;. The projection
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L; is a modified version of P; in such a way that it equals to E; @& E; before a; and
to 0 @ 0 after a;41; hence, we have (2.2.5). Note that L; is no longer a continuous
function of X, but the discontinuities are in some sense “concentrated” only in the
second component of H & H. We will take advantage of it in (2.2.7).

Let us apply Lemma 2.2.2 to X, Y and obtain an element Y satisfying HY—?H <
Coe~' = C6'/2. Consider

n—1

i=0
Since [X, W] is a block diagonal truncation of [X, Y], we have
125 W< I Y < 36, (2.2.6)

The element Y & W commutes with the second and third terms of (2.2.4). We claim

that
I[L;, Y @ W[ = |[P,Y @ W]| =
_ [91(f;(X)),Y] g3(F(ONW = Ygs(£(X)) | || _ Cns. (227)
g3(f(X)Y — Was(f;(X)) [92(f5(X)), W]

It is easy to check that the derivative of g, (f;(+)) is Lipschitz, and the function itself
is bounded. Therefore, from Lemma 2.1.6, it belongs to OL(R). For different n,

these functions are obtained from each other by scaling. Therefore,

lg1(f;(-)llor®) < Cn,

and the estimate for the top left entry now follows from Proposition 2.1.2. Using
(2.2.6), we can apply the same arguments for the bottom right element.
Let us estimate the top right element. The function gs(f;(-)) belongs to OL(R)

(again from Lemma 2.1.6), and the same scaling arguments imply
IW; g5 (f; (XN < Cnd.
It now suffices to estimate (W — ?)gg(fj (X)). We have
93(f3(X)) = Ejgs(f;(X)) Ej.

Hence,

(W =Y)gs(f;(X)) = [(W = Y), g3(f;(X))| E;

29



and the estimate again follows from Proposition 2.1.2. The bottom left element is
a conjugate to the top right one (up to a sign). This completes the proof of (2.2.7).

Let us finally construct the normal approximant. Take

n—1 n—1
Z=Y NE, Xi=Y a;j(Li1-L;),
=0 7=0

where \; = (a; + a;41)/2. For i =0,...,n— 1, let
Fo = L; — Z(EJ D E;) =(EoE)L,
j<i
Foip1 = Z(Ez O L) —Li=E @ E; — Fy.
Jj<i
From (2.2.5), F; are mutually orthogonal projections, and

2n—1

S E=Ial
1=0

Note also that
Liy1 — Lj = Fojo + Foja (2.2.8)

are also mutually orthogonal projections.

We have F; X 1 F; = F;(X & Z)F; = 0 for |i — j| > 2. For other 1, j,
I1F(Xy = (X @ 2))Fj|| < [[F(X0 — @) B[ + | ((X © 2) — ai) Fj| < 4e.
This implies
X, — (X & 2)| < 3 max |F(X1 — (X @ 2))Fj| < 12¢.

Let also

n—1

Yi=> Ly = L)Y @ W)Ly — Ly).

=0
Since Ej+2}~/Ej = Eji;EjJrg =0 from (2.2.2), and [W, E;] = 0 from (2.2.5), we have
(Ljsr = L)(Y @ W)(Liys — L) =0 for |i—j| >3.
Hence,

Vi-(VaW) = Y (Lo LT W)L~ L), (229)

1<li—j]<3
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Since L, — L; are orthogonal projections, (2.2.9) implies
Y= (Y e W) < 3, max  [[(Livi = L)(Y @ W)(Lj1 — L)
< 6max ||[L;,Y & W]|| < Coe 1.
J
By construction, [ X7, Y;] = 0. Therefore, the element 7' = X; + Y] is normal and

(X +4iY)D N —T| < C6'2,

where N = Z+iW is also normal. Moreover, o(Z+iW) C { Ao, A1, ..., \p}+i[—1;1],

and so its complement is connected. Moreover,
IN|| = max || E;(Z + iY)E;|| < C6Y? + max ||E;(X +iY)E,|| <1+ C6'/2,
J J

Hence, if || N]| > 1 or ||T'|| > 1, we can replace N and T" by N/||N|| and T'/||T||. The

new elements will have the same properties and satisfy || V|| < 1 and || 7| < 1.
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Chapter 3

Quantitative Lin’s Theorem in real

rank zero C'*-algebras

In this chapter we prove Theorems 1.3.3 and 1.3.4. For T' € My(A), A € C, let

do(T, A) 2L dist(T — AL, GLo(A & A))

so that dy(T) = supdy(T, ). Note that, for every single A, do(T,\) < ¢ implies
I[P, T]|| <9, Wher)\:(}?: H @& H — H is the projection onto the first component.

Let us briefly describe the structure of the proof. It consists of several steps. On
each step we reduce the case of a general element 7' satisfying the assumptions of
Theorem 1.3.3 to the case of an element with some additional spectral properties.
We usually refer to this process as “removing certain subsets from the spectrum of
T”, in the same sense as in [16, Section 4]. The first step (Lemma 3.1.2) allows us to
remove a small disk from the spectrum of T', preserving the estimate dy (T, \) < Cop
where ) is the centre of the disk. The second step (Lemma 3.1.4) is a refined version
of the previous result. We remove a finite set of disks simultaneously, with the same
estimates of dy(7T', A;) uniform in the number of holes. This reduces the general case
to the case where the spectrum of 7" looks like the left part of Figure 3.1 (see page
42). Next, taking a simple continuous function of 7', we transform the left part of
Figure 3.1 into the right part, which is the grid I'. (Theorem 3.1.6).

Section 3.3 deals with elements whose spectra are subsets of I'.. We want to
remove small portions from all the segments forming I'.. In order to do that, first

we show how to remove a point from a simple closed curve (Lemma 3.2.4), then
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explain how to exclude a line segment from a simple curve which contains a straight
part (Lemma 3.2.5) and, finally, prove Lemma 3.2.6 which allows us to remove
a line segment from an arbitrary set containing a straight part. After that, the
proof of Theorem 1.3.3 is obtained by simultaneously removing centres of all the
line segments in I'. (as in Theorem 3.1.4), and shrinking the resulting connected

components into points.

3.1 Proof of Theorem 1.3.3: reduction to a grid

We shall need some basic facts regarding polar decompositions. For A € B(H), let
|A] = VA*A. If A is normal, then there exists a unitary operator U such that

UlA| = |A|U = A.

If Ae AC B(H) is not invertible, then U may not belong to .A.
If A € A is invertible (but not necessarily normal), then there exists a unique

unitary U € A such that A = U|A|. The element U can be defined as
U= A(A*A)~V2,
It satisfies the important relation
UlA| = |A*|U. (3.1.1)

Moreover, for invertible A, the condition A € GLy(A) is equivalent to U € GLg(A).
An analogue of (3.1.1) holds for general bounded operators (if A is not invertible,
then U is only a partial isometry), but we will not use it.

Recall that diagp, T = PTP + (1 — P)T(1 — P) for T € My(.A). The following
simple lemma will be very helpful in establishing that certain elements belong to

GLo(A® A).

Lemma 3.1.1. Suppose that t — Gy is a continuous map from [0; 1] to Ma(A) such
that Gy s invertible for all t, and

diagp Go € GLo(A@ A), I[P, G| < [GHI7, vt eo;1].
Then diagp G1 < GL()(.A D A)
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Proof. Since |G, — diagp G| = ||[P, G¢]||, simple perturbation theory arguments
imply that diagp G, is also invertible. Hence, the path t — diagp G connects G
and G within GL(A® A). As Gy € GLo(A @ A), so does G1. B

For a normal element 7" € My(.A), we denote its spectral projection onto the set
{z€C: |z] <e} by Il. € B(H @ H). In general, II. may not belong to Ma(A).

The following lemma is an analogue of [16, Lemma 4.1], but with the additional
control of ||[P,T]|| (i.e. the magnitude of “off-diagonal” elements with respect to
P). We will not use it directly, but the proofs of Corollary 3.1.3 and Lemma 3.1.4

are based on it.

Lemma 3.1.2. Let A be a unital C*-algebra. There exists a constant Cy > 0 such
that for all e,0p > 0 satisfying 0 < §pG(dp) < Coe and any normal T € Ma(A) with
IT|| <2, dy(T,0) < dp, we can find an invertible normal element T, € Ma(A) with

the following properties:
1T < ety so the e-neighbourhood of 0 is contained in C\ o(1%).

2. [T, ll] = 0 for all & > €, and T:|g,nir11,) = TlRan(i-tn)s where 1o is the

spectral projection of T onto {z € C: |z] < €}.
3. T —T.|| < 2e.
4. [P, TL)]) < Cop.
5. diagp T. € GLo(A @ A) and, as a consequence, ds(T.,0) < Cop.

Proof. There exists an element Ty € GLo(A @ A) such that ||T — Tp|| < 20p. The
element Ty admits a unitary polar decomposition Ty = Vy|Ty|, where |Tp|, Vo €
GLo(A @ A). Let also T = V|T|, where V € B(H & H) is unitary. Note that V
may not belong to My(.A), but it is always true that |T'| € Ms(A). The element V'
commutes with all functions of 7.

Let p; € C*°(R.) be a nonincreasing function such that p;(t) = 1 for 0 <t < 1/2
and p1(t) =0 for t > 1. Let py € C°(R,) satisfy p? + p3 = 1. Consider

Se = pu(|IT1/2)Vopr(IT1/) + Vo3 (IT1 /). (3.1.2)
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Let us study the properties S.. We have Vpo(|T|/e) = pa2(T /), where po(z) =
22|71 pa(]z|) is a smooth function. Hence, S. € Ma(.A). Since py, pa, p2 are smooth

and bounded, from Proposition 2.1.5 and Lemmas 2.1.3, 2.1.6 we have
o1 - 1/e)llon@zy < Ce™h, (- 1/e)lon@ey < Ce™t [1pa(-/e)loneey < Ce™t.
Hence, since [P, Vy] = 0, from Proposition 2.1.2 we get
1P, S:I1 < 2012, o1 (/) + 1P 2T/ + NP, o»(T1 /)| < Cope

The element S. may not be normal. We claim that S is close to the unitary

element Vj. To establish this, let us estimate their difference,

Se =Vo= (V=Y = pu(IT/€)) = (I = p1(IT]/€)) (Vo = V)pa(IT1 /)
= (V =W)[T|he(|T|/2) = h(IT/)|T[|(Vo = V)pa(|T| /),

where
he(t) = (et) 7 (1 = pa(t))-

Since ||h.(|T|/¢)| < 2e7!, we get
1S = Voll < 2™ (II(V = Vo) T/l + [ TI(V = Vo)ll) - (3.1.3)

To estimate the right hand side, let us rewrite

(V =W)IT| = (T = To) + Vo(|Tol — [T, (3.1.4)

TI(Vo— V) = (1] — [T3])Ve + To — T. (3.1.5)
We have ||T" — Ty|| < 20p. From Proposition 2.1.7 it follows that

1T = Tolll < CopG(op), T =[T5lIl < CopG(dp).
Hence, estimating the right hand sides of (3.1.4), (3.1.5) and using (3.1.3), we obtain
IS: = VoIl < Ce16pG(0p).

By choosing a sufficiently small Cj in the statement of the lemma, we can make this

difference as small as needed. In addition,

IV = Vol < 1IU: = S|l + 1182 = Voll < Ce™'6pG (0p).
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Let us now choose Cj in such a way that ||U. — Vp|| < 1/6.
Since Vj is unitary, the difference ||S*S. — I|| can also be made smaller than any

fixed constant. Let
U.=5.(87S.)"Y2 sothat S. = U.|S.|.

The spectrum of S*S. is contained in the interval [1 — v(Cy); 1 + v(Co)|, where
7(Cy) — 0 as Cy — 0. For sufficiently small Cy, the element (S*S.)~/2? is a smooth
function of S* .S, supported in a neighbourhood of this interval. This function belongs
to OL(R) with the quasi-norm depending only on Cy. As ||[P, S]|| < Cope™!, we
have ||[P, (S*S.)"'/?]|| < Cépe~! and

I[P, U] < C'ope". (3.1.6)

From (3.1.2), we also get that [S, II.] = 0, so S has block structure with respect

to the spectral projection of T'. Therefore, U, has the same property. Moreover,
[SE,Hgl] = [UE,Hgl] = O, (I—HEI)SE = (I—HE/)Ug = (I—Hgl)‘/, \V/EI 2 E. (317)

Let f; € C*(Ry) be a nonincreasing function such that fi(¢) =1 for 0 <t <1
and fi(t) =0 for t > 2. Let fo(t) =1 — f1(t). We now construct the element 7. by

taking
T. = eUf1(IT/e) + Tfo(|T|/e) = Ue(e i(IT/e) + [T f2(IT'1/2))- (3.1.8)

From (3.1.7), U. commutes with the expression in brackets in the right hand side,
and the element T} is normal. We also have [T, 11./] = 0 for ¢’ > e. In other words,
T has the same block structure with respect to Il.. Note that II.T.II. = €U.|,, 1,
Therefore, the corresponding block of 7. is an e-multiple of a unitary operator (in

the subspace Ranll.). We also have
(I = IL)T(I = 1) = g.(T),

where

9:(2) = (1 = x=(2)) (e(z/[z1) fu(lz] /e) + 2 fa([2] [2))
and x. is the characteristic function of {z € C: |z| < ¢}. Note that |g.(z)| > ¢ for
|z| > €, which implies Property 1. Since g.(z) = z for |z| > 2¢, we get Properties 2
and 3.
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Let us estimate ||[P,T%]||. From (3.1.8), we have
[P, Te] = [P eUcf1(IT] /)] + [P, T fa(IT']/2)]. (3.1.9)
For the first term, we have

1P, eU A (IT1 /)| < el U AT/ + el AT/

Using (3.1.6) and the scaling argument from Lemma 2.1.3, we get that both terms
in the right hand side are bounded by Cdp. Since fi(t) + fa(t) = 1, for the second
term of (3.1.9) we have

1P, T HL(T/I < 1P T + [P, T AT/ < op + el [P, 91 (T/e)]l| < Cop,

where g1(z) = 2f1(]z|). Together with (3.1.8), this implies Property 4.
Finally, let us prove Property 5. From (3.1.6) and since U, and Vj are unitary,
Vo, P] = 0, and ||U. — Vp|| < 1/6, the continuous path

U = seU. + (1 — 5)eV

connects U, and £V}, and satisfies the assumptions of Lemma 3.1.1, assuming that
Cy is sufficiently small. Hence, U. € GLo(A @ A). Next, there exists a smooth
function h: C — C such that h(z) = z/|z| for |z| > 1, |h(2)| < 1 for |z| < 1, and
h(z)/z > 0 for all z # 0. From (3.1.8), we have |T.| > € and hence h(T./e) = U..
Let
hi(z) = (1 —t)eh(z/e) + tz.

Then hy(T.) = U.hy(|T]), and ||he(To) 7| < et for 0 <t < 1, ||[P, e (T2)]]] < Cop
where C' is an absolute constant. Moreover, ho(1.) = €U, and hy(T.) = T.. Since
dpG(dp) < Cye, by choosing an appropriate Cp, we can also guarantee that hy

satisfies the assumptions of Lemma 3.1.1. This completes the proofs of Property 5

and the lemma. B

The operator U, appearing in the proof will be important in latter considerations.

Let us summarize its properties.

Corollary 3.1.3. Under the assumptions of Lemma 3.1.2, there exists a unitary

element U. € May(A) such that:
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1 IP.U < Cet6p.
2. (U, 1] =0 foralle > e.

3. U.(I —11.) = V(I —11.) where V € B(H & H) is the polar part of T'.
4. T. = U.|T¢|.

5. diagp U, € GLo(A D A).

The next lemma is an extension of Lemma 3.1.2 to the case of multiple holes.
It can be done simply by applying Lemma 3.1.2 several times, but then the norms
I[P, T¢]|| will increase by a factor C' each time and, therefore, will grow exponentially
with the number of holes. It turns out that the construction can be improved, and
the holes can be created “simultaneously”, assuming that they are separated from
each other.

Let O.(Ag) = {N € C: XA — X\g| < e}. Suppose that A\j,...,\y € C. Let
I = Er(O-();)) denote the spectral projection of T' onto the e-neighbourhood of
Aj.

Lemma 3.1.4. Suppose that |\;| < 1, dist(\;, \;) > 4e for i # j. Assume that T €
My (A) is normal, |T|| < 1, do(T, ;) < 6p forj=1,...,k, and0 < §pG(dp) < Ce.

Then there ezists a normal element T. € My(A) with the following properties:
1L \(To=XNI)7H < €7, so the e-neighbourhoods of \; are contained in C\o(T%).
2. [T, 1] = [1.,11,.] = 0, Telranr-ss, 1) = Tlrangroxs, 1,y VI =1 k.
3. || T —T.|| < 2e.
4. I[P, T]|| < Cép, where C does not depend on k.

5. diagp(T.—\;I) € GLo(A®A) forj =1,..., k. As a consequence, ds(T%, \;) <
Cop.

Proof. For each j, the element T — \;I satisfies the assumptions of Lemma 3.1.2
and Corollary 3.1.3. Let us obtain the corresponding unitary element and denote
it by U7. As in Lemma 3.1.2, let f; € C*(R,) be a nonincreasing function such
that fi(t) = 1 for 0 <t < 1 and fi(t) =0 for ¢t > 2. Let us impose an additional
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condition that ¢ (t) N () is smooth. We claim that the following element

satisfies the statement of the lemma.
k k
T.=) (N +eUDf (T = NI|/e)+ T (1 - h(T - Aj1|/e)) . (3.1.10)
j=1 j=1
Corollary 3.1.3 implies
[Uszv Hi.] - [Uelv HJZE] = 0.
Indeed, for i = j it follows directly from Property 2, and for ¢ # j it is a consequence
of Property 3 and dist(\;, A;) > 4e. The element U? commutes with f;(|T — Ajl/€)
because in the block I, the operator fi(|7'—\;|/¢) is scalar, and in the block IT,. —II.
both are functions of T'. Since everything else in (3.1.10) can be expressed in terms

of functions of T', we get that the element T} has block structure with respect to the

system of projections IIJ, T}, — IIJ for j =1,...,k, and I — 2?21 IT).. We have

k k
HgTa = HZ(AJ + €U€j), <I - ZHJQ€> Te = <I - ZH%&‘) T.
j=1 J=1

Hence, the “small” blocks corresponding to ITZ are e-multiples of unitaries shifted
by A;. The “largest” block coincides with the corresponding block of T". Similarly

to Lemma 3.1.2, let x. be the characteristic function of {z € C: |z|] < €}, and

9¢(2) = (x2e(2) = x=(2)) (e(2/|2) fu(l2]/€) + 2f2(I2] /¢)) -

Then
(H26 - H€>T€ = )\z + gs(T - /\z)a

so that the “intermediate” blocks corresponding to IT,. — I/ are functions of T'.
This implies Properties 1 and 2. Since all blocks are normal, the element 7T is also
normal.

Let us estimate the difference between 1. and T,
k
T.—T =Y (N+eU!l = T) AT - N1|/e)
j=1

k k
=Y UIAH(T = Nl|/e) +Z (NI —=T) f1(JT = M| /e). (3.1.11)
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Since the terms in the first sum act in orthogonal subspaces, we get Property 3. To

establish Property 4, let
k k
M. = Y UA(T = 11/ = Y (T~ Ml U(T — A1)
=1 j=1
The equality holds since [UZ, f1(|T — A\;jI]/e)] = [UZ, g1(|T — A\;jI|/¢)] = 0; recall that
g1(t) =/ f1(t). Let also

he(z) = (2= N)fillz = Al /)

Then
[P, T.] = [P,T] — [P, h-(T)] + e[ P, M.]. (3.1.12)

Note that zfi(|z|/e) = e(z/e) fi1(|z]|/e) and, therefore, by Lemma 2.1.3

12 f1(|z]/€)lloLc) < C.

Part 2 of Lemma 2.1.6 implies ||he[|p: () < C, and, from Proposition 2.1.2 and
(3.1.12), we obtain
1P Tel] < O, T + e (TP, Me]|[ - (3.1.13)

Let us estimate the last term. We have

E

[P, M.] = ' [P, i (IT = MNI| /o) UZg:(IT — NI /e)
+ ZQMT — NI/ [P, Ui (IT = N\I|/e)

+ ZglﬂT — NI/ UZIP, g1 (T — \I|/e)]. (3.1.14)

Recall that ||[P,U?]|] < Ce '6p. The different terms in the middle sum act in
mutually orthogonal subspaces of H @& H. Therefore, the norm of the sum can be
estimated by the maximal norm of the terms and hence does not exceed Ce 'dp,
where C' is an absolute constant. The first and third terms are estimated similarly
to each other, and it suffices to estimate the first term of (3.1.14). We have

; 1 isT+ity »
sl = o+ iy = 5 [ e gu(s, 0y dsat,

RQ
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where ¢, is the Fourier transform of g;(|z + iy|) as a function of two real variables.
Let \j =z, +iy;. Letalso T =X +4Y, X = X*, Y =Y* [X,Y] =0. Then
2
G (|T — NI|/e) = 25— /Ql(as,st)emfityfe”x*ity dsdt. (3.1.15)
T

RQ

Let us rewrite the first term in (3.1.14) using (3.1.15),

2 k
;— / g1(es, et)[P, X+ {Ze‘iszj_itijggl(\T — )\ /e)} ds dt.
m
R2

j=1
The terms in curly brackets, as before, act in orthogonal subspaces of H & H.

Hence, the operator norm of the sum is bounded by 1. From Lemma 2.1.9, the

whole expression is bounded by

2§
82 F / |91(es,et)|(|s| + |t]) ds dt < Cedp.
m
RQ

Hence, the commutator [P, M.] admits the same bound. Together with (3.1.13), this
completes the proof of Property 4.

Let us establish Property 5. By T, E(j ), denote the operator T" for which we applied
the statement only for A;. Then, by Lemma 3.1.2, diagp(7.— ;1) € GLo(A®A). To
complete the proof, note that the path t7.+(1 —t)Tg(j ) —\; 1 satisfies the assumptions

of Lemma 3.1.1. B
Consider the grid
I.={z2=z+iyeC:axe€cloryccl}.

Let also A; = e(Z +1/2) +ie(Z + 1/2) C C be the set of centres of the cells of T..
By O.(X) we denote an open e-neighbourhood of the set X C C.

Lemma 3.1.5. There exists a family of functions g..: C — C, &’ > 0, such that
1. g € C*(C), ||ge]lonc) < C.
2. go maps C\ O 6(Aer) onto I'or.

3. |ger — 2| < & for z € C\ O.y6(I'sr), and g is homotopic to z within the class
of functions satisfying g(C\ O /6(Asr)) C C\ O j6(Asr).
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Proof. For ¢ = 1, there exists g; € C°°(C) with the required properties such that
g1(z) — z is (1,4)-periodic. It can be constructed in two steps. First, we “blow up”
the circles until they start touching the edges of the cells. Then we keep blowing
them up, (smoothly) straightening the parts that do not fit into the cell. This gives
us a function satisfying the desired properties, expect for a small neighbourhood of
Z+1Z. This neighbourhood can be “shrunk” into Z+¢Z by applying another smooth
function which is also a periodic perturbation of z. Since the composition of smooth
periodic perturbations of z is a function of the same type, we have constructed g;.
The general case is covered by g.(z) = €'g1(z/¢’). The homotopy for Property 3

can be chosen to be linear. 1

olo|o|o

TA N
O /CP\OO O 0
olo|o|o
olo|o|o

Figure 3.1: The spectra of T} and T = g(11), & = 1/2
Using the functions g., we can reduce the initial problem to the case when
o(T) cT..

Theorem 3.1.6. Let A be a unital C*-algebra. There exists a universal constant
Co > 0 such that for all €',0p with 0 < §pG(dp) < Coe’ and any normal element
T € My(A) satisfying ||T) < 1, do(T) < Op there exists a normal element T, €
Mz (A) such that:

1. O'(Tal) CcTl'u.
2. HT_TEIH < 28/.
3. ||[P, To]|| < Cép.
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4. diagp(T. — M) € GLo(A & A) for A € A

Proof. We first apply Lemma 3.1.4 with € = £’/6 to remove the €’ /6-neighbourhood
of Ao from o(7T'). Let us denote the resulting element by 7j. Then we consider
T = g (1), where g is the function from Lemma 3.1.5, see Figure 3.1. Properties
1-3 follow from Lemma 3.1.4 and the properties of g... Property 4 follows from
Lemma 3.1.1 similarly to Property 5 of Lemma 3.1.2. &

3.2 Proof of Theorem 1.3.3: removal of line seg-
ments

The following two lemmas are contained in [27]. We give more elementary proofs
from [16, Lemma 1.8] for the convenience of the reader. These lemmas will be used

in the proof of Lemma 3.2.4.

Lemma 3.2.1. Suppose that A is a C*-algebra of real rank zero, and let U,V € A
be unitary elements such that —1 ¢ o(U), —1 ¢ o(V). Then for any € > 0 there
exists a unitary element W, such that ||[UV — W,|| < e and —1 ¢ o(W,).

Proof. Recall that the fact that —1 ¢ o(U) is equivalent to the existence of a self-
adjoint element X such that U = (i — X)~'(if + X) (Cayley transform). Let also
V=0l -Y) (il +Y), where Y = Y* € A. Since A is of real rank zero, for each
e > 0 there exists a self-adjoint element X. € GL(A) such that || X — X,| < e.
There also exists an element Y. such that ||V —Y;|| < e and Y. — X! € GL(A). Let
U.= (il — X)) 'l + X.), Vo = (il = Y.)"*(il +Y.). We have |[U.V. — UV — 0

as € — 0, and
(I — X)(UV. + DIl = Y.) =2(X.Y. — I) = 2X.(Y. — X ') € GL(A),
which gives —1 ¢ o(U.V.). B

Lemma 3.2.2. Suppose that A is a C*-algebra of real rank zero, and let U € GLy(.A)
be unitary. Then for any € > 0 there exists a unitary element U' € GLo(A) such
that =1 ¢ o(U’) and ||U = U'|| < e.
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Proof. Let Z(t), 0 < t < 1, be a path in GLy(A) connecting U and I. Let
Z(t) = Z(t)|Z(t)|! be the “normalized” path (in the sense that its elements are
unitary). There exists a finite set of points 0 < ¢ty < t; < ... < t,, = 1 such
that || Z(tis1) — Z(t;))|| < 1 for 0 <i<m—1. We have U = V,,V,u_1 ... V4, where
Vi = Z(t;)Z(t;—1)"", and therefore ||V; —I|| < 1 and —1 ¢ o(V;). We now can apply
Lemma 3.2.1 and, by induction, obtain that the product of V; can be approximated
by operators with the same property. Note that we automatically have U’ € GLg(.A)

since C \ o(U’) is connected (see Section 1.1). B

By T we denote the unit circle in C. By int I we denote the interior of a (closed)

Jordan curve I'.

Definition 3.2.3. We say that a simple C%-smooth closed curve I' parametrized
by a map ¢: T — C is admussible if there exists a homotopy of ¢,: C — C and a
continuous family \; € int ¢;(T), ¢t € [0; 1], Ag = 0, such that

1. wo(2) = 2z, pilp = .

2. ¢y is a diffeomorphism of C such that ¢;(z) = 2z for |z| > C}, where C; does

not depend on t.
3. |letllone) < Cy uniformly in ¢.
4. dist(A, ¢¢(T)) > Cs uniformly in ¢.

Any sufficiently smooth curve is admissible, but we do not need it in such gen-
erality. In fact, we will only use this definition for two explicitly described curves,
see right parts of Figures 3.3, 3.4 below. Note that the family {\;} is a part of
the definition of admissibility and is not unique. We shall usually consider curves
together with points A = A\; € int I". The notation C'(\,I") means that the constant
depends on I and A, and may also depend on the path {\;}.

Starting from the next lemma, we assume that A is of real rank zero, since we
are performing operations with one-dimensional spectra. Theorem 3.1.6, similarly
to Theorem 1 from Introduction, holds without this assumption.

The following lemma allows us to remove a point from the spectrum of an element

whose spectrum lies on an admissible curve. We need to keep track of the off-
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diagonal elements of T. In fact, we can make it in such a way that off-diagonal

elements become zero.

Lemma 3.2.4. Let A be a unital C*-algebra of real rank zero. Suppose that ' C C
is an admissible curve such that 0 € I'. Let T' € My(A) be a normal element with

o(T) CT and ||[P,T]|| < dp. Assume that
dlagP(T — )\1[) S GL()(A > A),

where Ay € intIT' is from Defininition 3.2.3. Then there exists a normal element

Ty € My(A) such that
1. o(Ty) C T, 0 ¢ o(Tp).
2. | To = T| < C(\T)dp.
3. Ty € GLo(A @ A) and, as a consequence, [Ty, P] = 0.

Proof. Let I' = ¢(T) in the notation of Definition 3.2.3. We can always assume that
0p is small enough, as we can choose the constant in Property 3 to be large so that
the statement becomes trivial for all other dp. The idea of the proof is to reduce the
statement to the case of I' = T (using the homotopy ¢ from the definition of I'). In
this case, we remove the off-diagonal elements with a small perturbation such that
the element remains unitary. Then we apply Lemma 3.2.2 to each (unitary) block
and remove a small arc from the spectrum. Finally, we map everything back to I'.
The properties of ¢ allow us to control off-diagonal elements on all steps.

The formal proof is as follows. Let U, = ¢;(¢ *(T)). By Proposition 2.1.2,
I[P, o Y (D))|| < C(\,T)dp and ||[U;, P)|| < C(A\,T)dp (note that ¢! is a smooth
compactly supported perturbation of z and therefore belongs to OL(C)). Consider
now

V; = diagp Uy.
We have [V}, P] =0, [|V; = U|]| < C(A\,T')dp. For dp small enough, V; — A\ I is a path
in GL(A & A) connecting V; and diagp(T — A1), which implies Vy € GLo(A & A)
for sufficiently small dp.

Let

U = Vo(Vivy) V2 (3.2.1)
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The element U’ is unitary and [U’, P] = 0. Since ||V — Up|| < C(A\,T)dp, from
(3.2.1) we have | U’ — Up|| < C(\,T")dp and ||[U" — Vi|| < C(A\,T)dp. Thus, possibly
after choosing a smaller dp, we can guarantee U’ € GLo(A @ A). By Lemma 3.2.2,
there exists a unitary element U € GLo(A & A) such that ¢=(0) ¢ o(U) and
U’ —U|| < 0p. It is now easy to see that the element Ty = ¢(U) satisfies Properties
1 and 2. Property 3 follows from the fact that C \ o(7p) is connected. B

The next lemma uses this to construct a unitary operator similarly to Corollary
3.1.3. This allows us to remove a line segment from the spectrum of T, but we still

need to assume that the spectrum lies on an admissible curve.

Lemma 3.2.5. Let I', A = A\ € int ' satisfy the assumptions of Lemma 3.2.4, and
suppose that TNO1(0) = (—1;1). Then there exists 6%(\,T') > 0 such that for all A,
T satisfying the assumptions of Lemma 3.2.4 with 6p € [0;0%] there exists a unitary

element U € My (A) with the following properties:
1. [P,U] < Cép.
2. [II, U] = 0, where 11 is the spectral projection of T onto (—1;1).
3. (I —1IHU = (I —1I)V, where V € B(H & H) is the polar part of T'.
4. MU s self-adjoint.
5. diagp U € GLo(A & A).

Proof. From Lemma 3.2.4, there exists a normal element Ty € GLo(A@.A) such that

o(Ty) c T\ {0}, |T — To|| < C(A\,T")dp. Let Ty = Vy|Tp|. Then V; € GLo(A @ A).
As in Lemma 3.1.2, let p; € C*°(R,) be a nondecreasing function such that

p1(t) = Lfor 0 <t < 1/2 and pi(t) = 0 for t > 1. Let py € C®(R) satisty

p2 + p3 = 1. Consider
S = p(IT)Re Vo)pu(IT1) + Vpa(IT1). (3.2.2)

The remaining part of the proof is very similar to Lemma 3.1.2. The principal
difference is that the block of S corresponding to II is self-adjoint, as well as the

corresponding block of U. The main steps of the proof are as follows. We have

S—=Vo=(V="o)o3(IT]) + {pr(IT1)(Re Vo) pr (IT) = Vopi(IT1) } - (3.2.3)
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It is easy to see that p3(t) = thy(t) for some smooth bounded function hy. Hence,

(V= Vo)ps(IT1) = (VIT| = VOl TDho(IT1) = (T = To)ha(IT1) + Vo(|To| — [T h(IT)).
(3.2.4)
By construction, o(Tp) N O1(0) C (—1;1), and

p1(|To])(Re Vo) pr(|To|) = (Re Vo)pi(ITol) = Vopi(|To|)

since the functions zp?(|z])/|z| and (Re 2)p?(|z])/|z| coincide on o (Tp). This implies

pr(ITDReVo)pr (IT1) = Vopi (IT]) = (p1(IT1) = pr(1To])) (Re Vo) pr (| T))+
+p1(To)Re Vo) (p1(I71) = p1(|To]) = Volpi (I71) — pi(IT0)))- (3.2.5)

From Proposition 2.1.7 it follows that
1T = 1Tolll < C(A,T)opG(0p)
and, as a consequence,
lpr(IT]) = (1Dl < CAT)6pG(0p),  IP(IT]) = pi(ITo])I| < C(A,T)3pG(0p).
From (3.2.4), (3.2.5), and (3.2.3) we get
1S = Voll < Ci(A T)dpG(0p). (3.2.6)

Therefore, for 6p < 0%(\,T') with sufficiently small §%(A,T'), the element S will be

invertible and have S = U|S| for some unitary U. In addition, since the element
ILSTL = Tl (IT']) Re Vopu (T IT+ TV ps (| T)TT

is self-adjoint and [II, S] = 0, the element I1U will also be self-adjoint. Therefore,
we have Properties 2—4.
Similarly to Lemma 3.1.2, let pa(2) := z|z|7'p3(|z]). Since [P,ReVy] = 0, we

have
[P, U < Cull[P, ST < 2C ([P p (ITDII+ I[P, p2(ITD]I) < Cop,

which yields Property 1. Finally, Property 1 implies that diag, U is close to U.
From (3.2.6), U is close to V. Since Vj € GLo(A @ A), we get Property 5.
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The following lemma is the key step of the proof. It extends Lemma 3.2.5 to the
case of general normal elements whose spectra contain line segments. Recall that

0,(0)={z€C: |z| <r}.

Lemma 3.2.6. There exists 6% > 0 such that for every unital C*-algebra A of real

rank zero and every normal T € My(A) with
I[P, 7| = 6p < dp,  o(T) N O5(0) C (=3;3),

and

diagp(T' £1iI) € GLo(A & A), (3.2.7)
there exists an element U with the properties from Lemma 3.2.5.

Proof. Let us describe the general idea first. We need to remove a part of the
line segment on Figure 3.2. The spectrum of our element does not lie on a simple
closed curve, so we cannot apply our previous lemmas directly. However, we can
construct an auxiliary element (in our notation 7Tj) with this property such that in
a neighbourhood of this line segment it looks the same as T. Then the element U
obtained for Ty can then be used for T". The construction of T5 consists of several
steps in which we remove the unneeded parts from the spectrum of 7" without
affecting the segment [—1;1].

The formal proof is as follows. There exists a smooth function g;: C — C such
that g, € OL(C), g1(z) = 3z/|z| for |z| = 3, g1(2) = z for |z| < 2, and g1(2)/2 > 0
for all z # 0. Let 71 = ¢1(T"). Then o(17) C © = (—3;3) U{z € C: |z| = 3}, see
Figure 3.2.

i Imz A« Imz
\ \

|

|

|

|

o(Ty) C O

Figure 3.2: The spectra of T" and Ty = ¢1(T")
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The element T} satisfies (3.2.7) because for the operator family T; = tg;(7T) +
(1 —¢)T', the path
diagp(T; £ i)

satisfies the assumptions of Lemma 3.1.1 if §p is sufficiently small.

There exists a diffeomorphism g,: C — C mapping the arc of © between (—3 —
3i)/v/2 and (3 — 3i)/+/2 into the line segment [—2 — 2i;2 — 2i] such that g,(z) = 2z
outside the lower rectangle at the right of Figure 3.2. We have g, € OL(C) since it
is a smooth compactly supported perturbation of z.

Let ©y = go(©). There exists a map g3: C — C such that g3(z) = z outside
the upper rectangle of Figure 3.3 and that ¢3(©;) is an admissible curve. Again,
g3 € OL(C). Note that g3 is not a diffeomorphism: it maps two top arcs of O

between —3 and 3 into one.

Figure 3.3: The spectra of To = ¢5(T7) and T3 = g3(T3)

Let Ty = go(T1), T35 = g3(T2). The element T3 will satisfy (3.2.7) by the same
arguments as for 77: we can consider a linear homotopy between go(z) and z. The
same holds for T3; note that we only need to consider 75 — i/ since there is only one
bounded connected component now. The element T3 + 2i1 satisfies the assumptions
of Lemma 3.2.5. Let Uz be the unitary element obtained from that lemma. Now, as
in Lemma 3.1.2, let f; € C*°(R) be a nonincreasing function such that fi(¢) =1
for 0 <t<1and fi(t) =0fort > 2. Let fo(t) =1 — fi(t). Consider

Ty = Usfri(|Ty + 2il]) + (T + 2i1) fo(| Ty + 2i1|) — 2il.

In this construction the unitary element Us is generated from 75, and then is “at-

tached” to T,. It is possible because Ty and T3 coincide in the lower rectangle of
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Figure 3.3 (in the sense that f(7T3) = f(73) for any function f supported in the
lower rectangle). Let II; be the spectral projection of T, onto [—i;i]; note that it
coincides with the same projection for 7T5. Let also IL, be the similar projection for
[—2i;2i]. The elements Ty, T3, Us and T, have block structure with respect to ﬁl
and ﬁg. Similarly to the proof of Theorem 3.1.4, the element T} is normal. In addi-
tion, Tp(Ty + 2i1) is self-adjoint, IT; (T} + 2iI)

is unitary, and the spectrum of

Ran ITy

(I, — I1,) T} is contained in [—2i;2i] \ (—4;4). Hence, o(Ty) C ©4 which

is ©, with parlt“ini)?;}lfé)lower arc removed (see Figure 3.4). In addition, II7, = IIT
(the middle part of © is left untouched), and ||[P,T4]|| < Cs56p. The element T}
satisfies (3.2.7), because the linear homotopy between T, + ¢l and T + I satisfies
the assumptions of Lemma 3.1.1.

There exists a smooth map g,: C — C such that g4(z) = z outside the oval-
shaped areas on Figure 3.4 and that ¢4(©,) is an admissible curve (i.e. g4 maps the

remaining parts of the lower arc into the ends of central line segment, and does not

affect the rest of O3).

Figure 3.4: The spectra of Ty and T5 = g4(T})

We finally get an element T5 = g4(T}) satisfying the assumptions of Lemma 3.2.6.

This lemma gives an element Us. Using the same idea as in constructing 7}, let
Ts = Us f1(IT]) + T5 (| T']).

The element T is the operator T' from the spectrum of which we have removed the

segment (—1;1).
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17|

Figure 3.5: The spectrum of Tj

The element U can now be taken as the polar part of Tj. B

Proof of Theorem 1.3.3. Let us first apply Theorem 3.1.6. It reduces the result

to the case of an element T, such that o(7T.) C I'.. We also have
diagp (7. — M) € GLo(Ad A), Ve A,

and ||[P,T:]|| < Cop (provided that Cy is sufficiently small). Let us assume that
e =1/2N for some N € N. It is clear that this will not affect the generality.

Consider the set I'. N[—1; 1] x [—1; 1]. This set consists of 4N (4N + 1) horizontal
and vertical line segments. By A denote the set of centres of all horizontal segments,
and by A’ the set of centres of vertical segments. Let A\; € A. Consider the element
T; = 6(T.— \;I)/e. This element satisfies ||[P, T}]|] < 6dpe~' < 6CoG(dp) " and the
other assumptions of Lemma 3.2.6. Let U; be the corresponding unitary element
obtained from that lemma.

Similarly, for \; € A', the element 6i(T. — \}I)/e also satisfies the assumptions
of Lemma 3.2.6. Let U} be the element obtained from Lemma 3.2.6 multiplied by
—1.

Finally, let fi = g7, g1 € C*(R,) be a nonincreasing function such that f;(t) = 1

for 0 <t <1and fi(t) =0 for ¢t > 2. As in Lemma 3.1.4, consider

AN(4N+1) AN(AN+1)
T= Y (N+eUi/6)fu (6T = NIl /e)+ > (N+eU;/6) fy (6]T: — Xj1|/e)
Jj=1 j=1
AN(4N+1)
+T (1= Y (AGIT = Nil/e) + fi (61T = Nid)/2)) | . (3.2.8)
j=1
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By the same arguments as in the proof of Property 4 from Lemma 3.1.4, we have
I[P, T]|| < Cdp. The spectrum of 77 is contained in the 5¢/12-neighbourhood of

eZ+ieZ and therefore splits into disjoint connected components of diameters 5e/12.

L+i o 144 Lai
-1+ . Z Z 2 +1
: : : :
- - - - | | | | |
P Lk Lk Lk Lk
) ) ) ) R
J- J- J- NP J-
L~ P P -
) ) ) . ) FE
- - - -
L L PN PN L
el ) o ) B
J- J- J- J- J-
s~ s~ 0 s~ s~ 0

o~ o~ o~ o~ | | |
AN AN AN AN
t t t t

11— —-1-—1

Figure 3.6: The spectra of T, and T (for ¢ = 1/2)

Finally, there exists a smooth function h: C — C such that h(z) — z is (1,4)-
periodic and that h maps the 5/12-neighbourhood of every point of Z + iZ into this
point. The element 7" = £h(T” /<) has finite spectrum and satisfies the assertions of

the theorem. B

Remark 3.2.7. If A = B(H) for some Hilbert space H, then the proofs can be
simplified. The group GL(B(H)) is connected; hence, we never need to check that
the elements belong to GLj. Moreover, we no longer need the smooth maps in
Lemma 3.2.6 to be homotopic to the identity. Therefore, we can use a simpler
construction which dates back to [17]: to map the line segment (—1;1) into T \
{—1} and map the rest of the spectrum to —1. Then we can flatten the circle and
use Lemma 3.2.5; note that Lemma 3.2.2 becomes obvious since we have spectral
projections for unitary operators. If A = M, (C), then, in addition, d;(A4) = 0,
dy(T') = [[[P, T]||.

52



3.3 Proof of Theorem 1.3.4

The results of the previous sections reduce the general case to the case of elements

whose spectra are contained in sets of the form
2. 2L (cZ x eZ) N ([—1;1] x [-1;1)).

It turns out that if o(7") C 3., then we can remove its off-diagonal elements with
respect to P in such a way that the element remains normal. The idea is to map the
spectrum onto a line segment, then remove off-diagonal elements from the resulting
self-adjoint element (it will remain self-adjoint), and then map it back. The choice
of particular maps is important since it is the only place where we get a loss in the

power of 0. The following lemma describes these maps.

Lemma 3.3.1. Let ¢ = 1/2N, N € N. There exist two functions fy: C — R,
gn: R — C such that
gn(fn(z)) =2, VzE€EX, (3.3.1)

and || gn|loLm) < ON, || fn]loLe) < C.

Proof. Let ¢ € C*°(R) be a 2-periodic function ¢(2k) = 1, ¢(2k + 1) = —1 for
k€ Z. Let a € C§°(R) satisfy a(x) = arcsin(x/2) for |z| < 1 (i.e. a is an arbitrary
smooth compactly supported extension of the arcsine). Let

vl +iy) =y + %s@(ﬂ\ﬂu)-

Let also n € C*°(R) be a function satisfying
n(x)=kforxelk—1/4k+1/4], VkeZ,

and ||n]lorcy < C. The function 7 can be constructed as a suitable periodic per-

turbation of x. Finally, consider

n(2Nx)
2N

gn(z) = 2sin(27rNx) + i (3.3.2)

The property (3.3.1) is verified by direct computation for z = k/2N + il/2N,
k,l =—2N,...,2N. The estimates in OL(R) and OL(C) follow from Lemma 2.1.3,
since these functions are obtained from fixed smooth functions by scaling and mul-

tiplication by «. B

53



The following lemma is the concluding technical step of the proof. We use the
functions fy and gy obtained in Lemma 3.3.1 to remove off-diagonal elements from

an element with finite spectrum in such a way that it remains normal.

Lemma 3.3.2. Suppose T' € My(A) is normal, ||[P,T]|| = ép, and o(T) C 3. for
e > 0. Then there exists a normal element T € Ma(A) such that |T — T'|| <
C(dp + 62e72) and [P, T'] = 0.

Proof. Without loss of generality, we may assume that e = 1/2N for some N € N.
Otherwise, we can apply the statement to vT', where 1/2 < v < 1, and then multiply
the result by v~!. The self-adjoint element Ty = fy(T) satisfies ||[P, T1]|] < Cdp
since the functions fy are uniformly bounded in OL(C). We have ||T} —diagp T} || <
Cép. As Tj is close to diagp Ti, we might expect that T = gn(T}) is close to
T" = gn(diagp T7). Since diagp T4 is self-adjoint and commutes with P, the element
T’ is normal and also commutes with P. Hence, T” is a normal approximation of T
commuting with P.

Let us estimate their difference. We have
T =diagp T + [P, [P, T1],
and T = gy(T1), T" = gn(diagp T1). Therefore,
1T = T"|| = |I[P, [P, T]] + diagp gn (T1) — gn(diagp T1)||
<[P T]|| + || diagp g (Th) — gn(diagp T1)|].

The first term of the right hand side is bounded by Cdp because ||[P,T]|| < Cop.
The second term is of the form from Corollary 2.1.8. Recall (3.3.2) and split gy
into a sum of two functions. The function 2sin(27r Nz) is estimated by C N2§% using
Lemma 2.1.10. The remaining term is bounded by Cdp using Corollary 2.1.8 since
the family n(2Nz)/2N is uniformly bounded in OL(R). Therefore, we have

1T = T'|| < C(0p + 0pe ),
and [P,7] =0. 1

With all the preparations made, we can now complete the proof of the main

result.
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Proof of Theorem 1.3.4. Using Theorem 1.2.2, construct normal elements T" €
My(A) and N € A satisfying || — A @ N| < C6'/? and (as a corollary) ||[P,T]| <
C§Y/2. From the assumptions of Theorem 1.3.4 and since C \ o(NN) is connected, we
have

dist(A — M, GLo(A)) < 6Y2,  dist(N — M, GLo(A)) =0
Hence, dist(T — A, GLo(A @ A)) < C6'/2, which implies do(T) < C5Y/2.

There exists C; > 0 such that the element T satisfies the assumptions of Theorem
1.3.3 with ¢ = C18'/3, 6p = 6/2. The theorem gives a normal element T} with
o(Th) C X, ||IT — Th|| < Ce, and ||[P,T1]|| < Codp = Co0'/%. Lemma 3.3.2 applied
to T} gives a normal element 7" such that |77 — T}|| < Cs(dp + 63c72) < C6'/3 and
[P,T"] = 0. Therefore, we have

|IT" — A@® N|| < C5'3.
Since 7" commutes with P, we get that PT’P is normal and

|PT'P — Al| < C§Y3.

1Al
| PT" Pl

Finally, it is easy to see that the element A’ = PT'P has the same properties

and satisfies [|A’|| < [|A]l.
Remark 3.3.3. The element 7" from Lemma 3.3.2 has the following special prop-
erty: it is the image of the self-adjoint element diagp 77 under the map gn. Hence,
its spectrum lies on a curve which is the one-to-one image of [—1;1]. The same
holds for A’ = PT'P. Normal elements of this type are important since they admit
normal liftings from quotient algebras. More precisely, if Az = A5 € A/Z, where
Z C Ais a *-ideal, then it has a self-adjoint pre-image A € A (since we can take the
real part of any pre-image). Hence, gy (A) will be a normal pre-image of gy (Az).
In addition, since the values of gy belong to [—1; 1] + ¢[—1; 1], the normal pre-

image can be chosen to have norm not greater than v/2.

3.4 Some applications

3.4.1 Two-sided estimate in B(H)

Let A = B(H) for a Hilbert space H. If A € Aisnormal, then dist(A4, GL(B(H))) =
0. Indeed, if A = U|A|, then U(el + |A|) € GL(B(H)) for every € > 0. Moreover,
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GL(B(H)) = GLo(B(H)) since any unitary element can be continuously deformed
into the identity (using spectral projections). Let us denote the set of all normal

elements by N' C B(H).

Theorem 3.4.1. For all A € B(H), ||A|| <1, ||[A, A*]|| = § we have
max{d;(A),5/9} < dist(A,N) < C max{d,(A)*? §/3}. (3.4.1)

Proof. The right inequality follows from Theorem 1.3.4. To prove the left one,
assume that A = N + X, where N is normal and || X| < ||A] (this is always
possible). Then ||N| < 2[|A4|| <2, and

ITA, ATl = (1IN, X7+ [V, X] + [X, X< 81X + [1X1* < 911Xl

Taking the infimum over all possible X (we can obviously consider only || X || < ||A]]),

we get

ITA, AT]|| < 9 dist(A, N);

Together with dist(N, GLo(B(H))) = 0 for all normal N, this implies the left in-
equality of (3.4.1). m

Note that in [6] it is shown that if dimkerT # dimker T*, then dist(7,N) =
max{m.(T), m.(T*)}, where

me(T) = inf ||,

AE0ess (T)

and dist(T,N') = 0 if dimker T" = dim ker T™*.

In the case of a general C*-algebra of real rank zero, Theorem 3.4.1 holds if we
replace N by the set N of normal elements with finite spectra. It is known that
some normal elements may not belong to N;. Indeed, if A € N}, then d;(A) = 0
because it is true for all elements with finite spectra (see Section 1.1). The converse
is also true, see Theorem 1 or [16]. In the Calkin algebra C(H) = B(H)/K(H),
the condition dj(A) = 0 is equivalent to A having trivial index function, see [16,
Lemma 3.4] and references therein. The equivalence class of the operator (1) from
Introduction is an example of a normal element of C(H) with non-trivial index

function, and hence it cannot be approximated by elements with finite spectra.
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3.4.2 Quasidiagonal operators and the BDF theorem

The results of [16, Section 3.3] admit quantitative versions. Let H be a separable
Hilbert space. Suppose that H = &, Hj, where Hj, are finite-dimensional Hilbert
subspaces. Operators of the form @Sy, where {Si} is a uniformly bounded system
of operators acting in Hy each, are called block diagonal (with respect to the system
{H}). If Hj can be chosen in such a way that dim H, = 1 for all k, then the
operator is called diagonal. Equivalently, diagonal operators are block diagonal with
normal blocks Si. An operator A € B(H) is called quasidiagonal if it is a compact
perturbation of a block diagonal operator. The following result is well known and

can be found in [18, Proposition 2.8] or [5, Corollaries 11.4 and 11.12].

Proposition 3.4.2. The set of compact perturbations of normal operators in a sep-
arable Hilbert space H is norm closed and coincides with the set of all quasidiagonal

operators S € B(H) such that [S,S*] € KC(H).
The following is Lemma 3.7 from [16].

Proposition 3.4.3. Let H be separable. For each r > 0, the set
{A € B(H): Ais normal and ||A|| < r} + K(H)

1s norm closed and coincides with the set of all quasidiagonal operators S = B S+ K

such that all Sy, are normal, ||Si|| <7, and K € K(H).

def

For A € B(H), let ||Alless = [|[A+ K(H)||c(ry, where C(H) is the Calkin algebra
C(H)=B(H)/K(H) (it is usually called the essential norm). Let also

d°(A) 2L sup dist(A — A + K(H), GLo(C(H))) < dy(A).
AeC

Theorem 3.4.4. Let H be a separable Hilbert space, and assume that A € B(H)
satisfies ||A| < 1, ||[A, A*]|| = 0, di(A) < 6Y/2. Then the following holds.

1. Suppose that A is a compact perturbation of a normal operator. Then there

exists a diagonal operator Ay such that

A—Aje K(H), A <Al and A - Al < 5",
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2. Let §ogs 22 I[A, A*]|less > 0, so that [A, A*] ¢ K(H), and assume that d*(A) <

52, Then there erists a diagonal operator Ay such that

|A — Aglless < OS2 and ||A — Agl| < C(6Y3 + 61L9).

ess ? ess

Proof. For Part 1, let us apply Proposition 3.4.3. Suppose that A = S + K, where
S = @Sk is normal with Sy acting in Hy, [|Sk|| < ||Al|, and K is compact. Let
E,, be the orthogonal projection onto ®}_; Hy. Let 6, = | K — E,KE,||. A simple

computation shows that
I[(EnAE,)", EnAE,]|| < [I[A, A" 4 20,

By Theorem 1.3.4, since the spaces E,, H are finite-dimensional, there exist normal

operators A, acting in F, H such that
1EZAE, — Aull < C(I[A, A7) +26,)"2, (AWl < (1A
Then the operators B,, = A,, & S,11 D Snye @ ... are normal and satisfy
1B, — Al < (I[A%, AJll +26,)"° + 60, [|Ball < Al

The operator K is compact, hence d,, — 0. Taking a sufficiently large n, we can
choose A; = B,,.

Assume now that [A, A*] ¢ IC(H), i.e. dess > 0. Since df¥(A) < Seld | we can
apply Theorem 1.3.4 to the equivalence class A + K(H) € C(H). We obtain that
there exists a normal element A, € C(H) with [|(A 4+ K(H)) — A¢lle) < < Ol
By Remark 3.3.3, this element has spectrum lying on a curve and admits a normal
pre-image A’ € B(H) with ||A’|| < v/2. Hence, there exist a normal operator A’, a

compact operator K, and a bounded operator R such that
A=A+K+R (3.4.2)

with ||A’|| < v/2 and |R|| < < C6Y2. We have di(A"+ K) = 0 because A"+ K is a

compact perturbation of a normal operator. By Part 1, since

A+ K, (A + K)'JIE < 11A, A+ BIIRI < C(6+6.4),

ess
there exists a diagonal normal operator A; and a compact operator L such that

A+ K=A;+ L and

ILIl < CIIIA + K, (A" + K) [ < Ci(8 + )2,

€ess
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Since A — Ay = L + R, this implies Part 2 of the theorem. B
Similarly to [16], we can obtain the classical BDF theorem as a corollary.

Corollary 3.4.5. Suppose that A € B(H), [A, A*] € K(H), and d$*(A) = 0. Then

A is a compact perturbation of a normal operator.

Proof. Let us repeat the proof of Part 2 of Theorem 3.4.4 for d§®(A) = 0, dess = 0.
We get that
A=A+ K+ R,

where K is compact, A’ is normal, ||A’|| < v/2, and ||R|| can be made arbitrarily
small. Hence, A belongs to the closure of the set from Proposition 3.4.3 with r = /2.

Since the last set is closed, A is a compact perturbation of a normal operator. B
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Chapter 4

The case of the normalized

Hilbert-Schmidt norm

4.1 Proof of Theorem 1.4.1

Lemma 4.1.1. Let —1 < A\ < ... <\, < 1. Then for any k,m € N there exists a

partition
{1,....n}=Ju | La
such that
1 #J < 1.

2. ‘)\z_)\]‘<%; i,jELa.
3. \)\i—)\j\>ﬁ,i€La,jELb,a7§b.

Proof. Consider the following partition {1,...,n} = UIYZT? I;:

i
[j:{l;)\le (L;‘L]},j:—km—i—l,...,km—l;

km' km
1
I 4 = {l: A\ € [—1;—1—#—}}.
km

Let us merge I; with j = r (mod k) into J,:

m—1

Jo=J Takgr, 7=0,1,.. k-1

a=—m
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a=-3 a=—2 a=-—1 a=0 a=1 a=2
-1 1

Figure 4.1: The subset of [—1; 1] corresponding to .J; for m = 3, k = 4.

Obviously, Uf;é J. ={1,...,n}. By the pigeonhole principle, there exists an 7

such that #.J,, < % Let
J=Jn, Lg= U I, a=-m,...,m.
(a—1)k+ro<j<ak+ro
Property 1 follows from the definition of J. Furthermore, every sub-interval of
[—1; 1] corresponding J, consists of k — 1 subsequent intervals corresponding to I,
and we have
E—1 1

A — Aj| < e < o Vi, j € Lq,

which implies Property 2. Finally, two intervals corresponding to L, and L, with
a # b are separated by one of the intervals corresponding to Ixi,,, and hence

Property 3 is true.
Proof of theorem 1.4.1. We can choose a basis in C" such that
X =diag(Ag, ..., An), —1< A <...<\, <L
Let us apply Lemma 4.1.1 to X for some k,m € N (we shall fix their choice later).
We obtain a partition {1,...,n} = JU.— . L,. Let
X' = diag(p, - - -5 pn),

where
Ajs j€edJ

Hi =
% (min Ar + max /\k> , kel,.

k€L, k€L,

Obviously, || X’|| < 1. Property 2 from Lemma 4.1.1 implies [A; — ;| < 5= for all

j. Hence,
1 < 1
ne2 12 -
X = XI5, = - ; 1y — A" < T2 (4.1.1)
In the same basis, let Y = {Y};}7';_, so that [X,Y];; = (A — A;)Yi;. We have
D N = NP = . (4.1.2)
ij=1
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Let us define Y’ = {Y/;}7*,_, by

Y.

ij5

) db: 1,5 € Ly;
Yz‘j -
0, otherwise.
The matrix Y is self-adjoint and block diagonal. The blocks of Y are sub-matrices
of Y, the norm of each one does not exceed ||Y||, which yields |[Y']| < [|[Y] < 1
Since each block of X' is a scalar matrix, we have [X’,Y’] = 0. Let us estimate the
difference between Y and Y.
nlY =YI5, <y Y > Wl +2)y Y vl (4.1.3)
a#b i€Lq jELy ieJ j=1
In the second sum we used the fact that Y;; = Vji. The first sum can be estimated
using (4.1.2) and Property 3 from Lemma 4.1.1:

YD D WP <EmMY YD = APV < ndPkPm. (4.1.4)

a#b i€Lg jELy a#b i€L, jELy

To estimate the second sum, consider two matrices Y and P,

- Y;‘j, 7€ J;
Yy =
0, i¢J;
L jelJ
P = diag(ps,...,pn), where p; =
0, j&J.
Clearly, Y = PY and ||Y]| < ||V < 1. Moreover,
ZZ| 2 = te(PY2P) < tr P||Y |2 < #J < % (4.1.5)

ieJ j=1

Combining the inequalities (4.1.3)—(4.1.5), we obtain

2
Iy = Y3, < 8Km? + =

Finally, let us fix the choice of k£ and m mentioned in the beginning of the proof,
2 1
=[] = [al

1
X — X'|Jg.n < < g < 20174, (4.1.6)

Then
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and

/ 2
1Y =Y ||lom < 4/6Y/2 + - < V38Y4, (4.1.7)

where we used (4.1.1), the fact that 26"/ < 1, and the inequality [z]™' < 227! for

z=>1.1

4.2 Proof of Theorem 1.4.2

The scheme from Theorem 1.4.1 can be applied simultaneously to the pairs (X3, Xj),
7 =2,...,m. We denote the resulting operators by )?i, i=1,...,m. If 6 <1/16,
then, by (4.1.6) and (4.1.7),

IX = Xillon <264 |1X; = Xillon < VB4, i=2,... m.

Let us estimate the commutators of )N(,

11X, X5 = [XG, Xjlllam < 1(Xs = X)) Xllant

XX = X))o + 10 = X)Xl + XX = X2 < 4v/387,
where we again used (4.1.7) and the fact that ||AB||2,, < ||A||||B]2,n. This gives
11X Xllom < (4V/3 4 67161/ < 85/

and

(X1, X,]=0, i=2....m. (4.2.1)

Let us again apply the scheme from Theorem 1.4.1 to the pairs ()22, X i)y J o=
3,...,m. Note that, since the construction preserves common invariant subspaces,
it will also preserve the relations (4.2.1). Hence, we can repeat this m — 1 times and
obtain a set of m commuting operators X7,..., X/ . Let us find the conditions on §
and estimate the differences between X; and X].

We denote ¢ from the statement of the theorem by ¢;. On ¢-th step, 9; is replaced
by 0;41 = 8(53/4. This gives

0; = QUA1/A+1/16+4...4+1/417 g1 /471 < LGS
The sequence {d;} is increasing. Condition (1.4.2) implies d,,—; < 1/16 and, con-

sequently, §; < 1/16 for all i = 1,...,m — 1. Hence, the assumptions of Theorem

1.4.1 are met on every step.
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Finally, let us estimate the differences between X; and X/. On the i-th step, the

matrices X are perturbed by matrices whose norms do not exceed

1 i
2(521/4 = Z(Si+1 g 4(51/4 .

Adding up the perturbations, we finally obtain

I1X; — X! |om <2007 + 654+ .+ 624 <

AT L YT L 0 < Ay(I A A+ L) < By,

where v = 64" < 1/4. ®
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Chapter 5

Polynomials of almost normal

arguments in C*-algebras

The proofs of Theorems 1.5.1-1.5.3 consist of two parts. Sections 5.1-5.3 are devoted
to the “operator-theoretic” part, which is essentially based on Lemma 5.1.2. The
“algebraic” part is the existence of representations (5.1.2) for the polynomials (5.2.1),

(5.2.2), (5.2.5) which is discussed in Sections 5.4-5.6.

5.1 Positive elements of C'*-algebras

Recall that a Hermitian element B € A is called positive (B > 0) if one of the

following two equivalent conditions holds (see, for example, [13, §1.6]):
1. o(B) C [0,400).
2. B= H*H for some H € A.

The set of all positive elements in A is a cone: if A, A > 0, then aA + B > 0 for
all real a;, 3 > 0. There exists a partial ordering on the set of Hermitian elements

of A: AL Biff B— A > 0. For B= B*, we have
—||B|II < B<|B|1 (5.1.1)

and, moreover, if 0 < B < 1, 5 € R, then || B|| < . The following fact is also well

known.

65



Proposition 5.1.1. Let H € A, p > 0. Then H*H > p*I if and only if the element

H s invertible and |H7Y| < p~t.
Our proofs use the following simple lemma.

Lemma 5.1.2. Let A € A satisfy (1.5.2), and let

N m—1 N
q:Zr?—i-Z (erj) Jis (5.1.2)
=0 i=0 \j=0

where rj, ri;, g; are real-valued polynomials of the form (1.5.3). Assume that

gi(A;A*) > 0,i=0,...,m—1. Then
q(A, A*) = —C61
with some non-negative constant C' depending on v;, ri;, g;.

Proof. Note that ¢ is real-valued, so that q(A, A*) is self-adjoint. Since g;(A, A*) > 0,
we have ¢;(A, A*) = B} B, for some B; € A. Then

rij(A, AT)gi(A, A%)rij(A, A%) = (Biri; (A, A%))"(Birij (A, A7) = 0.
We also have r;(A, A*)?> > 0. From (1.5.5), we have

lg(A, A% =3 "1 (A, AN =) "1y (A, A gi(A, A%)rip(A, A7) < €76,

J %.J

and now the proof is completed by using (5.1.1).

5.2 Proofs of Theorems 1.5.1-1.5.3

Proof of Theorem 1.5.1. Proposition 5.4.2 below implies that the polynomial
Q(Z72) :pfnax_ |p(Zu 2)|2 (521)

admits a representation (5.1.2) with m = 1, go(z,2z) = 1 — |2|* because, by the
definition of pyay, the polynomial ¢ is non-negative on the unit disk.

Let us apply Lemma 5.1.2 to ¢. By (1.5.5), we have go(A, A*) =1 — AA* > 0.
Therefore

q(A,A") =2 =Ci(p)él
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from which, using (5.2.1) and (1.5.5), we get
P — P(A, A7) p(A, A7) = —Ca(p)ol,

p(A, A ) p(A, A*) < (Phax + C2(p)d) I

and

Cs(p)o
2Pmax
Proof of Theorem 1.5.2. Let now puyay := max.cs|p(z, z)|. By Theorem 5.4.1,

[P(A, A) || < Prnax +

the polynomial
(2, 2) = Phas + EPmax — [p(2, 2) 7 (5.2.2)

admits a representation (5.1.2) with
go(z,2) =1— 2%, gi(z,2)=|z=N*—R?, i=1,....,m—1, (5.2.3)
because it is strictly positive on the set S. Note that
S={2€C:gi(2,2)>0,i=0,...,m—1}. (5.2.4)
Proposition 5.1.1 and (1.5.9) imply
gi(A,A") = (A= ND)(A= NI =R >0,
so we can again apply Lemma 5.1.2. Using (1.5.5), we obtain
q(A,A*) > —-Cy61, Cy >0,

p(A, A)p(A, A*)* < (pfnax + EPmax + Ca(p, €)0) 1,

and

e | Gip,e)o Cy(p, )6
||P(AaA*)H<pmax\/1+p + 2]55 ) <pmax+a+—2;p )0 o
max max max

Proof of Theorem 1.5.3. Fix v > 0. By Theorem 5.4.1, the polynomial

q(2,2) = |p(2,2) — pl* = 5" + . (5.2.5)

also admits a representation (5.1.2) with the same g; given by (5.2.3). This is
because, by the definitions of p and s, we have ¢(z,z) > 0 for all z € S. Since
gi(A, A*) > 0, Lemma 5.1.2 implies

g(A, A*) > —CSI, C > 0.
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Using (5.2.5) and (1.5.5), we obtain
(p(A, A*) — uI)*(p(A, A*) — ) > (3 —y = C'6) 1. (5.2.6)

Let us choose v and dq such that v + C'§ < 3?/2. Now, (5.2.6) and Proposition
5.1.1 yield

v O

e < %_1 +—3 +
Va4

1(p(A, A) = uD) M < (52 — 7 — C'5)

e

Choosing v < 223, we obtain the required inequality with »3C" instead of C.
The constant C’, in general, depends on p, 5,7y, and u. Let us show that the

theorem holds with C' independent of u. For |u| = ||p(A, A*)|| + 5 it is obvious as

1
<t
| = [lp(A, Al

Thus we can restrict the consideration to the compact set

[(p(A, A7) = uD)7H| <

M = {p € C: [u] <lp(A, A)|| + 2, dist(u, p(5)) = »}.

The estimate ¢(z,z) > « holds for all 4 € M. The number N of the polynomials
r; and r;; as well as their powers and coefficients are bounded uniformly on M
by Remark 5.6.1. Since C’ depends only on these parameters, C' may be chosen
independent of y. R

5.3 Corollaries and remarks

Remark 5.3.1. As mentioned in the beginning of the section, the proofs rely on
the existence of representations of the form (5.1.2) for certain polynomials. In
addition, we need continuity of such a representation with respect to the parameter
i to establish Theorem 1.5.3. We are also interested in the possibility of explicitly
computing the constants C' and &y, which may be important in applications. It is
clearly possible if we have explicit formulae for the polynomials in (5.1.2). We show

below that this can be done in Theorems 1.5.2 and 1.5.3 (see Remark 5.6.1).

Remark 5.3.2. In general, it is not possible to find a constant C' in Theorem 1.5.1

which would work for all polynomials p. As an example, consider A = My(C),

0 Vo

A= , 0<do<l
0 0
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It is clear that the element A satisfies (1.5.9). Let € < 1. There exists a continuous
function f such that f(z) = —1/z whenever |z| > ¢ and |f(z)| < 1/¢ for |z| < 1/e.
There also exists a polynomial ¢(z, z) such that |¢(z, Z) — f(2)| < € for |z] < 1. Now,
let

p(z,2) = = (2 + 2%¢(2, 2)) .

1
€
We have pax < 2 + €2, but, since A2 = 0, p(A4, A*) = A/e and ||p(A, A*)|| = V§/e.

Taking ¢ small, we see that (1.5.7) cannot hold with a C' independent of p.

Proposition 5.3.3. Under the assumptions of Theorem 1.5.2, there exists a con-

stant C(p,€) such that

[T p(A, A7) < max|Imp(z, 2)| + € + C(p, )o.

— p(Z,Z)—‘p(Z,E)‘ .

Proof. 1t suffices to apply Theorem 1.5.2 to the polynomial ¢(z, z) 5

In other words, if the values of p on S are almost real, then the element p(A, A*)

itself is almost self-adjoint.

Proposition 5.3.4. Under the assumptions of Theorem 1.5.2, there exists a con-

stant C(p,€) such that

Ip(A, A)p(A, A)* = I|| < max ||p(z, 2)[* = 1] + £ + C(p, €)9, (5.3.1)
Ip(A, A7)'p(A, A7) = I|| < max [p(z, 2)[* = 1] + & + C(p, )0, (5.3.2)

Proof. 1t is sufficient to apply Theorem 1.5.2 to the polynomial ¢(z, 2) = |p(z, 2) ’—1
and use (1.5.5).1

Remark 5.3.5. Denote the right hand side of (5.3.1), (5.3.2) by ~. If v < 1 then
(1 =N <p(A, A)p(A, A7) < (1 +9)1

and

(1 =91 < p(A,A")p(A, A < (1 + 7)1,

which implies that p(A, A*) and p(A, A*)*p(A, A*) are invertible. The element

U = p(A, A%) (p(A, A*)*p(A, A7) "/?
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is unitary (because it is invertible and uu* = 1) and close to u,

1
p(AAY) = U < 1+7(——1)—>0 as — 0.
Ipa.4%) Ul < VI+5 (= .

Thus if the absolute values of p on S are close to 1 then p(A, A*) is close to a unitary

element.
Definition 5.3.6. The set

o (A)={NeC:|[(A-XD)7Y| > 1/} Ua(A)
is called the e-pseudospectrum of the element A € A.

Its main properties are discussed, for example, in [12, Ch. 9]. Note that, under the
assumptions of Theorem 1.5.3, 0.(A) C O.(S) for all ¢ > 0, where O.(S) is the
e-neighbourhood of S. If A is normal then

0.(p(A, A7) = O, (p(o(4))), s >0.
The following statement is Theorem 1.5.3 reformulated in these terms.

Proposition 5.3.7. Under the assumptions of Theorem 1.5.3, for all € > 0 and
% > 0 there exist C(p, »,¢) and do(p, »,€) such that

0. (p(A, A7) C O.(p(S)), Vo < do(p, >, ¢),
where ()7 = 371+ e+ C(p, »,¢€)0.

Proof. Assume that dist(u, p(S)) = ». By Theorem 1.5.3, ||(p(A4, A*) — ul)7|| <
(»)~! and, consequently, i ¢ o, (p(A, A*)). B

5.4 Representations of non-negative polynomials

This section is devoted to a special case of the following theorem, which is often called
Putinar’s Positivestellensatz. As usual, we denote the ring of real polynomials in n

variables by Rzq, ..., x,].
Theorem 5.4.1. [32] Let go, ..., gm-1 € Rlz1,...,2,]. Let the set
S={xeR": gi(x)>0,i=0,...,m—1}
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be compact and nonempty. If a polynomial p € Rlzy,...,x,] is positive on S then

there exist an integer N and polynomials
ri,1i € Rlzq, ..., 2z, i=0,...,m—1, j=0,...,N,

such that

p=>Y 1+ i (Z ri) gi- (5.4.1)

5=0 i=0 \j=0
The first result of this type was proved in [7] for the case m = 1 with S being a
disk. The proof was not constructive and involved Zorn’s Lemma. In [32], Theorem
5.4.1 was proved in a similar way. In [35] and [28], an alternative proof of Theorem
5.4.1 was presented with its major part being constructive and based on the results
of [31].

In Section 5.2, we have used Theorem 5.4.1 with the polynomials
gpo)=1—|2* g@) =z-N*-R: i=1,...,m—1, (5.4.2)
where z = (21, 29), |z|* = 23 + 23, \; € R?, and R; € R. Let

S={reR*:g(x)>0,i=0,...,m—1}. (5.4.3)

Figure 5.1: An example of the set S
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As before, the set S is a unit disk with several "holes” centred at \; and of radii
R;, see Figure 5.1.

In the next section, we give a constructive proof of Theorem 5.4.1 for the poly-
nomials (5.4.2). It turns out that in this case the proof simplifies and can be made
completely explicit.

If we replace positivity of p with non-negativity, then for m = 1 the result still

holds.

Proposition 5.4.2. Let p € Rlxy, 25| be non-negative on the unit disk {x € R? :
|z| < 1}. Then for some N it admits a representation
N N
p= ZTJQ + <ZS?) (1—1z?),
5=0 j=0
where 1;,s; € Rlzy,29], 7 =0,...,N.

Proposition 5.4.2 is a particular case of [34, Corollary 3.3]. We have used it to
obtain the representation (5.1.2) for the polynomial (5.2.1) in Theorem 1.5.1. Note
that, in contrast with Proposition 5.4.2, the condition p > 0 on S in Theorem 5.4.1
cannot be replaced by p > 0 (see Remark 5.6.2 below).

5.5 Constructive proof for the polynomials (5.4.2)

The proposed proof relies on the general scheme introduced in [35] and [28] for the
purposes of proving Theorem 5.4.1. In the special case (5.4.2), we make all the
constants “computable” and also added a slight variation, the possibility of which
was mentioned in [28]. Namely, instead of referring to results of [35] which use
[31], we directly apply the results from [31] (see Proposition 5.5.4 and Lemma 5.5.6
below).

We need the following explicit version of the Lojasiewicz inequality (see, e.g.,
[4]). Recall that the angle between intersecting circles is the minimal angle between

their tangents in the intersection points.

Lemma 5.5.1. Let go,...,gm_1 be the polynomials (5.4.2). Assume that S # &
and none of the disks {x : g;(x) > 0} with i > 0 is contained in the union of the

others. Then for any x € [—1,1]>\ S the following estimate holds:
dist(z, S) < —comin{go(z), ..., gm-1(x)}.
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If the circles S; = {x : gi(x) = 0} are pairwise disjoint or tangent, then co = R}

min

where Ry = min X R; with Ry = 1. Otherwise, ¢y can be chosen as

V241
N R12nin Sin(@min/2) ’

Co

where Qi s the minimal angle between the pairs of intersecting non-tangent circles

S;.

The proof relies on the following simple “high-school geometry” lemma. By ZBAC
we denote the angle between the line segments AB and AC.

Lemma 5.5.2. Let S, S5 be a pair of intersecting circles with centers at A1, Ao and of
radii Ry, Re. Lety, y' be the intersection points of Sy and Ss, and let ¢ = £(S7,S2)
be the angle between the circles Sy and So. Assume that x lies inside of the first circle,
so that |x — \| < Ry, and suppose also that the points x and Ao are in the same
half-plane with respect to the line \yy. Finally, let |x — y| < min(Ry, Ry)sin /2.
Then

max (R; — |zt — \) . (5.5.1)

-yl <
v =yl < sin /2 =12

Proof. 1t is easy to see that
LYyMAg + Lyl = p or ™ — .

Therefore, max (ZyA1 Ao, ZyAa A1) = /2, which gives

lyy/|
9

= Ry sin ZyA A = Ry sin Zydo A = min(Ry, Ry)sing/2 > |z —y|.  (5.5.2)

Denote the intersection points of the line A\; Ay with the circles S; and S, by 2’ and 2
respectively (the distance between z and 2’ is chosen to be smallest possible). From
(5.5.2) it follows that x lies inside the sector A;yz’.

Let us show that at least one of the following conditions holds:

1) Z(zy, 51) = ¢/2;

2) |z — Ao < Ry and Z(zy, S2) = ¢/2.

Indeed, Zzyz' = ¢/2 or (m —¢)/2. If = does not belong to the intersection of the
disks, then Z(zy,Sy) > Zzyz' > /2, and the first condition holds. If 2 belongs to
the intersection, then max (Z(xy, S1), Z(zy, Ss)) = ¢/2, and either 1) or 2) is true.
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The cases 1) and 2) can be treated in a similar way. Let us restrict ourselves to

the first one.

Figure 5.2: To the proof of Lemma 5.5.2

Denote ¢) = Z(xy, S1). By the cosine theorem for the triangle xy\;, we have

Iw—M%:JR?Hx—yP—ﬂ%W—me¢<\ﬂﬁ—fmx—mﬁn%

because, by assumption, |x — y| < R;sin /2 < R;siney. Consequently,

B |z — y|siny - |z — y|siny - |z — y|sin /2
= = 5
Ry 2 2

R1—|$—>\1|>R1 1—\/1

and this implies (5.5.1). B

Proof of Lemma 5.5.1. Let x ¢ S. Then there exists ¢ such that g;(x) < 0. Let y
be the closest to = point of 5, dist(x,S) = |v — y|. It is clear that y € S;, where
S; = {z € R?: g;(x) = 0}. If y belongs to S; only for a single i, or if it is a tangent
point of S; and S; (but not an intersection point), then

R —|r— A _ —g(a)
Ri + ‘l’ — >\z‘ = Rmin

dist(z,S) = |z —y|=R; — |z — \i| = , 1#0, (5.5.3)

2 =1 _ —go(2)
|LL’|+1 = R(]

dist(z,S) = |z —y| = for 1 = 0, (5.5.4)
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and there is nothing more to prove.
Let € = Ruin Sin(@min/2), and consider the case |z — y| > €. Then, from (5.5.3),
(5.5.4), it follows that —g;(x) > Rpme. However, dist(z,S) < V241 for all z €

[—1,1]2. Therefore,
V2+1

dist(z,S) < —
ist(z, .S) R

g9i(@),
which completes the proof in the case |z — y| > €.

Suppose now that |z — y| < ¢ and y is an intersection point of multiple circles.
First assume that none of these circles is Sy. Then there exists S; such that it
contains y and its centre A; lies in the same half-plane as x with respect to \;y
(otherwise, the point y would not be the closest to « point of S). By Lemma 5.5.2,

—2min g;(z) < — (V2 + 1) min g;(x)
Ruin S0 (0min/2) B2, sin(omin/2)

If one of the circles is Sy, then the proof is essentially the same. There are several

|z —y| <

possibilities. There may exist a pair of circles S;, S;, ¢,7 > 0, satisfying the con-
ditions of Lemma 5.5.2. Or, alternatively, one of the circles may satisfy Condition
1) from the proof of Lemma 5.5.2. These two cases are in fact covered by previous
considerations. The third possibility is when the point x lies outside of Sy and the
angle between xy and S is greater than or equal to ¢ /2. This case is considered in
the same way as the last part of Lemma 5.5.2 using the cosine theorem. We omit
further details. B

For the polynomials

q(x) = Z Gox® € Rlxy, ..., 2],

jal<d
where a = (o, ..., ay) is a multiindex, consider the norm
ol .o
= max . 9.9.5
ol = a0 (5.5.5)

The following proposition is also elementary and is proved in [28]:
Proposition 5.5.3. Let x,y € [—-1,1]", ¢ € R[xy,...,x,], and degq = d. Then
la(x) = a(y)] < @n2 gl — y].

The next proposition, which is a quantitative version of Polya’s inequality, is proved

in [31].
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Proposition 5.5.4. Let f € Rlyy, ..., yn] be a homogeneous polynomial of degree d.

Assume that f is strictly positive on the simplex
Ap={yeR": 520, > y; =1} (5.5.6)
Let f, = miAn f(y) > 0. Then, for any N > M d, all the coefficients of the
yE n
polynomial (y1 + ...+ yn)N f(y1, ..., yn) are positive.

Further on, without loss of generality, we shall be assuming that 0 < g;(z) < 1

for all x € S (if not, we normalize g; multiplying them by positive constants).

Lemma 5.5.5. Under the conditions of Theorem 5.4.1 with g given by (5.4.2), let
p* = I;lelélp(x) > 0. Then

plw) — cod’2 1/2||p||2 Dga) > 5, Vee[-LIP (557)

where an integer k is chosen in such a way that
(2k + 1)p* = mecod®242|p),
and cqy 1s the constant from Lemma 5.5.1.

Proof. Let x € S. Then p(x) > p*. Due to our choice of k, the elementary inequality

(1—-t)*t < 0<t<1, k=0, (5.5.8)

2k + 1
implies that the absolute value of the second term in the left hand side of (5.5.7)
does not exceed %*.

Assume now that z € [—1,1]2\ S. Let y € S be such that dist(z, y) = dist(z, ).
Then Proposition (5.5.3) and Lemma 5.5.1 yield

p(z) = ply) — |p(x) — p(y)| = p* — d*247/?||p|| dist(z, S)

> p* 4 cod®2772||p|| Gunin (), (5.5.9)

where gumin(z) is the (negative) minimum of the values of g;(z). Note that (1 —

Gmin(7))?* > 1. From (5.5.9), we get
(@) = cod®2|p[| (1 = gunin ())** gmin ()
> p(x) = cod®2 2| pl|gmin(z) = p".
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On the other hand, (5.5.8) and the choice of k imply that the terms with g;(xz) > 0

contribute no more than

(m — Deod?2 2 |Ipl| _ p
< i
2% + 1 2

to the sum (5.5.7). The remaining terms in (5.5.7) with g;(z) < 0 may only increase
the left hand side. B

Lemma 5.5.6. Letp € R[zq,x5] andp, = min _p(x) > 0. Then, for some M € N,

z€[—1;1]2
p= > b5ty (5.5.10)
jal<M
where b, > 0,
1+ 1—z 1+ 1—2
n(w) === )= wl) = ul) =7 (55.11)

This lemma was obtained in [31] for arbitrary convex polyhedra and associated linear
functions 7. Below we prove it for the square [—1,1]?, because in this particular

case the formulae are considerably simpler.

Proof. Consider the following R-algebra homomorphism

2 R[?Jl,yz,y?),yzx] — R[!L’l,ﬂ?z], yi = vi(x).

In order to prove the lemma, it suffices to find a polynomial p € Ry, y2, y3, y4] with

positive coefficients such that p(p) =p. lf p= > pijxilxg and
i+j<d

Prw) = > 2pi(yn —y2) (ys — va) (1 + v2 + ys + ya),
i+j<d

then ¢(p;) = p because
ey +ye+ys+yd) =1, 20 —yo) =1, 20(ys — ya) = .
Let
V={y € Ay: 2y + 2yp = 2y3 + 2y, = 1},

where Ay is the simplex (5.5.6). If y € V then pi(y) = p(4dy; — 1,4y3 — 1) > p., as
(4y; —1,4y3 — 1) € [—1,1]*. For an arbitrary y, let yo € V be such that dist(y, yo) =
dist(y, V). Then, from Proposition 5.5.3,

Bi(y) = Pr(yo) — 1P1(y) — Br(yo)| = pe — d*2*7 1 dist(y, V). (5.5.12)
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Let
r(y) = 2(y1 + Yo — Yz — ya)>.

It is easy to see that ¢(r) = 0 and

r(y) = 2y +2y2 — 1) + (2ys +2ys — 1)?, Vy € Ay

If we rewrite the last expression in the coordinates ylj/%” , yl\g” , y?’jiy‘* , yi;%”“ (obtained

by two rotations by the angle 7/4), then we get
r(y) = 8dist(y,V)?, ¥y e Ay (5.5.13)

Let
B B 247541y |1?
(y) + ————(

p2\y) = p1\y
(v) >

We still have ¢(p2) = p. The inequalities (5.5.12) and (5.5.13) imply that

Y1+ Y2 +ys+ y4)d_27"(y)-

24d_3d4Hﬁ1H2

Pa(y) = pe — 227 || dist (y, V) + . dist(y, V)* =

24 | e Y ope o

20 (st V) — =2 ) PPy e A
o (W) - i) 2 wea

(d=D) P2l

Finally, since p, is homogeneous, Proposition 5.5.4 with N > d — d shows

*

that all the coefficients of

Py) = (y1 + y2 + ys + ya) V Pa(y)

are positive. Applying the homomorphism ¢ to p, we obtain the desired represen-

tation of p. B

End of the proof of Theorem 5.4.1. Let us apply Lemma 5.5.5 to p. It is sufficient
to find a representation of the left hand side of (5.5.7), because the second term is
already of the form (5.4.1). By Lemma 5.5.6, the left hand side of (5.5.7) can be

represented in the form (5.5.10). Note that 7; can be rewritten as

1

1
—(1 + 1'1’2) = g

1 (£ 212)* + golx) +23,) - (5.5.14)

Substituting the last equality into (5.5.10), we obtain the desired representation for
(5.5.7) and, therefore, for p. B
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5.6 Some remarks

Remark 5.6.1. If g; are given by (5.4.2) then, in principle, it is possible to write
down explicit formulae for the polynomials appearing in (5.4.1). Indeed, assume
that we have a polynomial p such that p(z) > p* > 0 for all z € S. Then

m—1

p(x) = p(x) + cod2 7 2|lpl| Y (1 = gi())* gi(x), (5.6.1)

=0
where k is chosen in such a way that (2k+1)p* = mcyd?2%+1/2||p||. The second term
in the right hand side of (5.6.1) is an explicit expression of the form (5.4.1), and
the coefficients of p can be found from (5.6.1). From Lemma 5.5.5, we know that
p(z) = p*/2 for all z € [—1;1]% Now it suffices to represent
plx) = Y Puaieh
k+i<d

in the form (5.4.1). Consider the following polynomials

n(y) = Z 2% pii (i — v2) (s — wa) (W1 + 2 + ys +y4) 7,
itj<d

2t

p2(y) = pi(y) + p—* Y1+ Y2 +ys+ Z/4)d72(3/1 + Y2 —ys — 3/4)27

and

2d(d —V)pall

Py) = (g1 +y2 +ys + ?J4)N]52(y) where N > P d.

If we replace y;, i = 1,2, 3,4, with 7;(x) given by (5.5.11) in the definition of p, then
we get p(x). The coefficients of p are positive. Therefore, if we substitute y; with
v and then apply (5.5.14), we obtain an expression of the form (5.4.1) for p(x).
Combining it with (5.6.1), we get the desired expression for p. As a consequence,
if we have a continuous family of positive polynomials with a uniform lower bound
on S and uniformly bounded degrees, then the polynomials in the representation
(5.4.1) may also be chosen to be continuously depending on this parameter, and also

with uniformly bounded degrees.

Remark 5.6.2. In [33], an analogue of Theorem 5.4.1 for a non-negative polynomial
p and m > 1 was established under some additional assumptions on the zeros of p.

The next theorem shows that, in general, Theorem 5.4.1 may not be true if p > 0.
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Theorem 5.6.3. Let g; be defined by (5.4.2), and assume that \; # X\; for some i
and j. Then the polynomial g;g; cannot be represented in the form (5.4.1).

This result is probably well known to specialists, although we could not find it

in the literature. For reader’s convenience, we prove it below. Let g; be defined by

(5.4.2), and let
S;={x € R*: gi(x) =0}, S;(C)={xe€C*:gyx) =0} (5.6.2)

Lemma 5.6.4. Let q € R[zy, x5] be a polynomial such that q(z) = 0 on an open arc

of S;. Then g; | q (that is, q is divisible by g;).

Proof. Consider ¢ as an analytic function on S;(C). Since the set S;(C) is con-
nected, ¢ = 0 on the whole S;(C). Hilbert’s Nullstellensatz (see, for example, [37,
Section 16.3]) gives that g; | ¢* for some integer k (in C[zy, ] and, consequently,

in R[xq1,23]). As the polynomial g; is irreducible, we have g; | . B

Proof. Let the circles S; and S; be given by the equations
(.’L’l — a1)2 + (.1'2 — 0/2)2 = R%, (.771 — 61)2 + (iL‘Q — b2)2 = Rg

Subtracting one from the other, we get a system of a linear and a quadratic equation.
The linear one is solvable because A\; # ;. Substituting the solution into the
quadratic equation, we reduce it to a non-degenerate quadratic equation in one

complex variable, which also has a solution. B

Proof of Theorem 5.6.3. Assume that p = g;g; satisfies (5.4.1). The left hand side
of (5.4.1) vanishes on the set S;. All the terms r7 and r7,g; in the right hand side of
(5.4.1) are non-negative on S; N dS, and therefore are equal to zero on this set. By
Lemma 5.6.4, they all are multiples of g;. Similarly, all the terms in the right hand
side are multiples of g;. Therefore, g; | 7, g; | 74, and g7g? | 1.

Since the polynomials g; and g; are coprime for all k # i, we have ¢? | r?, for
k # i and g7 | rj; for k # j. Thus any term in the right hand side of (5.4.1) is a
multiple of either g7g; or g;g7. Dividing (5.4.1) by gig;, we see that the left hand
side is identically equal to 1, and the right hand side vanishes on the intersection
Si(C) N S;(C) which is nonempty by Lemma 5.6.5. This contradiction proves the

theorem. B
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