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Abstract

Metasurfaces provide an efficient approach to control light wavefronts and have

emerged at the forefront of digital holography. Nevertheless, full-colour image projec-

tion remains challenging. Using a combination of specular and diffuse reflections from
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a metasurface, in analogy to the normal mapping technique, we designed a reflective

metasurface performing in the whole visible spectral range to demonstrate 2D images

with shading effects of 3D objects. The non-interleaved metasurface is based on alu-

minum nanostructures with high and relatively uniform efficiency across the visible

spectrum. It operates under incoherent illumination and does not require polarising

optics to observe images. The integration of the metasurface behind pre-existing trans-

parent colour images is also demonstrated for introduction of 3D effects. Emulating

colour 3D images with flat metasurfaces can be useful for security applications and

decorative purposes. The design of broadband metasurface diffusers is also interesting

for flat optical diffusing elements with engineered properties and display technology.
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Dielectric and plasmonic metasurfaces provide excellent control over the shaping of op-

tical wavefronts via the manipulation of polarisation, phase and amplitude of light.1 Tak-

ing advantage of their subwavelength thicknesses, metasurfaces have shown to be a very

promising technology in a variety of applications including beam steering and focusing,

polarisation and angular momentum control, enhancement of nonlinear effects, as well as

holographic imaging.1–3 Metasurface-based holography has recently attracted attention ow-

ing to the exquisite control and flexibility offered by metasurfaces compared to conventional

holography techniques,4 which results in subwavelength pixel resolution, higher diffraction

efficiency, and potential full-color performances. However, the design of highly efficient

metasurfaces operating across the whole visible spectral range still represents a significant

challenge. Typical approaches for color holography are based on either spatial multiplex-

ing of different wavelength-dependent elements into large unit cells (interleaved designs)5,6

or wavelength-dependent off-axis illumination.7,8 These methods have, therefore, significant
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limitations. In the case of interleaved designs, the broadband spectral response of the meta-

surface is achieved by the combination of elements of different sizes designed for each (red,

green, blue) wavelength,6 resulting in large combined pixels degrading the image quality, as

well as cross-talk between the higher-order diffraction patterns. Cross-talk issues have been

solved by the use of metasurfaces with identical meta-elements but an off-axis illumination,

therefore necessitating different angles of incidence for different wavelengths.

Here, we demonstrate the design, fabrication and characterisation of a broadband reflec-

tive metasurface structure operating throughout the whole visible spectral range, including

the main color wavelengths red, green, and blue (RGB). Unlike the typical techniques to

achieve broadband performances, the metasurface presented in this work is based on a sim-

ple, non-interleaved design of identical meta-atoms, and implements the notion of diffuse

reflection and the concept of normal mapping to control its scattering properties. To illus-

trate the performance of the metasurface design, we demonstrated a 2D image of a cube with

lighting and shading effects, which change according to the illumination angle, emulating the

behaviour of a real 3D cube (Figure 1a). We further demonstrated that the integration of

the metasurface behind a transparent film with 2D colour images introduces 3D effects to

pre-existing 2D images. These operating modalities can be useful for security applications,

as well as artistic and decorative purposes on flat surfaces and display technology. The ap-

proach may be of interest for the design of broadband flat metasurface-based diffusers, as an

alternative to current implementations based on microlens arrays.

When a metasurface imposes a linear phase gradient on the wavefront, the angle of

reflection from the metasurface is defined by the generalised Snell’s law.9 Therefore, the angle

of incidence and the angle of reflection can in general be different (Figure 1b). In this case,

the reflection is called specular, which means that the image formed by the metasurface is

only visible for certain incident angles from a fixed observation point. However, when a linear

phase gradient is combined with a parabolic phase pattern to introduce diffuse reflection, the

variation of the angle of incidence leads to a smooth and progressive brightness change for
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Figure 1: (a) Schematic representation of a flat metasurface (top) used to mimic the shading
and lighting effects of a white 3D cube and a real 3D cube (bottom). The light source
location is marked by a small bright ball. (b) Schematic illustration of mixed specular-diffuse
reflection at the normal direction from a metasurface (black-grey) towards an observer. The
mirror reflected incident light is directed away from the observer (not shown).

an observer (Figure 1b). Using this mixed specular-diffuse reflection method, it is possible to

mimic the normal mapping technique typically used in computer graphics10 and reproduce

shading effects. In other words, the brightness of a flat metasurface changes in response to

the variation of the position of a light source, thus imitating the perception of a real 3D

object.

In order to imitate a 3D cube, the phase pattern, imposed onto the reflected wave by

the metasurface, is the combination of two parts. The first part is a linear phase gradient,

defined separately for each cube face. This linear phase gradient determines the direction of

the surface normal, if we follow the normal mapping technique analogy.10 It is designed to

reflect towards the observer the light incident in the direction normal to the cube face. The

second part is a parabolic phase distribution, which provides the diffuse scattering effect and

essentially mimics the effect of a microlens, usually used in macroscopic optics to achieve

diffuse scattering. The combination of these two phase distributions results in an off-centered

parabolic phase distribution (Figure 2a). This phase pattern is then arranged in 2D square

patches (size 7µm), which are periodically repeated over the face of the cube (Figure 2b-c).
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To avoid discrete diffraction orders due to their periodic arrangement, each square patch has

a random constant phase offset, following the approach for the microlens diffusers.11,12 The

value of the radius of curvature r of the diffuser, providing the parabolic phase distribution,

is also chosen randomly in the range 10–15µm for each square patch. This helps to further

suppress the unwanted diffraction orders. The tight square filling scheme for the phase

patches helps to overcome the image graininess problem (see Supporting Information for the

details of the design algorithm).
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Figure 2: (a) Phase distribution within a microscopic square metasurface patch. A parabolic
phase function (red curve) is combined with a linear gradient (blue curve) and results in the
phase pattern required to achieve combined specular-diffuse scattering (black curve). (b)
Phase distribution as in (a), represented in 2D and discretized in 8 levels from 0 to 2π. (c)
Phase pattern of the metasurface representing a cube, consisting of periodically arranged
multiple square patches as in (b), randomised to avoid unwanted diffraction orders due to
periodicity (see Supporting Information for the design procedure). The individual patch size
is D = 7µm and the radius of curvature of the diffuser r is randomly distributed in the
range r = 10–15µm.

The designed phase pattern was implemented using a Pancharatnam-Berry geometric

phase method based on a reflective metasurface13 and circularly polarised incident light.

The phase modulation is controlled by the orientation of subwavelength aluminum nanorods

located above an aluminum ground layer (Figure 3a). The nanorods are separated from the

ground layer by a magnesium fluoride (MgF2) dielectric layer. To protect the aluminum

metasurface from oxidation, the structure is also covered by a thin layer of the same di-

electric, thus completely surrounding the nanorods. With such a design, the helicity of the
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incident circularly polarised light is preserved, so that specular-diffuse reflected light modu-

lated by the metasurface has the same helicity as the incident light. This is different from

transmissive metasurfaces for which the helicities of the incident and transmitted light are

opposite. In order to achieve a broadband response across the visible spectral range, the

two plasmonic resonances, corresponding to the electric field polarized along and perpen-

dicular to the nanorod axis, should be positioned on the opposite sides of the operating

spectral range14 (see Supporting Information for the details). Aluminum was chosen be-

cause it supports plasmonic resonances at higher frequencies than other materials, such as

gold or silver, therefore extending the operating range of the structure to the whole visible

spectrum, particularly the blue spectral range.5

To find the best geometric parameters for the metasurface elements, numerical simula-

tions using the CST Microwave Studio Finite-Difference Frequency-Domain (FDFD) solver

were performed. The main challenge in the design of the metasurface unit cell was to achieve

a good efficiency at high frequency (blue spectral range). In this range, surface-plasmon po-

laritons (SPPs) are excited at the metal-dielectric interface due to the periodicity of the

structure (see Supporting Information for more details). This results in an unwanted drop

in reflection, compromising the broadband efficiency of the structure. In order to move the

SPP resonance to higher frequencies, the use of aluminum was preferred as a ground layer

material over silver, also suitable in the blue-wavelength range. Despite its lower reflection

compared to silver, aluminum provides a better positioning of the SPP resonance, which is

crucial for the realisation of the broadband response. As a result of the optimisation pro-

cess, the period of the structure was chosen as Px = Py = 190 nm, in order to allow SPP

excitation only for angles of incidence larger than θi = 30◦ (Figure 3b), so that the reflection

and, therefore, the efficiency of the metasurface remain high for incident angles smaller than

θi = 30◦. Further reduction of the period could not be made because of the length of the

nanorods, as the smaller dimensions would affect the performance of the structure in the red

spectral region. This reduced size of the unit cell, however, results in some small cross-talk
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between the neighbouring nanorods, which can be noticed for different nanorod rotation

angles ϕa (see Supporting Information for more details). The optimised structure shows a

reflectance larger than 65% for incident angles up to θi = 30◦ in a broad spectral range from

460 nm to 610 nm (Figure 3b).
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Figure 3: (a) Schematic representation of a metasurface unit cell (h1 = 100 nm is the
aluminum film thickness, h2 = 30 nm is the MgF2 spacer thickness, h3 = 100 nm is the MgF2

protective layer thickness, Px = Py = 190 nm are the unit cell sizes in x− and y−directions,
respectively, L = 150 nm, W = 60 nm, and H = 30 nm are the aluminum nanorod length,
width, and height, respectively. Illumination configuration is also shown with ϕa being the
angle of rotation of the nanorod with respect to the x-axis and θi being the angle of incidence
(in the xz plane). (b) Numerically simulated reflectance spectra (LCP) for the nanorods with
ϕa = 0◦ and different angles of incidence θi. Color bars mark the maxima of the camera
sensitivity in each RGB channel: 610 nm for R, 540 nm for G, 460 nm for B. (c) SEM image
of the fabricated metasurface.

The designed metasurface was fabricated using electron beam lithography (EBL) (see

Supporting Information for the details). The phase pattern required to imitate a 3D cube

is encoded in 8 steps via the rotation of the nanorods, which induce the phase modulation

Φ = 2ϕa for the reflected wave (Figure 3c). For the image projection, the metasurface pattern

is illuminated by a weakly focused, incoherent white light source (tungsten-halogen lamp)

at a varying angle of incidence θi. The structure performs under incoherent light because

a coherence length of the source of the order of the size of a single square phase patch

(7µm in our case) is sufficient for the operation of the metasurface pattern, according to the

Van Cittert-Zernike theorem.15 A broadband polarizer and a quarter-wave plate are used
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to produce the left circular polarization (LCP) of the incident beam. Specular and diffuse

light with the same helicity as the incident light (LCP) is generated due to the geometric

phase modulation from the metasurface in the direction normal to the metasurface, at which

observations are made. This LCP light is collected by a lens and imaged onto a colour

CMOS camera (see Supporting Information for the details on the experimental setup). A

small part of the incident LCP light, which is not affected by the metasurface, is mirror

reflected with an opposite helicity (RCP), and is not observed in the direction normal to

the surface. Therefore, no additional polarising optics (analyser) is needed after the light is

reflected by the metasurface, as only LCP light is directed along the normal to the surface.

For image observation, the white color balance of the camera was first set using the image

of a white paper sheet and the gains of the three RGB color channels were adjusted to get

equal signal in each of them. The full-color image has a slight blue-green hue (Figure 4a)

because the implemented phase pattern was optimized for a central wavelength of 532 nm,

in the middle of the operational range (as described in Supporting Information). All three

RGB channels contain almost equal signal levels.

Several projections of the cube were then recorded for different angles of illuminations of

the metasurface from θi = 20◦ to θi = 70◦ (Figure 4b). The metasurface performs similarly

to a 3D object: the faces turned towards the light source become dimmer for higher angles of

incidence. Up to an incident angle of approximately θi = 30◦, the colouring of the projected

image remains practically the same, however, its brightness decreases with the incident angle,

as the diffraction efficiency decreases for the main RGB wavelengths (Figure S4c). For large

incident angles, the pattern colour changes from blue-green to red, due to the non-uniform

change of the efficiency of the metasurface with the increase of the angle of incidence (Figure

3b). These observations are in agreement with the angular distribution of the reflectance for

different wavelengths (Figure S4b-c).

In order to demonstrate the potential of the designed metasurface for the introduction

of 3D perception of pre-existing 2D colour images, the metasurface was combined with
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transparent photographic film slides (reversal film) with printed colour images. A digital

color checker pattern (Figure 4c) was printed on a 36 x 24 mm slide using a resolution of

8192 x 5462 pixels. This pattern displays colour images when observed in transmission, but

no 3D effects (Figure 4e). When the slide is carefully positioned on top of the metasurface to

match the color checker pattern and the metasurface (Figure 4d), the 3D shadowing effects

are observed for each individual RGB parts as well as a white part of the pattern (Figure 4f).

The metasurface performance remains globally the same: the faces closer to the light source

become brighter. The slightly less pronounced 3D effects are the result of the lower contrast

of the image, due to the increased scattering of the light from the film in the darker regions

(opposite to the light source). In this demonstration, the metasurface acts as a back diffuser,

similar to LCD display designs.

The projected images were also observed for a fixed angle of illumination θi but different

angles of rotation of the metasurface γs (Figure 5). The faces of the cube become brighter

when turned towards the light source, and vice versa, as a real 3D object behavior. While

these observations were performed using the experimental set-up in Figure S5a, very similar

quality of the 3D image can be obtained using standard 3D cinema glasses (circular film

polarizers) instead of the the research-grade broadband polarizer and quarter waveplate in

the illumination path, emphasising the practical potential of the design (Figure S6).

In summary, we have demonstrated a full-colour visible-band metasurface that generates

3D images by emulating shading effects upon changes of the illumination conditions. Unlike

typical metasurface-based holography techniques, this method does not rely on interleaved

nanostructures for wavelength multiplexing or wavelength-dependent off-axis illumination

to achieve full-color imaging. Using a simple but carefully optimised metasurface design,

the structure shows broadband performance and its operating range includes the main vis-

ible colors: red, green, and blue. The metasurface operates under incoherent illumination

with an incandescent light bulb and is tolerant to the quality of the polarisation of the

illuminating light, so that an illumination through inexpensive 3D cinema glasses can be
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Figure 4: Color image generated by the metasurface observed in the direction normal to the
sample, while illuminated by incoherent white light at the incident angle θi = 30◦, together
with the images in separate red, green, and blue colour channels. (b) The dependence
of the colouring and brightness of the image on the angle of illumination ranging from
θi = 20◦ to θi = 70◦ with a step of 5◦ (see Figure 3a for the definition of the angles). (c)
Schematic representation of the 2D digital color checker pattern used for visualisation. (d)
The transparent photographic film slide with printed color checker pattern placed on top of
the metasurface. (e-f) The observed images (e) without and (f) with the metasurface behind
the transparent slide with a colour checker pattern. Images recorded at different angles of
rotation γs of the metasurface illuminated at an angle of incidence θi = 30◦ from the left
side.
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Figure 5: The cube images observed for different angles of rotation γs of the metasurface.
The angle of incidence is fixed to θi = 30◦. The metasurface is illuminated with white
incoherent light.

11



used and integrated directly onto a metasurface. No polarisation optics is required in the

observation path. The metasurface can also be used as a back reflector to introduce 3D per-

ception of pre-existing transparent 2D colour images. The visual 3D effects relying on color

metasurface-based image generation can be used for security applications, where different

methods, such as rainbow holograms, are used in hologram stickers for protection against

counterfeiting. Dynamically controlled metasurface structures can also be achieved for the

realization of 3D motion pictures.16 More generally, the interesting properties of the diffuse

scattering from planar metasurfaces with nanoscale design can find applications in multiple

domains, where diffuse materials or conventional microlens diffusers are typically used, such

as in display technology, metrology, as well as in the design of optical systems requiring off-

axis geometries and bespoke scattering properties. The phase modulation properties of the

metasurface can also be useful for the development of novel optical elements, where surface

profiling is not required for beam shaping such as, for instance, in GRIN lenses technology.
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