
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1016/j.ydbio.2012.06.028

Link to publication record in King's Research Portal

Citation for published version (APA):
Grocott, T., Tambalo, M., & Streit, A. (2012). The peripheral sensory nervous system in the vertebrate head: A
gene regulatory perspective. Developmental Biology, 370(1), 3-23. https://doi.org/10.1016/j.ydbio.2012.06.028

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 15. Jan. 2025

https://doi.org/10.1016/j.ydbio.2012.06.028
https://kclpure.kcl.ac.uk/portal/en/publications/52ac9e80-5a66-42c9-b81d-8e7b061c7a6c
https://doi.org/10.1016/j.ydbio.2012.06.028


XML-IS

Our reference: YDBIO 5781 P-authorquery-vx

AUTHOR QUERY FORM

Journal: YDBIO

Please e-mail or fax your responses and any corrections to:

Article Number: 5781

E-mail: corrections.essd@elsevier.macipd.com

Fax: +44 1392 285878

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen
annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than
Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please
return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the

proof. Click on the Q link to go to the location in the proof.

Location in
article

Query / Remark: click on the Q link to go

Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly and are presented in the
desired order.

Q2 Please check the address for the corresponding author that has been added here, and correct if necessary.

Q3 Please check the fax number of the corresponding author, and correct if necessary.

Q4 Please check the citation and placement of Table 1.

Q5 ‘‘Hoffman, 2007’’ changed to ‘‘Hoffman et al.,2007’’ as per the Ref. list. Please check.

Q6 Please provide further details of ‘‘Streit, 2008’’.

Q7 There are 2 legends (one in MS and the other in a separate table.doc) given for Table 1. Hence the one given
in the MSS has been followed. Please check and confirm whether it is OK or any changes need to be done.

Q8 ‘‘Luo et al. (2001, 2002)’’ are cited in the table but is missing from the reference list – please make the list
complete or remove the reference from the text.

Q9 ‘‘Esterberg and Fritz (2010)’’ is cited in the text but is missing from the reference list – please make the list
complete or remove the reference from the text.

Q10 ‘‘Solomon et al. (2003)’’, ‘‘Philips et al. 2004’’, ‘‘Philips et al. (2001)’’, ‘‘Lahder et al., 2000’’ are cited in the text
but is missing from the reference list – please make the list complete or remove the reference from the text.

Thank you for your assistance.

Please check this box if you have no
corrections to make to the PDF file ZQBX

Andrea
Note
names and order ok

Andrea
Note
The address is incorrect.

This is the correct address:

Department of Craniofacial Development and Stem Cell Biology

King's College London

Guy's Tower Wing, Floor 27

London SE1 9RT

UK

Andrea
Note
correct

Andrea
Note
OK

Andrea
Note
OK

Andrea
Note
StemBook, ed. The Stem Cell Research Community, http://www.stembook.org

Andrea
Note
Please see comments in the text.

In the entire table including references superscript a needs to be replaced by *.

the line at the bottom of the table should follow in the legend at the top.

Andrea
Note
This should be 2009

Andrea
Note
Lahder et al. 2000 should read Ladher et al., 2000. Reference already in text



Missing references: 



Park, B.Y., Saint-Jeannet, J.P., 2008. Hindbrain-derived Wnt and Fgf signals cooperate to specify the otic placode in Xenopus. Dev Biol 324, 108-121.

Phillips, B.T., Bolding, K., Riley, B.B., 2001. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 235, 351-365.

Phillips, B.T., Storch, E.M., Lekven, A.C., Riley, B.B., 2004. A direct role for Fgf but not Wnt in otic placode induction. Development 131, 923-931.

Solomon, K.S., Kudoh, T., Dawid, I.B., Fritz, A., 2003. Zebrafish foxi1 mediates otic placode formation and jaw development. Development 130, 929-940.



Andrea
Note
see corrections in table 1



1

3

5

7

9

11

13

15

17

19

21
Highlights

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/developmentalbiology

Developmental Biology

Developmental Biology ] (]]]]) ]]]–]]]The peripheral sensory nervous system in the vertebrate head: A gene
regulatory perspective

Timothy Grocott , Monica Tambalo, Andrea StreitQ1

Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Floor 27, London SE1 9RT, UK

c Sequential activation of transcription factor networks subdivides the ectoderm. c Temporal sequence of signals and transcription factors

determines cell fate. c Positive feedback loops and mutual repression stabilise cell fate.

0012-1606/$ - see front matter & 2012 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.ydbio.2012.06.028

Please cite this article as: Grocott, T., et al., The peripheral sensory nervous system in the vertebrate head: A gene
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j.ydbio.2012.06.028

Developmental Biology ] (]]]]) ]]]–]]]

www.elsevier.com/locate/developmentalbiology
www.elsevier.com/locate/developmentalbiology
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028


Q1

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

Q2

Q3

Developmental Biology ] (]]]]) ]]]–]]]
Contents lists available at SciVerse ScienceDirect
Developmental Biology
0012-16

http://d

n Corr

E-m
1 Cu

Pleas
regu
journal homepage: www.elsevier.com/locate/developmentalbiology
Review
The peripheral sensory nervous system in the vertebrate head: A gene
regulatory perspective
Timothy Grocott 1, Monica Tambalo, Andrea Streit n

Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Floor 27, London SE1 9RT, UK
a r t i c l e i n f o

Article history:

Received 17 April 2012

Received in revised form

28 June 2012

Accepted 29 June 2012

Keywords:

Placodes

Sensory nervous system

Transcription factors

Network

Gene regulation
06/$ - see front matter & 2012 Published by

x.doi.org/10.1016/j.ydbio.2012.06.028

espondence to: School of Biological Sciences,

ail address: andrea.streit@kcl.ac.uk (A. Streit)

rrent address: School of Biological Sciences,

e cite this article as: Grocott, T
latory perspective. Dev. Biol. (2012),
a b s t r a c t

In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special

regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common

field of multipotent progenitors and acquire distinct identity later under the influence of local

signalling. Here we present the gene regulatory network that summarises our current understanding

of how sensory cells are specified, how they become different from other ectodermal derivatives and

how they begin to diversify to generate placodes with different identities. This analysis reveals how

sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller

domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes.

Within this hierarchy the timing of signalling and developmental history of each cell population is of

critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up

broad gene expression domains, which are further refined by mutual repression between different

transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a

positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate,

while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya

cassette, Pax genes in combination with other factors begin to impart regional identity to placode

progenitors. While our review highlights the wealth of information available, it also points to the lack

information on the cis-regulatory mechanisms that control placode specification and of how the

repeated use of signalling input is integrated.

& 2012 Published by Elsevier Inc.
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Introduction

The sensory placodes give rise to most of the peripheral
sensory nervous system in the vertebrate head. They form the
lens of the eye, the inner ear and the olfactory epithelium and,
together with neural crest cells, contribute to the cranial sensory
ganglia. Initially, placodes develop as simple patches of ectoderm
outside of the central nervous system, but subsequently produce
a large variety of cell types ranging from simple lens fibres to
sensory cells and neurons, neuroendocrine cells as well as self-
renewing stem cells in the olfactory epithelium. As a defining
feature of vertebrates, placodes have recently attracted much
attention and the molecular pathways controlling their develop-
ment are beginning to be unravelled.

Placode formation and differentiation is a long process. One of
the most surprising findings is that despite their diversity, placodes
arise from a common territory of multipotent precursors, the pre-
placodal region (PPR), and their progenitors initially share common
properties (Bailey et al., 2006; Martin and Groves, 2006; for review:
Schlosser, 2006, 2010; Streit, 2007, 2008)—a hypothesis originally
proposed almost 50 years ago (Jacobson, 1963a, b, c; see also Torres
and Giraldez, 1998). Placode progenitors are specified from ‘‘the
border’’, a region where neural and non-neural gene expression
overlaps and where cells are initially competent to give rise to
neural, neural crest and placodal derivatives, as well as epidermis
(Baker et al., 1999; Basch et al., 2000; Bhattacharyya and Bronner-
Fraser, 2008; Gallagher et al., 1996; Gallera and Ivanov, 1964;
Groves and Bronner-Fraser, 2000; Hans et al., 2007; Köster et al.,
2000; Kwon et al., 2010; Liedke, 1942, 1951; Martin and Groves,
2006; Nieuwkoop, 1958; Pieper et al., 2012; Selleck and Bronner-
Fraser, 1995; Servetnick and Grainger, 1991; Storey et al., 1992;
Streit et al., 1997; Waddington, 1934, 1935; Waddington and
Needham, 1936). Specification of placode progenitors is controlled
through a balance of inductive and repressive signals emanating
from surrounding tissues: the adjacent neural plate and future
epidermis and the underlying mesoderm (Ahrens and Schlosser,
2005; Brugmann et al., 2004; Litsiou et al., 2005). Subsequently,
placode precursors become different from each other (Ladher et al.,
2010; McCabe and Bronner-Fraser, 2009; Ohyama et al., 2007;
Schlosser, 2010) and converge from an initially wide distribution
within the pre-placodal region (PPR) towards focal thickenings (the
placodes) (Bhattacharyya et al., 2004; Pieper et al., 2011; Streit,
2002; Xu et al., 2008). Once formed, placodes either remain as
transient neurogenic patches from which neuroblasts delaminate to
form the cranial ganglia or expand to deposit neuromasts along the
entire body axis, as is the case for the lateral line in amphibians and
fish. Alternatively, they invaginate, undergo complex morphoge-
netic changes and differentiate into various organ-specific cell types
characteristic for the lens, otic and olfactory tissues.

Thus, from initial placode progenitor induction to terminal
differentiation, ectodermal cells navigate a hierarchy of regula-
tory states with successively limited developmental potential.
Emerging molecular data point to a complex gene regulatory
network (GRN) that controls these events and distinguishes
placode precursors from other ectodermal derivatives such as
the neural plate, neural crest and epidermis. Within this network,
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
each step in the temporal hierarchy can be identified by a specific
set of transcription factors (defining the regulatory state of cells at
this stage), which cross-regulate each other and which in turn are
controlled by defined signalling inputs. While direct interactions
and cis-regulatory modules of genes expressed in the placodes are
only beginning to be elucidated, there are now sufficient gain-
and loss-of-function data to begin to assemble a GRN to model
the transition from multipotent placode progenitors towards
differentiated placode derivatives. Such networks represent a
powerful way to represent developmental processes and cell fate
decisions as they allow the integration of large amounts of data
into logical circuits (Betancur et al., 2010a; Davidson, 2009;
Levine and Davidson, 2005; Peter and Davidson, 2011). For
placode development, the main challenge is the integration of
information from different animal models that differ in the timing
of these events and in the experimental approaches that can be
used. Even more complexity arises from the dynamic nature of
the process, as illustrated by continuous changes in gene expres-
sion and the repeated use of the same signals. Here, we will first
provide a brief overview of placode derivatives and their devel-
opment. Then we will summarise the known molecular events
that control the specification of placode progenitor cells and their
patterning along the anterior–posterior axis. We will integrate
this information into a gene regulatory network using BioTapestry
as a tool (Longabaugh et al., 2005, 2009).
Placodes and their derivatives

During embryonic development sensory placodes are first
visible as epithelial thickenings next to the developing neural
tube (Fig. 1b). Two placodes are non-neurogenic: the adenohy-
pophyseal and lens placodes. While the latter forms next to the
future retina to generate the crystalline lens of the eye with lens
fibre and epithelial cells, the former develops in the midline and
gives rise to the anterior pituitary gland, which generates differ-
ent neuroendocrine cells. The ophthalmic and maxillomandibular
trigeminal placodes (profundal and trigeminal in anamniotes) and
epibranchial placodes are simple neurogenic patches, from which
neuroblasts delaminate to form the distal portions of the Vth,
VIIth, IXth and Xth ganglia. While the trigeminal (Vth) ganglion
provides somatosensory innervation from the face, the epibran-
chial placode-derived neurons provide viscerosensory input from
the heart and other visceral organs and gustatory information
from the oral cavity. In aquatic vertebrates, the pre- and post-otic
lateral line placodes form a specialised sensory system for the
detection of water movement and electric fields along the entire
body axis generating both neurons and sensory cells. Finally, the
otic and olfactory placodes form next to the hindbrain and future
olfactory bulb, respectively, and undergo complex tissue reorga-
nisation and folding after their initial invagination. The otic
placode forms the auditory and vestibular part of the inner ear
including sensory hair cells, the neurons that innervate them,
supporting and endolymph-secreting cells, while the olfactory
placode produces different cell types including olfactory sensory
neurons, stem cells that regenerate them throughout life as well
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028

dx.doi.org/10.1016/j.ydbio.2012.06.028
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Fig. 1. Placodes and their derivatives. (A) At neural plate stages, the pre-placodal territory (pink) surrounds the anterior neural plate (grey); the neural crest territory lies

more medial (green). Note: each domain is not yet clearly defined and progenitors for each cell population are intermingled. The PPR contains precursors for all sensory

placodes. (B) Diagram of a 10-somite stage chick embryo; individual placodes are morphologically distinct as thickened patches of ectoderm and occupy distinct positions

along the neural tube. Note: the adenohypophyseal placode is not shown and lies in the ventral midline. (C) Diagram showing placodes in a 3-day-old chick embryo and

the derivatives at later stages. Left: cranial sensory ganglia; right: sense organ derivatives; modified after Webb and Noden (1993).
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as a variety of migratory neurons that leave the placode to localise
in the brain. Placode derivatives have been described in great
detail in other recent reviews (Baker and Bronner-Fraser, 2001;
Schlosser, 2010); however, this brief summary highlights their
diversity in both structure and function (Fig. 1c).
127

129

131

133
Placode progenitor distribution and their relationship with
neighbouring cells

Before and during gastrulation, placode precursors are widely
dispersed in the ectoderm and intermingle with future neural, neural
crest and epidermal cells (Ezin et al., 2009; Fernandez-Garre et al.,
2002; Garcia-Martinez et al., 1993; Hatada and Stern, 1994; Streit,
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
unpublished) and a unique placodal territory cannot be defined.
However, shortly after the neural plate is established, placode
progenitors co-localise to a contiguous band of ectoderm at its border,
the pre-placodal region (PPR; Fig. 1a; Bhattacharyya et al., 2004;
Dutta et al., 2005; Kozlowski et al., 1997; Pieper et al., 2011; Streit,
2002; Xu et al., 2008). They continue to be interspersed with other
ectodermal derivatives and segregation occurs only after neural fold
formation in chick, but slightly earlier in Xenopus. Two recent studies
in zebrafish and Xenopus indicate that a first lineage restriction occurs
between neural/neural crest and placode/epidermal lineages due to
changes in competence (Kwon et al., 2010; Pieper et al., 2012).
Initially, future epidermis is competent to generate neural, neural
crest and placode cells; however as development proceeds, compe-
tence for neural and neural crest is lost, while placodal competence
sensory nervous system in the vertebrate head: A gene
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persists. Conversely, a young neural plate grafted into the border
region can be induced to express both neural crest and pre-placodal
markers, while an older neural plate has lost competence to produce
placode precursors. While these experiments argue for an early
restriction of competence in the neural plate and future epidermis,
they leave open the possibility that in vivo cells at the border retain
plasticity to change their fate depending on local signals.

Within the PPR, precursors for different placodes are initially
mixed, but segregate over time to form morphological placodes with
unique identities. The degree of overlap is still under debate as is the
question of whether cell movements contribute to the separation
of different cells with different fates (Bhat and Riley, 2011;
Bhattacharyya et al., 2004; Pieper et al., 2011; Streit, 2002; Xu
et al., 2008; for review: Schlosser, 2006; Streit, 2008). On one hand, it
is possible that fate map data have overestimated the extent of cell
mixing for technical reasons (for discussion see Pieper et al., 2011;
Schlosser, 2006); on the other hand, species-specific differences may
exist that reflect distinct modes of placode formation. While little or
no movement is observed in Xenopus (Pieper et al., 2011), in fish and
chick, placode precursors appear to move extensively although it is
not clear whether movement is random or directional (Bhat and
Riley, 2011; Bhattacharyya et al., 2004; Streit, 2002). Ultimately, live
imaging over long periods will be required to resolve these issues. At
this point the question remains of whether cells within the PPR are
truly multipotent and acquire different fates according to their final
location, or whether cells pre-committed to specific fates segregate
to their appropriate destinations. Since all placode progenitors
initially share common properties (see below) and are only com-
mitted to their ultimate fate much later (Baker et al., 1999;
Bhattacharyya and Bronner-Fraser, 2008; Gallagher et al., 1996;
Groves and Bronner-Fraser, 2000; Henry and Grainger, 1990;
Jacobson, 1963a, b, c; Waddington, 1937), it is likely that the PPR
represents a territory of multipotent cells. Finally, even after placode
formation cells from the surrounding ectoderm continue to be
recruited into the placodal epithelium (Steventon et al., 2012;
Streit, 2002; Xu et al., 2008). This observation suggests that a
placode–epidermis boundary is established fairly late and its shar-
pening may involve cross-repressive interactions of transcription
factors similar to the formation of compartment boundaries in the
central nervous system (Joyner et al., 2000; Katahira et al., 2000;
Kobayashi et al., 2002; Li and Joyner, 2001; Millet et al., 1999;
Schwarz et al., 1999). Thus, at neurula stages placode progenitors
locate to a defined territory surrounding the anterior neural plate,
from which distinct placodes emerge over time.
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Special properties of sensory placode progenitors

The PPR is not only defined by the location of placode
progenitors, but also by special properties that distinguish it from
other ectodermal cells. At neural plate and early somite stages,
competence to respond to signals that induce specific placodes is
restricted to the head ectoderm and for some placodes to the PPR
itself (Baker et al., 1999; Bhattacharyya and Bronner-Fraser, 2008;
Gallagher et al., 1996; Groves and Bronner-Fraser, 2000; Henry
and Grainger, 1990; Jacobson, 1963c; Ladher et al., 2000; Martin
and Groves, 2006). Recent experiments demonstrate that cells
must acquire PPR properties before they can form mature pla-
codes (Martin and Groves, 2006). When non-PPR ectoderm is
exposed to the otic inducer FGF2, otic markers are not induced;
however if the same ectoderm is first grafted into the PPR at head
fold stages, it initiates the expression of PPR-specific genes and
can now be induced to form an ear. These experiments suggest
that otic induction (and possibly the induction of other placodes)
occurs in at least two steps: first, cells have to acquire a PPR
regulatory state before they can become inner ear.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
In addition, PPR cells also share a common developmental
programme: irrespective of their later fate all placode precursors
are initially specified as lens (Bailey et al., 2006). When PPR
explants from different rostrocaudal levels are cultured in isola-
tion they initiate Pax6 expression (normally confined to trigem-
inal, lens, olfactory and adenohypophysis precursors), followed by
a set of lens-expressed transcription factors like Sox2, L-Maf and
FoxC1 (Kamachi et al., 1995; Kamachi et al., 2001; Muta et al.,
2002; Yoshimoto et al., 2005). Together, these are responsible for
activation of the terminal differentiation genes a- and d-crystallin

and execution of the lens programme. These findings imply that
placode inducing signals not only impart specific placodal fates,
but must also suppress the lens programme. Indeed, this appears
to be the case for most placodes: activation of the FGF pathway
suppresses lens specification in vitro (Bailey et al., 2006) and is
required for olfactory, trigeminal, otic and epibranchial placode
formation (Alvarez et al., 2003; Bailey et al., 2006; Canning et al.,
2008; Freter et al., 2008; Hans et al., 2007; Ladher et al., 2000;
Maroon et al., 2002; Martin and Groves, 2006; Nechiporuk et al.,
2007; Nikaido et al., 2007; Phillips et al., 2001; Wright and
Mansour, 2003). Thus, acquisition of PPR identity is the first step
during sensory placode development: PPR cells contribute to all
placodes and share common properties before they diversify.
Six and Eya family members at the core of the PPR gene
network

PPR cells are identified by a unique set of transcription factors
that define their regulatory state. At neural plate stages, they
become molecularly distinct by expressing Six and Eya family
members (Ahrens and Schlosser, 2005; Bessarab et al., 2004;
Esteve and Bovolenta, 1999; Ishihara et al., 2008; Kobayashi
et al., 2000; Litsiou et al., 2005; McLarren et al., 2003; Mishima
and Tomarev, 1998; Pandur and Moody, 2000). These nuclear
factors not only play an important role in conferring PPR identity
(Brugmann et al., 2004; Christophorou et al., 2009), but are also
crucial for many aspects of sense organ and cranial ganglion
formation at later stages (Donner and Maas, 2004; Hanson, 2001;
Kawakami et al., 2000; Wawersik and Maas, 2000). They are
therefore considered to be key regulators of placode development.
In addition, the PPR is defined by many other transcription factors
that form regulatory circuits with Six and Eya genes, although none
of these are PPR specific, but act as their upstream regulators or in
parallel pathways (Fig. 2) Table 1.

In vertebrates, six Six genes (Six1-6) and four Eya genes (Eya1-4)
have been identified (for review: Donner and Maas, 2004; Hanson,
2001; Kawakami et al., 2000; Wawersik and Maas, 2000). Six1-6
proteins contain a Six-type DNA binding homeodomain and an
N-terminal Six domain, which mediates interaction with cofactors
(Kobayashi et al., 2001; Ohto et al., 1999; Pignoni et al., 1997a).
Depending on the presence of such cofactors, Six1-6 proteins are
transcriptional repressors or activators: together with Dach or
Groucho proteins they inhibit transcription of downstream target
genes, whereas when partnered with Eya proteins they act as
transcriptional activators (Kenyon et al., 2005a, 2005b; Li et al.,
2003; Rayapureddi et al., 2003; Tessmar et al., 2002; Tootle et al.,
2003; Zhu et al., 2002). Eya1-4 proteins are unusual: they not only
act as transcriptional activators, but also contain tyrosine phos-
phatase activity (for review: Jemc and Rebay, 2007). They are
characterised by a conserved Eya domain, which harbours the
phosphatase activity and is responsible for protein–protein inter-
action (e.g. with Six family members), and a moderately conserved
Eya domain 2 surrounded by two proline/serine/threonine (P/S/T
domain) stretches. The P/S/T domain is required for transactivation,
while the precise function of the Eya domain 2 remains unclear.
sensory nervous system in the vertebrate head: A gene
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Fig. 2. Distinct regulatory states as ectodermal cells progress towards pre-placodal progenitors. The medio-lateral and rostro-caudal distributions of different ectodermal

transcription factors are represented schematically, from pre-gastrula to neurula stages. TFs are organised and colour-coded according to their expression domains across

multiple species. Hatched boxes (black) indicate the regulatory states described in the network depicted in Figs. 3 and 5 (see brackets on the left). See main text for full

narrative description including references for gene expression data. Note: we use Ap2 as a generic symbol for the Ap2 transcription factor family. Dlx gene nomenclature

and expression across species is complex (see text); in addition to dynamic changes over time, differences are also observed along the anterior–posterior axis at neurula

stages at least in chick (see, e.g. Streit, 2002). The diagrams represent approximations.
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Six and Eya genes were initially identified in Drosophila as sine

oculis (So) and eyes absent (Eya), where they are part of the non-
linear network of retinal determination genes. So and Eya loss of
function mutations in the fly cause reduction or complete absence
of the eye, while their misexpression leads to ectopic eye forma-
tion demonstrating their crucial role for fly eye development
(Bonini et al , 1993, 1997; Chen et al., 1997; Cheyette et al., 1994;
Mardon et al., 1994; Pignoni et al., 1997a, 1997b; Serikaku and
O’Tousa, 1994; Weasner et al., 2007). While it was generally
assumed that Drosophila So acts as a transcriptional activator
during eye formation, recent evidence suggests that a key role of
So is to repress the antennal selector gene Cut (Anderson et al.,
2012): misexpression of a constitutive repressor form of So, but
not of a constitutive activator, is able to induce ectopic eyes in the
antennal disc. Thus, a revised model for retinal determination
emerges in which So plays a dual role downstream of the Pax6
homolog Eyeless: together with a yet-to-be-identified co-repres-
sor it inhibits non-retinal fates and promotes eye formation when
partnered with Eya. Among the genes activated by So and Eya is
the ski/sno related transcriptional co-factor Dac and together they
form a regulatory loop to promote each others’ expression and
retina development (Chen et al., 1997; Davis et al., 1999;
Hammond et al., 1998; Mardon et al., 1994; Shen and Mardon,
1997). Likewise, recent vertebrate data suggest a similar mode of
action for Six proteins in vertebrate placode development (see
below).

As their widespread expression in all sensory placode progeni-
tors suggests, vertebrate Six and Eya proteins not only play
important roles in eye formation, but in all other sensory
structures in the head. The loss of Six1, Six5, Eya1 and/or Eya4
function causes defects in the eye, the ear, the cranial ganglia and
the olfactory epithelium (Chen et al., 2009; Friedman et al., 2005;
Konishi et al., 2006; Kozlowski et al., 2005; Laclef et al., 2003; Li
et al., 2003; Ozaki et al., 2004; Xu et al., 1999; Zheng et al., 2003;
Zou et al., 2004, 2006). Similarly, human mutations in these genes
have been associated with Branchio-Oto-Renal syndrome where
patients present hearing, renal and branchial defects, with late-
onset deafness and lens cataract (Abdelhak et al., 1997; Azuma
et al., 2000; Johnson et al., 1999; Ruf et al., 2004; Schonberger
et al., 2005; Wayne et al., 2001; Winchester et al., 1999; Zhang
et al., 2004). At early developmental stages, Six and Eya genes play
an important role in specifying sensory progenitors at the border
of the neural plate. Six1 knock down or misexpression of a
constitutive Six1 repressor form leads to the absence of placode
progenitors, while misexpression of wild type Six1 promotes PPR
identity at the expense of epidermis and neural crest (Brugmann
et al., 2004; Christophorou et al., 2009). Like in the fly, Six1 seems
to associate with transcriptional repressors or activators: repres-
sion of non-placodal fate involves Groucho repressors, while
association of Six1 with Eya1/2 favours placode fates. The activa-
tion of Six1 target genes is required for normal expression of
placode-specific Pax genes (Fig. 5), which in turn appear to
determine placode identity. This is in contrast to Drosophila,
where the Pax6 homologue Eyeless (Ey) acts upstream of So and
Eya and is required for their expression (for review: Donner
and Maas, 2004). This inversed regulatory relationship may
explain why, unlike in the fly, where So and Eya induce ectopic
eyes, misexpression of Six1 and Eya2 in competent non-
placodal ectoderm does not induce mature ectopic placodes
(Christophorou et al., 2009). With at least three different Pax genes
downstream of Six/Eya (Pax2, 3 and 6) additional inputs must be
required to provide regional specificity. Together these finding
suggest that the Six and Eya network plays a critical role in specifying
sensory progenitors and defines their regulatory state, but that
additional factors that work in parallel or downstream are required
for sense organ formation.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
Transcription factors upstream of the Six and Eya network

How are sensory progenitors positioned at the border of the
neural plate? We will analyze the upstream events by dissecting
the core transcription factor network involved in the activation of
Six and Eya. The PPR is first identified at neural plate stages,
shortly after induction of the central nervous system and after or
concomitant with neural crest cell specification. The subdivision
of the ectoderm into different domains occurs sequentially start-
ing from pre-gastrula stages, a process that is not very obvious in
anamniotes because of their extremely fast development. The
‘‘neural plate border’’ and ‘‘binary competence’’ models have
recently been discussed as two opposing models for PPR induc-
tion (Pieper et al., 2011; Schlosser, 2006); however, we argue that
considering the temporal hierarchy of events unifies both models.
Below we review this sequence of events and the molecular
cascade that controls them to explain how sensory progenitors
are uniquely positioned, surrounding the anterior neural plate.

Among the transcription factors that regulate Six and Eya gene
expression are members of the Dlx family, which play multiple
roles in ectodermal patterning. Before we discuss their function it
is important to note that the nomenclature and expression/
function of specific Dlx family members do not correspond across
species. In amniotes for example, Dlx3 is neural-enriched during
gastrulation and is later confined to the olfactory placode
(Bhattacharyya and Bronner-Fraser, 2008; Khudyakov and
Bronner-Fraser, 2009). Conversely in Xenopus, Dlx3 expression is
non-neural and resembles that of Dlx5, yet they remain function-
ally distinct: Dlx5 is activated downstream of Dlx3 (Pieper et al.,
2012). Amniote Dlx6 expression overlaps that of Dlx5, but its
function has yet to be studied within the PPR (Brown et al., 2005).
Zebrafish exhibits further differences to both amniotes and
Xenopus, partly due to gene duplications within the Dlx family.
To avoid over-complicating the network model with unresolved
cross-species discrepancies, we have elected to treat amniote
Dlx5/6, Xenopus Dlx3/5 and teleost Dlx3b/4b collectively as ‘‘Dlx5/6

(Dlx3b/4b)’’ whereas amniote Dlx3 is set apart. Accordingly, we
acknowledge that critical details of Dlx gene function have been
omitted from our present model. Further studies, in particular
cross-species analysis of cis-regulatory elements for all Dlx family
members, will need to resolve these differences.

Subdivision of the ectoderm by sequential activation

of transcription factors

At blastula stages, the embryonic region is characterised by the
expression of pre-neural (Sox3, Otx2, ERNI, Geminin; Bally-Cuif
et al., 1995; Kroll et al., 1998; Papanayotou et al., 2008;
Rex et al., 1997; Streit et al., 2000) and non-neural genes (Dlx

genes, Gata2/3, Msx1, Ap2, Foxi1/3; Brown et al., 2005; Hans et al.,
2007; Hans et al., 2004; Hoffman et al., 2007; Knight et al., 2003;
Li and Cornell, 2007; Luo et al., 2001a, 2001b; Matsuo-Takasaki
et al., 2005; McLarren et al., 2003; Ohyama and Groves, 2004;
Papalopulu and Kintner, 1993; Pera and Kessel, 1999; Pera et al.,
1999; Phillips et al., 2006; Pieper et al., 2012; Sheng and Stern,
1999; Streit and Stern, 1999; Suzuki et al., 1997; Woda et al., 2003;
Yang et al., 1998) in partially overlapping domains (Fig. 2).

Pre-neural factors are expressed more medially in the chick
epiblast, while non-neural factors are enriched laterally. Likewise, in
Xenopus pre-neural and non-neural factors initially overlap ani-
mally, but then become restricted to more dorsal and ventral
regions, respectively (Pieper et al., 2012). Although little is known
about their regulatory interactions at this stage, some of the
signalling inputs have been identified (Fig. 3). Sox3, ERNI and
Geminin expression is initiated by FGF signalling, while Otx2 requires
a combination of FGF activation and Wnt and BMP antagonists
sensory nervous system in the vertebrate head: A gene
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Fig. 3. Gene regulatory interactions establishing the pre-placodal territory. Signalling and transcription factor interactions are shown from blastula and to neurula stages.

Diagrams on the left show the corresponding stages in the chick embryo; regions are colour-coded according to the regulatory state described in the network. Neural and

non-neural gene expression domains in the pre-streak epiblast (blastula) are established through signals from the hypoblast and extraembryonic region. At gastrula stages,

different transcription factors are initiated downstream at the border of the neural plate. At head process stages, Six and Eya genes become expressed in the pre-placodal

region, but are repressed in future neural crest cells. Note: as shown in Fig. 2 gene expression domains do not yet form sharp boundaries at this stage. Gene symbols are

colour-coded according to their expression profiles summarised in Fig. 2. Progenitor populations (boxes) are colour-coded according to their physical distributions

summarised in Fig. 1. In the network, solid lines represent verified direct interactions, while this information is not known for interactions represented in dashed lines. For

a neural crest GRN see (Betancur et al., 2010a; Sauka-Spengler and Bronner-Fraser, 2008).
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(Albazerchi and Stern, 2007; Papanayotou et al., 2008; Streit et al.,
2000; Wilson and Edlund, 2001). Accordingly, the Ets family
member Pea3, a transcriptional target of FGF signalling, is expressed
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
widely in the embryonic region (Lunn et al., 2007). In amniotes,
these signals emanate from the hypoblast (anterior visceral
endoderm in mouse), which underlies the embryonic region (for
sensory nervous system in the vertebrate head: A gene
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review: Stern and Downs, 2012). In contrast, Dlx5/6, Gata2/3, Msx1,
Foxi1 and Ap2 depend on BMP activity with Gata2 and Msx1 also
being positively regulated by canonical Wnt signalling, while this
pathway inhibits Foxi1 and X-Dlx3 (Beanan et al., 2000; Hoffman
et al., 2007; Hong and Saint-Jeannet, 2007; Kwon et al., 2010;
Matsuo-Takasaki et al., 2005; Pera et al., 1999; Suzuki et al., 1997;
Wilson et al., 2001). Accordingly, members of the BMP and Wnt
families are expressed in the extraembryonic ectoderm adjacent to
the non-neural domain or in the non-neural ectoderm itself
(Skromne and Stern, 2001; Streit et al., 1998; Wilson et al., 2001).
Recent data from zebrafish define a clear time window for BMP
activity (Kwon et al., 2010): Gata2, Foxi1 and Ap2 require BMP
signalling before but not after gastrulation. Thus, prior to gastrula-
tion, antagonistic activity between FGF and Wnt/BMP signalling
roughly subdivides the embryonic region into pre-neural and non-
neural territories with a large region of overlap (Figs. 2 and 3).

During gastrulation these territories become further subdi-
vided molecularly as new genes are expressed and relative
expression boundaries change (Fig. 2). At early gastrula stages,
non-neural transcripts form two groups with Gata2/3 and Foxi1

being expressed more laterally than Ap2, X-Dlx3 and Dlx5/6,
whose expression abuts the neural plate (Feledy et al., 1999a;
Khudyakov and Bronner-Fraser, 2009; Kwon et al., 2010;
Luo et al., 2001b; Pieper et al., 2012; Streit, 2002; Woda et al.,
2003). Unlike in fish and Xenopus, in chick Dlx3 expression is
similar to pre-neural genes (Khudyakov and Bronner-Fraser,
2009)). Surprisingly, genes previously considered as neural crest
specifiers like FoxD3 and N-myc are transiently coexpressed with
pre-neural transcripts before being confined to the neural crest
domain (Khudyakov and Bronner-Fraser, 2009) suggesting that at
early stages a common regulatory state may define progenitors
for both lineages. In addition to Pea3, the Ets transcription factor
Erm is now also present in the forming neural plate and the
surrounding ectoderm (Lunn et al., 2007) as are Zic1-5 (Elms et al.,
2004; Elms et al., 2003; Gamse and Sive, 2001; Inoue et al., 2007;
Merzdorf, 2007; Mizuseki et al., 1998; Nakata et al., 1997, 1998),
Dlx3 (in chick; Khudyakov and Bronner-Fraser, 2009), Sall1 (Bohm
et al., 2008; Sweetman et al., 2005) and Spalt4 (or Sall4;
Barembaum and Bronner-Fraser, 2007). In Xenopus, Zic1 and Zic5

are activated at the edge of the neural plate in response to FGF
signalling presumably from the underlying paraxial mesoderm
(Hong and Saint-Jeannet, 2007; Monsoro-Burq et al., 2003); in
tissue recombination assays paraxial mesoderm can induce Zic5

in animal caps, but this is blocked in caps injected with dominant
negative FGF receptor (Monsoro-Burq et al., 2003). In addition, at
intermediate levels of BMP activity Wnt signalling also activates
Zic1 (Hong and Saint-Jeannet, 2007). Thus, different pathways
converge on Zic1 (Fig. 3), while nothing is known about the
signals that induce cDlx3, Spalt4 and Sall1 in the neural plate or at
its border.

At late gastrula stages, the definitive neural marker Sox2 is
initiated in the neural plate in response to neural inducing signals
from the organiser (Rex et al., 1997; Streit et al., 1997; Uchikawa
et al., 2003). Neural and non-neural transcripts continue to
overlap in a broad territory, named ‘the border’ of the neural
plate (Moury and Jacobson, 1989; Streit and Stern, 1999; Zhang
and Jacobson, 1993), and it is in this region that precursors for
neural, neural crest, placodes and epidermis are intermingled
(Ezin et al., 2009; Fernandez-Garre et al., 2002; Garcia-Martinez
et al., 1993; Hatada and Stern, 1994) and Irx1, one of the Six and
Eya upstream regulators, is switched on under the influence of
BMP and FGF signalling (Bellefroid et al., 1998; Glavic et al., 2002;
Gomez-Skarmeta et al., 1998; Goriely et al., 1999; Khudyakov and
Bronner-Fraser, 2009) (Figs. 2 and 3).

Simultaneously, distinct anterior–posterior territories are set
up in the embryonic region (Fig. 2). Otx2 and Gbx2 are among the
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
first genes that roughly separate the embryonic region into rostral
and caudal domains with Otx2 beginning to localise anteriorly and
Gbx2 posteriorly (Acampora et al., 1995; Bally-Cuif et al., 1995;
Braun et al., 2003; Broccoli et al., 1999; Gammill and Sive, 2000;
Glavic et al., 2002; Li et al., 2009; Millet et al., 1999). Both genes
continue to overlap until they form a sharp boundary at early
somite stages (Steventon et al., 2012). In chick, Msx1, Pax3 and c-

Myc expression begins next to the primitive streak, initially
widespread encompassing the non-neural ectoderm but then
rapidly localising to a few rows of cells lining the posterior neural
plate (Bang et al., 1997; Khudyakov and Bronner-Fraser, 2009;
Streit and Stern, 1999). Like at pre-gastrula stages, FGF signalling
negatively regulates Msx1 and Gata2 preventing their expression
in more medial, neural territory (Stuhlmiller and Garcı́a-Castro,
2012). Shortly thereafter, the neural crest specifier Pax7 is
initiated within the Msx1/Pax3 territory (Basch et al., 2006) and
over the next few stages, all three genes expand to encompass
most of the anterior neural plate in a thin line. Recent evidence in
chick suggests that already at gastrula stages posterior Pax7þ and
anterior Pax7-cells are specified as neural crest cells (Basch et al.,
2006; Patthey et al., 2008) indicating that specification of the
neural plate border and neural crest may be regulated by different
mechanisms along the rostrocaudal axis.

In summary, BMP and Wnt signalling activate early expressed
non-neural factors, while FGFs prevent their expression close to the
neural plate and initiate pre-neural genes (Fig. 3). As a result,
partially overlapping domains of transcription factors define dis-
tinct regulatory states within the ectoderm (Fig. 2): neural, epider-
mal and the border in between. The latter begins to be subdivided
molecularly into Ap2/Dlx3/5/6 positive and negative regions during
gastrulation. These dynamic changes highlight the importance of
timing when interpreting experimental manipulations as some
markers label different cells at different times. There are few, if
any systematic studies investigating many transcription factors
simultaneously making it difficult to integrate data from different
studies and across species. Thus, our knowledge of the regulatory
interactions among these factors is still sparse and none of the
critical regulator elements have been identified.
Restricting neural fate: repression by non-neural transcription factors

One important function of the early, non-neural genes appears
to be the restriction of neural fates by repressing neural markers
(Fig. 3). In Xenopus, overexpression of Foxi1a represses the neural
marker Sox2, but promotes non-neural genes like X-Dlx3 and
epidermal keratin (Matsuo-Takasaki et al., 2005). In contrast, loss
of Foxi1a leads to Sox2 expansion and reduction of Dlx3, Msx1 and
epidermal keratin (Kwon et al., 2010; Matsuo-Takasaki et al.,
2005). These observations suggest that Foxi1 lies upstream of
Dlx3 and Msx1. However, loss- and gain-of-function experiments
for Dlx3, Dlx5, Gata2/3, Msx1 and Ap2 suggest more complex
regulatory relationships. Misexpression of any of these factors
represses neural fate (Sox2 and/or -3), while knock-down or
misexpression of dominant negative forms enlarges the neural
plate (Feledy et al., 1999a; Linker et al., 2009; Luo et al., 2001b;
McLarren et al., 2003; Pieper et al., 2012; Suzuki et al., 1997;
Tribulo et al., 2003; Woda et al., 2003). Since these factors are
thought to act as transcriptional activators it is likely that their
interaction with neural genes is indirect, mediated by yet
unknown transcriptional repressors. In addition, they regulate
each other: in zebrafish, both Gata3 and Ap2 are required for Dlx3

expression, while in Xenopus Dlx3 and Gata2 regulate their own
expression and that of Dlx5 and Foxi1a (Kwon et al., 2010; Pieper
et al., 2012). Thus, positive feedback loops reinforce the expres-
sion of these transcription factors in the non-neural ectoderm
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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possibly making them independent of further signalling input
(Fig. 3).

In the posterior non-neural ectoderm, Pax3 is positively regu-
lated by canonical Wnt signalling (Bang et al., 1997; Hong and
Saint-Jeannet, 2007) and also antagonises neural specification: its
overexpression reduces Sox2 expression, while Pax3 knock-down
expands both Sox2 and Zic1 (Hong and Saint-Jeannet, 2007).
Interestingly, Zic1 and Pax3 cooperate to promote neural crest cell
fates later, while Zic1 alone favours placodal development suggest-
ing that the balance between both factors is important to deter-
mine ultimate cell fates.

Thus, repressive action of non-neural genes limits the extent of
the neural plate: they suppress neural specific transcription
factors and reinforce their own expression (Fig. 3). Whether
neural factors in turn repress non-neural fate at these early stages
remains to be elucidated. The identification of regulatory modules
of each factor will be crucial to determine whether these inter-
actions are direct or indirect.

Transcriptional input into the Six and Eya network

At neurula stages, the expression of Six and Eya family
members is first initiated with their PPR-specific expression being
regulated by both pre-neural and non-neural transcription fac-
tors, together with the earliest known border-specific factor Irx1

(Figs. 2 and 3). The Dlx family members X-Dlx3 and Dlx5 (and
presumably Dlx6, which is co-expressed with Dlx5) continue to
play a role in addition to antagonising neural specification (Luo
et al., 2001b; McLarren et al., 2003; Pieper et al., 2012; Woda
et al., 2003). However, differential expression of the family
members suggests a complex role. In Xenopus, Dlx5 continues
to abut the neural plate at early neurula stages like in chick
(Beanan and Sargent, 2000; Feledy et al., 1999a; Khudyakov and
Bronner-Fraser, 2009; Luo et al., 2001b; McLarren et al., 2003;
Streit, 2002), while Dlx3 (and Dlx3b/4b in fish) is absent from the
future neural crest domain (Kwon et al., 2010; Luo et al., 2001b;
Pieper et al., 2012).

Misexpression of Dlx5 in chick or Dlx3 in Xenopus represses
neural crest fates, while promoting the expression of the pre-
placodal markers Six1/4 and Eya1. In contrast, Dlx3 knock-down
or misexpression of a dominant negative form results in the loss
of pre-placodal and crest markers. Similarly, in zebrafish the
absence of dlx3b and -4b function (b380 mutants or morphants)
causes the loss of PPR markers and a reduction of olfactory,
trigeminal and otic placodes, while dlx3b overexpression leads to
an enlarged PPR (Esterberg and Fritz, 2009; Kaji and Artinger,
2004; Solomon and Fritz, 2002). Thus, Dlx proteins are required
for PPR specification and promote PPR specific gene expression.
Indeed, recent studies implicate X-Dlx3 as competence factor for
sensory progenitors: Dlx3 function is required for PPR induction
by FGF and BMP antagonists (Pieper et al., 2012). In agreement
with these findings, Dlx5 activates Six1 expression by directly
binding to its anterior PPR enhancer (Six1-14; Sato et al., 2010).
Together, these experiments implicate Dlx family members as
important upstream regulators of Six genes and mediators of
placodal development.

The function of Dlx proteins during neural crest cell specifica-
tion appears to be more complex. First, different Dlx family
members show slightly different expression patterns in Xenopus,
with Dlx5 encompassing epidermal, placodal and crest territories,
while Dlx3 is absent from neural crest cells (Luo et al., 2001a).
Second, while Dlx5, but not Dlx3 has been implicated in neural
crest cell formation (Feledy et al., 1999b; Luo et al., 2001a), a
recent study shows that both gain and loss of Dlx3 function
reduce neural crest markers (Pieper et al., 2012), while in fish,
Dlx3b/4b may control neural crest cell formation in a non cell
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
autonomous manner (Kaji and Artinger, 2004). These observa-
tions suggest that a fine balance of Dlx protein function is
required for normal crest development. This balance may be
achieved through interaction with Msx1 proteins, which show
partially overlapping expression. Msx and Dlx proteins can form
heterodimers to modulate their action as transcriptional repres-
sors or activators (Zhang et al., 1997). Thus, Dlx protein function
may differ depending on the amount of Msx1 present. In addition,
as mediator of BMP signalling and epidermal specification, Msx1
inhibits PPR fate: in the absence of Dlx3b/4 function, knock-down
of MsxB, C and E in zebrafish restores placode development
(Phillips et al., 2006). In agreement with this, Msx1 binds to
the anterior PPR enhancer of Six1 and negatively regulates its
expression.

Two recent studies in zebrafish and Xenopus have identified
Ap2, Foxi1 and Gata2/3 as important regulators and potential
competence factors for pre-placodal genes (Kwon et al., 2010;
Pieper et al., 2012). Knock-down of one or more of these factors
leads to loss of Six1/4 and Eya1 expression, while overexpression
alone or in combination results in ectopic expression of PPR
specifiers. Importantly, like Dlx3 the presence of these factors is
required for PPR induction by FGF signalling in combination with
BMP antagonists (see below) providing strong evidence for their
role as competence factors. Thus, while Ap2 and Dlx family
members are required for both PPR and neural crest cell specifica-
tion, Foxi1 and Gata2/3 only regulate placodal fate. Thus, although
the genes that specify neural crest and placode precursors are
regulated differentially they also share some transcriptional input.
In summary, members of the Foxi1, Gata, Dlx and Ap2 family play a
role in demarcating the boundary between neural and non-neural
ectoderm and are critical regulators of PPR fate (Fig. 3).

Much less is known about the role of other pre-neural and
non-neural factors in regulating PPR specific transcripts. In
Xenopus, Sox3 represses epidermal character, while promoting
neural plate identity by inducing Sox2; both Sox proteins posi-
tively regulate neural Zic1 and Geminin expression (Rogers et al.,
2009). Placode-specific genes have not been investigated. In
medaka, misexpression of Sox3 results in the formation of ectopic
placodes within the PPR and may promote PPR gene expression,
although this has not been examined systematically (Köster et al.,
2000).

As discussed above, the three transcription factors Pax3, c-Myc

and Msx1 are first expressed along the posterior neural plate and
later in neural crest cells. All three promote neural crest cell
formation, but play different roles in placode specification. While
c-Myc is required for the development of both neural crest and PPR
as shown in knock-down studies in Xenopus (Bellmeyer et al.,
2003), Msx1 and Pax3 negatively regulate PPR specific genes (Hong
and Saint-Jeannet, 2007). In zebrafish, sensory progenitors depend
on Dlx3b/4b function; however, their specification is rescued when
MsxB, C and D are knocked down in Dlx3b/4b mutants (Esterberg
and Fritz, 2009; Kaji and Artinger, 2004; Phillips et al., 2006;
Solomon and Fritz, 2002). In agreement with this observation,
Msx1 negatively regulates the anterior PPR Six1 enhancer (Sato
et al., 2010). As a direct target of BMP signalling (Maeda et al.,
1997; Suzuki et al., 1997; Yamamoto et al., 2000) Msx1 may
mediate placode inhibition by BMPs (see below). Likewise, over-
expression of Pax3 represses Six1 in the PPR and as a canonical Wnt
target (Hong and Saint-Jeannet, 2007; Monsoro-Burq et al., 2005),
Pax3 may mediate its activity to repress placode formation (see
below). It therefore seems likely that at early gastrula stages, when
Pax3 and Msx1 are present in the posterior non-neural ectoderm,
they restrict Six1 expression to the head ectoderm, while at neurula
stages, when both are present in the neural folds, where neural
crest cells are located, they prevent Six1 expansion into the crest
territory.
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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At the neural plate border, Pax3 and Zic1 are expressed in
partially overlapping domains and their balance may control the
decision between placodal versus neural crest fates (Hong and
Saint-Jeannet, 2007; Monsoro-Burq et al., 2005). In the absence of
Zic1 function, Six1 expression is lost, but only in the lateral PPR
(Hong and Saint-Jeannet, 2007), while Zic1 overexpression shows
conflicting results. Whereas some studies show enhanced Six1

expression in the PPR (Hong and Saint-Jeannet, 2007; Li et al.,
2009), others report Six1 loss (Brugmann et al., 2004). Thus, Zic1
function is context dependent and appears to switch from a
positive to a negative regulator of placode precursor specification
depending on the presence of other transcription factors like Pax3.

Finally, Irx1, a member of the TALE family of homeodomain
proteins, is expressed in the PPR just prior to the onset of Six1/4 and
Eya1/2 and later in the placodes themselves (Glavic et al., 2002;
Gomez-Skarmeta et al., 1998; Goriely et al., 1999; Khudyakov and
Bronner-Fraser, 2009). In Xenopus, overexpression of Xiro1 enhances
Six1 expression, while Xiro1 loss reduces it (Glavic et al., 2004),
suggesting that Irx1 is a positive regulator of Six1. Since Irx1 itself is
activated by FGF and BMP signalling (Bellefroid et al., 1998; Glavic
et al., 2004), but slightly later than the BMP-dependent placode
competence factors (Gata2/3, Foxi1, Dlx3, Ap2), it is possible that
Irx1 is a downstream mediator of these factors. Alternatively it may
cooperate with Foxi1: while Foxi1 expression initially encompasses
the entire non-neural ectoderm at neural stages it becomes confined
to the PPR concomitant with the onset of Irx1.

In summary (Fig. 3), Gata, Foxi1, Dlx and Ap2 proteins have
been implicated as competence factors required cell autonomously
for the expression of PPR specific genes of the Six and Eya families.
Likewise, Irx1 and Zic1 positively regulate Six1 expression, while
the neural crest specifiers Pax3 and Msx1 repress its transcription.
So far only Dlx and Msx proteins have been shown to interact
directly with the Six1 anterior PPR enhancer to provide positive
and negative input, respectively. However, overall the regulatory
interactions that control PPR-specific expression of Six1/4 and
Eya1/2 remain poorly understood.
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Stabilising sensory progenitor fate: positive feedback loops
and repression of alternative fates

Once Six and Eya genes are initiated in the PPR they act to
stabilise the system by promoting sensory progenitor fate and
repressing non-placodal character (Fig. 3). Misexpression of Six1
and Eya2 induces ectopic expression of another Six family
member, Six4, as well as Eya2 itself (Christophorou et al., 2009).
Unlike Six1, the Six4 protein contains a transactivation domain in
addition to the homeo- and six-domain (Kawakami et al., 1996;
Kawakami et al., 2000) and may therefore activate target genes
independent of other co-activators. Thus, in a positive feedback
loop Six and Eya proteins promote their own expression, although
it is unclear whether they do so by directly binding to their
enhancers or via other factors like Six4.

Simultaneously, they repress genes characteristic for other cell
fates including their own competence factors. For example, while
Gata3 and Dlx5 are necessary for initiating Six1 and Eya1 in the PPR
(Kwon et al., 2010; Pieper et al., 2012), once expressed Six1 and
Eya1/2 repress both genes cell autonomously to prevent cells from
adopting non-placodal fate (Brugmann et al., 2004; Christophorou
et al., 2009). In addition, Dlx5 and Gata3 are induced ectopically in
neighbouring cells suggesting that the Six/Eya complex activates a
signalling pathway cell autonomously, which in turn regulates
gene expression in neighbouring tissue. Whether Six/Eya activate
a transcriptional repressor or whether Six1 associates with a
co-repressor (see above) to shut down Dlx5 and Gata3 transcrip-
tion is currently unknown. However, in analogy to So activity in the
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
fly eye it is possible that a repressor function of Six1 is key for the
manifestation of placodal fate. Likewise, misexpression of Six1
alone or in combination with Eya2 represses the neural markers
Sox2 and Sox3 as well as the neural crest specific genes Pax7 and
FoxD3 in a cell autonomous manner.

Thus, a model emerges in which pre-neural and non-neural
upstream factors activate Six and Eya expression next to the
anterior neural plate to specify sensory progenitors (Fig. 3). A
positive feedback loop of the Six/Eya complex subsequently
ensures that once expressed these genes become independent of
this upstream input, while cell autonomous repression of neural,
non-neural and neural crest fate stabilises placode progenitor
identity.
Signalling events upstream of the core PPR gene network

Signalling input into the Six and Eya network

A number of signalling pathways have been implicated in PPR
specification and they appear to act sequentially during this
process (Fig. 3). PPR inducing signals emanate from the under-
lying mesoderm and the adjacent neural plate: when grafted
ectopically either tissue can induce Six1, Six4 and Eya2 (Ahrens
and Schlosser, 2005; Litsiou et al., 2005). Both tissues express
different members of the FGF family: FGF4 and FGF8 are present in
the chick mesoderm, while FGF8 is found in the anterior neural
plate in Xenopus (Ahrens and Schlosser, 2005; Ohuchi et al., 2000;
Shamim and Mason, 1999). As discussed above, FGF signalling
promotes the expression of pre-neural genes (Sox3, ERNI, Geminin)
prior to gastrulation and may continue to do so at the border of
the neural plate. The future placode territory receives FGF signal-
ling as evidenced by expression of the FGF targets Pea3 and Erm as
well as the presence of phosphorylated Erk (pErk) (Khudyakov
and Bronner-Fraser, 2009; Lunn et al., 2007; Stuhlmiller and
Garcı́a-Castro, 2012). FGF signalling prevents the expansion of
PPR-repressing factors (Msx1, BMP4) towards the neural plate
(Stuhlmiller and Garcı́a-Castro, 2012), thus providing a favourable
environment for PPR specification. In addition, FGF8 is sufficient
to induce Eya2, but not any other PPR specifier (Litsiou et al.,
2005).

Loss-of-function approaches show that FGF signalling is neces-
sary to establish the Six/Eya network within the PPR. In Xenopus

FGF8 knockdown or misexpression of a dominant negative FGF-
receptor prevents Six1 expression (Ahrens and Schlosser, 2005;
Brugmann et al., 2004), while in chick inhibition of FGF signalling
abolishes the PPR-inducing ability of the mesoderm (Litsiou et al.,
2005). The presence of pErk in future sensory progenitors from
gastrula stages onwards suggests that FGF is an early signal in the
cascade of events leading to PPR specification. Thus, FGFs clearly
play an important role in sensory progenitor specification, but
alone are not sufficient to induce all components of the core PPR
network. While several studies implicated the FGF pathway in
neural crest cell induction (LaBonne and Bronner-Fraser, 1998;
Mayor et al., 1997; Monsoro-Burq et al., 2003, 2005; Stuhlmiller
and Garcı́a-Castro, 2012; Villanueva et al., 2002), a recent study in
chick investigated the temporal aspects: FGF/MAPK signalling is
required early for neural crest cell specification (Stuhlmiller and
Garcı́a-Castro, 2012). This raises the possibility that a primary role
of FGF signalling may be to induce a ‘border state’, in which cells
are competent to give rise to neural, neural crest and placodes,
and thus poise the embryonic ectoderm for other signals that
subsequently differentiate between these fates.

In contrast to FGF two other signalling pathways, canonical
Wnt and BMP, negatively regulate the core PPR network. In chick
Wnt6 is expressed in the trunk ectoderm (Garcia-Castro et al.,
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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2002; Schubert et al., 2002), while Wnt8c emanates from lateral
and post-otic mesoderm (Litsiou et al., 2005). Together, they limit
the lateral and posterior extent of the PPR thus restricting sensory
progenitors to the head ectoderm next to the neural plate.
In chick and frog, misexpression of Wnt antagonists (Crescent,
Frzb1) leads to lateral and posterior expansion of pre-placodal
Six1, Six4 and Eya2 (Brugmann et al., 2004; Litsiou et al., 2005) but
cannot elicit ectopic expression of these genes away from the
endogenous PPR. Conversely, activation of the pathway by mis-
expression of Wnt8c, Wnt8 or constitutively active b-catenin
abolishes the expression of all three genes (Brugmann et al.,
2004; Litsiou et al., 2005).

Similar to Wnts, high levels of BMP activity suppress the core
PPR network. BMP4 and BMP7 are expressed in most of the non-
neural ectoderm (Fainsod et al., 1994; Streit et al., 1998), but
antagonists from the underlying mesoderm and the PPR itself
(Chapman et al., 2004; Esterberg and Fritz, 2009; Ogita et al.,
2001; Rodriguez Esteban et al., 1999) block their activity to allow
PPR specific gene expression. Recent results from zebrafish
demonstrate that while BMP activity is required early to initiate
the expression of competence factors, BMP signalling must be
completely blocked for the PPR to be specified (Kwon et al., 2010).
In chick, misexpression of the cell-autonomous BMP antagonist
Smad6 causes an expansion of Six4 and Eya2, but not of Six1, into
the future epidermis (Litsiou et al., 2005). In Xenopus however,
inhibition of BMP signalling by noggin or a dominant negative
receptor does expand Six1, while BMP4 overexpression inhibits its
expression (Ahrens and Schlosser, 2005). This apparent discre-
pancy in Six1 regulation may be due to species-specific differ-
ences, to the particular antagonists used or to a difference in
timing of the experiments. Regardless, these findings do agree
that Six1, Six4 and Eya2 are inhibited by BMPs, although like with
Wnt/b-catenin, inhibition of BMP alone is insufficient to induce
an ectopic PPR (Ahrens and Schlosser, 2005; Litsiou et al., 2005).

Together these data demonstrate that sensory progenitors
must be protected from inhibitory Wnt and BMP signalling. The
underlying mesoderm provides both a favourable environment in
the form of FGF and protective signals: it secretes FGFs and the
Wnt and BMP antagonists Cerberus and DAN (Chapman et al.,
2004; Ogita et al., 2001; Rodriguez Esteban et al., 1999; Shamim
and Mason, 1999), while the PPR itself expresses the BMP
antagonist Crossveinless 2 (Cv2) (Esterberg and Fritz, 2009). There-
fore, the primary role of canonical Wnt and BMP signalling is to
suppress the core PPR network within the prospective epidermis
and trunk ectoderm, while antagonists facilitate its expression by
local reduction of BMP and Wnt activity.

Whether Six1, Six4 and Eya2 are directly activated or inhibited
by FGF, Wnt and BMP signalling remains to be elucidated. The
only PPR enhancer identified so far regulates Six1 expression in
anterior sensory progenitors and does not contain binding sites
for downstream effectors of these signals (Sato et al., 2010). BMP-
dependent Six1 repression is likely to be mediated by the BMP
effector Msx1, which directly binds to this enhancer. It is there-
fore possible that the loss of Six1 disrupts the positive feedback
loop that maintains Eya2 and activates Six4. Therefore, Six4 and
Eya2 may be indirect targets of BMP signalling with Eya2 being
induced by FGF. Together these observations suggest that combi-
natorial activity of FGF and Wnt and BMP antagonists is required
to activate the complete set of PPR specific genes. Indeed,
combined overexpression of FGF8 and noggin induces ectopic
Six1 in the ventral ectoderm of Xenopus embryos (Ahrens and
Schlosser, 2005), and misexpression of both Smad6 and Crescent
together with exposure to exogenous FGF8 induces Six4 in chick
(Litsiou et al., 2005). Interestingly, in the latter experiment, when
FGF signalling is inhibited shortly after initial exposure Six4

expression continues unimpeded (Litsiou et al., 2005). Thus,
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
transient FGF activity is sufficient to promote PPR specification
supporting the idea that one of the main functions of FGF is to
prime the tissue for further signalling input (see above) and that
once expressed the Six/Eya network rapidly becomes indepen-
dent of activating external signals.

Signals differentiating sensory placode and neural crest progenitors

At early neurula stages, cells at the edge of the neural plate
appear to remain in an unstable, multi-potent state and retain the
ability to respond to local signals and to differentiate accordingly.
Placodal (Six1/Six4/Eya2) and neural crest (Pax7, Msx1, FoxD3)
transcripts partially overlap (Fig. 2). Yet, they mutually repress
each other: Six1 represses Pax7 and FoxD3, while Pax7 and Msx1
repress Six1 (Fig. 3) (Brugmann et al., 2004; Christophorou et al.,
2009; Sato et al., 2010). It is possible that mutual repression
prevents further specification until changes in the signalling
landscape tip the balance and allow the two populations to
diverge. In support of this idea, BMP and Wnt pathways appear
to recapitulate their earlier activities to promote this process.

Recently a two-step model has been proposed for neural crest
cell induction with the second phase requiring canonical Wnt and
BMP signalling (Patthey et al., 2008; Steventon et al., 2009;
Steventon and Mayor, 2012). In agreement with this, misexpres-
sion of Wnt antagonists expands Six1, Six4 and Eya2 at the
expense of the neural crest specifier Pax7 (Litsiou et al., 2005).
However, PPR transcripts never encroach into the definitive
neural crest territory possibly due to elevated BMP activity. In
contrast, activation of Wnt signalling expands Pax7 into the PPR,
but not into the future epidermis, while repressing Six1, Six4 and
Eya2. Thus, in this context canonical Wnt may not only induce
Pax7 directly, but also indirectly by removing otherwise suppres-
sive Six1 and thus allow Pax7 expansion within the PPR.

In summary, at the edge of the neural plate the level of BMP
and Wnt signalling determines whether cells adopt neural crest
or placodal fate. High levels of BMP and Wnt activity promote
neural crest cell formation, while both pathways must be
repressed for sensory progenitors to be specified.

Integrating FGF, BMP and Wnt signalling

How are these pathways integrated to generate distinct cell
fates at the border of the neural plate? Extracellular BMP signals
are transduced to the nucleus by Smad1/5/8 proteins following
their phosphorylation by active receptor complexes (Massague,
1998; Wu and Hill, 2009). However, these receptor-regulated
Smads are also targeted by other kinases including mitogen
activated protein kinase (MAPK) and glycogen synthase kinase 3
(GSK3), which are effectors of FGF and canonical Wnt signalling,
respectively (Fuentealba et al., 2007; Kretzschmar et al., 1997; for
review: Eivers et al., 2008, 2009). Therefore, Smad1/5/8 are
important hubs for integrating these and other signalling path-
ways suggesting that they also hold the key for signal integration
during sensory progenitor specification. The mechanisms of how
different pathways converge on Smads have been reviewed
extensively elsewhere (Eivers et al., 2008, 2009). Briefly, in
response to BMP signalling Smad1/5/8 are activated through
phosphorylation at the C-terminal MH2 domain and subsequently
accumulate in the nucleus, where they modulate gene expression
together with other co-factors. Smad1/5/8 phosphorylation by
MAPK largely occurs in the linker region and may prevent their
accumulation in the nucleus thus inhibiting their transcriptional
activity. In addition, this ‘primes’ them for further inhibitory
phosphorylation by GSK3, which targets them for degrada-
tion via subsequent ubiquitination. Since GSK3 is inhibited by
canonical Wnt signalling, Wnt activation effectively stabilises
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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Fig. 4. Integration of signalling pathways in placode and neural crest progenitors. The possible mode of FGF, BMP and Wnt signal integration in the neural crest and

placode territory.
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Smad1/5/8. This synergy between the BMP and Wnt pathway is
consistent with their role in sensory progenitor specification:
both suppress the PPR network (Fig. 4). Conversely, FGF/MAPK
signalling initiates the inhibitory cascade and opposes BMP
signalling consistent with its positive role in PPR specification
and activation of the PPR network (Fig. 4). Thus, activation of FGF
signalling in the PPR cooperates with extracellular BMP and Wnt
antagonists to inhibit both pathways and to generate a signalling
environment that favours activation of the Six/Eya network and
consequently sensory progenitor specification.
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Regionalisation of the PPR

Although the PPR appears to be a homogeneous territory with
uniform Six/Eya gene expression and a universal lens ‘ground
state’, rostro-caudal patterning is already well under way at the
time of its induction. Among the earliest regionally restricted
genes are Otx2 and Gbx2 (Acampora et al., 2001; Acampora et al.,
1995; Bally-Cuif et al., 1995; Li et al., 2009; Simeone et al., 1992;
Simeone et al., 1993; Tour et al., 2001; von Bubnoff et al., 1996)
(Fig. 2); both transcripts overlap initially, but form a boundary
later separating otic from maxillomandibular trigeminal progeni-
tors (Steventon et al., 2012). This boundary is established by
mutual repression at the transcriptional level and Otx2/Gbx2-
mediated cell sorting to sharpen the boundary (Steventon et al.,
2012). A similar mechanism acts in the neural plate to establish
the mid-hindbrain boundary (Broccoli et al., 1999; Glavic et al.,
2002; Hidalgo-Sanchez et al., 2005; Joyner et al., 2000; Katahira
et al., 2000; Li and Joyner, 2001; Millet et al., 1999; Wassarman
et al., 1997), suggesting that Otx2 and Gbx2 are part of a general
mechanism that allocates rostro-caudal identity across the entire
ectoderm.

From neurula stages onwards, the induction of different
transcription factors in distinct rostro-caudal domains demar-
cates the subdivision of the placode territory, first into larger
regions contributing to multiple placodes and later into individual
placodes each with a unique transcription factor code. These
changes in gene expression have recently been reviewed exten-
sively elsewhere (Schlosser, 2006). Here we summarise the ear-
liest steps of anterior–posterior patterning with particular focus
on the regulation and role of paired box family transcription
factors, the Pax genes (Fig. 5). At some point during placode
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
development (differing depending on species) the combined
expression of Pax6, Pax3 and Pax2/8 spans the entire placode
territory suggesting that they play a key role in allocating regional
identity to placode progenitors. While none of the regulatory
elements that control Pax gene expression in PPR sub-domains
have been identified, all require direct or indirect transcriptional
input from the Six and Eya network (Christophorou et al., 2009)
again highlighting the important role of these genes for placode
formation.
The anterior PPR: adenohypophysis, olfactory and lens
progenitors

Surprisingly, the apparent uniform expression of Six1 is regu-
lated by at least two different enhancers, with the anterior PPR
enhancer (Six1-14; Sato et al., 2010) encompassing adenohypo-
physeal, olfactory and lens precursors (Bhattacharyya et al., 2004;
Dutta et al., 2005; Kozlowski et al., 1997; Pieper et al., 2011).
Activation of this enhancer occurs at neurula stages within a
broader Otx2 domain, just prior to or concomitant with the
initiation of Pitx3 (Dutta et al., 2005) and Six3 (Liu et al., 2006)
within the Six1-14 domain and with Pax6 (Bailey et al., 2006; Li
et al., 1994) in a slightly larger territory, which initially also seems
to include trigeminal precursors. This territory of overlapping
gene expression in the anterior PPR contains cells with identical
developmental potential and can give rise to any anterior placode
if exposed to appropriate signals (Fig. 5). Such signals arise from
surrounding tissues to induce distinct placodal fates locally.
Hedgehog signalling from the midline promotes anterior pituitary
character, while repressing lens and olfactory fates: in the
absence of hedgehog the latter expand, whereas ectopic activa-
tion represses lens formation (Cornesse et al., 2005; Dutta et al.,
2005; Herzog et al., 2004; Karlstrom et al., 1999; Kondoh et al.,
2000; Sbrogna et al., 2003; Varga et al., 2001; Zilinski et al., 2005).
FGFs from the anterior neural ridge promote olfactory identity,
while repressing lens (Bailey et al., 2006) and lens fate appears to
require prolonged BMP exposure from within the ectoderm itself,
as well as later FGF and BMP from the optic vesicle (Faber et al.,
2001; Faber et al., 2002; Furuta and Hogan, 1998; Sjodal et al.,
2007; Wawersik et al., 1999).

Otx2 plays a crucial role in defining the anterior and inter-
mediate (see below) PPR by repressing Gbx2 (Fig. 5; see above). In
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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Fig. 5. Anterior–posterior patterning of the PPR. (A) Diagram showing differential gene expression along the rostro-caudal axis at neurula and 5-9 somite stages. See the

main text for detailed description and references. Hatched boxes indicate the regulatory states described in the networks in (C). Note: the precise boundaries of Pax gene

expression have not been mapped. (B) Summary of signalling pathways implicated in the induction of distinct placodes from the PPR. Adeno: adenohypophysis; Olf:

olfactory; Tri: ophthalmic trigeminal; OEP: otic-epibranchial territory; Epi: epibranchial. (C) Gene regulatory networks defining the anterior PPR (green) and its subdivision

into olfactory (yellow) and lens (blue) precursors, the intermediate (opV; purple) and posterior (light orange) PPR. Left: diagram of a 5-somite stage chick embryo with

colour-coded regions for the regulatory states shown in the networks.
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addition, in Xenopus activation of Otx2 target genes is required for
the early specification of olfactory, lens and trigeminal precur-
sors: misexpression of a constitutive repressor form of Otx2
prevents the expression of molecular markers characteristic for
each placode (Steventon et al., 2012).

The paired box transcription factor Pax6 is the earliest Pax
gene expressed in the PPR (Bailey et al., 2006; Li et al., 1994;
Zygar et al., 1998). In its absence the lens and olfactory placodes
fail to thicken and their development is severely impaired
(Ashery-Padan et al., 2000; Collinson et al., 2000; Grindley et al.,
1997; Quinn et al., 1996). The signals that induce Pax6 in the
anterior PPR are currently unknown, and despite extensive cis-
regulatory studies no pre-placodal enhancer has been identified
within the Pax6 locus. It is clear however that Six1 plays a critical
role in either Pax6 initiation or in its maintenance: misexpression
of a constitutive repressor form of Six1 prevents anterior Pax6

expression (Christophorou et al., 2009) (Fig. 5). Whether Pax6 is a
direct target of Six1 or is regulated by an intermediary protein
remains to be elucidated.

During the segregation of lens and olfactory progenitors, Dlx5
and Pax6 may play antagonistic roles. Although initially co-
expressed at pre-placodal stages, Pax6 and Dlx5 expression
separates into two mutually exclusive domains, the future lens
and olfactory placodes, respectively (Bhattacharyya et al., 2004).
FGF8 from the anterior neural ridge suppresses Pax6 transiently
in the olfactory region, while promoting Dlx5 expression (Bailey
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
et al., 2006). Conversely, misexpression of exogenous Dlx5 in the
lens territory leads to loss of Pax6 (Bhattacharyya et al., 2004).
Thus, Dlx5 overexpression actively suppresses Pax6 and may lead
to transient downregulation of Pax6 in the olfactory placode.

Within the early lens placode Pax6 activates its own transcrip-
tion as well as other targets, however this autoregulation does
not appear to be essential at pre-placodal stages in the mouse
(Ashery-Padan et al., 2000). As the lens placode forms Pax6 is
directly activated by the Six family member Six3, which interacts
with the Pax6 lens placode enhancer (Pax6-EE; Liu et al., 2006). As
Six3 and Pax6 are already coexpressed at pre-placodal stages it is
tempting to speculate that Six3 has also an earlier role in Pax6
regulation.

Equally important is the question of how Pax6 is restricted to
the anterior PPR (Fig. 5). While it is normally absent from the
epibranchial and otic territory (Li et al., 1994), explant studies in
chick demonstrated that the entire PPR has an intrinsic ‘bias’
towards Pax6 expression: culturing the posterior PPR ex vivo
leads to a rapid upregulation of Pax6 and ultimately results in lens
formation (Bailey et al., 2006). This observation suggests that
in vivo signals extrinsic to the PPR actively suppress Pax6 to
prevent ectopic lens formation. Two strong candidates for this
role are Wnt and FGF signalling. Within the neural plate and its
border Wnt signalling establishes posterior identity (Carmona-
Fontaine et al., 2007; Heisenberg et al., 2001; Kim et al., 2000;
Li et al., 2009; Patthey et al., 2008; van de Water et al., 2001;
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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Villanueva et al., 2002; for review: Houart et al., 2002) although a
direct role (rather than indirect through patterning of the neural
tube) in the early subdivision of the placode territory has not yet
been established. However, in support of Wnt involvement the
Wnt target genes Gbx2 and Irx1-3 (Braun et al., 2003; Gomez-
Skarmeta et al., 2001; Itoh et al., 2002; Kiecker and Niehrs, 2001;
Li et al., 2009; Rhinn et al., 2009) are expressed in the posterior
PPR, with Gbx2 abutting Otx2 and Irx1-3 complementary to Six3

expression. Like in the neural plate, these Wnt responsive factors
pattern the PPR through repression of their anterior counterparts
as we have recently shown for Otx2 and Gbx2 (Steventon et al.,
2012). In addition, Pax3 starts to be expressed in the ophthalmic
trigeminal placode as Pax6 is lost from this domain and represses
Pax6 transcription and vice versa (Wakamatsu, 2011). Like Gbx2

and Irx1-3, Pax3 is activated by canonical Wnt signalling (Canning
et al., 2008; Lassiter et al., 2007) and all three factors may
participate in the Pax6 restriction. At later stages, the Wnt path-
way continues to downregulate Pax6 and confines it to the
prospective lens placode (Grocott et al., 2011; Smith et al.,
2005). Thus, canonical Wnt signalling may be an important
negative regulator of Pax6, first to confine its expression to the
anterior PPR and later to the lens territory (Fig. 5). In turn, Wnt
antagonists from the hypoblast (anterior visceral endoderm in
mouse; for review: Stern and Downs, 2012) and the mesendo-
derm underlying the anterior PPR protect this territory, thus
allowing the expression of Pax6 and other anterior PPR genes.

While also implicated in anterior–posterior patterning of the
neural tube, within the placode territory FGF signalling appears to
control a different process: the suppression of Pax6 and simulta-
neous induction of individual placodes. FGFs mediate the induc-
tion of multiple placodes including the olfactory, trigeminal,
epibranchial and otic (see below; Bailey et al., 2006; Canning
et al., 2008; Freter et al., 2008; Ladher et al., 2000; Maroon et al.,
2002; Martin and Groves, 2006; Nechiporuk et al., 2007;
Nechiporuk et al., 2005; Nikaido et al., 2007; Phillips et al.,
2001; Sun et al., 2007; Wright and Mansour, 2003) (Fig. 5). They
actively promote the expression of placode-specific genes and
simultaneously suppress Pax6. In the presence of FGF8, posterior
PPR explants fail to initiate Pax6 expression, suggesting that FGF
activity normally prevents inappropriate Pax6 expression. In
summary, Wnt and FGF pathways may cooperate to restrict
Pax6 to the anterior-most PPR. While Wnt continues to inhibit
Pax6 at lens placode stages (Grocott et al., 2011; Smith et al.,
2005), FGF from the optic vesicle later promotes its expression
and lens character (Faber et al., 2001; Vogel-Hopker et al., 2000).
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The posterior PPR: otic and epibranchial precursors

Prior to the Six/Eya network Gbx2 is already expressed in the
posterior ectoderm and subsequently localises to the posterior
placode territory abutting Otx2 anteriorly (Acampora et al., 1995;
Bally-Cuif et al., 1995; Braun et al., 2003; Broccoli et al., 1999;
Gammill and Sive, 2000; Glavic et al., 2002; Li et al., 2009; Millet
et al., 1999). Shortly thereafter, at neurula stages members of the
Irx family become confined to the posterior PPR, with their anterior
limit rostral to Gbx2 (Bellefroid et al., 1998; Glavic et al., 2002;
Gomez-Skarmeta et al., 1998; Goriely et al., 1999) (Fig. 5). Mem-
bers of two gene families, Dlx (Dlx3b/4b in fish, Dlx5/6 in chick)
and Foxi genes (Foxi1 in fish, Foxi3 in chick and mouse), are
initially expressed in the non-neural ectoderm and throughout the
PPR, but now become rapidly confined posteriorly (Brown et al.,
2005; Nissen et al., 2003; Ohyama and Groves, 2004; Solomon and
Fritz, 2002; Solomon et al., 2003a, 2003b). These transcription
factors form a network of interactions regulating both each other
and the onset of Pax2, Pax8 and Sox3 (Hans et al., 2004; Kwon et al.,
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
2010; Nissen et al., 2003; Padanad and Riley, 2011; Solomon et al.,
2003a). Together, the latter factors label a posterior equivalence
group of cells (posterior placode area or PPA), all of which can
generate otic, epibranchial and lateral line placodes (for review:
Ladher et al., 2010; Schlosser, 2010). Like in the anterior PPR
spatially and temporally controlled signalling events segregate
these different fates over time.

Gbx2 is among the earliest factors to promote posterior PPR
identity and appears to play a dual role (Steventon et al., 2012;
Fig. 5): it represses Otx2 early and provides positive input for Pax8

and Pax2 later. In Xenopus, Gbx2 knock-down leads to Otx2

expansion, while misexpression of Gbx2 and of a constitutive
repressor results in Otx2 loss suggesting that Gbx2 acts as tran-
scriptional repressor (Steventon et al., 2012). However, Gbx2
switches to an activator during otic specification: Gbx2 constitu-
tive repressor and Gbx2 knock-down lead to a loss of otic Pax8 and
Pax2. Gbx2 alone cannot induce Pax2/8 suggesting that other
cofactors are required. These findings highlight that transcription
factor action is highly dependent on the cellular context and
available cofactors.

Studies in mouse, zebrafish and chick show that Pax2 and Pax8
function is critical for normal ear development (Bouchard et al.,
2010; Burton et al., 2004; Christophorou et al., 2010; Mackereth
et al., 2005; Torres et al., 1996) and for the formation of some
epibranchial neurons (Nechiporuk et al., 2007). Pax2 knockout
mice show severe malformations of the cochlea and the endo-
lymphatic duct as well as absence of the saccule (Burton et al.,
2004; Torres et al., 1996). While Pax8 mutant mice do not show
an ear phenotype, Pax2/Pax8 double mutants arrest ear develop-
ment at the vesicle stage highlighting their important role at early
stages (Bouchard et al., 2010). Likewise, in humans PAX2 muta-
tions are associated with sensorineuronal deafness (Favor et al.,
1996; Sanyanusin et al., 1995; Schimmenti et al., 1997). The fact
that birds appear to have lost Pax8 due to chromosomal rearran-
gements allows the investigation of Pax2 function directly: in
chick Pax2 knock-down impairs early otic specification as evi-
denced by the loss of early otic markers (Christophorou et al.,
2010). In zebrafish, both Pax2 and Pax8 cooperate during otic
vesicle development: in the absence of Pax8, Pax2a and Pax2b a
small otic placode is induced, but degenerates completely over
time (Mackereth et al., 2005). Together, these findings suggest
that Pax2 and 8 play an important role in specification of otic cells
from the PPR, as well as during later ear development.

Although initially thought to be otic inducers, more recent
evidence implicates members of the FGF family as key signals to
induce the PPA (Fig. 5). FGFs from the head mesoderm and the
hindbrain are required and sufficient to induce the otic placode in
fish, chick and mouse (for review: Barald and Kelley, 2004; Ladher
et al., 2000; Ladher et al., 2010; Leger and Brand, 2002; Liu et al.,
2003; Maroon et al., 2002; Ohyama et al., 2007; Phillips et al.,
2001; Phillips et al., 2004; Riley and Phillips, 2003; Schimmang,
2007; Wright and Mansour, 2003), but have more recently also
been implicated in epibranchial placode induction (Freter et al.,
2008; Nechiporuk et al., 2007; Nikaido et al., 2007; Sun et al.,
2007). The precise nature of the FGF ligands involved differs
between species, with FGF3 and -8 being required in zebrafish,
FGF3 and -10 in mouse and FGF3 and -19 in chick. Prolonged
exposure of PPA cells to FGFs promotes epibranchial fates, while
repressing otic character (Freter et al., 2008; Nechiporuk et al.,
2007). Instead, cells close to the neural tube are exposed to
hindbrain-derived canonical Wnt signalling and adopt otic fate,
while epibranchial fate is suppressed (Freter et al., 2008; Ladher
et al., 2000; Ohyama et al., 2006). Thus, a model emerges in which
FGFs initially induce a posterior placode equivalence group, from
which otic and epibranchial identity is established depending on
length of FGF exposure and on the presence or absence of Wnt
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028
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(Fig. 5). While this model holds true in amniotes and Wnt activity
also promotes otic identity in Xenopus (Park and Saint-Jeannet,
2008), the role of Wnt signalling in zebrafish otic induction is still
under debate (Phillips et al., 2004). Induction of lateral line
placodes has so far remained elusive.

While at gastrula stages Foxi1 and Dlx3b/4b are under the
control of BMP signalling (see above), they are controlled by FGFs
in the PPA (Hans et al., 2007; Hans et al., 2004; Nissen et al.,
2003), where they promote each other’s expression in a positive
feedback loop: exogenous FoxI1 induces Dlx3b and vice versa,
while Dlx3b, like Dlx5 in chick (McLarren et al., 2003), also
regulates its own expression (Aghaallaei et al., 2007; Solomon
and Fritz, 2002). In zebrafish Dlx3b expression depends on Foxi1
function (Solomon et al., 2003a), while in Xenopus Foxi1 depends
on Dlx3 activity (Pieper et al., 2012). Thus, Foxi1 and Dlx3b/4b
regulate each other in the PPA, where they synergise to promote
Pax gene expression and consequently posterior placode specifi-
cation. Downstream of Foxi1 cells activate Pax8 and Sox3; accord-
ingly zebrafish Foxi1 mutants lose the earliest PPA gene Pax8 as
well as the slightly later expressed Pax2 (Hans et al., 2007; Nissen
et al., 2003; Solomon et al., 2003a). In contrast, Dlx3b/4b controls
Pax2, but not Pax8 (Hans et al., 2007; Hans et al., 2004; Mackereth
et al., 2005; Padanad and Riley, 2011; Solomon and Fritz, 2002;
Solomon et al., 2004; Sun et al., 2007): in the absence of Dlx3b/4b
function Pax8 expression remains normal while Pax2 is lost. Thus,
FGF regulates the two Pax genes that demarcate the PPA using
two independent pathways. Once activated, Pax2 and Pax8
cooperate to suppress Foxi1 as a prerequisite for otic specification
and to promote otic fate synergistically (Mackereth et al., 2005;
Padanad and Riley, 2011) (Fig. 5).

Like Pax6 anteriorly, Pax2 expression in the PPA requires the
activation of Six1 target genes: its expression is lost after
misexpression of a constitutive repressor form of Six1 or after
Six1 knockdown (Bricaud and Collazo, 2006; Christophorou et al.,
2009). However, thereafter Pax2 controls Six via a recently
identified otic specific enhancer (Sato et al., 2012), suggesting
that a positive feedback loop between Six1 and Pax2 locks cells in
an otic state. In contrast, other Pax proteins negatively regulate
Pax2: exogenous Pax3 suppresses Pax2 expression in chick otic
placode (Dude et al., 2009). Thus, mutual repression between Pax
genes patterns the placode territory to define subgroups of cells
with distinct developmental potential (Fig. 5).
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The intermediate PPR: trigeminal precursors

Pax3 is the earliest marker of the prospective ophthalmic
trigeminal (opV; profundal in anamniotes) placode, where its
expression is initiated at the 8 somite stage in chick and slightly
earlier in Xenopus (Dude et al., 2009; Pieper et al., 2011; Schlosser
and Ahrens, 2004; Stark et al., 1997; for review: Schlosser, 2006).
Before the onset of Pax3 expression in chick, at least some opV
precursors are Pax6 positive (compare anterior position of opV-
fated cells; Xu et al., 2008) and Pax6 expression (Bailey et al.,
2006; Bhattacharyya et al., 2004), while some maxillomandibular
trigeminal (mmV; trigeminal in anamniotes) precursors arise
from the Pax2þ territory (Xu, 2008). Most of the mmV however,
does not seem to express any Pax gene. In contrast in Xenopus,
mmV/trigeminal precursors initially express Pax6 reflecting their
location anterior to the profundal placode at early stages (Pieper
et al., 2011). Thus, due to the lack of molecular markers for the
mmV/trigeminal placode little is known about its specification
and the molecular interactions involved.

In the opV territory, the onset of Pax3 coincides with the
disappearance of Pax6 in agreement with the mutual repression
between these factors (Wakamatsu, 2011). Like the other Pax
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
genes in the placode territory, Pax3 transcription requires the
activation of Six1 target genes since misexpression of a constitu-
tive repressor form of Six1 prevents its expression (Christophorou
et al., 2009). Additionally, Pax3 controls its own expression and
positively feeds back onto Eya2 (Dude et al., 2009): misexpression
of exogenous Pax3-Engrailed fusion protein (which suppresses
Pax3 targets) leads to the loss of endogenous Pax3 and Eya2.
Finally, misexpression of Pax3 in the posterior PPR represses the
otic/epibranchial marker Pax2 (Dude et al., 2009) suggesting that
indeed cross-repressive interactions between different Pax genes
are critically involved in rostro-caudal patterning of the placode
territory.

Neighbouring tissues control Pax3 induction in the opV and in
particular the neural tube has been implicated (Canning et al.,
2008; Stark et al., 1997), although signals from migrating neural
crest cells cannot be excluded. Again, neural tube-derived cano-
nical Wnt signalling is thought to play a role in Pax3 induction
and Wnt activity is required for its maintenance. Wnts appear to
cooperate with the FGF pathway (Canning et al., 2008; Lassiter
et al., 2007; Shigetani et al., 2008) and PDGF signalling has also
been implicated, but is not sufficient to induce Pax3 in competent
ectoderm (McCabe and Bronner-Fraser, 2008). Additionally in
chick, Pax3 induction next to the dorsal neural tube and its
subsequent lateral expansion correlates with the onset of neural
crest cell migration making them a potential source of opV
inducing signals. Indeed, neural crest derived TGF-b signalling
activates Wnt2b expression in the overlying ectoderm including
in the Pax3 domain (Grocott et al., 2011). Although TGF-b alone
cannot induce Pax3 in competent anterior PPR explants it is
possible that a combination of TGF-b/Wnt2b and FGF/PDGF is
required. Thus, multiple pathways appear to converge to induce
trigeminal identity via Pax3 activation (Fig. 5). However, without
the identification of Pax3 enhancer regions it remains unclear
whether they directly control its expression or act via intermedi-
ate targets. In the future we will need to understand how these
signals are integrated intracellular.

In summary, subdivision of the placode territory occurs
sequentially with the establishment of multiplacodal domains.
Within these domains cells have equivalent developmental
potential and can give rise to any placode if exposed to appro-
priate signals. Following the expression of the Six and Eya
network, Pax genes mediate this initial subdivision into anterior,
intermediate and posterior placodal areas by mutual repression.
While Six and Eya target activation is required for all Pax genes,
irrespective of their rostro-caudal location, other factors must
cooperate to impart regional identity and to induce Pax genes in
specific locations. Good candidates for this role are regionally
restricted factors like Otx2, Gbx2, Irx1-3 and Six3 in analogy to
their role in the neural tube.
Conclusion

In the last decade or so, many of the transcription factors and
signals that influence sensory placode development have been
identified. The GRN presented here reveals their temporal hier-
archy and how both signals and transcription factors are repeat-
edly used first to specify the PPR and then to subdivide it into
placode cells with unique identity. Over time the developmental
potential of ectodermal cells becomes progressively restricted and
cross-repressive interactions and positive feedback loops are
critically important to segregate and stabilise different fates,
respectively. In particular, the repeated use of FGF – first as a
‘border’ inducing signal, then as PPR inducer and finally as
inducer for most placodes – demonstrates how the regulatory
state of each cell population and its developmental history
sensory nervous system in the vertebrate head: A gene
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determines the ultimate outcome. The next challenge will be to
determine direct FGF targets and how the same signal is inter-
preted at each stage.

While the GRN presented here allows us to predict new
interactions and loss- and gain-of-function phenotypes, it clearly
demonstrates our lack of knowledge with respect to the cis-
regulatory mechanisms involved. With the notable exception of
Six1 and a few otic genes (Barembaum and Bronner-Fraser, 2010;
Betancur et al., 2010b; Saigou et al., 2010; Sato et al., 2010), none
of the regulatory elements that control spatial and temporal gene
expression in sensory progenitors have been identified. These will
be crucial to understand how signalling and transcription factor
inputs are integrated to control cell fate decisions. Finally, it is
surprising that Six and Eya co-factors (except for the expression of
putative co-factors; Neilson et al., 2010) and downstream targets
have not been reported in vertebrates. Their identification will be
important to understand not only how these factors control the
development of diverse placodes, but also how mutations in the
Six/Eya pathway in humans leads to congenital abnormalities in
sense and other organs.
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Köster, R.W., Kuhnlein, R.P., Wittbrodt, J., 2000. Ectopic Sox3 activity elicits
sensory placode formation. Mech. Dev. 95, 175–187.

Kozlowski, D.J., Murakami, T., Ho, R.K., Weinberg, E.S., 1997. Regional cell move-
ment and tissue patterning in the zebrafish embryo revealed by fate mapping
with caged fluorescein. Biochem. Cell Biol. 75, 551–562.

Kozlowski, D.J., Whitfield, T.T., Hukriede, N.A., Lam, W.K., Weinberg, E.S., 2005. The
zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival
and differentiation in the inner ear and lateral line. Dev. Biol. 277, 27–41.

Kretzschmar, M., Doody, J., Massague, J., 1997. Opposing BMP and EGF signalling
pathways converge on the TGF-beta family mediator Smad1. Nature 389,
618–622.

Kroll, K.L., Salic, A.N., Evans, L.M., Kirschner, M.W., 1998. Geminin, a neuralizing
molecule that demarcates the future neural plate at the onset of gastrulation.
Development 125, 3247–3258.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
Kwon, H.J., Bhat, N., Sweet, E.M., Cornell, R.A., Riley, B.B., 2010. Identification of
early requirements for preplacodal ectoderm and sensory organ development.
PLoS Genet., 6.

LaBonne, C., Bronner-Fraser, M., 1998. Neural crest induction in Xenopus: evidence
for a two-signal model. Development 125, 2403–2414.

Laclef, C., Hamard, G., Demignon, J., Souil, E., Houbron, C., Maire, P., 2003. Altered
myogenesis in Six1-deficient mice. Development 130, 2239–2252.

Ladher, R.K., Anakwe, K.U., Gurney, A.L., Schoenwolf, G.C., Francis-West, P.H., 2000.
Identification of synergistic signals initiating inner ear development. Science
290, 1965–1968.

Ladher, R.K., O’Neill, P., Begbie, J., 2010. From shared lineage to distinct functions:
the development of the inner ear and epibranchial placodes. Development
137, 1777–1785.

Lassiter, R.N., Dude, C.M., Reynolds, S.B., Winters, N.I., Baker, C.V., Stark, M.R., 2007.
Canonical Wnt signaling is required for ophthalmic trigeminal placode cell
fate determination and maintenance. Dev. Biol. 308, 392–406.

Leger, S., Brand, M., 2002. Fgf8 and Fgf3 are required for zebrafish ear placode
induction, maintenance and inner ear patterning. Mech. Dev. 119, 91–108.

Levine, M., Davidson, E.H., 2005. Gene regulatory networks for development. Proc.
Natl. Acad. Sci. USA 102, 4936–4942.

Li, B., Kuriyama, S., Moreno, M., Mayor, R., 2009. The posteriorizing gene Gbx2 is a
direct target of Wnt signalling and the earliest factor in neural crest induction.
Development 136, 3267–3278.

Li, H.S., Yang, J.M., Jacobson, R.D., Pasko, D., Sundin, O., 1994. Pax-6 is first
expressed in a region of ectoderm anterior to the early neural plate: implica-
tions for stepwise determination of the lens. Dev. Biol. 162, 181–194.

Li, J.Y., Joyner, A.L., 2001. Otx2 and Gbx2 are required for refinement and not
induction of mid-hindbrain gene expression. Development 128, 4979–4991.

Li, W., Cornell, R.A., 2007. Redundant activities of Tfap2a and Tfap2c are required
for neural crest induction and development of other non-neural ectoderm
derivatives in zebrafish embryos. Dev. Biol. 304, 338–354.

Li, X., Oghi, K.A., Zhang, J., Krones, A., Bush, K.T., Glass, C.K., Nigam, S.K., Aggarwal,
A.K., Maas, R., Rose, D.W., Rosenfeld, M.G., 2003. Eya protein phosphatase
activity regulates Six1-Dach-Eya transcriptional effects in mammalian orga-
nogenesis. Nature 426, 247–254.

Liedke, K., 1942. Lens competence in Rana pipiens. J. Exp. Zool. 90, 331–351.
Liedke, K., 1951. Lens competence in Ambystoma punctatum. J. Exp. Zool. 117,

573–591.
Linker, C., De Almeida, I., Papanayotou, C., Stower, M., Sabado, V., Ghorani, E.,

Streit, A., Mayor, R., Stern, C.D., 2009. Cell communication with the neural
plate is required for induction of neural markers by BMP inhibition: evidence
for homeogenetic induction and implications for Xenopus animal cap and
chick explant assays. Dev. Biol. 327, 478–486.

Litsiou, A., Hanson, S., Streit, A., 2005. A balance of FGF, Wnt and BMP signalling
positions the future placode territory in the head. Development 132,
4051–4062.

Liu, D., Chu, H., Maves, L., Yan, Y.L., Morcos, P.A., Postlethwait, J.H., Westerfield, M.,
2003. Fgf3 and Fgf8 dependent and independent transcription factors are
required for otic placode specification. Development 130, 2213–2224.

Liu, W., Lagutin, O.V., Mende, M., Streit, A., Oliver, G., 2006. Six3 activation of Pax6
expression is essential for mammalian lens induction and specification. Embo
J. 25, 5383–5395.

Longabaugh, W.J., Davidson, E.H., Bolouri, H., 2005. Computational representation
of developmental genetic regulatory networks. Dev. Biol. 283, 1–16.

Longabaugh, W.J., Davidson, E.H., Bolouri, H., 2009. Visualization, documentation,
analysis, and communication of large-scale gene regulatory networks. Bio-
chim. Biophys. Acta 1789, 363–374.

Lunn, J.S., Fishwick, K.J., Halley, P.A., Storey, K.G., 2007. A spatial and temporal map
of FGF/Erk1/2 activity and response repertoires in the early chick embryo. Dev.
Biol. 302, 536–552.

Luo, T., Matsuo-Takasaki, M., Lim, J.H., Sargent, T.D., 2001a. Differential regulation
of Dlx gene expression by a BMP morphogenetic gradient. Int. J. Dev. Biol. 45,
681–684.

Luo, T., Matsuo-Takasaki, M., Sargent, T.D., 2001b. Distinct roles for Distal-less
genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus. Mol.
Reprod. Dev. 60, 331–337.

Mackereth, M.D., Kwak, S.J., Fritz, A., Riley, B.B., 2005. Zebrafish pax8 is required
for otic placode induction and plays a redundant role with Pax2 genes in the
maintenance of the otic placode. Development 132, 371–382.

Maeda, R., Kobayashi, A., Sekine, R., Lin, J.J., Kung, H., Maeno, M., 1997. Xmsx-1
modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis
embryo. Development 124, 2553–2560.

Mardon, G., Solomon, N.M., Rubin, G.M., 1994. dachshund encodes a nuclear
protein required for normal eye and leg development in Drosophila. Devel-
opment 120, 3473–3486.

Maroon, H., Walshe, J., Mahmood, R., Kiefer, P., Dickson, C., Mason, I., 2002. Fgf3
and Fgf8 are required together for formation of the otic placode and vesicle.
Development 129, 2099–2108.

Martin, K., Groves, A.K., 2006. Competence of cranial ectoderm to respond to Fgf
signaling suggests a two-step model of otic placode induction. Development
133, 877–887.

Massague, J., 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67,
753–791.

Matsuo-Takasaki, M., Matsumura, M., Sasai, Y., 2005. An essential role of Xenopus
Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
Development 132, 3885–3894.
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028

dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
Original Text:
J Exp Zool

Original Text:
J Exp Zool

Original Text:
J Exp Zool

Original Text:
Annu Rev Biochem

Original Text:
Hum Mol Genet

Original Text:
mid&dash;hindbrain

Original Text:
Curr Opin

Original Text:
Biol

Original Text:
Embo J

Original Text:
Dev

Original Text:
Dev

Original Text:
Mech Dev

Original Text:
Lett

Original Text:
genes&dash;&dash;structure

Original Text:
Dev Dyn

Original Text:
Dev Biol

Original Text:
Dev Dyn

Original Text:
lockjaw

Original Text:
Dev Biol

Original Text:
Mech Dev

Original Text:
Mech Dev

Original Text:
Res

Original Text:
Mech Dev

Original Text:
Biochem

Original Text:
Biol

Original Text:
Dev Biol

Original Text:
Genet

Original Text:
Dev Biol

Original Text:
Mech Dev

Original Text:
Proc Natl Acad Sci U S A

Original Text:
Dev Biol

Original Text:
Dev Biol

Original Text:
J Exp Zool

Original Text:
J Exp Zool

Original Text:
Dev Biol

Original Text:
Dev Biol

Original Text:
Biochim Biophys

Original Text:
Dev Biol

Original Text:
Int J Dev Biol

Original Text:
Mol Reprod Dev

Original Text:
Annu Rev Biochem

Andrea
Note
Add reference:

Luo, T., Lee, Y.-H., Saint-Jeannet, J.-P., Sargent, T.D., 2003. Induction of neural crest in Xenopus by transcription factor AP2. Proc Natl Acad Sci U S A 100, 532-537.



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

121

123

125

127

129

131

133

T. Grocott et al. / Developmental Biology ] (]]]]) ]]]–]]]20
Mayor, R., Guerrero, N., Martinez, C., 1997. Role of FGF and noggin in neural crest
induction. Dev. Biol. 189, 1–12.

McCabe, K.L., Bronner-Fraser, M., 2008. Essential role for PDGF signaling in
ophthalmic trigeminal placode induction. Development 135, 1863–1874.

McCabe, K.L., Bronner-Fraser, M., 2009. Molecular and tissue interactions govern-
ing induction of cranial ectodermal placodes. Dev. Biol. 332, 189–195.

McLarren, K.W., Litsiou, A., Streit, A., 2003. DLX5 positions the neural crest and
preplacode region at the border of the neural plate. Dev. Biol. 259, 34–47.

Merzdorf, C.S., 2007. Emerging roles for zic genes in early development. Dev. Dyn.
236, 922–940.

Millet, S., Campbell, K., Epstein, D.J., Losos, K., Harris, E., Joyner, A.L., 1999. A role
for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer.
Nature 401, 161–164.

Mishima, N., Tomarev, S., 1998. Chicken Eyes absent 2 gene: isolation and
expression pattern during development. Int. J. Dev. Biol. 42, 1109–1115.

Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., Sasai, Y., 1998. Xenopus Zic-
related-1 and Sox-2, two factors induced by chordin, have distinct activities in
the initiation of neural induction. Development 125, 579–587.

Monsoro-Burq, A.H., Fletcher, R.B., Harland, R.M., 2003. Neural crest induction by
paraxial mesoderm in Xenopus embryos requires FGF signals. Development
130, 3111–3124.

Monsoro-Burq, A.H., Wang, E., Harland, R., 2005. Msx1 and Pax3 cooperate to
mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev.
Cell 8, 167–178.

Moury, J.D., Jacobson, A.G., 1989. Neural fold formation at newly created
boundaries between neural plate and epidermis in the axolotl. Dev. Biol.
133, 44–57.

Muta, M., Kamachi, Y., Yoshimoto, A., Higashi, Y., Kondoh, H., 2002. Distinct roles
of SOX2, Pax6 and Maf transcription factors in the regulation of lens-specific
delta1-crystallin enhancer. Genes Cells 7, 791–805.

Nakata, K., Nagai, T., Aruga, J., Mikoshiba, K., 1997. Xenopus Zic3, a primary
regulator both in neural and neural crest development. Proc. Natl. Acad. Sci.
USA 94, 11980–11985.

Nakata, K., Nagai, T., Aruga, J., Mikoshiba, K., 1998. Xenopus Zic family and its role
in neural and neural crest development. Mech. Dev. 75, 43–51.

Nechiporuk, A., Linbo, T., Poss, K.D., Raible, D.W., 2007. Specification of epibran-
chial placodes in zebrafish. Development 134, 611–623.

Nechiporuk, A., Linbo, T., Raible, D.W., 2005. Endoderm-derived Fgf3 is necessary
and sufficient for inducing neurogenesis in the epibranchial placodes in
zebrafish. Development 132, 3717–3730.

Neilson, K.M., Pignoni, F., Yan, B., Moody, S.A., 2010. Developmental expression
patterns of candidate cofactors for vertebrate six family transcription factors.
Dev. Dyn. 239, 3446–3466.

Nieuwkoop, P.D., 1958. Neural competence of the gastrula ectoderm in Ambystoma
mexicanum. An attempt at quantative analysis of morphogenesis. Acta
Embryol. Morphol. 2, 13–53.

Nikaido, M., Doi, K., Shimizu, T., Hibi, M., Kikuchi, Y., Yamasu, K., 2007. Initial
specification of the epibranchial placode in zebrafish embryos depends on the
fibroblast growth factor signal. Dev. Dyn. 236, 564–571.

Nissen, R.M., Yan, J., Amsterdam, A., Hopkins, N., Burgess, S.M., 2003. Zebrafish foxi
one modulates cellular responses to Fgf signaling required for the integrity of
ear and jaw patterning. Development 130, 2543–2554.

Ogita, J., Isogai, E., Sudo, H., Sakiyama, S., Nakagawara, A., Koseki, H., 2001.
Expression of the Dan gene during chicken embryonic development. Mech.
Dev. 109, 363–365.

Ohto, H., Kamada, S., Tago, K., Tominaga, S.I., Ozaki, H., Sato, S., Kawakami, K., 1999.
Cooperation of six and eya in activation of their target genes through nuclear
translocation of Eya. Mol. Cell Biol. 19, 6815–6824.

Ohuchi, H., Kimura, S., Watamoto, M., Itoh, N., 2000. Involvement of fibroblast
growth factor (FGF)18-FGF8 signaling in specification of left–right asymmetry
and brain and limb development of the chick embryo. Mech. Dev. 95, 55–66.

Ohyama, T., Groves, A.K., 2004. Expression of mouse Foxi class genes in early
craniofacial development. Dev. Dyn. 231, 640–646.

Ohyama, T., Groves, A.K., Martin, K., 2007. The first steps towards hearing:
mechanisms of otic placode induction. Int. J. Dev. Biol. 51, 463–472.

Ohyama, T., Mohamed, O.A., Taketo, M.M., Dufort, D., Groves, A.K., 2006. Wnt
signals mediate a fate decision between otic placode and epidermis. Devel-
opment 133, 865–875.

Ozaki, H., Nakamura, K., Funahashi, J., Ikeda, K., Yamada, G., Tokano, H., Okamura,
H.O., Kitamura, K., Muto, S., Kotaki, H., Sudo, K., Horai, R., Iwakura, Y., Kawakami,
K., 2004. Six1 controls patterning of the mouse otic vesicle. Development 131,
551–562.

Padanad, M.S., Riley, B.B., 2011. Pax2/8 proteins coordinate sequential induction of
otic and epibranchial placodes through differential regulation of foxi1, sox3
and fgf24. Dev. Biol. 351, 90–98.

Pandur, P.D., Moody, S.A., 2000. Xenopus Six1 gene is expressed in neurogenic
cranial placodes and maintained in the differentiating lateral lines. Mech. Dev.
96, 253–257.

Papalopulu, N., Kintner, C., 1993. Xenopus distal-less related homeobox genes are
expressed in the developing forebrain and are induced by planar signals.
Development 117, 961–975.

Papanayotou, C., Mey, A., Birot, A.M., Saka, Y., Boast, S., Smith, J.C., Samarut, J.,
Stern, C.D., 2008. A mechanism regulating the onset of Sox2 expression in the
embryonic neural plate. PLoS Biol. 6, e2.

Park, B.Y., Saint-Jeannet, J.P., 2008. Hindbrain-derived Wnt and Fgf signals
cooperate to specify the otic placode in Xenopus. Dev. Biol. 324, 108–121.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
Patthey, C., Gunhaga, L., Edlund, T., 2008. Early development of the central and
peripheral nervous systems is coordinated by Wnt and BMP signals. PLoS ONE
3, e1625.

Pera, E., Kessel, M., 1999. Expression of DLX3 in chick embryos. Mech. Dev. 89,
189–193.

Pera, E., Stein, S., Kessel, M., 1999. Ectodermal patterning in the avian embryo:
epidermis versus neural plate. Development 126, 63–73.

Peter, Isabelle S., Davidson, Eric H, 2011. Evolution of gene regulatory networks
controlling body plan development. Cell 144, 970–985.

Phillips, B.T., Bolding, K., Riley, B.B., 2001. Zebrafish fgf3 and fgf8 encode redundant
functions required for otic placode induction. Dev. Biol. 235, 351–365.

Phillips, B.T., Kwon, H.J., Melton, C., Houghtaling, P., Fritz, A., Riley, B.B., 2006.
Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural
border and regulate cranial placodes and neural crest development. Dev. Biol.
294, 376–390.

Phillips, B.T., Storch, E.M., Lekven, A.C., Riley, B.B., 2004. A direct role for Fgf but not
Wnt in otic placode induction. Development 131, 923–931.

Pieper, M., Ahrens, K., Rink, E., Peter, A., Schlosser, G., 2012. Differential distribu-
tion of competence for panplacodal and neural crest induction to non-neural
and neural ectoderm. Development 139, 1175–1187.

Pieper, M., Eagleson, G.W., Wosniok, W., Schlosser, G., 2011. Origin and segrega-
tion of cranial placodes in Xenopus laevis. Dev. Biol. 360, 257–275.

Pignoni, F., Hu, B., Zavitz, K.H., Xiao, J., Garrity, P.A., Zipursky, S.L., 1997a. The eye-
specification proteins So and Eya form a complex and regulate multiple steps
in Drosophila eye development. Cell 91, 881–891.

Pignoni, F., Hu, B., Zipursky, S.L., 1997b. Identification of genes required for
Drosophila eye development using a phenotypic enhancer-trap. Proc. Natl.
Acad. Sci. USA 94, 9220–9225.

Quinn, J., West, J., Hill, R., 1996. Multiple functions for Pax6 in mouse eye and nasal
development. Genes Dev. 10, 435–446.

Rayapureddi, J.P., Kattamuri, C., Steinmetz, B.D., Frankfort, B.J., Ostrin, E.J., Mardon, G.,
Hegde, R.S., 2003. Eyes absent represents a class of protein tyrosine phosphatases.
Nature 426, 295–298.

Rex, M., Orme, A., Uwanogho, D., Tointon, K., Wigmore, P.M., Sharpe, P.T., Scotting,
P.J., 1997. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm
induced to form neural tissue. Dev. Dyn. 209, 323–332.

Rhinn, M., Lun, K., Ahrendt, R., Geffarth, M., Brand, M., 2009. Zebrafish gbx1 refines
the midbrain-hindbrain boundary border and mediates the Wnt8 poster-
iorization signal. Neural Dev. 4, 12.

Riley, B.B., Phillips, B.T., 2003. Ringing in the new ear: resolution of cell interac-
tions in otic development. Dev. Biol. 261, 289–312.

Rodriguez Esteban, C., Capdevila, J., Economides, A.N., Pascual, J., Ortiz, A., Izpisua
Belmonte, J.C., 1999. The novel Cer-like protein Caronte mediates the estab-
lishment of embryonic left–right asymmetry. Nature 401, 243–251.

Rogers, C.D., Harafuji, N., Archer, T., Cunningham, D.D., Casey, E.S., 2009. Xenopus
Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to
induce neural progenitor formation at the expense of non-neural ectodermal
derivatives. Mech. Dev. 126, 42–55.

Ruf, R.G., Xu, P.X., Silvius, D., Otto, E.A., Beekmann, F., Muerb, U.T., Kumar, S.,
Neuhaus, T.J., Kemper, M.J., Raymond Jr., R.M., Brophy, P.D., Berkman, J., Gattas,
M., Hyland, V., Ruf, E.M., Schwartz, C., Chang, E.H., Smith, R.J., Stratakis, C.A.,
Weil, D., Petit, C., Hildebrandt, F., 2004. SIX1 mutations cause branchio-oto-
renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc. Natl. Acad.
Sci. USA 101, 8090–8095.

Saigou, Y., Kamimura, Y., Inoue, M., Kondoh, H., Uchikawa, M., 2010. Regulation of
Sox2 in the pre-placodal cephalic ectoderm and central nervous system by
enhancer N-4. Dev. Growth Differ. 52, 397–408.

Sanyanusin, P., McNoe, L.A., Sullivan, M.J., Weaver, R.G., Eccles, M.R., 1995.
Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum. Mol.
Genet. 4, 2183–2184.

Sato, S., Ikeda, K., Shioi, G., Nakao, K., Yajima, H., Kawakami, K., 2012. Regulation of
Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev. Biol...

Sato, S., Ikeda, K., Shioi, G., Ochi, H., Ogino, H., Yajima, H., Kawakami, K., 2010.
Conserved expression of mouse Six1 in the pre-placodal region (PPR) and
identification of an enhancer for the rostral PPR. Dev. Biol. 344, 158–171.

Sauka-Spengler, T., Bronner-Fraser, M., 2008. A gene regulatory network orches-
trates neural crest formation. Nat. Rev. Mol. Cell Biol. 9, 557–568.

Sbrogna, J.L., Barresi, M.J., Karlstrom, R.O., 2003. Multiple roles for Hedgehog
signaling in zebrafish pituitary development. Dev. Biol. 254, 19–35.

Schimmang, T., 2007. Expression and functions of FGF ligands during early otic
development. Int. J. Dev. Biol. 51, 473–481.

Schimmenti, L.A., Cunliffe, H.E., McNoe, L.A., Ward, T.A., French, M.C., Shim, H.H.,
Zhang, Y.H., Proesmans, W., Leys, A., Byerly, K.A., Braddock, S.R., Masuno, M.,
Imaizumi, K., Devriendt, K., Eccles, M.R., 1997. Further delineation of renal-
coloboma syndrome in patients with extreme variability of phenotype and
identical PAX2 mutations. Am. J. Hum. Genet. 60, 869–878.

Schlosser, G., 2006. Induction and specification of cranial placodes. Dev. Biol. 294,
303–351.

Schlosser, G., 2010. Making senses development of vertebrate cranial placodes. Int.
Rev. Cell Mol. Biol. 283, 129–234.

Schlosser, G., Ahrens, K., 2004. Molecular anatomy of placode development in
Xenopus laevis. Dev. Biol. 271, 439–466.

Schonberger, J., Wang, L., Shin, J.T., Kim, S.D., Depreux, F.F., Zhu, H., Zon, L., Pizard,
A., Kim, J.B., Macrae, C.A., Mungall, A.J., Seidman, J.G., Seidman, C.E., 2005.
Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyo-
pathy and sensorineural hearing loss. Nat. Genet. 37, 418–422.
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028

dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
Original Text:
Dev Biol

Original Text:
Dev Biol

Original Text:
Dev Biol

Original Text:
Dev Dyn

Original Text:
Int J Dev Biol

Original Text:
Dev

Original Text:
Dev Biol

Original Text:
Proc Natl Acad Sci U S A

Original Text:
Mech Dev

Original Text:
Dev Dyn

Original Text:
Mech Dev

Original Text:
Mol

Original Text:
Biol

Original Text:
left&dash;right

Original Text:
Mech Dev

Original Text:
Dev Dyn

Original Text:
Int J Dev Biol

Original Text:
Dev Biol

Original Text:
Mech Dev

Original Text:
Distal&dash;less

Original Text:
Biol

Original Text:
Dev Biol

Original Text:
Mech Dev

Original Text:
Gene Regulatory Networks Controlling Body Plan Development

Original Text:
Dev Biol

Original Text:
Dev Biol

Original Text:
Xenopus

Original Text:
laevis

Original Text:
Dev Biol

Original Text:
Proc Natl Acad Sci U S A

Original Text:
Dev

Original Text:
Dev Dyn

Original Text:
Dev

Original Text:
Dev Biol

Original Text:
left&dash;right

Original Text:
Mech Dev

Original Text:
Proc Natl Acad Sci U S A

Original Text:
Dev

Original Text:
Differ

Original Text:
Hum Mol Genet

Original Text:
Sato, S., Ikeda, K., Shioi, G., Nakao, K., Yajima, H., Kawakami, K., 2012. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol.

Original Text:
Dev Biol

Original Text:
Nat Rev Mol

Original Text:
Biol

Original Text:
Dev Biol

Original Text:
Int J Dev Biol

Original Text:
Am J Hum Genet

Original Text:
Dev Biol

Original Text:
Int Rev

Original Text:
Mol Biol

Original Text:
Dev Biol

Original Text:
Nat Genet



Q6

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

121

123

125

127

129

131

133

T. Grocott et al. / Developmental Biology ] (]]]]) ]]]–]]] 21
Schubert, F.R., Mootoosamy, R.C., Walters, E.H., Graham, A., Tumiotto, L., Munster-
berg, A.E., Lumsden, A., Dietrich, S., 2002. Wnt6 marks sites of epithelial
transformations in the chick embryo. Mech. Dev. 114, 143–148.

Schwarz, M., Alvarez-Bolado, G., Dressler, G., Urbanek, P., Busslinger, M., Gruss, P.,
1999. Pax2/5 and Pax6 subdivide the early neural tube into three domains.
Mech. Dev. 82, 29–39.

Selleck, M.A., Bronner-Fraser, M., 1995. Origins of the avian neural crest: the role
of neural plate–epidermal interactions. Development 121, 525–538.

Serikaku, M.A., O’Tousa, J.E., 1994. sine oculis is a homeobox gene required for
Drosophila visual system development. Genetics 138, 1137–1150.

Servetnick, M., Grainger, R.M., 1991. Changes in neural and lens competence in
Xenopus ectoderm: evidence for an autonomous developmental timer. Devel-
opment 112, 177–188.

Shamim, H., Mason, I., 1999. Expression of Fgf4 during early development of the
chick embryo. Mech. Dev. 85, 189–192.

Shen, W., Mardon, G., 1997. Ectopic eye development in Drosophila induced by
directed dachshund expression. Development 124, 45–52.

Sheng, G., Stern, C.D., 1999. Gata2 and Gata3: novel markers for early embryonic
polarity and for non-neural ectoderm in the chick embryo. Mech. Dev. 87,
213–216.

Shigetani, Y., Howard, S., Guidato, S., Furushima, K., Abe, T., Itasaki, N., 2008. Wise
promotes coalescence of cells of neural crest and placode origins in the
trigeminal region during head development. Dev. Biol. 319, 346–358.

Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A., Boncinelli, E., 1992.
Nested expression domains of four homeobox genes in developing rostral
brain. Nature 358, 687–690.

Simeone, A., Acampora, D., Mallamaci, A., Stornaiuolo, A., D’Apice, M.R., Nigro, V.,
Boncinelli, E., 1993. A vertebrate gene related to orthodenticle contains a
homeodomain of the bicoid class and demarcates anterior neuroectoderm in
the gastrulating mouse embryo. Embo J. 12, 2735–2747.

Sjodal, M., Edlund, T., Gunhaga, L., 2007. Time of exposure to BMP signals plays a
key role in the specification of the olfactory and lens placodes ex vivo. Dev.
Cell 13, 141–149.

Skromne, I., Stern, C.D., 2001. Interactions between Wnt and Vg1 signalling
pathways initiate primitive streak formation in the chick embryo. Develop-
ment 128, 2915–2927.

Smith, A.N., Miller, L.A., Song, N., Taketo, M.M., Lang, R.A., 2005. The duality of
beta-catenin function: a requirement in lens morphogenesis and signaling
suppression of lens fate in periocular ectoderm. Dev. Biol. 285, 477–489.

Solomon, K.S., Fritz, A., 2002. Concerted action of two dlx paralogs in sensory
placode formation. Development 129, 3127–3136.

Solomon, K.S., Kudoh, T., Dawid, I.B., Fritz, A., 2003a. Zebrafish foxi1 mediates otic
placode formation and jaw development. Development 130, 929–940.

Solomon, K.S., Kwak, S.J., Fritz, A., 2004. Genetic interactions underlying otic
placode induction and formation. Dev. Dyn. 230, 419–433.

Solomon, K.S., Logsdon Jr., J.M., Fritz, A., 2003b. Expression and phylogenetic
analyses of three zebrafish FoxI class genes. Dev. Dyn. 228, 301–307.

Stark, M.R., Sechrist, J., Bronner-Fraser, M., Marcelle, C., 1997. Neural tube-
ectoderm interactions are required for trigeminal placode formation. Devel-
opment 124, 4287–4295.

Stern, C.D., Downs, K.M., 2012. The hypoblast (visceral endoderm): an evo-devo
perspective. Development 139, 1059–1069.

Steventon, B., Araya, C., Linker, C., Kuriyama, S., Mayor, R., 2009. Differential
requirements of BMP and Wnt signalling during gastrulation and neurulation
define two steps in neural crest induction. Development 136, 771–779.

Steventon, B., Mayor, R., 2012. Early neural crest induction requires an initial
inhibition of Wnt signals. Dev. Biol..

Steventon, B., Mayor, R., Streit, A., 2012. Mutual repression between Gbx2 and Otx2
in sensory placodes reveals a general mechanism for ectodermal patterning.
Dev. Biol..

Storey, K.G., Crossley, J.M., De Robertis, E.M., Norris, W.E., Stern, C.D., 1992. Neural
induction and regionalisation in the chick embryo. Development 114,
729–741.

Streit, A., 2002. Extensive cell movements accompany formation of the otic
placode. Dev. Biol. 249, 237–254.

Streit, A., 2007. The preplacodal region: an ectodermal domain with multipotential
progenitors that contribute to sense organs and cranial sensory ganglia. Int. J.
Dev. Biol. 51, 447–461.

Streit, A., 2008. The cranial sensory nervous system: specification of sensory
progenitors and placodes.

Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., Stern, C.D., 2000. Initiation of
neural induction by FGF signalling before gastrulation. Nature 406, 74–78.

Streit, A., Lee, K.J., Woo, I., Roberts, C., Jessell, T.M., Stern, C.D., 1998. Chordin
regulates primitive streak development and the stability of induced neural
cells, but is not sufficient for neural induction in the chick embryo. Develop-
ment 125, 507–519.

Streit, A., Sockanathan, S., Perez, L., Rex, M., Scotting, P.J., Sharpe, P.T., Lovell-Badge,
R., Stern, C.D., 1997. Preventing the loss of competence for neural induction:
HGF/SF, L5 and Sox-2. Development 124, 1191–1202.

Streit, A., Stern, C.D., 1999. Establishment and maintenance of the border of the
neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82,
51–66.

Stuhlmiller, T.J., Garcı́a-Castro, M.I., 2012. FGF/MAPK signaling is required in the
gastrula epiblast for avian neural crest induction. Development 139, 289–300.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
Sun, S.K., Dee, C.T., Tripathi, V.B., Rengifo, A., Hirst, C.S., Scotting, P.J., 2007.
Epibranchial and otic placodes are induced by a common Fgf signal, but their
subsequent development is independent. Dev. Biol. 303, 675–686.

Suzuki, A., Ueno, N., Hemmati-Brivanlou, A., 1997. Xenopus msx1 mediates
epidermal induction and neural inhibition by BMP4. Development 124,
3037–3044.

Sweetman, D., Smith, T.G., Farrell, E.R., Munsterberg, A., 2005. Expression of csal1
in pre limb-bud chick embryos. Int. J. Dev. Biol. 49, 427–430.

Tessmar, K., Loosli, F., Wittbrodt, J., 2002. A screen for co-factors of Six3. Mech.
Dev. 117, 103–113.

Tootle, T.L., Silver, S.J., Davies, E.L., Newman, V., Latek, R.R., Mills, I.A., Selengut, J.D.,
Parlikar, B.E., Rebay, I., 2003. The transcription factor Eyes absent is a protein
tyrosine phosphatase. Nature 426, 299–302.

Torres, M., Giraldez, F., 1998. The development of the vertebrate inner ear. Mech.
Dev. 71, 5–21.

Torres, M., Gomez-Pardo, E., Gruss, P., 1996. Pax2 contributes to inner ear
patterning and optic nerve trajectory. Development 122, 3381–3391.

Tour, E., Pillemer, G., Gruenbaum, Y., Fainsod, A., 2001. The two Xenopus Gbx2
genes exhibit similar, but not identical expression patterns and can affect head
formation. FEBS Lett. 507, 205–209.

Tribulo, C., Aybar, M.J., Nguyen, V.H., Mullins, M.C., Mayor, R., 2003. Regulation of
Msx genes by a Bmp gradient is essential for neural crest specification.
Development 130, 6441–6452.

Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y., Kondoh, H., 2003. Functional
analysis of chicken Sox2 enhancers highlights an array of diverse regulatory
elements that are conserved in mammals. Dev. Cell 4, 509–519.

van de Water, S., van de Wetering, M., Joore, J., Esseling, J., Bink, R., Clevers, H.,
Zivkovic, D., 2001. Ectopic Wnt signal determines the eyeless phenotype of
zebrafish masterblind mutant. Development 128, 3877–3888.

Varga, Z.M., Amores, A., Lewis, K.E., Yan, Y.L., Postlethwait, J.H., Eisen, J.S.,
Westerfield, M., 2001. Zebrafish smoothened functions in ventral neural tube
specification and axon tract formation. Development 128, 3497–3509.

Villanueva, S., Glavic, A., Ruiz, P., Mayor, R., 2002. Posteriorization by FGF, Wnt,
and retinoic acid is required for neural crest induction. Dev. Biol. 241,
289–301.

Vogel-Hopker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L., Rapaport, D.H.,
2000. Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye
development. Mech. Dev. 94, 25–36.

von Bubnoff, A., Schmidt, J.E., Kimelman, D., 1996. The Xenopus laevis homeobox
gene Xgbx-2 is an early marker of anteroposterior patterning in the ectoderm.
Mech. Dev. 54, 149–160.

Waddington, C.H., 1934. Experiments on embryonic induction. Part I: The
competence of the extra-embryonic ectoderm. Part II: Experiments on coagu-
lated organisers in the chick. Part III: A note on inductions by chick primitive
streak transplanted to the rabbit embryo. J. Exp. Biol. 11, 211–227.

Waddington, C.H., 1935. The origin of competence for lens formation in the
amphibia. J. Exp. Biol. 8, 86–91.

Waddington, C.H., 1937. The determination of the auditory placode in the chick. J.
Exp. Biol. 14, 232–239.

Waddington, C.H., Needham, J., 1936. Evocation, individuation, and competence in
amphibian organizer action. Proc Kon Akad Wetensch Amsterdam 39,
887–891.

Wakamatsu, Y., 2011. Mutual repression between Pax3 and Pax6 is involved in the
positioning of ophthalmic trigeminal placode in avian embryo. Dev. Growth
Differ. 53, 994–1003.

Wassarman, K.M., Lewandoski, M., Campbell, K., Joyner, A.L., Rubenstein, J.L.,
Martinez, S., Martin, G.R., 1997. Specification of the anterior hindbrain and
establishment of a normal mid/hindbrain organizer is dependent on Gbx2
gene function. Development 124, 2923–2934.

Wawersik, S., Maas, R.L., 2000. Vertebrate eye development as modeled in
Drosophila. Hum. Mol. Genet. 9, 917–925.

Wawersik, S., Purcell, P., Rauchman, M., Dudley, A.T., Robertson, E.J., Maas, R.,
1999. BMP7 acts in murine lens placode development. Dev. Biol. 207, 176–188.

Wayne, S., Robertson, N.G., DeClau, F., Chen, N., Verhoeven, K., Prasad, S.,
Tranebjarg, L., Morton, C.C., Ryan, A.F., Van Camp, G., Smith, R.J., 2001.
Mutations in the transcriptional activator EYA4 cause late-onset deafness at
the DFNA10 locus. Hum. Mol. Genet. 10, 195–200.

Weasner, B., Salzer, C., Kumar, J.P., 2007. Sine oculis, a member of the SIX family of
transcription factors, directs eye formation. Dev. Biol. 303, 756–771.

Webb, J.F., Noden, D.M., 1993. Ectodermal placodes: contributions to the devel-
opment of the vertebrate head. Am. Zool. 33, 434–447.

Wilson, S.I., Edlund, T., 2001. Neural induction: toward a unifying mechanism. Nat.
Neurosci. (4 Suppl.), 1161–1168.

Wilson, S.I., Rydstrom, A., Trimborn, T., Willert, K., Nusse, R., Jessell, T.M., Edlund,
T., 2001. The status of Wnt signalling regulates neural and epidermal fates in
the chick embryo. Nature 411, 325–330.

Winchester, C.L., Ferrier, R.K., Sermoni, A., Clark, B.J., Johnson, K.J., 1999. Char-
acterization of the expression of DMPK and SIX5 in the human eye and
implications for pathogenesis in myotonic dystrophy. Hum. Mol. Genet. 8,
481–492.

Woda, J.M., Pastagia, J., Mercola, M., Artinger, K.B., 2003. Dlx proteins position the
neural plate border and determine adjacent cell fates. Development 130,
331–342.

Wright, T.J., Mansour, S.L., 2003. Fgf3 and Fgf10 are required for mouse otic
placode induction. Development 130, 3379–3390.
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028

dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
Original Text:
Mech Dev

Original Text:
plate&dash;epidermal

Original Text:
O'Tousa

Original Text:
Mech Dev

Original Text:
Mech Dev

Original Text:
Dev Biol

Original Text:
J

Original Text:
Dev

Original Text:
Dev Biol

Original Text:
Dev Dyn

Original Text:
Dev Dyn

Original Text:
Dev Biol.

Original Text:
Steventon, B., Mayor, R., Streit, A., 2012. Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. Dev Biol.

Original Text:
Dev Biol

Original Text:
Int J Dev Biol

Original Text:
placodes.

Original Text:
Mech Dev

Original Text:
Dev Biol

Original Text:
Int J Dev Biol

Original Text:
Mech Dev

Original Text:
Mech Dev

Original Text:
Lett

Original Text:
Dev

Original Text:
Dev Biol

Original Text:
Mech Dev

Original Text:
I:The 

Original Text:
J Exp Biol

Original Text:
J Exp Biol

Original Text:
Dev

Original Text:
Hum Mol Genet

Original Text:
Dev Biol

Original Text:
Hum Mol Genet

Original Text:
Dev Biol

Original Text:
Am Zool

Original Text:
Nat Neurosci

Original Text:
Suppl

Original Text:
Hum Mol Genet

Original Text:
Please provide further details of ''Streit, 2008''. 

Andrea
Note
StemBook, ed. The Stem Cell Research Community, http://www.stembook.org



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

T. Grocott et al. / Developmental Biology ] (]]]]) ]]]–]]]22
Wu, M.Y., Hill, C.S., 2009. Tgf-beta superfamily signaling in embryonic develop-
ment and homeostasis. Dev. Cell 16, 329–343.

Xu, H., 2008. Development of the Maxillomandibular Trigeminal Placode in the
Chick Embryo. University of Cambridge, Cambridge.

Xu, H., Dude, C.M., Baker, C.V.H., 2008. Fine-grained fate maps for the ophthalmic
and maxillomandibular trigeminal placodes in the chick embryo. Dev. Biol.
317, 174–186.

Xu, P.X., Adams, J., Peters, H., Brown, M.C., Heaney, S., Maas, R., 1999. Eya1-
deficient mice lack ears and kidneys and show abnormal apoptosis of organ
primordia. Nat. Genet. 23, 113–117.

Yamamoto, T.S., Takagi, C., Ueno, N., 2000. Requirement of Xmsx-1 in the BMP-
triggered ventralization of Xenopus embryos. Mech. Dev. 91, 131–141.

Yang, L., Zhang, H., Hu, G., Wang, H., Abate-Shen, C., Shen, M.M., 1998. An early
phase of embryonic Dlx5 expression defines the rostral boundary of the neural
plate. J. Neurosci. 18, 8322–8330.

Yoshimoto, A., Saigou, Y., Higashi, Y., Kondoh, H., 2005. Regulation of ocular lens
development by Smad-interacting protein 1 involving Foxe3 activation.
Development 132, 4437–4448.

Zhang, H., Hu, G., Wang, H., Sciavolino, P., Iler, N., Shen, M.M., Abate-Shen, C., 1997.
Heterodimerization of Msx and Dlx homeoproteins results in functional
antagonism. Mol. Cell Biol. 17, 2920–2932.

Zhang, J., Jacobson, A.G., 1993. Evidence that the border of the neural plate may be
positioned by the interaction between signals that induce ventral and dorsal
mesoderm. Dev. Dyn. 196, 79–90.
Please cite this article as: Grocott, T., et al., The peripheral
regulatory perspective. Dev. Biol. (2012), http://dx.doi.org/10.1016/j
Zhang, Y., Knosp, B.M., Maconochie, M., Friedman, R.A., Smith, R.J., 2004. A
comparative study of Eya1 and Eya4 protein function and its implication in
branchio-oto-renal syndrome and DFNA10. J. Assoc. Res. Otolaryngol. 5,

295–304.
Zheng, W., Huang, L., Wei, Z.B., Silvius, D., Tang, B., Xu, P.X., 2003. The role of Six1

in mammalian auditory system development. Development 130, 3989–4000.
Zhu, C.C., Dyer, M.A., Uchikawa, M., Kondoh, H., Lagutin, O.V., Oliver, G., 2002. Six3-

mediated auto repression and eye development requires its interaction with
members of the Groucho-related family of co-repressors. Development 129,
2835–2849.

Zilinski, C.A., Shah, R., Lane, M.E., Jamrich, M., 2005. Modulation of zebrafish pitx3
expression in the primordia of the pituitary, lens, olfactory epithelium and

cranial ganglia by hedgehog and nodal signaling. Genesis 41, 33–40.
Zou, D., Silvius, D., Fritzsch, B., Xu, P.X., 2004. Eya1 and Six1 are essential for early

steps of sensory neurogenesis in mammalian cranial placodes. Development
131, 5561–5572.

Zou, D., Silvius, D., Rodrigo-Blomqvist, S., Enerback, S., Xu, P.-X., 2006. Eya1
regulates the growth of otic epithelium and interacts with Pax2 during
the development of all sensory areas in the inner ear. Dev. Biol. 298,

430–441.
Zygar, C.A., Cook, T.L., Grainger Jr., R.M., 1998. Gene activation during early stages

of lens induction in Xenopus. Development 125, 3509–3519.
39
sensory nervous system in the vertebrate head: A gene
.ydbio.2012.06.028

dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
dx.doi.org/10.1016/j.ydbio.2012.06.028
Original Text:
Dev

Original Text:
Xu, H., 2008. Development of the Maxillomandibular Trigeminal Placode in the Chick Embryo. University of Cambridge, Cambridge

Original Text:
Developmental Biology

Original Text:
Nat Genet

Original Text:
Mech Dev

Original Text:
J Neurosci

Original Text:
Mol

Original Text:
Biol

Original Text:
Dev Dyn

Original Text:
J Assoc Res Otolaryngol

Original Text:
Developmental Biology


	The peripheral sensory nervous system in the vertebrate head: A gene regulatory perspective
	Introduction
	Placodes and their derivatives
	Placode progenitor distribution and their relationship with neighbouring cells
	Special properties of sensory placode progenitors
	Six and Eya family members at the core of the PPR gene network
	Transcription factors upstream of the Six and Eya network
	Subdivision of the ectoderm by sequential activation of transcription factors
	Restricting neural fate: repression by non-neural transcription factors
	Transcriptional input into the Six and Eya network

	Stabilising sensory progenitor fate: positive feedback loops and repression of alternative fates
	Signalling events upstream of the core PPR gene network
	Signalling input into the Six and Eya network
	Signals differentiating sensory placode and neural crest progenitors
	Integrating FGF, BMP and Wnt signalling

	Regionalisation of the PPR
	The anterior PPR: adenohypophysis, olfactory and lens progenitors
	The posterior PPR: otic and epibranchial precursors
	The intermediate PPR: trigeminal precursors
	Conclusion
	Acknowledgements
	Supporting information
	References


	myCheckbox1: Off


