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ABSTRACT 

Follicular lymphoma (FL) is the most common form of indolent lymphoma in northern Europe, 

with approximately 2000 cases diagnosed each year in the UK.  It is a malignancy derived from 

germinal centre (GC) B-lymphocytes and is critically dependent on non-malignant immune cells 

within the tumour microenvironment (TME) for growth and survival.  FL retains a follicular 

structure similar to reactive GCs and, like its non-malignant counterparts, is infiltrated by T 

follicular helper cells (TFH).  TFH are a specialised subset of CD4+ T-cells that are essential for 

supporting proliferation, affinity maturation and differentiation of healthy GC B-cells.  In FL, TFH 

appear to create a tumour-permissive environment that supports FL growth, although the 

mechanisms by which FL B-cells and TFH provide mutual support are not known.   

The aim of this thesis is to investigate the hypothesis that TFH play a key role in driving FL growth 

and progression.  Here, the nature of interactions between TFH and FL B-cells, both in in vitro 

culture and in archival FL tissue, are explored using novel imaging techniques. 

Firstly, it is shown that TFH are identifiable within FL lymph node (LN) tissue and fine needle 

aspirate, comprising just over a quarter (28.6%) of all CD4+ T-cells.  Secondly, it is demonstrated 

that these FL cell suspensions can be used to explore the mutual role of TFH and FL B-cells on cell 

survival and activation in vitro.  Attempts were made to overcome the limited availability of LN 

tissue by generating TFH from peripheral blood T-cells.  However, it was not possible to 

successfully obtain cells with a true TFH phenotype from either CXCR5+CD4+ T-cells or naïve T-

cells. 

In culture studies, expression of the activation markers CD86 and HLA-DR on FL B-cells was 

enhanced by co-culture with TFH, but not by other, non-TFH CD4+ T-cells.  FL B-cell survival was 

also higher in the presence of FL T-cells, including TFH.  Conversely, ICOS-L expression was lower 

on FL B-cells that were cultured with TFH, compared to without, indicating the formation of active 

ICOS/ICOS-L interactions.  ICOS stimulation is known to be critical for TFH survival.  Accordingly, 

co-culture with FL B-cells increased survival of TFH and supported persistence of the TFH 

phenotype in vitro.  FL B-cells also increased expression of the activation marker CD69 on TFH.  

These results demonstrate dynamic, mutually supportive interactions between TFH and FL B-

cells.  

In FL tissue, there was a close spatial correlation between TFH and expression of MYC in FL B-cells 

by confocal immunofluorescence microscopy.  However, accurate characterisation of complex 

cell populations in FL tissue requires highly multiplexed imaging techniques.  Use of imaging 
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mass cytometry (IMC) was explored as a novel method to assess spatial interactions of TFH within 

the FL TME.  This technique allowed assessment of 20 antigens within the same tissue section 

and could identify TFH in archival FL tissue.  It was possible to replicate previously published 

findings with confocal imaging by demonstrating a very close correlation between TFH and FL 

proliferation.  This novel imaging technique holds the ability to greatly enhance our knowledge 

of spatial interactions within FL tissue and potentially identify prognostic networks within the FL 

TME in future.   

This thesis provides insights into the mechanisms by which TFH and FL B-cells co-operate to 

provide mutual support and promote FL growth.  TFH therefore represent an exciting potential 

therapeutic target in FL.  Given the critical role that the TME plays in supporting FL growth, better 

understanding of these interactions will assist in developing novel therapeutic strategies to 

improve patient outcomes.    
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CHAPTER 1: INTRODUCTION 
 

The principal role of B lymphocytes is to produce a diverse and specific range of antibodies that 

provide humoral immunity against a large range of pathogens.  In order to achieve this, maturing 

B-lymphocytes undergo rapid proliferation and a series of genomic changes that enhance their 

affinity for target pathogens.  This requires support from a specialised subset of T-cells: T-

follicular helper cells (TFH).  However, these processes are error-prone and can lead to the 

development of malignant lymphoma.  Follicular lymphoma (FL) is a malignancy derived from 

germinal centre (GC) B-cells.  It is characteristically infiltrated by TFH, which play a key role in 

supporting FL growth and progression.  This chapter first details the role of TFH within normal 

lymphoid tissue, before outlining the clinical features of FL and lastly describing the role of TFH 

in the pathogenesis of FL. 

 

1.1. T Follicular Helper Cells in Health and Disease 

1.1.1. The Normal Germinal Centre Reaction 

The germinal centre (GC) is a specialised structure within secondary lymphoid tissue that is 

responsible for B lymphocyte maturation, leading to the generation of highly specific, affinity-

matured antibody responses.  GCs form a niche where B lymphocytes are able to form antigen-

dependent interactions with T-cells, supported by follicular dendritic cells (FDCs) and other 

stromal cells, which induce GC B-cell survival, proliferation and maturation.  Normal GCs show 

evidence of polarisation, with ‘light zones’, where B-cells interact with cognate (antigen-specific) 

T-cells, and ‘dark zones’ comprised primarily of rapidly proliferating B-cells, known as 

‘centroblasts’ (Figure 1.1) (De Silva and Klein 2015).   

T follicular helper cells (TFH), are a specialised subset of CD4+ T-cells that are resident solely within 

secondary lymphoid tissue and are responsible for providing help to maturing B-cells.  TFH are 

the rate-limiting step in the GC reaction that determines B-cell fate and proliferation (Gitlin, et 

al 2014).  Competition for TFH support ensures that survival and proliferation signals are only 

provided to GC B-cells expressing high-affinity immunoglobulins (Ig) in a process known as 

positive selection.  Interaction with TFH is also necessary to initiate class switch recombination 

(CSR) and somatic hypermutation (SHM) in GC B-cells, the two essential processes required for 

Ig affinity maturation (Crotty 2014).  Interactions with TFH in the light zone trigger migration of 

GC B-cells into the dark zone, where they undergo rapid clonal proliferation and SHM.  GC B-

cells then return to the light zone, where they receive further TFH support, which determines 
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whether they undergo additional cycles of proliferation or differentiate (Luo, et al 2018).  This 

GC reaction is essential for generating an effective humoral immune response and creating B-

cell memory for long term immunity. 

 

Figure 1.1. Diagrammatic representation of the germinal centre reaction. TFH (pink) provide B-

cell support to drive B-cell proliferation, differentiation, CSR and SHM. Reprinted by permission 

from Springer Nature: Dynamics of B-cells in Germinal Centres, De Silva and Klein, Nature 

Reviews Immunology 2015;15:137-148 ©. 

 

1.1.2. Affinity Maturation and AID 

During CSR, double-stranded DNA breaks are introduced to allow switching of the Ig heavy chain 

locus and production of Ig isotypes other than IgM, appropriate to the anatomical location and 

pathogen.  SHM is a process of targeted mutagenesis within the Ig variable region genes (IgV) 

that alters affinity for the target antigen.  Both CSR and SHM are processes critically dependent 

on the action of the DNA-modifying enzyme activation-induced cytosine deaminase (AID) 

(Muramatsu, et al 2000, Revy, et al 2000).  AID directly induces targeted mutagenesis of Ig genes 

through deamination of cytosine residues and replacement by uracil on single-stranded DNA in 
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proliferating lymphocytes.  This leads to base pair transitions and transversions, as well as the 

double-stranded DNA breaks that facilitate CSR. AID-related mutations are identifiable by their 

predilection for WRCY base pair sequences (Martin, et al 2002). 

These processes allow generation of highly-specific antibodies against a diverse range of 

pathogens but the unique DNA remodelling events that occur during B-cell maturation also 

make B-lymphocytes susceptible to developing deleterious mutations and chromosomal 

translocations involving Ig genes.  Physiological AID-related mutations within the Ig genes are 

described as ‘on-target’, however aberrant or ‘off-target’ action of AID on other genes has been 

implicated in lymphomagenesis (Alexandrov, et al 2013, Pasqualucci, et al 2008, Ramiro, et al 

2004). 

 

1.1.3. T Follicular Helper Cells  

TFH are crucial for all stages of the GC reaction. In the absence of TFH, GCs do not form, and B-

cells cannot undergo CSR or SHM.  Patients carrying mutations that block critical steps in TFH 

maturation and/or function exhibit marked defects in humoral immunity and lose the ability to 

produce non-IgM, affinity-matured antibodies or B-cell memory in response to pathogens or 

vaccination (Ma and Deenick 2014).  

Providing help to developing B-cells was the first known functions of T-cells and it has been 

known for over 50 years that antibody production requires the presence of T-cells (Crotty 2015).  

The existence of a specialised subset of T-helper (Th) cells responsible for B-cell help was first 

postulated two decades ago, and identified as a subset of CD4+ T-cells expressing high levels of 

the chemokine receptor CXCR5 (C-X-C Motif Chemokine Receptor-5) that were able to greatly 

amplify IgG production (Schaerli, et al 2000).  These cells were shown to have an effector 

memory T-cell phenotype, lack expression of CD62-ligand and CCR7 (C-C chemokine receptor 7), 

and were highly activated, expressing the activation markers CD69, Human Leukocyte Antigen-

DR (HLA-DR) and inducible co-simulator (ICOS).  It is now known that CXCR5 expression, together 

with downregulation of CCR7, is required for TFH migration and entry into the GC (Lu, et al 2011).  

CXCL13 (C-X-C Motif Ligand-13) is the main chemoattractant responsible for recruiting CXCR5+ 

TFH and B-cells to the GC, and is released by TFH, FDCs and other stromal cells. 

The identification of BCL6 (B-cell lymphoma-6) as the lineage-defining TFH transcription factor 

greatly amplified interest and advanced study in the field of TFH biology (Johnston, et al 2009, 

Nurieva, et al 2009).  BCL6 is the master regulator of the GC phenotype and is expressed in both 
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TFH and GC B-cells.   BCL6 is an obligate repressor of gene expression and co-operates with 

multiple other transcription factors to maintain the GC transcription programme (Crotty 2019).  

It also represses expression of Blimp1 (B lymphocyte-induced maturation protein-1), a selective 

inhibitor of TFH differentiation that reprograms T-cells towards alternative cell fates (Johnston, 

et al 2012, Johnston, et al 2009).  

 

1.1.4. TFH and GC B-cell Maturation  

The basic requirements to support GC B-cell maturation are CD40-ligand (CD40L) signalling, 

Interleukin (IL)-4 and IL-21, all of which are primarily supplied by TFH within the GC niche (Crotty 

2015).  CD40 is expressed on activated T-cells and is a critical regulator of B-cell survival.  CD40 

plays a key role in positive selection of high-affinity B-cells and directly promotes the 

development of plasmablasts in a dose-dependent manner (Ise, et al 2018).  CD40 signalling is 

required for expression of MYC, a key cell cycle regulator and mediator of positive selection, 

which initiates shuttling of GC B-cells to the dark zones and B-cell proliferation (Dominguez-Sola, 

et al 2012, Luo, et al 2018).  CD40L is also necessary to initiate CSR.  Patients lacking CD40 or 

CD40L develop hyper-IgM syndrome, an immunodeficiency characterised by the absence of GC 

formation, Ig class switching and antibody responses to T-cell dependent antigens, which leads 

to early, recurrent bacterial infections (Ma and Deenick 2014).   

TFH provide cytokine-mediated help to GC B-cells through release of IL-4 and IL-21.  TFH 

characteristically release extremely small quantities of cytokines, providing a very constrained 

resource in order to facilitate positive selection (Dan, et al 2016).  Although not specific to TFH, 

IL-21 is considered the signature TFH cytokine and is a potent inducer of B-cell proliferation, AID 

expression and plasma cell differentiation, particularly when combined with CD40 stimulation 

(Eto, et al 2011, Konforte, et al 2009).  IL-21 also upregulates CD86 expression on GC B-cells, 

which in turn provides positive feedback and vital co-stimulation to TFH (Attridge, et al 2014).  IL-

4 is expressed later in TFH maturation and co-cooperates with IL-21 to provide maximum B-cell 

support (McGuire, et al 2015, Weinstein, et al 2016).   

Stable cell adhesion, mediated through the signalling and lymphocyte activation molecule 

(SLAM) family of receptors, is required for effective interactions between TFH and B-cells within 

the GC.  In particular, the absence of SLAM-associated protein (SAP) expression on T-cells leads 

to the complete absence of GC formation with a virtual absence of both TFH and GC B cells (Crotty 

2014, Lu, et al 2011, Qi, et al 2008). 
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1.1.5. B-Cell Support for TFH  

TFH are dependent on reciprocal B-cell support for their development and survival under 

physiological conditions (Choi, et al 2013).  GC B-cells provide key T-cell activation signals 

through both cognate T-cell receptor (TCR) interactions and CD28-mediated co-stimulation.  

Sustained cognate TCR stimulation, either from B-cells or other antigen presenting cells, is 

necessary for TFH maturation, proliferation and persistence (Deenick, et al 2010, Johnston, et al 

2009).   The CD28 ligands CD80 and CD86 are both expressed on activated B-cells and are 

essential for TFH formation and development of GCs (Wing, et al 2014).  CD86 appears to be the 

more potent and specific inducer of TFH differentiation, with minimal effect on development of 

other Th subsets (Salek-Ardakani, et al 2011).  CD80 knockout in mice also results in reduced TFH 

numbers, loss of the TFH phenotype and reduced cytokine synthesis (Good-Jacobson, et al 2012).   

B-cells also provide vital inducible co-stimulator (ICOS) stimulation, which is essential for 

maintenance of the TFH phenotype (Choi, et al 2011).  ICOS ligation upregulates BCL6 and CXCR5 

expression in TFH through activation of phosphoinositide 3-kinase-δ (PI3Kδ).  Blockade of ICOS 

results in rapid and near complete loss of TFH phenotype, with downregulation of BCL6 and 

upregulation of other transcription factors that reprogram cells away from a TFH phenotype 

(Stone, et al 2015, Weber, et al 2015).  Patients with homozygous ICOS deficiency have marked 

hypogammaglobulinaemia, reduced circulating B-cells and CD4+CXCR5+ T-cells (Bossaller, et al 

2006, Grimbacher, et al 2003).   

Bi-directional ICOS/ICOS-ligand (ICOS-L) interactions between TFH and GC B-cells are mutually 

beneficial.  Following TCR ligation, TFH induce increased ICOS-L expression in cognate B-cells 

through both CD40/CD40L signalling and by release of the neurotransmitter dopamine, which 

stimulates very rapid translocation of ICOS-L to the surface membrane.  This feed-forward loop 

strengthens the immune synapse between TFH and GC B-cells, thus enhancing CD40/CD40L 

signalling and is necessary for the selection of high-affinity B-cells (Liu, et al 2014, Papa, et al 

2017).     

 

1.1.6. TFH Regulation and Homeostasis 

Given the critical role of TFH in determining the rate of B-cell proliferation, tight control of TFH 

activity is required to ensure GC homeostasis.  Excess or indiscriminate TFH activity results in 

increased survival of low-affinity B-cells, impaired quality of antibody responses and has been 
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implicated in the development of immune and inflammatory disorders (Fu, et al 2018).  T 

follicular regulatory cells (TFR) are a subset of regulatory T-cells that reside primarily within GCs 

and are responsible for limiting TFH and GC B-cell activity (Linterman, et al 2011).  TFR share many 

characteristics with TFH, including BCL6, CXCR5, ICOS and PD-1 expression, but can be 

differentiated by expression of CD25 and the regulatory transcription factor Forkhead Box P3 

(FoxP3).  Both regulatory T-cells (Tregs) and TFR can restrict generation of TFH and GC formation, 

principally through CTLA4 (Cytotoxic T-lymphocyte-associated protein 4)-mediated 

downregulation of the co-stimulatory molecules CD80 and CD86 (Wang, et al 2015, Wing, et al 

2014). 

Very high levels of the inhibitory receptor PD-1, encoded by the Pdcd1 gene, are unique to TFH, 

and are thus postulated to play a key role in regulating TFH function (Crotty 2014).  PD-1 signalling 

dampens CD3 and CD28 signalling and reduces numbers of TFH.  The PD-1 ligands- PD-L1 and PD-

L2- are variably expressed by B-cells, macrophages and dendritic cells.  Overexpression of PD-L1 

impairs IL-21 expression and Ig production (Cubas, et al 2013, Hams, et al 2011).  However, the 

effects of PD-1 on TFH function are complex.  PD-1 modulates chemotaxis in response to CXCR5 

signalling and promotes the localisation of TFH within GCs (Shi, et al 2018a).  PD-1 signalling is 

also necessary for IL-21 expression; mice with homozygous Pdcd1 knockout have impaired 

production of IL-21 and IL-4, a reduction long-lived plasma cells and lower serum Ig levels, 

despite an overall increase in TFH numbers (Good-Jacobson, et al 2010).  Therefore, in addition 

to the known inhibitory effects, PD-1 signalling can enhance TFH function and promote high-

affinity antibody production. 

HVEM (Herpes virus entry modulator; also known as TNFRSF14) is a member of the TNF (tumour 

necrosis factor) receptor superfamily, which, in conjunction with its inhibitory co-partner BTLA 

(B and T lymphocyte attenuator), functions as a negative regulator of lymphocyte activation and 

proliferation (Vendel, et al 2009).  Both BTLA and HVEM are variably expressed on normal B- and 

T-lymphocytes, and TFH characteristically express high levels of BTLA.  In normal GCs, BTLA 

engagement on TFH by HVEM inhibits TCR signalling and subsequent upregulation of CD40L, 

thereby limiting the provision of help to GC B-cells.  HVEM-deficient GC B-cells have increased 

proliferation and a competitive advantage over HVEM-replete B-cells, which is dependent on 

the presence of TFH (Mintz, et al 2019). 
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1.1.7. TFH Memory and Circulating TFH 

Memory TFH cells exist within secondary lymphoid tissue that can be adoptively transferred and 

re-establish a full, active TFH phenotype upon antigen rechallenge (Choi, et al 2011, Hale, et al 

2013).  CD4+CXCR5+ T-cells in the peripheral blood (PB) have been postulated as the circulating 

counterpart of memory TFH.   The differentiation of such PB TFH-like cells (PB-TFH) requires 

transient BCL6 expression and ICOS stimulation but does not require exposure to GCs, as they 

are preserved in patients with profound GC TFH defects such as SAP deficiency (He, et al 2013), 

therefore the extent to which they represent bona fide memory TFH is unclear.  They also have 

marked phenotypic differences from effector TFH, with absent BCL6 and ICOS expression, 

increased CCR7 expression and variable expression of PD-1 (Schmitt, et al 2014b).  Nevertheless, 

PB-TFH demonstrate enhanced ability to support IgG production and plasmablast differentiation, 

compared with CXCR5-negative PB T-cells (Morita, et al 2011).  The ability of PB-TFH to provide 

B-cell help can be predicted according to expression of additional chemokine receptors.  PD-

1+CCR7lo PB-TFH are more polarised towards a full TFH phenotype and possess enhanced ability 

to provide B-cell help compared with PD-1- or CCR7+ PB-TFH (He, et al 2013).  PB-TFH that co-

express CXCR3 have reduced ability to stimulate Ig secretion and are skewed towards expression 

of Th1 (type 1 T helper cells) cytokines, such as interferon-γ (IFNγ) (Morita, et al 2011).   

 

1.1.8. TFH and Malignancy 

TFH are present within a range of solid organ malignancies, including breast, colorectal cancer 

and lung adenocarcinomas, although their role in these malignancies has not yet been fully 

explored.  In general, higher numbers of intra-tumoural TFH and increased expression of TFH 

genes both correlate with less advanced tumour stage and improved survival (Bindea, et al 2013, 

Gu-Trantien, et al 2013).  TFH in these cancers are associated with formation of ectopic GC-like 

lymphoid structures and correlate with neoantigen load, therefore improved outcomes are 

likely to reflect organised anti-tumour immunity rather than any direct interaction between TFH 

and malignant cells per se (Ng, et al 2018).  However, there are conflicting reports on the role of 

TFH in anti-tumour immunity, potentially due to different methods of identifying and defining TFH 

within malignant tissue.  For example, IL-21 is reported to enhance CD8-mediated anti-tumour 

responses, albeit derived from CXCR5+ ‘TFH’ that were described as PD-1-negative (Shi, et al 

2018b), whilst TFH-derived IL-4 has been reported to inhibit anti-tumour immunity (Shirota, et al 

2017).  
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TFH are the postulated cell of origin for a range of aggressive T-cell lymphomas, now defined 

under the entity ‘nodal peripheral T-cell lymphoma with TFH phenotype’, which includes 

angioimmunoblastic T-cell lymphoma (AITL) (Swerdlow, et al 2016).  These lymphomas are 

closely related to TFH, both in terms of gene expression profile and surface phenotype, with 

expression of BCL6, CXCR5, PD-1, ICOS, SAP and CXCL13.  AITL is characterised by a dense 

infiltrate of proliferating B-cells and FDCs, forming GC-like ‘follicles’ (de Leval, et al 2007, 

Swerdlow, et al 2008).  A recurrent G17V mutation in the RHOA gene occurs in 68-70% of AITLs 

and drives development of a TFH phenotype (Sakata-Yanagimoto, et al 2014).  Similar to their 

non-malignant counterparts, RHOA G17V+  lymphomas show a dependence on ICOS signalling, 

which is provided by ICOS-L-expressing non-neoplastic cells within the tumour 

microenvironment (TME) (Cortes, et al 2018).  The importance of CD28 signalling in these 

lymphomas is highlighted by the occurrence of recurrent translocations and activating 

mutations, which increase binding affinity to CD86 (Rohr, et al 2016, Yoo, et al 2016). 

Conversely, follicular lymphoma (FL) is a malignancy of GC B-cells that characteristically forms 

neoplastic follicles enriched with non-malignant TFH and FDCs, and is also dependent on survival 

signals from its non-malignant tumour microenvironment (TME) (Ame-Thomas and Tarte 2014).  

The role of TFH in the pathobiology of FL is the focus of this thesis and is described in further 

detail below. 

 

1.2. Clinical Features of Follicular Lymphoma 

 

1.2.1. Presentation and Natural History  

FL is the most common form of indolent non-Hodgkin lymphoma (NHL) in the UK, with an 

incidence of 3-4 persons per 100,000/year, equating to approximately 2200 new cases occurring 

per year.  The incidence rises with age, with a median age at diagnosis of 65 years  (Smith, et al 

2015).  FL has a striking geographical distribution; it is one of the predominant forms on 

lymphoma in Europe and North America but is relatively rare amongst Asian communities 

(Anderson, et al 1998).   

Whilst FL can arise within almost any tissue in the body, usual sites of involvement are secondary 

lymphoid organs and the bone marrow.  Typical presenting features include painless 

lymphadenopathy and/or ‘B-symptoms’ (weight loss, night sweats and/or fevers) related to 

increased metabolic activity.  A smaller proportion of patients present with anaemia or other 

cytopenias related to bone marrow infiltration, or obstructive symptoms due to the bulk effect 
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of large tumour masses.  FL is increasingly diagnosed as an incidental finding in asymptomatic 

patients, following investigation for other medical conditions.  

For the small proportion of patients (approximately 10%) that present with localised (stage I) 

disease, radiotherapy alone confers long-term disease-free survival rates of 40-50%, potentially 

signifying disease cure (Guadagnolo, et al 2006, Mac Manus and Hoppe 1996, Petersen, et al 

2004).  However, for the majority of patients that present with widespread disease, FL is 

ultimately incurable with conventional immunochemotherapy regimens.  The aim of treatment 

is therefore to achieve prolonged clinical remission and therapy is usually deferred until patients 

become symptomatic or develop high tumour bulk (Brice, et al 1997).  Choice of frontline 

chemotherapy regimen is a matter of considerable debate but usually comprises either 

bendamustine, CVP (cyclophosphamide, vincristine, prednisolone) or CHOP (CVP plus 

doxorubicin) (Hiddemann, et al 2018, Rummel, et al 2013).  The addition of anti-CD20-directed 

monoclonal antibody therapy to chemotherapy has markedly improved progression-free 

survival in FL and is standard of care, principally with either rituximab or obinutuzumab 

(Hiddemann, et al 2005, Marcus, et al 2017, Marcus, et al 2008).  Following 

immunochemotherapy ‘induction’, treatment usually continues with single agent anti-CD20 

‘maintenance’ treatment for 2 years, to prolong duration of remission (Salles, et al 2011).  

Allogeneic stem cell transplantation is the only therapy that is potentially curative for those with 

advanced stage (widespread) disease but, due to significant transplant-related mortality and 

morbidity, it is usually reserved for multiply relapsed or refractory cases and is only available to 

a select few FL patients, considering patient age and comorbidities (Sureda, et al 2018).  

Median overall survival (OS) has increased with modern treatment regimens to an estimated 15-

20 years (Junlen, et al 2015, Sant, et al 2014).  Despite a prolonged clinical course and favourable 

long-term survival rates, progressive resistance to immunochemotherapy usually occurs with 

successive lines of treatment.  FL remains the leading cause of death, with half of FL patients 

dying of their primary disease (Sarkozy, et al 2017).  The clinical heterogeneity of FL is well 

recognised; an estimated 20% of patients with FL never require treatment (Ardeshna, et al 

2003), whilst a further 20% progress rapidly and have significantly shortened survival.  For 

patients that progress within 5 years of initial immunochemotherapy, the 5-year OS rate is only 

50%, compared with 90% for all other FL patients (Casulo, et al 2015).  In addition, 

transformation to forms of aggressive NHL, largely diffuse large B-cell lymphoma (DLBCL), which 

is associated with inferior outcomes, occurs in an estimated 1-3% of FL patients per year, 

necessitating treatment with intensive chemotherapy (Link, et al 2013, Sarkozy, et al 2016).   
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1.2.2. Prognostic Factors 

Developing strategies to prospectively identify and effectively treat patients with a more 

aggressive clinical course is a major priority in FL.  Clinical scoring systems, including the follicular 

lymphoma prognostic index (FLIPI), FLIPI2 and PRIMA prognostic index have prognostic value 

(Bachy, et al 2018, Federico, et al 2009, Solal-Céligny, et al 2004) but lack sufficient accuracy to 

predict those likely to develop early progression or disease transformation (Casulo, et al 2015, 

Jurinovic, et al 2016).  Tumour parameters on baseline 18FDG-PET (18-fluorodeoxyglucose 

positron emission tomography) imaging, such as metabolic tumour volume and maximum 

standardised uptake value (SUVmax), can potentially predict outcomes after 

immunochemotherapy but require validation and remain research tools at present (Cottereau, 

et al 2016, Meignan, et al 2016).   

A number of secondary treatment endpoints can identify patients with residual disease after 

treatments that have inferior outcomes.  This may warrant treatment with novel agents, entry 

intro clinical trials or treatment intensification.  Prognostic markers include 18FDG-PET response 

(Trotman, et al 2011) and minimal residual disease (MRD) negativity in the blood and bone 

marrow (Pott, et al 2016) after induction immunochemotherapy.  Early relapse is also a very 

strong predictor of adverse outcomes, whether assessed by progression-free survival at 12 or 

24 months or measured by the  presence of ongoing complete remission at 30 months post-

treatment (Casulo, et al 2015, Maurer, et al 2016, Shi, et al 2017).  However, none of these 

measures are able to prospectively identify those with aggressive disease at the time of 

diagnosis.   

Current prognostic indicators are imperfect as they do not reflect the underlying disease biology.  

A number of groups have tried to address this by developing clinico-biological risk scores.  These 

include the M7-FLIPI and POD24-PI, both of which incorporate mutational analysis of up to 7 

genes alongside clinical variables and correlate well with progression-free survival at 24 months 

(Jurinovic, et al 2016, Pastore, et al 2015).  A risk score based on expression of 23 genes can also 

predict early relapse in FL patients receiving R-CHOP or R-CVP chemotherapy (Huet, et al 2018).  

However, the prognostic value of these clinico-biological risk scores is strongly influenced by the 

nature of any treatment given; for example, gene expression profiling does not predict 

outcomes for the increasing number of patients receiving frontline bendamustine 

chemotherapy (Bolen, et al 2019).  Furthermore, it is unclear how many of the genes included 

in these risk scores contribute to FL pathogenesis.  The cellular pathways that drive aggressive 
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disease and high-grade transformation are incompletely understood, which ultimately limits our 

ability to predict disease behaviour or improve outcomes by developing targeted biological 

therapy for these high-risk patients. 

 

1.2.3. Histopathological Characteristics  

FL is a malignancy of GC B-lymphocytes, expressing B-cell and GC markers, including CD19, CD20, 

CD22, CD79a, surface immunoglobulin, CD10 and BCL6.  Unlike their benign counterparts, FL B-

cells characteristically ectopically express the anti-apoptotic protein BCL2 (Marafioti, et al 2013, 

Swerdlow, et al 2008).  FL retains organised FDC networks, expressing CD21 and CD23, which 

support GC-like structures known as malignant follicles, along with variable numbers of 

macrophages, stromal cells., TFH and other T-cells.  Unlike reactive GCs, FL follicles lack zonation; 

small condensed ‘centrocytic’ B-cells, which usually predominate in reactive GC light zones, are 

mixed with larger centroblasts that resemble proliferating dark-zone B-cells (Swerdlow, et al 

2008).  

Histological grading is based on the number of centroblasts visible per high-powered microscope 

field (Table 1.1).  FL grade correlates with tumour proliferation fraction, but this does not reflect 

the clinical phenotype or translate to a difference in survival (Klapper, et al 2007).  The exception 

is grade 3B FL, which is comprised of sheets of centroblasts, without centrocytes.  Grade 3B FL 

frequently contains areas of high-grade B-cell lymphoma, has poorer outcomes compared with 

grades 1-3A and is usually considered a transformed lymphoma, rather than indolent FL (Wahlin, 

et al 2012).  

Table 1.1. Histological grading in FL. HPF: high-powered field 

Grade Definition 

1 0-5 centroblasts per HPF 

2 6-15 centroblasts per HPF 

3A >15 centroblasts per HPF with centrocytes present 

3B Solid sheets of centroblasts 
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1.3. Pathogenesis of Follicular Lymphoma 

 

Acquisition of the t(14;18) IgH-BCL2 translocation is widely recognised as the founder event that 

initiates the development of FL.  Other key pathobiological hallmarks of FL are: 1) alterations in 

epigenetic modifiers, 2) acquisition of somatic mutations and 3) dependence on non-malignant 

immune cells within the TME.  None of these aspects occur in isolation, and FL genotype has a 

clear influence on disease phenotype that links epigenetic, genomic and TME changes.  The 

following section describes how these key factors contribute to the pathogenesis of FL, whilst 

highlighting the interplay between genomic changes, TFH and the wider TME. 

 

1.3.1. t(14;18) translocation 

The t(14;18) translocation is a hallmark of FL and brings the BCL2 gene under the influence of 

the constitutively activated immunoglobulin heavy chain (IgH) enhancer region, leading to 

overexpression of the anti-apoptotic protein BCL2.  This translocation arises during defective 

RAG (recombination activating gene)-mediated V(D)J gene recombination early in B-cell 

development, and IgH and BCL2 breakpoints are highly conserved in FL, consistent with t(14;18) 

as a founding event in FL (Green, et al 2015, Jäger, et al 2000, Tsujimoto, et al 1985).  In normal 

GC B-cells, BCL6 represses BCL2 expression, but in t(14;18)-translocated B-cells this negative 

feedback is interrupted.   Constitutive expression of BCL2 confers a selective advantage by 

allowing rescue of GC B-cells expressing low affinity B-cell receptors (BCR) that would otherwise 

undergo apoptosis (Sungalee, et al 2014).  It also permits survival of cells that acquire additional 

genomic alterations, within a GC environment that facilitates genomic instability.  However, 

expression of a high-affinity BCR is still required to differentiate and exit the GC reaction, 

therefore t(14;18)+ B-cells are unable to mature beyond GC B-cells and continue to express BCL6.  

Characteristic features of (14;18)+ cells include evidence of ongoing SHM, reflecting multiple 

cycles of GC re-entry, and persistent expression of surface IgM/IgD, despite evidence of CSR, the 

so-called ‘allelic paradox’ (Sungalee, et al 2014).  IgG-expressing t(14;18)+ B-cells do not 

repeatedly cycle through GCs, thus IgM+ cells may have a selective advantage in FL (Sungalee, et 

al 2014).   

The IgH-BCL2 translocation is insufficient for lymphomagenesis in isolation.  Low levels of 

t(14;18) are detectable in the peripheral blood in up to 70% of healthy individuals, a large 

proportion of whom do not develop NHL after prolonged periods of observation (Dolken, et al 

1996, Limpens, et al 1995, Liu, et al 1994).  Indeed, 10-20% FL patients lack this characteristic 
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translocation.  Furthermore, in murine models, only a small proportion of mice with the t(14;18) 

translocation develop lymphoma, which usually resembles high-grade lymphoma and is 

accompanied by additional genomic changes (McDonnell and Korsmeyer 1991, Strasser, et al 

1993).  Finally, responses to pharmacological agents targeting BCL2 have been very poor, 

suggesting that FL is not critically dependent on BCL2 expression (Davids, et al 2017).  Additional 

genomic and epigenetic alterations, accompanied by changes in non-neoplastic immune cells, 

are necessary to facilitate the development of FL (Ame-Thomas and Tarte 2014, Dave, et al 2004, 

Okosun, et al 2014). 

 

1.3.2. Epigenetic Dysregulation in FL 

Epigenetic dysregulation is a defining feature of FL and its importance in the pathogenesis of FL 

is emphasised by the finding that over 70% FL patients harbour somatic mutations in more than 

1 histone-modifying gene (Green, et al 2015, Okosun, et al 2014).  Mutations in the histone 

acetyltransferase CREBBP (CREB binding protein) are detectable in around 60% of patients and 

mutations in the histone methyltransferase KMT2D (lysine-specific methyltransferase 2D; MLL2) 

are present in approximately 80%, many of whom harbour multiple mutations (Green, et al 

2013, Green, et al 2015, Morin, et al 2011, Okosun, et al 2014).  Characteristically, clonal changes 

in epigenetic regulators are dominant and are conserved over time, identifying them as key early 

driver mutations (Green, et al 2013, Green, et al 2015, Okosun, et al 2014).  As transactivators 

and repressors of multiple genes regulating a broad range of cellular functions, epigenetic 

modification is likely to have a significant influence on cellular biology and lymphomagenesis.  

Targets of CREBBP include the CIITA (class II transactivator) gene, which upregulates 

transcription of class II MHC (major histocompatibility complex) genes.  Inactivating mutations 

of CREBBP result in a marked reduction in class II MHC expression, which facilitates immune 

evasion by FL cells and leads to a reduction in CD4+ and CD8+ T-cell infiltration (Green, et al 2015), 

highlighting the interplay between genomic/epigenetic change and the TME.   

KMT2D is a tumour suppressor that is usually inactivated by somatic mutations in FL.  KMT2D 

regulates expression of multiple genes that influence cytokine/chemokine signalling, 

lymphocyte migration and plasma cell differentiation (Ortega-Molina, et al 2015, Zhang, et al 

2015).  KMT2D-deficient B-cells have increased resistance to apoptosis induced by CD40 and 

BCR overstimulation, and enhanced proliferation in response to CD40, IL-4 and IL-21 signalling, 

which suggest that KMT2D inactivation allows FL B-cells to derive exaggerated benefit from TFH 

support  (Ortega-Molina, et al 2015, Zhang, et al 2015).  Loss of KMT2D expression co-operates 
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with both IgH-BCL2 and AID to facilitate development of lymphoma in mouse models of BCL2- 

and AID-induced lymphomagenesis (Ortega-Molina, et al 2015, Zhang, et al 2015).   

The histone methyltransferase EZH2 (enhancer of zeste homologue 2) is responsible for 

maintaining the GC gene expression programme and inhibits B-cell differentiation (Beguelin, et 

al 2013).  Activating EZH2 mutations, which occur in 12-25% of FL patients (Green, et al 2015, 

Okosun, et al 2014), are sufficient to initiate development of follicular hyperplasia and 

accelerate lymphomagenesis in animal models (Beguelin, et al 2013).  EZH2 mutations are 

associated with a favourable prognosis and are pharmacologically targetable, although EZH2 

mutations are predominantly subclonal and thus non-driver mutations (Huet, et al 2017) 

 

1.3.3. Other Genomic Aberrations in FL 

HVEM is frequently downregulated through a variety of mechanisms, highlighting the 

importance of this tumour suppressor gene in the pathogenesis of FL.  After t(14;18), the most 

common chromosomal alterations in FL involve the 1p36 locus, which contains the HVEM gene, 

resulting in deletion or uniparental disomy of HVEM in up to two-thirds of patients (Cheung, et 

al 2010, Launay, et al 2012).  Direct HVEM mutations are present in over a quarter of FL cases 

(Boice, et al 2016).  In addition, HVEM and its inhibitory co-partner BTLA (B and T lymphocyte 

attenuator) are both regulated by KMT2D, with reduced expression in KMT2D-mutated 

lymphoma (Ortega-Molina, et al 2015).  Downregulation of HVEM reduces inhibitory BTLA 

signalling in TFH, which increases CD40L expression and potentially enhances the ability of FL TFH 

to provide help to FL B-cells (Mintz, et al 2019).  Loss of HVEM also indirectly facilitates TFH 

recruitment by enhancing the ability of FL B-cells to activate stromal cells, which secrete CXCL13.  

As a result, HVEM-deficient lymphomas have increased numbers of infiltrating TFH and higher 

levels of IL-4 and IL-21 (Boice, et al 2016).  In animal models, loss of HVEM/BTLA signalling 

promotes accumulation of BCL2+ GC B-cells and accelerates lymphomagenesis (Mintz, et al 

2019).   

Recurrent mutations involving the Janus Kinase (JAK) and Signal Transducer and Activator of 

Transcription (STAT) pathways, which play a key role in mediating cytokine signalling, are 

present in 20% of FL cases (Okosun, et al 2014).  These mutations primarily involve the STAT6 

signalling pathway, which mediates B-cell signalling in response to IL-4- a key TFH-derived 

cytokine.  Activating mutations in STAT6 result in heightened responses to exogenous IL-4 

stimulation, as well as increased basal transcription of STAT6-mediated genes (Yildiz, et al 2015).  
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Although only present in a small minority of FL patients at diagnosis (6%), TP53 mutations are 

the only genomic changes that are independently associated with inferior OS (O'Shea, et al 2008, 

Pastore, et al 2015).  Tumour protein 53 (p53) primarily controls genes that promote the DNA 

damage response, cell cycle arrest and apoptosis, however, it also regulates a large number of 

genes involved in anti-tumour immunity.  p53 increases expression of surface MHC, PD-1 and 

PD-L1 in response to genotoxic stress (Munoz-Fontela, et al 2016).  TP53 mutations in FL are 

known to correlate with expression of a TME-related gene expression signature that is 

associated with inferior prognosis and reflects a predominance of macrophage and dendritic 

cell-related genes (Dave, et al 2004, O'Shea, et al 2008). 

Mutations in the CIITA, B2M (encoding β2-microglobulin) and CD58 genes are all associated with 

high-grade transformation of FL.  These mutations alter MHC expression and/or tumour 

recognition by T-cells and thus facilitate immune evasion (Pasqualucci, et al 2014).  Other gene 

mutations that are implicated in FL transformation involve MYC, CDKN2A/B and TP53, genes 

that influence cell cycle progression and/or the DNA damage response (Pasqualucci, et al 2014). 

 

1.3.4. Drivers of Genomic Instability in FL 

Expression of AID within normal GCs intentionally creates genomic instability to facilitate 

acquisition of advantageous mutations within Ig genes.  In malignant FL follicles, this genomic 

instability combined with BCL2-mediated resistance to apoptosis can result in deleterious 

mutations that contribute to disease pathogenesis.  In animal models, development of BCL6-

related GC B-cell lymphomas is dependent on expression of AID (Pasqualucci, et al 2008).  The 

development of lymphoma in t(14;18)+ B-cells is hypothesised to result from recurrent activation 

of AID through repeated cycles of GC entry in order to acquire additional genomic changes.  The 

high levels of intraclonal variation seen within IGHV genes in FL is consistent with persistent 

exposure of t(14;18)+ B-cells to AID-mediated SHM over time (Loeffler, et al 2014, Sungalee, et 

al 2014).  A notable feature of FL is the accumulation of on-target SHM-related mutations within 

IGHV genes that create glycosylation motifs terminating in high mannose residues, which are 

present in approximately 80% patients.  These unusual sequences provide key survival signals 

to FL cells by enabling constitutive antigen-independent BCR signalling through interaction with 

C-type lectins on myeloid cells (Cha, et al 2013, Coelho, et al 2010).  

Studies of paired biopsies at FL diagnosis and relapse have consistently identified AID-mediated 

aberrant SHM as a driver of genomic change in FL.  However, studies differ in their interpretation 

of AID-mediated tumour evolution.  Loeffler et al reported high rates of aberrant SHM at 
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diagnosis, but did not find a correlation between genomic divergence and time, suggesting that 

AID plays a major role in disease pathogenesis (Loeffler, et al 2014).  However, Green et al found 

that most somatic mutations at diagnosis do not contain an AID-related signature but are 

enriched at FL relapse, suggesting that AID facilitates tumour progression (Green, et al 2013, 

Green, et al 2015).  Studies agree that AID-related change is enriched at disease transformation 

within BCL2, MYC and a number of other off-target genes (Correia, et al 2015, Pasqualucci, et al 

2014).   

AID is expressed in the vast majority of FL and correlates with increased mutational load in the 

majority of FLs that express surface IgM  (Hardianti, et al 2004, Scherer, et al 2016).  The Aicda 

gene itself is unmutated and elevated AID expression levels are not required for AID-induced 

lymphomagenesis (Pasqualucci, et al 2008).  However, AID activity is tightly regulated at multiple 

levels and acquisition of off-target mutations in FL may involve a yet unidentified defect in 

guidance of AID to target genes (Zan and Casali 2013).  The pathways involved in upregulation 

of AID in response to CD40, IL-4 and IL-21 signalling are all either intact or enhanced in FL, 

suggesting that TFH may play a key role in stimulating AID expression in FL.  Although direct 

evidence demonstrating that TFH can enhance AID expression in FL is lacking, TFH are seen to co-

localise and maintain direct cell contact with proliferating, AID-expressing B-cells in FL tissue 

(Townsend, et al 2019).  TFH may thus provide a key link between genomic change and the TME, 

as part of a positive feedback loop where TFH encourage genomic instability and acquisition of 

mutations that create a supportive microenvironment and further enhance TFH recruitment.  The 

role of TFH and the wider TME in the pathogenesis of FL will be discussed in the following 

sections.  

 

1.3.5. Tumour Microenvironment in FL 

The ability to evade recognition by the immune system is one of the hallmarks of cancer 

(Hanahan and Weinberg 2011).  Spontaneous regressions without treatment can occur in some 

FL patients, demonstrating the potential of anti-tumour immune responses to exert disease 

control.  FL has developed multiple strategies to evade anti-tumour immunity, such as 

downregulation of MHC and HVEM expression.  However, it is also able to selectively co-opt 

elements of the normal immune system to support its growth and survival.  Indeed, FL is a 

malignancy that is critically dependent on the TME for survival, illustrated by the fact that 

maintenance of FL cells in vitro is reliant on external support from stromal cells, T-cells, cytokines 
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and/or CD40L for survival (Ame-Thomas, et al 2012, Kagami, et al 2001, Smeltzer, et al 2014, 

Travert, et al 2008).  

The importance of the TME in FL was emphasised by a seminal study in 2004, suggesting that 

survival in FL could be predicted by a gene expression signature that reflected the composition 

of non-malignant tumour-infiltrating immune cells, rather than malignant FL B-cells (Dave, et al 

2004).  Two signatures were identified: an ‘immune response 1’ signature reflected increased 

expression of certain T-cell and macrophage genes and was associated with a good prognosis, 

whereas an ‘immune response 2’ signature, predominantly consisting of stromal and other 

macrophage-related genes, was associated with a poor prognosis (Dave, et al 2004).  One 

important caveat is that this study was performed on a heterogeneously-treated population in 

the pre-rituximab era.  Macrophages mediate rituximab-induced phagocytosis, therefore use of 

rituximab abrogates the prognostic effect of macrophages in FL (Canioni, et al 2008, Taskinen, 

et al 2007).  Nevertheless, gene expression studies in the rituximab era confirm that the non-

malignant TME influences prognosis (Tobin, et al 2019).   

However, the extent to which individual immune cell subsets contribute to these observations 

remains unclear.  A large number of studies have used single- or dual-parameter 

immunohistochemistry (IHC) to investigate the association between individual cell markers and 

prognosis and have yielded inconsistent and often conflicting results (Ame-Thomas and Tarte 

2014).  These studies were varied in their methodology, assessed different clinical endpoints 

and, importantly, lacked the resolution to assess the contribution of complex cell subtypes 

within the TME.   

 

1.3.6. Role of T-cells in FL 

FL has generally been thought to create an environment that suppresses T-cell activity, with a 

higher proportion of functionally exhausted T-cells in FL than in healthy lymphoid tissue.  Both 

CD4+ and CD8+ tumour-infiltrating lymphocytes (TILs) have defective cytokine production, 

reduced motility and an impaired ability to form immune synapses (Gravelle, et al 2016, Kiaii, et 

al 2013, Ramsay, et al 2009).  These defects are directly induced by FL B-cells and also occur in 

healthy donor T-cells co-cultured with FL B-cells (Kiaii, et al 2013, Ramsay, et al 2009).  

Approximately 30-40% of intra-tumoural CD4+ and CD8+ T-cells in FL express exhaustion markers 

such as TIM3 (T-cell immunoglobulin and mucin-domain containing-3) and LAG3 (Lymphocyte-

activating gene-3) (Yang, et al 2012).  These phenotypically-exhausted T-cells are highly 

heterogeneous, and their origin is not clear; a small proportion express the transcription factors 
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Tbet and FoxP3, but most do not express known Th lineage markers.  These cells predominantly 

reside in interfollicular areas and express low levels of PD-1 (Yang, et al 2015a).  They are distinct 

from TFH by nature of their distribution, phenotype (lower levels of PD-1 expression, absence of 

CXCR5 and BCL6) and reduced cytokine and intracellular STAT signalling (Yang, et al 2012, Yang, 

et al 2015a).  Importantly, the proportion of both TIM3+ and LAG3+ T-cells correlates with 

survival in FL (Yang and Zhang 2017, Yang, et al 2015a).  

Regulatory T-cells account for a larger proportion of CD4+ T-cells in FL compared to reactive LN, 

tonsillar tissue and other B-cell lymphomas (Ame-Thomas, et al 2012, Le, et al 2016, Myklebust, 

et al 2013).  In co-culture studies, FL B-cells are able to directly enhance Treg generation in 

unselected FL TILs (Le, et al 2016).  FL-derived Tregs possess enhanced ability to suppress 

proliferation and cytokine release in both autologous and allogeneic T-cells, compared with 

reactive Tregs (Hilchey, et al 2007).  However, whilst FL Tregs potentially suppress anti-tumour 

immunity, they also inhibit FL B-cell activation (Le, et al 2016).  The net effect of Tregs on overall 

FL phenotype is therefore unclear and there are conflicting data on the prognostic significance 

of Tregs in the FL TME.  In some studies, FoxP3 expression, particularly in interfollicular areas, has 

been associated with a poor prognosis (Blaker, et al 2016, Carreras, et al 2009), whilst others 

have correlated intrafollicular FoxP3 expression with favourable outcomes (Wahlin, et al 2010), 

or have found no prognostic association (Richendollar, et al 2011).   

It is clear, however, that many CD4+ T-cells in FL are neither functionally exhausted nor inactive.  

FL contains a higher proportion of activated CD4+ T-cells expressing the activation marker CD69 

than reactive LN (Hilchey, et al 2011).  CD4+ T-cells are necessary for the engraftment of FL-like 

lymphoma in animal models and therefore provide active support for FL survival in vivo (Burack, 

et al 2016, Egle, et al 2004b).  Indeed, the appearance of T-cell anergy may, in part, reflect the 

nature of T-cell subsets present, rather than an FL-induced defect in T-cell function.  For 

example, FL T-cells have reduced STAT phosphorylation in response to multiple cytokines, when 

compared with healthy donor T-cells or reactive LN tissue, but the same patterns are replicated 

in reactive tonsillar tissue, which has a very similar T-cell composition to FL (Myklebust, et al 

2013).  One of the striking features characterising both tonsillar and FL tissue is a preponderance 

of TFH.  

 

1.3.7. T Follicular Helper Cells in FL 

TFH comprise almost a third of all CD4+ T-cells in FL, which is similar to reactive tonsillar tissue 

and greater than levels seen in reactive LNs or other B-cell lymphomas (Ame-Thomas, et al 
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2012).  Studies using multiparameter confocal immunofluorescence microscopy have 

demonstrated that the number of TFH and their interaction with FL B-cells closely mirrors 

patterns seen within reactive GCs (Townsend, et al 2019).  Similar to reactive LN tissue, very high 

levels of PD-1 expression differentiate FL TFH from exhausted cells expressing lower levels of PD-

1 (Yang, et al 2015a).  FL TFH have an activated phenotype: they express co-stimulatory ligands, 

such as OX40 and CD70 and lack expression of exhaustion markers, such as TIM3 and LAG3 

(Yang, et al 2015a).  TFH are also functionally active: they have the ability to form immune 

synapses with FL B-cells and secrete IL-4, IL-21 and CXCL13 (Ame-Thomas, et al 2012, Myklebust, 

et al 2013, Townsend, et al 2019).   

Importantly, FL TFH are able to provide support to FL B-cells.  Multiple studies have shown that 

co-culture with TFH protects FL B-cells from apoptosis in vitro (Ame-Thomas, et al 2012, Yang, et 

al 2015a).  Stimulation with IL-4 and CD40 is often used to enhance the survival of FL cells in 

vitro and protects from apoptosis through CD40L-mediated upregulation of pro-survival 

proteins, such as BCL-XL (Travert, et al 2008).  The addition of autologous TFH alone to FL B-cell 

culture is able to provide the same level of protection against apoptosis (Amé-Thomas, et al 

2015).   TFH promote activation of FL B-cells, reflected by increased expression of the activation 

marker CD86, which in turn provides important reciprocal co-stimulation to TFH (Ame-Thomas, 

et al 2012, Yang, et al 2015a).   

There are key differences between TFH derived from FL and reactive tonsillar tissue, with notable 

differences in gene expression and cytokine release (Ame-Thomas, et al 2012).  FL TFH have 

markedly increased IL-4 expression, which induces high basal levels of STAT6 phosphorylation in 

FL B-cells and increased transcription of IL-4 target genes (Amé-Thomas, et al 2015, Calvo, et al 

2008, Pangault, et al 2010).  CD10 expression on TFH correlates with an increased capacity to 

secrete IL-4, and is expressed by a higher proportion of FL TFH than in reactive tonsillar tissue 

(Amé-Thomas, et al 2015).  CD40L expression is also higher in FL TFH, potentially signifying an 

increased capacity to provide support to FL B-cells (Ame-Thomas, et al 2012, Travert, et al 2008).  

CD40 signalling reduces the threshold needed for BCR activation and may contribute to the 

exaggerated BCR signalling responses seen in FL (Irish, et al 2006).  CD40 signalling through NFκB 

is able to bypass the need for BCR signalling altogether in the minority of FL B-cells that have 

impaired B-cell signalling, and heightened responses to CD40L stimulation are associated with 

inferior survival (Irish, et al 2010). 

It has not yet been determined whether TFH are able to recapitulate their role in reactive GCs by 

inducing proliferation or AID expression in FL B-cells.  There are no animal models that accurately 
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recapitulate the indolent behaviour of FL and it is notoriously difficult to stimulate FL 

proliferation in vitro under any conditions; AID expression is predominantly limited to 

proliferating cells.  However, imaging studies of FL tissue demonstrate a very close spatial 

association between TFH and proliferating and AID-expressing B-cells in situ.  In addition, the 

number of TFH closely correlates with the number of proliferating FL B-cells, suggesting that TFH 

may influence the rate of FL proliferation (Townsend, et al 2019). 

FL B-cells express co-stimulatory molecules and it is inferred that they actively support the 

presence and survival of TFH within the FL TME.  However, functional data demonstrating this 

are lacking.  It is unclear whether TFH derive the same level of support from FL B-cells as they do 

from reactive GC B-cells.  In normal GCs, maintenance and proliferation of TFH is critically 

dependent on cognate TCR stimulation; whether this holds true for FL TFH is not known.  

However, intrafollicular T-cells have increased TCR clonality compared to extrafollicular T-cells 

in  FL, suggesting that TFH expansion may be antigen-dependent (Townsend, et al 2019).  The 

nature of any potential antigenic stimulus remains unclear. 

Despite evidence demonstrating that TFH have a pro-tumoural effect and can support FL survival 

in vitro, it remains unclear whether the presence of TFH has an adverse prognostic effect in vivo.  

Increased intrafollicular PD-1, CD57 and CD4 expression, which largely reflect the presence of 

TFH, have all been associated with an increased risk of transformation (Blaker, et al 2016, Glas, 

et al 2007).  Some studies have demonstrated an inverse correlation between intrafollicular PD-

1 expression and survival (Farinha, et al 2008, Richendollar, et al 2011), whilst other studies have 

associated intrafollicular PD-1 expression with favourable outcomes (Smeltzer, et al 2014, 

Sohani, et al 2015, Wahlin, et al 2010).  It is therefore unknown whether TFH can influence the 

clinical phenotype of FL. 

 

1.3.8. Modulation of TFH Activity in FL 

It has been postulated that the balance between TFH and TFR in FL may dictate the disease 

phenotype, although the role of TFR in FL has been relatively underexplored and data to support 

this hypothesis are lacking (Brady, et al 2014).  Similar to reactive LN tissue, TFR represent a 

minority of follicular T-cells, comprising around 10% of CD4+CXCR5hiICOShi T-cells (Brady, et al 

2014).   FL TFR are able to directly suppress proliferation of autologous TFH and reduce activation 

of FL B-cells (Tarte, et al 2017).  TFR correlate in number with TFH in FL, reflecting their migration 

in response to similar stimuli, such as CXCL13 (Ame-Thomas, et al 2012, Hilchey, et al 2011).  

There is evidence of overlap and plasticity between TFH and TFR in FL; there is significant overlap 
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in their TCR repertoire and up to 10% of FL TFH co-express BCL6 and FoxP3 (Hilchey, et al 2011, 

Tarte, et al 2017).  There is also evidence that FL TFH can convert to TFR, although the extent to 

which this occurs in vivo and contributes to disease pathogenesis is unclear (Brady, et al 2014).   

PD-L1 is largely expressed by non-malignant immune cells within the TME (Laurent, et al 2015, 

Myklebust, et al 2013).  FL B-cells generally do not express PD-L1, although weak expression is 

detectable in a small minority (<10%) of FL tissue (Menter, et al 2016).  Expression of PD-1 

ligands is likely to exert a homeostatic effect on FL TFH but will also alter the activity of other PD-

1+ T-cells in the TME.  The net effect of PD-L1 expression on FL biology is unknown and tissue 

expression of PD-L1 does not appear to correlate with clinical outcomes (Blaker, et al 2016).   

Data on tissue expression of PD-L2 is lacking, partly due to the lack of robust, commercially-

available primary antibodies to facilitate assessment of PD-L2 protein expression.  Available data 

suggest that PD-L2 is variably expressed on a minority of FL B-cells as well as other immune cells 

within the TME (Laurent, et al 2015).  At an mRNA level, PD-L2 gene expression correlates with 

improved clinical outcomes, independently of established clinical and genetic prognostic scores 

(Tobin, et al 2019).  The authors of this study observed that reduced PD-L2 expression was 

associated with a general downregulation of the intra-tumoural immune response and 

hypothesised that reduced anti-tumour immunity accounts for this prognostic effect, however 

reduced PD-L2 within the TME may alter and potentially enhance TFH activity.  

 

1.3.9. Co-operation Between TFH and the Wider Tumour Microenvironment 

The majority of FL B-cells maintain BCR expression, are dependent on BCR signalling and have 

exaggerated signalling responses to BCR stimulation (Irish, et al 2006).  BCR stimulation is 

independent from TFH-derived support and requires the presence of other non-malignant cells 

within the TME, such as macrophages and stromal cells.  None of these non-malignant cells act 

in isolation and there is a high degree of interplay between stromal cells, macrophages and TFH 

in the TME that regulates the behaviour of FL. 

FL tumour-associated macrophages (TAM) express the surface receptor DC-SIGN (dendritic cell–

specific intercellular adhesion molecule-3–grabbing nonintegrin), which binds to and triggers 

sustained activation of highly-mannosylated IgM BCRs.  TFH-derived IL-4 and, to a lesser extent, 

IL-21 play a key role in promoting recruitment and differentiation of DC-SIGN-expressing 

macrophages, as well as increasing surface IgM expression on FL B-cells (Amin, et al 2015).  IL-4 

also plays a key role in polarising FL macrophages away from a pro-inflammatory phenotype 
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towards a more immunoregulatory ‘M2’ phenotype.  M2 TAMs aid in creating a tumour-

permissive microenvironment by expressing inhibitory receptors, such as PD-L1, and releasing 

cytokines that enhance recruitment of Tregs to the TME (Yang and Zhang 2017).   

The contribution of stromal cells to the pathogenesis of FL has been relatively understudied, in 

part due to the difficulty in isolating and culturing these cells (Mourcin, et al 2012).  

Nevertheless, available data suggest that stromal cells play a significant role in orchestrating the 

FL niche.  FL mesenchymal stem cells (MSCs) can also induce conversion of macrophages 

towards an immunoregulatory M2 phenotype and enhance macrophage recruitment through 

overexpression of CCL2 (Guilloton, et al 2012).  FL-derived stromal cells (both FDCs and fibroblast 

reticular cells (FRCs)) are able to support the survival of FL cells in vitro (Ame-Thomas, et al 2007, 

Kagami, et al 2001).  FDCs and FRCs can also support the survival of TFH in vitro and enhance TFH 

recruitment through secretion of CXCL13 (Boice, et al 2016).  Stromal cell-derived IL-6 promotes 

TFH differentiation and enhances IL-21 production (Brady, et al 2014).  However, MSCs can also 

upregulate FoxP3 expression and are able to induce conversion of TFH into TFR, although the 

extent to which this occurs in vivo and influences TFH activity is unclear (Brady, et al 2014).   

There is extensive interplay and co-operation between TFH and stromal cells in FL creating a 

positive feedback loop that enhances tumour survival and proliferation.  TFH-derived IL-4 

enhances secretion of CXCL12 by FL stromal cells, which in turn stimulates recruitment and 

activation of FL B-cells (Pandey, et al 2017).  FL B-cells secrete a number of TNF-family cytokines 

that encourage growth of FDC networks, induce differentiation of MSCs into tumour-supportive 

FRCs and activate stromal cells within the TME, which in turn release CXCL13 to promote further 

TFH recruitment (Ame-Thomas, et al 2007, Boice, et al 2016).  

Macrophages and stromal cells in FL therefore promote the development of an 

immunomodulatory, pro-tumour microenvironment.  This requires multidirectional crosstalk 

with both FL B-cells, TFH and Tregs, to create the FL tumour niche, which ultimately facilitates 

immune evasion and tumour growth.  

 

1.3.10. TFH and Novel Therapies 

An expanding number of novel agents are in clinical trials for FL, some of which are licensed for 

the treatment of refractory/relapsed FL and are now moving into the frontline setting.  Interest 

in these agents is rapidly increasing, in order to expand the treatment arsenal for patients with 

relapsed disease and to pursue the goal of ‘chemotherapy-free’ treatment.  The ultimate aim is 
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to be able to deliver precision medicine with agents that directly target the underlying biology 

of FL.  Many novel agents have the potential to alter TFH function, but the effects of these agents 

on the TME have not been fully assessed and are poorly understood.  This section discusses the 

key novel agents that are currently in clinical use and how they may promote or inhibit TFH 

activity. 

Anti-CD20 therapy with rituximab has been established in FL for more than a decade and was 

the first of an ever-expanding portfolio of immune therapies to come into clinical practice.  

However, despite universal CD20 expression by FL B-cells, there is no evidence that rituximab 

therapy is curative or improves overall survival.  TFH may potentially facilitate rituximab 

resistance: the combination of IL-4 and CD40L, both of which are derived from TFH within 

malignant follicles, can rescue FL B-cells from direct rituximab-induced apoptosis (Ame-Thomas, 

et al 2012).  The number of TFH within the LN and PB of FL patients is not altered by rituximab 

treatment, therefore FL-derived TFH can potentially support re-establishment of malignant 

follicles following treatment (Wallin, et al 2014). 

TFH may also play a key role in resistance to BCL2-targeted therapy.  Despite constitutive 

expression of BCL2 in almost cases of FL, clinical results with the BCL2 inhibitor venetoclax have 

been disappointing (Davids, et al 2017).  In vitro studies in chronic lymphocytic leukaemia (CLL) 

suggest that the TME can rescue malignant B-cells from venetoclax-mediated apoptosis.  

Stimulation with CD40L, IL-4 and, to a lesser extent, IL-21 result in upregulation of additional 

anti-apoptotic proteins such as BCL-XL, which protected against venetoclax-induced apoptosis 

(Thijssen, et al 2015).  Similarly, CD40 stimulation by TFH in FL increases BCL-XL expression and is 

likely to confer venetoclax resistance (Travert, et al 2008).  

Other novel agents are likely to downregulate TFH activity.  Both the PI3Kδ inhibitor idelalisib and 

the PI3Kδγ inhibitor duvelisib, have shown clinical efficacy in FL (Flinn, et al 2016, Gopal , et al 

2014).  Multiple PI3K isoforms are present in T-cells but, importantly, PI3Kδ is a key mediator of 

ICOS signalling and is therefore essential for the maintenance and function of GC TFH (Weber, et 

al 2015).  Indeed, PI3Kδ expression in T-cells, but not B-cells, plays a key role in supporting the 

normal GC reaction, thus modulation of TFH activity may contribute to the efficacy of PI3K 

inhibition in FL (Rolf, et al 2010).   

Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have modest clinical efficacy in FL and 

are now being evaluated in combination with other agents (Gopal, et al 2018).  BTK inhibitors 

irreversibly inhibit interleukin-2-inducible kinase (ITK), which is an important component of T-

cell receptor signalling and is a downstream mediator of ICOS signalling via PI3K (Dubovsky, et 
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al 2013, Nurieva, et al 2007).  ITK is expressed by TFH-related T-cell lymphomas, in which there is 

pre-clinical evidence to suggest ibrutinib reduces proliferation and can induce downregulation 

expression of TFH markers (Mamand, et al 2019).  Therefore, BTK inhibitors are likely to inhibit 

TFH function.   

The effects of other novel agents on TFH function are more difficult to predict.  Lenalidomide 

targets the E3 ubiquitin ligase cereblon and is one of the most promising novel agents in FL 

(Fowler, et al 2014, Leonard, et al 2019).  Recently, the RELEVANCE clinical trial demonstrated 

that frontline lenalidomide in combination with rituximab has similar efficacy to 

immunochemotherapy (Morschhauser, et al 2018) and this regimen is now approved in the 

United States for frontline treatment of FL as part of a ‘chemotherapy-free’ approach.  

Lenalidomide has wide-ranging immunomodulatory effects, facilitates pro-inflammatory 

cytokine release and augments T-cell activation and proliferation (Chiu, et al 2019, Gribben, et 

al 2015).  Lenalidomide can also restore defective T-cell immune synapse formation in FL 

(Ramsay, et al 2009).  FL patients treated with lenalidomide-rituximab have a marked early 

reduction in intra-tumoural CD4+ T-cell infiltration but the Th subsets accounting for this 

observation are not known (Fowler, et al 2014).  Whilst lenalidomide-induced changes in 

cytokine profile, such as increased IL-2 and reduced IL-6 expression, may create a less TFH-

supportive environment, the specific effects of lenalidomide on TFH are unknown.   

Monoclonal antibodies against PD-1 have also shown clinical efficacy in FL and are presumed to 

work by enhancing anti-tumour immunity, particularly through CD8+ T-cell-mediated 

cytotoxicity (Lesokhin, et al 2016, Westin, et al 2014).  The majority of commercially-available 

PD-1 inhibitors are IgG4 antibodies that bind to T-cells and block interaction of PD-1 with its 

ligands but do not stimulate antibody-dependent cytotoxicity (Fessas, et al 2017).  These 

antibodies are therefore likely to reduce PD-1 signalling in TFH and increase TFH proliferation, 

activation and cytokine expression (Cubas, et al 2013).  However the effects of PD-1 on TFH 

function are complex and complete blockade of PD-1 signalling may also impair cytokine 

signalling (Good-Jacobson, et al 2010).  PD-1 is also expressed by TFR, Tregs and exhausted T-cells 

(Yang, et al 2019, Yang, et al 2015a); PD-1 inhibitors may have indirect effects on TFH activity by 

modulating TFR activity (Sage, et al 2013).   

In summary, TFH are a potential therapeutic target in FL and may contribute to the efficacy of 

certain agents but can also mediate treatment resistance.  A better appreciation of the effect of 

novel agents on TFH and other T-cell subsets is necessary to understand their mechanism of 

action, predict treatment responses and aid rational design of targeted combination treatments. 
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1.4. Summary 

FL is a GC B-cell-derived malignancy that retains multiple features in common with its non-

neoplastic GC counterparts, including an abundance of functionally-active TFH.  FL is critically 

dependent on its TME and TFH appear to play a key role in creating a tumour-permissive 

environment that supports FL growth.  The importance of TFH is highlighted by the ability of FL 

to harness the advantageous functions of TFH, by enhancing expression of CD40L and IL-4, whilst 

evolving mechanisms to evade their inhibitory effects, such as downregulation of HVEM 

expression.  

TFH have been implicated in multiple stages of lymphomagenesis and can potentially facilitate FL 

progression by: 

 Promoting development of lymphoma in t(14;18)+ precursors through repeated cycles 

of GC re-entry 

 Supporting survival, activation and proliferation of FL within malignant follicles 

 Interacting with other TME cells to orchestrate development of the tumour-supportive 

FL niche 

 Promoting the acquisition of genomic changes that support FL progression and 

transformation 

 Conferring resistance to treatment 

Data to date therefore strongly suggest that TFH promote the growth and progression of FL.  

However, there are numerous unanswered questions regarding the role of TFH in FL.  First and 

foremost, it is unclear whether the tumour-supportive effects of TFH have an influence on the 

clinical behaviour and natural history of FL.  FL is a clinically heterogenous disease in which the 

mechanisms that drive development of more aggressive disease are unknown.  It is not yet 

known, for example, whether TFH can directly induce FL proliferation or are directly responsible 

for inducing AID expression and driving genomic change.  Secondly, the mechanisms through 

which FL B-cells and TFH interact to provide mutual support are not yet clear.  It has not yet been 

shown that FL B-cells are able to independently support TFH survival.   In addition, are FL B-cells 

able to form cognate interactions with TFH and, if so, what is the nature of the antigens providing 

this stimulus?  Thirdly, very little is known about the regulation- or dysregulation- of TFH activity 

in FL.  For example, the significance of TFR and PD-1 ligands in FL and their effect on TFH activity 

in FL is unclear.  Finally, the influence of both standard and novel therapeutics on TFH biology has 
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not been fully explored.  With the rapid introduction of novel agents into clinical practice, there 

is an urgent need to better understand TFH biology and the pathways within the FL TME that 

support the pathogenesis of FL. 

 

1.5. Aims 

The overarching aim of this research is to investigate the hypothesis that TFH play a key role in 

driving the growth and progression of FL.  Specifically, this thesis aims to address the following 

questions: 

1. Do TFH activate FL B-cells and promote their survival?  

2. Conversely, are FL B-cells directly able to support the survival and activation of TFH? 

3. Is there a spatial relationship between FL B-cell proliferation, MYC expression and TFH? 

4. Does the balance between TFH and TFR influence clinical phenotype? 

This work will use a combination of in vitro culture studies, to provide information about 

functional cellular interactions, and tissue imaging studies, to assess the in situ relationship 

between TFH and FL B-cells.  In order to achieve these aims, the first results section (Chapter 3) 

focusses on methods of identifying and generating FL TFH for further in vitro study.   

Conventional imaging methods used to investigate cellular interactions within FL tissue are 

limited by their ability to assess only a limited number of histological markers and inability to 

fully identify complex cell populations within FL tissue.  A subsidiary aim is to explore the 

feasibility of a novel imaging technique, imaging mass cytometry, to facilitate highly multiplexed 

assessment of interactions between TFH and other complex cell types within the FL TME. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Patient Samples and Ethics 

Patient with untreated or relapsed FL were identified from King’s College Hospital lymphoma 

clinic lists.  Patients with suspected reactive lymphadenopathy or low-grade lymphoma were 

identified via King’s College Hospital neck lump clinic.  Patients with known HIV, hepatitis C and 

active hepatitis B were excluded. Samples obtained included peripheral blood (PB), lymph node 

(LN) fine needle aspirates (FNA), disaggregated fresh LN tissue and bone marrow aspirates 

(BMA).  Informed patient consent was obtained prior to obtaining any tissue for research 

purposes in accordance with the Declaration of Helsinki.  All samples and linked clinical data 

were pseudonymised.  Institutional ethical approval was obtained under King’s College Hospital 

(National Research Ethics Service (NRES) reference: 13/NS/0039) and King’s College London 

(NRES reference: 18/NE/0141). 

For histology studies, archival formalin-fixed paraffin-embedded (FFPE) tissue was obtained 

from patients who had undergone LN excision biopsy for lymphoma or reactive 

lymphadenopathy between January 2007 and August 2014, with at least 2 years of clinical 

follow-up.  Samples were identified through the King’s College Hospital histopathology 

database.  All tissue was deemed surplus to diagnostic requirements.  Tissue blocks and linked 

clinical data were pseudonymised.  Written consent was not deemed necessary for use of this 

archival tissue from both alive and deceased patients.  Ethical approval was granted under King’s 

College Hospital (NRES reference: 13/NW/0040). 

 

2.2. Peripheral Blood and Bone Marrow Mononuclear Cell Isolation 

Fresh PB and BMA samples were collected and anticoagulated in either sodium 

ethylenediaminetetraacetic acid (EDTA) or lithium heparin.  BMAs were first diluted 1:1 with 

sterile phosphate-buffered saline (PBS).  Peripheral blood mononuclear cells (PBMC) and bone 

marrow mononuclear cells (BMMC) were then isolated by density gradient centrifugation: equal 

volumes of PB or diluted BMA were gently layered over 10-15mls of Histopaque-1077 (Sigma-

Aldrich, Missouri, USA) at room temperature (RT) in a 50ml conical centrifuge tube, then spun 

in a swinging bucket centrifuge at 1800 rpm for 25 minutes with the brake removed.  The 

lymphocyte film at the interface of the Histopaque and serum layers, containing PBMCs or 

BMMCs, was carefully pipetted off and washed twice in warm, sterile PBS (Sigma-Aldrich).  
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For cryopreservation, samples were resuspended in equal volumes of freezing medium (80% 

foetal bovine serum (FBS) plus 20% dimethyl sulfoxide (DMSO)) and RPMI-1640 medium 

(Roswell Park Memorial Institute; all Sigma-Aldrich) to give a final DMSO concentration of 10% 

and cell concentration of up to 1-5 x 107 cells/ml.  Samples were transferred into cryogenic vials, 

placed in an isopropanol freezing box then transferred to -80°C for a minimum of 3 hours before 

storage in liquid nitrogen.  When required for use, samples were rapidly thawed in a 37°C water 

bath and washed twice in warm RPMI medium or sterile PBS to remove any residual DMSO. 

 

2.3. Fine Needle Aspiration 

FL patients with palpable, enlarged, superficial LNs were selected for FNA without ultrasound 

guidance.  Patients receiving therapeutic anticoagulation or with suspected/known disease 

transformation were excluded.  

Suitable superficial LN sites were selected by clinical examination with the aid of prior imaging 

studies to confirm sites of disease involvement, where available.  FNA was performed under 

aseptic technique, using 2% chlorhexidine to sterilise the surrounding skin.  A 21-gauge needle 

attached to a 10ml syringe was passed through the lymph node mass under gentle suction 

(approx. 0.5cm3).  The needle was rinsed at least 5 times with media to dislodge cells.  Samples 

were collected and stored in McCoy’s medium supplemented with L-glutamine and 

penicillin/streptomycin.  This process was repeated a further 2-3 times from the same LN to 

obtain sufficient cells.  

FNAs were processed fresh where possible, or after storage at 5°C for up to 18 hours.  Samples 

were centrifuged at 1200 rpm for 10 minutes then resuspended for further use.  Where not 

required for immediate use, cells were cryopreserved as described above.  

Most FNA cell pellets had visible red cell contamination.  Removal of red cells is reported to 

enhance antibody staining quality and simplify data acquisition by removing superfluous events.  

Therefore, an additional red cell lysis step was performed, where possible, using an eBiosciences 

red cell lysis buffer (eBiosciences), which uses ammonium chloride to disrupt erythrocyte 

membranes whilst exerting minimal effect on viable lymphocytes.  Cells were suspended in 1-

5ml lysis buffer and incubated at room temperature (RT) for 10 mins.  At least 3 volumes of 

sterile PBS were then added to terminate the lysis reaction and cells were centrifuged at 1200 

rpm for 10 minutes before further use.  
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For all 5-day culture experiments, FNAs were processed fresh and used without freezing or red 

cell lysis, in order to preserve cell viability and minimise processing/washes when working with 

low cell numbers. 

 

2.4. Lymph Node Disaggregation 

Surgical LN specimens were collected in RPMI-1640 medium or sterile 0.9% NaCl.  Samples were 

immediately transferred for histopathology assessment, where they evaluated and sectioned 

under aseptic conditions to remove sufficient tissue for diagnostic purposes.  Any remaining 

tissue was divided with a scalpel into small sections (<5mm) and dissociated by mechanical 

disruption through a cell dissociation sieve (Sigma-Aldrich).  Gentle pressure was applied with a 

pestle to push the tissue through a 60-mesh screen (opening size 230µm).  The filter and cells 

were rinsed with warm RPMI then centrifuged at 1200rpm for 10 minutes.  Cells were then 

frozen at a concentration of up to 5 x107 cells/ml, as detailed in section 2.2.  After thawing, cells 

were either subject to density gradient centrifugation to isolate the mononuclear cell layer or, 

if cell numbers were low, filtered through a 35μm cell strainer (Corning, New York, USA) to 

remove cell clumps prior to further use. 

 

2.5. Immunomagnetic Cell Selection 

Immunomagnetic negative selection was used to purify naïve CD45RA+ T-cells for culture using 

an EasySep Human Naïve CD4+ T-cell Isolation Kit.  To remove T-cell and B-cells from cell 

cultures, EasySep Human CD3 and CD19 Positive Selection Kits II were used, respectively (all 

Stem Cell Technologies, Vancouver, Canada).  Immunomagnetic selection was performed 

according to manufacturer’s instructions.  In brief, unselected cells were suspended at a 

concentration of up to 1 x 108 cells/ml in sterile PBS containing 2% FBS and 1mM EDTA in a 5ml 

round-bottomed tube.  Cells were incubated with the requisite biotinylated selection or isolation 

cocktail for 5 minutes, before adding streptavidin-coated magnetic RapidSpheres and incubating 

for a further 5 minutes.  Cells were then placed into an EasySep magnet for 5 minutes and the 

supernatant was carefully decanted for further use, then placed through the magnet a second 

time to ensure maximum depletion of unwanted cells.  Flow cytometry was performed to 

confirm >95% enrichment or depletion of the target cell population. 

 



45 
 

2.6. Cell Culture 

Cells were cultured in RPMI-1640 medium (Sigma-Aldrich), supplemented in all instances with 

10% FBS (Gibco/ThermoFisher Scientific, Massachusetts, USA), penicillin 100 IU/ml, 

streptomycin 100 μg/ml and 2mM L-glutamine (all Sigma-Aldrich).  Lymphocytes were cultured 

at a concentration of 1 x 106/ml, except where stated, in either round-bottomed plates or flat-

bottomed plates that were tilted during incubation in order to maximise cell-cell contact.  Cells 

were maintained in a CO2 incubator at 37°C, with a humidity of 95% and 5% CO2 for up to 5 days. 

To obtain approximate viable cell counts, aliquots of cell suspensions were mixed with equal 

volumes of 0.4% trypan blue.  Viable cells lacking trypan blue uptake were counted on a 

haematocytometer slide.  

For naïve T-cell experiments, initial T-cell stimulation was provided by adding 10µl/ml of Human 

T-Activator CD3/CD28 Dynabeads (ThermoFisher Scientific) for 16 hours.  Samples were then 

vortexed and Dynabeads were removed by placing the sample in a DYNAL DynaMag2 magnet 

(ThermoFisher Scientific) for 2 minutes.  Subsequently, naïve T-cell suspensions were 

supplemented with 1 µg/ml anti-CD28 (clone CD28.2, eBiosciences) and were transferred to 24-

well tissue culture plates (Greiner Bio-One, Gloucestershire, UK) that had been pre-coated with 

5µg/ml anti-CD3 overnight (clone OKT3, eBiosciences) and washed twice with sterile PBS, to 

provide a gentler level of T-cell stimulation.  Cells were then incubated for 96 hours either 

without cytokines, or with the addition of interleukin (IL)-12 (1ng/ml), IL-1β (10ng/ml), IL-6 

(25ng/ml) and transforming growth factor (TGF)-β (5ng/ml; all Peprotech, London, UK).  

 

2.7. Flow Cytometry 

2.7.1. Viability Staining 

Fixable Viability Dye eFluor 780 (eBiosciences) exploits the more porous nature of cell 

membranes to penetrate dead cells and bind to intracellular amines, thus distinguishing 

between live and dead cells.  For each sample, 1-10 x 105 cells were resuspended in 1ml PBS in 

5ml round-bottomed tubes.  Fixable Viability Dye was diluted 1:6 in PBS and 1µl/ml was added 

to each tube, then gently vortexed to mix.  From this point onwards up until data acquisition, 

samples were protected from light to limit photobleaching.  Samples were incubated at RT for 

10 minutes, then washed at least once in 2ml PBS and centrifuged at 1500 rpm for 5 minutes.  
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2.7.2. Cell Surface Staining 

After centrifugation, the supernatant was decanted, and cell pellets were gently vortexed to 

resuspend cells in the residual volume of PBS (approximately 100µl).  For panels where 2 or more 

brilliant violet fluorochromes were used together, an additional 50µl Brilliant Stain Buffer (BD 

Biosciences, New Jersey, USA) was added to each sample to prevent brilliant violet dye 

interactions.  Except where stated, 2.5µl of fluorochrome-conjugated antibody targeted against 

the cell surface antigen/s of interest was added to each tube and gently vortexed to mix.  For a 

full list of antibodies used for flow cytometry see Table 2.1.  Samples were incubated at 5°C for 

30 minutes, then washed twice in at least 2ml PBS and centrifuged at 1500 rpm for 5 minutes.  

Cells were either resuspended in 150-400µl PBS, dependent on cell number, for flow cytometry, 

or subject to further processing for intracellular or annexin V staining, where applicable.  

 

2.7.3. Intranuclear Staining  

Cell fixation and permeabilisation was performed after cell surface staining using a 

FoxP3/Transcription Factor Staining Buffer Set (eBiosciences) according to manufacturers’ 

instructions.  Cells were resuspended in 1ml of formaldehyde-containing FoxP3 

Fixation/Permeabilization working solution and incubated at room temperature for 30-60 mins.  

2ml Permeabilization Buffer was added and cells were centrifuged at 450g for 5 minutes.  Cells 

were resuspended in the residual volume of buffer (approximately 100µl) and non-specific 

antibody binding was blocked by adding 2µl rat serum (or other serum from the same species 

as the relevant primary antibody) for 15mins.  Without washing, 2.5µl of fluorochrome-

conjugated antibody directed against transcription factor/s of interest was added to each tube.  

Samples were gently vortexed and incubated at RT for 45mins, following which they were 

washed twice in Permeabilization Buffer and centrifuged at 450g for 5 minutes.  Samples were 

resuspended in 100-500µl PBS, dependent on cell number to give a final concentration of up to 

2 x 106/ml. 

 

2.7.4. Annexin V Staining 

Annexin V binds to extracellular phophatidylserine residues, which only become exposed on cell 

surface membranes during the intermediate stages of apoptosis.  Up to 1 x 106 cells were 

resuspended in 100µl of Annexin V Binding Buffer (Biolegend, California, USA) to provide a 

source of calcium to facilitate Annexin V binding.  5µl fluorescein isothiocyanate (FITC)-

conjugated annexin V (Biolegend) was then added to each tube.  Cells were incubated at RT for 
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15mins. A further 100-300µl Annexin V Binding Buffer was then added to each tube, dependent 

on cell number, and samples were immediately analysed by flow cytometry.  

 

Table 2.1. List of antibodies for flow cytometry 

Antigen Clone  Fluorochrome Channel Manufacturer 

BCL6 7D1 APC R670 Biolegend 

CCR7 G043H7 PE YG586 Biolegend 

CD3 OKT3 Alexa Fluor 700 R730 Biolegend 

CD4 RPA-T4 PerCP-Cy5.5 B710 Biolegend 

CD8 RPA-T8/SK1 BV510 V525 Biolegend 

CD10 HI10a PE YG586 BD Biosciences 

CD19 HIB19 BV421 V450 Biolegend 

CD20 L27 FITC B530 BD Biosciences 

CD25 BC96 PE YG586 Biolegend 

CD25 M-A251 BB515 B530 BD Horizon 

CD45RA HI100 BV510/Alexa Fluor 488 V525/B530 Biolegend 

CD69 FN50 PE-Dazzle YG610ish Biolegend 

CD86 IT2.2 PE-Cy7 YG780 Biolegend 

CD127 A019D5 BV605 V610 Biolegend 

CXCR3 G025H7 Alexa 488 B530 Biolegend 

CXCR5 J252D4 APC/BV605 R670/V610 Biolegend 

FoxP3 PCH101 eFluor450 V450 eBiosciences 

HLA-DR L243 BV605 V610 Biolegend 

ICOS C398.4A BV421/PE V450/YG586 Biolegend 

ICOS-L 2D3 APC  R670 Biolegend 

PD-1 EH12.2H7 PE/Cy7 YG780 Biolegend 

 

2.7.5. Sample Analysis by Flow Cytometry 

Data were acquired using a BD LSRFortessa flow cytometer (BD Biosciences) with 4 lasers: blue, 

red, violet and yellow-green.  The cytometer passes cells in a fine, rapidly-following, single-cell 

stream through these lasers.  Fluorochromes are identified by their ability to become excited by 

lasers producing light at specific wavelengths (excitation spectra) and then emit light at different 

wavelengths (emission spectra), that are able to pass through specific filters and are detectable 

by photomultiplier tubes.  
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Although fluorochromes have unique excitation and emission spectra, there is some overlap 

between the emission spectra of certain fluorochromes, and some fluorochromes are excited 

by multiple lasers.  To correct for this spectral overlap, mathematical corrections, or 

compensations, need to be electronically applied to the optical signals in order to accurately 

differentiate between colours.  Compensations were evaluated using BD FACSDiva software. 

Before data acquisition, the spillover for each colour was quantified using Anti-Mouse 

Igκ/Negative Control Compensation Particles (BD Biosciences) stained with each fluorochrome-

conjugated antibody, according to the manufacturer’s protocol.  For viability and annexin V 

staining, compensations were performed using PBMCs.  To ensure sufficient numbers of dead 

cells, half were subjected to heat shock at 64°C for 5 mins then cooled on ice for 5 mins to induce 

apoptosis.  These were then re-combined with untreated cells and underwent viability or 

annexin V staining as described above.  Whilst it was technically feasible to use up to 18 colours 

simultaneously on the BD Fortessa cytometer, a maximum of 10 colours were used here to avoid 

difficulties with data compensation and the need for excessive numbers of control samples.  

Data were analysed with FlowJo v10 software (BD Biosciences).  In all cases, cells were first gated 

according to forward scatter (FSC) and side scatter (SSC) to identify the lymphocyte population 

(Figure 2.1A).  Lymphocytes were then gated to exclude cell doublets followed by non-viable 

cells, except where stated (Figure 2.1B-C).  Viable cells were then gated according to expression 

of B- and T-cell markers, dependent on the cell population of interest. 
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Figure 2.1. Identification of viable lymphocytes.  A) Representative flow plots show FL LN cell 

suspension gated according to forward (FSC-A) and side scatter (SSC) to identify lymphocytes 

(gated).  B) Lymphocytes were gated according to forward scatter properties- area (FSC-A) and 

height (FSC-H)- to identify single cells.  C) Viable lymphocytes (gated) were then identified by the 

lack of uptake of fixable viability dye. 

 

2.7.6. Cell Counting  

Cells were resuspended in at least 150µl PBS and the total sample volume was measured with 

calibrated pipettes.  123Count eBead Counting Beads (eBiosciences) were vortexed for at least 

30 seconds then 50µl of beads was carefully pipetted to each tube and vortexed again.  Data 

were acquired as described above.  Bead counts were obtained by gating on a low forward 

scatter, high side scatter population, which was clearly distinct from the lymphocyte population, 

and recording the number of events with strong fluorescence in both B530 and V450 channels 

(Figure 2.2).  The number of events corresponding to the cell population of interest was also 

recorded.  Absolute counts of the cell population of interest were then calculated using the 

following formula: 
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𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑒𝑙𝑙𝑠/µ𝑙) =  
(𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 ×  𝑒𝐵𝑒𝑎𝑑 𝑣𝑜𝑙𝑢𝑚𝑒)

(𝑒𝐵𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ×  𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒)
 × 𝑒𝐵𝑒𝑎𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 

 

Figure 2.2. Identification of counting beads by flow cytometry. A) Representative flow plot 

shows a FL LN cell suspension with counting beads added.  Counting beads are identified by very 

high side scatter, higher than the scale visualised here.  B) High side-scatter events were then 

gated on B710 and R670 channels.  Counting beads are identified by high levels of fluorescence 

in both channels. 

 

2.7.7. Control Samples and Other Considerations 

For each sample, test cells were run in tandem with unstained cells as a negative control for 

background autofluorescence.  In addition, a proportion of cells were stained with viability dye 

only, and with only basic B- and T-cell markers (CD3, CD4, CD8, CD19) to exclude significant 

autofluorescence in the cell populations of interest and facilitate placement of positive/negative 

gates for other antigens.  

As a result of compensation for spectral overlap between fluorochromes, there is an inevitable 

element of data spread, which may influence interpretation of minor shifts in antigen expression 

and placement of positive/negative cell gates.  To adjust for this, fluorescence minus one (FMO) 

controls were used, in which cells were stained with all antibodies apart from the one directed 

against the antigen of interest, which illustrated the extent of data spread in the relevant 

channel.  This allowed for accurate gating of negative/positive cell populations in stained 
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samples.  FMOs were used for all antigens that were weakly expressed and where there were 

minor shifts in expression levels, such as intranuclear transcription factors and ICOS-ligand.  

To control for non-specific antibody uptake when performing intranuclear staining, isotype-

matched control samples were also used.  Isotype-matched controls are fluorochrome-

conjugated antibodies that lack target specificity but are otherwise matched to the relevant 

targeted antibody in terms of immunoglobulin isotype, host species and fluorochrome.  

Equivalent concentrations of isotype-matched control antibody were added to FMO controls 

when assessing transcription factor expression, i.e. FoxP3 and BCL6.  It is feasible that isotype-

matched controls can label cells non-specifically on occasions where target antibodies do not.  

However, in all cases, staining patterns with isotype-matched controls were similar to unstained 

controls and lower than staining with target antibodies.  

FMOs were not used in instances where cell populations were easily separated, as was the case 

for all cell lineage markers and for PD-1/ICOS.  In some cases, internal negative controls within 

the same sample could be used to guide gating of cells, for example, positive CD10 expression 

could be identified on CD19-positive B cells by setting a gate that excluded most of the CD10-

negative non-B cell population (Figure 2.3). 

 

 

Figure 2.3. Identification of CD10+ germinal centre B-cells.  Representative flow plot shows 

viable FL lymphocytes.  FL B-cells are identified as CD19+CD10+.  As expression of CD10 was weak, 

the level of CD10 expression in CD19-negative cells was used to set the threshold for CD10 

positivity. 
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Positive controls were required to confirm whether primary antibody staining had been 

successful in certain instances where staining of test samples was weak.  This was the case for 

intranuclear BCL6 expression, where the Burkitt lymphoma cell line Ramos was used to confirm 

BCL6 positivity.  

Fluorochromes were chosen according to fluorescence intensity and potential for spectral 

overlap. Strong antigens were paired with less intense fluorochromes (e.g. CD3 and Alexa Fluor 

700), whilst weakly-expressed antigens were paired with stronger fluorochomes (e.g. CD25 and 

phycoerythrin (PE)).  Antibody panels were designed such that where there was the potential 

for higher levels of spectral overlap, for example between BV510 and BV605, there was no co-

expression of the respective target antigens on the cell population of interest, wherever 

possible.  For example, CD8-positive T-cells (BV510) were usually excluded from analyses where 

CD127 and HLA-DR expression were assessed using BV605. 

 

2.7.8. Fluorescence-Activated Cell Sorting 

Mechanically-disaggregated LN cells were thawed and washed twice in RPMI-1640 medium.  

Cells were then rested at a concentration of 5-10 x 106 cells/ml for 1-2 hours before further 

manipulation.  Cells were centrifuged at 1000 rpm for 10 minutes then resuspended in sterile 

PBS supplemented with 2% FBS and 1mM EDTA (staining buffer) and passed through a 35µm 

cell strainer to remove cell clumps.  From this point onwards, cells were kept at RT to avoid 

frequent temperature fluctuations and preserve cell viability.  Viability staining was performed 

as described in section 2.6.1.  Cells were washed once then resuspended in staining buffer at 50 

x 106 cells/ml.  25µl/ml of primary antibodies were added and incubated for 15 minutes, 

protected from light.  No formal antibody titrations were undertaken but starting concentrations 

were based on the manufacturer’s instructions and recommendations of experienced 

colleagues and produced the expected staining pattern on flow.  Cells were washed twice in 

staining buffer and resuspended at 50 x 106 cells/ml.  

Cells were sorted on a BD-FACS Aria III (BD Biosciences).  In brief, cells were passed through a 

70µm nozzle into a fine, rapidly-moving stream, which was then broken into single-cell droplets.  

Dependent on the characteristics of each cell, detected by standard flow cytometry, a 

differential electric charge was activated and applied to each droplet.  An electrostatic deflection 

system then separated the droplets based on their charge profile into collection tubes.  Cells 

were collected in RPMI-1640 medium (plus residual flow sheath fluid) in 5ml tubes.  Assistance 
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with cell sorting and operation of the BD-FACS Aria III were provided by Drs Rianne Wester and 

Anna Rose at the Biomedical Research Council Flow Core facility at Guys’ Hospital, London.   

 

2.8. Histology Studies 

2.8.1. Tissue Sectioning and Deparaffinisation 

FFPE tissue blocks were cooled on ice for 1 hour.  Tissue sections were cut to a thickness of 4µm 

using a Rotary Cut 4060 microtome (Slee Mainz, Mainz, Germany).  Sections were floated on a 

water bath at 40°C and mounted onto poly-L-lysine coated microscope slides (VWR 

International, Pennsylvania, USA).  Samples were dried on a heat block at 70°C for 30 minutes 

then at RT for at least 24 hours. 

Samples were deparaffinised by immersion in 100% xylene for 5-10 minutes, repeated twice.  

Slides were transferred into 100% ethanol for 10 minutes then rehydrated through graded 

ethanol solution at 96% (twice), 70% and 50% ethanol for 5 minutes each and finally rinsed with 

tap water.  

 

2.8.2. Antigen Retrieval and Blocking 

For immunohistochemistry only, samples were first blocked with 0.5% hydrogen peroxide 

(Sigma-Aldrich) in PBS for 10 minutes, then washed briefly in PBS. 

 Antigen retrieval was performed in either sodium citrate buffer (pH 6.1) or tris-EDTA buffer (pH 

9.0), both with 0.05% Tween-20, except where stated (Appendix 1).  One litre of buffer was 

added to a pressure cooker and heated to 120°C on a portable hotplate.  The slides were lowered 

into the buffer once boiling and pressure-cooked at 15 psi for 3 minutes.  Slides were then cooled 

and washed with distilled water for 10-15 minutes. 

Samples were blocked with serum from the same species in which the secondary antibodies 

were raised, to prevent non-specific antibody binding.  The area surrounding the tissue section 

was carefully dried with low-lint tissues (Kimberly-Clark, Texas, USA), taking care not to allow 

the tissue itself to dry out at any point, and the tissue was encircled by hydrophobic barrier pen 

(Dako/Agilent Technologies, California, USA).  Up to 400μl 5% serum in PBS was added to each 

slide, dependent on the size of the tissue section, and incubated for at least 1 hour at RT.  For 

immunohistochemistry only, 150μl/ml avidin solution (Vector Laboratories, California, USA) was 
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also added to the serum blocking solution.  Immunohistochemistry samples were subsequently 

blocked with 150μl/ml biotin solution in PBS for 15 minutes. 

 

 

Figure 2.4: Primary antibody optimisation.  A) IHC images show CD23 assessment in reactive LN 

tissue, using a range of antibody concentrations.  At high antibody concentrations (1:100), there 

is a lack of specific staining, with high levels of background uptake.  Lower antibody 

concentrations (1:1000) gave expected staining characteristics, outlining FDCs and follicular B-

cells.  B) IHC images show CD4 staining in reactive tonsillar tissue under acidic (pH 6.1) and basic 

(pH 9.0) antigen retrieval conditions.  Expected staining patterns were only seen with basic 

antigen retrieval.  All images were taken with a x20 objective lens. 

 

2.8.3. Primary Antibody Incubation 

Primary antibodies were made up to at a dilution of 1:50-1:1000 in PBS.  Antibody 

concentrations, staining protocols and antigen retrieval conditions for most primary antibodies 

had been previously optimised in our laboratory (Townsend, et al 2019).  New antibodies were 

tested first using immunohistochemistry on tissue known to be positive for the antigen in 

question, at a range of concentrations, and usually under both acidic and basic antigen retrieval 

conditions, to determine the optimum staining conditions (Figure 2.4).  For multiparameter 

confocal immunofluorescence microscopy (CIFM), 3 or 4 primary antibodies were combined.  
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Primary antibodies are listed in Table 2.2.  The blocking serum was poured off the tissue sections 

and, without rinsing, up to 400μl primary antibody solution was added to each slide.  Slides were 

then placed in a humidified box at 4°C overnight. Slides were then washed 3 times with PBS, 

each for at least 5 minutes.  

 

Table 2.2: Primary antibodies for immunohistochemistry and immunofluorescence studies 

Antigen Antibody clone Species/Isotype Manufacturer Dilution 

AID ZA001 Mouse IgG1 Invitrogen 1:200 

CD3 CD3-12 Rat IgG1 Abcam 1:200 

CD4 4B12 Mouse IgG1 Leica Biosystems 1:50 

CD8 EP1150Y Rabbit Abcam 1:400 

CD20 L26 Mouse IgG2a Dako 1:200 

CD21 EP3093 Rabbit Abcam 1:1000 

CD23 Polyclonal Goat IgG  R&D 1:1000 

Cleaved Caspase-3 Polyclonal Rabbit Cell Signaling 1:200 

FoxP3 236A/E7 Mouse IgG1 Abcam 1:100 

ICOS SP98 Rabbit Abcam 1:100 

MYC Y69 Rabbit Abcam 1:200 

PD-1 Polyclonal Goat IgG  R&D 1:50 

PD-L1 E1L3N Rabbit Cell Signaling 1:100 

PD-L2 176611 Mouse IgG2b R&D 
1:20-
1:1000 

Pax5 1H9 Rat IgG2a EMD Merck 1:200 

Tbet EPR9302 Rabbit Abcam 1:200 

Pax5 1H9 Rat IgG2a Biolegend 1:200 

 

2.8.4. Secondary Antibody Incubation 

For immunohistochemistry, biotinylated secondary antibodies (Vector Laboratories) were used 

at a dilution of 1:100 in PBS.  Up to 400μl was added to each tissue section, including control 

slides, then incubated for 1 hour at RT for immunohistochemistry and 2 hours for CIFM.  For 

CIFM, slides were protected from light this point onwards.  Slides were then washed 3 more 

times with PBS for at least 5 minutes per wash.  

For CIFM, fluorochrome-conjugated donkey anti-species secondary antibodies were used 

(Jackson ImmunoResearch, Pennsylvania, USA) at a concentration of 1:200 in PBS, or 1:400 if 
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using Dylight 405-conjugated antibodies, to reduce background staining (Table 2.3).  Up to 400μl 

was added to each tissue section, including control slides, then incubated for 2 hours at RT.  

Slides were protected from light this point onwards to prevent photobleaching.  Slides were then 

washed 3 more times with PBS for at least 5 minutes per wash, then partially dried for 

approximately 20 minutes before adding a drop of aqueous Prolong Gold Antifade mountant 

(Invitrogen, California, USA) plus a coverslip.  Slides were left to dry at RT for a further 24 hours 

then stored for up to 2 weeks at 5°C prior to image acquisition. 

 

Table 2.3: Secondary antibodies for immunohistochemistry and immunofluorescence studies 

Target Species Fluorochrome Subclass Manufacturer Dilution 

Goat Donkey Cy3 IgG Jackson Immunoresearch 1:200 

Mouse Donkey Alexa 647 IgG Jackson Immunoresearch 1:200 

Rabbit Donkey Alexa 488 IgG Jackson Immunoresearch 1:200 

Rat Donkey Dylight 405 IgG Jackson Immunoresearch 1:400 

 

2.8.5. Peroxidase and Haematoxylin Staining 

For immunohistochemistry, samples were next coated with peroxidase-containing avidin/biotin 

complex solution for 30 minutes using the Vectastain Peroxidase Standard Kit PK-400 (Vector 

Laboratories), according to manufacturer’s instructions, then washed 3 more times with PBS for 

5 minutes each. 

Immunohistochemistry was performed using 3,3'-diaminobenzidine (DAB) as a peroxidase 

substrate with the ImmPact DAB Kit for Peroxidase (Vector Laboratories).  One drop of DAB 

solution was added to per ml of supplied diluent and vortexed to mix.  Up to 400μl was applied 

to each tissue section for between 30 seconds and 10 minutes, until the desired degree of brown 

colour change was observed.  Slides were then washed in tap water to quench the peroxidase 

reaction for at least 5 minutes.  Samples were counterstained with haematoxylin (Vector 

Laboratories) for 30 seconds, to dye cellular nuclei blue, and washed again with tap water. 

Slides were dehydrated through graded ethanol solutions (50%, 70%, 96%, 96% then 100%) for 

2 minutes each, and then placed in 100% xylene for 20 minutes.  Tissue sections were then 

partially dried and mounted with xylene-based Eukitt quick-hardening mounting medium 

(Sigma-Aldrich) and a coverslip. 
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2.8.6. Control Samples 

Negative control tissue slides were produced in parallel for all tissue sections in order to exclude 

the presence of significant non-specific background staining and, for CIFM, tissue 

autofluorescence.  Control slides were processed in the same way as test sections, except during 

primary antibody incubation, where control sections were covered with PBS only, i.e. lacking 

any primary antibody.  For multiparameter CIFM, additional control slides were produced, which 

were stained with each individual primary antibody in isolation, to assess for the presence of 

fluorescence spillover into adjacent channels.  

Positive control slides were used to confirm that the expected staining pattern was produced 

with certain primary antibodies where expression was low or absent on test slides, or when 

testing new primary antibodies.  Choice of control tissue depended on the antigen in question 

but was usually reactive lymphoid or Burkitt lymphoma tissue.  These slides were stained in 

exactly the same way as test slides. 

 

2.8.7. Assessment of IHC staining 

IHC slides were visualised by light microscopy using x10, x20 and x40 objective lenses.  Negative 

control slides were visualised first, and test samples were excluded if an excess of non-specific 

background rendered staining patterns uninterpretable.   In most cases, areas of brown DAB 

staining were visible within cell nuclei, cytoplasm or cell membranes, corresponding to known 

staining patterns for the antigen in question.  Positive control slides were used where staining 

was weak or absent.  Again, test samples were excluded if parallel positive control samples failed 

to produce a clear positive result. 

 

2.8.8. Confocal Immunofluorescence Microscopy 

Images were acquired with a Nikon Eclipse Ti A1R inverted microscope and confocal imaging 

system (Nikon, Tokyo, Japan).  Four lasers were used: blue, yellow-green, red and far red.  The 

excitation and emission spectra of the fluorochromes used is shown in Figure 2.5 and the filters 

used for image acquisition are shown in Table 2.4.  In theory, up to 6 different fluorochromes 

can be assessed simultaneously but for this work a maximum of 4 channels were used.  This was 

partly due to the lack of diversity of commercially-available primary antibodies in terms of host 

species and immunoglobulin isotype, such that it was not possible to find sufficient primary-

secondary antibody combinations to assess a larger number of antigens.  In addition, our wider 
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group has encountered issues with spectral overlap and increased background fluorescence 

when assessing more than 4 antigens, which can confound image analysis.   

 

 

Figure 2.5: Fluorochrome excitation spectra and emission spectra.  Graph illustrates the 

excitation spectra (dotted line) and emission spectra (solid colour) of fluorochromes used in CIFM 

studies.  Blue: Dylight405; green: Alexa Fluor 488; yellow: Cy3; red: AlexaFluor 647.  Image 

produced using the Jackson ImmunoResearch Spectra Viewer 

 

Table 2.4. Filters used for confocal immunofluorescence microscopy 

 

 

Microscope settings were kept constant wherever possible to facilitate image comparison; filter 

settings, pin hole size, pixel dwell time and optical section thickness were identical for all imaged 

tissue sections.  Laser power and photomultiplier tube (PMT) gain had to be adjusted for each 

tissue section due to natural variations in tissue quality (for example due to tissue fixation, size 

and age) and therefore staining intensity.  Positively-stained areas of tissues were visualised, 

Channel Excitation 
filter (nm) 

Dichroic mirror 
cut-off (nm) 

Emission 
filter (nm) 

Fluorophore 

Blue 325 – 375 400 405 – 485 Dylight 405 

 426 – 446 455 460 – 500 not used 

 450 – 490 495 500 – 575 not used 

Yellow-green 490 – 510  515 520 – 550 Alexa Fluor 488 

Red 540 – 580 585 598 – 662 Cy3 

Far red 608 – 648 660 672 – 712 Alexa Fluor 647 
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and the power/gain settings were optimised to find a threshold where only a few pixels were 

oversaturated, which ensured the widest image detection range whilst preventing overexposure 

and fluorochrome bleaching.  Laser offset was generally maintained at zero, except in instances 

where there was high image background.  After imaging tissue samples, all settings (including 

laser power and PMT gain) were left unchanged when imaging paired negative control tissue 

(see below). 

Low power images were first acquired using a 20x Plan Apo VC objective lens.  High-power 

images were acquired using a 60x Plan Apo oil immersion lens (both Nikon). 

 

2.8.9. Confocal Image Analysis 

Images were analysed using NIS-Elements Advanced Research software version 4.2.  Contrast 

optimisation was performed using the look-up table function of the NIS-Elements software.  NIS-

Elements image files (ND2 format) were directly exported as tiff files.  Some images have also 

been cropped for presentation, where appropriate, but no digital image manipulation has 

occurred. 

Binary images were created for each laser channel to identify areas of positive antigen 

expression and facilitate image analysis.  These were overlaid onto the original image, without 

altering the image file itself. In order to produce binary layers, fluorescence intensity thresholds 

were set at a level that clearly differentiated between positive and negative expression, without 

picking up aberrant positivity in negative control sections (Figure 2.6).  The threshold was 

adjusted for each tissue section where necessary, due to varying levels of staining intensity and 

background fluorescence between samples.  When differentiating between high and low levels 

of antigen expression, internal tissue controls were used to set thresholds; for example, the 

threshold to define high levels of PD-1 expression was set at a level that excluded the majority 

of extrafollicular T-cells (Figure 2.6).  Identical binary thresholds were applied to paired negative 

control images for each sample, to ensure that background autofluorescence was not present 

at a level that would obscure image interpretation. 

NIS-Elements software tools enabled binary image refinement.  Restrictions were set according 

to object size to exclude very small objects (e.g. <2μm) that are likely to represent artefact or 

very large objects (e.g. >50μm) that may represent fluorescence from vessels or connective 

tissue.  Non-cellular objects that clearly represented artefact or connective tissue could be 

manually deleted, if required.  It was possible to smooth binary layer contours and fill holes in 
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circular objects, although these functions were not used where binary image area was used as 

part of the image analysis.  Binary layers from 2 or more channels could be combined to identify 

areas of co-expression and then generate secondary ‘intersection’ binary layers (Figure 2.7). 

 

 

Figure 2.6. Confocal image analysis and binary image generation. A) Image of FL tissue shows 

high levels of autofluorescence in the yellow-green channel in negative control samples (no 

primary antibody), which is also visible when assessing ICOS expression in the same channel.  A 

binary layer was generated to identify low levels of ICOS expression (right panel), which excluded 

background autofluorescence by setting appropriate fluorescence thresholds and excluding 

objects <2μm in size.  The same binary settings were applied to negative control tissue, which 

confirmed that autofluorescence did not give a false positive signal.  B) Representative image 

shows expression of PD-1 in the perifollicular area of FL tissue (left).  The binary layer defining 

PD-1 expression was set at a level that excluded the majority of interfollicular T-cells with weaker 

PD-1 expression (right).  No background fluorescence was seen in the red laser channel (not 

shown).  All images were taken with a x60 objective lens and scale bars measure 25μm. 
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NIS-Elements software calculated the area of binary layers.  Automated cell counting was also 

potentially feasible, but this required accurate separation of cells/nuclei into discrete objects.  

Due to the closely packed nature of lymphoid tissue in FL, it was not feasible to accurately 

separate objects either manually or using the NIS-Elements automated object separation tool.  

Therefore, cell counts were performed manually for a representative area of the tissue image.  

Image analysis is discussed in more detail in Chapter 5. 

 

 

Figure 2.7. Generation of intersection binary layers. Images of FL tissue show the original 

confocal images and binary layers for MYC (top) and Pax5 (bottom). The panel on the right shows 

areas of overlap between the MYC and Pax5 binary layers in yellow, generated as a new 

‘intersection’ binary layer.  All images were taken with a x60 objective lens and scale bars 

measure 25μm. 

 

 

2.8. Statistical Considerations 

All statistics were calculated using FlowJo v10 and GraphPad Prism software v7 (GraphPad, 

California, USA). 
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Data are reported as mean values ± standard error, except where specifically stated.  Median 

values and ranges are reported for data that are clearly not normally distributed or where 

outlying results skewed mean values.  

Samples were tested for normality (d’Agostino-Pearson omnibus normality test) and, where 

appropriate, sample means were compared using either paired or unpaired t-tests.  When the 

sample failed the normality test an appropriate non-parametric test was performed: Mann-

Whitney U for independent samples and Wilcoxon signed rank for paired samples.  A 2-sided 

significance level of 0.05 was used.  Correlation between normally-distributed variables was 

evaluated using Pearson’s correlation coefficients.   
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CHAPTER 3: IDENTIFYING TFH IN FOLLICULAR LYMPHOMA TISSUE 

3.1. Introduction and Aims 

Studies using archival FL tissue have provided significant insights into the biology of follicular 

lymphoma, allowing assessment of genomic change and overall patterns of gene expression in 

FL tissue as a whole.  Tissue imaging studies have provided insights into the spatial interactions 

between FL B-cells and non-neoplastic cells within the TME.  Such studies demonstrate apparent 

immune synapse formation between TFH and FL B-cells and imply a close relationship between 

TFH and FL proliferation (Townsend, et al 2019).  However, two-dimensional imaging studies of 

tightly-packed, cell-dense FL tissue cannot easily tease out the contributions of individual cells 

from that of the surrounding microenvironment.  These findings are hypothesis-forming but 

cannot definitively demonstrate a direct relationship between TFH and FL growth.  Functional 

studies are required to explore the interactions between FL B-cells and TFH in greater detail.  

TFH are primarily resident within secondary lymphoid tissue, therefore obtaining TFH from human 

subjects poses a challenge.  Much of our knowledge of the biology of TFH in the normal GC 

reaction is derived from animal models, particularly murine studies (Crotty 2014).  However, 

there are no animal models that accurately recapitulate the indolent behaviour of FL.  Murine 

models of BCL2, BCL6 and AID-driven lymphomagenesis usually develop aggressive B-cell 

lymphomas, or otherwise display significant alterations in T-cell number and function (Egle, et 

al 2004a, Pasqualucci, et al 2007).  In patient-derived xenograft models, there is preferential 

expansion of non-neoplastic B-cells and most FL B-cells rapidly differentiate into plasmablasts 

(Burack, et al 2017).   

Alternative options include the use of surrogate models to mimic TFH stimulation.  For example, 

multiple groups have successfully maintained GC B-cells in vitro for up to 10 days by co-culturing 

with CD40L-transfected fibroblasts or FDCs, in combination with selected cytokines to mimic TFH 

support (Caeser, et al 2019).  Recently, modified FDCs that express CD40L and secrete IL-21 have 

been shown to induce both proliferation and long-term survival of healthy GC B-cells (Caeser, et 

al 2019).  These effects were enhanced when GC B-cells were modified to constitutively express 

BCL2.  However, it is not yet clear whether this be reproduced with primary FL cells and it is not 

possible to tease out the relative contributions of the stromal cells themselves versus any 

acquired TFH-like capabilities.  Fibroblasts and FDCs cannot recapitulate the full TFH phenotype 

(e.g. IL-4, ICOS and SAP expression), nor can they be used to assess the bi-directional influence 

that FL B-cells have on TFH phenotype and survival.  Therefore, to investigate functional 
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interactions between FL-TFH and FL B-cells requires human FL tissue to facilitate in vitro culture 

experiments. 

Disaggregated FL cells from fresh LN excision biopsies are the ideal source of TFH and FL B-cells 

but are difficult to obtain, primarily due to an increasing reliance on less invasive core needle 

biopsy for lymphoma diagnosis, where the scant volume of tissue is usually all required for 

diagnostic purposes (Johl, et al 2016).  In the increasingly rare instances that excision biopsies 

are performed, the primary diagnosis is often not yet known, and patients are frequently under 

the care of other medical teams (i.e. non-haematology).  Thus, it is challenging to prospectively 

identify potential FL patients and ensure that tissue is processed fresh and in a timely manner, 

without coming into contact with formalin or other fixative that would preclude later cell 

culture.  It was therefore necessary to explore other means of obtaining TFH and FL B-cells.  

The following sources were considered, and are described in greater detail in the sections below: 

1. LN fine needle aspirate (FNA) 

2. Peripheral blood and bone marrow aspirates 

3. In-vitro transformation of naïve T-cells into TFH 

The aim of this preliminary work was to assess whether T-cells corresponding to a TFH phenotype 

could be readily identified or generated from FL patients using these sources, and in sufficient 

numbers to enable further co-culture studies.   

 

3.2. Identifying TFH in Lymph Node Tissue 

3.2.1. Background 

LN FNA is a less invasive method of obtaining LN single cell suspensions than surgical or core 

biopsy and can easily be performed in the outpatient clinic.  FNA cytology has been used to 

diagnosis and classify low-grade non-Hodgkin lymphoma (Cozzolino, et al 2016), and our group 

has previously demonstrated the utility of FNAs for assessing the TME in CLL (Pasikowska, et al 

2016).  FNAs have also been successfully used to study TFH in reactive LNs of non-human primates 

(Havenar-Daughton, et al 2016).  

It was not clear whether this technique could be successfully applied to the study of the TME in 

FL, a tissue more heterogeneous in its composition than CLL, and whether the lymphocyte 

subsets obtained would accurately reflect those present in the entire LN.  Presuming that TFH 
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could be identified, it was also unclear whether they would be present in sufficient numbers to 

facilitate culture studies.   

The aims of this section were: 

1) To characterise and compare lymphocyte subsets in FL cell suspensions derived from 

disaggregated LN tissue (acquired on rare occasions) and FNA 

2) To quantify TFH and FL B-cell yield from FL FNA and assess the feasibility of using FL 

for culture studies 

 

3.2.2. Methods 

LN FNA, tissue disaggregation and flow cytometry were performed as described in Sections 2.3, 

2.4 and 2.7, respectively.  No single antigen is specific to TFH or able to accurately identify TFH 

within CD4+ T-cells in isolation.  Optimal protocols for identifying human TFH cells have been 

published (Espeli and Linterman 2015), incorporating combinations of the following antigens: 

CD3+ CD4+ PD-1hi CXCR5+ ICOS+ BCL6+ CD57+ CD200+ CD25- CD45RA- CCR7- FoxP3- 

All experiments throughout this thesis used a basic antibody panel to identify TFH consisting of 

T-cell markers (CD3 and CD4) and TFH-associated markers (PD-1, ICOS and CXCR5; see Table 2.1).  

These markers have most consistently been used to identify TFH across published studies and are 

the most functionally relevant; high levels of PD-1 expression have been shown to identify 

functionally active TFH within FL (Yang, et al 2015a), whilst ICOS and CXCR5 are essential for TFH 

function (Crotty 2019).  CD25 together with CD127 was used to identify any cells that possessed 

CD127loCD25+ Treg or TFR phenotype.  Disaggregated reactive LN tissue was available from a 

patient with toxoplasmosis lymphadenitis and was initially used as a positive control to ensure 

that bona fide TFH were identified in FL LN cell suspensions.  CD19 and CD10 were used to identify 

the malignant GC B-cell population.  CD10 expression is confined to a relatively small population 

of GC B-cells in reactive LNs but is usually diffusely expressed in FL (Figure 3.1).  Whilst a small 

minority of CD19+CD10+ FL B-cells may be non-malignant, it has already been shown that the 

vast majority of B-cells in FL tissue are neoplastic, their phenotype is complex and no single 

antigen can adequately distinguish malignant from non-malignant B-cells (Le, et al 2016, 

Wogsland, et al 2017).  Concurrent assessment of Ig light chain clonality or intracellular markers, 

such as BCL2, would not completely exclude non-malignant B-cells but would increase flow 

panel complexity and difficulty in performing compensations.   
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Figure 3.1. Expansion of CD19+CD10+ germinal centre B-cells in FL. Representative flow plots 

show expression of CD19 and CD10 viable lymphocytes isolated from reactive lymph node (left) 

and FL FNA (right) 

 

3.2.3. Lymph Node Samples and Patient Characteristics 

Samples obtained included FL FNAs (n=17, from 12 patients) and disaggregated FL LN tissue 

(n=5; 4 from whole LN excision biopsy, 1 from needle core biopsy).  The baseline demographics 

and disease characteristics of these patients are outlined in Table 3.1.  Median age was 64.0 

years (range 36.7 – 78.2).  Twelve patients (70.6%) had not received any prior lymphoma 

treatment.  Five patients were at 1st or 2nd disease relapse and had not received treatment for a 

median of 34 months (range 6 – 84).  None had received prior bendamustine or purine analogue 

therapy, which can induce prolonged lymphopenia.  Only 1 patient had high-risk disease, defined 

by progression of disease within 24 months of initial immunochemotherapy.   

 

3.2.4. TFH in FL LN Cell Suspensions 

The gating strategy used to identify T-cell subsets in FL LN is shown in Figure 3.2.  There was a 

discrete population of PD-1hiICOS+CD4+ T-cells in disaggregated FL LN tissue that were CXCR5+ 

and lacked CCR7 and CD45RA expression, corresponding to a TFH phenotype (Figure 3.3).  The 

same PD-1hiICOS+ T-cell population was also present in reactive LN control tissue, where TFH 

accounted for a very small proportion of CD4+ T-cells (3.2%), consistent with published literature 

(Ame-Thomas, et al 2012).  
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Table 3.1. Baseline patient characteristics  

Patient ID Sample Age (years) Sex Stage Grade Treatment 

FL001 FNA* 59.5 F 4 3A Pre-treatment 

FL004 FNA 70.1 M 4 Unk W&W 

FL005 FNA* 36.7 M 3 2 First relapse 

FL006 FNA* 40.3 F 3 2 W&W 

FL009 FNA 64 F 1 2 Pre-treatment 

FL010 FNA* 52.4 F 4 1 W&W 

FL013 FNA 67.7 F Unk 1 First relapse 

FL018 FNA 78 M 1 2 First relapse 

FL023 FNA 54 M 4 3A Second relapse 

FL024 FNA 74.2 M 4 Unk First relapse 

FL026 FNA† 69.1 M 3 2 W&W 

FL028 FNA 55.4 F 4 2 Pre-treatment 

FL014 LN 60.9 M 4 1 W&W 

FL021 LN 54.3 F 4 1 Pre-treatment 

FL022 LN 71.4 F 3 3A Pre-treatment 

FL025 LN 71.8 F 3 3A Pre-treatment 

FL027 LN 78.2 M 3 1 W&W 

* denotes patients that underwent FNA on more than one occasion 

† failed to obtain LN cells from FNA 

FNA: fine needle aspirate; LN: lymph node; Pre-treatment: prior to first-line 

immunochemotherapy; unk: unknown; W&W: watch and wait 

 

 

PD-1hiICOS+ TFH were also readily identifiable in 16 of 17 FNAs (94%; Figure 3.3A); only one FNA 

did not have any TFH.  The same sample also lacked FL B-cells, therefore the FNA is likely to have 

either missed affected LN tissue, in the absence of ultrasound guidance, or sampled a rare 

necrotic area. 

The lymphocyte composition of disaggregated LN tissue and FNAs was then compared to assess 

whether these sources of LN cell suspensions were similar and could be used within the same 

experiments.  FL is a heterogeneous tissue and it is not possible to assume that lymphocytes 

from both follicular and interfollicular areas are equally easy to aspirate.  Many FNAs also 

contain some visible red cell contamination, therefore the presence of PB lymphocytes may 

skew T-cell composition.  
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Figure 3.2. Identification of TFH and Tregs in FL LN cell suspensions. Representative flow plots 

show cells sequentially gated according to A) forward and side scatter, B) doublet exclusion 

(forward scatter area vs height), C) cell viability, D) CD3 and E) CD4 and CD8 expression. CD4+ T-

cells were gated accordingly and high ICOS and PD-1 expression used to identify TFH (F), and 

CD127 and CD25 expression used to identify Tregs (G). 
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Figure 3.3. PD-1 and ICOS identify a discrete population of CXCR5+ TFH FL LN tissue. A) 

Representative flow plot show A) identification of PD-1hiICOS+ TFH in gated CD4+ T-cells from a LN 

FNA. Histograms compare B) CD45RA, C) CXCR5 and D) CCR7 expression in CD4+ T-cell subsets 

according to PD-1 and ICOS expression. 

 

TFH accounted for a similar proportion of CD4+ T-cells in LN cell suspensions from both sources: 

28.6 ± 3.8% in FL LN FNAs (n=12) and 29.2 ± 6.1% in disaggregated FL LNs tissue (p=0.68; n=5, 

Figure 3.4).  Both are consistent with other studies using disaggregated FL LN tissue, which have 

reported that TFH represent 26.6 – 35.0% of CD4+ T-cells in FL (Ame-Thomas, et al 2012, Pangault, 

et al 2010, Yang, et al 2015a).  Other lymphocyte subsets were also similar in both sources.  The 

median ratio of B-cells to T-cells was 1.98 (range 0.19 – 7.99) in disaggregated LN and 2.20 (range 

0.16 – 4.14) in FNAs (p>0.99).  CD4+ T-cells comprised 74.0 ± 5.4% of all CD3+ lymphocytes in 

disaggregated LN and 77.5 ± 2.6% in FNA (p=0.55).  The proportion of CD4+ T-cells that had a 

CD127loCD25+ Treg phenotype, which usually predominate in interfollicular areas, was also 

similar: 23.7 ± 3.0% in FNAs and 24.4 ± 6.8% in disaggregated LN (p=0.84). 
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These data show that the lymphocyte composition of disaggregated FL LNs and FNAs are very 

similar. Therefore, cell suspensions from both sources were used interchangeably from this 

point onwards 
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Figure 3.4. Comparison of CD4+ T-cell subsets in FL FNA and LN tissue.  Graph shows the 

proportion of viable CD4+ T-cells that possessed the phenotypes indicated.  Horizontal bars 

represent mean values. p=NS for all FNA and LN comparisons 

 

3.2.5. Characterisation of FL LN TFH  

Different combinations of TFH markers have been used to identify TFH across the published 

literature, variously defining TFH as CXCR5hiICOS+, PD-1hiICOS+, PD-1hiCXCR5hi or CXCR5hiCCR7lo.  

These gating strategies were compared in FL LN tissue to assess their feasibility and ability to 

identify bona fide TFH.   

The proportion of cells identified as ‘TFH’ was very similar by all 4 methods (see Figure 3.5).  

However, PD-1 and ICOS together most consistently identified TFH as a discrete population that 

was easy to identify and gate reproducibly.   

Another important consideration was whether cells identified as TFH included regulatory T-cells.  

TFR have an identical phenotype to TFH but express Treg markers including CD25 and FoxP3.  Gating 

strategies that incorporated PD-1 along with either ICOS or CXCR5 included the lowest 

proportion of TFR-like cells with a Treg phenotype: only 6.73 ± 1.5% of PD-1hiICOS+ cells were 
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CD25+CD127lo, compared with 20.2 ± 3.4% CXCR5hiICOShi cells (p=0.002; n=12; Figure 3.6).  This 

is consistent with published data identifying high PD-1 expression as a key marker of 

functionally-active TFH in FL (Yang, et al 2015a).   It also highlights that different gating strategies 

are not interchangeable and can incorporate functionally diverse groups of cells.    

Lastly, PD-1 and ICOS are almost solely expressed by T-lymphocytes, whereas CXCR5 is also 

expressed by FL B-cells, therefore the latter is not useful for assessing TFH in tissue imaging 

studies.  Thus, for consistency, and to link with confocal imaging studies (see Chapter 5), TFH are 

defined as CD4+PD-1hiICOS+ T-cells throughout this thesis. 

 

  

Figure 3.5. Comparison of gating strategies to identify TFH. Representative flow plots show 

expression of TFH markers in viable CD4+ T-cells from a disaggregated reactive LN.  Gated cells on 

each plot indicate cells with a TFH phenotype. 
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Figure 3.6. Prevalence of Tregs within TFH subsets.  Different flow gating strategies were applied 

to FL LN CD4+ T-cells to identify TFH-like cells (x axis).  Graph shows the proportion of these TFH-

like cells that had a CD127loCD25+ regulatory phenotype. Horizontal bars represent mean values. 

*p=0.002; **p<0.001 

 

We then considered whether PD-1 and ICOS were sufficient to identify TFH in isolation, or if 

additional markers are needed.  CD4+PD-1hiICOS+ T-cells were almost universally CXCR5-positive 

(96.3 ± 1.1% were CXCR5+) and CCR7-negative (96.88 ± 1.4% were CCR7-; n=6), consistent with 

a TFH phenotype. Therefore, neither of these markers were deemed essential and CCR7 was not 

included in most subsequent flow experiments.  

Expression of the TFH-defining transcription factor BCL6 was assessed by intracellular flow 

cytometry (Section 2.7.3).  Only small shifts were seen in BCL6 expression, compared with either 

isotype-matched or unstained negative controls, even in Ramos positive-control cells and using 

a strong fluorochrome (APC; Figure 3.7).  As a result, only a minority of PD-1hiICOS+ TFH (32.5 ± 

9.9%) had detectable BCL6 expression.  However, as expected, TFH were more likely to express 

BCL6 than other CD4+ T-cells: only 10.9 ± 4.9% of PD-1intICOS+ T-cells and 10.1 ± 4.4% of PD-1neg 

ICOSlo cells were BCL6+ (p=0.03 for both, n=6).  The most likely explanation for the lack of BCL6 

expression in most PD-1hiICOS+ TFH is that intracellular flow cytometry is not sensitive enough.  

BCL6 expression is known to be weaker in TFH than in GC B-cells (such as Ramos cells) and other 

studies have shown similar results by flow cytometry but much higher rates of BCL6 expression 

at a transcriptional level (Schmitt, et al 2014c).  Methodological factors may be contributory, 

such as the primary antibody clone used or fixation/permeabilization method. 
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Figure 3.7. BCL6 expression in FL LN CD4+ T-cells. A) Representative flow plots show BCL6 

expression in subsets of CD4+ T-cells. B) Flow plots show expression of BCL6 in Ramos positive-

control cells and isotype-matched negative controls. C) Proportion of BCL6+ cells in CD4+ T-cell 

subsets 

 

3.2.6. Cell Yield 

Fresh LN tissue was obtained from 5 patients over a period of 3 years.  Two of these were large 

LN biopsies that yielded at least 108 cells and could be used for multiple experiments, including 

flow sorting.  However, the other 3 were very small tissue sections that provided <20 x 106 cells, 

with lower cell counts after freeze-thawing, and could only be used for a limited range of 

experiments.  This emphasised the need to find alternative sources of FL B-cells and autologous 

TFH. 

For FNAs used fresh, without freeze-thawing, the median total number of viable cells obtained 

was 2.99 x 106 (range 0.39 – 4.34; n=11), counting cells lacking trypan blue uptake on a 

haemocytometer slide as an approximate measure of total viable cell count.   
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By flow cytometry with counting beads, the median absolute number of CD4+ T-cells and TFH 

obtained per FNA were 30.6 x 104 (range 1.05 – 77.6) and 9.9 x 104 (range 0.58 – 44.8), 

respectively (n=8; Figure 3.8).  Four of the 8 FNAs assessed had fewer than 105 TFH. 

 

 

Figure 3.8. Absolute cell counts obtained from FL FNAs. A) total viable cell count by trypan 

blue exclusion.  B) T-cell subsets quantified by flow cytometry with counting beads. 

Horizontal bars represent median values.  

 

The majority of lymphocytes in FNAs were GC B-cells.  The median total number of CD19+ B-cells 

obtained per FNA was 97.6 x 104 (range 3.7 – 356.3; n=8), of which a median of 78.3% were 

CD10+ FL B-cells (range 11.1 – 95.1; Figure 3.9).  CD10 expression can be heterogeneous or even 

absent in some FL cases (Swerdlow, et al 2008).  In 1 patient only 11% of B-cells were CD10+, 

where the FNA was taken from a biopsy-proven area of relapsed FL with heterogeneous CD10 

expression; CD19 alone was used as the sole B-cell marker for this patient. 

For comparison, core needle biopsies were also obtained from 3 patients with suspected 

lymphoma during this study (2 patients with DLBCL and 1 FL).  These were of various size and 

quality and yielded a median of 2.6 x 106 cells (range 1 – 12 x 106).  Therefore, there was not felt 

to be an advantage in using core needle biopsies over FNAs, as they are slightly more invasive 

and usually require local anaesthetic and imaging guidance.  Even if extra cores were taken 

specifically for the purpose of research, there was also concern that this could not be deemed 

surplus to diagnostic requirements, where the amount of tissue obtained is usually so small.        
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Figure 3.9. Absolute B-cell numbers obtained from FL FNAs. Viable CD19+ and CD10+ 

lymphocytes were quantified by flow cytometry using counting beads. Horizontal bars represent 

median values 

 

3.2.7. Reproducibility 

FNA was repeated on at least 1 occasion in 4 patients, 3 of whom had not received treatment in 

the intervening period (Table 3.2). The proportion of CD4+ T-cells that had a TFH phenotype varied 

by 8.0 – 9.7% for consecutive FNAs, indicating an element of intrapatient heterogeneity.  There 

are multiple factors that may account for this variability, including differences in LN site and 

storage conditions (i.e. used fresh or freeze-thawed).  There is likely to be an element of 

sampling variation; FL tissue is not homogeneous, and the density of follicles may vary 

throughout an involved LN.  Heavy PB contamination may also skew the lymphocyte 

composition.  

 

Table 3.2: Reproducibility of FNA results. Table shows the proportion of CD4+ T-cells that had a 

TFH phenotype for patients undergoing repeated FNA 

Patient 
number 

% TFH Lymph 
node  
site 

Time 
interval  

(months) 

 
Clinical status FNA 1 FNA 2 

FNA 
3 

FL005 29.5* 20.2 - Same 14.1 Stable indolent disease 

FL006 27.4* 19.4 19.8 Different 29.2 Stable indolent disease 

FL010 23.0 32.7 - Different 3.4 Progression at FNA2 

*indicates use of freeze-thawed samples  
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3.2.8. Discussion 

These data demonstrate that TFH can readily be aspirated and identified within FL FNAs.  The 

proportion of TFH and other lymphocyte subsets obtained by FNA was very similar to 

disaggregated FL LN tissue, demonstrating that FNAs adequately reflect the lymphocyte 

composition of the wider LN TME and can be used alongside disaggregated LN tissue.  

The number of TFH is a limiting factor in experiments using FNAs: half of the FNAs contained less 

than 105 TFH in total.  This precludes complex culture studies involving multiple different 

conditions or requiring more than basic cell manipulation, for example, flow sorting.  

Nevertheless, FNAs are a viable and representative source of FL T-cells, therefore are suitable 

for further studies of TFH in FL.   

 

3.3. Characterisation of Peripheral Blood and Bone Marrow T-cells  

3.3.1. Background 

FL infiltration in the BM is present in approximately 40% of patients (Federico, et al 2009), whilst 

PB involvement is present in 4-23% (Beltran, et al 2013).  Both can be used as sources of FL cells 

for culture studies, with the potential to obtain greater cell numbers than FNA.  PB and BM can 

also be obtained in conjunction with routine diagnostic procedures, thus are relatively non-

invasive.  However, the potential for these sources to produce autologous TFH is less clear. 

Although TFH almost exclusively reside within secondary lymphoid tissue in healthy individuals, 

it is known that follicular structures with ectopic FDC networks can form within in the bone 

marrow when infiltrated by FL (Swerdlow, et al 2008).  The T-cell composition of these BM 

follicular structures has not been well characterised.  

TFH-like cells are present within the PB of healthy individuals (PB-TFH).  However, in contrast to 

LN TFH, PB-TFH are typically defined by CXCR5 expression alone and the majority of these cells 

have low or absent PD-1 and ICOS expression (Schmitt, et al 2014a).  The presence of leukaemic 

disease in FL can alter PB T-cell phenotype.  PB T-cells from FL patients with leukaemic 

involvement, but not those without, have impaired immune synapse formation, mimicking the 

behaviour of LN-derived FL T-cells (Ramsay, et al 2009).  PB-TFH have not been characterised in 

FL, although in other leukaemic B-cell neoplasms, such as CLL, circulating CD4+CXCR5+ PB-TFH 

cells are increased in number (Ahearne, et al 2013). 

PB-TFH and naïve T-cells from healthy donors are both able to adopt TFH-like properties and 

provide B-cell help under appropriate experimental conditions (Locci, et al 2016, Morita, et al 
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2011, Schmitt, et al 2014c).  To assess whether either can potentially be used as a source of 

autologous TFH in FL patients first requires characterisation of these T-cell subtypes.  FL patients 

are reported to have reduced numbers of CD4+ and naïve T-cells compared with age-matched 

controls (Christopoulos, et al 2011).  Age has a major influence on circulating immune cells and 

the median age of FL patients at presentation is 65 years.  Older patients are also known to have 

a reduced proportion of naïve T-cells, higher levels of Tregs and PB-TFH, diminished antibody 

responses to vaccination and elevated levels of ICOS and PD-1 expression (Lefebvre and Haynes 

2012, Zhou, et al 2014).  

The aims of this work were to: 

1) To investigate the feasibility of obtaining TFH from FL-derived PB and BM tissue 

2) To characterise the circulating CD4+ T-cell subsets in FL, compared to age-matched 

healthy controls. 

 

3.3.2. Bone Marrow T-Cells  

Bone marrow T-cells were assessed in 2 untreated FL patients with known, extensive bone 

marrow involvement.  Neither patient had a discrete identifiable population of TFH.  One patient 

had LN material available for comparison: only 5.8% of BM CD4+ T-cells were PD-1hiICOS+, 

compared with 16.4% in the LN, and the majority of these (58.2%) were CXCR5-negative (Figure 

3.10).  Other groups investigating the role of TFH in FL also confirmed that TFH were not present 

in BMMC (K Tarte, personal communication), therefore this avenue was not explored further.  It 

is known that BM disease in FL has a lower proliferation rate and less aggressive phenotype than 

LN disease (Bognar, et al 2005, Rajnai, et al 2012).  The BM microenvironment is likely to exert 

a strong influence on the phenotype of marrow disease, although whether the absence of TFH 

contributes to this observation is unknown.  

 

3.3.3. Peripheral Blood T-Cells in Follicular Lymphoma and Healthy Controls 

PBMCs were obtained from 12 FL patients (n=12) and 8 age-matched healthy controls (n=8), as 

described in section 2.2.  The median age was 59.4 years (range 36.7 – 77.7) in FL patients and 

57.6 years (range 43.6 – 69) in healthy controls.  Three FL patients (25%) had received previous 

immunochemotherapy; none had received prior purine analogue-based therapy, and all had 

been off treatment for at least 6 months.  Three FL patients (25%) had elevated total lymphocyte 

counts with evidence of leukaemic involvement. 
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Figure 3.10: Phenotype of bone marrow-derived T-cells: Flow plots show PD-1, ICOS and CXCR5 

expression in viable LN, BM and PB CD4+ T-cells from the same patient 

 

PB-TFH, defined by CXCR5 expression, were present in all patients but formed a minority of PB T-

cells, comprising 13.7% ± 1.6% of CD4+ T-cells in FL patients and 10.5% ± 3.0 in healthy controls 

(p=0.08; Figure 3.11).  Naïve CD45RA+ T-cells accounted for a greater proportion of CD4+ T-cells: 

33.3 ± 7.21% in FL patients and 46.2 ± 8.8% in healthy controls (p=0.46).  There was no detectable 

difference in the proportion of PB-TFH or naive T-cells between FL patients or healthy controls, 

although greater patient numbers are required to exclude small differences.  

Expression of TFH and other T-cell markers can reflect the potential of CXCR5+ PB-TFH to adopt 

TFH-like properties.  In particular, expression of PD-1 and the absence of CXCR3 expression both 

signify an increased capacity to support class-switching and IgG production in healthy B-cells 

(He, et al 2013, Morita, et al 2011).  FL patients had significantly higher levels of PD-1 expression 

in PB-TFH compared to healthy controls, with PD-1+ cells comprising 63.0 ± 5.8% of PB-TFH in FL 

patients compared to 27.7 ± 3.3% of controls (p<0.001).  The increase in PD-1 expression was 

not specific to PB-TFH: 41.1 ± 7.1% of CXCR5-negative CD4+ T-cells were PD-1+ in FL patients 
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compared to 13.0 ± 2.5% in controls (p=0.002; Figure 3.12), therefore it is not clear whether 

increased PD-1 expression necessarily correlates with increased TFH potential.  There was no 

difference in the proportion of more functionally-active CXCR3- PB TFH: 27.4 ± 4.8% PB TFH 

expressed CXCR3 in FL compared to 27.0 ± 3.0% in controls (p=0.43).  There was also no 

difference in expression of ICOS, CCR7 or intensity of CXCR5 in PB-TFH between FL patients and 

healthy controls (Figure 3.12).   

 

 

Figure 3.11. Comparison between CD4+ T-cell subsets in FL patients and healthy controls.  

Graph shows the proportion of CD3+CD4+ PB lymphocytes that expressed CD45RA (naïve T-cells) 

and CXCR5 (PB-TFH) by flow cytometry.  Columns represent mean values and error bars represent 

standard error 

 

PB-TFH had higher PD-1 expression than CXCR5neg or CD8+ PB T-cells in both FL patients and 

healthy controls, although this did not reach the levels of PD-1 expression seen in LN TFH.  Eight 

FL patients had paired LN and PBMCs available for comparison; 63.0 ± 5.8% of PB-TFH were PD-

1-positive but only 5.7 ± 2.6% were PD-1hi, with levels of PD-1 expression comparable to LN TFH 

(Figure 3.10).  Although the majority (98.8% ± 0.33) of PB-TFH expressed ICOS to some extent, 

only 15.4 ± 3.9% expressed ICOS to the same levels as LN TFH.  Overall, only 3.0 ± 1.3% of PB-TFH 

had a phenotype similar to LN TFH, therefore it is not possible to assume that FL PB-TFH have the 

same functional capacity as LN TFH.  
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Figure 3.12. Median fluorescence intensity of TFH markers in PB T-cells.   Graphs shows 

expression of TFH antigens by flow cytometry in: A) CD4+CXCR5+ PB-TFH and B) CD4+CXCR5neg T-

cells in the PB of FL patients and healthy controls.  Columns represent mean values and error bars 

represent standard error. *p=0.002, **p=0.01 

 

There was no overt difference between FL patients with leukaemic involvement (n=3) and those 

without (n=9), either with respect to the proportion of PB-TFH or levels of ICOS, PD-1 and CXCR5 

expression (data not shown), although the small number of patients with leukaemic disease 

precluded formal comparison. 

 

3.3.4. Discussion 

There are several advantages to using PB-TFH to study interactions between TFH and FL B-cells: 

firstly, all FL patients had detectable CXCR5+ PB-TFH, which are much more accessible than LN-

derived TFH.  Secondly, compared with naïve T-cells, PB-TFH are more differentiated and have 

some TFH polarisation.  However, these data demonstrate that PB-TFH comprise a minority of 

circulating CD4+ T-cells and do not have the same phenotype as LN-derived TFH.  These results 

are consistent with published data, showing that 5-10% of PB CD4+ T-cells are CXCR5+ (Ahearne, 

et al 2013, Morita, et al 2011).  However, there are also no commercial kits available to facilitate 

TFH isolation, therefore flow sorting would be required, which can reduce cell viability during 

subsequent co-cultures. In addition, given that the intensity of CXCR5 expression in PB-TFH was 

low, stricter gating strategies would be required to ensure only pure CXCR5+ cells are isolated, 

leading to the inevitable loss of a proportion of true PB-TFH.  It is therefore clear that PB-TFH are 

not present in sufficient numbers to facilitate culture studies.  CD45RA+ naïve T-cells formed a 

much larger proportion of PB CD4+ T-cells (33.7 ± 5.0%) and, using commercial immunomagnetic 

selection kits, are much easier to isolate for further culture and differentiation experiments. 
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The higher expression of PD-1 expression in PB T-cells in FL replicates findings in other B-cell 

malignancies, such as CLL (Brusa, et al 2013).  Whether the increase in PD-1 reflects a 

polarisation towards more activated TFH in FL, or a higher proportion of exhausted T-cells in FL 

is unclear; this requires correlation with additional markers of T-cell exhaustion and functional 

studies.  It has been shown that PB T-cells from FL patients have increased proliferation in 

response to CD3/CD28 stimulation and increased capacity to secrete IL-4 compared with healthy 

controls (Christopoulos, et al 2011), which may reflect a degree of TFH polarisation.   However, 

we did not observe an overt difference in the expression of other antigens that contribute to 

the PB-TFH phenotype, particularly CCR7, which is usually downregulated in PD-1+ TFH (He, et al 

2013).  

One caveat is that absolute T-cell numbers were not quantified in this study.  It is therefore 

unclear whether PD-1+ T-cells are increased in number in FL, or unchanged with a relative 

reduction in other CD4+ T-cells.  It is also unclear whether absolute numbers of circulating naïve 

T-cells or PB-TFH are altered in FL patients.  Higher sample numbers would be required to identify 

subtle differences in T-cell composition between FL patients and healthy controls. 

There are a number of key unanswered questions.  Firstly, what is the origin of PB-TFH in FL; are 

they clonally related to LN TFH?  This would imply a common origin, implicate PB-TFH in the 

pathogenesis of FL and support the use of PB-TFH in culture studies.  Secondly, can PB-TFH adopt 

a full TFH phenotype when cultured with autologous FL B-cells?  The latter question would need 

to be addressed if considering use of PB-TFH as a surrogate for LN-derived TFH.  Given the low cell 

numbers and additional validation required, we elected not to pursue investigation into the use 

of PB-TFH for this thesis. 

 

3.4. Generating TFH-like Cells from Naïve T-Cells 

3.4.1. Background 

Multiple groups have demonstrated that particular cytokines can induce naïve T-cells from 

healthy individuals to develop a TFH-like phenotype (Locci, et al 2016, Ma, et al 2009, Schmitt, et 

al 2014c).  IL-12 has been consistently identified as a factor in TFH development but in isolation 

induces a Th1 phenotype (Locci, et al 2016, Ma, et al 2009).  IL-6 is important for early TFH 

polarisation (Crotty 2014) and TGFβ promotes human TFH development and CXCR5 expression 

(Schmitt, et al 2014c).   
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Schmitt et al demonstrated that TFH-like cells can be generated from human naïve T-cells, which 

have the ability to provide B-cell help and enhance IgG production (Schmitt, et al 2014c).  This 

study has been hailed as describing the ‘most successful conditions yet’ for TFH generation by a 

leading expert within the field (Crotty 2014).  A wide range of cytokines were assessed and the 

combination of IL-12, IL-1β, IL-6 and TGFβ1 induced the highest levels of ICOS, CXCR5 and BCL6 

expression (Schmitt, et al 2014c).  We investigated whether we could reproduce these results 

to generate TFH-like cells from naïve T-cells. 

  

3.4.2. Results 

PBMCs were isolated from treatment-naïve FL patients (n=3) and healthy individuals (n=3; not 

age-matched).  Except where stated, data from FL patients and healthy controls were analysed 

together (n=6).  The protocol for cell culture and cytokine stimulation is detailed in Section 2.6.  

CD4+CD45RA+ naïve T-cells were isolated by immunomagnetic negative selection with an 

average purity of 94.6% (range 92.6 – 96.9%).  Naïve T-cell phenotype was assessed after 4 days 

of CD3/CD28 stimulation, either without additional cytokines or with the addition of IL-12, IL-

1β, IL-6 and TGFβ1 for the final 72 hours of culture.   

Schmitt et al reported that IL-12, IL-1β, IL-6 and TGFβ1 were together able to induce a 5-fold and 

2-fold increase in the intensity of ICOS and CXCR5 expression, respectively.  By contrast, our data 

showed only a very modest increase in ICOS expression in cytokine-stimulated naïve T-cells, 

compared with non-specific CD3/CD28 stimulation alone (21.5 ± 8.2%; p=0.03; Figures 3.13 and 

3.14A).  There was no significant difference in CXCR5 expression; with an increase of 20.4 ± 

10.1% compared with control samples (p=0.22).  Similarly, there was no overt difference in PD-

1 expression, with a mean increase of 53.8 ± 29.4% (p=0.31; Figure 3.14).  Therefore, even 

though sample numbers are small, the magnitude of change in TFH markers was modest and 

insufficient to suggest a major phenotypic shift in naïve T-cells following cytokine stimulation.  

Unexpectedly, the most striking change was in CCR7 intensity, suggesting polarisation away from 

a TFH phenotype.  CCR7 expression doubled in in cytokine-stimulated cells, with a relative 

increase of 107.4 ± 44.2% compared with CD3/CD28-stimulated control cells (p=0.03; Figure 

3.14).   

Although numbers and age differences do not allow for formal comparison between FL patients 

and healthy controls, CXCR5 expression was lower in the 3 FL patients (Figure 3.14).  There were 

no overt differences in PD-1, ICOS or CCR7 expression. 
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Figure 3.13. Expression of TFH markers following naïve T-cell stimulation. Representative flow 

plots show the phenotype of naïve CD4+ T-cells following stimulation with anti-CD3 and anti-

CD28, either with or without the addition of TFH cytokines (IL-12, IL-1β, IL-6 and TGFβ1) for 72 

hours 

 

3.4.3. Discussion 

The combination of IL-12, IL-1β, IL-6 and TGF-β was only able to induce very minor shifts in ICOS, 

CXCR5 and PD-1 expression in naïve T-cells, over and above the effect of non-specific CD3/CD28 

stimulation alone.  It was therefore not possible to generate cells with sufficient evidence of TFH 

polarisation to facilitate TFH co-culture studies.  The study by Schmitt et al focussed on CXCR5 

and ICOS expression as markers of the TFH phenotype, but did not describe expression of other 

important T-cell markers, such as PD-1 and CCR7 (Schmitt, et al 2014c).  Paradoxically, the most 

prominent change in cytokine-stimulated cells was a near 2-fold increase in CCR7 expression.  

CCR7 expression is usually lost in effector memory T-cells, including TFH, and precludes GC entry. 
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Figure 3.14. Effect of stimulation with TFH cytokines on naïve T-cell phenotype. A) Graphs 

compare expression of ICOS, CXCR5, PD-1 and CCR7 in naive CD4+ T-cells stimulated for 72h either 

with or without the addition of TFH cytokines: IL-12, IL-1β, IL-6 and TGFβ1. B) Summary histogram 

illustrates the mean increase in antigen expression in naïve CD4+ T-cells stimulated for 72h with 

TFH cytokines, relative to CD4+ T-cells cultured without additional cytokines. Vertical bars 

represent standard error. *p=0.03 
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There are multiple potential explanations for these discordant results: 

1) Lack of TFH polarisation: ICOS and CXCR5 are also both activation markers and are not 

specific to TFH.  The majority of TFH-like cells produced by Schmitt et al co-expressed the 

Th17-defining transcription factor ROR-γt, in addition to BCL6 therefore may not be fully 

lineage-committed (Schmitt, et al 2014c).  TGFβ1, IL-6 and IL-1β have all been used in 

protocols to generate Th17 cells in vitro, which also express CCR7, therefore these cells 

may have been more skewed more towards to a Th17 phenotype (Wang, et al 2009). 

2) Methodological differences: although unlikely, it is possible that the reagents used, such 

as cytokine brand and anti-CD3/CD28 beads may alter efficacy.  There is also the 

potential for small quantities of cytokines or other growth factors in FBS that may 

influence TFH differentiation; some groups use serum-free culture systems (Locci, et al 

2016). 

3) Optimum cytokine combination: there are conflicting reports in the literature regarding 

the effect of various cytokines on TFH differentiation (Eto, et al 2011, Lu, et al 2011).  

Other groups investigating human TFH development have stimulated naïve T-cells with 

IL-12, either alone or in combination with TGFβ and/or Activin A (Locci, et al 2016, Ma, 

et al 2009).  Some studies have used blocking agents to inhibit cytokines that inhibit TFH 

development, such as IL-2 and IFNγ (Locci, et al 2016, Lu, et al 2011).  

4) Need for cell contact: other studies have shown that contact-dependent factors are 

critical for TFH differentiation in vivo, with DCs priming early TFH development and 

cognate B-cells driving later TFH development  (Crotty 2014, Johnston, et al 2009).  It is 

therefore unlikely that cytokine stimulation alone is sufficient to produce a full TFH 

phenotype.  Although it has been shown T-cells primed with IL-12 (with or without other 

cytokines) can enhance secretion of TFH-related cytokines, immunoglobulin production 

and plasmablast differentiation, it remains unclear whether they are able to support 

these functions to the same magnitude as LN-derived  TFH (Locci, et al 2016, Ma, et al 

2009, Schmitt, et al 2014c). 

There is scope to optimise this work further, by trialling different culture media, cytokine 

combinations and IL-2 depletion.  Gene expression profiling would enable better 

characterisation of these cytokine-stimulated cells, particularly with respect to expression of 

BCL6 and other major T-cell transcription factors.  Ultimately, proof that these generated TFH-

like cells truly resemble LN-derived TFH would require a range of functional studies with healthy 

autologous B-cells, prior to any FL experiments.  This extensive work is outside of the scope of 

this thesis.  We chose not to pursue this avenue, given a) our inability to generate cells with a 
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clear TFH phenotype in these preliminary experiments and b) our success in obtaining TFH from 

other sources, particularly LN FNA.  In addition, PBMCs do not contain significant numbers of FL 

B-cells in most patients, therefore additional LN or BM tissue would still be required for co-

culture experiments.  FL LN cells derived from both disaggregated LN and FNAs were therefore 

used for all subsequent culture studies. 
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CHAPTER 4: IN VITRO CHARACTERISATION OF TFH:B-CELL INTERACTIONS IN 

FOLLICULAR LYMPHOMA  

 

4.1. Introduction 

Having established and characterised FL LN cell suspensions from disaggregated LN and FNA, the 

initial goal was to use these to establish a co-culture system with TFH and FL B-cells.  Although FL 

cells do not survive in long-term in vitro cultures, short-term FL culture (up to 5-10 days) is 

feasible (Amé-Thomas, et al 2015, Myklebust, et al 2013, Yang, et al 2015a).  A variety of 

additives have been used in published studies to enhance survival of FL cells, including CD40L, 

IL-4 and stromal cells (either fibroblast or FDC cell lines).  Similarly, TFH do not survive in long-

term culture.  Published studies have used additional stimulation with low-dose anti-CD3 and 

anti-CD28 to support survival of TFH in short-term cultures with FL B-cells (Boice, et al 2016, Espeli 

and Linterman 2015).  However, none of these methods can induce long-term survival of either 

FL B-cells or TFH in culture. 

Other studies have explored interactions between FL B-cells and autologous T-cells without 

using any additional B- or T-cell stimulation (Ramsay, et al 2009).  TFH can provide key survival 

signals for FL B-cells, such as CD40, IL-4 and IL-21, and are able to support the survival of 

autologous FL B-cells without exogenous stimulation (Ame-Thomas, et al 2012, Yang, et al 

2015a).  Indeed, the presence of TFH has a similar effect on FL B-cell survival to culturing FL cells 

with a ‘stimulation cocktail’ comprising IL-4, IL-2 and CD40L (Amé-Thomas, et al 2015).  Similarly, 

healthy B-cells alone are able to support TFH survival through cognate TCR stimulation and 

expression of co-stimulatory molecules, such as ICOS-L and CD86 (Choi, et al 2011, Weber, et al 

2015).   However, it is not known whether FL B-cells are able to support TFH survival to the same 

extent.  

Due to the restricted availability of LN cell suspensions, it was not possible to trial multiple 

different culture systems as part of this thesis.  A simple FL B-cell:TFH co-culture system was 

developed using  RPMI-1640 medium without additional growth factors or stromal cells.  This 

was adopted because use of exogenous stimulation could potentially overwhelm more subtle 

levels of stimulation that TFH or FL B-cells may be able to provide and thus mask evidence of 

mutual interactions.  

The central hypothesis of this work is that TFH play a key role in driving FL progression.  The aim 

was to use LN cell cultures to explore the nature of interactions between TFH and FL B-cells that 
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may facilitate FL growth.  It has already been shown in multiple studies that TFH can prevent 

apoptosis in FL B-cells in vitro and promote expression of the activation marker CD86 (Ame-

Thomas, et al 2012, Yang, et al 2015a).  As a first step, it was necessary to demonstrate that it 

was possible to recapitulate the work of others by demonstrating that TFH support FL B-cell 

survival in order to: 1) validate the culture methods used and 2) serve as proof of principle in 

support of our primary hypothesis.   

It has been established that FL creates a supportive TME for TFH but published studies primarily 

focus on the ability of FL B-cells to stimulate TFH through indirect means, such as the recruitment 

and activation of stromal cells (Boice, et al 2016, Brady, et al 2014).  It is not known whether FL 

B-cells are able to directly maintain the presence and survival of TFH in isolation.  TFH support in 

reactive GCs is critically dependent on three stimuli provided by GC B-cells: 1) cognate TCR 

interactions and CD3 signalling, 2) CD28 stimulation by CD86 and 3) ICOS signalling (Choi, et al 

2011, Crotty 2014, Weber, et al 2015, Wing, et al 2014).  However, FL B-cells are reported to 

express much lower levels of ICOS-L compared with reactive GC B-cells (Le, et al 2016), MHC 

expression is downregulated in many FL tumours (Green, et al 2015), and it is unknown whether 

cognate TCR interactions occur in FL.  This chapter therefore also explores the dynamics of ICOS-

L and HLA-DR expression in vitro and investigates whether FL B-cells are able to support TFH 

survival and maintenance of the TFH phenotype.  

We hypothesise that FL B-cells directly support the presence of TFH in the FL TME, initiating a 

positive feedback loop, in order to derive mutually beneficial survival and activation signals.  The 

aims of the following experiments were: 

1. To establish that short term (up to 5 days) culture of FL cells and TFH is feasible without 

additional stimulation 

2. To explore the effect of TFH on FL B-cell survival and phenotype, particularly with 

respect to CD86, HLA-DR and ICOS-L expression 

3. To investigate the influence of FL B-cells on TFH survival and phenotype 

 

4.2. Methods 

For most cultures described here (except where indicated), FL LN cell suspensions were split into 

3 parts and cultured either unmodified, or after selective B-cell or T-cell depletion.  To assess 

the effect of FL B-cells on TFH phenotype and survival, immunomagnetic CD19+ B-cell depletion 

was used (see Section 2.5).  To assess the effect of TFH on FL B-cell phenotype and survival, 

immunomagnetic CD3+ T-cell depletion was used.  CD3-depletion was preferred over more 
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selective CD4+ T-cell depletion to avoid leaving in CD8+ T-cells that may, when unhindered by 

regulatory T-cells, have deleterious effects on FL B-cell survival (Laurent, et al 2011).  Cells were 

cultured at a density of 1 x106 cells/ml in RPMI-1640 medium as described in Section 2.6.  Cell 

death and apoptosis were assessed by flow cytometry through uptake of Fixable Viability Dye 

and the Annexin V, respectively (see Sections 2.1 and 2.7). 

Importantly, this approach allowed for the use of FL FNAs, where low cell numbers do not allow 

for isolation of TFH and other T-cell subsets by flow-sorting.  By characterising FL B-cells in both 

T-replete and T-deplete cultures, it was possible to obtain surrogate evidence of the effect of 

TFH in FL, although it was not possible to fully differentiate whether observed effects were TFH-

specific or partly influenced by the presence other T-cell subsets. 

Therefore, where cell numbers allowed, cell cultures were repeated using flow-sorted FL B-cells, 

TFH and non-TFH CD4+ T-cells.  The method used for fluorescence-activated cell sorting is detailed 

in Section 2.7.8.  FL B- and T-cells were either cultured alone in RPMI-1640 medium or mixed at 

a 1:1 ratio.  There is inevitable cell loss during the sorting process and lymphocytes often have 

reduced viability in subsequent in vitro cultures.  Therefore, only 2 LN samples had enough viable 

cells (at least 107) to enable cell sorting.  These experiments were intended to support the 

findings from the B- and T-cell depletion studies above and were repeated on 3 separate 

occasions for each of two LN samples (N=6).  However, given that samples were derived from 

only 2 patients, no formal statistical comparison has been performed.   

 

4.3. Results 

 

4.3.1. Patients and Lymph Node Samples 

LN cell suspensions were obtained from 10 patients (6 by FNA, 4 from disaggregated LN tissue) 

amongst the patient cohort described in Section 3.2.3.  Median age was 53.9 years (range 36.7 

– 78.2).  Clinical details are listed in Table 4.1. 
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Table 4.1. Patient characteristics 

Patient ID Tissue Age (years) Sex Stage Grade Treatment 

FL005 FNA 36.7 M 3 2 First relapse 

FL006 FNA 40.3 F 3 2 W&W 

FL018 FNA 78 M 1 2 First relapse 

FL023 FNA 54 M 4 3A Second relapse 

FL024 FNA 74.2 M 4 Unk First relapse 

FL028 FNA 55.4 F 4 2 Pre-treatment 

FL014* LN 60.9 M 4 1 W&W 

FL021 LN 54.3 F 4 1 Pre-treatment 

FL022 LN 71.4 F 3 3A Pre-treatment 

FL027* LN 78.2 M 3 1 W&W 

*indicates patients that had LN tissue available for flow sorting experiments 

FNA: fine needle aspirate; LN: disaggregated lymph node tissue; unk: unknown; W&W: watch 

and wait 

 

CD20 and CD4 were used as B- and T-cell markers to assess the efficacy of B- and T-cell depletion, 

respectively, as expression would not be altered by the presence of CD19 or CD3 selection beads 

(n=10).  The median reduction in CD20+ B-cells with immunomagnetic B-cell depletion was 95.5% 

(range 75.4 – 99.9%).  The median reduction in CD4+ T-cells with immunomagnetic T-cell 

depletion was 96.2% (range 86.0 – 99.6%).   Only 1 sample (10%) had suboptimal (i.e. <90%) B-

cell depletion and 1 sample had suboptimal T-cell depletion.  These samples were still 

considered relatively B- and T-deplete with a CD20:CD3 ratio of 1:4 and a CD19:CD4 ratio of 8:1, 

respectively, therefore these samples were not excluded from this study. 

The gating strategy for fluorescence associated cell sorting is shown in Figure 4.1.  All cell subsets 

were sorted to at least 98% purity. 
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Figure 4.1. Gating strategy for fluorescence-activated cell sorting. Representative flow plots 

show sequential identification of A) lymphocytes, B) single cells and C) viable cells.  D) viable 

lymphocytes were gated according to CD19/CD10 expression to identify FL B-cells. E) Non-B-cells 

were subsequently gated by CD3/CD4 expression and F) CD4+ T-cells were gated according to PD-

1 and ICOS expression into TFH and non-TFH. 

 

4.3.2. Effect of T-Cell Depletion on FL Survival 

To assess whether TFH support FL B-cell viability, apoptosis and cell death were measured in FL 

B-cells in paired T-deplete and T-replete cultures.  The flow cytometry gating strategy used is 

shown in Figure 4.2.   
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Figure 4.2: Assessment of FL B-cell apoptosis by flow cytometry.  A) Forward scatter (FSC) and 

side scatter (SSC) properties allowed identification of the lymphocyte population, using a wide 

gate to incorporate apoptotic cells with lower FSC.  B) Lymphocytes were gated to exclude cell 

doublets and then (C) to identify CD19+ B-cells.  D) A combination of Annexin V and Fixable 

Viability Dye were used to identify apoptotic and dead cells, respectively, allowing quantification 

of the proportion of CD19+ B-cells that remained viable.  E) Graph shows the proportion of FL B-

cells that remained viable after 5 days in T-replete (co-culture) and T-deplete culture. 

 

There was no difference in the proportion of viable FL B-cells between T-replete and T-deplete 

cultures after 5 days in culture, with 53.7% ± 5.9 and 53.4% ± 8.2 of FL B-cells remaining viable, 

respectively (p=0.94, N=9; Figure 4.2E).  Therefore, we were unable to demonstrate that T-cells 

reduce apoptosis and support FL B-cell survival by this method.  Just over half of cells remained 

viable, demonstrating that FL B-cells were able to survive in culture without extra stimulation, 

whilst there was sufficient cell death to allow a difference to be assessed.  The failure to detect 

a difference in FL B-cell survival may represent a failure of the co-culture system, where the 

influence of other (non-TFH) T-cells on cell survival counteracted any pro-survival effect of TFH.  

However, there are also limitations to this method of quantifying B-cell survival, which assesses 

relative change in cell death but does not quantify the absolute number of viable B-cells 

remaining.  Apoptotic or dead cells often have altered or aberrant expression of basic cell surface 
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markers and may fall outside of expected cell gates.  Some dead cells may have fully fragmented 

and thus not been included in the initial, wide lymphocyte gate.   

Therefore, in later culture experiments, the absolute number of viable FL cells was quantified at 

each time point using counting beads (see Section 2.7.6).  Compared with baseline FL B-cell 

counts, there was a greater reduction in the number of viable FL cells after 5 days in T-deplete 

cultures than in T-replete co-cultures for all 5 samples assessed (p=0.063, N=5; see Figure 4.3).  

The mean proportion of FL B-cells remaining at day 5 was 43.9 ± 9.6% in T-replete co-cultures 

and 30.5 ± 9.1% in T-deplete cultures.  CD19 is universally expressed by GC B-cells and is 

necessary for their survival (Otero, et al 2003), therefore any reduction in the number of CD19+ 

B-cells is likely to represent cell loss or death, rather than a change in phenotype.  These data 

suggest that the presence of T-cells enhances FL B-cell survival in vitro.  These findings are 

consistent with published data showing that TFH can support FL B-cell survival and that T-cells 

are required for FL engraftment and survival in vivo, although larger sample numbers are 

required to reach statistical significance (Ame-Thomas, et al 2012, Burack, et al 2017, Yang, et 

al 2015a).  However, it is not possible to ascertain whether these changes were TFH-dependent, 

or whether the presence of other CD4+ and CD8+ T-cell subsets was contributory. 

 

 

Figure 4.3. Effect of T-cell depletion on FL B-cell viability. Graph compares the proportion of 

viable FL B-cells remaining after 5 days of culture under T-cell replete and T-cell deplete 

conditions.  Viable cells were identified by exclusion of Annexin V and Fixable Viability Dye, and 

absolute cell numbers were quantified using counting beads. 
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4.3.3. Effect of T-Cell Depletion on FL B-Cell Phenotype 

The next step was to investigate whether FL TFH promote activation of FL B-cells, focussing 

primarily on stimulatory and co-stimulatory molecules that confer the ability to interact with 

and support TFH within the TME.  HLA-DR was expressed in almost all FL B-cells at baseline (92.9 

± 2.6%, n=7), whilst CD86 expression was more heterogeneous; 44.8 ± 10.1% were CD86+.  

Expression of both activation markers declined during in vitro culture for FL B-cells cultured in 

the absence of T-cells, although HLA-DR expression declined to a greater extent (Figure 4.4).   

 

 

Figure 4.4: Expression of B-cell activation markers during in vitro culture. Graph shows the 

change in intensity of CD86 and HLA-DR expression for FL B-cells cultured without T-cells for up 

to 5 days (n=7).  

 

After 2 days, CD86 expression on FL B-cells was higher in T-replete cultures than in T-deplete 

cultures for 4 of 5 samples assessed, although the differences were small: 55.0% ± 7.0 and 51.4% 

± 6.2 of FL B-cells were CD86+, respectively (p=0.31; Figure 4.5A).  However, TFH comprise a 

minority of CD3+ T-cells, therefore any pro-tumoural role of TFH may be counteracted by 

inhibitory elements, such as Tregs and CD8+ T-cells.  In support of this theory, the differences were 

more marked using flow-sorted lymphocytes: compared with FL B-cells cultured alone, co-

culture with sorted TFH induced a median 2.9-fold increase (range 1.3 – 5.9) in the intensity of 

CD86 expression after 2 days (N=6; Figure 4.5B/C).  This change was TFH-dependent, as there was 

no increase in CD86 expression in FL B-cells co-cultured with other, non-TFH CD4+ T-cells.  Despite 

the small sample number, these results corroborate the findings of others and were 

reproducible in repeated experiments, therefore they are significant.  
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Figure 4.5. CD86 expression on FL B-cells in co-culture studies. A) Graph shows the proportion 

of FL B-cells expressing CD86 in paired T-replete and T-deplete cultures after 2 days (N=5).  B) 

Representative flow plot shows CD86 expression in flow-sorted FL B-cells, cultured with or 

without flow-sorted TFH for 2 days.  C) Histogram shows the median fluorescence intensity (MFI) 

of CD86 on flow-sorted FL B-cells cultured either alone, in the presence of TFH or with non-TFH 

CD4+ T-cells.  Horizontal bars represent mean values plus standard error, of 6 experiments using 

samples from 2 patients. 

 

FL B-cell HLA-DR expression was marginally higher in T-replete cultures than in T-deplete 

cultures for all 5 samples assessed, corresponding to a median 11.5% increase in HLA-DR 

intensity (range 8.1 – 30.9, p=0.063; Figure 4.6A).  Again, these changes were much more 

pronounced in flow-sorted FL B- cells when co-cultured with TFH, whilst the presence of non-TFH 

CD4+ T-cells did not influence HLA-DR expression (Figure 4.6B/C).  HLA-DR expression was 2.7-

fold higher (range 1.01 – 11.2, N=6) in FL B-cells co-cultured with TFH than without.  Although 

larger sample numbers are needed, these data provide further evidence that TFH are principle 

drivers of FL B-cells activation. 
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Figure 4.6.  HLA-DR expression on FL B-cells in co-culture studies. A) Graph shows the proportion 

of FL B-cells expressing HLA-DR in paired T-replete and T-deplete cultures (N=5).  B) 

Representative flow plot shows HLA-DR expression in flow-sorted FL B-cells, cultured with or 

without T-cells for 2 days.  C) Histogram shows the median fluorescence intensity (MFI) of HLA-

DR on flow-sorted FL B-cells cultured either alone, in the presence of TFH or with non-TFH CD4+ T-

cells.  Horizontal bars represent mean values plus standard error, of 6 experiments using samples 

from 2 patients. 

 

The majority of FL B-cells did not express ICOS-L: only 19.8 ± 7.5% of FL B-cells expressed low 

levels of ICOS-L at baseline (N=10).  However, ICOS-L expression increased during in vitro culture 

(Figure 4.7A), consistent with published data reporting that FL B-cells rapidly upregulate ICOS-L 

in culture (Le, et al 2016).   The effect of T-cell depletion on ICOS-L expression was the opposite 

of HLA-DR and CD86, with greater ICOS-L expression in the absence of T-cells.  In T-cell deplete 

cultures, 56.3 ± 5.6% FL B-cells expressed ICOS-L after 2 days in culture, compared with 41.7 ± 

5.7% in T-replete co-cultures (p<0.001; Figure 4.7B/C).  Similar differences remained after 5 

days: 45.7 ± 5.9% and 32.6 ± 5.9% of FL B-cells were ICOS-L+ in T-deplete and T-replete cultures, 

respectively (p=0.001). These findings were confirmed with flow-sorted cell cultures, where 

ICOS-L expression was lowest in FL B-cells co-cultured with TFH.  Compared with FL B-cells  
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Figure 4.7. Influence of T-cells on ICOS-L expression in FL B-cells. A) kinetics of ICOS-L expression 

in culture with or without T-cells.  Data represent mean values ± standard error. *p<0.001; 

**p=0.025.  B) graph shows the proportion of FL B-cells expressing ICOS-L after culture for 2 days 

with (co-culture) or without T-cells (T-deplete).  C) representative flow plots show ICOS-L 

expression in FL B-cells after 2 days in T-replete and T-deplete culture, plus an FMO (fluorescence 

minus one) negative control. D) Bar chart shows the proportion of flow-sorted FL B-cells 

expressing ICOS-L when cultured with or without different CD4+ T-cell subsets.  Horizontal bars 

represent mean value and standard error. 
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cultured alone, ICOS-L expression was also reduced in B-cells co- cultured with non-TFH CD4+ T-

cells, although to a much lesser extent than with TFH (Figure 4.7D).  Engagement of ICOS by ICOS-

L is known to trigger rapid cleavage of surface ICOS-L on B-cells (Lownik, et al 2017), therefore 

this TFH-dependent reduction in ICOS-L expression signifies the presence of dynamic ICOS/ICOS-

L interactions between FL B-cells and TFH.   

 

4.3.4. Effect of FL B-Cells on TFH Survival 

Having demonstrated that FL B-cells can provide a source of ICOS-L, HLA-DR and CD86, the next 

step was to assess whether this translated to an ability to support TFH in vitro, to recapitulate 

findings in healthy lymphoid tissue.   

 

 

Figure 4.8. Influence of FL B-cells on CD4+ T-cell composition.  A) Shows the proportion of CD4+ 

T-cells that had a PD-1hiICOS+ TFH phenotype after 5 days of culture in either B-replete or B-

deplete conditions (N=9).  B) Graph shows the relative difference in the proportion of CD4+ T-cells 

that had a TFH and Treg phenotype after 5 days in culture with FL B-cells, compared with B-deplete 

cultures (N=9). Horizontal bars represent median values.  

 

Firstly, in the presence of FL B-cells, the proportion of viable CD4+ T-cells that had a TFH 

phenotype was significantly higher than in a B-cell-deplete environment.  At baseline, 30.2 ± 

6.1% of CD4+ T-cells had a TFH phenotype, but after 5 days in culture only 11.6 ± 4.3% of CD4+ T-
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cells cultured in B-deplete conditions had a TFH phenotype, compared with 19.6 ± 5.3% in B-

replete co-cultures (p=0.005, N=9; Figure 4.8A).  To assess whether this change was specific to 

TFH, or whether the prevalence of other T-cell subsets was also altered by the presence of FL B-

cells, we assessed whether there were any parallel changes in the proportion of CD25+CD127lo 

Tregs.  The proportion of CD4+ T-cells that had a Treg phenotype after 5 days was not significantly 

different in B-replete co-cultures compared with B-deplete cultures (p=0.19; Figure 4.8B).   

These findings were confirmed by quantifying the absolute number of viable TFH and other CD4+ 

T-cells at each time point using counting beads.  Compared with baseline TFH counts, by day 5 

only 15.6 ± 8.0% of TFH remained in B-deplete cultures, whilst 37.0 ± 14.9% of TFH remained in 

cultures where FL B-cells were present (p=0.06, N=5; Figure 4.9A).  There was also a reduction 

in the absolute number of Tregs and CD4+ T-cells remaining by day 5 under B-deplete conditions 

compared with B-replete co-cultures (p=0.06 and p=0.13, respectively, N=5), although to a lesser 

degree than seen with TFH (Figure 4.9B).  This suggests that TFH are more dependent on FL B-cell 

support than other CD4+ T-cells.  However, a larger sample number is required to confirm these 

findings. 

 

 

Figure 4.9. Effect of B-cell depletion on T-cell survival. A) Graph shows the proportion of viable 

TFH remaining after 5 days of culture compared to baseline in B-replete co-cultures and paired B-

deplete cultures (N=5).  B) Histogram shows the proportion of CD4+ T-cell subsets remaining after 

5 days in B-deplete cultures, relative to the proportion surviving in paired B-replete co-cultures 

(N=5). Bars show mean values plus standard error. *p=0.06; **p=0.13. 
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Figure 4.10. Influence of FL B-cells on TFH viability. A-F) Representative flow plots show 

sequential gating strategy to quantify apoptosis in TFH: A) lymphocyte gate, B) doublet exclusion, 

C) CD3+ T-cells, D) CD4+CD8- T-cells, E) PD-1hiICOS+ TFH. Wide lymphocyte and T-cell gates were 

used to incorporate apoptotic cells. F) Annexin V and Fixable Viability Dye identify apoptotic and 

dead TFH, respectively. G) Comparison between the proportion of TFH that were viable after 5 days 

in culture with or without autologous FL B-cells (N=9). 

 

These data show that FL B-cells support TFH in vitro, although they do not indicate whether the 

loss of TFH in B-deplete cultures is due to increased TFH cell death or loss of the TFH phenotype in 

viable T-cells.  To assess whether FL B-cell support TFH viability, apoptosis and cell death were 
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measured in TFH cells in paired B-deplete and B-replete cultures.  The flow gating strategy used 

to quantify apoptosis and cell viability is shown in Figure 4.10.  TFH viability was higher in the 

presence of FL B-cells; 24.8 ± 7.5% of TFH were dead or apoptotic in B-replete cultures compared 

with 38.0 ± 7.4% in B-deplete co-cultures, p=0.02; Figure 4.10G), demonstrating that FL B-cells 

support TFH survival.  However, it is also noteworthy that the majority of TFH remained viable, 

even under B-deplete conditions.  Therefore, the striking reduction in the number of TFH in B-

deplete cultures is not accounted for by apoptosis alone, suggesting that loss of the TFH 

phenotype may also play a role.  

 

4.3.5. Effect of FL B-Cells on the TFH Phenotype 

In healthy germinal centres, TFH require interactions with GC B-cells and ICOS stimulation to 

maintain expression of CXCR5 and the overall TFH phenotype (Choi, et al 2011, Weber, et al 

2015).  There are no published data assessing whether FL TFH are dependent on the presence of 

FL B-cells to the same extent.   

Following 2 days of in vitro culture, there was a clear reduction in PD-1 and CXCR5 expression 

on TFH in B-deplete cultures, which was more pronounced after 5 days and corresponded to a 

reduction in the overall proportion of TFH (Figure 4.11).  In the absence of B-cells, 14.0 ± 5.1% of 

CD4+ T-cells expressed high levels of PD-1 after 2 days in culture, compared with 23.2 ± 6.1% in 

B-replete co-cultures (p=0.002, N=10; Figure 4.12A).  Similarly, only 35.7 ± 5.0% of CD4+ T-cells 

were CXCR5hi in B-deplete cultures, compared with 45.8 ± 5.4% in the presence of FL B-cells 

(p=0.001; Figure 4.12B). These data demonstrate that FL TFH lose their phenotype in the absence 

of FL B-cell support and suggest that FL B-cells actively promote the persistence of TFH.  
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Figure 4.11. FL B-cells support maintenance of the TFH phenotype. Representative flow plots 

show CD4+ T-cells from FL LNs cultured either with, or without, FL B-cells for 5 days.  A) 

demonstrates a shift PD-1 and ICOS expression in B-deplete samples, with a subsequent 

reduction in the proportion of TFH, whilst (B) shows parallel shifts in CXCR5 expression.  

 

However, there was no overall change in the proportion of CD4+ T-cells that expressed high 

levels of ICOS (p=0.87; Figure 4.12C/D).  Interaction with ICOS-L induces internalisation of ICOS, 

therefore the relative stability of ICOS expression despite partial loss of the TFH phenotype may 

be due to reduced ICOS-L binding in the absence of FL B-cells.  This provides further evidence to 

suggest the presence of dynamic ICOS/ICOS-L interactions between TFH and FL B-cells.  
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Figure 4.12. Influence of FL B-cells on TFH phenotype.  Graphs show the proportion of CD4+ T-

cells that expressed high levels of A) PD-1, B) CXCR5 and C) ICOS after 2 days of culture in either 

B-replete or B-deplete conditions (N=10).  D) Summary graph shows the relative change in the 

proportion of CD4+ T-cells expressing high levels of PD-1, CXCR5 and ICOS when co-cultured with 

FL B-cells, compared with B-deplete conditions (N=10).  Horizontal bars represent median values.   

 

The changes in PD-1 and CXCR5 expression were confirmed in flow-sorted TFH cultured either 

with or without FL B-cells.  Non-TFH CD4+ T-cells did not show any B-cell-dependent shift in PD-1 

or CXCR5 expression, suggesting that these phenotypic changes are specific to TFH, although 

larger patient numbers are required to confirm these findings. 
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Figure 4.13. FL B-cells induce activation of TFH.  A) Representative flow plot compares basal CD69 

expression in flow-sorted CD4+ T-cell subsets.  B) Representative flow plots show CD69 expression 

in TFH cultured either alone or with FL B-cells.  C-D) Graphs shows the intensity of CD69 expression 

in flow-sorted TFH (C) and non-TFH CD4+ T-cells (D) cultured for 2 days either in the presence or 

absence of FL B-cells.  N=5, from 2 patients.  

 

T-cell activation markers were also assessed in flow-sorted T-cells to investigate whether FL B-

cells support reciprocal activation of TFH.  CD69 is an early marker of lymphocyte activation and 

is rapidly upregulated in response to TCR ligation (Yamashita, et al 1993).  Baseline expression 

of CD69 was higher in TFH than in other CD4+ T-cells, in the small number of samples analysed 

(n=5, from 2 patients (Figure 4.13A), consistent with data published by other groups (Lee, et al 

2015).  The presence of FL B-cells supported expression of CD69 in TFH: after 2 days in culture, 

the intensity of CD69 expression was 43.6% higher (range 12.1 – 59.9) in TFH co-cultured with FL 

B-cells compared with TFH cultured in isolation (Figure 4.13A/B). The presence of FL B-cells did 

not appear to alter CD69 expression in non-TFH CD4+ T-cells (Figure 4.13C). 
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CD25 is also recognised as a T-cell activation marker but its expression in TFH usually signifies 

transition to a TFR phenotype.  It is known that FL-TFH can acquire TFR-like properties under certain 

conditions and that FL B-cells can induce a Treg phenotype in TILs (Brady, et al 2014, Le, et al 

2016).  Therefore, it was important to assess whether B-cell-induced TFH activation was 

accompanied by an increase in CD25 expression.  After 2 days in culture with FL B-cells, a slightly 

higher proportion of TFH expressed CD25 than in B-deplete cultures, although the magnitude of 

change was small: only 6.66 ± 1.8% and 4.8 ± 1.5% of TFH had a TFR-like phenotype in B-replete 

and B-deplete culture respectively (p=0.01, N=10; Figure 4.14A).  The majority of FL TFH 

expressed high levels of CD69 but negligible levels of CD25 after 2 days in culture, unlike non-

TFH CD4+ T cells, where CD25 and CD69 were usually co-expressed (Figure 4.14B).  Therefore, FL 

B-cells do not induce a major shift towards a regulatory phenotype but rather promote the 

presence of phenotypically-active TFH. 

 

 

Figure 4.14. Influence of FL B-cells on TFR.  A) Graph shows the proportion of TFH that have a 

CD25+ TFR phenotype after 2 days of in vitro culture in B-replete (co-culture) and B-deplete 

conditions.  B) Representative flow plots show expression of CD25 and CD69 in flow-sorted CD4+ 

T-cell subsets after 2 days of in vitro culture with FL B-cells. 

 

 

4.4. Discussion  

These data demonstrate that TFH and FL B-cells form mutually supportive interactions that 

promote cell survival and activation.  TFH increased expression of the activation markers CD86 

and HLA-DR on FL B-cells in culture, whilst FL B-cells were able to stimulate reciprocal TFH 
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activation.  The changes in CD86 expression confirm the findings of other groups (Ame-Thomas, 

et al 2012, Yang, et al 2015a), whilst the influence of TFH on HLA-DR expression is a novel finding 

that has not previously been reported to our knowledge, although HLA-DR expression is known 

to be more heterogeneous than other B-cell markers in FL (Green, et al 2015, Wogsland, et al 

2017).  The functional significance of HLA-DR and CD86 expression is an increased capacity to 

provide reciprocal T-cell stimulation through both CD3 and CD28, respectively.   

The ability of TFH to enhance HLA-DR expression in FL B-cells is of particular interest, as it signifies 

that these FL B-cells may possess enhanced capacity to present antigen to TFH and other T-cells.  

The ability of FL B-cells to promote activation and survival of TFH, mirroring findings in reactive 

lymphoid tissue, also suggests that cognate TCR interactions may exist between FL B-cells and 

TFH.  This is supported by evidence that intrafollicular FL T-cells (in which TFH predominate) have 

greater TCR clonality than extrafollicular T-cells (Townsend, et al 2019), suggesting they have 

undergone antigen-dependent expansion. However, further work is necessary to confirm 

whether this observation is specifically attributable to TFH.  Exploring the nature of these FL-TCR 

interactions and the antigens that drive them may offer insights into the pathogenesis of FL and 

constitutes an important area for future study.  As a first step, the effect of blocking MHC-TCR 

interactions could be evaluated in FL B-TFH co-cultures, to assess whether TCR signalling is 

necessary for TFH survival in FL.  

In contrast to other B-cell activation markers, the presence of TFH resulted in lower expression 

of ICOS-L on FL B-cells.  ICOS-L is a downstream target of CD40 signalling therefore TFH interaction 

would be expected to increase ICOS-L gene expression (Watanabe, et al 2008).  However, other 

mechanisms influence surface ICOS-L expression in reactive GCs, where expression of ICOS-L is 

tightly regulated to maintain homeostasis (Watanabe, et al 2008).  Engagement of ICOS by ICOS-

L leads to rapid cleavage of surface ICOS-L on healthy B-cells and moderate internalisation of 

ICOS on T-cells (Lownik, et al 2017).  Therefore, the upregulation of ICOS-L expression in culture 

and TFH-dependent decrease in ICOS-L expression suggest the presence of dynamic ICOS/ICOS-L 

interactions, mirroring those present in reactive lymphoid tissue.  The persistence of ICOS 

expression on TFH in B-cell-deplete cultures, despite a loss of expression of other TFH markers, 

provides further evidence of these reciprocal interactions.   We considered assessing expression 

of ICOS and ICOS-L in FL tissue, to corroborate these findings, however there were no 

commercially available anti-ICOS-L antibodies that were suitable for use in FFPE tissue.  Similar 

to our results, Le et al demonstrated that the presence of Tregs, which express variable levels of 

ICOS, can partially inhibit ICOS-L expression on FL B-cells during in vitro culture (Le, et al 2016).  
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TFH express greater levels of ICOS than other CD4+ T-cells within the FL TME and our data 

demonstrate that they are the prime modulators of ICOS-L expression on FL B-cells.    

ICOS/ICOS-L interactions are beneficial to both TFH and FL B-cells.  ICOS signalling is particularly 

critical for TFH survival and plays a greater role in supporting TFH in reactive GCs that CD28 co-

stimulation (Weber, et al 2015).  In reactive lymphoid tissue, ICOS/ICOS-L interaction stimulates 

upregulation of CD40L expression by TFH and facilitates stable ‘entanglement’ between healthy 

GC B-cells and TFH, through which additional bi-directional stimulation, by CD40 ligation and 

cytokine release, is able to occur (Liu, et al 2014, Papa, et al 2017).  Other data, published as an 

abstract, suggest that ICOS-L signalling can directly sustain GC B-cell survival (Zheng, et al 2015).  

The next step in this work would be to repeat B-TFH co-cultures in the presence of ICOS-blocking 

antibodies to assess whether FL TFH are dependent on ICOS signalling.   It would also be of 

interest to assess whether the addition of ICOS to CD40L and IL-4/IL-21 can enhance FL B-cell 

survival.  Importantly, it is possible to therapeutically target ICOS/ICOS-L interactions.    Blocking 

antibodies against ICOS-L have already shown signs of efficacy for treatment of autoimmune 

disease in early phase clinical studies (Cheng, et al 2018).   

FL B-cells directly supported the maintenance of TFH in culture, by both enhancing TFH survival 

and maintaining expression of TFH surface markers, demonstrating that TFH remain dependent 

on B-cell support in FL (Choi, et al 2011, Crotty 2014).  This mirrors findings in reactive lymphoid 

tissue where, without engagement of ICOS, TFH rapidly lose expression of PD-1 and CXCR5 and 

revert to a non-TFH effector phenotype (Bossaller, et al 2006, Weber, et al 2015).  This has not 

been previously demonstrated in FL and implies that TFH are directly co-opted by FL B-cells to 

support tumour growth.   

To support this hypothesis, it is necessary to demonstrate that this mutual support translates 

into a survival benefit for FL B-cells.  Indeed, a greater absolute number of FL B-cells survived in 

T-replete cultures than in T-deplete cultures, consistent with other studies demonstrating that 

TFH can enhance FL viability (Amé-Thomas, et al 2015, Yang, et al 2015a).  However, the inability 

to detect a proportional difference in apoptosis between T-replete and T-deplete co-cultures 

highlights the limitation of using global T-cell depletion to provide insights into TFH biology.  TFH 

represent a minority of T-cells, therefore these results will reflect the competing influences of 

multiple other T-cell subsets, such as Tregs and CD8+ T-cells, that potentially have a deleterious 

effect on FL B-cell survival (Ame-Thomas and Tarte 2014).  Other investigators have found that 

FL B-cells can successfully be cultured with autologous TFH alone, but additional stimulation is 

required when other T-cell subsets are present (K Tarte, personal communication).   
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Flow-sorting was the only way to obtain purified TFH for in vitro experiments and is widely used 

for TFH co-culture studies (Amé-Thomas, et al 2015, Boice, et al 2016, Espeli and Linterman 2015).  

However, there are several limitations, including a reduction in subsequent cell viability and the 

difficulty in using low cell numbers for culture studies.  It is also important to consider whether 

the antibodies used for flow-sorting may have exerted an influence on B- and T-cell phenotype.  

The C398.4A ICOS antibody does not block ICOS-ICOS ligand interactions but has been reported 

to have a stimulatory effect on T-cells (Arimura, et al 2004).  TFH have higher ICOS expression 

than other CD4+ T-cells, therefore may be stimulated to a greater degree.  The EH12.2H7 anti-

PD-1 antibody has been reported to block PD-1 activity (Tan, et al 2012).  It is not clear what 

effect this would have on FL B-TFH interactions, given that the majority of FL B-cells do not 

express PD-1 ligands and PD-L1-expressing stromal cells are usually not extracted by mechanical 

tissue disaggregation (Gravelle, et al 2017).  Nevertheless, this is an important consideration 

when comparing different T-cell subsets, such as TFH and non-TFH CD4+ T-cells, with different 

levels of PD-1 and ICOS expression; it is less relevant when comparing TFH under different culture 

conditions (i.e. with or without FL B-cells). 

There are a number of other antigens that play a significant role in FL-TFH interactions that were 

not evaluated here, such as CD40/CD40L and HVEM/BTLA.  This work was limited by the number 

of antigens that could easily be assessed simultaneously by flow cytometry and we prioritised T-

cell antigens that defined the TFH phenotype.  Up to 10 colours were used in each flow panel, to 

avoid the need for complex compensations and large numbers of control tubes, where available 

cell numbers were often low.  Use of mass cytometry, or CyTOF, technology can overcome these 

limitations by allowing simultaneous assessment of over 40 antigens, thus facilitating highly-

multiplexed assessment of lymphocyte composition (Wogsland, et al 2017, Yang, et al 2019).  

Future studies will greatly benefit from this technology, particularly when working with 

restricted numbers of cells, as with FNAs. 

In summary, FL B-cells directly support TFH and form mutually supportive interactions to promote 

reciprocal activation and survival.  These data strongly imply that TFH are not GC bystanders but 

actively cooperate to provide support for FL growth.  The signalling pathways that provide TFH 

support remain intact in FL, providing potential targets for therapeutic manipulation.  A key 

future direction of this work would be to use these culture studies as a platform to assess the 

effect of novel therapeutics on TFH function in FL. 
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CHAPTER 5: INSIGHTS FROM CONFOCAL IMMUNOFLUORESCENCE 

MICROSCOPY STUDIES 
 

5.1. Introduction 

The co-culture studies described in the previous chapter provide evidence of functional, 

mutually-supportive interactions between FL B-cells and TFH in FL.  However, these experiments 

were performed in an artificial, in vitro environment, where tissue architecture and follicular 

structure were disrupted.  Intra- and interfollicular areas usually contain very different T-cell 

subsets that do not come into direct contact in vivo.  In addition, adherent stromal cells that can 

modulate TFH and B-cell activity, such as FDCs and FSCs, are not usually present in disaggregated 

LN tissue or FNAs.  Therefore, culture studies cannot replicate the multi-directional interactions 

within the TME that occur in FL in vivo.  Imaging studies of FL tissue are necessary to provide 

information about in situ interactions within the FL TME and often complement in vitro studies.   

The initial aim of the data presented in this chapter was to use confocal imaging on archival FL 

tissue to confirm findings from in vitro culture studies (Chapter 4).  We considered assessing 

apoptosis in FL B-cells and TFH in situ, but cleaved caspase-3 expression was found to be 

extremely sparse when 4 FL tissue sections were assessed by IHC (<1% cells) as a preliminary 

step, and this was not taken further.  The lack of cleaved caspase-3 may reflect the transient 

nature of apoptosis, where tissue captures a snapshot of a single point in time, but it is also 

unclear to what extent cell death limits FL progression in vivo (i.e. the net effect of proliferation 

versus death).  

Tissue imaging studies can also be hypothesis-generating and used to inform future culture 

studies, given that archival FFPE tissue is a much more readily available resource than viable LN 

cells.  Previous confocal imaging work from our group has demonstrated a strong spatial 

correlation between TFH and FL proliferation (Townsend, et al 2019).  MYC is a master regulator 

of transcription that is frequently upregulated in human cancers, has wide-ranging effects on 

tumour growth and is linked with GC B-cell  proliferation (Luo, et al 2018, Stine, et al 2015).  

Physiological MYC expression in reactive GC B-cells requires CD40L stimulation, which is 

predominantly provided by TFH within GCs.  MYC upregulation then triggers shuttling of cognate 

GC B-cells to the LN dark zone and rapid clonal expansion (Dominguez-Sola, et al 2012, Luo, et 

al 2018).   In FL, the acquisition of mutations and translocations involving the MYC proto-

oncogene is associated with disease transformation (Aukema, et al 2017, Pasqualucci, et al 

2014); a point at which FL B-cells proliferate more rapidly and become less dependent on the 

non-malignant TME.  The role of MYC in untransformed FL has been relatively underexplored, 
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largely because it has been considered a MYC-negative malignancy.  However, data published 

during the conduct of this thesis showed that MYC expression is detectable in a minority of B-

cells in most FL samples (Aukema, et al 2017).  We therefore hypothesised that TFH have a role 

in inducing MYC expression and thereby driving proliferation of FL B-cells.  

One major unanswered question is whether the number or location of TFH influences the clinical 

phenotype of FL.  Single-parameter IHC studies have yielded conflicting results regarding the 

prognostic influence of intrafollicular CD4+ T-cells and PD-1 expression (see Section 1.3.7).  Flow 

cytometry studies using disaggregated LN tissue have not demonstrated a correlation between 

TFH and survival, although these studies do not account for tissue localisation and sample 

numbers were small (Yang, et al 2019, Yang, et al 2015b).  One possible explanation for the lack 

of observed effect is that the balance between tumour-promoting and inhibitory elements 

within the TME may be more important in regulating the behaviour of FL than the predominance 

of any individual cell subset.   

Another important observation from our group’s previous work is that regulatory T-cells are 

more prominent within FL follicles than reactive GCs (Townsend, et al 2019), a finding that has 

also been noted by other groups (Tarte, et al 2017).  TFR are present within FL tissue and are able 

to suppress TFH activity, including TFH-induced activation of FL B-cells (Tarte, et al 2017).  

Intrafollicular FoxP3 expression by single-parameter IHC, which reflects TFR in part, has been 

associated with favourable outcomes in FL (Wahlin, et al 2010), although this data requires 

independent verification.   There is overlap in T-cell clonality between TFH and TFR in FL, 

suggesting a common origin, and it has been shown that TFH can convert to TFR in vitro (Brady, et 

al 2014, Tarte, et al 2017).  However, little is known about the localisation of TFR and the balance 

between TFH and TFR in vivo.  We hypothesised that the balance between TFH and TFR influences 

the clinical phenotype of FL.   

Confocal imaging of FL tissue was therefore used to investigate two exploratory hypotheses 

regarding the regulation and function of TFH in FL.  The aims of this work were: 

1) To investigate whether there is a spatial relationship between TFH and MYC expression in FL 

2) To investigate whether the balance or interaction between TFH and regulatory T-cells 

correlates with clinical phenotype 
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5.2. Tissue Sections and Patient Characteristics 

Methods for tissue staining, image acquisition and data analysis are described in Section 2.8. 

Archival FFPE tissue was obtained from selected patients with extremes of clinical outcome and 

long-term follow-up data (at least 4 years).  An aggressive phenotype was defined as disease 

progression within 24 months of initial immunochemotherapy.  Good-risk patients had indolent 

disease, either not requiring treatment within 24 months of diagnosis or without progression 

for at least 5 years after initial immunochemotherapy.  Positive control tissue was obtained from 

patients with reactive lymphoid hyperplasia. 

 

Table 5.1. Patient characteristics 

Patient 

ID 

Age 

(y) 

Prior lines  

of therapy 

Management Stage Grade 
 

HR-1 45.9 1 CIT  IV 2 2nd progression within 2y, 

received alloSCT, alive at 

10y  

HR-2 70.7 1 CIT    III 2 2nd progression and death 

within 1y 

HR-3 48.0 2 CIT plus 

autoSCT 

IV 1 No progression after 6y 

HR-4 57.7 0 CIT IV 1 Relapse within 1y, death 

within 2y 

HR-5 59.8 1 CIT plus 

alloSCT 

IV 1-2 No progression after 22m 

HR-6 59.4 0 CIT  III 3a Refractory disease, relapse 

after alloSCT and death 

within 4y 

LR-1 60.3 0 W&W III 1 Remains untreated after 6y 

LR-2 56.5 0 CIT IV 2 No progression after 5y 

LR-3 54.7 0 W&W III 2 Remains untreated after 4y 

LR-4 63.7 0 CIT III 3a No progression after 10y 
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LR-5 38.2 0 W&W III 1-2 Remains untreated after 5y 

LR-6 32.1 0 W&W IV 3a Remains untreated after 6y 

AlloSCT: allogeneic stem cell transplant; autoSCT: high-dose therapy and autologous stem cell 

transplant; CIT: chemoimmunotherapy; HR: high-risk; LR: low-risk; W&W: watch and wait 

Characteristics for the 12 FL patients are described in Table 5.1.  The median age was 55.6 years 

(range 32.1 – 63.7) for good-risk patient and 58.7 years (range 45.9 – 70.7) for poor-risk patients.  

Four poor-risk patients had relapsed after prior immunchemotherapy; none had received 

bendamustine or purine analogue therapy. 

 

5.3. MYC and TFH 

5.3.1. Results 

The aim of this section was to investigate whether there is a correlation between TFH and MYC 

expression by FL B-cells, both in terms of spatial interactions and cell number.  

A four-colour imaging panel was used to identify Pax5, MYC, PD-1 and CD4 expression (see 

Figure 5.1).  Pax5 was included to allow localisation of MYC expression to B-cells.  TFH were 

identified as CD4+PD-1hi cells; it has previously been shown by our group, using the same 

methodology, that the majority of these cells co-express ICOS and are true TFH (Townsend, et al 

2019).  Details of reagents used, including primary and secondary antibodies, are provided in 

Section 2.8.   

Variable levels of background autofluorescence were seen in the yellow-green channel, on 

which MYC expression was assessed, in part due to the variability in quality and age of tissue 

sections imaged.  For most tissue sections, it was possible to use negative control slides to set a 

threshold to set a level defining MYC positivity that excluded any background staining (see Figure 

2.6).  However, in 2 sections it was not possible to clearly differentiate nuclear MYC staining over 

background fluorescence; both were excluded from this analysis.  Therefore, 10 FL tissue 

sections were assessed in total; 6 with good-risk and 4 with high-risk disease.  Five high-powered 

images (x60 objective) were analysed for each tissue section; this number was determined 

principally by the number of good-quality images obtainable for all tissue samples. 
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Figure 5.1. Immunofluorescence panel for assessment of TFH and MYC expression. 

Representative high-power (x60 objective) CIFM images show expression of Pax5 (purple), MYC 

(green), PD-1 (red) and CD4 (blue) in FFPE FL tissue. Scale bars measure 25μm. Right-handed 

panels show binary images defining expression of each individual antigen.  Note that for PD-1 

(red), the binary layer (pink) excludes low levels of PD-1 expression.  The intersection of the PD-1 

and CD4 binary layers (far right) was used to identify TFH. 
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Figure 5.2. MYC expression in FL B-cells. A) Scatter plot shows the correlation between 2 

different methods of quantifying MYC expression in FL tissue. The percentage of Pax5+ B-cells 

that were MYC+ was assessed by counting of individual cells (x axis) and by area analysis (y axis). 

N=50, from 10 samples. B) Graph compares the proportion of FL B-cells that expressed MYC by 

cell count in good-risk (N=6) and poor risk (N=4) FL tissue. Horizontal bars represent median 

values. 

 

MYC expression was quantified by 2 methods: 1) by directly counting Pax5+ B-cells that were 

MYC+ and MYC- in a 100μm2 area of each image and B) by semi-automated image analysis, 

assessing the total area of both the Pax5 binary layer and Pax5/MYC intersection.  There was a 

good correlation between the proportion of B-cells that were identified as MYC+ by both 

methods (r=0.77, p<0.0001; Figure 5.2A).  A mean of 6.57 ± 0.66% of FL B-cells were MYC+ by 

cell count (N=50 images, from 10 patients), which is consistent with a previous IHC study 

reporting that 4-6% of FL B-cells express MYC (Aukema, et al 2017).  There was no clear 

difference between median MYC expression between good- and poor-risk disease, although the 

sample number was small (Figure 5.2B).   

It was evident on low-power images that there was a close spatial correlation between MYC 

expression and TFH, both of which localised to intra- or perifollicular regions in all 12 samples, 

mirroring the pattern of MYC expression in reactive LN positive control tissue (Figure 5.3).  On 

high-power images, the majority of MYC+ B-cells were seen to be in close contact with TFH (Figure 

5.4).  The proportion of MYC+ and MYC- B-cells (Pax5+) that were in direct contact with TFH was 

quantified by counting cells within a 100 μm2 intra/perifollicular area of each image.  MYC-

expressing B-cells were more likely to be in direct contact with TFH than other B-cells, with 67.6 
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± 2.2% adjacent to TFH compared with 49.7 ± 2.7% of MYC- B-cells (p=0.0001; Figure 5.5A).  It was 

not possible to use automated analysis techniques for this, as the Nikon Elements software was 

not adequately able to distinguish and segregate Pax5+ B-cells within densely-packed FL tissue. 

 

  

Figure 5.3. Distribution of TFH and MYC expression. Representative low-power (x20 objective) 

CIFM images show the distribution of Pax5 (purple), PD-1 expression (red), MYC (green) and CD4 

expression (blue) in both reactive LN (left) and FL LN tissue (right).  The majority of MYC 

expression is seen within GCs and follicles, in a similar distribution to PD-1hi T-cells.  Scale bars 

measure 100μm.  
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Figure 5.4. Spatial interaction between TFH and MYC+ B-cells. High-power images (x60 objective) 

of FL tissue show close contact between MYC+Pax5+ B-cells (yellow) and CD4+PD-1hi TFH (purple).  

These representative images, taken from 3 patients with poor-risk (left) and good-risk FL (centre 

and right), also highlight interpatient variation in MYC expression.  

 

MYC expression was extremely variable in both good-risk and poor-risk FL tissue (Figure 5.2 & 

5.4).  As a result, there was no correlation seen between the number of TFH and number of MYC+ 

B-cells, assessed by quantifying the areas of the PD-1/CD4 and Pax5/MYC intersections, 

respectively (r=0.17, p=0.27; Figure 5.5B).  This suggests that other factors may limit MYC 

expression.  Indeed, in reactive LN tissue, both BCR and CD40L signalling are required to 

upregulate MYC, therefore it is likely that additional stimulation is also required in FL B-cells 

(Luo, et al 2018).   
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Figure 5.5. Relationship between TFH and MYC expression.  A) Graph compares the proportion 

of MYC+ and MYC- B-cells that were in direct contact with CD4+PD-1hi TFH in FL tissue (N=10).  B) 

Graph shows the correlation between the number of MYC-expressing B-cells (x axis) and TFH (y 

axis), quantified according the areas of the Pax5/MYC and CD4/PD-1 binary layers, respectively. 

N=50 images from 10 patients.  

 

5.3.2. Discussion 

These findings correlate with our knowledge of MYC expression in healthy GCs and suggest that 

TFH can also enhance MYC expression in FL B-cells.  This provides a further potential mechanistic 

link between TFH and FL growth and proliferation.  There was evidence of a strong spatial link 

between TFH and MYC expression, even if it is not clear whether there is a correlation between 

number of TFH and MYC+ cells.  These novel findings are therefore hypothesis-generating and 

require further validation.   

The strength of the MYC signal by CIFM was generally weak, requiring fairly high laser power 

settings, and only just above background in some samples.  Given that background 

autofluorescence was variable, it is possible that weak MYC expression may have been missed 

in samples with higher background staining.  Other, more sensitive techniques are required to 

validate these results, such as RT-PCR or flow cytometry. 

Visual assessment and cell counting can be open to observer bias.  A repeat cell count, 

performed by a second, independent observer, would have strengthened these analyses, with 

hindsight.  However, the close correlation between visual counts and automated assessment of 

MYC expression, and similarity with other FL studies (Aukema, et al 2017), both validate the 

analysis techniques used.  Cell counting was, however, time consuming and is not suitable for 

assessing large numbers of samples.  However, moving forward, it is potentially feasible to 
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automate all parts of this analysis. This would involve more complex algorithms, multiple 

software packages and rigorous validation, all of which were outside of the scope of this 

exploratory work.   

A larger sample size would be necessary to fully assess whether there is any correlation between 

TFH number and MYC expression, for example.  However, in vitro studies are likely to provide 

more information than expanding sample numbers in this study.  The next step should be to 

determine whether TFH alone can increase MYC expression in FL B-cells in co-culture studies.  

Such experiments were not possible here due to the limited availability of fresh LN tissue and 

time restraints but are an important direction of future study. 

 

5.4. Regulatory T-cells and TFH 

5.4.1. Results 

The aim of this section is to assess whether the balance between TFH and intrafollicular 

regulatory T-cells (including TFR and other Tregs), both in terms of cell numbers and cell-to-cell 

contact, influences the clinical phenotype of FL.   

A 4-colour panel was used to assess expression of PD-1, ICOS, FoxP3 and CD3 (see Figure 5.6).  

The combination of available primary antibodies did not allow for incorporation of CD4 into the 

same panel.  CD3 was used instead, although on the blue channel (Dylight 405), where there 

were high levels of background fluorescence, therefore it was not used as part of the final 

analysis.    TFH were identified as PD-1hiICOS+FoxP3- cells; our group has previously demonstrated 

that the vast majority of these represent true CD4+ TFH using the same methodology (Townsend, 

et al 2019).  The threshold for high PD-1 expression was set at a level that excluded the majority 

of extrafollicular PD-1 expression (Figure 2.6).  TFR were classified as PD-1hiICOS+FoxP3+ cells.  Tregs 

were identified using FoxP3 expression alone.  In separate experiments, we confirmed that 96.2 

± 0.6% of these were indeed CD4+CD8- T-cells (N=24 images, from 6 patients; Figure 5.7).   
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Figure 5.6. Immunofluorescence panel for visualisation of TFH and Tregs.  Representative high-

power (x60 objective) CIFM images show expression of ICOS (green), PD-1 (red), FoxP3 (blue) and 

CD3 (purple) in FFPE FL tissue. Scale bars measure 25μm. Right-handed panels show binary 

images defining expression of each individual antigen.  Due to high levels of background 

fluorescence, it was not possible to form an accurate binary layer for CD3.  The intersection of 

the ICOS and PD-1 binary layers (far right, yellow) was used to identify TFH and TFR. 
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Figure 5.7. FoxP3+ cells are CD4+ T-cells.  A) Representative images show FoxP3 (blue), CD4 (x) 

and CD8 (y) expression in FL tissue.  Almost all FoxP3+ cells are seen to co-express CD4 but not 

CD8.  B) Graph shows the proportion of FoxP3+ T-cells that were CD4+ (N=24 images, from 6 

patients).  Horizontal bar represents mean value. 

 

TFH localised almost exclusively to intra- and peri-follicular areas, whilst FoxP3+ Tregs were 

predominantly inter- or peri-follicular (Figure 5.8).  Given that the aim was to assess the 

regulation of TFH activity, this analysis focussed solely on the composition of T-cells in intra- and 

peri-follicular T-cells.  A ‘region of interest’ was set for each image that excluded extrafollicular 

T-cells more than 25μm away from TFH and the follicular border (Figure 5.9A).   
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Figure 5.8. Distribution of TFH and Tregs in FL tissue. Representative low-power (x20 objective) 

CIFM images show the distribution of FoxP3 (blue), ICOS (green) and PD-1 expression (red) in FL 

LN tissue:  A) predominantly perifollicular distribution of FoxP3 and B) Interfollicular FoxP3 

expression. Scale bars measure 100μm. 
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Figure 5.9. Correlation between TFH and TFR in FL tissue. A) High-power image (x60 objective) of 

FL tissue shows binary layers representing PD-1/ICOS co-expression (yellow) and FoxP3 (red) at 

the periphery of an FL follicle.  The expanded panel below demonstrates identification of FoxP3+ 

TFR (white arrows) and FoxP3- TFH (green arrows), both with >50% circumferential PD-1/ICOS co-

expression.  The panel on the right shows the region of interest encircling the follicle used for 

both cell counting and semi-automated image analysis. Scale bars measure 25μm.  B) Scatter 

plots show the correlation between cell quantification by absolute cell count and semi-

automated analysis of binary layer area (expressed as a percentage of total area imaged) for PD-

1hiICOS+ cells and C) FoxP3+ cells. N=72 images, from 12 patients. 
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Two methods of analysis were used.  Firstly, the number of TFH, TFR and Tregs were counted in 

each image.  Cells were identified as TFH and TFR if more than 50% of the cell circumference was 

PD-1hiICOS+ (Figure 5.9A).  Although laborious and potentially open to observer bias, this was 

the most straightforward way to differentiate TFR from TFH.  Secondly, the total areas of FoxP3 

positivity and PD-1/ICOS co-expression were calculated from their respective binary layers by 

semi-automated image analysis, as a more objective, surrogate method of quantifying cell 

numbers.  There was a strong correlation between the cell counts and semi-automated area 

analysis for measurement of both PD-1hiICOS+ cells and FoxP3 expression (Figure 5.9B/C). 

TFR were infrequent in all 12 samples examined, comprising only 4.53 ± 1.47% of PD-1hiICOS+ 

cells.  This was very similar to findings with LN cell suspensions, where FoxP3+ Tregs accounted 

for 7.38 ± 2.01% of PD-1hiICOS+ TFH-like cells by flow cytometry (N=8, p=0.21; Figure 5.10A), 

providing validation of the image analysis methods and cell counting.  There was no detectable 

correlation between the number of TFH and number of TFR (N=12, r=-0.15, p=0.67), although the 

number of TFR was small- 50% of images had 0-1 TFR in total- so there was a relatively wide 

variation in TFR:TFH ratio due to only small differences in cell count.   

 

 

Figure 5.10. Correlation between TFR and clinical outcomes in FL.  A) Graph shows the 

percentage of PD-1hiICOS+ cells that expressed FoxP3, and thus had a TFR phenotype, by both 

intracellular flow cytometry of FL LN cells suspensions (N=8) and CIFM of FL LN tissue (N=12).  B) 

Graph compares the percentage of PD-1hiICOS+ cells that had a FoxP3+ TFR phenotype in good-

risk (N=6) and poor-risk FL (N=6). C) Graph compares the ratio of TFR:TFH between the same good-

risk and poor-risk FL samples. Horizontal bars represent median values 
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There was no detectable difference in the proportion of PD-1hiICOS+ T-cells that had a FoxP3+ TFR 

phenotype between good- and poor-risk disease (Figure 5.10B), nor in the ratio of TFR:TFH (data 

not shown).  Therefore, we were unable to detect any signal to suggest that there is a correlation 

between the balance of TFH/TFR and clinical phenotype in this small cohort.  These data confirm 

the observations made in Chapter 3.3.5, that TFR are rare in FL and therefore are unlikely to exert 

a dominant influence on FL phenotype. 

 

Figure 5.11. Clinical outcomes according to the balance between follicular TFH and Treg.  A) 

Scatter plot shows the correlation between the number of TFH and Tregs in FL follicles, measured 

by the area of the FoxP3 and PD-1/ICOS binary layers, respectively.  Results are expressed as a 

percentage of the total area analysed (N=72, from 12 patients).  B) Graph compares the ratio 

of TFH:Tregs in good-risk (N=6) and poor-risk FL (N=6).  C) Graph shows the proportion of TFH that 

were in direct contact with Tregs in good-risk (N=6) and poor-risk FL (N=6).  Horizontal bars 

represent median values 
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The majority of follicular regulatory T-cells were not TFR; only 8.03 ± 2.15% of FoxP3+ T-cells had 

a TFR phenotype (N=12), suggesting that other Treg subsets may have a greater influence on the 

TME within FL follicles.  More than a fifth (22.89 ± 3.72%) of TFH were seen to be in direct contact 

with FoxP3+ Tregs, noting that this 2-dimensional analysis is likely to underestimate the extent 

of direct TFH-Treg interactions on a 3-dimensional level in vivo.  There was only a weak correlation 

between the number of Treg and TFH, quantified according to the area of the FoxP3 and PD-1/ICOS 

binary layers, respectively (r=0.24, p=0.04; Figure 5.12A), therefore there was wide variation in 

the TFH/Treg ratio (median 1.67, range 0.62 – 11.52).  However, we didn’t find any evidence to 

suggest a relationship between the balance of TFH/Treg and clinical phenotype.  There was no 

detectable difference in the ratio of TFH:Tregs or in the proportion of TFH that were in direct contact 

with Tregs between good- and poor-risk disease (Figure 5.11B-C).   

 

5.4.2. Discussion 

To our knowledge, this is the first study to explore the distribution and in situ interactions of TFR 

in FL.  These results demonstrate that TFR represent a minority of both PD-1hiICOS+ T-cells and 

suggest that follicular Tregs are unlikely to exert an influence on clinical phenotype.  Whilst others 

have reported that TFR are slightly more prevalent in FL than in reactive tonsillar tissue, they 

agree with our findings that TFR are still represent a small minority of T-cells in FL (Tarte, et al 

2017).  Although TFR are able to suppress TFH activity in vitro, these experiments were performed 

by co-culture using supra-physiological ratios of TFR and do not reflect in vivo conditions (Tarte, 

et al 2017).  It is therefore unclear how much of a role TFR have in regulating TFH activity in FL. 

Very little is known about the distribution and function of TFR in vivo.  Sayin et al recently 

explored the distribution of TFR in reactive mesenteric lymphoid tissue and reported that most 

were located at the T:B-cell border, distant from reactive GCs (Sayin, et al 2018).  The authors 

concluded that TFR were unlikely to suppress GC TFH activity directly in vivo, in agreement with 

our findings.  However, the definition of TFR in this recent study- according to CD3, CD25 and 

FoxP3 expression only- was questionable; whilst most ‘TFR’ expressed CXCR5, only a minority 

expressed PD-1, at lower levels than PD-1hi TFH.  Functionally, TFR did not suppress TFH-stimulated 

IgG production by GC B-cells in vitro to any greater extent that other Tregs (Sayin, et al 2018).  

Despite the limitations of this study, it is the first to explore the in-situ interactions of TFR in 

human LNs and serves to highlight our lack of understanding of this rare T-cell subset.   

Our analyses assume that all TFR are PD-1hi, which is contentious, as the definitions of TFR vary 

between studies (Espeli and Linterman 2015, Sayin, et al 2018).  However, FoxP3 is generally 
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considered to be a regulatory T-cell-defining marker and there was no suggestion of a link 

between clinical phenotype and the balance between TFH and FoxP3-expressing Tregs either. 

These were a number of factors that limited the ability to draw firm conclusions from the 

comparisons between good-risk and poor-risk disease, including sample size and patient 

heterogeneity.  Over 80% of previously-untreated FL patients receiving frontline 

immunochemotherapy experience disease remission lasting more than 24 months, therefore 

are classified as good-risk disease by the definitions applied here (Casulo, et al 2015).  It is 

therefore more difficult to obtain good-quality tissue from poor-risk FL patients, due to both the 

relative scarcity of poor-risk patients and the increasing preference for use of diagnostic needle 

core biopsy over whole LN excision.  As a result, sample numbers were small, and the poor-risk 

population included a heterogeneous mix of treatment-naïve and relapsed FL.  This illustrates 

the need to obtain tissue from larger biobanks with linked outcome data, ideally treated 

uniformly within the context of clinical trials.  Nevertheless, this analysis was intended to be 

exploratory in nature and was not deemed to be worth pursuing, given the lack of any evidence 

to suggest that the balance between T-cell subsets was associated with clinical phenotype.  To 

extend this work with CIFM would therefore require a much larger sample number and would 

only be feasible with further automation of image analysis.   

This analysis does not consider other factors that potentially regulate TFH activity in FL.  In 

particular, PD-1 ligands are likely to play a key role in TFH homeostasis, given that uniquely high 

levels of PD-1 expression define TFH (Crotty 2014).  Gene expression profiling suggests that PD-

L2 expression is more strongly linked with prognosis than PD-L1, although both are expressed 

within the FL TME (Laurent, et al 2015, Myklebust, et al 2013, Tobin, et al 2019).  We hoped to 

explore this further, but it was not possible to find an effective, commercially available anti-PD-

L2 antibody, despite trialling multiple different antigen retrieval conditions, blocking methods 

and primary antibody concentrations.  To fully explore the cumulative relevance of multiple such 

competing pro- and anti-tumour factors in the FL TME will require highly-multiplexed data 

analysis techniques, that incorporate more parameters than can be assessed by standard CIFM.  

Alternative imaging methods are required to facilitate such analyses; imaging mass cytometry is 

one example and is the focus of the following chapter. 
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CHAPTER 6: IMAGING MASS CYTOMETRY AS A TOOL TO EXPLORE THE 

FOLLICULAR LYMPHOMA TUMOUR MICROENVIRONMENT 

 

6.1. Introduction 

Multiple studies have established that the composition of the FL TME correlates with prognosis, 

but it has not yet been determined which cell subsets are responsible for this observation (Ame-

Thomas and Tarte 2014, Dave, et al 2004, Tobin, et al 2019).  Many of these findings are derived 

from tumour gene expression profiling, where cellular and spatial information is lost.  A large 

number of IHC studies have attempted to link single cell markers with prognosis, but these 

studies lack the ability to identify complex cell subsets within the FL TME (Ame-Thomas and 

Tarte 2014).  The clinical phenotype of FL is likely to reflect the net effect of multiple interactions 

between FL B-cells and various non-malignant cells.  Therefore, to fully characterise TFH and their 

interactions within the TME requires multiplexed assessment of FL tissue.  

CIFM produces high-resolution images and can facilitate semi-automated analysis of antigen 

expression within FFPE tissue.  However, a number of factors limit the ability of CIFM to assess 

multiple antigens simultaneously, and thus explore interactions between complex cell subtypes 

within the TME.  Firstly, the CIFM technique described in the previous chapter is reliant on the 

use of fluorescent anti-species secondary antibodies to amplify antigen signal.  The majority of 

primary antibodies are raised in either mice or rabbits, with limited availability of goat- and rat-

derived antibodies.   Choice of primary antibody is therefore restricted by species diversity and 

it was not possible to use more than 4 different antibodies simultaneously.  Ideally, 2-3 of these 

are required to identify TFH alone.  In order to increase the repertoire of antigens studied, other 

researchers within our institution have attempted to use directly fluorochrome-conjugated 

primary antibodies but found that image quality was poor without signal amplification.  In 

addition, although the confocal microscope can in theory assess up to 6 distinct fluorochromes 

simultaneously, this will only increase the potential for background staining, spectral overlap 

and the complexity of image analysis.   

Imaging mass cytometry (IMC) is an imaging technique that can overcome many of the 

limitations of CIFM by enabling simultaneous assessment of more than 32 antigens (Giesen, et 

al 2014).  The technique relies on staining of tissue with metal-conjugated primary antibodies, 

principally using stable lanthanide metal isotopes that are not present within the normal 

environment.  The presence of these isotopes is detected by mass spectrometry and used to 

construct 2-dimensional images of antigen expression (Figure 6.1). 
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The aim of this chapter was to investigate the feasibility and utility of this novel imaging 

technique for highly multiplexed assessment of the TME in FL.  This work focuses primarily on 

development and validation of IMC methodology. 

 The main objectives were: 

1. To assess whether it is possible to assess >15 antigens simultaneously in FL tissue by IMC 

2. To assess whether TFH can be identified by IMC 

3. To develop an automated pipeline for image analysis, that can be used to investigate 

cellular networks within the FL TME  

4. To investigate whether IMC can replicate the findings of other tissue imaging studies 

This work aims to provide proof of principle for future projects that will explore the prognostic 

influence of cellular networks within the FL TME, after completion of this thesis. 

 

 

Figure 6.1. Overview of Imaging Mass Cytometry. Image summarises the pathway for highly-

mutliplexed spatial assessment of cell subsets in tissue sections. Reprinted by permission from 

Springer Nature: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass 

cytometry, Giesen et al, Nature Methods 2014;11:417–422 ©. 

 

6.2. Methods 

6.2.1. Tissue Processing and Primary Antibody Staining 

Protocols for tissue deparaffinisation, antigen retrieval and tissue staining were developed by 

Drs Katrina Todd and Richard Ellis at the Biomedical Research Council Flow Core at Guy’s 
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Hospital, London, and were adapted from published Fluidigm tissue processing protocols 

(California, USA).  In brief, tissue sections were cut to a thickness of 5μm and floated onto 

Superfrost Plus slides (Thermofisher).  Tissue was deparaffinised in 2 changes of 100% xylene, 

followed by 50% xylene/50% ethanol, for 10 minutes each.  Samples were then rehydrated 

through graded ethanol solutions (96%, 90%, 80% and 70%) for 5 minutes each, then transferred 

to Dulbecco’s PBS (DPBS; Thermofisher).  Antigen retrieval was performed in pre-warmed 

Antigen Retrieval Solution pH 9.0 (R&D Systems, Minneapolis, USA) in a 96°C water bath for 30 

minutes.  Tissue was blocked using Superblock solution (Thermofisher) containing 5% BSA and 

5% Trustain FcR Block (Biolegend) for 2 hours.   

 

Table 6.1. List of metal-conjugated antibodies for IMC. cCasp3: cleaved caspase-3. *Indicates 

antibody not included in final antibody panel due to poor staining characteristics. 

Channel Element Target Clone Concentration Manufacturer 

141 Pr AID* ZA001 1:50 Fisher Scientific 

142 Nd Pax5 1H9 1:50 Biolegend 

143 Nd PD-L2* 176611 1:100 Fisher Scientific 

146 Nd BCL2 EPR17509 1:200 Fluidigm 

147 Sm BCL6 K11291 1:50 Fisher Scientific 

148 Nd ICOS D1KT 1:50 New England Biolabs 

150 Nd PD-L1 130021 1:75 R&D Systems 

151 Eu CD31 Polyclonal 1:400 Abcam 

153 Eu CD16 EPR16784 1:400 Abcam 

154 Sm Tim3 D5D5R 1:100 Fluidigm 

155 Gd FoxP3 236A/E7 1:50 Fisher Scientific 

156 Gd CD4 EPR6855 1:100 Abcam 

158 Gd pSTAT3* 4/P-STAT3 1:50 Fluiidigm 

159 Tb CD68 KP1 1:800 Fluidigm 

161 Dy CD20 H1 1:500 Fluidigm 

162 Dy CD8 C8/144B 1:800 Fluidigm 

164 Dy CD21 EP3093 1:1000 Abcam 

166 Er PD-1 EPR4877(2) 1:50 Abcam 

168 Er Ki67 B56 1:500 Fluidigm 

170 Er CD3 Polyclonal 1:400 Fluidigm 

172 Yb cCasp3 5A1E 1:100 Fluidigm 

174 Yb CD74 LN2 1:200 Biolegend 

175 Lu MYC* Y69 1:50 Abcam 

176 Yb Tbet 4B10 1:50 Biolegend 

191/193 Ir DNA N/A 1:250 Fluidigm 
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Metal-conjugated primary antibodies (initial protein concentration 0.5mg/ml) were diluted to 

the desired concentration (see Table 6.1) in the same blocking solution, applied to the tissue 

section and incubated overnight at 4°C.  Tissue sections were washed in DPBS containing 0.1% 

Tween surfactant.  Iridium was diluted to a concentration of 2μM in distilled water and applied 

to tissue sections for 30 minutes.  Slides were washed in DPBS and water, then air-dried for at 

least 24h.  Slides are stable at this point and can be imaged at any point from days to months in 

the future.  It is also possible to return to stained sections and ablate additional areas. 

To avoid non-specific background staining, it was important to avoid any heavy metal 

contamination at any stage during tissue processing, therefore ultrapure water was obtained 

through a Milli-Q Purification System (Merck Millipore, Massachusetts, USA) and, at all stages, 

dedicated plastic/glassware was used that had not come into contact with detergent or other 

unknown chemicals. 

 

6.2.2. Antibody Selection, Optimisation and Panel Design 

Most isotope-conjugated primary antibodies were purchased directly from Fluidigm and had 

already been validated for use in FFPE tissue.  Alternatively, protein-free primary antibodies 

were conjugated to selected metal isotopes using the Maxpar Antibody Labelling Kit (Fluidigm) 

according to manufacturer’s instructions by Dr Cynthia Bishop at the Biomedical Research 

Council (BRC) Flow Core at Guy’s Hospital, London.  These antibodies were validated by IHC, 

using the both conjugated and unconjugated forms of the primary antibody, to ensure that 

metal conjugation had not altered staining characteristics (Figure 6.2).  A list of antigens, 

antibody clones and corresponding metal isotopes is provided in Table 6.1.   

Most antibodies were initially trialled at dilutions of 1:100 and 1:400 (or 1:250 and 1:1000 for 

certain strong antigens) on both FL tissue and reactive LN, and concentrations adjusted for 

subsequent experiments on the basis of the results.   

There are 2 main sources of overlap between detection channels in IMC (Chevrier, et al 2018).  

Firstly, if an antigen and isotope are very abundant, there may be some carryover into 

immediately adjacent detection channels by time-of-flight, although, in practice we did not 

observe this, even with strong antigens.  Secondly, there is variation in the purity of different 

metal isotopes.  This is an important consideration when using multiple isotopes of the same 

element but is predictable and quantifiable: for example, neodynium-143 contains 2.2% 

neodymium-144 (Table 6.2).  Selection of metal isotopes was therefore dependent on: a) the 

expected abundance of target antigen and b) purity of the metal isotope.   Antigens with 



131 
 

significant overlap in expression, such as CD3 and CD4, were not placed next to each other so it 

was easy to visually assess if significant spill over was occurring.  We also used a smaller number 

of antibodies (maximum 22 simultaneously) than the number of available channels (35), so that 

channels could be left vacant where spill over was predicted to occur.  Finally, compensation 

algorithms developed by the BRC Flow Core were applied during image analysis to remove 

crosstalk between channels.  Unlike liquid mass cytometry, IMC is performed in a dry 

atmosphere where metal oxidation does not occur. 

 

 

Figure 6.2. Antibody validation after metal tagging. Images show assessment of antigen 

expression in reactive LN tissue by IHC using metal-tagged (right) and untagged (left) primary 

antibodies from the same clone and batch (x20 objective lens).  CD21 staining (top) is not altered 

by antibody tagging, whilst Tbet staining (EPR9302, Abcam; bottom) is lost, presumably due to 

disruption of the binding epitope.  An alternative Tbet clone (4B10, Fluidigm) was used for 

subsequent experiments. 
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Table 6.2. Metal isotope purity matrix. Table shows the percentage spillover for each metal 

isotype (x axis) and the amount of signal it contributes to adjacent channels (y axis).  The total 

amount of spillover received for each channel is quantified in the right-hand column.  Image from 

Chevrier et al., 2018, Cell Systems 6, 612–620 (Elsevier Inc.), DOI: 10.1016/j.cels.2018.02.010 

 

6.2.3. Controls 

Control slides were not used for most IMC experiments for several reasons.  Firstly, secondary 

antibodies are not used for IMC, thereby eliminating a major potential source of non-specific 

background staining.  Secondly, there is significantly less overlap between mass cytometry 

channels than there is with immunofluorescence (Chevrier, et al 2018).  The main sources of 

overlap between channels in IMC are predictable, quantifiable and can be mitigated by panel 

design.  Thirdly, there should be no natural background signal with the lanthanide metal isotopes 

used.  Cost and resource use were also important considerations, which are significantly higher 

with IMC than with CIFM or IHC.  Therefore, IHC was used where antibody testing and validation 
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were required.  Initially, sections of reactive LN tissue were stained alongside FL tissue as a 

positive control to ensure equivalent staining patterns in both tissues. 

 

6.2.3. Image Acquisition and Analysis 

Images were acquired on a Hyperion imaging mass cytometer (Fluidigm), operated by Dr Richard 

Ellis at the BRC Flow Core.  Samples were first imaged by light microscopy to select an area for 

imaging with a clear follicular structure.  IMC slides were placed within a pressurised imaging 

chamber.  The tissue was ablated in 1μm2 areas by laser beam to produce an aerosolised plume 

of tissue.  Flow of argon gas within the chamber directs the plume through inductively-couple 

plasma to atomise and ionise the constituents, which are then detected according to time-of-

flight by a mass cytometer.  A total area of 1mm2 was ablated, with an acquisition time of 2 

hours, for each tissue section.  

Raw image files were viewed and exported using MCD Viewer software version 1 (Fluidigm).  

Subsequent image analysis was principally performed by Dr Nedyalko Petrov and Dr Filomena 

Spada at the BRC Flow Core, using a mixture of in-house tools and commercial image analysis 

tools.  After applying in-house compensation algorithms, image stacks were transferred to 

CellProfiler software (Broad Institute, Massachusetts, USA), where artefactual ‘hot’ pixels with 

aberrant signal were removed (Figure 6.3A).  Images were then transferred to Ilastik software 

(Berg, et al 2019), where the pixel classification tool used machine learning to generate a 

probability map for expression of each marker (Figure 6.3B).  These outputs were then exported 

back into CellProfiler, where the probability value for each pixel was attributed to the original 

object and used to generate segmentation masks to identify cells as single objects (Figure 6.3C).  

Data on cell number and area were extracted directly at this point.  Distances between different 

cell types were calculated using Matlab software (MathWorks, Massachusetts, USA).  
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Figure 6.3. Imaging Mass Cytometry analysis and cell segmentation. A) Representative images 

of FL tissue show original output for CD3 expression (left).  Using CellProfiler image analysis 

software, aberrant hot pixels were filtered out (centre panel) to produce a clean image for CD3 

(right).  B) Filtered images were then used to generate a probability map for CD3 expression using 

Ilastik software.  C) The same probability map was applied to the original images in CellProfiler 

software, where image contours were smoothed (left panel).  Membrane CD3 staining was used 

to produce a cell segmentation mask (binary layer, green; centre panel), which facilitated 

automated cell segmentation and CD3+ object identification (right; colours demonstrate 

segregation of cellular objects).  Axes show distance in μm.   
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6.3. Results 

6.3.1. Multiparameter Assessment of FL Tissue and Identification of TFH 

The same 12 FFPE FL tissue sections were stained as detailed in Section 5.2, from extremes of 

clinical outcome, allowing for comparison of IMC and CIFM results.  These samples had already 

been well characterised and were known to have detectable TFH.  

The final panel included 20 antibodies, including markers of proliferation, activation and 

exhaustion, alongside basic lineage markers (Table 6.1 and Figure 6.4).  Successful 

multiparameter imaging by IMC was possible in all 12 tissue samples to a maximum resolution 

of 1μm (Figure 6.4).  The brightest signal was seen for membranous lineage markers, such as 

CD3, CD20, CD31 and CD68.  The signal for most nuclear antigens, such as FoxP3, Pax5, BCL6 and 

Tbet was weaker.  Without a secondary antibody amplification step, several weak antigens that 

were identifiable by IHC and CIFM, were not detectable by IMC, including MYC, AID and 

phospho-STAT3 (data not shown).  The PD-1 signal was also weak but was detectable within 

follicular regions by IMC.  The distribution and pattern of PD-1 expression suggests that only 

follicular PD-1hi cells, i.e. TFH, were identified, but not other PD-1-expressing cells (Figure 6.5).  In 

one FL sample, it was not possible to identify true PD-1 expression above levels of background 

staining; this sample has been excluded from these analyses.  
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Figure 6.4. Multiparameter assessment of FL tissue by IMC. Figure shows unmanipulated 

images of 20 tissue markers obtained simultaneously from the same FL tissue section by imaging 

mass cytometry.  Images measure 1mm by 1mm. 
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Figure 6.5. Follicular PD-1 staining by Imaging Mass Cytometry.  Representative IMC images of 

FL tissue show that PD-1 expression (top) is primarily seen within follicular regions, highlighted 

by CD21 (bottom).  Low-level interfollicular PD-1 expression is not clearly detectable by IMC.  

Significant variability in staining was seen, with very clear definition of PD-1+ cells in image A 

(left) but poor definition in image B, only just above levels of background uptake. 

 

Probability maps showing co-expression of CD3, CD4, PD-1 and ICOS were used to identify TFH 

(Figure 6.6A–D).  Intrafollicular CD3 and CD4 expression were relatively weak, partly because 

there are fewer T-cells than in interfollicular areas, but also because activated T-cells, such as 

TFH, usually express lower levels of both antigens (Townsend, et al 2019).  These were 

predominantly within follicular/perifollicular areas in all 11 samples, consistent with the 

distribution seen by CIFM.  Other cell groups identified for this analysis were CD20+Ki67+ 

proliferating B-cells, CD3+CD8+ cytotoxic T-cells and non-TFH CD3+CD4+ T-cells (Figure 6.6E–F) 
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Image 6.6. Identification of T-cells and proliferating B-cells by IMC.  Probability maps show 

areas of CD3/CD4 co-expression (A), and PD-1/ICOS co-expression (B) in FL tissue.  These two 

probability maps were combined in (C) to identify CD3+CD4+PD-1+ICOS+ expression.  This was then 

mapped onto the original image in (D) to identify CD3+CD4+PD-1+ICOS+ TFH cells.  CD3+ cells are 

outlined in magenta.  Image B was deducted from Image A to identify CD3+CD4+ T-cells with a 

non-TFH phenotype, shown in (E).  Probability maps for CD20 and Ki67 were combined to identify 

proliferating B-cells, shown in image (F).  Axes show distance in μm. 
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6.3.2. Correlation with Confocal Imaging Results 

Importantly, through IMC it was possible to recreate 2 key findings from previous CIFM studies 

by our research group (Townsend, et al 2019).  Firstly, there was a clear correlation between the 

number of proliferating B-cells and the number of TFH (r=0.63, p=0.04, N=11; Figure 6.7A).  

Secondly, there was a close spatial relationship between TFH and proliferation, with smaller 

distances between proliferating B-cells and TFH than with other T-cells.  The mean distance from 

CD3+ T-cells to the nearest Ki67+CD20+ cell was 22.0 ± 1.9μm for TFH, 34.8 ± 2.6μm for non-TFH 

CD4+ T-cells and 36.7 ± 3.4μm for CD8+ T-cells (n=11; Figure 6.7B).  These results provide 

important validation of the IMC analysis pipeline. 

 

 

Figure 6.7. Relationship between TFH and proliferating B-cells. A) Scatter plot shows the 

correlation between the area of proliferating B-cells (CD20+Ki67+; x axis) and TFH (CD3+CD4+PD-

1+ICOS+; y axis) in IMC images from 11 FL patients.  Values indicate the area of each cell type in 

μm2 x103, within a 1mm2 image.  B) Graph shows the mean distance from T-cells to the nearest 

proliferating B-cell (N=11).  CD4+ T-cells were defined as CD3+CD4+ cells without PD-1/ICOS co-

expression.  Horizontal bars represent mean values.  *p<0.0001 for both comparisons.  

 

There was no clear evidence of a correlation between the number of TFH assessed by IHC and 

CIFM in the same tissue samples (see Figure 6.8).  This was not entirely unexpected, given that 

the CIFM analysis focussed solely on follicular areas, whereas the IMC analysis included both 

follicular and interfollicular areas.  However, this may, in part, be due to the very weak PD-1 

signal or insufficient detection of follicular CD4 by IMC, which may miss TFH in some samples.  

Two samples had a very low TFH area measurements by IMC (<5μm2) but with moderate 
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expression of PD-1 and ICOS by CIFM, suggesting that TFH identification by IMC may have been 

suboptimal.  

 

 

Figure 6.8. Correlation between TFH numbers by CIFM and IMC. The x axis shows the area of PD-

1/ICOS co-expression by CIFM assessment of FL tissue (N=11), expressed as a percentage of the 

total image area (see Section 5.4.2).  The y axis shows the area of CD3+CD4+PD-1+ICOS+ cells by 

IMC in μm x103, in the same tissue blocks. 

 

6.4. Discussion 

This preliminary work shows that highly multiplexed tissue imaging by IMC is feasible in archival 

FL tissue and can identify TFH.  It was possible to demonstrate a clear correlation between TFH 

and FL proliferation by IMC, thus reproducing findings with other tissue imaging methods 

(Townsend, et al 2019).  IMC has mostly been studied in breast carcinoma to date (Giesen, et al 

2014, Schapiro, et al 2017, Schulz, et al 2018).  To our knowledge, there are no published reports 

validating its use in lymphoma, where cells are tightly packed, and tissue architecture differs 

from solid organ malignancies.   

This work is part of an ongoing project, with plans to analyse all 20 antigens and expand patient 

numbers in future.  Follicular and interfollicular areas, defined by CD21 expression, may need to 

be considered separately, given the very different cellular composition in these areas.  IMC will 

enable measurement of the distance between multiple different cell types, extending the data 

shown in Figure 6.7B, to produce a ‘neighbourhood analysis’ in order to identify and characterise 

cell networks (Giesen, et al 2014, Schapiro, et al 2017).  This technology offers the opportunity 

to perform a global analysis of the FL TME in single tissue sections and may facilitate discovery 
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of non-malignant cell networks that can influence the clinical phenotype of FL, overcoming the 

limitations of IHC and other more limited tissue imaging techniques.   

The preliminary data presented here highlight several limitations of IMC.  There is no secondary 

signal antibody amplification step and therefore the antigen detection threshold is higher: IMC 

can detect 100-500 primary antibodies per pixel, compared with 20-200 for CIFM (Bodenmiller 

2016).  Therefore, IMC was not sensitive enough to detect expression of weak antigens, such as 

MYC and AID, which restricted our ability to assess the relationship between TFH and B-cell 

phenotype.  One potential solution may be to use novel techniques to assess mRNA expression 

by IMC, which include multiple signal amplification steps (Schulz, et al 2018).  Tissue staining 

protocols for other antigens will also need to be optimised going forwards, particularly for PD-

1, in order to more reliably identify TFH.  This may involve using entirely different anti-PD-1 

antibody, such as the polyclonal anti-PD-1 antibody used for CIFM, or combining 2 clones 

together to amplify signal.   

Spatial resolution is lower with IMC than with CIFM, with a maximum resolution of 1μm, 

compared with 0.2μm for the confocal studies in the previous chapter.  IMC therefore cannot 

replace higher-resolution imaging techniques in assessing cell synapse formation or subcellular 

structures.  However, IMC can be used as a platform to screen and identify key markers that can 

then be assessed by higher-resolution, limited-parameter techniques, where required.  

Resolution may improve as the technology evolves but is currently limited by the minimum area 

of tissue that the laser is able to ablate.  Cost and resource utilisation are other important 

considerations.  Image acquisition takes 2 hours for each 1mm2 section.  Each slide needs to be 

set up manually beforehand, which takes an additional hour.  It is therefore advantageous to fit 

as many tissue sections as possible onto each slide to limit set-up time and expense; tissue 

microarrays are ideal in this respect.   

This preliminary work has been used to successfully apply for and obtain tissue microarrays from 

a large, international, phase 3 clinical trial in FL with linked clinical outcome and gene expression 

data.  Following on from this MD, this will be used to explore some of these findings from this 

thesis, such as the relationship between TFH and B-cell phenotype, and identify prognostic cell 

networks within the FL TME.   
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

This work adds to the growing body of evidence that TFH play a key role in supporting FL B-cells.  

The experiments described in Chapter 4 demonstrate a mutual dependence of TFH and FL B-cells 

for survival and activation, which strongly implies that TFH may have a central role in the 

pathogenesis of FL.  Whilst it has previously been published that TFH can support FL B-cell survival 

(Ame-Thomas, et al 2012, Yang, et al 2015a), it has not to our knowledge been shown that FL B-

cells actively support TFH survival and activation.    

It is important to understand the factors that drive the recruitment and persistence of TFH in FL 

tissue, in order to provide insights into disease pathogenesis and identify potential targets for 

therapeutic intervention.  Here, we show that the three key stimuli that are necessary for TFH 

support in reactive lymphoid tissue- TCR, CD28 and ICOS stimulation- can all be provided by FL 

B-cells.  Furthermore, TFH are able to support expression of both HLA-DR and CD86 in FL B-cells, 

suggesting that they may derive cognate stimulation in return.  There is evidence of dynamic 

ICOS/ICOS-L interactions between TFH and FL B-cells, which are likely to be critical for maintaining 

the TFH phenotype (Bossaller, et al 2006, Weber, et al 2015). All these factors strongly suggest 

that FL is driven by a positive feedback loop involving both the tumour cells and TFH.  

This work raises a number of important questions for future study.  Firstly, are TFH dependent 

on antigen-dependent stimulation in FL tissue?  The next step would be to repeat FL-TFH co-

culture studies in the presence and absence of agents that block HLA-DR/TCR interactions to 

assess whether FL TFH are indeed dependent on TCR stimulation.  If this proves to be correct, 

future experiments could elute and characterise the peptides presented by FL B-cells, to identify 

the nature of any antigenic stimulus driving TFH expansion.   

Secondly, the importance of ICOS stimulation in supporting TFH activity requires further 

exploration.  Studies in reactive LN tissue have shown blocking ICOS stimulation results in rapid 

and complete loss of TFH (Bossaller, et al 2006, Weber, et al 2015).  TFH-FL B-cell co-cultures 

performed in the presence and absence of ICOS or ICOS-L blockade would ascertain whether the 

same applies to FL TFH.  This may be a means to therapeutically target TFH in FL tissue, given that 

pharmacological agents targeting ICOS-L are already being used in clinical trials for other 

diseases such as systemic lupus erythematosus (Cheng, et al 2018).  However, ICOS expression 

is not unique to TFH and therapeutic manipulation may potentially inhibit anti-tumour T-cell 

immunity, such as activated cytotoxic T-cells.  Mixed co-culture assays, such as the CD3 

depletion model described in Chapter 4, would enable evaluation of the net effect of ICOS 

blockade on FL B-cell activation and survival.  
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The confocal immunofluorescence microscopy studies presented here demonstrate a very close 

spatial correlation between TFH and MYC expression.  These novel findings are preliminary and 

require further validation with in vitro studies to demonstrate a direct relationship between TFH 

and MYC expression.  However, the plausibility of these results is supported by recent studies 

showing that CD40L stimulation is necessary for MYC expression in reactive GC B-cells (Luo, et 

al 2018).  Induction of MYC expression by TFH would provide a mechanistic link between the TME 

and tumour growth and explain why TME-dependence is lost in transformed disease.  

One limitation of this work is the low sample number for some experiments, particularly where 

disaggregated LN tissue was required.  The difficulty in obtaining fresh LN tissue was partly 

mitigated by using FNA to obtain FL cell suspensions.  This work demonstrates that this relatively 

non-invasive technique can provide sufficient cells to conduct successful co-culture 

experiments.  The distribution of lymphocytes obtained by FNA reflected those present in 

disaggregated whole LN tissue.  However, whilst some patients were willing to undergo up to 3 

FNAs over a 4-year period, it is not ethical or feasible to expect most patients to undergo 

repeated FNA altruistically.   To broaden this research will require either a larger patient base or 

more disaggregated LN tissue.  Preliminary studies here using PB and BM T-cells demonstrated 

that it is only possible to obtain cells with a clear TFH phenotype from secondary lymphoid tissue. 

One of the main priorities in FL research is identifying the factors that determine the marked 

clinical heterogeneity and drive more aggressive disease phenotypes.  Whilst it is hypothesised 

that TFH directly induce FL proliferation and acquisition of genomic changes that facilitate disease 

progression and transformation, it remains uncertain whether TFH correlate with clinical 

outcomes.  Single parameter IHC studies and multiparameter flow cytometry studies have not 

demonstrated a link between TFH and clinical phenotype, but these studies are limited either in 

their ability to accurately identify TFH, or to assess spatial interactions within FL tissue, 

respectively (Ame-Thomas and Tarte 2014).  This thesis demonstrates that it is possible to image 

archival FL tissue by IMC to enable highly multiplexed assessment of the TME in situ.  More work 

needs to be done to optimise quality of staining and image analysis, but IMC holds great promise 

to assess the spatial interactions of TFH with FL B-cells and the wider TME and can overcome the 

limitations of other methodologies.  This technology may finally be able to untangle the effect 

of complex effects of cell subsets and networks within the TME.  As a direct result of this work, 

we have obtained tissue microarrays with linked outcome data from a large, international 

clinical trial in FL.  Once techniques have been optimised, this vital resource will be used to 

develop a TME prognostic signature and assess whether TFH have a prognostic role in FL. 
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Many of the TFH interactions highlighted by this work mirror those seen in reactive LN tissue.  

This is consistent with previous work by our group showing that the number, distributions and 

interactions of TFH in  FL tissue reflect those seen in reactive GCs (Townsend, et al 2019).  

However, there are known phenotypic differences between TFH in reactive LN and FL tissue that 

are not explained by the findings above, such as overexpression of IL-4 (Amé-Thomas, et al 2015, 

Calvo, et al 2008, Pangault, et al 2010).  Pathological interruption of HVEM/BTLA interactions is 

a key feature in FL and may account for changes in gene expression in FL TFH (Boice, et al 2016).  

Such qualitative differences in TFH phenotype, rather than quantitative changes in TFH number, 

may also be important in FL pathogenesis and may need to be considered in future TFH studies.  

However, TFH do not need to have prognostic effect to have clinical relevance in FL.  If they are 

indeed integral to the development of FL and maintenance of malignant follicles, in a similar way 

to reactive GCs, then they are a clear therapeutic target.  Indeed, the correlation between TFH 

and Ki67, demonstrated here by IMC, suggests that TFH may determine the rate of FL 

proliferation (Townsend, et al 2019).  Whilst TFH are likely to encourage the acquisition of 

deleterious mutations in FL, as the disease evolves and transforms these genomic changes may 

result in reliance on the FL TME being lost.  Therefore, any correlation between TFH and 

outcomes may be obscured when including very poor-risk, advanced cases.  

There is a clear need to identify the effect of novel therapeutics on TFH, rather than just 

considering all CD4+ T-cells together as a whole.  This work highlights that TFH comprise a minority 

of CD4+ T-cells but have distinct effects of FL B-cell activation and survival.  Given their activated 

phenotype and intrafollicular location, TFH may have a disproportionate influence on FL biology 

compared with most other T-cell subsets.   Several recent studies have highlighted the potential 

for novel agents, such as PI3K and PD-1 inhibitors, to have unintended pro-tumoural effects 

(Compagno, et al 2017, Ratner, et al 2018).  It is imperative that the effect on TFH biology is 

considered when introducing new immunomodulatory therapies for FL.  Better understanding 

of TFH biology and the influence of the wider TME on FL phenotype will assist in the design of 

rational, targeted therapeutic approaches, with the hope of improving clinical outcomes for 

patients in future.  
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APPENDIX: ANTIGEN RETRIEVAL BUFFERS FOR FFPE TISSUE 
 

Citrate buffer: 

900ml distilled water 

2.1g sodium citrate  

25ml 1M NaOH  

Titrated to pH 6.1 with further NaOH  

0.5ml Tween-20 

Tris-EDTA buffer: 

 1000ml distilled water 

1.21g Tris added to 1L distilled H2O 

0.37g EDTA 

 Titrated to pH 9.0 with 1M NaOH or HCl, if needed 

0.5ml Tween 20 
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